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Abstract. In this paper we study the zero-�ux chemotaxis-system{
ut = ∇ · ((u+ 1)m−1∇u− u(u+ 1)α−1χ(v)∇v) + ku− µu2 x ∈ Ω, t > 0,

0 = ∆v − v + u x ∈ Ω, t > 0,

where Ω is a bounded and smooth domain of Rn, n ≥ 1, and where m ∈ R,
k, µ > 0 and α ≤ 1. For any v ≥ 0 the chemotactic sensitivity function
is assumed to behave as the prototype χ(v) = χ0/(1 + av)2, with a ≥ 0

and χ0 > 0. We prove that for any nonnegative and su�ciently regular ini-
tial data u(x, 0), the corresponding initial-boundary value problem admits a
unique global bounded classical solution if α < 1; indeed, for α = 1 the same
conclusion is obtained provided µ is large enough. Finally, we illustrate the
range of dynamics present within the chemotaxis system in one, two and three
dimensions by means of numerical simulations.

1. Introduction and motivations

This paper is dedicated to the following problem
(1)

ut = ∇ · ((u+ 1)m−1∇u− u(u+ 1)α−1χ(v)∇v) + ku− µu2 x ∈ Ω, t > 0,

0 = ∆v − v + u x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0 x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0 x ∈ Ω,

where for the unknown (u, v) = (u(x, t), v(x, t)) the component x belongs to a
bounded and smooth domain Ω of Rn, with n ≥ 1, t ≥ 0 and where m ∈ R and
k, µ > 0. The function u0(x) = u(x, 0) is the initial value of u and it is taken from
W 1,∞(Ω), while ∂/∂ν indicates the outward normal derivative on ∂Ω. Moreover,
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2 G. VIGLIALORO AND T. WOOLLEY

we assume that α ≤ 1 and that the function χ generalizes the standard chemotactic
sensitivity

χ(v) =
χ0

(1 + av)2
with some χ0 > 0 and a ≥ 0.

The mathematical formulation of this problem describes phenomena tied to chemo-
taxis models, which indicate the movement of a cell population at a point x of an
environment, identi�ed as Ω, and at an instant t (i.e. u = u(x, t)) when stimulated
by a chemical signal (i.e. v = v(x, t)), which is also distributed in the space and
produced by the cells. In addition, the zero-�ux boundary conditions on both u and
v (the homogeneous Neumann boundary conditions) express that the interaction
takes places in a totally insulated domain ([1]).

Problem (1) is one of several generalizations of the following landmark model
proposed by Keller and Segel in 1970 (see [2] and the more recent reviews [3, 4]),

(2)


ut = ∆u− χ∇(u · ∇v) x ∈ Ω, t > 0,
τvt = ∆v − v + u x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0 x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0 and v(x, 0) = v0(x) ≥ 0 x ∈ Ω,

where χ > 0, τ ≥ 0, Ω ⊂ Rn, with n ≥ 1, is a bounded domain with smooth
boundary, and u0(x) = u(x, 0) and v0(x) = v(x, 0) are the initial cell distributions
and chemical concentration, respectively. This system and many of its variants
have been widely discussed by many authors, in terms of both the parabolic-elliptic
(i.e. τ = 0) and the parabolic-parabolic case (i.e. τ = 1). All of these models
may eventually lead to an uncontrolled gathering of cells in some localised spatial
location; such phenomenon, known as chemotactic collapse, mathematically implies
that u becomes unbounded in one or more points of its domain, in �nite time (blow-
up time). In the parabolic-parabolic case, it is known that solutions to (2), in one
spatial dimension, are global and uniformly bounded in time (see [5]), while in the
n-dimensional context, with n ≥ 2, unbounded solutions have been detected in [6]
and [7]. Estimates for the blow-up time of such unbounded solutions are explicitly
derived in [8].

Further, if τ = 0 in the second equation of system (2) then [9] and [10] have
shown that, under suitable assumptions, bacteria concentrations blow up in �nite
time. This blow up occurs in both radial and non-radial two-dimensional solutions.

Furthermore, it is worth mentioning that for the fully parabolic case impor-
tant results concerning the existence of both bounded or unbounded solutions to
chemotaxis-systems have also been attained when the �rst equation of system (2)
is replaced by ut = ∇ · (φ(u)∇u)−∇ · (ψ(u)∇v). The occurrence of such di�erent
scenarios are studied in terms of the asymptotic behaviors of the ratio between the
di�usion φ(u) and the sensitivity ψ(u), as well as the space dimension. We refer,
for instance, to [11] and [12] for the parabolic-elliptic case and to [13], [14] and
[15] for the parabolic-parabolic one. Finally, for φ(u) ' u−m and ψ(u) ' uα, with
m ≥ 0 and α ∈ R and the second equation given by 0 = ∆v−M + u, M being the
spatial mean of u, it is known (see [16]) that all the solutions of the corresponding
zero-�ux initial boundary problem are globally bounded if m+α < 2/n, whereas if
m+α > 2/n and Ω is a ball then unbounded solutions can be detected; in particular
the value 2/n represents the critical exponent for the quantity m+ α.
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In order to remove Dirac delta-type singularities, the introduction of absorptive
sources seems totally natural. The presence of the term ku − µu2 in our problem
(1) arises from the well known model of population dynamics (originally formulated
by Pierre-François Verhulst in 1838 [17]) concerning the self-limiting growth of a
biological population. We remark that another commonly considered choice of the
source, involving further zeros and replacing ku − µu2, is given by the bistable
expression u(B − u)(u− A), with 0 < A < B; the corresponding Keller-Segel-type
systems are investigated, for instance, in [18] and [19], and shock-type movements
or travelling fronts are detected (see also [20, 21] for other choices of the source).

