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Abstract

The stability of the semi-infinite Stokes layer is explored. This is the flow generated

in a semi-infinite region of otherwise stationary fluid by the sinusoidal oscillation of a

bounding plate and is described by an exact solution to the Navier–Stokes equations.

A linear stability analysis is carried out, based on Floquet theory, that reduces the

disturbance equations to an eigenvalue problem that determines the asymptotic temporal

behaviour of disturbances. This method is also applied to the finite Stokes layer (being

the flow in a channel bounded by oscillating plates) and modifications incorporating a

mean flow.

Linear disturbances are simulated numerically and intriguing features of the spa-

tial/temporal evolution are reproduced and expanded on. Consistency between the lin-

ear stability analysis and the simulations is demonstrated, as is evidence suggesting some

disturbances exhibit temporal growth at every spatial location (absolute instabilities).

Through modification of Briggs’ method, the conditions for absolute instability in

temporally periodic flows are discussed. It is shown that the Stokes layer is indeed subject

to absolute instability by appealing to the symmetries of the flow. This approach provides

further insight into the spatial/temporal evolution of disturbances.

Finally, the Stokes layer is modified by a low-amplitude, high-frequency oscillation

to approximate the noise associated with the mechanical generation of plate motion in

experiments. It is shown that the introduction of noise can be dramatically destabilising

and can have a significant effect on the disturbance evolution. In cases where the flow is

subject to a high level of noise, the spatial/temporal evolution of the disturbance holds

little resemblance to the evolution of disturbances in the pure Stokes layer.
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Introduction

The experiments of Osborne Reynolds on the behaviour of fluid in pipes are generally

considered to be the genesis of hydrodynamic stability theory (Drazin, 2002). In this

field, the study of disturbance evolution in steady, hydrodynamic flows has developed

from these early empirical observations through numerous theoretical results and into

numerical methods for predicting the onset of instability and for simulation of pertur-

bation development (Schmid & Henningson, 2001; Criminale et al. , 2003). As the mod-

elling and analytic methods have developed, the study of inviscid fluid has evolved into

the viscous regime and, though linear theory is better established, there is increasing de-

velopment of nonlinear models (which will not be explored in this work). It has, in gen-

eral, been the study of steady (independent of time), spatially homogeneous flows that

have received the most attention due to the feasibility of solution methods. However,

the exponential rate of technological improvement means that sophisticated numerical

methods can now be deployed in many more cases, such as the temporally periodic flows

that are explored herein.

Hydrodynamic stability theory

Hydrodynamic flows appear frequently in nature. In fact, the two particular fluids best

described by hydrodynamics (water and air) are ubiquitous. The study of hydrodynam-

ics can therefore be motivated by both a desire to better understand observed, natural

behaviour and in developing technologies that utilise hydrodynamic properties. For in-

stance, the study of hydrodynamics incorporates the dynamics of boats and submarines

moving through water and of aeroplanes moving through the air. Both of these exam-

ples greatly contribute to modern life and for this reason it is important to ensure that

such technologies are as efficient as possible. This is a particularly pertinent issue when
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Introduction

considering the best ways to reduce carbon emissions or reliance on fossil fuels. Take,

for example, aeroplane flight. There is currently no way of powering aeroplanes except

for each plane burning its own fuel, and this is a significant contributor to global car-

bon emissions. It would therefore be useful to improve the efficiency of planes so that

less fuel is burnt. First, the aerodynamics can be investigated to reduce what is known

as form drag (the drag associated with the shape of the plane), but there is also a drag

associated with the boundary layer over the plane’s surface known as skin friction (Car-

penter et al. , 2007). This can be investigated by studying the stability of more idealised

boundary layers and a robust reduction in skin friction would reduce drag. This in turn

improves efficiency and reduces carbon emissions.

During his famous experiments, Osborne Reynolds observed that in some cases flu-

ids behave in an orderly, easily predictable manner whereas by modifying the flow in

some way, for instance by increasing the speed, a more chaotic behaviour is induced. It

was found that this change in behaviour depended on a single variable: the eponymous

Reynolds number, Re (Drazin, 2002). The subsequent research into this area of applied

mathematics has focused largely on the stability of hydrodynamic flows by perturbing

said flows to see if they return to the unperturbed state (stable) or if they diverge from

the original flow to some other state (unstable). If the latter is true, often the result-

ing flow is chaotic and difficult to describe in a deterministic manner even though the

dynamics are still subject to the same laws (Tennekes & Lumley, 1972). Chaotic flows,

referred to as turbulence, are notoriously difficult to understand for this reason, yet the

early development of unstable perturbations provides great insight into hydrodynamic

flows (Criminale et al. , 2003). This insight can be utilised in many ways, such as holding

off transition to turbulence (sometimes indefinitely). It is important not to confuse the

study of hydrodynamic instability with the study of turbulence, as the development of

an unstable perturbation to full transition is a complex problem (Schmid & Henning-

son, 2001), but a fascination with turbulence can motivate an interest in hydrodynamic

stability theory, the latter being better represented in an idealised mathematical setting.

The study of the stability of steady, shear flows is generally characterised by the Orr–

Sommerfeld equation. This equation is derived from the Navier–Stokes equations gov-

erning fluid flow by adding a perturbation to a basic state (known to satisfy the Navier–

Stokes equations) and then linearising about the unperturbed state. Fixing the wavenum-

ber of this disturbance then results in an ordinary differential equation (ODE) that can be
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cast as an eigenvalue problem. This derivation and the subsequent solution for a variety

of basic states is well established so will not be covered in the present work. However,

it is worth noting that much of the current work has a strong analogy with the steady

case. Readers interested in the derivation and solution of the Orr–Sommerfeld equation

are directed to Drazin (2002) for an overview. More details are provided in Schmid &

Henningson (2001) and Criminale et al. (2003).

Periodic flows

The present work is concerned with the study of unsteady (time dependent) flows that

are temporally periodic. Some theoretical results for steady flows have been extended to

time-dependent flows in general (Conrad & Criminale, 1965) but the assumption of peri-

odicity provides a logical starting point for the study of more general time-dependence.

Introduction of periodic wall motion has been shown, in some cases, to reduce drag in

turbulent boundary layers (Quadrio & Ricco, 2010; Duque-Daza et al. , 2012; Touber

& Leschziner, 2012) so the study of such flows contains the potential for insight into

the structures of much more complicated flows. Further examples include respiration

(producing a periodic flow) and in particular respiratory aids (for which growing dis-

turbances would be incredibly damaging), and the agitation of solutions in laboratories

dealing with chemical reactions of biological systems to promote mixing (Blennerhassett

& Bassom, 2007).

Another example of flow periodicity is so-called secondary instability theory. This

involves performing a linear stability analysis on a flow to deduce the wavenumber and

frequency of the least stable mode. This disturbance is then incorporated into the basic

state at some finite amplitude so that a second linear stability analysis can be performed

(Herbert, 1988; Pier, 2003). This new basic state thus has a time dependence charac-

terised by the frequency of this disturbance. This is a particularly interesting example as

it shows that many of the methods explored herein have the potential to provide insight

into the disturbance evolution of steady flows.

3
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The stability of Stokes layers

As one of the few problems with an exact solution to the Navier–Stokes equations, a

convenient starting point for the study of time-periodic flows is the Stokes layer gener-

ated in a semi-infinite region of fluid by the in-plane oscillation of a bounding plate. The

framework for hydrodynamic stability theory of periodic flows has so far been conducted

through this paradigm example (Hall, 1978; Blennerhassett & Bassom, 2002) and some

simple variations such as the finite Stokes layer generated between two parallel plates os-

cillating in phase with one another (Blennerhassett & Bassom, 2006), the study of a mean

flow modified by such wall motion (Thomas et al. , 2011) and even three-dimensional pe-

riodic motion formed by the superposition of two Stokes layers orthogonal to one another

(Blennerhassett & Bassom, 2007).

The approach taken by these studies is to derive a stability equation by perturbing

a solution to the Navier–Stokes equations and linearising about the undisturbed state.

The streamwise (direction of wall motion) wavenumber of this disturbance is fixed and

the resulting partial differential equation (PDE) contains coefficients that are periodic in

time. Floquet’s theorem suggests the form the solution will take and a harmonic decom-

position of the periodic term reveals a coupling between disturbances with frequencies

harmonic to that of the basic state.

There is an alternative approach to studying the stability characteristics of any time-

dependent flow that is sometimes referred to as frozen flow analysis. This method con-

sists of solving the Orr–Sommerfeld equation (the stability equation for steady, parallel

flows) for a basic state in which the time dependence is treated as a parameter, i.e. the

flow is frozen at some time t0, a stability analysis is performed on this basic state and this

process is repeated for a finite set of times. The Orr–Sommerfeld equation deduces the

asymptotic behaviour of a disturbance as t→∞ so a method founded on the assumption

that instantaneous behaviour can be deduced from these asymptotics requires the careful

consideration of how temporally local characteristics impact global behaviour. Further-

more, the freezing of the flow can only be justified for Re� 1, whereas a finite Re is re-

quired to locate the threshold between stability and instability. Despite these shortcom-

ings, frozen flow analysis has long been used to study the behaviour of disturbances in

time-dependent flows. This is partly because numerical solution to the Orr–Sommerfeld

equation is well established and relatively inexpensive, but also because in some cases it
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provides a real insight into the mechanisms of instability provided the growth-rates can

be appropriately stitched together and interpreted.

The present work will not be concerned with the details of the frozen flow method

and instead will seek to compile and extend work based on the Floquet approach. A

comparison of these two approaches for the Stokes layer is given in Luo & Wu (2010). It

could be argued that the computationally demanding eigenvalue problem derived by this

method is needlessly expensive because, due to the large instantaneous growth within

each period, it is expected that nonlinear effects become significant before the completion

of a single period (i.e the linear problem never sees the periodicity). However, as with

any linear stability theory, the early behaviour of small disturbances is an informative

part of the transition process and has the potential to be insightful and significant to the

dynamics at later stages. Linear theory also provides a feasible solution method when

the underlying nonlinear system is difficult to solve. Furthermore, if experimentally

observed behaviour is picked up by a linear model (as is often the case) this suggests

that the underlying mechanisms are linear to a large extent. For this reason, the linear

framework has the potential to deepen the understanding of the system.

Comparison with experiments

The stability results of Blennerhassett & Bassom (2002), being the first time the Floquet

formulation was applied to the Stokes layer with a large enough Re for instability to be

observed, reported that only stable disturbances exist for any Re below the critical value

of Rec ∼ 707.84 for the semi-infinite Stokes layer. This is at odds with the observations

of experiments which suggest a value closer to Rec ∼ 300 (Clamen & Minton, 1977; Eck-

mann & Grotberg, 1991; Hino et al. , 1976; Akhaven et al. , 1991). This discrepancy of

over 50% suggests that the theory was not able to predict anything meaningful about

the physical flow it is intended to describe. Some possible explanations for this include

the early onset of linear saturation, wall roughness, the confined geometry of the exper-

iments or the noise induced by the mechanical motion of the plate. In the interest of

addressing this discrepancy, Blennerhassett & Bassom (2006) considered Stokes layers

generated in channels and pipes. This was partially successful in reducing Rec but only

by up to 20%.

Although it is difficult to quantify, experiments report noise in the generation of the
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wall motion (or pressure gradient) of around 1% (sometimes up to 3%) of the amplitude

of the fundamental oscillation. This suggests that even though the Stokes layer is of great

interest as a paradigm example in an idealised mathematical setting, it is possibly not

particularly representative of the flows generated in these experiments. For this reason,

a modification to the basic state that includes low-amplitude noise (described by high-

frequency harmonic oscillation superimposed over the fundamental Stokes layer) was

investigated by Thomas et al. (2015) and found to have a drastic effect on the stability

of the flow. Although it is difficult to ascertain the exact form of noise in experiments, it

was found that a noise level of 1% of the fundamental could reduce the critical Reynolds

number to around that observed in experiments. This suggests that the Floquet method

may indeed be capable of predicting physical behaviour, a conclusion that could be better

supported by some experimental studies in which the noise is induced to more closely

match the theoretical model.

Absolute instability

In addition to the reduction in Rec, the flow investigated by Thomas et al. (2015) pro-

vided examples of instabilities that grow at every spatial location (Thomas, 2016). Insta-

bilities of this form (called absolute instabilities) are of particular interest because they

are self amplifying. If an unstable disturbance is not absolutely unstable it is convec-

tively unstable and any region of interest in the flow domain will eventually return to

the undisturbed state as the growing disturbance is convected downstream. The obser-

vation of absolute instability provides an opportunity to further develop the theory of

the stability of time-periodic flows by taking the formulation of Brevdo & Bridges (1997)

for predicting the onset of absolute instability in periodic media and applying it to the

flow in question.

The theoretical approach to predicting the onset of absolute instability (Briggs, 1964)

will be adapted for the periodicity of the flow. The characteristics of disturbance evo-

lution for the pure Stokes layer can then be explored in this framework to search for

evidence of absolute instability. The same concepts can then be used to confirm that the

cases of the Stokes layer with noise that appear subject to absolute instability are indeed

so. In addition to this, simulation of the disturbance evolution by solution of the lin-

earised Navier–Stokes equations will provide a set of results against which to validate
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the theoretical predictions.

Thesis structure

Presented in Chapter 1 is a collection and extension of the work so far on the linear sta-

bility analysis of Stokes layers. Starting in two-dimensions the stability equations are

derived for flows of general temporal form before committing to the finite Stokes layer

in a channel. It will then be shown how this method can be generalised to incorporate

a mean flow aligned with the direction of wall motion. The method by which neutral

curves can be constructed will then be discussed and results will be compared with ex-

isting work (Blennerhassett & Bassom, 2002, 2006; Thomas et al. , 2011). Finally, the

three-dimensional problem will be considered and it will be shown in what instances

this problem can be reduced to two-dimensions in a manner analogous to Squire’s theo-

rem (Squire, 1933).

Chapter 2 is concerned with the numerical methods used to simulate the linearised

Navier–Stokes equations. Using the velocity-vorticity formulation of Davies & Carpenter

(2001), a solver is derived for the case of a single streamwise wavenumber for compari-

son with the results of the previous chapter. Presented next are two methods by which

the response of the system to an impulse is determined. First, a spectral method is im-

plemented as a natural extension of the single wavenumber case, then a finite-difference

method is described. These solvers were derived through modification of the code writ-

ten by Togneri (2011) (Togneri & Davies, 2011) and further developed by Duval (2012)

and the results will be discussed in the following chapter.

In Chapter 3, the relationship between the eigenvalue problem and the simulations is

explored through the behaviour of disturbances generated by an impulse. The growth-

rates of disturbances as found by each method are compared and found to be in good

agreement. There is also a discussion of the qualitative features of the disturbance evo-

lution. This includes providing some evidence that the flow is subject to absolute insta-

bility.

In Chapter 4 the leading-order behaviour of disturbances is explored with a specific

focus on the temporal behaviour at fixed streamwise locations and the evolution of the

disturbance maximum. A set of criteria for absolute instability is found by consideration

of the former. This criteria is analogous to that found for steady flows (Briggs, 1964).
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In Chapter 5, these criteria are explored by adapting the numerical method used

to solve the stability problem (Chapter 1) for locating cusp maps in the complex plane

for the semi-infinite Stokes layer. The characteristics of the absolutely unstable modes

found in this manner are compared against the simulation results of Chapter 3 and it

is confirmed that the cusp map method is capable of predicting the onset of absolute

instability.

Chapter 6 presents the linear stability of a Stokes layer modified by high-frequency,

low-amplitude noise (Thomas et al. , 2015). The eigenvalue solver is reformulated for

flows of this form and an inspection of the spatial/temporal characteristics of distur-

bances in this regime is carried out. A parametric study is conducted using the simu-

lation methods presented in Chapter 2 to provide insight into the effect that noise can

have on the disturbance evolution. The cusp map method developed in Chapter 4 is then

applied to this flow to explore the disturbance evolution at fixed spatial locations.

The thesis is concluded with a summary of the work presented and suggestions for

future work in the field. The significance of the work is also discussed.

Note that throughout this work, the real and imaginary parts of a variable will be

denoted with subscript r and i, respectively. For instance µ = µr + iµi and α = αr + iαi .

In the cases where this subscript notation is not suitable, <{•} and ={•} will denote

the real and imaginary parts, respectively. Also, unless otherwise stated, the complex

conjugate of some number z will be denoted by z̄.
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Chapter 1

Linear stability theory for

time-periodic flows

Introduction

While the study of the stability of steady solutions to the Navier–Stokes equations has

been developed gradually since Reynolds’ experiment in 1883, it has only been recently

that similar methods have been adapted for time-dependent flows (Conrad & Criminale,

1965; Von Kerczek & Davis, 1974; Hall, 1978; Blennerhassett & Bassom, 2002, 2006;

Thomas et al. , 2011). The present study will focus on time-periodic flows through the

application of Floquet theory to derive an appropriate stability equation analogous to the

Orr–Sommerfeld equation in steady theory (Drazin, 2002).

So far, research into the stability of periodic flows has focused primarily on Stokes

layers. These are flows induced by the oscillation of boundaries or pressure gradients

in various configurations such as channels, pipes (Blennerhassett & Bassom, 2006) or

the semi-infinite boundary layer (Blennerhassett & Bassom, 2002). Such flows are of

particular interest as many such arrangements have exact solutions to the Navier–Stokes

equations and so techniques can be developed to appropriately deal with periodicity.

These techniques can then be adapted for any periodic flow.

There are also some generalisations that can be made so that the theory presented in

this chapter is as broad as is appropriate at each stage. Initially, the stability of any un-

steady flow will be considered. Interest will then be restricted to a Stokes layer for which

the fluid would be stationary in the absence of the wall motion. It will then be shown
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that if the fluid is moving with some mean velocity (Thomas et al. , 2011) the method can

easily be adapted for this problem in such a way that the flow with no mean velocity is

considered as a special case. Initially, it will be assumed that this mean flow is aligned

along the direction of oscillation. It will later be shown that the three-dimensional prob-

lem in which the mean flow is oblique to the direction of oscillation can be reduced to

an aligned problem through results analogous to Squire’s theorem (Squire, 1933). This

means that no further computational effort is required for this generalisation.

The reason for the recent surge in research in this area is due, at least in part, to

advances in computational resources. In fact, though the Floquet formulation was intro-

duced by Hall (1978), it was only found that the semi-infinite Stokes layer was stable for

Re < 160 and that the flow stabilises as Re→∞. It was not until Blennerhassett & Bas-

som (2002) were able to push the theory to higher (finite) Re that instability was found,

the critical Reynolds number was estimated as Rec ∼ 707.84 (Blennerhassett & Bassom,

2002), and a portion of the neutral curve was traced.

In Section 1.1, the stability of two-dimensional shear flows will be discussed, starting

with general results for any time-dependent flow and then considering the specifics of a

temporally periodic flow. Section 1.2 will then derive a numerical method for solving the

stability problems that arise for periodic flows while Section 1.3 describes the construc-

tion of neutral curves to visually represent stability characteristics. Having developed

all of the necessary tools, some important results for the semi-infinite Stokes layer are

reported in Section 1.4 to be discussed further in other chapters. Finally, the work will

be generalised to three-dimensions in Section 1.5

1.1 Stability equations for 2D, unsteady, shear flows

In this section the stability equations for a two-dimensional (2D) time-dependent shear

flow will be derived. Without committing to any particular geometry, fluid motion will

be restricted to the x-direction and the velocity will depend only on time and the y-

direction. That is, the flow considered will be parallel and unsteady. The assumption of

a parallel flow is also made in the derivation of the Orr–Sommerfeld equation for steady

flows, and while many flows satisfy this condition exactly others are well approximated.

For instance, consider the Blasius boundary layer. This steady flow is not parallel as

there is motion in the wall-normal direction which results in a boundary layer thickness
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that grows with distance from the leading edge of the plate. However, at large distances

from the leading edge the real flow is well approximated in the parallel regime. The Orr–

Sommerfeld equation can therefore provide insight into the stability of the flow in this

region, and the growth of the boundary layer can even be approximately incorporated

by considering how a locally defined Reynolds number changes with distance from the

leading edge.

Unlike the Blasius boundary layer, the Stokes layer is truly parallel. However, since

the generalisation of a Stokes layer modified by a mean flow is of interest later, this issue

still needs some consideration. For instance, in the finite Stokes layer (the flow generated

in a channel by the in-plane oscillation of the bounding plates in phase with each other)

the mean flow will take the form of Poiseuille flow. Both of these flows are parallel so the

soon-to-be-derived equations are appropriate. However, in the semi-infinite Stokes layer

the mean flow will take the form of the Blasius boundary layer and, due to non-parallel

effects, the ratio of the Blasius boundary layer thickness to the Stokes layer thickness (a

significant parameter in the stability equations) changes with distance from the leading

edge of the plate. As for the Blasius boundary layer itself, a careful consideration of how

the flow develops will allow for a meaningful stability analysis, but this example serves

as a disclaimer that there are flow configurations in which the following analysis cannot

naïvely be applied.

This section is concerned with the stability of flows that can be expressed in the form

U =
(
U (y, t),0,0

)
. (1.1.1)

As with steady flows, it is convenient to recast the Navier–Stokes equations in terms of

nondimensional parameters so there are several scaling choices to be made depending on

the nature of the flow. These issues will be discussed now so as to improve clarity later

on.

1.1.1 A discussion on scaling

Consider the dimensional Navier–Stokes equations governing the evolution of the di-

mensional velocity u∗ and pressure p∗ of a fluid with viscosity µ coupled with the incom-
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pressibility condition,

ρ

(
∂u∗

∂t
+u∗ · ∇u∗

)
= −∇p∗ +µ∆u∗, (1.1.2a)

∇ ·u∗ = 0. (1.1.2b)

The exact nature of the nondimensionalisation depends on the structure of the flow but

dos not alter the underlying physics. For instance, Conrad & Criminale (1965) scale time

using a combination of velocity and lengthscales whereas Von Kerczek & Davis (1974)

use a timescale associated with the unsteady basic state to imply a lengthscale. Once

rescaled, the difference between these approaches comes down to whether the unsteady

terms (∂u/∂t) are of comparative size to the viscous terms (∆u) or the inertial terms

(u · ∇u).

Since the flow is time-dependent it will be assumed that a characteristic time exists

which will be denoted t0. For oscillatory flows t0 = 1/ω would be appropriate, where ω is

the frequency of oscillation. The nondimensional parameters are thus defined using the

characteristic length δs =
√

2µt0/ρ and velocity U0 as

x =
x∗

δs
, y =

y∗

δs
, z =

z∗

δs
, (1.1.3a)

u =
u∗

U0
, v =

v∗

U0
, w =

w∗

U0
, (1.1.3b)

τ =
t
t0
, p = p∗

δs
µU0

, (1.1.3c)

where the absence of the superscript ∗ has been used to denote nondimensional quanti-

ties.

There is generally no natural pressure scaling and a choice must be made between

p as defined above and p = p∗/ρU2
0 . It will be assumed that pressure is scaled with the

viscous terms and the appropriately interpreted results should be independent of this

choice. In fact both choices result in identical stability equations once the pressure is

removed.

Resetting (1.1.2) in nondimensional variables (1.1.3) gives

∂u
∂τ

+Reu · ∇u =
1
2

[−∇p+∆u] , (1.1.4a)

∇ ·u = 0, (1.1.4b)
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where Re is the Reynolds number, defined as

Re =U0

√
t0
2ν

=
U0δs
2ν

. (1.1.5)

Here, ν = µ/ρ is the kinematic viscosity. Any other choice of nondimensionalisation may

give variations on (1.1.4) or alternative definitions of Re, but the correctly interpreted

results should be independent of these choices.