Further, let us mention di�erent studies dealing with some speci�c parabolic-
parabolic versions of system (1), de�ned in a convex smooth and bounded domain
Ω of Rn, n ≥ 1, endowed with homogeneous Neumann boundary conditions, and
under the choice m = α = 1. Speci�cally, it has been established that when
χ(v) = 1 system (1) admits global weak solutions for k ∈ R and arbitrarily small
values of µ > 0 (see [22]). On the other hand, if g generalizes the logistic source (i.e.
it veri�es g(0) ≥ 0 and g(s) ≤ k−µs2, for s ≥ 0), χ(v) = χ > 0 and µ is big enough
then the system possesses a unique bounded and global-in-time classical solution
[23]. Additionally, in the case χ(v) = χ > 0, but with source term g(s) ' k − µsr,
for s ≥ 0, and with some r > 1, global existence of very weak solutions, as well
their boundedness properties and long time behavior are discussed in [24, 25, 26].

Finally, in order to better de�ne the purpose of this present investigation, let us
frame model (1), in its parabolic-elliptic representation, in the existent literature.
For m = α = 1 and χ(v) = χ > 0, it is proved in [27] that when µ > (n − 2)χ/n
the solutions are globally bounded, whilst for m ∈ R, α = 1 and χ(v) = χ > 0 the
same result is achieved in [28] under the assumption µ > (1 − 2/(n(2 − m)+))χ.
In [29], the author formulates problem (1) under the assumptions m ≥ 1, α > 0
and χ(v) = χ > 0, and with a more general expression for the logistic absorption:
ku− µur, with r > 1. It is concluded that the coe�cient µ does not take part for
the boundedness of the solution when α < max{r,m+ 2/n} − 1, whilst it does for
α + 1 = r. Even more, global-in-time existence and uniform-in-time boundedness
of classical and weak solutions to (1), with both non-degenerate and degenerate
di�usions, have been studied in [30, 31]. Nevertheless, as far as we know, and in
contrast to models without the logistic source, the question about the existence of
a critical exponent, involving the parameters de�ning the di�usion, the sensitivity
and the source capable of warranting, or excluding, the existence of unbounded
solutions, is still open.

In accordance with these premises, this contribution aims to present global exis-
tence and boundedness of classical solutions to problem (1) when the ranges for the
parameters m and α are di�erent from those discussed above. In addition, this re-
port introduces the function χ(v) in the cross di�usion term, which is not constant
but a function from C2([0,∞)) and satis�es for any v ≥ 0 the growth condition

(3) χ(v) ≤ χ0

(1 + av)b
with some χ0 > 0 and a ≥ 0 and b > 0.

To be precise, under proper assumptions on the data our mains assertions are
summarized in §4 and claim:

- for m ∈ R, k positive and α < 1, problem (1) with χ(v) obeying (3) admits
a unique globally bounded solution for any µ > 0 and any nonnegative and
su�ciently regular u0 (Theorem 4.3);
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- for m ∈ R, k positive and α = 1, problem (1) with χ(v) obeying (3) admits
a unique globally bounded solution for µ > 0 su�ciently large and any
nonnegative and su�ciently regular u0 (Corollary 4.1).

The theoretical results presented here are investigated numerically in §5. Speci�-
cally, parameter sweeps of m, α and n are used to detect critical exponents which
delineate the regions in which u is, and is not, bounded. Critically, although the
inequalities on α, herein derived, and from [29], ensure the boundedness of u, re-
gardless the size of the dampening term, µ, in the logistic source these inequalities
are not tight. Explicitly, we are able to violate them and still produce bounded sim-
ulations. Finally, we consider the in�uence of b on the solution through simulated
parameter sweeps over the interval b ∈ [0, 2].

2. Fixing some parameters

In the following Lemma, used throughout the paper to prove the main conclu-
sions, we adjust some parameters, which are necessary in our logical steps.

Lemma 2.1. For any q1 > n+ 2, q2 > (n+ 2)/2 and m,α ∈ R with α ≤ 1 let

(4) p̄ := max



n
2 (1−m)

1− α
q1

1−m (n+1)q1−(n+2)
q1−(n+2)

1− m
1− n

n+2
q2
q2−1


.

Then these relations hold:

(5) p >
n

2
(1−m) for all p > p̄ and n ∈ N,

(6) 0 <

n
2 (m+ p− 1)(1− 1

p )

1− n
2 + n

2 (m+ p− 1)
< 1 for all p > p̄ and n ∈ N,

(7) 0 <
p+ α

p+ 1
< 1 for all p > p̄, α 6= 1 and n ∈ N,

(8) p+ α− 1 > 0 for all p > p̄ and n ∈ N,

(9) p > q1 for all p > p̄ and n ∈ N,

(10) p > 1−m (n+ 1)q1 − (n+ 2)

q1 − (n+ 2)
for all p > p̄ and n ∈ N,

(11) p > 1− m

1− n
n+2

q2
q2−1

for all p > p̄ and n ∈ N.

Proof. From the expression of p̄, we have that

m+ p̄− 1

2
≥ m+ p̄− 1

2p̄
,

m+ p̄− 1

2p̄
>
n− 2

2n
and p̄ >

n

2
(1−m);

therefore
1− n

2
+
n

2
(m+ p− 1) > 0
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and, thus, (6) is attained. In addition, the remaining inequalities are clearly veri�ed
for any p > p̄ once p̄ is de�ned as in (4). �

3. Existence of local-in-time solutions and their properties

Our �rst result concerns local-in-time existence of classical solutions to system
(1). The proof of the result is obtained by well-established methods involving stan-
dard parabolic-elliptic regularity theory and an appropriate �xed point framework
[32, 13, 16].

Lemma 3.1. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For given
m,α ∈ R, and k, µ positive, let us assume that χ ∈ C2([0,∞)) satis�es relation (3).
Then for any nonnegative function u0 ∈ W 1,∞(Ω), problem (1) admits a unique
local-in-time classical solution

(u, v) ∈ (C([0, Tmax);W 1,∞(Ω)) ∩ C2,1(Ω̄× (0, Tmax)))2,

where Tmax denotes the maximal existence time. Moreover, we have

u ≥ 0 and v ≥ 0 in Ω× (0, Tmax),

and if Tmax <∞ then

(12) lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) =∞.

Proof. Uniqueness. By absurdity let (u1, v1) and (u2, v2) be two nonnegative dif-
ferent solutions of (1) in Ω× (0, Tmax) with the same initial data, that is u1(·, 0) =
u2(·, 0) and v1(·, 0) = v2(·, 0). In such circumstances v1 − v2 solves

(13) −∆(v1 − v2) + (v1 − v2) = u1 − u2.

Di�erentiating equation (13) with respect to t, multiplying by a factor v1 − v2 and
integrating over space, yield, for all t ∈ (0, T0) with T0 < Tmax,

1

2

d

dt

∫
Ω

|∇(v1 − v2)|2 +
1

2

d

dt

∫
Ω

(v1 − v2)2

=

∫
Ω

(u1 − u2)t(v1 − v2)−
∫

Ω

∆(v1 − v2)t(v1 − v2) + (v1 − v2)(v1 − v2)t,

=

∫
Ω

(u1 − u2)t(v1 − v2),

= −
∫

Ω

∇
(

(u1 + 1)m

m
− (u2 + 1)m

m

)
· ∇(v1 − v2)

+

∫
Ω

(χ(v1)u1(u1 + 1)α−1∇v1 − χ(v2)u2(u2 + 1)α−1∇v2) · ∇(v1 − v2)

+

∫
Ω

(ku1 − µu2
1 − ku2 + µu2

2)(v1 − v2).

(14)

Let us set

s1 := min{‖u1‖L∞(Ω×(0,T0)), ‖u2‖L∞(Ω×(0,T0))},
s2 := max{‖u1‖L∞(Ω×(0,T0)), ‖u2‖L∞(Ω×(0,T0))}.
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The Mean Value Theorem applied to the function s 7→ (s+ 1)m/m in the interval
[s1, s2] infers for some s̄ ∈ (s1, s2)

(s1 + 1)m

m
− (s2 + 1)m

m
= (s̄+ 1)m−1(s1 − s2),

so that (s1 + 1)m−1 ≤ (s̄ + 1)m−1 ≤ (s2 + 1)m−1. In light of this, by virtue of
the Young inequality, an integration by parts and relation (13), there exists some
positive C1 depending on T0 and belonging to the interval [(s1 +1)m−1, (s2 +1)m−1]
such that

I1 := −
∫

Ω

∇
(

(u1 + 1)m

m
− (u2 + 1)m

m

)
· ∇(v1 − v2)

=

∫
Ω

(
(u1 + 1)m

m
− (u2 + 1)m

m

)
∆(v1 − v2)

=

∫
Ω

(
(u1 + 1)m

m
− (u2 + 1)m

m

)
(v1 − v2)

−
∫

Ω

(
(u1 + 1)m

m
− (u2 + 1)m

m

)
(u1 − u2)

= C1

∫
Ω

(u1 − u2)(v1 − v2)− C1

∫
Ω

(u1 − u2)2

≤ C1

2

∫
Ω

(v1 − v2)2 − C1

2

∫
Ω

(u1 − u2)2.

(15)

Next, we de�ne

I2 :=

∫
Ω

(χ(v1)u1(u1 + 1)α−1∇v1 − χ(v2)u2(u2 + 1)α−1∇v2) · ∇(v1 − v2).

In view of the regularity of the function ξ 7→ ξ(ξ+ 1)α−1, with ξ ≥ 0, and also well
known elliptic theory results, we have that for some C2 = C2(T0)

|u1(u1 + 1)α−1 − u2(u2 + 1)α−1| ≤ C2|u1 − u2| in Ω× (0, T0),

u2(u2 + 1)α−1 ≤ C2 in Ω× (0, T0),

|∇v1| ≤ C2 in Ω× (0, T0).

Subsequently, these relations, in conjunction with the Hölder inequality and the
bound for χ(v), infer

I2
2 ≤ χ2

0

∫
Ω

(|u1(u1 + 1)α−1∇v1 − u2(u2 + 1)α−1∇v2|2)

∫
Ω

|∇(v1 − v2)|2,

≤ χ2
0

∫
Ω

|u1(u1 + 1)α−1 − u2(u2 + 1)α−1|2|∇v1|2
∫

Ω

|∇(v1 − v2)|2

+ χ2
0

∫
Ω

|u2(u2 + 1)α−1∇(v1 − v2)|2
∫

Ω

|∇(v1 − v2)|2,

≤ χ2
0C

4
2

∫
Ω

(u1 − u2)2

∫
Ω

|∇(v1 − v2)|2 + χ2
0C

2
2

(∫
Ω

|∇(v1 − v2)|2
)2

.