1.1.2 Disturbance equations

The nondimensional Navier–Stokes equations (1.1.4) will be taken and it will be assumed

that the solution consists of a basic state U , which solves (1.1.4) and has the form (1.1.1),

plus a small perturbation, that is

u = U + ε
(
up(x,y,z,τ),vp(x,y,z,τ),wp(x,y,z,τ)

)
, (1.1.6a)

p = P + εpp, (1.1.6b)

where ε > 0 is a measure of the size of the perturbation. Assuming that ε � 1 justifies

linearising the equations in ε, giving the disturbance equations

1
Re

∂up
∂τ

+U
∂up
∂x

+
∂U
∂y

vp = −1
2

∂pp
∂x

+
1

2Re

∂2up
∂x2 +

∂2up
∂y2 +

∂2up
∂z2

 , (1.1.7a)

1
Re

∂vp
∂τ

+U
∂vp
∂x

= −1
2

∂pp
∂y

+
1

2Re

∂2vp
∂x2 +

∂2vp
∂y2 +

∂2vp
∂z2

 , (1.1.7b)

1
Re

∂wp
∂τ

+U
∂wp
∂x

= −1
2

∂pp
∂z

+
1

2Re

∂2wp
∂x2 +

∂2wp
∂y2 +

∂2wp
∂z2

 , (1.1.7c)

∂up
∂x

+
∂vp
∂y

+
∂wp
∂z

= 0. (1.1.7d)

Through manipulation, these can be combined into the following two equations[
1
Re

∂
∂τ

+U
∂
∂x

]
∇2vp −U ′′

∂vp
∂x
− 1

2Re
∇2vp = 0, (1.1.8a)[

1
Re

∂
∂τ

+U
∂
∂x

]
ηp −

1
2Re
∇2ηp =U ′

∂vp
∂z

, (1.1.8b)
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where ′ denotes differentiation with respect to y and ηp is the perturbation vorticity in

the y-direction defined as

ηp =
∂up
∂z
−
∂wp
∂x

. (1.1.9)

Now, assuming normal-mode solutions of the form

(
vp(x,y,z,τ),ηp(x,y,z,τ)

)
=

(
v̂(y,τ), η̂(y,τ)

)
ei(αx+βz), (1.1.10)

reveals the Orr–Sommerfeld-like equation[(
∂
∂τ

+ iαReU
)(
∂2
y − k2

)
− iαReU ′′ − 1

2

(
∂2
y − k2

)2
]
v̂ = 0, (1.1.11)

and the Squire-like equation[
∂
∂τ

+ iαReU − 1
2

(
∂2
y − k2

)]
η̂ = iβU ′v̂, (1.1.12)

where k =
√
α2 + β2. Although these equations differ from the Orr–Sommerfeld and

Squire equations which arise in the steady case, the natural analogy between the two

means that for the present work these names will be adopted for equations (1.1.11) and

(1.1.12) which will thus be referred to as the OS equation and the Squire equation, re-

spectively.

In the special case of a two-dimensional disturbance (for which β = 0 and η̂ = 0) the

Squire equation becomes trivial and the OS equation becomes[(
∂
∂τ

+ iα2DRe2DU

)(
∂2
y −α2

2D

)
− iα2DRe2DU

′′ − 1
2

(
∂2
y −α2

2D

)2
]
v̂ = 0. (1.1.13)

This equation will be used for comparison later.

Boundary conditions

The boundary conditions for this problem are found by considering the requirements

that there is no flow through physical boundaries (no-penetration) and that the velocity

of the fluid at any boundary is equal to the velocity of the boundary (no-slip). For un-

bounded domains there is also the condition that all perturbation quantities vanish in

the far-field.
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To demonstrate how these conditions manifest, let y0 be the wall-normal location of

some boundary. Due to the parallel assumption made earlier, all boundaries will exist

at a fixed wall-normal location. In primitive variables, the no-penetration condition is

given by

vp(x,y0, z,τ) = 0. (1.1.14)

The no-slip condition gives

up(x,y0, z,τ) = 0,

wp(x,y0, z,τ) = 0.

The basic state already moves at the velocity of any boundary due to no-slip, hence

the perturbation quantities must vanish. The final disturbance equations (1.1.11) and

(1.1.12) are only concerned with the wall-normal velocity v̂ and vorticity η̂, so the bound-

ary conditions need to be expressed solely in terms of these variables.

In the normal mode form (1.1.10) the no-penetration condition (1.1.14) becomes

v̂(y0, τ) = 0. (1.1.16)

Now, for the no-slip conditions, it is convenient to use the normal-mode decomposition

on up and wp, i.e.

(
up(x,y,z,τ),wp(x,y,z,τ)

)
=

(
û(y,τ), ŵ(y,τ)

)
ei(αx+βz), (1.1.17)

so that the no-slip conditions (1.1.15) become

û(y0, τ) = 0, (1.1.18a)

ŵ(y0, τ) = 0. (1.1.18b)

Making the normal-mode assumption in the continuity equation (1.1.7d) gives

iαû + v̂′ + iβŵ = 0, (1.1.19)

where ′ denotes differentiation with respect to y. Then, since û and ŵ vanish at y0, this
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gives

v̂′(y0, τ) = 0. (1.1.20)

Similarly, making the normal-mode assumption in the definition of vorticity (1.1.9) gives

η̂ = iβû − iαŵ. (1.1.21)

Evaluating this at y0 yields

η̂(y0, τ) = 0. (1.1.22)

The same arguments then hold in an unbounded regime except instead of evaluating

the variables at an appropriate y = y0, the limit is taken as y → ∞. It follows that the

boundary conditions required to solve the disturbance equations (1.1.11) and (1.1.12)

are

v̂, v̂′ , η̂ = 0 (1.1.23)

at physical boundaries or in the far-field (whichever is appropriate).

1.1.3 Squire’s theorem for time-dependent flows

In the steady case, there is a well established relationship between 2D and 3D distur-

bances (Squire, 1933). When locating the onset of instability this relationship reveals

that only 2D disturbances need be considered. It will now be shown that the same result

holds for unsteady flows.

Since v̂ appears in (1.1.12) but η̂ is absent from (1.1.11), there are two families of

solutions;

• OS modes that satisfy (1.1.11) and force a particular solution to (1.1.12).

• Squire modes that satisfy the homogeneous form of (1.1.12) (i.e. v̂ = 0).

Therefore the growth or decay of disturbances with v̂ , 0 can be described by (1.1.11)

and for disturbances with v̂ = 0 the homogeneous form of the Squire equation,[
∂
∂τ

+ iαReU − 1
2

(
∂2
y − k2

)]
η̂ = 0, (1.1.24)

describes the disturbance evolution.
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Damped Squire modes

Consider the case v̂ = 0 so that disturbance evolution is described by the homogeneous

Squire equation (1.1.24). It will be shown that all solutions to (1.1.24) are damped (i.e.

decay as τ→∞) so only OS modes become unstable.

In order to deduce whether Squire modes ever become unstable, some definition of

stability must be used. The disturbance, η, is considered stable if

∂
∂τ


$
V

|η|2 dV

 < 0, (1.1.25)

where V is the flow domain. The integral is a measure of the magnitude of the distur-

bance over V so put simply (1.1.25) states that the size of the disturbance decreases with

increasing τ .

Multiply the equation (1.1.24) by η̄ (the complex conjugate of η) and integrate over

the wall-normal domain Ωy (i.e. for the semi-infinite Stokes layer Ωy = [0,∞)). This

results in

∫
Ωy

∂η

∂τ
η̄dy + iαRe

∫
Ωy

U |η|2 dy − 1
2

∫
Ωy

∂2η

∂y2 η̄dy +
k2

2

∫
Ωy

|η|2 dy = 0. (1.1.26)

Through integration by parts it can be deduced that

∫
Ωy

∂2η

∂y2 η̄dy =
[
η̄
∂η

∂y

]
Ωy

−
∫
Ωy

|η′ |2 dy. (1.1.27)

Now, making use of the condition that η → 0 at the end-points of the domain (which

must also hold for η̄), (1.1.26) can be rewritten as

∫
Ωy

∂η

∂τ
η̄dy + iαRe

∫
Ωy

U |η|2 dy +
1
2

∫
Ωy

(
|η′ |2 + k2|η|2

)
dy = 0. (1.1.28)

Taking the real part of this expression gives

<


∫
Ωy

∂η

∂τ
η̄dy

 = −1
2

∫
Ωy

(
|η′ |2 + k2|η|2

)
dy. (1.1.29)

Using the fact that integration and differentiation are linear, and that<{z} = (z+ z̄)/2 for
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any z ∈ C,

<


∫
Ωy

∂η

∂τ
η̄dy

 =
∫
Ωy

<
{
∂η

∂τ
η̄

}
dy =

1
2

∫
Ωy

(
∂η

∂τ
η̄ +

∂η̄

∂τ
η

)
dy. (1.1.30)

By the product rule it is readily confirmed that

∂η

∂τ
η̄ +

∂η̄

∂τ
η =

∂ηη̄

∂τ
=
∂
∂τ
|η|2. (1.1.31)

Thus, (1.1.29) can be written as

∂
∂τ

∫
Ωy

|η|2 dy = −1
2

∫
Ωy

(
|η′ |2 + k2|η|2

)
dy,

< 0.

Finally, by integrating over the streamwise (x) and spanwise (z) directions, the stability

condition (1.1.25) is satisfied since integration preserves inequalities. Hence, all Squire

modes are damped. Therefore, to find an unstable 3D disturbance only the OS modes

described by (1.1.11) need be considered.

Squire Transform

Consider a 3D disturbance described by the (three-dimensional) OS equation (1.1.11).

This forces a particular solution to the Squire equation (1.1.12) but the growth can be

found by considering only (1.1.11). It has been shown that Squire modes are damped so

the OS equation describes all 3D disturbances that become unstable. The OS equation

(1.1.11) will be compared with the OS equation governing the evolution of a 2D dis-

turbance (1.1.13). This is the only equation governing the evolution of 2D disturbances

since in two dimensions the Squire equation is trivial. It is evident from this comparison

that the 3D (1.1.11) and 2D (1.1.13) OS equations yield identical solutions if

α2D = k, (1.1.33a)

α2DRe2D = αRe. (1.1.33b)

It then follows that

Re2D =
α
k
Re ≤ Re. (1.1.34)
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This means that for any three-dimensional OS mode there exists an equivalent (i.e. same

growth-rate) 2D disturbance at a lower Reynolds number. It follows that, since only OS

modes become unstable, any time-dependent shear flow is subjected to 2D instabilities

at a lower Re than 3D instabilities. This transformation describes a relationship between

the 2D and 3D cases and it is shown in Thomas et al. (2010) that this relationship holds

for a selection of simulated disturbances.

In order to illustrate the significance of this result, consider the critical Reynolds

number, Rec. This is defined as the largest value of Re below which all disturbances are

stable. That is, a value of Re marginally greater than Rec yields at least one unstable

disturbance whereas a value marginally lower than Rec yields only stable disturbances.

Implicit in this definition is the assumption that (at least initially) an increase in Re

is associated with destabilisation. This is consistent with the observations of Osborne

Reynolds (after whom the Reynolds number is named). There are many flows that have

been studied (for instance the Blasius boundary layer) for which a further increase in

Re can be associated with stabilisation, but even in this case the onset of instability is

reached by increasing Re past Rec.

It was shown above that an unsteady, parallel flow is subjected to 2D instabilities at

a lower Re than 3D instabilities. The direct result of this is that the critical Reynolds

number Rec must correspond to a two-dimensional disturbance. Therefore, when inves-

tigating the onset of instability only 2D disturbances need be considered through the

two-dimensional OS equation[(
∂
∂τ

+ iαRe Ū
)(
∂2
y −α2

)
− iαRe Ū ′′ − 1

2

(
∂2
y −α2

)2
]
v̂ = 0. (1.1.35)

The extension of Squire’s theorem to the periodic regime was already shown by Von

Kerczek & Davis (1974) by appealing to the disturbance equations in primitive variable

form (i.e. four equations in u, v, w and p). By reducing the problem to the OS and Squire

equations, the work above provides an alternative approach that utilises the classification

of OS and Squire modes in a manner akin to Schmid & Henningson (2001). It will be seen

later that an analogous process can be used when investigating the stability of three-

dimensional boundary layers.
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1.2 The linear stability of the finite Stokes layer

In this section, a linear stability analysis of a two-dimensional oscillatory flow will be

described. Consider the finite Stokes layer, being the flow in a channel generated by

oscillatory wall motion, as in Blennerhassett & Bassom (2006). The channel geometry

has been chosen since this is a more natural setting for the application of the Chebyshev

methods that will be used. Also, it was shown by Blennerhassett & Bassom (2006) that

the results for a wide enough channel are virtually indistinguishable from those in the

semi-infinite regime. The stability of the semi-infinite Stokes layer can then be studied

using a solver designed for the finite Stokes layer in a channel with sufficiently large

channel width.

1.2.1 The finite Stokes layer

Consider a fluid in a channel with channel half-width l so that the boundaries of the

channel are located at y = ±l and have infinite extent in the x and z directions. Let

the otherwise stationary fluid be subjected to the in-phase sinusoidal oscillation of both

boundaries in the streamwise x-direction. This flow has an exact solution to the Navier–

Stokes equations, and is called the finite Stokes layer.

Let U0 be the amplitude of oscillation and ω be the frequency of oscillation so that

the dimensional wall motion will have the form U0 cos(ωt). This flow can be nondimen-

sionalised using U0 as the velocity scale and 1/ω as the timescale. As alluded to earlier

this results in the lengthscale

δs =

√
2ν
ω
, (1.2.1)

called the Stokes layer thickness. The resulting nondimensional velocity profile (in the

streamwise direction) can be written as

U (y,τ) =<
{

cosh[(1 + i)y]
cosh[(1 + i)h]

eiτ
}
, (1.2.2)

where τ is the nondimensional time such that U oscillates with a period of 2π in τ . This

nondimensional flow has a wall oscillation amplitude of 1 and a Stokes layer thickness

of 1, resulting in the additional parameter h which is the nondimensional channel half-

width. If l is the dimensional channel half-width then the nondimensional channel half-

width can be written as h = l/δs, i.e. h is the ratio of the channel half-width to the Stokes
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layer thickness. The Reynolds number associated with this flow is

Re =
U0√
2νω

. (1.2.3)

There are now two key parameters in this nondimensional flow: the nondimensional

channel half-width h and the Reynolds number Re. Since care has been taken to ensure

scalings are consistent with those used to derive the disturbance equations in Section 1.1,

the stability of this flow can be investigated using the stability equation (1.1.35).

1.2.2 Application of Floquet theory

The 2D disturbance can be expressed in terms of a stream function ψp,

(up,vp) =
(
∂ψp
∂y

,−
∂ψp
∂x

)
, (1.2.4)

so that the continuity equation is automatically satisfied. Assume the stream function

has normal mode form ψp(x,y,τ) = ψ̂(y,τ)eiαx as in (1.1.10) but with β = 0 since only

2D disturbances are of interest for deducing the onset of instability. This results in the

equation [(
∂
∂τ

+ iαReU
)
L− iαReU ′′ − 1

2
L2

]
ψ̂ = 0, (1.2.5)

where L = ∂2
y − α2. This is a variation on (1.1.35), which has been compacted using L.

Also, this is an equation for the stream function ψ̂ rather than v̂, but it can easily be con-

firmed that both disturbance variables are governed by the same equation. This particu-

lar form of the stability equation is directly comparable to those used by Blennerhassett

& Bassom (2002, 2006), Hall (1978) and Thomas et al. (2011, 2014).

The periodicity of the operator in (1.2.5) suggests the application of Floquet’s theo-

rem. This theorem was originally developed for ordinary differential equations (ODEs)

with periodic operators but is easily adapted to partial differential equations (PDEs) that

are periodic in one variable, such as (1.2.5). This adaptation is made either by consider-

ing a spatial discretisation of the problem or by assuming such an extension as an ansatz.

Discretisation results in a vector ODE in τ for which Floquet’s theorem is entirely ap-

propriate while the ansatz extension simply suggests that the y-dependence should be

incorporated into the solution in the same manner as it would be for a vector.

It makes no practical difference which approach is taken since the problem will be
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discretised later. The ansatz argument is therefore applied so that the formulation can

be continued and the discretisation will be discussed later.

Floquet’s theorem states that the solution to a problem with a periodic operator can

be written as a periodic function (with the same period as the operator) multiplied by an

exponential function allowing for growth or decay. This is essentially the normal-mode

form for periodic operators. The solution ψ̂ to (1.2.5) is therefore written in the form

ψ̂ = eµτψ(y,τ) + c.c. (1.2.6)

where ψ is 2π-periodic in τ , the complex number µ is called the Floquet exponent and

c.c. denotes the complex conjugate. The growth or decay of a disturbance is found from

the real part of µ, i.e. a disturbance grows for µr > 0 and decays for µr < 0.

Functions of this form (i.e. the product of a periodic function with an exponential)

will be referred to as quasi-periodic with the quasi-period referring to the period of the

periodic component. This term can usually have a variety of meanings but for the en-

tirety of this work it will be used solely to described any function that can be described

in a similar manner to (1.2.6). When µ ∈ R, this is simply an amplifying periodic func-

tion, but µi , 0 introduces subtler behaviour in which there is a phase-shift as well as

amplification each quasi-period. This behaviour will be discussed in more detail when

appropriate.

The resulting stability problem is an eigenvalue problem in µ,

∂
∂τ
Lψ =

[1
2
L−µ− iαReU

]
Lψ + iαReU ′′ψ. (1.2.7)

The periodic function ψ can then be decomposed into harmonics

ψ(y,τ) =
∞∑

n=−∞
ψn(y)einτ . (1.2.8)

Since the basic state is periodic, each harmonic is coupled with those on either side

of it. This can be shown by writing the basic state as

U (y,τ) = u1(y)eiτ +u−1(y)e−iτ , (1.2.9)
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with u1 and u−1 being complex conjugates of each other. For the Stokes layer in a channel

u1(y) =
cosh[(1 + i)y]

2cosh[(1 + i)h]
. (1.2.10)

By substituting (1.2.8) and (1.2.9) into the stability equation (1.2.7) and comparing

coefficients of exp(inτ), an infinite system of coupled equations is constructed where, for

each n,

[
L− 2(µ+ in)

]
Lψn = 2iαRe

[
u1

(
L− 2i

)
ψn−1 +u−1

(
L+ 2i

)
ψn+1

]
. (1.2.11)

This makes the coupling of the different harmonics quite clear through the appearance

of ψn±1. This infinite system of equations can be truncated and the resulting system can

be solved numerically using spectral methods.

1.2.3 Numerical method

Following the pseudospectral techniques of Trefethen (2000), the differential operators

will be approximated using Chebyshev collocation on the domain [−h,h]. This prob-

lem will be formulated in physical space, so the eigenvectors represent the values of the

function at each collocation point (an alternative method is for the eigenvectors to con-

tain the Chebyshev coefficients and the relationship between these two approaches will

be discussed later).

By letting ψn be the vector containing the function values of ψn(y) on the Chebyshev

mesh, the following pseudospectral differential operators can be defined

L→L =D2 −α2I , (1.2.12a)

1
2

(
∂4

∂y4 − 2α2 ∂
2

∂y2 +α4
)
→V =

1
2

(
D4 − 2α2D2 +α4I

)
, (1.2.12b)

M = L−1u1(L− 2iI ), (1.2.12c)

where u1 is a square matrix containing the values of u1 at each mesh point along the

diagonal. Also appearing are I , being the identity matrix of relevant size, and finally

D2 and D4 which are the matrix approximations to the second and fourth derivatives,

respectively.
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For each n this gives

−iαReM̄ψn+1 +
(
L−1V − inI

)
ψn − iαReMψn−1 = µψn, (1.2.13)

where M̄ is the complex conjugate ofM . The inverted matrix L−1 is introduced to ensure

that µψn appears alone on the right-hand side. It can be assumed that L−1 exists and is

well defined since it is implicit that this matrix operator only acts in a space where the

boundary conditions are satisfied.

The no-penetration condition gives rise to homogeneous boundary conditions and

the no-slip condition shows up as the derivative also vanishing at the boundaries,

ψn(±h) = ψ′n(±h) = 0. (1.2.14)

These conditions are implemented the same way as Blennerhassett & Bassom (2006),

using the techniques of Trefethen (2000). It is observed that in order for each ψn to

vanish at the boundary the top and bottom rows of the derivative matrices can simply

be dropped. The derivative condition is implemented by observing that each ψn(y) can

therefore be written in the form (h2 − y2)gn(y) and the condition on the derivatives de-

mands that gn(±h) = 0. This is then built into D4 by transforming from ψn to gn and

then back again so that the removal of the top and bottom rows enforces both boundary

conditions (Trefethen, 2000).

It now remains to truncate the system by assuming that ψn = 0 for all |n| > N . Some

value of N for which results become insensitive to the choice of a larger N was found

empirically by Blennerhassett & Bassom (2002) to be 0.8αRe for neutral conditions.

The system can be written in the block tridiagonal matrix form



C−N B∗ 0 . . . . . . . . . 0

B C−N+1 B∗ 0 . . . . . . 0

0 B C−N+2 B∗ 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 B CN−2 B∗ 0

0 . . . . . . 0 B CN−1 B∗

0 . . . . . . . . . 0 B CN





ψ−N

ψ−N+1

ψ−N+2
...

ψN−2

ψN−1

ψN



= µ



ψ−N

ψ−N+1

ψ−N+2
...

ψN−2

ψN−1

ψN



, (1.2.15)
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where 0 is the zero matrix of appropriate size and

Cn = L−1V − inI ,

B = −iαReM ,

B∗ = −iαReM̄ .

All constituent blocks are square and of the size (K − 1)× (K − 1) where K is the number

of mesh points used in the discretisation, so each vector ψn is of length (K − 1). A choice

of K = 100 is sufficient resolution to find neutral points.

The vector φ can now be defined as

φT =
(
ψT−N ,ψ

T
1−N , . . . ,ψ

T
N−1,ψ

T
N

)
(1.2.17)

so that defining A as the matrix in (1.2.15) leaves an eigenvalue problem

Aφ = µφ, (1.2.18)

where A is a sparse, block tridiagonal matrix with (2N + 1)(K − 1) rows and columns.

The eigenvalues µ and eigenvectors φ are then found using the sparse matrix eigenvalue

routine, eigs, in Matlab.

From the Floquet normal form (1.2.6) and harmonic decomposition (1.2.8) it can be

seen that for any eigenvalue µ, µ→ µ ± ik results in an identical expression when k ∈ N

since k simply shifts n by an integer value, having no effect on the infinite sum. For

this reason, only values of µ satisfying µi ∈ [−1/2,1/2] need be considered. Further-

more, the oscillatory flow has the additional feature that the flow reverses direction each

half-period (antiperiodicity). This symmetry suggests that positive and negative µi corre-

spond to left and right travelling waves which only differ by a time delay of half a period,

so µ can be restricted to the region µi ∈ [0,1/2].

Separation of even and odd modes

The problem (1.2.5) only contains even derivatives and the basic state in the channel

is symmetric in the wall-normal co-ordinate y. Solutions can therefore be separated

into even (symmetric around the channel centre) and odd (anti-symmetric) modes. Even
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modes are expected to be the most unstable (Blennerhassett & Bassom, 2002, 2006). One

of the useful properties of Chebyshev polynomials is that they alternate between even

and odd, so it should be possible to utilise this property to solve only for even distur-

bances, thereby reducing the size of the problem.

Although the problem is solved in physical space, i.e. the eigenvector ψ contains

the values of the stream function at a discrete number of spatial locations, there is a

strong link between this formulation and that in Chebyshev space where the eigenvec-

tor contains the coefficients of each Chebyshev polynomial, this will be called v. This

relationship arises from the evaluation of ψ at collocation points and can be expressed as

ψ =D0v, (1.2.19)

with each entry of the matrix D0 defined by

(D0)mn = Tm(yn/h) = cos
(
mcos−1(yn/h)

)
for n = 0, . . . ,K, (1.2.20)

where Tm is the mth Chebyshev polynomial as adapted for the domain [−h,h]. When m is

even, Tm is an even function in y and when m is odd, Tm is odd. Any even (odd) function

can be constructed entirely from even (odd) Chebyshev polynomials. This property will

now be exploited.

To illustrate the manner in which even and odd modes can be separated let C denote

some matrix approximation to a derivative operator (containing only even derivative ma-

trices). The eigenvalue problem can be written as

Cψ = µψ, (1.2.21)

and using (1.2.19) this can be written as

C̃v = µv, (1.2.22)

where C̃ =D−1
0 CD0. The problem in physical space can thus be transformed into Cheby-

shev space to better interpret whether contributions to the solution are even or odd.

Due to the symmetries of the problem, any terms in C̃ that correspond to interaction

between even and odd elements of v can be eliminated and, by reordering the elements
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of v (and C̃ accordingly), the problem can be written as



C̃even 0

0 C̃odd





v0

v2

v4
...

v1

v3

v5
...



= µ



v0

v2

v4
...

v1

v3

v5
...



. (1.2.23)

Thus, the even (odd) sub-problem is found by considering only C̃even (C̃odd). The most

unstable eigenvalues can be found by considering only the even subproblem and so, by

performing this process on all the constituent blocks of A before construction, the size of

the problem is quartered. By performing this routine before computing the eigenvalues,

both time and computational expense are saved without sacrificing any accuracy.

1.2.4 Eigenvalues and validation

The first check that can be made on the eigenvalue solver is that for any eigenvalue µ, µ±

ik are also eigenvalues for k ∈ N. This means that when µi is plotted against µr (imaginary

and real parts of µ, respectively) there should be an infinite number of eigenvalues at

each growth-rate µr before µ is restricted as described above. The complex eigenvalues

for stable and unstable cases are plotted in Figure 1.1, confirming that this characteristic

holds. Due to the symmetry of this problem it is also expected that for any eigenvalue µ

the complex conjugate is also an eigenvalue. This is also confirmed in Figure 1.1.

A comparison between the least stable (or most unstable) modes found by Blenner-

hassett & Bassom (2006) and those found in the present study is given in Table 1.1. In

most cases the values are indistinguishable to 5 significant figures.

1.2.5 Aligned composite flow in a channel

Consider the periodic flow in a channel consisting of a purely oscillatory flow Us (the

Stokes layer generated by the channel walls oscillating in phase with one another) super-

imposed on a steady mean flow Ub (Poiseuille flow) in the same direction as the oscilla-
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Figure 1.1: Floquet eigenvalues for the finite Stokes layer in a channel with wavenumber α =
0.3. The stable case (a) is for Re = 570 and h = 8, the unstable case (b) is for Re = 800 and
h = 16. Note that (b) should be virtually indistinguishable from the semi-infinite Stokes layer
at the same α and Re (Blennerhassett & Bassom, 2006).

Parameters B&B Present Study
α h Re

0.3 8 0.1 (-0.08833, 0.00000) (-0.08833, 0.00000)
0.3 8 570 (-0.54130, 0.00000) (-0.54130, 0.00000)
0.3 16 0.1 (-0.05249, 0.00000) (-0.05249, 0.00000)
0.3 16 570 (-0.06572, 0.00000) (-0.06572, 0.00000)
0.3 16 750 (-0.06695, 0.00000) (-0.06695, 0.00000)
0.3 16 800 (0.08238, 0.34583) (0.08238, 0.34582)

0.38 16 847.5 (0.67616, 0.14881) (0.67620, 0.14880)

Table 1.1: Comparison of least stable (most unstable) modes with those presented by Blenner-
hassett & Bassom (2006) (B&B). Complex numbers x+ iy are represented as vectors (x,y). All
cases used K = 100 and are rounded to 5 decimal places for comparison with B&B. The cases
depicted in Figure 1.1 are shaded.

tion. This is the flow considered in Thomas et al. (2011).

For the channel, in the special case where there is no mean flow, the basic state con-

verges to that of a semi-infinite Stokes layer as the channel width increases. Hence, a

solver developed for a channel geometry contains results for a semi-infinite geometry

as a limiting case. It is, however, important to note that the semi-infinite problem with

a mean flow would require reformulation in the semi-infinite geometry since Poiseuille

flow does not approach the Blasius boundary layer as the channel width is increased.
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Basic state

Consider the flow regime in which a fluid, located between two plates of infinite extent,

has a mean flow in some direction and is also subjected to the in-phase oscillation of

the plates in this direction. This is an aligned composite flow since the flow consists of

two components (the steady mean flow and unsteady oscillation) aligned in the same

direction. Each flow component has an exact solution to the Navier–Stokes equations:

the mean component is described by Poiseuille flow and the oscillatory component is the

finite Stokes layer already discussed.

First, consider the mean flow in the absence of the wall oscillation. Let Ub,0 be the

velocity at the centre of the channel and l be the channel half-width. The flow can be

nondimensionalised using these characteristic values resulting in the nondimensional

Poiseuille flow velocity profile

f (y) = 1− y2, (1.2.24)

where y is the wall-normal co-ordinate and f is the velocity in the streamwise direction

(the velocity in the other directions being zero). This nondimensional flow has a channel

half-width of 1 and a velocity of 1 in the centre of the channel. The Reynolds number

associated with this flow, based on these scalings, is

Reb =
Ub,0l

ν
. (1.2.25)

Now, consider the oscillatory flow in the absence of the mean flow which has already

been discussed. For this section, let Us,0 be the amplitude of oscillation. The resulting

nondimensional velocity profile is the same as (1.2.2),

g(y,τ) =<
{

cosh[(1 + i)y]
cosh[(1 + i)h]

eiτ
}
. (1.2.26)

Again, note the additional parameter h which is the nondimensional channel half-width.

The Reynolds number associated with this flow component is

Res =
Us,0√
2νω

. (1.2.27)

Now consider the composite flow. The natural lengthscale for periodic flows is the

Stokes layer thickness δs based on the frequency of oscillation, and it has already been
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shown that when nondimensionalising the problem using this lengthscale, the parameter

h = l/δs is introduced. The Stokes layer thickness will also be used as the characteristic

lengthscale of the composite flow so the mean flow profile (1.2.24) must be rescaled to

correspond to a channel half-width of h. The nondimensional composite velocity profile

will be a linear combination of these profiles, f (y/h) and g(y,τ).

To write an expression for the nondimensional composite flow, define the character-

istic velocity as Ub,0 +Us,0. The velocity profile can be written as

U (y,τ) =
Ub,0

Ub,0 +Us,0
f (y/h) +

Us,0
Ub,0 +Us,0

g(y,τ). (1.2.28)

Much as h is the ratio of the lengths associated with each flow component, the ratio of

the velocities can be defined so that this velocity profile can be written as

U (y,τ) = γbf (y/h) +γsg(y,τ), (1.2.29)

where

γb =
Γ

1 + Γ
= 1−γ1 ∈ [0,1], (1.2.30a)

γs =
1

1 + Γ
∈ [0,1], (1.2.30b)

for Γ =
Ub,0
Us,0

∈ [0,∞). (1.2.30c)

Note that when Γ = 0 the velocity profile is simply that of the finite Stokes layer already

discussed. As Γ →∞ the velocity profile U approaches Poiseuille flow in a channel with

half-width h.

There are now three key parameters in this nondimensional flow: the ratio of length-

scales associated with each flow component, h; the ratio of the velocity scales associated

with each component, Γ ; and the Reynolds number. The Reynolds number associated

with this flow will be of a similar form to (1.2.3) since the same time and length scales

have been used for the nondimensionalisation. This yields a composite Reynolds number

that can be written in terms of the Reynolds numbers associated with each flow compo-

nent (1.2.25) and (1.2.27);

Re =
Ub,0 +Us,0√

2νω
=
Reb
2h

+Res. (1.2.31)
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The flow has now been nondimensionalised in such a way that the stability equation

(1.2.7) is appropriate.

Floquet theory

The stability analysis of this flow is similar to that already described except that the

mean flow needs to be incorporated. The stream function, as the subject of the stability

equation (1.2.7), is again decomposed into harmonics ψn, (1.2.8). For a fully steady flow

(approached as Γ → ∞) each ψn can be found independently of the others and for the

correctly interpreted scalings this unsurprisingly recovers the Orr–Sommerfeld equation

at a selection of frequencies.

When the periodic component is non-zero there is the same harmonic coupling as

shown for the purely oscillatory case. The periodic component of the basic state takes

the form

g(y,τ) = u1(y)eiτ +u−1(y)e−iτ , (1.2.32)

with u1 and u−1 being complex conjugates of each other and u1 given in (1.2.10). Through

harmonic decomposition and comparing coefficients of einτ , the infinite system of cou-

pled equations is now given, for each n, by

[
L− 2(µ+ in)

]
Lψn − 2iαγbRe

[
f L− 1

h2 f
′′
]
ψn

= 2iαγsRe
[
u1

(
L− 2i

)
ψn−1 +u−1

(
L+ 2i

)
ψn+1

]
. (1.2.33)

Note that in the special case γb = 0, this is identical to the equation (1.2.11) for the purely

oscillatory case.

Numerical Method

The numerical methods for the aligned composite flow are identical to those for the

purely oscillatory flow considered earlier, except that the additional term introduced

by the presence of the mean flow requires the definition of an addition matrix operator,

P = γbL
−1 (UbL−D2Ub) , (1.2.34)
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where Ub contains the values of f (y/h) along the diagonal. The composite flow also re-

quires the definition of M to be modified to

M = γsL
−1u1(L− 2iI ). (1.2.35)

For each n this gives

−iαReM̄ψn+1 +
(
L−1V − inI − iαReP

)
ψn − iαReMψn−1 = µψn, (1.2.36)

where L is as defined in (1.2.12) and M̄ is again the complex conjugate ofM . The bound-

ary conditions are implemented in the same manner as before and it is observed that

the system has the same structure as for the purely oscillatory case. Once truncated, the

system can again be written in the matrix form (1.2.15) with a modified definition of the

diagonal terms to incorporate the matrix P ,

Cn = L−1V − inI − iαReP . (1.2.37)

With regards to the truncation, it was found empirically by Thomas et al. (2011) that

N = 0.8γsαRe was sufficiently large for neutral conditions. As an unphysical parameter,

the inappropriate choice of N can introduce spurious results. As N →∞, the full system

is approached and so the value ofN is selected so that the selection of a largerN has little

to no effect on the eigenvalues µ. It was found in this study that a choice of N = 0.8γαRe

was more effective, where γ = max(γb,γs).

Having appropriately modified definition of the matrix A, the stability of the aligned

composite flow can be deduced by solving the eigenvalue problem (1.2.18). Since the

basic state has retained the symmetry in the wall-normal domain, the size of the problem

can again be reduced by solving only the even subproblem.

It is important to note that the introduction of the mean flow breaks the antiperiod-

icity of the oscillatory flow component. That is, when time is shifted by half a period the

velocity profile does not simply reverse direction. Therefore, for the aligned composite

flow, values of µ satisfying µi ∈ [−1/2,1/2] are considered, whereas previously eigenval-

ues existed in complex conjugate pairs meaning µi < 0 could be discarded.
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Figure 1.2: Floquet eigenvalues for the finite Stokes layer modified by an aligned mean flow
(Poiseuille flow). Diagrams correspond to wavenumber α = 0.3, channel half-width h = 6 and
velocity ratio Γ = 0.5. The stable case (a) is for Re = 520, the unstable case (b) is for Re = 540.

Results

Direct comparison is not possible with the work of Thomas et al. (2011) since this paper

does not present any individual eigenvalues. Thus, validation will be properly conducted

later using neutral curves for confirmation. However, the eigenvalues of two cases known

to be stable and unstable from Thomas et al. (2011) are presented in Figure 1.2. Since

the stability characteristics and the pattern in µi are as expected it will be tentatively

assumed that the present study is in agreement with Thomas et al. (2011).

1.3 Growth-rate contours and neutral curves

Described above is a method for finding the eigenvalues µ corresponding to flow param-

eters Re, Γ , h and disturbance parameter α. For this section, the parameters Γ and h will

be fixed (so a specific member of the family of flows described above is being considered)

and µ(α,Re) will denote the least stable eigenvalue for the particular choice of α and Re.

Of fundamental importance to hydrodynamic stability theory is the classification of

disturbances as stable or unstable and for this reason neutral curves are an indispensable

tool. A neutral curve is found by plotting the zero-growth contour (corresponding to

µr = 0) in the (α,Re)-plane. It is useful in finding the critical Reynolds number (below

which no instability occurs) and in deducing, for any choice of α and Re, whether a

disturbance grows or decays. The problem will be generalised to finding any growth-
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rate contour of which the neutral curve is a special case.

In order to construct a contour of growth-rate µcrit, roots of the equation

F(α,Re) =<{µ(α,Re)} −µcrit (1.3.1)

must be found. Letting µcrit = 0 makes these roots correspond to neutral points. The

obvious choice of method to achieve this is Newton’s method due to its quadratic con-

vergence and relatively straight-forward implementation. One drawback of Newton’s

method is the requirement of a fairly good initial guess and once a point on the curve has

been found this can be used as the initial guess for the next point. However, an accurate

starting point is first required.

1.3.1 Initialisation

Bisection method for initial point

The first point on the contour will be found by a bisection method. First, the Reynolds

number is chosen to be fixed at some Re0 for which there exists at least one α yielding

F(α,Re0) > 0. Some wavenumber α0 is chosen so that F(α0,Re0) can be found. Then, for

αi = αi−1 +∆α,

where i ≥ 1 and ∆α is fixed at the beginning, F(αi ,Re0) is calculated until some i = j is

reached for which F(αj ,Re0) has opposite sign to F(α0,Re0).

Since the root of F must be somewhere between α0 and αj , the curve of F is approxi-

mated between these points as a straight line and F is calculated at the approximate root.

Base on the sign of F at this location, either F(α0,Re0) or F(αj ,Re0) is discarded so that

the process can be repeated on a smaller interval to find a better approximation to the

root. This process of bisection is then repeated until the root is found to within a chosen

accuracy, thus providing a starting point for the contour curve.

Although much of the process is automated, the selection of Re0 and α0 can be time

consuming for a curve of completely unknown shape. The sign of ∆α is also an impor-

tant parameter that requires some exploration to find. Fortunately, for the problem of

interest, a selection of neutral curves are plotted in Thomas et al. (2011) from which

these starting parameters can be estimated. For previously unpublished curves this ini-
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tialisation can be more difficult but ball-park figures can be found by comparison with

curves corresponding to similar parameters.

Rescaling the problem

Due to the very different scales of α and Re (α ∼ 0.1 and Re ∼ 100), it is convenient to

rescale these parameters, which can be considered the independent variables of the root-

finding problem. Defining a characteristic value of α as ac and a characteristic value of

Re as rc, an alternative independent variable x will be defined as

x = (x,y) =
(
α
ac
,
Re
rc

)
(1.3.2)

so that the problem is transformed to a root-finding problem in x of the function

F(x) = g(x)−µcrit , (1.3.3)

where g is used to denote the growth-rate and is related to µ by

g(x,y) =<
{
µ(acx,rcy)

}
, (1.3.4)

from which it can be seen that

∂g

∂x
= ac<

{
∂µ

∂α

}
, (1.3.5a)

∂g

∂y
= rc<

{
∂µ

∂Re

}
, (1.3.5b)

which will be useful later. The letters x and y in this section should not be confused with

the spatial co-ordinates used in the rest of this work. In this section, x and y will only

be used in this context, while outside of this section they will only describe the spatial

directions.

The problem with using Newton’s method to find roots of (1.3.3) is that Newton’s

method requires the same number of equations as variables and (1.3.3) is a single equa-

tion in two variables. It is possible to resolve this by fixing either x or y (as for the bisec-

tion), finding the roots of F at this value and then making a step in the fixed variable and

repeating. Though this is a mathematically robust method it fails when the contour has
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a turning point with respect to the variable being stepped forward. It is for this reason

that pseudo-arclength continuation will be used (Kelley, 2005). The basic idea is that by

fixing some measure of the distance between consecutive points on the contour (for in-

stance, arclength) a second equation is introduced and so Newton’s method can be used

in two-dimensions to find the roots of the resulting system.

1.3.2 Arclength

Arclength is a measure of the distance of any point on a curve from some starting point.

The starting point for this problem has already been found using bisection and will be

denoted x0. For subsequent steps the same process is carried out with the previous point

relabelled as x0. Letting s represent arclength and ẋ denote differentiation of x with

respect to s,

||ẋ||2 = |ẋ|2 + |ẏ|2 = 1. (1.3.6)

For this problem, an approximation to this normalisation equation will be N = 0 where

N (x, s) = ẋT0 (x − x0)− (s − s0). (1.3.7)

This will provide the additional equation for the root-finding problem. Since s is a mea-

sure of distance from x0, which is relabelled at each point in this process, the term (s−s0)

can be replaced with δs. This will be set as a parameter in advance. The only unknown

in (1.3.7) is ẋ0, which will be calculated using (1.3.3) and (1.3.6) as follows.

For any x on the contour, it must hold that

F(x) = g(x)−µcrit = 0, (1.3.8)

which can be differentiated with respect to s to give

∂g

∂x
ẋ+

∂g

∂y
ẏ = 0. (1.3.9)

This can be written as

ac<
{
∂µ

∂α

}
ẋ+ rc<

{
∂µ

∂Re

}
ẏ = 0 (1.3.10)
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using (1.3.5) and then rearranged to give

ẋ = −
(
rc
ac

)<{
∂µ
∂Re

}
<

{
∂µ
∂α

} ẏ. (1.3.11)

Using this expression, (1.3.6) can be written entirely in terms of ẏ, which can in turn be

rearranged to give

ẏ =
±1√

1 +
(
rc
ac

)[ <{∂µ/∂α}
<{∂µ/∂Re}

]2
. (1.3.12)

The choice of ± will dictate the direction moved in, so provided only one is chosen for all

points the curve will not double back on itself.

Between (1.3.11) and (1.3.12), an expression ẋ can be written (and hence ẋ0) once the

appropriate derivatives of µ have been calculated.

1.3.3 A means of finding the necessary derivatives

The derivatives ∂µ/∂α and ∂µ/∂Rewill be found following Bridges & Morris (1983). First,

the eigenvalue problem (1.2.18) will be written as

(A−µI )φ = 0, (1.3.13)

for eigenvalue µ and eigenvector φ. For each eigenvalue µ, there exist both right and left

eigenvectors defined by

(A−µI )φr = 0, (1.3.14a)

φTl (A−µI ) = 0, (1.3.14b)

where φr is the right eigenvector and φl is the left eigenvector. The Matlab routine eigs,

used to find µ, is also used to find both eigenvectors. Differentiation with respect to each

parameter gives

∂(A−µI )
∂α

φr + (A−µI )
∂φr
∂α

= 0, (1.3.15a)

∂(A−µI )
∂Re

φr + (A−µI )
∂φr
∂Re

= 0. (1.3.15b)
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Left multiplication by φTl will, from (1.3.14b), eliminate the second term in both these

expressions, giving

φTl

(
∂A
∂α
−
∂µ

∂α
I

)
φr = 0, (1.3.16a)

φTl

(
∂A
∂Re
−
∂µ

∂Re
I

)
φr = 0, (1.3.16b)

which can be rearranged to give the derivatives of µ,

∂µ

∂α
=
φTl

∂A
∂αφr

φTl Iφr
, (1.3.17a)

∂µ

∂Re
=
φTl

∂A
∂Reφr

φTl Iφr
. (1.3.17b)

In order to calculate the derivatives of A. Each constituent block can be differentiated

with respect to α and Re. The derivative of A with respect to Re is given by

∂A
∂Re

=



(C−N )Re (B∗)Re 0 . . . . . . . . . 0

(B)Re (C−N+1)Re (B∗)Re 0 . . . . . . 0

0 (B)Re (C−N+2)Re (B∗)Re 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 (B)Re (CN−2)Re (B∗)Re 0

0 . . . . . . 0 (B)Re (CN−1)Re (B∗)Re

0 . . . . . . . . . 0 (B)Re (CN )Re


and the derivative of A with respect to α is, similarly, given by

∂A
∂α

=



(C−N )α (B∗)α 0 . . . . . . . . . 0

(B)α (C−N+1)α (B∗)α 0 . . . . . . 0

0 (B)α (C−N+2)α (B∗)α 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 (B)α (CN−2)α (B∗)α 0

0 . . . . . . 0 (B)α (CN−1)α (B∗)α

0 . . . . . . . . . 0 (B)α (CN )α



,

where subscripts have been used to denote partial differentiation. The derivative blocks
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can be constructed using the definition of each block:

B = −iαReM ⇒

 (B)Re = −iαM ,

(B)α = −iRe [M +α(M)α] ,

and similarly,

(B∗)Re = −iαM̄ ,

(B∗)α = −iRe
[
M̄ +α(M̄)α

]
.

The derivatives of Mα can be found by writing,

M = γsL−1u1(L− 2iI )⇒ LM = γsu1(L− 2iI ),

⇒ L(M)α + (L)αM = γsu1(L)α ,

⇒ (M)α = L−1 [γsu1(L)α − (L)αM] ,

where (L)α = −2αI comes directly from the definition. Taking the complex conjugate

gives an expression for (M̄)α.

Similarly, for each n,

Cn = L−1V − inI − iαReP ⇒ (Cn)Re = −iαP ,

LCn = V − inL− iαReLP ⇒ L(Cn)α = (V )α − (L)αL
−1V − iRe [αL(P )α +LP ] ,

⇒ (Cn)α = L−1 [(V )α − (L)αLV ]− iRe [α(P )α + P ] ,

where

P = γbL−1

[
UmL+

2
h2 I

]
⇒ LP = γb

[
UmL+

2
h2 I

]
,

⇒ L(P )α = γbUm(L)α − (L)αP ,

⇒ (P )α = L−1 [γbUm(L)α − (L)αP ] ,

and

(V )α = 2α
[
α2I −D2

]
.

Much of the detail is missing from the differentiation of each of these blocks, but the
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general approach is demonstrated.

The appropriate derivatives ofA can thus be used to define ẋ (and hence ẋ0) in (1.3.7).

Again, the problem can also be reduced in size by considering only the even subproblem.

1.3.4 Pseudo-arclength continuation

Since N is now defined for the next point on the contour, the problem can be recast as

finding x for which

H (x, s) =

 F(x)

N (x, s)

 =

 g(x)−µcrit
ẋT0 (x − x0)− δs

 =

0

0

 , (1.3.22)

a problem perfectly suited to Newton’s method. From this, the Jacobean of the system

can be calculated,

JH (x, s) =


∂F
∂x

∂F
∂y

∂N
∂x

∂N
∂y

 =

ac<
{
∂µ
∂α

}
rc<

{
∂µ
∂<

}
ẋ0 ẏ0

 . (1.3.23)

An iterative process is initiated with x0 = x0, and each subsequent iteration is calculated

by

xi+1 = xi −
[
JH (xi , s)

]−1
H (xi , s) (1.3.24)

using the backslash operator in Matlab. The iteration is stopped once the difference of

subsequent xi is below a given threshold and the resulting approximation to the root ofH

is labelled x. The location of the contour can then be stored in terms of α and Re (found

from x) and for the next point x is relabelled x0 and ẋ0 is found at this new location. This

process is continued until the desired length of the contour is plotted.

Improving efficiency

One easy way to improve the speed of convergence is with a closer initial guess. One way

to achieve this is to use the following tangent predictor to initialise Newton’s iteration,

x0 = x0 + ẋ0δs, (1.3.25)

which is a first order accurate approximation in δs. Higher order polynomial approxima-

tions can also be used but this requires more points being stored along the path and the
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Figure 1.3: Comparison of neutral curves found by Blennerhassett & Bassom (2006) (a) and
those found in the present study (b). The curves correspond to h = 5,5.5,6,6.5,7,7.5,8 from
the bottom curve (h = 5) to the top (h = 8). There appears to be excellent agreement. In
Blennerhassett & Bassom (2006), the Reynolds number is denoted as R (rather than Re) and
the wavenumber is denoted as a (rather than α). The axes of (a) are labelled accoridng to this
notation.

calculation of higher order derivatives. The method is quadratically convergent so only

a slightly improved guess is required. Thus, the tangent predictor will be used.

An additional improvement on efficiency is through the secant method. This involves

approximating ẋ rather than performing the expensive calculations described above. Let-

ting x−1 denote the point on the contour found before x0, if

Dx =
x0 − x−1

δs
(1.3.26)

then ẋ can be approximated by

ẋ =
Dx
||Dx||

. (1.3.27)

This can be used in both the tangent predictor and in the expression for N (which re-

quires updating as x0 is updated).

1.3.5 Validation

For comparison with existing results, consider neutral conditions (µcrit = 0). The method

described above was used to reproduce figures by Blennerhassett & Bassom (2006) and

Thomas et al. (2011). These are shown in Figure 1.3 and Figure 1.4, respectively. Some of

the curves do not cover the same extent but it is clear that there is good agreement where

they overlap. This coupled with the agreement of individual eigenvalues presented in

Table 1.1 suggests a valid model.
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Figure 1.4: Comparison of neutral curves found by Thomas et al. (2011) (a) and those found
in the present study (b). Γ h = 0,0.5,2,5,10,30,50, ,∞ and h = 6. The uppermost curve cor-
responds to Γ = 0 and Γ h increases as critical conditions move to smaller wavenumbers. The
curve for Γ h = ∞ does not appear in (b). In Thomas et al. (2011), the Reynolds number is
denoted as R (rather than Re) and the wavenumber is denoted as a (rather than α).