Hence, using the inequality (A+B)
1
2 ≤ A 1

2 +B
1
2 , which is valid for any A,B ≥ 0,

and then the Young inequality, we have for some ρ1 > 0

(16) I2 ≤
χ0C

2
2ρ1

2

∫
Ω

(u1 − u2)2 +

(
χ0C

2
2

2ρ1
+ C2χ0

)∫
Ω

|∇(v1 − v2)|2.
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Additionally, application of the Mean Value Theorem, the Young inequality and
the boundedness of u1 and u2 in Ω× (0, T0) provide some C3 = C3(T0) > 0

(17)

∫
Ω

(ku1−µu2
1−ku2 +µu2

2)(v1−v2) ≤ C3ρ2

2

∫
Ω

(u1−u2)2 +
C3

2ρ2

∫
Ω

(v1−v2)2,

with some ρ2 > 0.
Choosing ρ1 = C1/(2χ0C

2
2 ) and ρ2 = C1/(2C3), and successively inserting into

equations (14) relations (15), (16) and (17), we arrive for some computable constant
C4(T0) > 0 at the initial problem

(18)
d

dt
F ≤ C4F t ∈ (0, T0), F(0) = 0,

where F(t) :=
∫

Ω
|∇(v1−v2)|2 +

∫
Ω

(v1−v2)2. Since equation (18) admits the unique
solution F ≡ 0 on (0, T0), due to the arbitrary of T0, we attain v1 = v2 on (0, Tmax)
and hence u1 = u2.

Existence. For any T ∈ (0, 1) and R := ‖u0‖L∞(Ω)+1, let us consider the Banach

space X := C0(Ω̄× [0, T ]) and its closed subset

S := {u ∈ X | u ≥ 0 in Ω̄× [0, T ] and ‖u(·, t)‖L∞(Ω) ≤ R for all t ∈ (0, T )}.

For ū ∈ S, let v be the solution of

(19)

{
0 = ∆v − v + ū Ω× (0, T ),
∂v
∂ν = 0 ∂Ω× (0, T ),

and, in turn, let u be the solution of
(20)

ut −∇ · (ū+ 1)m−1∇u = ∇ · u(ū+ 1)α−1χ(v)∇v + ku− µu2 Ω× (0, T ),
∂u
∂ν = 0 ∂Ω× (0, T ),

u(x, 0) = u0(x) ≥ 0 Ω.

In agreement with these statements, we shall show that for appropriate small T , Φ :
S → S de�ned by Φ(ū) = u is a compact map such that Φ(S) ⊂ S. Subsequently,
due to the topological properties of S, the Schauder �xed point theorem shows that
there exists u ∈ S such that Φ(u) = u.

First, we observe that for some δ ∈ (0, 1) the elliptic regularity theory (Theorem
8.34 of [33]) ensures the existence of a unique solution v(·, t) of problem (19) which
belongs to C1+δ(Ω). Moreover, for some positive constant c (which until the end
of this proof might change line by line) we have from elliptic regularity results that
for all t ∈ (0, T )

‖v(·, t)‖W 2,p(Ω) ≤ c‖ū(·, t)‖Lp(Ω);

in particular, ∇v ∈W 1,p(Ω) for all t ∈ (0, T ) and subsequently the Sobolev embed-
ding theorem with p > n ensures that ∇v ∈ L∞(Ω) for all t ∈ (0, T ). Additionally,
since ū ∈ S, for any m ∈ R and t ∈ (0, T ) we have that ‖(ū+ 1)m−1‖L∞(Ω) ≤ c, so
that the classical parabolic regularity (Theorem V.1.1. of [34]) applied to problem

(20) implies that u ∈ Cδ1,
δ1
2 (Ω× (0, T )), for some δ1 ∈ (0, 1). Hence,

u(·, t) ≤ u0 + ct
δ1
2 for all t ∈ (0, T ),

and thereafter

max
t∈[0,T ]

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + cT
δ1
2 .
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Subsequently for T < c
−δ1
2 we also deduce that

max
t∈[0,T ]

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + 1 = R.

On the other hand, ku − µu2 is 0 for u = 0, so that the parabolic comparison
principle ensures that u is nonnegative; hence Φ maps S into itself, compactly since

Cδ1,
δ1
2 (Ω × (0, T )) ↪→ X. Let u be the �x point of Φ; by employing the elliptic

regularity theory to problem (19) and the parabolic one to problem (20) (explicitly

Theorem V.6.1. of [34]), we have that u, v ∈ C2+δ1,1+
δ1
2 (Ω × [τ, T ]), for any τ ∈

(0, T ). Further, with u being nonnegative the elliptic comparison principle applied
to (19) implies that v is nonnegative as well. Moreover, by standard arguments the
solution may be prolonged in the interval [0, Tmax), with Tmax ≤ ∞, Tmax being
�nite if and only if (12) holds. �

Lemma 3.2. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For any
nonnegative function u0 ∈W 1,∞(Ω), let (u, v) be the local-in-time classical solution
of problem (1) provided by Lemma 3.1. Then we have

(21)

∫
Ω

u(·, t) ≤ m for all t ∈ (0, Tmax),

where m = max{k|Ω|/µ,
∫

Ω
u0}.

Proof. Taking into consideration the no-�ux boundary conditions for problem (1),
an integration of its �rst equation over Ω and an application of the Hölder inequality
provide

d

dt

∫
Ω

u = k

∫
Ω

u− µ
∫

Ω

u2 ≤ k
∫

Ω

u− µ

|Ω|

(∫
Ω

u

)2

for all t ∈ (0, Tmax),

so that (21) is a consequence of a comparison argument. �

4. A priori estimates and proof of the main results

In this section we shall gain some uniform bound for u, by bounding ‖u‖Lp(Ω), for
p su�ciently large and on the whole interval (0, Tmax) with a suitable positive and
time independent constant. This constant is attained by establishing an absorptive
di�erential inequality for Φ(t) =

∫
Ω

(u+ 1)p and using comparison principles.

Lemma 4.1. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For α < 1
and any nonnegative function u0 ∈W 1,∞(Ω), let (u, v) be the local-in-time classical
solution of problem (1) provided by Lemma 3.1. Then, for any p > p̄, p̄ being the
constant given in (4), and ε positive real number, we have

1

p

d

dt

∫
Ω

(u+ 1)p +
4(p− 1)

(m+ p− 1)2

∫
Ω

|∇(u+ 1)
m+p−1

2 |2 ≤

+

(
ε

p
χ0 − µ

)∫
Ω

(u+ 1)p+1 + c0,

(22)

where 
C1(ε) = 1−α

p+1

(
ε(p+1)

2p(p+α)
p+α−1
p−1

) p+α
α−1

,

C2(ε) = 1
p+1 ( ε(p+1)χ0

2(2µ+k)p2 )−p,

c0 = p−1
p+α−1χ0C1(ε)|Ω|+ (2µ+ k)C2(ε)|Ω|.
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Proof. For p̄ as in (4), let p > p̄; testing the �rst equation of problem (1) by
p(u+ 1)p−1, using its boundary conditions and relation (3) provide

1

p

d

dt

∫
Ω

(u+ 1)p =

∫
Ω

(u+ 1)p−1ut ≤ −(p− 1)

∫
Ω

(u+ 1)p+m−3|∇u|2

+ (p− 1)χ0

∫
Ω

(u+ 1)p+α−2∇u · ∇v

+ k

∫
Ω

u(u+ 1)p−1 − µ
∫

Ω

u2(u+ 1)p−1,

(23)

on (0, Tmax). Now, taking into consideration that from the second equation of (1)
we have that

−(u+ 1)p+α−1∆v = −(u+ 1)p+α−1(v − u) ≤ (u+ 1)p+α t ∈ (0, Tmax),

through an integration by parts we infer that, in view of the fact that p+α−1 > 0
for all p > p̄ (see relation (8))

(p− 1)χ0

∫
Ω

(u+ 1)p+α−2∇u · ∇v =
(p− 1)χ0

p+ α− 1

∫
Ω

∇(u+ 1)p+α−1 · ∇v,

= − (p− 1)χ0

p+ α− 1

∫
Ω

(u+ 1)p+α−1∆v,

≤ (p− 1)χ0

p+ α− 1

∫
Ω

(u+ 1)p+α,

(24)

for all t ∈ (0, Tmax). Since from (7) we have that 0 < (p + α)/(p + 1) < 1, an
application of the Young inequality gives for any ε on (0, Tmax)∫

Ω

(u+ 1)p+α ≤ p+ α− 1

p− 1

ε

2p

∫
Ω

(u+ 1)p+1 + C1(ε)|Ω|.(25)

As to the contribution from the logistic source, for all t ∈ (0, Tmax) we can write

k

∫
Ω

u(u+ 1)p−1 − µ
∫

Ω

u2(u+ 1)p−1 ≤

k

∫
Ω

(u+ 1)p − µ
∫

Ω

(u+ 1)p+1 + 2µ

∫
Ω

(u+ 1)p,

(26)

where we have employed the inequality −u2 ≤ −(u + 1)2 + 2(u + 1). Successively,
the Young inequality enables us to deduce that on (0, Tmax)

(27) (2µ+ k)

∫
Ω

(u+ 1)p ≤ εχ0

2p

∫
Ω

(u+ 1)p+1 + (2µ+ k)C2(ε)|Ω|.

Taking into account that

(28) (p− 1)

∫
Ω

(u+ 1)p+m−3|∇u|2 =
4(p− 1)

(m+ p− 1)2

∫
Ω

|∇(u+ 1)
m+p−1

2 |2,

our thesis is justi�ed once equations (23)-(28) are collected together. �

Lemma 4.2. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For
α < 1 and any nonnegative function u0 ∈ W 1,∞(Ω), let (u, v) be the local-in-time
classical solution of problem (1) provided by Lemma 3.1. Then there exists a positive
constant L1 such that for any p > p̄

(29)

∫
Ω

(u+ 1)p ≤ L1 for all t ∈ (0, Tmax).
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Proof. For any p > p̄, let us set Φ(t) = 1
p

∫
Ω

(u + 1)p. By choosing the constant ε

introduced above in the interval (0, µp/χ0], relation (22) is reduced to

Φ′(t) +
4(p− 1)

(m+ p− 1)2

∫
Ω

|∇(u+ 1)
m+p−1

2 |2 ≤ c0.(30)

Now, the Gagliardo-Nirenberg inequality, in conjunction with

(31) (A+B)k ≤ 2k(Ak +Bk),

valid for any A,B ≥ 0 and k > 0, infer that for

0 < θ1 =
nm+p−1

2 (1− 1
p )

1− n
2 + nm+p−1

2

< 1 (recall (6) of Lemma 2.1),

the relation∫
Ω

(u+ 1)p = ||(u+ 1)
m+p−1

2 ||
2p

m+p−1

L
2p

m+p−1 (Ω)

≤ c1||∇(u+ 1)
m+p−1

2 ||
2p

m+p−1 θ1

L2(Ω) ||(u+ 1)
m+p−1

2 ||(1−θ1) 2p
m+p−1

L
2

m+p−1 (Ω)