One feature of the curves from Blennerhassett & Bassom (2006) not observed in the

reproductions is the existence of small protrusions from the neutral curve (marked as

lines or crosses in Figure 1.3). This is due to a conscious decision to set δs too large to

pick up on these small-scale features. However, a small investigation has confirmed the

ability of the method to recognise these intriguing features which will be discussed in

Section 1.4.

To more clearly show the superb agreement, Figure 1.5 shows a superposition of the

two graphs in Figure 1.3 and Figure 1.4. The neutral curves of the present method are

represented by lines and those of the previous studies, Blennerhassett & Bassom (2006)

and Thomas et al. (2011), are represented by crosses. The data points of these studies

were extracted from the figures using the online resource "WebPlotDigitizer" (Rohatgi,

2010) and it can clearly be seen that where the extent of the curves overlap the agreement

is excellent.

The significance of this validation should not be overlooked because, although this

merely shows the ability of the present eigenvalue solver to reproduce existing results,

the fact that research in this area is still so recent and novel means that there are few

studies conducted using this method. In addition to validating the present solver, Fig-

ure 1.5 also represents an independent validation of the work of Blennerhassett & Bas-

som (2006) and Thomas et al. (2011) because, though based on the same formulation, the
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Figure 1.5: Neutral curves generated by the present method (lines) are directly compared with
data points from previous work (crosses). In (a), the neutral curves are for the finite Stokes
layer with different nondimensional channel widths (see Figure 1.3). In (b), the neutral curves
are for the the aligned composite flow with h = 6 and different choices of Γ h (see Figure 1.4).
Data is extracted from the original papers by the "WebPlotDigitizer" (Rohatgi, 2010).

present solver was developed entirely independently of those against which it is com-

pared. Although there have been other studies using a similar formulation (Atobe, 2014)

this approach remains largely unexplored so this validation against previous results is

non-trivial and the extent of the agreement is extremely gratifying.

Note that there are several studies on pulsate flow in channels (Pier & Schmid, 2017;

Tsigklifis & Lucey, 2017) that utilise this formulation and explore additional effects such

as nonlinearity or compliant surfaces. These basic states utilise alternative methods of

nondimensionalisation and are derived in slightly different ways but yield essentially the

same flows as considered here and in Thomas et al. (2011).

1.4 Some results for the Semi-infinite Stokes layer

Outside of this chapter, the present study is concerned primarily with the stability of the

semi-infinite Stokes layer so consider now the case with Γ = 0 and h = 16. These values

are chosen so that there is no steady mean flow and the channel is wide enough for the

flow to closely resemble the semi-infinite case, respectively.
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Figure 1.6: Neutral curve for the semi-infinite Stokes layer (h = 16) with no mean flow (Γ = 0).
The region below the curve indicates stability while that above (or inside) the curve represents
instability. In (a) the curve is shown for the wavenumbers expected to be most unstable and in
(b) the lowest point of this curve is shown at a smaller scale, revealing small-scale protrusions
from the curve. This plot is used to identify the critical Reynolds number Rec = 707.796.

1.4.1 Neutral curve

The first neutral curve for the semi-infinite Stokes layer is reported in Blennerhassett &

Bassom (2002) and reproduced at two scales in Figure 1.6.

In Figure 1.6a, the curve covers wavenumbers in the region 0.2 ≤ α ≤ 0.5, which is

where the most unstable disturbances are expected to lie. The curve was extended to

marginally higher values of α but with further increases in α the eigenvalue method

began to fail so this segment of the curve could not be reported with confidence. The

failure of the eigenvalue problem at larger α is reported in Kong & Luo (2016) and in

the present study the eigenvalues displayed a somewhat random behaviour which made

it impossible to follow the curve any further. In Figure 1.6b, the lower tip of the neu-

tral curve is shown, revealing the small-scale protrusions reported by Blennerhassett &

Bassom (2002) and marked on Figure 1.3.

The critical Reynolds number calculated here of Rec = 707.796 is marginally smaller

than the value reported in Blennerhassett & Bassom (2002) of 707.84. This minor dis-

crepancy appears to be due to the greater resolution used to produce Figure 1.6b than the

equivalent figure in Blennerhassett & Bassom (2002), where a selection of neutral condi-

tions appeared to be joined by straight lines, with higher resolution at the start of each
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Figure 1.7: The growth-rate µr corresponding to a range of α at Re = 708. In (a) the growth-
rate is shown for 0 ≤ α ≤ 0.5 and in (b) the small-scale features at the tip of the curve are
shown. This value of Re was chosen since it is between the tips of the neutral curve fingers at
Rec = 707.8 and the main body of the neutral curve above Re = 708.4 seen in Figure 1.6b. This
reveals a growth-rate curve itself subject to small-scale protrusions. For this value of Re one
finger clearly passes into the unstable region µr > 0 and another marginally passes into this
region. The main body of this curve remains in the stable region µr < 0.

finger and relatively small resolution along the fingers themselves. This discrepancy is of

little consequence for the following work since a value of Rec given to one decimal place

(Rec ∼ 707.8) is accurate enough for the current purposes.

1.4.2 Small-scale protrusions (fingers)

The existence of the fingers in Figure 1.6b shows that the current method is capable of

picking up these intriguing features in the same locations as Blennerhassett & Bassom

(2002), indicating that these are physical attributes rather than a numerical artefact. The

critical Reynolds number of Rec = 707.8 deduced from Figure 1.6b corresponds to the

tip of one such finger and it is noted that for values of Re marginally greater than Rec

the only unstable modes correspond to these protrusions. This is shown in Figure 1.7,

where the growth-rate µr is plotted against the wavenumber α for Re = 708. There are

two fingers that protrude into the unstable region while all other modes are stable.

In order to shed some light on the formation of these protrusions, the movement of

eigenvalues in the complex plane as α is increased will be considered for fixed Re = 708.

The values of α that will be considered will be those spanning the most unstable of the

two fingers shown in Figure 1.7. Eight plots are shown in Figure 1.8 that demonstrate the
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Figure 1.8: Tracing eigenvalues across the protruding finger for Re = 708 as α is increased.
Plot (a) denotes the least stable eigenvalues at this Re when α = 0.3744047 and for each of (b)-
(h) α is incremented by 0.0000199. In (a) the complex conjugate pairs are established. These
move closer to the real line in (b) and lie on top of each other in (c). This single eigenvalue
then splits into two that move in opposite directions along the real line in (d) with one crossing
into the unstable region µr > 0 and achieving maximum growth in (e). These eigenvalues move
closer again in (f), lie practically on top of one another in (g) and leave the real line again (in
complex conjugate pairs) in (h). All axis are scaled the same and the vertical line indicates the
imaginary axis. This figure is directly comparable to Figure B.2.

behaviour across the finger. These plots reveal that at the beginning of the protrusion the

complex conjugate eigenvalues have collapsed into each other on the real axis. This then

separates back into two eigenvalues that move in opposite directions along the real axis

before moving back to a single point and breaking away from the real axis in complex

conjugate pairs again. Notice that it is while the two eigenvalues move apart from one

another along the real axis that the least stable of the two becomes unstable.

While these fingers are an intriguing feature of the eigenvalue problem, the three

states of complex conjugate eigenvalues, repeated real eigenvalues, and two real eigen-

values are fairly generic and encountered in many settings. In Appendix B, it is shown

that similar features can be reproduced in a dramatically simplified setting.

1.4.3 Eigenvector structure

The eigenvalues associated with a range of wavenumbers have been utilised to construct

neutral curves, the growth-rate curve for Re = 708, and investigate the intriguing fingers

protruding from each of these. The eigenvalues, however, provide no information on the
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intracyclic behaviour of the disturbances. For completeness, the eigenvectors will now

be considered.

In the steady case (described by the Orr–Sommerfeld equation), the eigenvectors

found through an analogous process are the discrete representations of the wall-normal

dependence of each mode. In the periodic case, the eigenvectorφ, as found by the numer-

ical method, consists of a concatenation of such spatial vectors corresponding to different

harmonics. In order to derive meaning from φ this vector must be broken up into vectors

for each constituent harmonic ψn. The temporal variation is then found by calculating

ψ(τ) =
N∑

n=−N
ψneinτ (1.4.1)

for a selection of τ with values chosen to ensure the curves are well resolved. Notice

that ψ(τ) has a periodicity of 2π. The term ‘eigenvector’ will generally be used to refer

to ψ(τ), being the discrete approximation to the eigenfunction ψ(y,τ), rather than the

vector φ found when solving the eigenvalue problem since φ has little physical meaning

on its own. If φ is being referred to this will be made explicit.

In general, the eigenvectors for all Re and α considered have similar features. Con-

sider Re = 710 and α = 0.38 for demonstrative purposes. These values were chosen so

that the disturbance is unstable and within a neighbourhood of the most unstable mode

at this Re. An unstable mode for this α was selected and the corresponding eigenvector

is investigated in Figure 1.9.

The temporal variation of ψ(y,τ) is illustrated in Figure 1.9b at a fixed wall-normal

location y0 (selected as the location of greatest magnitude when τ = 0). This figure shows

significant changes in amplitude across a single cycle. Such behaviour could be explored

further using a frozen flow analysis to find instantaneous growth-rates. For instance,

in Tsigklifis & Lucey (2017) this behaviour is explored for pulsatile flow in a compliant

channel and is referred to as modal transient growth. This form of growth can theoreti-

cally result in nonlinear effects becoming significant even in flows that are asymptotically

stable. Note that the linearity of the problem means that if ψ(y,τ) is an eigenfunction of

the problem, then so too is any constant multiple Aψ(y,τ). When extracting the eigen-

vectors from the problem for Figure 1.9, the vector is therefore normalised by dividing

every element by the vector magnitude.

In Figure 1.9c and Figure 1.9d the wall-normal variation of the eigenvector is shown
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Figure 1.9: In (a) the eigenvalues for Re = 710 and α = 0.38 are plotted on the complex plane
with the most unstable being µ = 0.004884 − 0.040132i and indicated with a circle. The
wall-normal location of maximum amplitude was found at τ = 0, being y0 ≈ −13.86, and the
variation of ψ with τ at this location is shown in (b), revealing significant growth and decay
within a single period of wall motion. The spatial dependence of ψ is given for τ = 0 and τ = π
in (c) and (d), respectively. At both times, the greatest variation is near the walls and ψ has
relatively low magnitude in the channel centre.

at the start (τ = 0) and middle (τ = π) of a period of wall motion. In both cases ψ

has greatest amplitude and shows greatest variation near the channel walls. In both

cases the magnitude at the channel centre y = 0 is non-zero which means that the finite

configuration is still having an influence on the disturbance even though the eigenvalues

remain essentially unchanged when larger channels are taken.

The form the disturbance takes will be of the periodic eigenvector multiplied by some

complex number each period. This number is the Floquet multiplier exp(µ2π) and in

general amplifies the eigenvector as well as performing a phase shift.
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Thus concludes a brief review of the hydrodynamic stability of the semi-infinite

Stokes layer. Further interpretation and insight will be provided later when the results

can be directly compared against other methods.

1.5 The linear stability of 3D, unsteady, shear flows

The previous section is concerned with the stability of unsteady shear flows with motion

in only one direction. In this section, the results will be generalised to include the stabil-

ity of flows with motion in both the streamwise x-direction and the spanwise z-direction.

In particular, it will be shown that composite flows consisting of an oscillatory compo-

nent and a mean flow at some angle to it can be reduced to an aligned composite flow

like that described in Section 1.2. This will reveal that the aligned case in this family of

flows is subject to instability at lower Re than any unaligned case.

This section is concerned with the stability of flows that can be expressed in the form

U =
(
Ux(y,τ),0,Uz(y,τ)

)
. (1.5.1)

The derivation of the disturbance equations is similar to the two-dimensional case in

Section 1.1. In particular, the Navier–Stokes equations will be nondimensionalised in the

same way, implicitly assuming that there is a natural timescale from which a lengthscale

can be deduced. This is a reasonable assumption since the flow is assumed to be unsteady.

For a Stokes layer this lengthscale and timescale are the Stokes layer thickness (1.2.1) and

the reciprocal of the frequency, respectively.

1.5.1 Three-dimensional disturbance equations

First, the disturbance equations will be derived for an unsteady flow of unspecified tem-

poral form in a similar manner to the 2D case. Taking the nondimensional Navier–Stokes

equations (1.1.4) and assuming a solution consisting of a basic state of the form (1.5.1)

that satisfies (1.1.4) plus a small perturbation gives

u = U + ε
(
up(x,y,z,τ),vp(x,y,z,τ),wp(x,y,z,τ)

)
, (1.5.2a)

p = P + εpp, (1.5.2b)
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where ε > 0 is a small parameter.

The resulting equations are then linearised in ε, giving the following disturbance

equations

1
Re

∂up
∂τ

+Ux
∂up
∂x

+U ′xvp +Uz
∂wp
∂z

= −1
2

∂pp
∂x

+
1

2Re

∂2up
∂x2 +

∂2up
∂y2 +

∂2up
∂z2

 , (1.5.3a)

1
Re

∂vp
∂τ

+Ux
∂vp
∂x

+Uz
∂vp
∂z

= −1
2

∂pp
∂y

+
1

2Re

∂2vp
∂x2 +

∂2vp
∂y2 +

∂2vp
∂z2

 , (1.5.3b)

1
Re

∂wp
∂τ

+Ux
∂wp
∂x

+U ′zvp +Uz
∂wp
∂z

= −1
2

∂pp
∂z

+
1

2Re

∂2wp
∂x2 +

∂2wp
∂y2 +

∂2wp
∂z2

 , (1.5.3c)

∂up
∂x

+
∂vp
∂y

+
∂wp
∂z

= 0. (1.5.3d)

Through manipulation, these can be combined into the following two equations[
1
Re

∂
∂τ

+Ux
∂
∂x

+Uz
∂
∂z

]
∇2vp −

[
U ′′x

∂
∂x

+U ′′z
∂
∂x

]
vp −

1
2Re
∇2vp = 0, (1.5.4a)[

1
Re

∂
∂τ

+Ux
∂
∂x

+Uz
∂
∂z

]
ηp −

1
2Re
∇2ηp =

[
U ′x

∂
∂z
−U ′z

∂
∂x

]
vp, (1.5.4b)

where ηp is the perturbation vorticity in the y-direction as defined by (1.1.9). Assuming

normal-mode solutions of the form (1.1.10) yields the three-dimensional OS equation,[(
∂
∂τ

+ iRe (αUx + βUz)
)(
∂2
y − k2

)
− iRe (αU ′′x + βU ′′z )− 1

2

(
∂2
y − k2

)2
]
v̂ = 0, (1.5.5)

and the three-dimensional Squire equation,[
∂
∂τ

+ iRe (αUx + βUz)−
1
2

(
∂2
y − k2

)]
η̂ = i (βU ′x −αU ′z) v̂, (1.5.6)

where k =
√
α2 + β2. Note that these equations are described as three-dimensional due

to the 3D basic state whereas in Section 1.1 references to three-dimensionality were with

regards to the disturbance. In this section, the 2D problem is that concerned with both

a 2D basic state and a 2D disturbance (since Squires theorem applies) whereas the 3D

problem is that concerned with both a 3D basic state and a 3D disturbance.

The boundary conditions again come from no-penetration, no-slip and that the dis-

turbance decays in the free-stream if the geometry of the flow is not bounded (as for the

2D case in Section 1.1).
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Since v̂ appears in (1.5.6) but η̂ is absent from (1.5.5), the solutions can again be de-

composed into two families: OS modes (v , 0) satisfy (1.5.6) and force a solution to (1.5.6)

while Squire modes (v = 0) satisfy the homogeneous form of the 3D Squire equation[
∂
∂τ

+ iRe (αUx + βUz)−
1
2

(
∂2
y − k2

)]
η̂ = 0. (1.5.7)

For better comparison with the 2D case, it is useful to rewrite α and β in terms of k.

This can be done by defining the wavevector in the (x,z)-plane

α = (α,β). (1.5.8)

Then, letting θ be the angle between α and the x-direction, through simple trigonometry

the following identities must hold

θ = arctan
(β
α

)
, (1.5.9a)

α = k cos(θ), (1.5.9b)

β = k sin(θ). (1.5.9c)

Using (1.5.9a) to define θ and (1.5.9b), (1.5.9c) in the three-dimensional OS equation

(1.5.5) yields [(
∂
∂τ

+ ikReU
)(
∂2
y − k2

)
− ikReU ′′ − 1

2

(
∂2
y − k2

)2
]
v = 0, (1.5.10)

where v̂ has been replaced with v for convenience and

U =Uxcosθ +Uzsinθ. (1.5.11)

This can be compared with the 2D equation (1.1.13) and the similarities are clear; both

are identical when Ux→U and α→ k. Thus, the three-dimensional OS modes governed

by (1.5.5) can be investigated by considering only the OS modes of the 2D velocity profile

U , which can be physically interpreted as the 3D flow resolved along the wavevector

(α,β).

Similarly, if the relations (1.5.9b), (1.5.9c) are used in the homogeneous Squire equa-

tion (1.5.7) and the definition of U (1.5.11) is used, the homogeneous Squire equation
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becomes [
∂
∂τ

+ ikReU − 1
2

(
∂2
y − k2

)]
η̂ = 0. (1.5.12)

This equation describes the behaviour of all disturbances for which v̂ = 0 and is identical

to the homogeneous Squire equation for 2D flows (1.1.24) when it is applied to U . It has

been shown that all solutions to (1.1.24) are damped, so it follows that all solutions to

(1.5.12) are damped. The stability of a 3D flow is therefore described entirely by (1.5.10).

1.5.2 Linear stability of unaligned composite flows

Consider a flow consisting of an oscillatory flow modified by a mean flow at some angle

to it (3D, unaligned composite flow). The established results can be used to construct an

equivalence between the 3D and 2D cases. Let Us(y,τ) and Ub(y) be the velocity profiles

of each component, respectively. Let Us be aligned with the x-direction and Ub be at an

angle φ from it. The basic state U can then be written as

U = (Us +Ub cosφ,0, Ub sinφ), (1.5.13)

which, after trigonometric manipulation, gives the following expression for the compos-

ite velocity profile that appears in (1.5.10)

U =Us cosθ +Ubcos(φ−θ). (1.5.14)

The basic state consists of two flows, each with their own natural scalings. If each flow

component is taken separately, the following Reynolds numbers can be defined

Res =
Us,0√
2νω

and Reb =
Ub,0l

ν
, (1.5.15)

where l is the lengthscale of the steady flow component and Us,0, Ub,0 are the velocity-

scales associated with each component. The notation is the same as in Section 1.2 but no

geometry has yet been settled on while also recalling the difficulties that arise if Ub is not

truly parallel.

As for the case of aligned composite flow, the characteristic timescale and lengthscale

used to nondimensionalise this problem will be those associated with the oscillatory flow

component, namely the reciprocal of the oscillation frequency 1/ω and the Stokes layer
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thickness δs, respectively. Remember that scaling lengths with δs introduces the param-

eter h = l/δs (the ratio of the lengthscales of each flow).

In this setting, the choice of velocity scale is not immediately apparent so the am-

plitude of oscillation Us,0 will be used. This approach is also appropriate for aligned

composite flow but was not used above for consistency with Thomas et al. (2011). Using

this velocity scale gives

Us(y,τ) = g(y,τ), (1.5.16a)

Ub(y) =
Ub,0
Us,0

f (y/h), (1.5.16b)

as the expressions for each flow component in this setting, where f and g are the nondi-

mensional profiles of each flow component. The ratio of velocities can be rewritten in

terms of the Reynolds numbers (1.5.15),

Ub,0
Us,0

=
νReb√

2νωlRes
,

=
Reb
lRes

√
ν

2ω
,

=
Reb
Res

δs
2l
, since δs =

√
2ν
ω
,

=
Reb

2hRes
.

The mean flow can then be rewritten as

Ub(y) =
Reb

2hRes
f (y/h), (1.5.18)

and thus (1.5.14) becomes

U = g(y,τ)cosθ +
Reb

2hRes
f (y/h)cos(φ−θ). (1.5.19)

The stability of a 3D disturbance (with wavevector at angle θ to the x-direction) to a

3D composite flow (as defined for the current work) is therefore described by the two-

dimensional OS equation[(
∂
∂τ

+ ikResU
)(
∂2
y − k2

)
− ikResU ′′ −

1
2

(
∂2
y − k2

)2
]
v = 0, (1.5.20)
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where k = |α| and U is given by (1.5.19).

Restrictions on θ and φ

Consider now what restrictions can be placed on θ and φwithout loss of generality. First,

notice that letting cosθ → −cosθ in (1.5.19) is equivalent to letting g(y,τ) → −g(y,τ).

Due to the oscillatory nature of g this in turn is equivalent to taking a time shift of half

a period. Any time shift leaves the asymptotic behaviour unaltered so letting cosθ →

−cosθ has no affect on the stability of the flow.

Consider the effect that U → −U has on the equation (1.5.20),[(
∂
∂τ
− ikResU

)(
∂2
y − k2

)
+ ikResU ′′ −

1
2

(
∂2
y − k2

)2
]
v = 0. (1.5.21)

Notice that this equation can equivalently be interpreted as a reversal of the direction of

the wavenumber k and is also the complex conjugate of (1.5.20).

Taking the complex conjugate of (1.5.21) recovers the same operator as (1.5.20), but

this time applied to v̄,[(
∂
∂τ

+ ikResU
)(
∂2
y − k2

)
− ikResU ′′ −

1
2

(
∂2
y − k2

)2
]
v̄ = 0, (1.5.22)

The magnitudes of v and v̄ will always be equal so complex conjugation (and thus chang-

ing the sign of U or k) does not affect the stability characteristics of the flow.

According to these arguments, for any fixed cosθ and cos(φ −θ), the following cases

are accounted for:

U = ±
[
±g(y,τ)cosθ +

Reb
2hRes

f (y/h)cos(φ−θ)
]
. (1.5.23)

It may therefore be assumed that the trigonometric terms are positive without any loss

of generality so the angles can be restricted to

−π
2
≤ φ ≤ π

2
and − π

2
≤ φ−θ ≤ π

2
.

Composite flow transform

Now, in analogy with Squire’s theorem (Squire, 1933), a transform will be used to equate

the 3D and 2D problems. Consider the 2D problem, described by (1.5.20) and (1.5.19)
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when the flow components are aligned in the streamwise direction (φ = 0) and the

wavevector is also in this direction (θ = 0),[(
∂
∂τ

+ iα̃R̃es Ũ
)(
∂2
y − k2

)
− iα̃R̃es Ũ ′′ −

1
2

(
∂2
y − α̃2

)2
]
ṽ = 0, (1.5.24)

where the wavevector α̃ = (α̃,0) and

Ũ = g(y,τ) +
R̃eb

2hR̃es
f (y/h). (1.5.25)

The general case (1.5.20) is completely equivalent to (1.5.24) (i.e. v = ṽ) when the follow-

ing relationships hold:

ResU = R̃esŨ , (1.5.26a)

k = α̃. (1.5.26b)

By comparing the expressions for U and Ũ , (1.5.26a) yields

R̃es = Res cosθ, (1.5.27a)

R̃eb = Reb cos(φ−θ). (1.5.27b)

It can therefore be concluded that Res ≥ R̃es and Reb ≥ R̃eb since 0 ≤ cosθ, cos(φ−θ) ≤ 1.

Also, equality only holds when θ = φ = 0 so the lowest values of both Res and Reb corre-

spond to the aligned case. This means that any solution to the unaligned problem can be

recast as an equivalent solution to the aligned problem with lower Reynolds numbers.

This has shown that a composite flow consisting of an oscillatory component and

a steady mean flow can always be reduced to the case in which both flow components

are aligned in the same direction, as is the wavevector α. Therefore, finding neutral

conditions for the two-dimensional case as in Thomas et al. (2011) provides neutral

conditions for the entire family of composite flows. Note that this result can easily be

extended to other 3D flows. For instance, by letting both Us and Ub have an oscillatory

temporal variation, the stability of the flow generated above a plate moving in elliptic or

circular paths can be reduced to a 2D problem (Blennerhassett & Bassom, 2007).

If a particular member of this family of flows is considered (by fixing φ , 0), the sta-
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bility analysis can be performed by resolving the problem in the direction of the wavevec-

tor (i.e. angle θ from the x-direction) and performing a 2D stability analysis in this di-

rection. The flow resolved in this direction will be of the form of an aligned composite

flow (already discussed) with both Reynolds numbers (Reb and Res) strictly smaller than

those in the original setting.