+ c1||(u+ 1)
m+p−1

2 ||
2p

m+p−1

L
2

m+p−1 (Ω)
,

(32)

is veri�ed with c1 = (2CGN )
2p

m+p−1 . Considering the bound from inequality (21) and
introducing c2 = c1 max{(m + |Ω|)(1−θ1)p, (m + |Ω|)p}, we observe that inequality
(32) can be written as∫

Ω

(u+ 1)p ≤c2
(∫

Ω

|∇(u+ 1)
m+p−1

2 |2
) pθ1
m+p−1

+ c2 t ∈ (0, Tmax).(33)

As a consequence of all of the above, by making �rst use of inequality (31) in (33)
and then inserting the result into (30), we obtain that Φ veri�es this initial problem{

Φ′(t) ≤ c3 − c4Φ
m+p−1
pθ1 (t) t ∈ (0, Tmax),

Φ(0) =
∫

Ω
(u0 + 1)p,

with

c3 = c0 +
4(p− 1)

(m+ p− 1)2
and c4 =

4(p− 1)

(m+ p− 1)2

(
2c2
p

)−m+p−1
pθ1

.

Consequently, an application of a comparison principle implies that

Φ(t) ≤ max

Φ(0),

(
c3
c4

) pθ1
m+p−1

 := L1 for all t ∈ (0, Tmax),

concluding the proof. �

After these preparations, we can prove the �rst of our two results.

Theorem 4.3. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For
given m ∈ R, k, µ positive and α < 1, let us assume that χ ∈ C2([0,∞)) satis�es
relation (3). Then for any nonnegative function u0 ∈W 1,∞(Ω), problem (1) admits
a unique global classical solution (u, v). Moreover, both u and v are bounded in
Ω× (0,∞).
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Proof. Let (u, v) be the local-in-time classical solution of system (1) emanating from
any nonnegative function u0 ∈ W 1,∞(Ω) and provided by Lemma 3.1. Hereafter,
coherent with the nomenclature used by Tao and Winkler, u also classically solves
the problem (A.1) of Appendix A of [35] in Ω× (0, Tmax) with

D(x, t, u) = (u+ 1)m−1, f(x, t) = −u(u+ 1)α−1χ(v)∇v, g(x, t) =
k2

4µ
.

For p̄ de�ned in (4) of Lemma 2.1, Lemma 4.2 directly applies to warrant that for
any p > p̄ holds that

(34) u ∈ L∞((0, Tmax);Lp(Ω)).

In particular we deduce that (A.2)-(A.5), the second inclusion of (A.6) for any
choice of q2 and (A.7) with p0 = p, are veri�ed on (0, Tmax). From relation
(34), elliptic regularity results applied to the equation −∆v + v = u imply v ∈
L∞((0, Tmax);W 2,p(Ω)) and, hence, ∇v ∈ L∞((0, Tmax);W 1,p(Ω)). In particular,
due to the Sobolev embeddings we infer ∇v ∈ L∞((0, Tmax);L∞(Ω)), since from
the de�nition of p̄ we also have p > n (recall (9)). Consequently, as to the �rst
condition of (A.6), bounds (3) and (29), and the fact that αq1 < q1 < p, show,
through the Hölder inequality with exponents αq1/p and 1−αq1/p that this bound
holds on (0, Tmax):∫

Ω

|f |q1 ≤
∫

Ω

(u+ 1)αq1 |χ(v)|q1 |∇v|q1

≤ χq10 ‖∇v(·, t)‖q1L∞(Ω)|Ω|
p−αq1
p

(∫
Ω

(u+ 1)p
)αq1

p

.

Hence, we also attain that for any n ≥ 1

f ∈ L∞((0, Tmax);Lq1(Ω)), with q1 > n+ 2.

Moreover, by virtue of expressions (10), (11) and (5), relations (A.8), (A.9) for
q2 > (n+ 2)/2, and (A.10) of Lemma A.1. of [35] are also valid, so we get that for
some L2 > 0

‖u(·, t)‖L∞(Ω) ≤ L2 for all t ∈ (0, Tmax).

In turn, the extensibility criterion (12) of Lemma 3.1 shows that Tmax =∞. Finally,
the independence of the obtained estimate with respect to t ∈ (0, Tmax) = (0,∞),
justi�ed by the main uniform-in-time bound (29), establishes that u is bounded
in (0,∞) and through the second equation of (1) also the uniform bound of v is
achieved. �

By retracing the proof of Lemma 4.1, we observe that the condition α < 1 is
exactly required in relation (25) in order to make the Young inequality applicable.
For α = 1 the Young inequality is senseless and the machinery used in the proof
above is no longer valid. Nevertheless, obstacles can be circumvented. To be more
precise, as a by product of the previous reasoning and through rearranging and
manipulating some statements we can also prove

Corollary 4.1. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For
given m ∈ R, k, µ positive and α = 1, let us assume that χ ∈ C2([0,∞)) satis�es
relation (3). Then for any nonnegative function u0 ∈ W 1,∞(Ω), it is possible to
�nd a positive constant K = K(n,m) such that if

(35) µ > K(n,m)χ0,
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problem (1) admits a unique global classical solution (u, v). Moreover, both u and
v are bounded in Ω× (0,∞).

Proof. Let (u, v) be the local-in-time classical solution of problem (1) emanating
from any nonnegative function u0 ∈W 1,∞(Ω); estimate (24) becomes

(p− 1)χ0

∫
Ω

(u+ 1)p+α−2∇u · ∇v =
(p− 1)χ0

p

∫
Ω

∇(u+ 1)p · ∇v,

= − (p− 1)χ0

p

∫
Ω

(u+ 1)p∆v,

≤ (p− 1)χ0

p

∫
Ω

(u+ 1)p+1.