Summary

This Chapter has been concerned with the derivation and numerical solution of the equa-

tions describing disturbance evolution in a time-periodic flow. The disturbance equa-

tions were derived starting with a two-dimensional flow with general time-dependence

in Section 1.1. It was shown that Squire’s theorem holds for such flows, meaning that the

onset of instability can be explored by considering only two-dimensional disturbances.

Taking the special case of temporally periodic flows, the Floquet approach and nu-

merical methods were illustrated for the finite Stokes layer in Section 1.2. The results

were compared against those of Blennerhassett & Bassom (2006) with excellent agree-

ment. The same approach was then applied to a composite flow consisting of steady and

oscillatory components aligned in the same direction.

In Section 1.3, the means by which neutral curves could be constructed by arclength

continuation was described and by plotting such curves in several cases further compar-

ison was made against existing results (Blennerhassett & Bassom, 2002; Thomas et al. ,

2011). Some results were discussed for the semi-infinite Stokes layer with no mean flow

in Section 1.4. In particular, the finger-like features were highlighted and discussed.

In Section 1.5, the problem was generalised to unaligned composite flows utilising a

result analogous to Squire’s theorem. It was shown that any unaligned composite flow

can be transformed to an aligned case at lower Reynolds numbers so the 2D problem is

subject to instability at lower Re than the 3D problem.
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Chapter 2

Numerical methods for the linear

simulation of disturbance evolution

Introduction

As with the study of other flows, the study of a periodic flow benefits from linear sim-

ulation of the governing equations in addition to the solution of the stability equations

described above. Comparison of these methods allows for validation and for further in-

sight into the disturbance evolution. To this end Thomas et al. (2011) directly compared

Floquet and simulation results in the case of a single wavenumber. Additionally, Thomas

et al. (2014) investigated the details of wavepacket evolution for a better understanding

of how the Floquet theory of Blennerhassett & Bassom (2002) relates to experimental

observations.

In this chapter, the code originally designed by Togneri (2011) (Togneri & Davies,

2011) and further developed by Duval (2012) is adapted for application to the Stokes

layer. Originally designed for a linear, deterministic model of sublayer streak formation

in a turbulent boundary layer, the code has been modified for the different demands of

this flow. One feature of the original code left unchanged is the semi-infinite wall-normal

domain, so comparison with the stability analysis will be for a channel with nondimen-

sional half-width h = 16 which is expected to give indistinguishable results. There will

also be no mean flow because, as discussed earlier, this breaks down the relationship

between the wide channel and the semi-infinite cases.

Adapting the code for the oscillatory Stokes layer should be relatively straightfor-
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ward, but there are certain issues that arise in such a configuration. For instance, the flow

no longer has a well-defined upstream and downstream since the fluid moves equally in

both directions over a period. This means that disturbances can be found in both stream-

wise directions of the initial excitation. The effect of this is that a very large streamwise

domain is needed so as to avoid the computationally enforced boundary conditions in-

filtrating the region of interest. In order to keep the dynamics well resolved, this large

domain requires many points, making this problem much larger than for steady bound-

ary layers.

For a direct comparison with Floquet theory the problem will first be formulated for

a fixed wavenumber α in Section 2.2. The problem in which the basic state responds

to an impulse that is localised in space will then be formulated in both wavenumber

space (spectral method, Section 2.3) and in physical space (finite-difference method, Sec-

tion 2.4). Comparison of results will be presented in Chapter 3.

2.1 Governing equations

Following from Chapter 1, it will immediately be assumed that time will be scaled with

the frequency of oscillation (giving the nondimensional time τ =ωt) and all lengths will

be scaled using the Stokes layer thickness defined in (1.2.1). Velocities are scaled using

U0 which is the amplitude of oscillation. Solving the (nondimensional) Navier–Stokes

equations with oscillatory boundary condition US(0, τ) = cos(τ) gives a nondimensional

analytic solution for the semi-infinite Stokes layer

US(y,τ) =
(
US(y,τ),0

)
=

(
e−ycos(τ − y),0

)
, (2.1.1)

where y is the wall-normal co-ordinate.

The evolution of 2D perturbations to this flow are considered, i.e. the flow is taken to

have the form

U = (US ,0) + (u,v). (2.1.2)

The perturbation quantities u and v will be found using the velocity-vorticity formula-

tion devised by Davies & Carpenter (2001). The problem will be discretised in space

using compact finite-difference schemes as described by Lele (1992) and temporally us-

ing an Adams-Bashforth predictor-corrector scheme. The following derivatives of US
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will be important:

US = e−ycos(τ − y), (2.1.3a)

U ′S = e−y (sin(τ − y)− cos(τ − y)) , (2.1.3b)

U ′′S = −2e−ysin(τ − y), (2.1.3c)

where ′ denotes differentiation with respect to y.

Following Davies & Carpenter (2001), begin with the nondimensional Navier–Stokes

equations coupled with the incompressibility condition, as seen in (1.1.4),

∂U
∂τ

+ReU · ∇U =
1
2

[−∇P +∆U ] , (2.1.4a)

∇ ·U = 0. (2.1.4b)

The curl of these equations is then taken, utilising the properties

∇ ·U = 0, (2.1.5a)

∇ ·Ω = 0, (2.1.5b)

Ω = ∇×U ⇒ ∆U = −∇×Ω. (2.1.5c)

Here, (2.1.5a) is the incompressibility condition, (2.1.5b) is the solenoidal property of

vorticity, and (2.1.5c) is the definition of vorticity followed by the curl of this definition.

The equations governing disturbance evolution can be manipulated using these con-

ditions to deduce a velocity-vorticity formulation as discussed in detail in Davies & Car-

penter (2001). Only the two-dimensional problem is of interest here, but a brief overview

of this formulation in three dimensions will be given.

First, the six solution variables (three velocity components and three vorticity com-

ponents) are categorised into primary variables and secondary variables. The governing

equations are then recast in terms of the primary variables. This results in two vortic-

ity transport equations (one in each of the two directions parallel to the wall) and an

equation for the wall-normal velocity. The vorticity transport equations are found by

taking the curl of (2.1.4a) and projecting this equation along the x and z directions. The

equation for the wall-normal velocity v is found from the condition (2.1.5c). In this way
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the Navier–Stokes equations are recast as three equations for the three primary variables.

The secondary variables can then be calculated from the primary variables whenever

they are of specific interest.

In Thomas et al. (2014) the same method is applied in two dimensions. In this case

the primary variables are the single component of vorticity

ζ =
∂u
∂y
− ∂v
∂x
, (2.1.6)

and the wall-normal velocity v. The only secondary variable in the two dimensional for-

mulation is the streamwise velocity u. The evolution of these variables can then be de-

scribed by a vorticity transport equation for ζ and a Poisson equation in v. The secondary

variable u can be calculated from these whenever it is of interest. The perturbation equa-

tions are manipulated in this manner to yield

1
Re
∂ζ
∂τ

+US
∂ζ
∂x

+U ′′S v =
1

2Re

(
∂2

∂x2 +
∂2

∂y2

)
ζ, (2.1.7a)(

∂2

∂x2 +
∂2

∂y2

)
v = −∂ζ

∂x
, (2.1.7b)

u = −
∫ ∞
y

(
ζ +

∂v
∂x

)
dy, (2.1.7c)

where nonlinear terms, i.e. those with u, v or ζ multiplied by one another, have been

neglected. The derivation of these governing equations has been brief so the interested

reader is directed to Davies & Carpenter (2001) for a more detailed derivation and the

evidence that this formulation is completely equivalent to the Navier–Stokes equations

once the boundary conditions are incorporated appropriately.

These partial differential equations require boundary conditions in the wall-normal

y-direction which are usually dictated by no-slip and no-penetration (as described in

Section 1.1). Exactly how these conditions appear in this formulation will be considered

later. It will also be assumed that, for any variable f , limy→∞ f = 0. That is the distur-

bance does not extend infinitely far from the wall. Note that it is implicit in the derivation

of (2.1.7c) that this condition holds for u. For the finite-difference formulation, boundary

conditions in the streamwise x-direction are also required and will be discussed later.

Since disturbances decay in the far-field, the semi-infinite domain y ∈ [0,∞) can con-
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veniently be mapped to a finite domain ξ ∈ [0,1] by the transform

ξ =
l

y + l
. (2.1.8)

The stretching factor l is chosen so that there are enough points near the wall (ξ = 1)

to fully resolve the disturbance and enough points as ξ → 0 to resolve the decay of the

disturbance in this limit. Notice that this transform reverses the direction of the domain

with y = 0 corresponding to ξ = 1 and y→∞ equivalent to ξ→ 0.

Derivatives and integrals of any variable f along the wall-normal direction can thus

be written with respect to the transformed co-ordinate,

∂f

∂y
= −ξ

2

l

∂f

∂ξ
, (2.1.9a)

∂2f

∂y2 =
ξ4

l2
∂2f

∂ξ2 +
2ξ3

l2
∂f

∂ξ
, (2.1.9b)∫ ∞

0
f dy = l

∫ ∞
0

f

ξ2 dξ. (2.1.9c)

2.2 Single wavenumber simulation

Before considering a spatially localised excitation to the flow described above, a Fourier

decomposition in the streamwise x-direction will be made. The reasons for this simplifi-

cation are:

• The consideration of a single wavenumber in isolation is directly comparable to the

Floquet analysis of Chapter 1.

• The computational time taken is drastically reduced by the removal of the stream-

wise extent of the domain.

• Problems can arise from the inlet/outlet conditions in the streamwise domain. This

often quite delicate consideration is absent from the single wavenumber problem.

• By decomposing the impulse into Fourier modes, a selection of single-wavenumber

solutions can be weighted and reassembled for a full spatial description. More

detail of this will be given in Section 2.3.
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2.2.1 Problem formulation

As with the normal-mode assumption made in Section 1.1, it will be assumed that the

disturbance has streamwise wavenumber α so ∂/∂x → iα. The governing equations

(2.1.7) then become

1
Re
∂ζ
∂τ

+ iαUSζ +U ′′S v =
1

2Re

(
∂2

∂y2 −α
2
)
ζ, (2.2.1a)(

∂2

∂y2 −α
2
)
v = −iαζ, (2.2.1b)

u = −
∫ ∞
y

(ζ + iαv) dy. (2.2.1c)

The vorticity transport equation (2.2.1a) and the Poisson equation (2.2.1b) are solved for

ζ and v, respectively, while u only needs calculating if it is of specific interest so can be

thought of as a secondary variable.

The variables ζ, u and v are all subject to the condition that

lim
y→∞

ζ(y,τ),u(y,τ),v(y,τ) = 0, ∀τ. (2.2.2)

This is already implicit in the definition of u given in (2.2.1c) and in (2.1.7c).

Conditions at the wall are given by the no-slip and no-penetration conditions as the

wall undergoes a small localised vertical displacement η(τ) used to excite the flow. When

linearised about the undisplaced wall location, these conditions take the form

u(0, τ) = −U ′S(0, τ)η(τ), (2.2.3a)

v(0, τ) =
∂η

∂τ
(τ). (2.2.3b)

The conditions required on η are that η(0) = 0 so that the excitation can be gently ramped

up from the unperturbed flow, and that the impulse lasts for only a small time. Taking

these considerations into account, η is chosen to take the form

η(τ) = A(1− e−στ
2
)e−στ

2
, (2.2.4a)

∂η

∂τ
(τ) = 2στA(2e−στ

2
− 1)e−στ

2
, (2.2.4b)

where A is some (non-zero) measure of amplitude, and σ describes the temporal spread
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of η. Following Thomas et al. (2014), σ is to be chosen so that the impulse is significant

for less than one twentieth of a period. Since η can be thought of as only being signifi-

cant during the time interval τ = 1/
√
σ we will choose σ ≈ 10. Generally A = 1 will be

taken since the problem is linear so different choices of A do not change the disturbance

characteristics.

Since the vorticity ζ is the subject of the transport equation (2.2.1a), the no-slip con-

dition will have to be imposed as a vorticity condition. By letting y → 0 in the equation

for u (2.2.1c) and using the boundary condition (2.2.3a) to evaluate u at the wall, the

integral constraint ∫ ∞
0
ζdy =U ′S(0, τ)η(τ)− iα

∫ ∞
0
vdy (2.2.5)

is introduced. This is fully equivalent to the no-slip condition on u and provides closure

for solving (2.2.1a).

2.2.2 Numerical method

Spatial schemes

Presented below is an overview of the spatial schemes used in the wall-normal direction,

as derived by Togneri (2011). The wall-normal direction is currently the only spatial

dimension and only the second y-derivative appears in the governing equations. The

wall-normal co-ordinate will be discretised into K nodes, evenly spaced in ξ, and the

second y-derivative will be approximated using a stencil of three adjacent points.

The usual stencils (Lele, 1992; Togneri, 2011) can be used to derive discrete approx-

imations of derivatives with respect to ξ. The relationship between ξ and y (2.1.8) and

their derivatives (2.1.9) can be used to derive the following fourth order scheme

1
10

[
f ′′k+1

(k + 1)3 +
f ′′k−1

(k − 1)3

]
+
f ′′k
k3 =

6∆ξ2

5l2
[(k − 1)fk−1 − 2kfk + (k + 1)fk+1] +O(∆ξ4), (2.2.6)

where fk denotes any of the variables evaluated at node k and f ′′k denotes the second y-

derivative in the same location. Recalling the reversal of the domain under the mapping

(2.1.8), f0 is the variable evaluated in the limit y→∞while fK is the value of the variable

at the wall y = 0. The scheme for evenly spaced nodes from which this is derived is given

later in Section 2.4 and the transformation into the semi-infinite domain is described

fully by Togneri (2011).
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A scheme by which the integral of a variable over the entire spatial domain can be

computed is also required. Consider the following scheme for evenly spaced nodes,

f1 − f0
∆ξ

=
1

24

[
9ḟ0 + 19ḟ1 − 5ḟ2 + ḟ3

]
+O(∆ξ4), (2.2.7a)

fk+1 − fk
∆ξ

=
1

24

[
−ḟk−1 + 13ḟk + 13ḟk+1 − ḟk+2

]
+O(∆ξ4), (2.2.7b)

fK − fK−1

∆ξ
=

1
24

[
9ḟK + 19ḟK−1 − 5ḟK−2 + ḟK−3

]
+O(∆ξ4), (2.2.7c)

where ˙ is used to denote differentiation with respect to ξ. This is equivalent to the

integral scheme

∫ ξ1

ξ0

f dξ =
1

24∆ξ
[9f0 + 19f1 − 5f2 + f3] +O(∆ξ4), (2.2.8a)∫ ξk+1

ξk

f dξ =
1

24∆ξ
[−fk−1 + 13fk + 13fk+1 − fk+2] +O(∆ξ4), (2.2.8b)∫ ξK

ξK−1

f dξ =
1

24
[9fK + 19fK−1 − 5fK−2 + fK−3] +O(∆ξ4). (2.2.8c)

The integral across the y domain of some function g can be written in terms of ξ using

(2.1.9), ∫ ∞
z
g(y)dy =

∫ ξ

0

lg(ξ)
ξ2 dξ =: G(ξ). (2.2.9)

Integration over the entire domain is therefore given by G(1) or GK , which can be written

as

GK = (GK −GK−1) + (GK−1 −GK−2) + . . .+ (Gk+1 −Gk) + . . .+ (G1 −G0). (2.2.10)

Using the definition of G,

Gk+1 −Gk =
∫ ξk+1

ξk

lg(ξ)
ξ2 dξ, (2.2.11)

so the integration scheme (2.2.8) can be used to approximateGk+1−Gk for each k in terms

of g. These can be summed to give

GK =
l

24∆ξ

[
9
gK
K2 + 19

gK−1

(K − 1)2 − 5
gK−2

(K − 2)2 +
gK−3

(K − 3)2

]
+

l
24∆ξ

[
−
gK
K2 + 13

gK−1

(K − 1)2 + 13
gK−2

(K − 2)2 −
gK−3

(K − 3)2

]
+ . . .

+
l

24∆ξ

[g3

9
− 5

g2

4
+ 19g1

]
. (2.2.12)
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Finally, collecting coefficients of each gk gives

G(1) =
K∑
k=1

dkgk , (2.2.13)

where

d1 =
31l

24∆ξ
, (2.2.14a)

d2 =
5l

24∆ξ
, (2.2.14b)

d3 =
25l

216∆ξ
, (2.2.14c)

dk =
1

k2∆ξ
, for k = 4, . . . ,K − 4, (2.2.14d)

dK−3 =
25l

24(K − 3)2∆ξ
, (2.2.14e)

dK−2 =
5l

6(K − 2)2∆ξ
, (2.2.14f)

dK−1 =
31l

24(K − 1)2∆ξ
, (2.2.14g)

dK =
l

3K2∆ξ
. (2.2.14h)

Thus concludes the description of the relevant spatial schemes. This is an overview and

the interested reader is directed to Duval (2012) and Togneri (2011) for more details.

Poisson equation

The vorticity transport equation (2.2.1a) is the first to be solved at each time-step but the

methods of solving both (2.2.1a) and (2.2.1b) are strongly related and it is more straight-

forward to solve the Poisson equation (2.2.1b). For this reason, the method of solving the

Poisson equation will be described first so that the approach taken can then be adapted

for the vorticity transport equation.

Consider the Poisson equation (2.2.1b). This equation holds at every spatial location,

so at the kth node we can write

v′′k −α
2vk = −iαζk (2.2.15)

and, since the VTE is solved first, ζk is known for all k. Note that the Poisson opera-

tor has no time dependence so it is not necessary to label the time-step as all variables
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correspond to the same time instance.

Take this equation at three adjacent nodes. With reference to the left-hand side of

(2.2.6), a linear combination of these is taken, giving

1
10

[
v′′k+1

(k + 1)3 +
v′′k−1

(k − 1)3

]
+
v′′k
k3 −α

2
[

1
10

(
vk+1

(k + 1)3 +
vk−1

(k − 1)3

)
+
vk
k3

]
= −iα

[
1

10

(
ζk+1

(k + 1)3 +
ζk−1

(k − 1)3

)
+
ζk
k3

]
. (2.2.16)

The second derivative scheme (2.2.6) can then be used to replace all terms involving the

second derivative. The differential problem is then replaced by an algebraic problem,

given by

6∆ξ2

5l2
[(k − 1)vk−1 − 2kvk + (k + 1)vk+1]−α2

[
1

10

(
vk+1

(k + 1)3 +
vk−1

(k − 1)3

)
+
vk
k3

]
= −iα

[
1

10

(
ζk+1

(k + 1)3 +
ζk−1

(k − 1)3

)
+
ζk
k3

]
. (2.2.17)

By collecting coefficients of v at each node and multiplying through by k3, this equation

can be written as

[
6k3∆ξ2(k − 1)

5l2
−α2 k3

10(k − 1)3

]
vk−1 +

[
−12k4∆ξ2

5l2
−α2

]
vk+[

6k3∆ξ2(k + 1)
5l2

−α2 k3

10(k + 1)3

]
vk+1 = −iα

[
k3

10

(
ζk+1

(k + 1)3 +
ζk−1

(k − 1)3

)
+ ζk

]
. (2.2.18)

This describes the relationship between the values of v three adjacent nodes with a right-

hand side that is already known from solving the vorticity transport equation. This prob-

lem can be expressed as a tridiagonal matrix problem with v0 = 0 and vK = ∂η/∂τ .



ε1 θ1

δ2 ε2 θ2
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .

δK−2 εK−2 θK−2

δK−1 εK−1





v1

v2
...
...
...

vK−2

vK−1



=



r1

r2
...
...
...

rK−2

rK−1



, (2.2.19)
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where

δk =
6k3∆ξ2(k − 1)

5l2
−α2 k3

10(k − 1)3 , (2.2.20a)

εk = −12k4∆ξ2

5l2
−α2, (2.2.20b)

θk =
6k3∆ξ2(k + 1)

5l2
−α2 k3

10(k + 1)3 , (2.2.20c)

rk = −iα
[
k3

10

(
ζk+1

(k + 1)3 +
ζk−1

(k − 1)3

)
+ ζk

]
. (2.2.20d)

Notice that rk is not well defined when k = 1 (due to division by zero). This is easily

accounted for by remembering that k = 0 corresponds to y → ∞ and that all variables

vanish in this limit. It is thus already known that ζ0 = 0 so this term can be removed

from the expression for r1 to avoid this issue.

This system of equations can be solved by the Thomas algorithm for tridiagonal ma-

trices, which is well documented and so not included here.

Vorticity transport equation

Consider the vorticity transport equation (2.2.1a) and rearrange so that only the deriva-

tive terms appear on the left-hand side,

∂ζ
∂τ
− 1

2
∂2ζ

∂y2 = −α
2

2
ζ − iαReUSζ −ReU ′′S v. (2.2.21)

The terms on the left-hand side will be treated implicitly and the terms on the right-hand

side explicitly. Let E be the collection of explicit terms,

E = −α
2

2
ζ − iαReUSζ −ReU ′′S v. (2.2.22)

Note that it would require no extra computational effort to treat the first term implicitly.

However, in the full spatial formulation this is the second x-derivative so will be more

suited to explicit treatment in Section 2.4. This term will therefore be treated explicitly

for consistency.

Using superscripts to indicate time instance, at the nth time-step the equation can be

written as
∂ζn

∂τ
− 1

2
∂2ζn

∂y2 = En. (2.2.23)
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This equation is solved at each time (in the manner described below), first using the

linear predictor

Enp = 2En−1 −En−2. (2.2.24)

This predicted En is used as the right-hand side of (2.2.23) to predict the vorticity at this

time-step,
∂ζnp
∂τ
− 1

2

∂2ζnp
∂y2 = Enp . (2.2.25)

The predicted ζnp is then used as the right-hand side to the Poisson equation (2.2.1b) to

find the wall-normal velocity at this time-step, vn. That is,

∂2vn

∂y2 −α
2vn = −iαζnp . (2.2.26)

The solutions ζnp and vn can then be used to correct the explicit term,

Enc = −α
2

2
ζnp − iαReUSζnp −ReU ′′S v

n. (2.2.27)

Finally, the corrected vorticity is found by solving (2.2.23) with Enc on the right-hand

side. The corrector steps can be iterated on for improved accuracy (Togneri, 2011) but in

practise this is not necessary since the solution converges to the desired accuracy after a

single corrector step.

The backwards temporal scheme

∂ζn

∂τ
=

3ζn − 4ζn−1 + ζn−2

2∆τ
+O(∆τ2) (2.2.28)

can now be used to approximate the time-derivative. It is convenient to write the prob-

lem as
3ζn

2∆τ
− 1

2
∂2ζn

∂y2 =
4ζn−1 − ζn−2

2∆τ
+En, (2.2.29)

where En is used to refer to either the predicted (Enp ) or corrected (Enc ) explicit term at

this time-step. The equation is written in this way so that all of the terms that are already

known (based on information from previous time steps) appear on the right-hand side.

This equation is now of the same form as the Poisson equation. The scheme (2.2.6) is
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used, following a similar process as before, so that the problem can be written as

[
k3

10(k − 1)3
3

2∆τ
− 3k3∆ξ2(k − 1)

5l2

]
ζnk−1 +

[
3

2∆τ
+

6k4∆ξ2

5l2

]
ζnk+

+
[

k3

10(k + 1)3
3

2∆τ
− 3k3∆ξ2(k + 1)

5l2

]
ζnk+1 = Enk +

4ζn−1
k − ζn−2

k

2∆τ
+

+
k3

10(k − 1)3

Enk−1 +
4ζn−1

k−1 − ζ
n−2
k−1

2∆τ

+
k3

10(k + 1)3

Enk+1 +
4ζn−1

k+1 − ζ
n−2
k+1

2∆τ

 . (2.2.30)

for each spatial node k. This can be solved with the boundary condition that ζn0 = 0 for

all n (decay in the far-field) and closure is achieved using the no-slip integral constraint

(2.2.5). This condition is approximated discretely by

K∑
k=1

dkζ
n
k = ιn =

[
U ′S(0, τ)η

]n
− iα

K∑
k=1

dkv
n
k , (2.2.31)

where each dk is given in (2.2.14).

Since ιn requires information from every spatial location, the integral constraint will

also require use of the predictor-corrector method. The first time the VTE is solved, the

integral is predicted by projecting u and v to the current time step using the same linear

predictor as used for En (2.2.24). In terms of the exact integrals this gives

∫ ∞
0
ζnp dy = −(2un−1

w −un−2
w )− iα

∫ ∞
0

(2vn−1 − vn−2)dy, (2.2.32)

where uw(τ) = −U ′S(0, τ)η(τ) is the streamwise velocity at the wall. This can be rearranged

to give

∫ ∞
0
ζnp dy = 2

(
−un−1

w − iα
∫ ∞

0
vn−1 dy

)
−
(
−un−2

w − iα
∫ ∞

0
vn−2 dy

)
, (2.2.33)

or, since the integral condition must be satisfied at all previous time steps,

∫ ∞
0
ζnp dy ≈ ιnp (2.2.34)

where ιnp = 2ιn−1 − ιn−1.

After the Poisson equation is solved the corrected value ιnc is recalculated from v. The

secondary variable u does not need to be calculated since uw is known for all times from

the no-slip condition.
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The linear system can now be written in the following form



d1 d2 d3 d4 . . . dK−1 dK

b1 c1

a2 b2 c2
. . .

. . .
. . .

. . .
. . .

. . .

aK−2 bK−2 cK−2

aK−1 bK−1 cK−1





ζ1

ζ2

ζ3
...
...

ζK−1

ζK



=



ιn

ρ1

ρ2
...
...

ρK−2

ρK−1



, (2.2.35)

where dk are given in (2.2.14), ιn refers to either the predicted (ιnp) or corrected (ιnc ) integral

constraint, and

ak =
k3

10(k − 1)3
3

2∆τ
− 3k3∆ξ2(k − 1)

5l2
, (2.2.36a)

bk =
3

2∆τ
+

6k4∆ξ2

5l2
, (2.2.36b)

ck =
k3

10(k + 1)3
3

2∆τ
− 3k3∆ξ2(k + 1)

5l2
, (2.2.36c)

ρk = Enk +
4ζn−1

k − ζn−2
k

2∆τ
+

+
k3

10(k − 1)3

Enk−1 +
4ζn−1

k−1 − ζ
n−2
k−1

2∆τ

+
k3

10(k + 1)3

Enk+1 +
4ζn−1

k+1 − ζ
n−2
k+1

2∆τ

 , (2.2.36d)

with En also referring to either the predicted or corrected value. This system can then be

solved using a modified Thomas algorithm (Togneri, 2011) that is initiated with

µ1 = b1, (2.2.37a)

δ1 = d1, (2.2.37b)

ν1 = ρ1, (2.2.37c)

ι1 = ιn. (2.2.37d)
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Then, for k = 2,3, ...,K − 1,

µk = bk − ck−1
ak
µk−1

, (2.2.38a)

δk = dk − ck−1
δk−1

µk−1
, (2.2.38b)

νk = ρk − νk−1
ak
µk−1

, (2.2.38c)

ιk = ιk−1 − νk−1
δk−1

µk−1
, (2.2.38d)

which results in

δK−1ζK−1 + dKζK = ιK−1, (2.2.39a)

µK−1ζK−1 + cK−1ζK = νK−1. (2.2.39b)

By eliminating ζK−1, we get an expression for ζK ,

ζK =
ιK−1µK−1 − δK−1νK−1

dKµK−1 − cK−1δK−1
, (2.2.40)

from which each ζk can be calculated from ζk+1 with

ζk =
νk − ckζk+1

µk
. (2.2.41)

Thus concludes the methods used for solving the governing equations (2.2.1) for a

disturbance with a fixed streamwise wavenumber. A means of interpreting the results

will now be discussed.

2.2.3 Measuring the growth of disturbances

One of the benefits of considering each wavenumber in isolation is that the results can

easily be compared against the eigenvalues of the stability equation (1.2.7). In fact, the

formulation of these methods is fundamentally the same up until Floquet’s theorem is

used to express the solution variables in the form

f (y,τ) = eµτp(y,τ), (2.2.42)
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where p is 2π-periodic in τ and f represents any variable of interest. The complex num-

ber µ is called the Floquet exponent and any growth or decay of the disturbance appears

in its real part.

From the Floquet analysis it has been seen that each parameter pair (α,Re) results

in multiple eigenvalues, most of which are stable. The simulation results should be a

superposition of all of these modes. The least stable (or most unstable) mode is expected

to become dominant after a sufficient length of time.

It is also known that for any eigenvalue µ, the complex conjugate µ̄ is also an eigen-

value. Inspection of the stability equation reveals that this can be interpreted as a distur-

bance that propagates upstream rather than downstream which is equivalent to taking a

time shift of half a period, τ→ τ +π, due to the symmetries of the flow.

The growth-rate associated with µ and µ̄ are equal. So, at later times, any solution

variable is expected to be well approximated by the linear superposition of these two

modes, i.e.

f (y,τ) ∼ A1eµτp1(y,τ) +A2eµ̄τp2(y,τ), (2.2.43)

where A1,A2 are constants and µ, µ̄ are the dominant eigenvalues. Inspection of the sta-

bility equation (1.2.7) reveals that p1 and p2 are equal under conjugation and a time shift

of half a period, but this information will not be made use of. Only the periodicity of

these functions is used.

In order to extract the Floquet exponent µ from the simulation results consider the

time-history of a chosen variable at a chosen wall-normal location. The vorticity ζ at the

wall y = 0 will be selected. It will then be assumed that after sufficient time has passed

this variable will be well approximated by

ζ(0, τ) ∼ A1eµτp1(τ) +A2eµ̄τp2(τ). (2.2.44)

Consider some reference time τ0. The periodicity of p1 and p2 can be used to give the

following three equations

ζ(0, τ0) = A1p1(τ0)eµτ0 +A2p2(τ0)eµ̄τ0 , (2.2.45a)

ζ(0, τ0 + 2π) = A1p1(τ0)eµτ0e2πµ +A2p2(τ0)eµ̄τ0e2πµ̄, (2.2.45b)

ζ(0, τ0 + 4π) = A1p1(τ0)eµτ0e4πµ +A2p2(τ0)eµ̄τ0e4πµ̄, (2.2.45c)
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where ζ(0, τ0), ζ(0, τ0 + 2π) and ζ(0, τ0 + 4π) are taken from the time-history and will be

abbreviated to f0, f1 and f2, respectively. These expressions will be further simplified by

denoting

B1 = A1p1(τ0)eµτ0 and B2 = A2p2(τ0)eµ̄τ0 ,

and this system will be solved for the Floquet multiplier λ = exp(2πµ), leaving

f0 = B1 +B2, (2.2.46a)

f1 = B1λ+B2λ̄, (2.2.46b)

f2 = B1λ
2 +B2λ̄

2, (2.2.46c)

which we wish to solve for λ = λr + iλi . This is achieved by eliminating B1 and B2 and

taking the real and imaginary parts of the resulting equation,

<{f2} = 2λr<{f1} − |λ|2<{f0}, (2.2.47a)

={f2} = 2λr={f1} − |λ|2={f0}. (2.2.47b)

The unknowns λr and |λ| are then solved for and can be expressed in their simplest forms

as

λr =
={f2/f0}

2={f1/f0}
, (2.2.48a)

|λ| =

√
−
={f2/f1}
={f0/f1}

. (2.2.48b)

Finally, µ can be recovered by taking the complex logarithm of λ = exp(2πµ) (using the

principle argument in terms of cosine for convenience), giving

ln(|λ|) + i cos−1
(λr
|λ|

)
= 2π(µr + iµi). (2.2.49)

Taking real and imaginary parts leaves

µr =
1

2π
ln(|λ|), (2.2.50a)

µi =
1

2π
cos−1

(λr
|λ|

)
. (2.2.50b)
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By this method, the Floquet exponent µ can be approximated for each point in the time-

history and should converge towards the eigenvalue predicted by Floquet theory. For

the first few periods of wall motion, the growth-rate measured in this way will not be at

all representative of the asymptotic value since the solution will contain many modes at

similar magnitudes. Then, as the more stable modes decay the convergence towards this

value should become apparent.

A least squares method can also be used to find the µ that minimises the difference

between the observed values and the model (2.2.44), provided a good initial guess is

found by the method described above. However, this method was found to significantly

underestimate the growth-rates so is not included.

2.2.4 Results and validation

In order to validate the Navier–Stokes simulation for a single wavenumber, a selection of

eigenvalues were found using the Floquet eigenvalue solver. For each choice of α and Re

a simulation was run for twenty periods so as to ensure sufficient convergence to the least

stable mode (particularly important in the sub-critical cases). Some snapshots of the time

histories are presented in Figure 2.1 in cases where the disturbance is classified as unsta-

ble (Re = 800), stable (Re = 700) and approximately neutrally stable (Re = 714.8). Also

shown in Figure 2.1 is an example of a heavily damped mode for which the disturbance

displays less oscillatory behaviour (Re = 600).

Noting that the plots of Figure 2.1 display the real part of the disturbance, it is clear

that all but the highly damped example (Re = 600) display similar features to the eigen-

vector plotted in Figure 1.9b except for the periodic growth/decay. All disturbances

indicate large instantaneous growth that is not at all representative of the asymptotic

behaviour of the disturbance and in all three of these cases the size of the disturbance

peaks approximately half way through each period of wall motion. The highly damped

case Re = 600 displays two peaks per period of wall motion.

Once the time-histories had been traced for each case of interest, the above method

for measuring µ could then be applied and it was generally observed that the growth-

rate had converged to the predicted µ to two decimal places after twenty periods of wall

motion, these results are presented in Table 2.1.

The agreement between these two methods serves to convincingly validate the model
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Figure 2.1: Time-histories of the real part of the vorticity at the wall for α = 0.4. A highly
damped case (Re = 600) is shown in (a), a stable case (Re = 700) in (b), an unstable case
(Re = 800) in (c), and an approximately neutral case (Re = 714.8) in (d). The snapshots have
been normalised so it would not be appropriate to compare the size of the disturbances in each
plot.

α Re Predicted µ Approximate µ

0.3 600 -0.0660 ± 0.0000i -0.0665 ± 0.0000i
700 -0.0668 ± 0.0000i -0.0684 ± 0.0000i
800 0.0824 ± 0.3458i 0.0815 ± 0.3536i

0.4 600 -0.0987 ± 0.0000i -0.1024 ± 0.0000i
700 -0.0710 ± 0.2491i -0.0713 ± 0.2496i
800 0.4048 ± 0.2384i 0.4045 ± 0.2389i

Table 2.1: Comparison of least stable (or most unstable) modes predicted by the Floquet eigen-
value solver against the growth-rates approximated from the time-histories after twenty periods
of wall motion.

provided we appropriately consider what is being calculated. First, it is important to

remember that even after the transient effects appear to have passed, the disturbance

will still contain all the modes present for that choice of Re and α. A more accurate
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representation of this function than (2.2.44) is therefore

ζ(0, τ) =
∞∑
n=0

Aneµnτpn(τ). (2.2.51)

Clearly, to solve such a system in the same manner would require an infinite number

of calculations so this is not a viable method for the extraction of growth-rates. It was

deemed necessary to make the above simplification under the assumption that the most

unstable mode is sufficiently dominant. Note that the closer the growth-rate of the mode

with next-largest growth, the less accurate the approximated growth-rate.

An alternative interpretation of this process is to consider instead an initial value

problem and represent the initial value as a vector in y which will be called v0. Then,

according to Floquet theory, after a period of wall oscillation this vector will be acted on

by a monodromy matrix, which will be referred to as A, to give the new vector v1. The

Floquet exponents can then be found as the eigenvalues of A. The initial value problem

can easily be related to the response to forcing by allowing transient effects to sufficiently

pass before selecting v0. The passing of each time period is equivalent to additional mul-

tiplication by A. For instance, the value of the vector at the 3rd period can be found from

v0 by v3 = Av2 = A(Av1) = A(A(Av0)) = A3v0. The time-stepping problem is therefore

equivalent to performing a power iteration on A in order to converge to the dominant

eigenvalue and the vectors vi will converge to the associated eigenvector as i→∞.

At this juncture, all that is intended is a preliminary evaluation of the behaviour to-

gether with a validation of the code through comparison of the measured growth-rates

against the Floquet eigenvalues. In the next chapter, a more detailed evaluation of dis-

turbances with spatial variation will be discussed and many of the ideas touched on here

will be expanded on.

2.3 Spectral method for impulse response

Now that the single wavenumber solver has been validated it is possible to reintroduce

the streamwise dimension to the problem so that wavepacket evolution can be explored.

This can be achieved in physical space by discretising the computational box using finite-

differences, as in Thomas et al. (2014), but an alternative method that is more easily

adapted from the single wavenumber formulation is to solve in wavenumber space. This
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involves solving for a selection of wavenumbers independently and reconstructing the

spatial shape of the solution by a linear combination of these solutions.

The main benefits are:

• This method lends itself to parallelisation since the evolution for each wavenumber

is independent of all the others.

• The sometimes problematic streamwise boundary conditions (see Section 2.4) are

not present in this formulation, replaced by an imposed periodicity.

• This method is much faster than the full-blown simulation in physical space.

• The existing code only requires a few adjustments and the inclusion of a routine to

find the appropriate weightings for each wavenumber and to reconstruct the spatial

form of the solution.

2.3.1 Fourier decomposition and reconstruction

Now that the streamwise direction has been reintroduced to the problem, the wall de-

formation used to excite the fluid requires a spatial dependence. The excitation will be

localised in space with a Gaussian centred around some point xf (usually the mid-point

of the domain) with spread factor λf .

The x and τ dependence of the deformation η(x,τ) will be separated into multiplying

factors, i.e. η(x,τ) = ηx(x)η(τ) where η(τ) is the function of the wall deformation in the

single wavenumber case above (2.2.4). The wall deformation is therefore described by

η(x,τ) = A(1− e−στ
2
)e−στ

2
e−λf (x−xf )2

, (2.3.1)

that is, the product of the purely temporal function η(τ) given in (2.2.4) with the afore

mentioned Gaussian function

ηx(x) = e−λf (x−xf )2
. (2.3.2)

This will be defined on some spatial domain x ∈ [0,Lx] and, following Thomas et al.

(2014), Lx will initially be taken to be around 6,000 so that the domain is large enough

to observe the evolution of wavepackets for at least three periods of wall motion. Using
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the discrete Fourier transform, ηx can be approximated by

ηx(x) '
N∑
j=0

η̂je
i(j∆α)x, (2.3.3)

where ∆α imposes a periodicity of 2π/∆α since the largest wavelength permitted by this

approximation corresponds to the smallest non-zero wavenumber (∆α).

Each coefficient η̂j can be thought of as the weighting of the wavenumber αj = j∆α in

ηx. In order to ensure that the solution converges to the least stable mode, N has to be

chosen to ensure that αN is larger than the wavenumber corresponding to this mode. It

should be appropriate in most cases to take αN = 0.6 so that the wavenumbers are in the

range 0 ≤ α ≤ 0.6. Care should be taken to increase the maximum α if necessary.

The choice of ∆α = 0.001 imposes a spatial periodicity of ∼ 6,300 which, as found

by Thomas et al. (2014), is expected to be large enough to trace the development of

disturbances for up to three periods of oscillation.

In order to find the weightings η̂j , take the inverse discrete Fourier transform

η̂j =
M∑
k=0

ηx(k∆x)e−i(k∆x)αj , (2.3.4)

where ∆x is chosen so that the solution is fully resolved. This choice directly impacts the

choice of M, which is chosen to satisfy M∆x = Lx and can be interpreted as the number

of spatial nodes contained in the periodic computational box.

The relationship between the spectral parameters (∆α, αN , N ) and the spatial param-

eters (∆x, Lx, M) is best described in terms of domain size and resolution (the largest and

smallest scales, respectively). The size of the periodic domain is dictated by ∆α (as men-

tioned above) and so Lx is chosen to be the size of this computational box (Lx = 2π/∆α).

The smallest scales are associated with the wavenumber αN , so the smallest wave-

length is given by 2π/αN ∼ 10 (when αN = 0.6) so ∆x must be chosen to ensure that these

features are well resolved. In Thomas et al. (2014) a resolution of ∆x ∼ 1 is taken which

here corresponds to ∼ 10 nodes within each wavelength of 2π/αN . This is sufficient

resolution since this value of αN has been chosen to be larger than the fastest growing

mode, which will dominate the disturbance behaviour. The most unstable mode is usu-

ally located at a wavenumber < 0.4 which, for this choice of ∆x, results in > 16 nodes
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per wavelength. These waves are therefore well resolved. The number of Fourier modes

N = αN /∆α and the number of spatial nodes in the domain M = Lx/∆x are then fixed by

these considerations.

In order to deduce the spacial variation of the disturbance, the weights η̂j are cal-

culated before the time-stepping begins and then the full spatial picture is constructed

by

f (x,y,τ) =
N∑
j=0

η̂j f̂j(y,τ)ei(j∆α)x, (2.3.5)

where f̂j is the velocity or vorticity found through the method described in Section 2.2

corresponding to the wavenumber αj = j∆α, and f is the velocity or vorticity of the

impulse response in physical space. The Fourier transforms can either be performed

by writing routines for calculating the relevant summations or, more efficiently, by the

FFTW (Fastest Fourier Transform in the West) library routines. Results will be discussed

in Chapter 3

2.4 Impulse response with finite-differences

Presented above is a means of simulating the linear evolution of disturbances through

discretisation of the governing equations. In this section, another such method will be

described. The main benefit of this additional method is the reproduction of results

and thus validation of each method against the other. This method was found to be

incredibly sensitive to the choice of inlet and outlet boundary conditions (as will be seen

in Section 3.5) and the problems arising at these locations have not been fully accounted

for. It should be noted that these problems are not inherent to the formulation so more

time could be taken to resolve these issues. However, the existence of an alternative,

more efficient method (Section 2.3) has meant that the resolution of these issues has not

been necessary for the present study.

2.4.1 Problem formulation

Consider the fully spatial governing equations (2.1.7) with the wall-normal transform

(2.1.8). This section presents an alternative means of solving the same problem already

discussed so all of the initial/boundary conditions used in the previous sections hold.

Namely, it is assumed that all variables vanish in the far field (y→∞,ξ→ 0), that the no-
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slip and no-penetration conditions apply at the wall (y = 0,ξ = 1) and that all variables

are zero at τ = 0.

In the previous scheme, the spectral discretisation in the streamwise direction im-

posed a periodicity on the solution. In this approach, boundary conditions will be im-

posed at either end of the streamwise domain. At the outlet, use will be made of the

fact that a disturbance of a particular wavelength will dominate and that this can be pre-

dicted through Floquet theory (this relationship will be discussed in Chapter 3) so the

following condition will be applied

∂2f

∂x2 (Lx, y,τ) = −α2f (Lx, y,τ), (2.4.1)

where f (x,y,τ) denotes any flow variable and Lx is the location of the outlet. The same

condition can also be used at the inlet, but instead the homogeneous condition

f (0, y,τ) = 0 (2.4.2)

will be used since this pairing of conditions has been found to be stable (Thomas et al. ,

2014). These boundary conditions proved problematic at large times, causing unphysical

deformation at the inlet/outlet. These issues have not been fully resolved, though all

combinations of these two conditions at the inlet and outlet were experimented with to

reduce the problems encountered but the combination stated above was still found to be

the most stable.

The only difference between this method and the spectral method described above

is in the treatment of the x-direction. The boundary condition and integral constraint

associated with no-slip and no-penetration will now be restated with the x-dependence

incorporated since these conditions have thus far only been stated for a single Fourier

component (i.e. in the single wavenumber case).

The boundary conditions on the velocity components (u,v) are again found by lin-

earising the wall deformation about the undeformed wall, as in (2.2.3),

u(x,0, τ) = −U ′S(0, τ)η(x,τ), (2.4.3a)

v(x,0, τ) =
∂η

∂τ
(x,τ). (2.4.3b)
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where η(x,τ) is given in (2.3.1), and from this it is readily deduced that

∂η

∂τ
(x,τ) = 2στAe−λf (x−xf )2

(2e−στ
2
− 1)e−στ

2
.

The integral constraint on the vorticity (equivalent to the no-slip condition) is written

as ∫ ∞
0
ζdy =U ′S(0, τ)η(x,τ)−

∫ ∞
0

∂v
∂x

dy. (2.4.4)

The problem is now properly posed with the streamwise variation fully incorporated.

The numerical methods utilising a finite-difference scheme in the streamwise direction

can now be developed.

First, the compact finite-difference schemes used to calculate the first and second

derivatives with respect to the streamwise x-direction will be described (the streamwise

derivatives in the previous formulation were calculated by multiplying the variable by

iα). It will then be seen that the vorticity transport equation (2.1.7a) is solved in a similar

manner to that already described in the single wavenumber case. The method of solution

of the Poisson equation (2.1.7b) is then detailed where the streamwise dependence of the

differential operator means a different approach must be taken.

2.4.2 Numerical method

Spatial schemes

The finite-difference approach utilises the same wall-normal and temporal schemes de-

scribed in Section 2.2 but a different streamwise discretisation is implemented. The

finite-difference schemes for the first and second derivatives will be briefly described be-

low. The interested reader is directed to Togneri (2011) for more details on these schemes.

Unlike in the wall-normal y-direction, the nodes in the streamwise x-direction are

evenly spaced. This means that the compact finite-difference stencils of Lele (1992) can

be used directly. It is from applying the wall-normal mapping to the schemes below that

the wall-normal scheme (2.2.6) is derived.

Let the streamwise domain [0,Lx] be divided into J evenly spaced nodes. The first

derivative of any variable f with respect to the streamwise co-ordinate x can then be
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approximated by the fourth-order scheme

1
4
f ′j+1 + f ′j +

1
4
f ′j−1 =

3
4

fj+1 − fj−1

∆x
+O(∆x4) (2.4.5)

for all interior nodes (j = 1, ..., J−1). Closure will be achieved using one-sided third-order

schemes,

f ′0 + 2f ′1 =
−5f0 + 4f1 + f2

2∆x
+O(∆x3), (2.4.6a)

f ′J + 2f ′J−1 =
5fJ − 4fJ−1 − fJ−2

2∆x
+O(∆x3), (2.4.6b)

where use can be made of the fact that f0 = 0 to eliminate this term. The stability of

high-order finite-difference schemes with lower order closure is discussed in Carpenter

et al. (1993). The first x-derivative of a variable can the be found through the solution of

the matrix problem



1 2
1
4 1 1

4
. . .

. . .
. . .

1
4 1 1

4
. . .

. . .
. . .

1
4 1 1

4

2 1





f ′0

f ′1
...

f ′j
...

f ′J−1

f ′J



=
1
∆x



1
2 (4f1 + f2)

3
4 (f2)
...

3
4

(
fj+1 − fj−1

)
...

3
4

(
fJ − fJ−2

)
1
2

(
5fJ − 4fJ−1 − fJ−2

)



. (2.4.7)

When the variable f is known at every streamwise node for the time-step of interest, the

right-hand side of this equations is known. This is always the case when the predictor-

corrector approach is used. This tridiagonal matrix problem can then be solved using the

Thomas algorithm.

The second x-derivative is calculated at the internal points using the fourth order

scheme
1

10
f ′′j+1 + f ′′j +

1
10
f ′′j−1 =

6
5

fj+1 − 2fj + fj−1

∆x2 +O(∆x4). (2.4.8)

At the inlet, closure is again achieved using a one-sided third order scheme, but the

boundary condition at the outlet already gives an explicit expression for the derivative
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there. The system is therefore closed with

f ′′0 + 11f ′′1 =
13f0 − 27f1 + 15f2 − f3

∆x2 +O(∆x3), (2.4.9a)

f ′′J = −α2fJ , (2.4.9b)

where use can be made of the fact that f0 = 0 to eliminate this term. The problem can

then be written in matrix form as

1 11
1

10 1 1
10

. . .
. . .

. . .

1
10 1 1

10
. . .

. . .
. . .

1
10 1 1

10

0 1





f ′′0

f ′′1
...

f ′′j
...

f ′′J−1

f ′′J



=
1

∆x2



−27f1 + 15f2 − f3
6
5 (f2 − 2f1)

...

6
5

(
fj+1 − 2fj + fj−1

)
...

6
5

(
fJ − 2fJ−1 + fJ−2

)
−α2fJ



. (2.4.10)

Again, the second derivative of a variable is only calculated once that variable is known

at every streamwise node, so the right-hand side is known. This system is then solved

using the Thomas algorithm.

As the code of Togneri (2011) was being adapted, a range of different finite-difference

schemes were investigated to minimise the unphysical edge effects. The schemes de-

scribed above, being those used by Togneri (2011), were found to be the least susceptible

to these problems of all those explored. However, the unphysical behaviour was not

entirely eliminated.