In view of this, for all p > p̄, p̄ given by (4), inequality (22) now reads

1

p

d

dt

∫
Ω

(u+ 1)p +
4(p− 1)

(m+ p− 1)2

∫
Ω

|∇(u+ 1)
m+p−1

2 |2 ≤

+

(
ε̃χ0

2p
+
p− 1

p
χ0 − µ

)∫
Ω

(u+ 1)p+1 + c̃0,

(36)

where c̃0 = (2µ+ k)C2(ε̃), with C2 = C2(·) de�ned in Lemma 4.1 and ε̃ > 0. Now,
for any p > p̄, if µ satis�es the following relation

(37) µ > k(p)χ0,

where

(38) k(p) = 1− 1

p
,

we can choose ε̃ > 0 such that 0 < ε̃ < 2p(µ− k(p)χ0) so that

ε̃χ0

2p
+
p− 1

p
χ0 − µ < 0

and inequality (36) is equivalent to

Φ′(t) +
4(p− 1)

(m+ p− 1)2

∫
Ω

|∇(u+ 1)
m+p−1

2 |2 ≤ c̃0.

The same remaining steps of Lemma 4.1 show that there exists a positive constant
L1 such that for any p > p̄∫

Ω

(u+ 1)p ≤ L1 for all t ∈ (0, Tmax).

Now, let us set K(n,m) = k(p̄), where k(p) has been introduced in (38). Since
relation (35) is satis�ed, we have, by continuity reasons, that there exists p > p̄
such that µ > k(p)χ0. Subsequently, assumption (37) holds so that bound (29)
implies that

u ∈ L∞((0, Tmax);Lp(Ω)),

and we conclude as in the proof of Theorem 4.3. �

Remark 1. By taking m = 1 in (1) and b = 0 in (3), for the limit case α = 1 it
is seen by its expression in Lemma 2.1 that p̄ = q1. In this sense, since assumption
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(38) has to hold for all p > p̄ > n + 2, the optimal condition for the boundedness
established in (37) corresponds to the in�mum of k(p) and it is hence rewritten as

µ >
n+ 1

n+ 2
χ0.

We observe that even though the criterion herein employed does not coincide with
that used in [27], i.e. µ > (n − 2)χ0/n which is manifestly sharper, it is indeed
consistent with the previous result. This di�erence is not surprising and justi�ed by
the fact that the technique herein used is not a direct adaptation of that employed in
[27] (and also in [28]). More exactly, unlike the linear case corresponding to m = 1
(and α = 1) in problem (1), the nonlinearity for the di�usion does not allow us to
express u through an explicit representation formula; in particular its boundedness
properties are not promptly addressed by the Neumann heat semigroup theory, so
that it is necessary to use Lemma A.1. of [35] to investigate them.

5. Numerical simulations

In this section we test the presented theoretical results by numerically simulating
system (1) in one, two and three dimensions. Speci�cally, we investigate whether
the solutions are globally bounded, or whether they blow-up in �nite time.

The solution algorithm is based on an adaptive, implicit Runge-Kutta �nite
element method [36]. Since we are looking for regions where solutions are unstable,
if such a solution is found the discretisation must be increased to ensure that this
outcome is the true numerical solution, rather than a numerical artefact. Here,
whenever a solution was observed to be unstable the grid was re�ned to have ten
times as many elements as previously simulated, to ensure the outcome. Critically,
the complexity of the simulation grows rapidly as the dimension of the domain of
the problem is increased to two, or three. Speci�cally, in higher spatial dimensions,
larger numbers of �nite elements are required in order to provide the same level
of discretisation as simulations in lower spatial dimensions. However, increasing
grid re�nement dramatically increases the scale of the problem and slows down the
solution production speed. Alternatively, we can shrink the spatial scale of the
domain over which are solving. This allows us to re�ne smaller and smaller pieces
of Euclidean space, without increasing the grid re�nement. However, by shrinking
the solution domain, we may miss out interesting spatial behaviour, since it is
well known that the domain size is often a critical bifurcation parameter for the
production of heterogeneous solutions [37, 38, 39]. Thus, if a solution is presented
as tending to a spatially homogeneous state this is only true for the domain size
presented in the �gure. Simulating the solution on larger domains would require
much higher spatial re�nement than our current computing abilities can provide.

We, �rst, investigate the in�uence of m and α on the solution, in accordance to
the ranges chosen in this investigation. Critically, m and α control the di�usion
and cross di�usion components, respectively, in system (1). Figure 1(a) presents
a simulated parameter sweep over multiple values of m ∈ R and α ≤ 1. We
immediately observe that parameterm has a bigger in�uence on the simulation than
α. Namely, as m decreases it takes longer for spatial heterogeneities to disappear.
This, of course, makes sense as the di�usion rate is (u+1)m−1 and, thus, for m < 1
the di�usion rate is smaller at local maxima of u.

Having discovered the insensitivity to α, we present space-time simulations of u,
varying just m, in Figure 1(b). Here, we are able to visualise the removal of spatial
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(a)

(b)

Figure 1. Simulating system (1) in one dimension. Parameters
are a = 1, b = 2, χ0 = 1, k = 1 and µ = 0.2. Other parameters
noted on the �gures. The initial condition is 1 + exp(−(x− 2)2) in
each case. In (a) we consider the e�ect of varying parameters m
and α. The black line is the initial condition and the blue line is
the solution at t = 1. In (b) we �x the value of α = −0.1 and vary
m. Using a space-time plot we demonstrate that the simulation
tends to the homogeneous steady state, as de�ned by the logistic
contribution to system (1). The colour bar on the right speci�es
the size of u.
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heterogeneities over time. Combining the insights from Figures 1(a) and 1(b) we
observe that in general the population size tends to be dominated by the logistic
kinetics (compare the black and blue lines of Figure 1(a)), whereas it is the time
to homogeneity that is controlled by the di�usive and cross di�usion parameters.
Speci�cally, we see that, even in the case slow di�usion (m < 1), there is a rapid
global convergence from the initial condition to the spatially homogeneous solution
of the logistic kinetics, k/µ = 5, whereas local heterogeneities take longer to smooth
out (see Figure 1(b)).