The schemes described above are appropriate for any domain divided into evenly

spaced nodes. The wall-normal scheme (2.2.6) was derived from these schemes. First,

recall that the wall-normal nodes are not evenly spaced in y but are evenly spaced in

ξ (the transformed wall-normal co-ordinate). The schemes (2.4.5) and (2.4.8) can be

used to find the first and second ξ derivatives, respectively. The transformation (2.1.8)

can then be performed to relate these ξ derivatives to the second y derivative through

(2.1.9b), i.e.
∂2f

∂y2 =
ξ4

l2
∂2f

∂ξ2 +
2ξ3

l2
∂f

∂ξ
.

More details on this process are provided by Togneri (2011).
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Vorticity transport equation

Taking the vorticity transport equation (2.1.7a) and rearranging as before gives

∂ζ
∂τ
− 1

2
∂2ζ

∂y2 =
1
2
∂2ζ

∂x2 −ReUS
∂ζ
∂x
−ReU ′′S v, (2.4.11)

so that the explicit terms can now be defined as

E =
1
2
∂2ζ

∂x2 −ReUS
∂ζ
∂x
−ReU ′′S v. (2.4.12)

Notice that all x-derivatives are treated explicitly.

The predictor-corrector method is also used in this case, with the value of E at the

nth time-step predicted using (2.2.24) and then corrected. This means that ζ is known

at every streamwise node whenever E is calculated, so the methods described above are

indeed appropriate for calculating the first and second x-derivatives of ζ.

The expression for E differs from the single wavenumber case only in the inclusion of

x derivatives rather than multiplication by iα. Since all of these terms are included in E,

the vorticity transport equation (2.1.7a) can again be written at his time-step as equation

(2.2.23),
∂ζn

∂τ
− 1

2
∂2ζn

∂y2 = En,

except that now ζn and En are dependent of x as well as y. The operator is independent

of x, so this problem can be solved at each spatial location in the same manner as for the

single wavenumber case. The integral constraint used here is

K∑
k=1

dkζ
n
k = ιn =

[
U ′S(0, τ)η

]n
−

K∑
k=1

dk

(
∂v
∂x

)n
k

, (2.4.13)

which differs from (2.2.31) only in the use of the term ∂v/∂x rather than iαv to fully

account for the variation of the integrand with x.

The values of the explicit terms and the integral condition are again predicted at each

time-step by Enp = 2En−1 −En−2 and ιnp = 2ιn−1 − ιn−2. The first time (2.1.7a) is solved gives

a predicted vorticity ζnp which is then used to solve the Poisson equation by the method

detailed below. The corrected E and ι are then calculated directly from ζnp and v and the

equation is solved again to find a more accurate ζ.
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Poisson equation

Unlike the vorticity transport equation, the Poisson equation (2.1.7b) cannot be solved at

each x-location individually. This is due to the x-dependence of the differential operator.

For this reason, the approach described for the single wavenumber case (Section 2.2)

cannot be applied. However, the problem can be transformed in such a way that similar

methods can be deployed. This transformation is similar to the Fourier transform already

seen, though it is based on sinusoids rather than exponentials.

The method described below can be thought of as a transformation into a spectral

sine domain, solution in this domain, then transformation back to physical space. The

relationship between sinusoids and exponentials will be exploited so that fast Fourier

transform routines (from the FFTW library) can be used to perform this transformation

efficiently.

To begin, apply the scheme (2.4.8) to the Poisson equation (2.1.7b) for all internal

nodes j = 1, ..., J − 1. All variables are from the same time-step so the superscript n will

be dropped for this section. This gives, after some rearrangement,

vj−1 − 2vj + vj+1

∆x2 +
1

12
∂2

∂y2

(
vj−1 + 10vj + vj+1

)
= Fj , (2.4.14)

where the right-hand side Fj is given by

Fj = − 1
12

(
∂ζ
∂x

)
j−1
− 5

6

(
∂ζ
∂x

)
j

− 1
12

(
∂ζ
∂x

)
j+1
. (2.4.15)

Following Togneri (2011), a discrete sine transform will be used so that the problem

can again be reduced to a tridiagonal system. This transform requires homogeneous

boundary conditions at both ends of the domain, so to apply it in this case the problem

must be modified to ensure that both the subject (v) and the right-hand side (F) vanish

at the inlet and outlet.

The inlet condition is already homogeneous, giving the following expression when

j = 1,
−2v1 + v2

∆x2 +
1

12
∂2

∂y2 (10v1 + v2) = F1 = −5
6

(
∂ζ
∂x

)
1
− 1

12

(
∂ζ
∂x

)
2
. (2.4.16)

A different condition is imposed at the outlet so a new variable ṽ will be defined that

does vanish at this location. This variable will be equal to v everywhere except at the
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outlet where it will satisfy

ṽJ−2 − 2ṽJ−1

∆x2 +
1

12
∂2

∂y2

(
ṽJ−2 + 10ṽJ−1

)
= FJ−1 −

vJ
∆x2 −

1
12
∂2vJ
∂y2 . (2.4.17)

The problem can be recast in terms of ṽ provided expressions for vJ and the derivative

[∂2v/∂y2]J can be found. The Poisson equation must be satisfied at every location so

writing (2.1.7b) at the outlet and applying the outlet condition ∂2vJ /∂x
2 = −α2vJ gives

∂2vJ
∂y2 −α

2vJ = −
∂2ζJ
∂x2 . (2.4.18)

The variable vJ is acted on by the same differential operator seen in the single wavenum-

ber case (2.2.15) so the same method can be used to solve this equation for vJ . This

method is not detailed here since it is so similar to that already described in Section 2.2.

Using vJ found in this way, the expression at j = J − 1 (2.4.17) can be rewritten using

(2.4.18) as

ṽJ−2 − 2ṽJ−1

∆x2 +
1

12
∂2

∂y2

(
ṽJ−2 + 10ṽJ−1

)
= − 1

12

(
∂ζ
∂x

)
J−2
− 5

6

(
∂ζ
∂x

)
J−1
−
( 1
∆x2 +

α
12

)
vJ , (2.4.19)

where the right-hand side is now known. Thus, a new function F̃ can be defined as being

equal to F everywhere except for when j = J −1 where it is equal to the right-hand side of

(2.4.19). Note that F is not defined at the inlet or outlet so can be set to zero at these nodes

to satisfy the boundary conditions for the transform. The system can now be written as

ṽj−1 − 2ṽj + ṽj+1

∆x2 +
1

12
∂2

∂y2

(
ṽj−1 + 10ṽj + ṽj+1

)
= F̃j , (2.4.20)

where ṽ0 = ṽJ = F̃0 = F̃J = 0. That is, the subject of the equation and the right-hand side

now have homogeneous boundary conditions so the afore mentioned sine transform can

be applied.

The transformation used in the streamwise direction will now be introduced. Con-

sider the discrete expression of a smooth function g that satisfies homogeneous boundary

conditions. The discrete sine transform of this function (denoted by ǧ) will be defined by
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the following procedures

ǧm =
2
J

J−1∑
j=0

gjsin
(πmj
J

)
, (2.4.21a)

gj =
J−1∑
m=0

ǧmsin
(πmj
J

)
. (2.4.21b)

This transform can be implemented by directly calculating the summations (Togneri,

2011) or, alternatively, the FFTW library can be used (Duval, 2012). This is a much faster

method although it requires some careful thought about the relationship between the

complex exponential transform and the sine transform.

In order to build an equivalence between these transforms, first double the size of the

domain and extend the function into this new domain based on the relationship

g2J−n = −gn, for n = 0, ..., J − 1, (2.4.22)

so that the extended function is anti-symmetric about the J th node and is continuous at

this point since gJ = 0 has been assured. In the new domain, define the following complex

exponential transform, which is calculated using the FFTW library,

ĝm =
1
2J

2J−1∑
j=0

gje
− πijmJ , (2.4.23a)

gj =
2J−1∑
m=0

ĝme
πijm
J . (2.4.23b)

Note that the FFTW library does not divide by 2J , this has to be applied manually.

The relationship (2.4.22) can be used to write ĝ in the form

ĝm =
1
2J

J−1∑
j=0

gj

(
e−

πijm
J − e

πijm
J

)
= −2i

2J

J−1∑
j=0

gjsin
(πjm
J

)
=

1
2i
ǧm, (2.4.24)

giving the relationship between the two transforms as

ǧm = 2iĝm, (2.4.25)

which allows efficient calculation of the sine transform for any variable. A similar rela-
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tionship also holds between the inverse transforms.

Using the domain extension (2.4.22) and the relationship (2.4.25), ṽ and F̃ at each

spatial location can be expressed in the form

ṽj =
J−1∑
m=0

v̌msin
(πmj
J

)
, (2.4.26a)

F̃j =
J−1∑
m=0

F̌msin
(πmj
J

)
. (2.4.26b)

These expressions can now be used to transform the problem (2.4.20) into the sine do-

main,

(
5
6
∂2

∂y2 −
2

∆x2

)2J−1∑
m=0

v̌msin
(πmj
J

)
+

(
1

∆x2 +
1

12
∂2

∂y2

)2J−1∑
m=0

v̌m

[
sin

(
πm(j − 1)

J

)
+ sin

(
πm(j + 1)

J

)]
=

2J−1∑
m=0

F̌msin
(πmj
J

)
. (2.4.27)

The terms concerning nodes j−1 and j+1 can be combined using trigonometric identities

to give

sin
(
πm(j − 1)

J

)
+ sin

(
πm(j + 1)

J

)
= 2sin

(πmj
J

)
cos

(πm
J

)
. (2.4.28)

The coefficients of sin(πmj/J) can be considered separately for each m due to the linear

independence of sine functions with different wavenumbers. Defining

σm = cos
(πm
J

)
(2.4.29)

then leaves [
2

∆x2 (σm − 1) +
σm + 5

6
∂2

∂y2

]
v̌m = F̂m, for m = 1, ..., J − 1. (2.4.30)

The Poisson equation has now been reduced to a problem for which the only differential

operator is the second derivative with respect to y. Therefore, for each m, the system can

be solved in the established manner.

As before, the wall-normal scheme (2.2.6) is applied to the equation to replace differ-
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ential terms with algebraic terms over several nodes, giving

k3
[

σm − 1
5∆x2(k − 1)3 +

σm + 5
5

∆ξ2(k − 1)
l2

]
v̌k−1
m +

[
2(σm − 1
∆x2 − (σm + 5)

2∆ξ2k2

5l2

]
v̌km+

k3
[

σm − 1
5∆x2(k + 1)2 +

σm + 5
5

∆ξ2(k + 1
l2

]
v̌k+1
m = F̌km +

k3

10

[
F̌k−1
m

(k − 1)3 +
F̌k+1
m

(k + 1)3

]
. (2.4.31)

This can be written as the tridiagonal system



ε1
m θ1

m

δ2
m ε2

m θ2
m

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

δK−2
m εK−2

m θK−2
m

δK−1
m εK−1

m





v̌1
m

v̌2
m
...
...
...

v̌K−2
m

v̌K−1
m



=



r1
m

r2
m
...
...
...

rK−2
m

rK−1
m



, (2.4.32)

where

δkm = k3
[

σm − 1
5∆x2(k − 1)3 +

σm + 5
5

∆ξ2(k − 1)
l2

]
, (2.4.33a)

εkm =
[

2(σm − 1
∆x2 − (σm + 5)

2∆ξ2k2

5l2

]
, (2.4.33b)

θkm = k3
[

σm − 1
5∆x2(k + 1)2 +

σm + 5
5

∆ξ2(k + 1
l2

]
, (2.4.33c)

rkm = F̌km +
k3

10

[
F̌k−1
m

(k − 1)3 +
F̌k+1
m

(k + 1)3

]
. (2.4.33d)

This is solved (for each m) using the Thomas algorithm. Then, letting vj = ṽj for j =

1, ..., J − 1 while v0 = 0 and vJ is already known (from solving the problem at the outlet)

gives the solution to the Poisson equation.

Summary of the finite-difference formulation

This concludes the description of the finite-difference method in which the streamwise

dependence is treated in physical space rather than in Fourier space. Aside from minor

alterations to some expressions, the vorticity transport equation (2.1.7a) is solved in a

similar way to that already established. The Poisson equation (2.1.7b) required some
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extra attention due to the x dependence of the differential operator. In this case a sine

transform was defined that reduced the problem to a tridiagonal system that could be

solved in the same way as before.

Summary

This chapter has been concerned with methods by which disturbance evolution can be

simulated using the linearised Navier–Stokes equations. First, a method for solving

the equations when the disturbance has a single fixed wavenumber was developed and

briefly validated in Section 2.2.

A means of building a full spatial response from many single wavenumber simu-

lations was then described (spectral method) in Section 2.3. This involves taking each

single wavenumber simulation as a Fourier mode and constructing the response from

these spectral components using an inverse discrete Fourier transform.

A finite-difference method was described in Section 2.4 for which the x dependence

is described in the physical domain. In this case it was necessary to solve the Poisson

equation in the sine domain to account for the streamwise dependence of the differential

operator.

While the single wavenumber case is useful for direct comparison with the Floquet

eigenvalue problem, it is the wavepacket evolution triggered by a spatially localised im-

pulse that is of particular interest. In Chapter 3, an investigation will be carried out into

the impulse response of the Stokes layer. This investigation will be conducted using the

spectral method due to its greater speed.

Another reason for using only the spectral method for this investigation is that for

the finite-difference method unphysical behaviour originating at the inlet and outlet is

observed. This numerical artefact was explored in some detail but could not be fully

accounted for or corrected. Some experimentation with the formulation was undertaken

to attempt to rectify this issue but the problems persisted. It was, however, found that

this method was capable of picking up the early stages of the impulse response in some

cases so results for the finite-difference method are also given in Chapter 3 for compari-

son with the spectral method. The issues at the boundaries are then discussed again once

these results have been presented.
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Chapter 3

Impulse response in the

semi-infinite Stokes layer

Introduction

This chapter is concerned with describing and quantifying the behaviour of linear dis-

turbances in the semi-infinite Stokes layer. In particular, the response of the system to

an impulsive excitation that seeds multiple wavenumbers is investigated. This is more

realistic than considering each wavenumber in isolation, which describes the evolution

of disturbances with infinite periodic extent in the streamwise direction whereas the re-

sponse to the localised forcing allows for variation in this direction.

For a single fixed wavenumber, if all disturbances are stable the flow returns to the

unperturbed basic state whereas an unstable disturbance diverges from this basic state.

The response to a spatially localised disturbance is considered unstable if the disturbance

maximum grows in time and stable if the maximum exhibits temporal decay.

The introduction of spatial variation introduces the further classification of unstable

disturbances as convective or absolute, based on the behaviour at fixed streamwise lo-

cations. A disturbance is convectively unstable if its maximum grows with time (i.e. is

unstable) but it eventually exhibits temporal decay at any given spatial location. A dis-

turbance displaying convective instability propagates away from the point of excitation

so the flow at any spatial location returns to the unperturbed basic state. An absolute in-

stability exhibits temporal growth at any given spatial location (in addition to the growth

of the disturbance maximum). Rigorous definitions of absolute and convective instability
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will be provided in Section 4.3, where a theoretical approach for locating the threshold

between these classifications will be described. In this chapter these physical descrip-

tors are sufficient for finding evidence or either type of instability to inform the work of

Chapter 5.

The impulse response of the system will be investigated using the spectral simulation

scheme described in Section 2.3. First, the structure of the impulse response is discussed

in Section 3.1. Results are then compared directly against the behaviour predicted by the

eigenvalue problem to verify that there is good agreement between the different methods:

in Section 3.2 the growth of the disturbance is explored and in Section 3.3 the wavenum-

bers are considered. The focus of Section 3.4 is on the temporal evolution of disturbances

at fixed streamwise locations so as to deduce the convective or absolute nature of insta-

bilities. Finally, the finite-difference method described in Section 2.4 will be shown to be

consistent with the spectral method in Section 3.5.

Results can be compared with those of Thomas et al. (2014), where wavepacket evo-

lution in the semi-infinite Stokes layer was first investigated using linear simulation.

Throughout this chapter results from Thomas et al. (2014) will be alluded to and ex-

panded on.

3.1 Spatial/temporal structure of disturbances

To validate the method, simulations have been run for Re = 600 (Figure 3.1) and Re = 700

(Figure 3.2) for comparison with Thomas et al. (2014). The unstable case of Re = 750

(Figure 3.4) is also considered. Space/time contour plots have been used to indicate

the regions in which the disturbance is strongest and reveal an intriguing family-tree

structure. To the eye, these contour plots show excellent agreement with those of Thomas

et al. (2014) so a more thorough investigation can take place.

The space/time plots are used to trace the wavepacket evolution over time. The vor-

ticity at the wall is considered and the variation of this variable with x and τ is explored.

First, a Hilbert transform is taken to calculate the envelope of the wall vorticity and then

the envelope is normalised by dividing through by the maximum. Removing all values

below a certain threshold, the natural logarithm is taken, showing very clearly the lo-

cations of the wavepackets. For the remainder of this work, the wavepacket envelope

of a variable f (calculated through the Hilbert transform) will be indicated by |f |, and
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Figure 3.1: Space/time contour plot of log|ζ(x,0, τ)| for Re = 600. The vorticity at the wall is
taken at each time and a Hilbert transform is performed to find the envelope. The time-history
of this envelope is normalised by dividing by the maximum and a threshold is selected so that
any part of the disturbance below said threshold is removed. The natural logarithm is then
taken. The disturbance maximum is carried downstream away from the point of excitation
and overall decay is observed.

should be distinguishable from the absolute value through context. Self-consistency was

checked by reversing the initial direction of wall oscillation, giving plots that are iden-

tical up to reflection around the centre of the initial excitation, see Figure 3.3 compared

with Figure 3.1. All such contour plots are constructed in the same manner.

In general, the white areas of these plots indicate that the magnitude of the distur-

bance envelope is below the given threshold. It should be noted, however, that when
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Figure 3.2: Space/time contour plot of log|ζ(x,0, τ)| for Re = 700. Constructed in the same
manner as Figure 3.1. The disturbance maximum is carried downstream away from the point
of excitation and overall decay is observed.

viewed in grey-scale, there may be areas contained within each wavepacket that appear

to be white. This is not due to the magnitude of the envelope being below the thresh-

old, so it is noted here that for all of the examples here there is no region within any

wavepacket that drops below this threshold.

For consistency, the streamwise transform x→ x−xf is used so that the initial excita-

tion is centred at x = 0. This is because in order to explore longer times, larger domains

are needed and so there would be a range of values of xf for different simulation runs. By

performing this transform, all plots have consistent forcing location xf = 0 so are directly
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Figure 3.3: Exactly the same as Figure 3.1, except that the basic state has been shifted by half
a period of wall oscillation. This is equivalent to a reversal of direction and it is clear that this
plot is identical to Figure 3.1 except reflected around the point of excitation at x = 0.

comparable. This also results in the two streamwise directions being naturally labelled

positive and negative, which is particularly practical for this oscillatory flow since up-

stream and downstream (as defined by the direction the bulk of the fluid is moving in)

swap every half period. Generally, it was found that domains of size Lx ∼ 6,000 were

large enough to run the simulation for up to three periods of wall oscillation for the Re

considered in this chapter. Larger domains of Lx ∼ 24,000 were used to run simulations

for up to ten periods and Lx ∼ 48,000 were needed for 20 period runs. The value of Lx is

controlled by changing ∆α, fixing the size of the periodic box as Lx = 2π/∆α.

The immediately striking feature of the contour plots (Figure 3.1, Figure 3.2, Fig-

ure 3.4) is the multiple-wavepacket structure which is referred to as the family-tree
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Figure 3.4: Space/time contour plot of log|ζ(x,0, τ)| for Re = 750. Constructed in the same
manner as Figure 3.1. The disturbance maximum is carried downstream away from the point
of excitation and this maximum undergoes growth even though each individual wavepacket
decays.

structure in Thomas et al. (2014). The initial mother wavepacket births two daugh-

ter wavepackets, one in each streamwise direction. The dominant of the two daughter

wavepackets is dictated by the initial phase of oscillation as can be seen by compar-

ing Figure 3.1 with Figure 3.3. Each of these daughter wavepackets then birth grand-

daughter wavepackets and so on. A further observation that can be made is that each of

the wavepackets appear to decay as time progresses, while the disturbance maximum is

convected away from the initial point of excitation. However, the superposition of grand-
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Figure 3.5: A snapshot of vorticity at the wall after three periods of wall oscillation is shown
in (a) for Re = 750. This corresponds to the top of Figure 3.4. The comparative sizes of
the wavepackets is clearer than in Figure 3.4 (since the logarithm has not been taken) as is the
oscillatory nature of the solution. The vertical lines indicate a region that appears to contain no
wavepacket. However, in (b) said region is shown to also display a wavelike disturbance. This
shows that the wavepackets are not as isolated as the contour plot Figure 3.4 would suggest.

daughter wavepackets over their grand-mother wavepacket increases the amplitude of the

decaying wavepacket. This is clearer for Re = 700 (Figure 3.2) and Re = 750 (Figure 3.4)

than for Re = 600 and can be seen at the top centre of these plots.

Consider the unstable case of Re = 750. In Figure 3.5 the wavepackets are shown

after three periods, τ = 6π, as a companion to the contour plot Figure 3.4. This figure

illustrates the correct interpretation of the contour plots by revealing the streamwise

form of the disturbances. The inspection of a region that might be considered to contain

no wavepacket from interpretation of Figure 3.4 shows that there is indeed a wavelike

disturbance present, albeit at a much lower magnitude than the local maxima observed

in Figure 3.4.

97



Impulse response in the semi-infinite Stokes layer

3.1.1 Family-tree structure

Some insight into the generation of daughter wavepackets can be provided by consider-

ing the wall motion. This discussion applies to all contour plots excluding the reversed

plot in Figure 3.3 for which the words positive and negative can simply be swapped.

First, note that the wall moves towards positive x at the start of each period (i.e.

τ/2π ∈ {0,1,2, ...}) and towards negative x when halfway through each period (i.e. τ/2π ∈

{0.5,1.5,2.5, ...}). At τ = 0, the plate is moving with maximum speed towards positive

x and this explains the convection of the mother wavepacket away from the point of

excitation (x = 0). When τ/2π = 0.5 the plate is moving in the opposite direction with

maximum speed and this begins the process of generating the weaker of the two daughter

wavepackets which takes around a quarter of a period to reach a large enough magnitude

to appear in the contour plots. Similarly, when τ/2π = 1 the generation of the stronger

of the daughter wavepackets begins. This again takes around a quarter of a period to

properly manifest.

This process continues and the family-tree grows in complexity as each wavepacket

births two more within each period of wall oscillation. Increasingly, this results in the

superposition of new wavepackets over existing wavepackets.

3.1.2 Streamwise separation of wavepackets

The timing of daughter wavepacket generation is the same for Re = 600 (Figure 3.1),

Re = 700 (Figure 3.2) and Re = 750 (Figure 3.4) and as expected the contours suggest

more unstable disturbances for higher Re. It is also observed when comparing these fig-

ures that the streamwise spacing between consecutive wavepackets is greater for larger

Re. This distance, which shall be denoted by Λ, appears to be fairly constant for each

simulation and the locations of local maxima at different times can be used to approxi-

mate this distance for a range of Re. This reveals a linear relationship between Re and

the wavepacket spacing Λ as can be seen in Figure 3.6.

While the spectral method makes clear the manner in which a wavepacket response

can be constructed from a superposition of a range of wavenumbers, it is interesting to

see that running the same simulations for α ∈ [0.1,0.6] rather than α ∈ [0,0.6] has little

to no effect on the results (so no plots are included). This is interesting since the removal

of α < 0.1 is equivalent to removing structures with wavelength > 62, which shows that
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Figure 3.6: The wavepacket spacing Λ is plotted against the Reynolds number Re. The distance
between local maxima was measured for Re = 650,700,750,800,850,900 and the average
values are plotted (•). The solid line is the linear relationship found by regression. Upper
and lower deviation from the average has not been indicated in the plot as the points are large
enough to cover this extent.

the wavepacket separation is not caused by long-wave modes.

This separation is consistent with what may be anticipated from the convective prop-

erties of the governing equation. A brief inspection of (4.1.1) reveals that the convective

terms (in particular ∂/∂x terms) are scaled with the Reynolds number. This would sug-

gest that during each period of wall oscillation the disturbance will have convected a

distance of the order of Re. This is consistent with Figure 3.6, since Re < Λ < 1.4Re so

Λ = O(Re). More insight into the streamwise separation of wavepackets will be explored

in Section 5.4.