(a) α = 0.9 (b) α = 1.1

(c) α = 10

Figure 2. Simulating system (1) in one dimension with di�erent
values of α. Parameters are b = 0, χ0 = 1, k = 1, m = 0 and
µ = 0.2, with α speci�ed beneath each �gure. The initial condition
is 1 + exp(−(x− 2)2) in each case. In (a) and (b) the simulations
tend to a bounded, heterogeneous concentrations of u. The colour
bar of u is given on the right of each (a) and (b). If α is increased
too far, as in (c), we observe that u becomes spatially unstable
and grows without bound as time increases. the simulation time
increases left to right and the plots are illustrated at times t = 0,
7.3× 10−6, 8.3× 10−6, 9× 10−6 and 9.0714× 10−6.

In the case of one dimension, n = 1, the theory presented here suggests that for
m ∈ R the simulations converge for all α < 1 regardless the size of µ. In Figure
2(a) we see that this holds true as u tends to a stationary, spatially heterogeneous,
bounded solution. Moreover, Figure 2(b) demonstrates that the inequality is not
tight because u still converges to a stationary, spatially heterogeneous, bounded
solution even though the inequality is violated. However, if α is increased too far
(Figure 2(c)) we see that the population becomes unstable. Namely, the peak of
the initial heterogeneity becomes sharper and high frequency spatial oscillations
begin to appear, rapidly spreading out from this localised peak. Eventually, the
breakdown in convergence leads to a solution blowing up to a value over 1036.
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When we simulate system (1) in two dimensions we see a similar trend when
increasing α. Namely, when α < 1, u remains bounded for all time and converges
to a stationary state. Moreover, if the two-dimensional space is large enough then
spatial heterogeneity can be supported (compare Figures 3(a) and 3(b)). However,
if α is increased too far (see Figure 3(c)) we observe that high frequency oscillations
begin to rapidly grow (compare with Figure 2(c)) and the solution grows to over
109 in less than 10−4 time units.

(a) α = 0.1 (b) α = 0.6

(c) α = 3

Figure 3. Simulating system (1) on a two-dimensional disk, with
di�erent values of α. Parameters are b = 0, χ0 = 2, k = 1, m = 0.1
and µ = 0.05. The initial condition is 100(1 + exp(−x2 − y2)) in
each case. The values of α are denoted beneath each sub�gure. (a)
and (b) illustrate that if α is small enough then the simulation is
bounded for all time, even for a very weak dampening coe�cient µ.
The simulations in (a) and (b) have been run for 100 time units and
have reached their, respective, stationary states. As α is increased
we see in (c) that the simulations begin to demonstrate the same
instability seen in Figure 2(c), namely as the time increases (plots
are illustrated at t = 2.2 × 10−5, 2.3 × 10−5 and 2.3214 × 10−5,
left to right, respectively) u becomes spatially unstable and grows
without bound.

Next, we simulate system (1) in three dimensions, for b = 0 and m ≥ 1. We
note that in this case the theory establishes that when α+ 1 < max{2,m+ 2/n} =
max{2,m + 2/3} the solutions are all bounded, regardless the size of µ. Once
again we see that the boundedness of u depends critically on α. However, the
previously mentioned bound is not optimal. Speci�cally, as seen in Figure 4(a),
the population of u is bounded even though the inequality is violated. Although
not explicitly shown, the α = 10 case rapidly converges to the homogeneous steady
state de�ned by the logistic kinetics, k/µ = 20.
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(a) α = 10 (b) α = 20 (c) α = 30

Figure 4. Simulating system (1) within a three-dimensional
sphere, with di�erent values of α. Here, we only plot the maxi-
mum value of u throughout the simulation. Parameters are b = 0,
χ0 = 2, k = 1, m = 1.5 and µ = 0.05. The values of α are denoted
beneath each sub�gure. Critically, in (a) the simulation is bounded
for all time. However, as α is increased max(u) appears to grow
without bound. Speci�cally, the growth is linear in time in (b) and
exponentially fast (c) (note the logarithmic axes).

Critically, the dynamics of the unbounded u solutions in three dimensions seem
to be subtler than those seen in Figures 2 and 3. Speci�cally, although for large α
the solution u does grow without bound exponentially fast (see Figure 4(c)), the
solution does not rapidly explode when α = 20. Instead, as is seen in Figure 4(b),
the maximum of u grows linearly over time.

Finally, we simulate the e�ect of varying b on the solution in three dimensions.
Here, we assume that α is smaller than 1 to ensure that the solution is always
bounded, for any m ∈ R and regardless µ. When b = 0 we are able to support
stable, stationary, heterogeneous solutions of u (see Figure 5(a)). Whereas when
0 < b ≤ 2 the solution rapidly homogenises and tends to the stable stationary state
de�ned by the logistic kinetics, k/µ = 20.

In summary, these simulations illustrate the veracity of the results contained
within this paper. Speci�cally, global boundedness of system (1) depends on the
spatial dimension we are considering, as well as the di�usive and cross-di�usive
parameters of the system.
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