Aside from the wavepacket spacing and the growth/decay of the disturbance maxi-

mum, all additional space/time contour plots considered demonstrated similar structure

and behaviour to those shown in this chapter. The close agreement with Thomas et al.

(2014) suggests that the present method is valid but further validation can be made by

direct comparison against the Floquet eigenvalue problem. Prior to this, a quick confor-

mation of consistency can be made by observing that the disturbances for Re = 600,700

appear stable (Figure 3.1 and Figure 3.2) whereas the disturbance for Re = 750 appears

unstable (Figure 3.4). This is consistent with the critical Reynolds number of this flow

Rec ∼ 707.8 as first reported by Blennerhassett & Bassom (2002) and indicated in Fig-

ure 1.6b.
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3.2 Temporal growth/decay of the disturbance maximum

Now that the immediately apparent qualitative features of the impulse response have

been discussed and compared to existing work, a more quantitative approach can be

taken. For a true impulse, every wavenumber is seeded at equal magnitude and the

growth-rate associated with each Fourier mode will thus dictate the spectral make-up

of the disturbance after a certain length of time. In the numerical simulations, the true

impulse is approximated by a Gaussian and thus it is expected that some wavenumbers

will be given more weighting than others.

There is a length of time at the start of the simulation in which the presence of multi-

ple modes of comparative size means the disturbance is a complex superposition of many

modes. Then, as the more stable modes decay, the disturbances should converge towards

the least stable (or most unstable) mode. For this reason, the simulations must be run

for more than three periods in order for the leading-order behaviour to become apparent

and so the simulations are run for ten periods of wall oscillation in this section.

The work of Thomas et al. (2014) was not able to investigate such long times due to

the computational expenses of the problem, but application of the spectral method in

the present study has greatly improved efficiency. Furthermore, since the simulations for

each wavenumber are independent of one another, the problem lends itself to parallelisa-

tion and so the Raven cluster, the supercomputer of the Advanced Research Computing

@ Cardiff (ARCCA) division (Cardiff University), was utilised and the run-time of the

simulations was dramatically reduced.

It was stated earlier that in the case of a spatially localised excitation, a disturbance

is defined as stable or unstable based on the temporal evolution of the disturbance max-

imum. In fact, the temporal growth (or decay) of the disturbance maximum is dictated

by the growth-rate of the most unstable mode over all real α. This is not a trivial result,

though it is well established for steady flows. In Chapter 4, it will be shown that this is

also the case for temporally periodic flows.

The predicted temporal growth-rate of the disturbance maximum can be found from

Floquet theory by calculating the growth-rates for a range of α and selecting the most

unstable. This predicted value can then be compared against values measured from the

simulations. The growth-rate of a disturbance variable f can be measured at some time
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Figure 3.7: The semi-infinite Stokes layer at Re = 750. In (a) the growth-rate associated with
a selection of α are plotted and the one expected to be most dominant is selected (α = 0.3747
and µr = 0.2009). In (b) the temporal growth-rate of the disturbance maximum is calculated
with (3.2.1) at the beginning of each period and compared with the predicted value.

τ using (4.3.14), i.e.

µr(τ) =
1

2π
log


√

1 +
2π
τ

maxx |f (x,τ + 2π)|
maxx |f (x,τ)|

 . (3.2.1)

This expression will be derived in Section 4.3 and in general the disturbance variable

considered will be the vorticity at the wall, ζ(x,0, τ).

Two cases will now be considered: an unstable case (Re = 750) and a stable case

(Re = 700). In both cases, the temporal growth-rate will be extracted from the time-

history of the disturbance maximum using (3.2.1). The most unstable mode for each

Re can be predicted by solving the Floquet eigenvalue problem for a range of α and

selecting the mode with largest µr . It is then anticipated that the predicted value will be

an asymptote for the growth-rate as measured by (3.2.1), approached as τ→∞.

3.2.1 Unstable case

Consider the case Re = 750 (larger than the critical Reynolds number of Rec ∼ 707.8). It

can be seen from Figure 3.4 that the disturbance maximum is convected away from the

point of excitation and appears to grow with time. In general, the disturbance maximum

is expected to grow/decay with a temporal growth-rate µr that can be found either by the

Floquet eigenvalue problem or by measuring the growth at a given time with (3.2.1).

The growth-rates for a range of α are shown in Figure 3.7a. According to this figure,
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Figure 3.8: The semi-infinite Stokes layer at Re = 700. In (a) the growth-rate associated with
a selection of α are plotted and the mode with α = 0.3727 and µr = −0.0374 is selected. In
(b) the temporal growth-rate of the disturbance maximum is calculated with (3.2.1) at the
beginning of each period and compared with the predicted value.

the least stable mode at this Re corresponds to α = 0.3747 and has positive growth-

rate µr = 0.2009. This value can now be compared with the temporal growth measured

from the simulation results using (3.2.1). In Figure 3.8b, these values are compared and

it is seen that as time progresses the difference between these values decreases. This

is evidence that the growth-rate measured using (3.2.1) converges to the growth-rate

predicted from Floquet theory for large times. The two methods are in good agreement

in this case.

Note that the most unstable mode in Figure 3.7a appears at the tip of one of the small-

scale finger-like protrusions. The relevance of this feature will be discussed in Chapter 5.

3.2.2 Stable case

Consider now the case Re = 700, for which the disturbance is expected to be stable since

Re < Rec ∼ 707.8. This can be confirmed through inspection of Figure 3.2 and observing

that the disturbance maximum is convected away from the point of excitation and de-

creases in magnitude each period. Again, the temporal growth-rate of the maximum µr

can be measured for a selection of times with (3.2.1).

As for the unstable case, the predicted value can be extracted from the Floquet ap-

proach by measuring the growth-rate corresponding to a range of wavenumbers to de-

duce the growth of the least stable mode. The growth-rates for a range of α are shown

in Figure 3.8a. According to this figure, the least stable mode at this Re corresponds to
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α = 0. This is problematic as the Floquet eigenvalue method breaks down when α = 0

since in this case the basic state no longer appears in the stability equation (1.2.7). How-

ever, it will be seen in Section 4.3 that the temporal growth-rate exhibited by the distur-

bance maximum is not simply µmaxr = maxα{µr}, but must necessarily satisfy

∂µr
∂α

= 0.

Therefore, the local maximum indicated in Figure 3.8a is selected as the predicted tem-

poral growth-rate of the disturbance maximum. This mode corresponds to wavenumber

α = 0.3727 and growth-rate µr = −0.0374 and again corresponds to the tip of a finger.

This value can now be compared with the growth measured from the simulation re-

sults using (3.2.1), showing a convergence towards the predicted, negative value in Fig-

ure 3.8b.

The selection of this particular mode can also be made on the grounds of the simula-

tion results. The growth-rate of the disturbance maximum is much closer to the growth-

rate associated with the local maximum than that corresponding to α = 0. It will also be

seen below that the dominant wavenumber at later times is close to the selected value

of α = 0.3727. Additional simulations were run with the lower values of α removed and

were found to produce practically identical plots.

3.3 Inspection of the Fourier spectrum

In addition to the comparison of growth-rates, convergence to the dominant mode can

be indicated by considering the spectral composition of the disturbance. Again, consider

the wall vorticity ζ(x,0, τ) as a representative value for the disturbance.

Using the spectral approach, the Fourier decomposition of the physical disturbance

is found directly by the simulation. For the wall vorticity, the Fourier transform at some

given time τ0 can be written in terms of the physical disturbance as

ζ̂(α,0, τ0) '
L∑
j=0

ζ(j∆x,0, τ0)e−i(j∆x)α . (3.3.1)

As discussed earlier, this transform deconstructs the disturbance into its compos-

ite wavenumbers and so the function |ζ̂(α,0, τ0)| (where | • | indicates the absolute value
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Figure 3.9: Snapshots of the (normalised) absolute value of the Fourier transform of the
wall vorticity |ζ̂(α,0, τ0)| at Re = 750. In (a) the spectrum is shown for times τ0 =
π/8,π/4,3π/8,π/2,π,3π/2,2π (not an equal time increment) while (b) is a direct compar-
ison between the curves for τ0 = 2π and τ0 = 40π. These curves indicate that the peak of the
spectrum is very close to the predicted dominant wavenumber of α = 0.3747 (see Figure 3.7a).
By the end of the simulation the peak of the spectrum coincides with this predicted value to the
accuracy of this plot.

rather than the envelope found through the Hilbert transform) describes the relative

dominance of the wavenumber α. Of particular interest in this section is the location

of the maximum, which indicates the most dominant wavenumber at this time, and the

band of significant amplitude around this maximum.

In each case, |ζ̂(α,0, τ0)| can be normalised (divided by some constant) so that the

maximum value is 1. This normalisation is implemented for all times since the change

in amplitude as time progresses has already been discussed in Section 3.2 (so is not of

interest in this section).

Consider first the unstable case Re = 750. Floquet theory has predicted a dominant

wavenumber of α = 0.3747, see Figure 3.7a. The absolute value of the Fourier transform

of the wall vorticity is plotted for several time instances in Figure 3.9. There is evidence of

convergence to the predicted value (indicated by the vertical line) within the first period

of wall motion. Figure 3.9a also shows that the dominant wavenumber jumps from very

low α to the vicinity of the predicted value at some early time.

In Figure 3.9b the spectrum at the end of the first period is compared with that at

the end of the twentieth showing that the band of significant wavenumbers has thinned

significantly. This means that the most unstable mode is becoming more dominant as

time progresses. In fact, the vertical line indicating the wavenumber of the predicted
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Figure 3.10: The same as Figure 3.9 except at Re = 700. In (a) the spectrum is shown for
times τ0 = π/8,π/4,3π/8,π/2,π,3π/2,2π (not an equal time increment) while (b) is a direct
comparison between the curves for τ0 = 2π and τ0 = 40π. By the end of the simulation the
peak of the spectrum seems to coincide with the wavenumber corresponding to the growth-rate
of the disturbance maximum α = 0.3727 (see Figure 3.8a) and there is evidence of convergence
to this α within the first period of wall motion.

dominant mode α = 0.3747 is obscured by the peak in the spectrum at this location.

Notice that the spectrum after twenty periods of wall motion is more sensitive to α,

with several peaks within the band of significant magnitude. At this point, no attempt

will be made to explain this feature. It is instead noted that these multiple peaks could

either be a numerical artefact or related to the fingers protruding from the growth-rate

curve. This feature will be revisited at the end of Chapter 5.

Consider now the stable case of Re = 700. The equivalent plots are shown in Fig-

ure 3.10. There is again evidence of convergence towards the expected wavenumber of

α = 0.3727 (see Figure 3.8a) within the first period of oscillation. As seen in the unstable

case, the spectrum has multiple peaks after twenty periods of oscillation and the band of

significant magnitude is restricted to a small range of wavenumbers.

An alternative means of visualising these features would be to plot the natural log-

arithm of the Fourier spectrum instead of performing the normalisation. This is be-

cause the exponential growth (or decay) of a disturbance means that it can be impossible

to display the Fourier spectrum for different times on the same scale. Taking the log-

arithm means that exponential growth would appear linear and so the curves can be

directly compared on the same plots. The choice was made to instead display the nor-

malised spectra since this approach makes the peaks much clearer. Furthermore, the
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growth/decay of the disturbance maximum has already been shown to agree with Flo-

quet theory in these two cases so the change in magnitude of the Fourier spectrum with

time does not need to be explored.

3.4 Temporal growth at fixed streamwise locations

Now that the simulation results have been validated against the Floquet eigenvalue prob-

lem, an investigation into the temporal evolution of the disturbances at fixed spatial lo-

cations can be carried out.

Unlike the evolution of the disturbance maximum, the growth at a fixed spatial loca-

tion cannot be extracted from the Floquet analysis in such a simple manner. Comparison

of these methods involves locating cusps in the complex µ plane, which will be explored

in Chapter 5.

The temporal growth of a disturbance variable f at a given time τ and spatial location

x0 will be measured using (4.3.23), i.e.

<{µ0(τ)} = 1
2π

ln

−
√

1 +
4π
τ

={f (x0, τ + 4π)/f (x0, τ + 2π)}
={f (x0, τ)/f (x0, τ + 2π)}

 , (3.4.1)

which will be derived in Section 4.3. Again, the wall vorticity ζ(x,0, τ) will be the distur-

bance variable considered.

With regards to the classification of disturbances as convective or absolute, Thomas

et al. (2014) (having only been able to run simulations for three periods of wall oscilla-

tion) note little discernible pattern in the time-history of the disturbance at fixed x. This

coupled with the convection of the disturbance maximum amounted to no clear evidence

of absolute instability.

Due to the more computationally efficient spectral formulation and use of a more

powerful computer, simulations can be run for longer in the present study. In the in-

terest of producing convincing evidence of absolute instability, twenty periods of wall

oscillation were used to investigate the evolution at a selection of spatial locations.

Figure 3.11a shows the logarithm of the time-history at three streamwise locations.

There is a period of transient behaviour lasting around four periods of wall motion fol-

lowed by growth. The spatial locations were chosen to approximately coincide with

the wavepacket maxima seen in Figure 3.4. The initial transient behaviour shows why
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Figure 3.11: The Stokes layer at Re = 750. In (a) a snapshot of the logarithm of the wall
vorticity envelope at x = 700,1600,2500 shows that after four periods of oscillation temporal
growth is observed at each x. In (b) the temporal growth-rates are calculated at the beginning
of each period using (3.4.1) for x0 = 700 (+), x0 = 1600 (×) and x0 = 2500 (∗), showing
convergence to a single positive value.

Thomas et al. (2014) could not observe clear growth after three periods of oscillation.

Figure 3.11b shows the extracted temporal growth-rates for these spatial locations

at a selection of times, as measured using (3.4.1). It is apparent that as τ increases, the

temporal growth-rates associated with each location seem to approach the same positive

value. Since the disturbance exhibits temporal growth for each choice of x (moreover, the

same temporal growth in each case), it will tentatively be assumed that the disturbance

generated in the semi-infinite Stokes layer at Re = 750 is absolutely unstable.

Having drawn this conclusion, it is vital that the possibility of this behaviour being

unphysical is ruled out. To this end several simulations were run with various choices

of numerical parameters: The size of the domain Lx was increased by decreasing the

wavenumber increment ∆α; the time step ∆τ was halved; the number of wall-normal

points K was doubled; the wall-normal stretching factor l was taken both larger and
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smaller; the largest wavenumber αup was increased; and a higher order time-stepping

scheme was implemented. In each of these cases all other variables were fixed and it was

found that this behaviour was robust. This provides evidence that this flow is subject to

absolute instability in this case.

This conclusion is seemingly at odds with the structure observed in the contour plots

for the first three periods of oscillation. In these plots, each wavepacket decays as τ in-

creases and the disturbance maximum is convected away from the point of excitation

(both features of convective instability). However, the observed superposition of grand-

daughter wavepackets over their respective grand-mother wavepackets results in an in-

crease in the magnitude of each wavepacket every 2 periods of wall oscillation.

This is consistent with the time-history of the disturbance at fixed streamwise loca-

tions (Figure 3.11) where it is observed that the growing disturbance has a temporal

quasi-period that is twice the period of the wall motion (remembering that a quasi-

periodic function is defined for the purposes of this work as a periodic function mul-

tiplied by a complex exponential).

Consider some fundamental oscillation with frequency ω. In general, a waveform is

considered harmonic to the fundamental if its frequency can be written as nω for some

n ∈ N or subharmonic if its frequency can be written as ω/m for some m ∈ N. In the

present study, the special cases of n = 1 and m = 2 will be the only cases associated

with these terms. That is, a harmonic waveform has frequency ω (equal period to the

fundamental) and a subharmonic waveform has frequency ω/2 (twice the period of the

fundamental). The meaning of these terms has been restricted in this way for brevity

since only these two cases have been observed in the present study.

Additionally, disturbances undergo amplification each period so these definitions

will also be naturally extended for quasi-periodic behaviour. That is, for the remain-

der of this work, any temporal variation with a period (or quasi-period) twice that of the

underlying flow will be described as subharmonic. If the period (or quasi-period) is equal

to that of the underlying flow the temporal variation will be described as harmonic. This

is not to be confused with the harmonic decomposition of the disturbance (1.2.8), and it

should be clear from context which meaning is intended.

The subharmonic temporal variation of each of the wavepackets can be illustrated

by a contour plot for the first ten periods of wall motion (constructed in the same man-
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Figure 3.12: Space/time contour plot of the logarithm of the wall vorticity envelope for the
semi-infinite Stokes layer at Re = 750 for ten periods of wall oscillation showing subharmonic
temporal growth of each wavepacket. This plot is constructed in the same manner as Figure 3.1.

ner as before). This is shown in Figure 3.12. The temporal growth of each wavepacket

is instantly apparent, and the convected disturbance maximum is still observed on the

right-hand side of the plot.

The subharmonic variation is illustrated by the staggering of wavepackets: in two

periods the wavepackets have returned to their original position (and grown) while dur-

ing the interim period the wavepackets are offset. A somewhat unexpected feature of this

plot is that, with the exception of the convected disturbance maximum, every wavepacket

at a given time seems to be around the same magnitude. This is counter-intuitive given
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Figure 3.13: The growth of wavepackets with each period of wall motion can be illustrated
by plotting the logarithm of the local maxima (corresponding to different wavepackets) at the
start of different periods of wall motion (τ/2π = 9,10,11, ...,19), indicated by the symbols.
The subharmonic temporal structure manifests as the staggering of the locations of these local
maxima, and the convected disturbance maximum has been removed. The local maxima at a
given time lie approximately on a straight line so the average was taken to indicate the size
of the disturbance at this time, denoted by the dashed lines. It is anticipated that for absolute
instability, the increase in magnitude over each period will be approximately constant. The
arrows in the image are all of equal length, illustrating that this is the case.

the clear favouring of one direction noted earlier. However, the manner in which the

family-tree structure evolves means that each new wavepacket is a superposition of the

stronger daughter of a weaker mother and the weaker daughter of a stronger mother.

This can be seen occurring at the top of Figure 3.4.

A contour plot was also produced for twenty periods of wall oscillation. This plot

provided no further insight (the dispersion of the staggered wavepackets continues in

the same manner) so is not shown.

The manner in which the staggered wavepackets grow over each period is illustrated

in Figure 3.13, where the global maximum (convected downstream) has been removed

and the locations of the remaining maxima have been plotted at the beginning of each

period. At each time shown, all remaining maxima are of approximately the same mag-

nitude and evenly spaced in x. Furthermore, the growth experienced over each period of
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wall motion is approximately equal. This is demonstrated by the arrows of equal length,

indicating the same level of growth each period. The arrow length was chosen by ob-

serving in Figure 3.11b that the temporal growth-rate for each spatial location is very

close to the temporal growth-rate of the disturbance maximum. Each arrow is therefore

of length 2πµmaxr , where µmaxr = maxα µr is the maximum growth-rate associated with the

flow at this Re. In this case, µmaxr = 0.2009. This provides clear graphical evidence of the

subharmonic temporal variation of each wavepacket and also of the growth associated

with each streamwise location.

Notice that the points indicating the locations of local maxima at a given time in

Figure 3.13 display a spacing twice that presented in Figure 3.6. This is because the

wavepacket spacing Λ, as defined for Figure 3.6, is the distance between all wavepackets,

regardless of when they occur in the staggered structure.

To be more precise, there are in fact wavepackets located at every marked location

in Figure 3.13 (that lie within the extent of the disturbance) at any given time and the

staggering corresponds to the strengthening and weakening of each of these wavepackets

with respect to one another. This can be seen in Figure 3.12 where none of the wavepack-

ets have completely decayed when those in the staggered location become dominant. The

weaker wavepackets are not included in Figure 3.13 for graphical clarity.

To a certain extent, this problem is analogous to that of the secondary instability of

Tollmien–Schlichting (TS) waves in the Blasius boundary layer (Herbert, 1988). In this

problem, a linear stability analysis of the Blasius boundary layer is performed and the

basic state is then modified to include the resulting two-dimensional TS wave at some

finite amplitude. A linear stability analysis can then be performed on the now periodic

flow utilising Floquet theory. This results in 3D disturbances superimposed over the TS

wave that are termed Λ-vortices due to their shape.

If the secondary instability has the same periodicity as the TS wave, the Λ-vortices are

aligned. That is, at each crest of the TS wave the vortices appear in the same location. This

behaviour is termed ‘fundamental’ or ‘harmonic’. If the secondary instability has half the

periodicity of the TS wave, the Λ-vortices are staggered. That is, at each subsequent crest

the vortices have changed location, only to return to the previous location at the next

crest. This behaviour is termed ‘subharmonic’. A third regime can also be identified

in which there is a detuning (i.e. the period of the secondary instability is somewhere
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between one and two periods of the TS wave).

The case of staggered Λ-vortices is comparable with the temporal evolution of the

wavepackets displayed in Figure 3.12 in that the solution has a quasi-period that is twice

the period of the basic state.

3.4.1 Convective instability

It may be anticipated for flows which are subject to absolute instability that as Re is

increased the disturbance passes from a stable region into a convectively unstable re-

gion and finally into an absolutely unstable region (Lingwood, 1997). Having presented

results which suggest that Re = 700 yields a stable solution and Re = 750 yields an abso-

lutely unstable solution, it would be logical to now attempt to locate convective instabil-

ity.

To explore this possibility consider the near-critical values of Re = 708,709. These

cases are both expected to be marginally unstable due to their proximity to the critical

Reynolds number Rec ∼ 707.8. Remember that for Re = 708 the only unstable modes

correspond to the tips of fingers and this is expected to correspond to a disturbance that,

to the accuracy of these plots, appears neutrally stable.

In general, the temporal growth of an absolutely unstable disturbance at each spatial

location must be less than or equal to the temporal growth of the disturbance maximum.

However, Figure 3.7b and Figure 3.11b suggest that the temporal growth-rates associated

with any spatial location and the disturbance maximum are equal or at least similar.

Figure 3.14 compares these temporal growth-rates for Re = 708 and Re = 709 showing

that even this close to Rec these values are very close. Little more can be concluded from

the simulations since the precise asymptotic value will never be reached in finite time,

making it impossible to deduce whether these growth-rates are in fact equal or not. It

can, however, be safely concluded that if this flow is subject to convective instability there

will be a very small range of Re for which this is the case. This issue will be revisited later

using the cusp map method to predict the asymptotic value of the temporal growth-rate

at any streamwise location.
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Figure 3.14: The temporal growth-rate of the disturbance maximum is calculated at the be-
ginning of each period using (3.2.1) (•) for Re = 708 (a) and Re = 709 (b). The temporal
growth-rates associated with fixed spatial locations are calculated in each case using (3.4.1)
for x0 = 500 (+), x0 = 1400 (×) and x0 = 2300 (∗). At each location there is convergence to a
single value very close to 0.

3.5 Comparison with the finite-difference method

Consider now the finite-difference formulation described in Section 2.4. This is a method

by which the impulse response of the system can be simulated and should produce iden-

tical results to those presented for the spectral method. One of the main drawbacks of

this approach compared with the spectral method is the much greater computational

time required to run the simulation for the same number of periods of wall motion. Re-

sults will therefore only be compared up to three periods of wall oscillation.

A further issue is that the sometimes delicate streamwise boundary conditions were

found to cause unphysical effects that would gradually infiltrate the region of interest.

Though this problem is not intrinsic to the finite-difference formulation, it would have

taken a significant amount of time to properly address this issue and even then the com-

paratively slow computational speed of this method meant that this was less practical

than the spectral method. This is why the finite-difference method is presented below as
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Figure 3.15: Space/time contour plot of log|ζ| for Re = 600 using finite-difference formula-
tion, for comparison with Figure 3.1. The contour map is constructed in the same way as for
Figure 3.1 and the agreement is excellent.

a tool of validation rather than as a viable alternative method.

Presented in Figure 3.15 and Figure 3.16 are contour plots from the finite-difference

formulation corresponding to the stable cases of Re = 600 and Re = 700 for comparison

with Figure 3.1 and Figure 3.2, respectively. There is relatively good agreement. These

figures can also be compared with Figure 1 and Figure 2 in Thomas et al. (2014) and the

agreement is clear.

An unphysical feature can be seen on the right-hand side of Figure 3.16 which is

caused by the edge effects propagating into the region of interest. For this plot the low-
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Figure 3.16: Space/time contour plot of log|ζ| for Re = 700 using finite-difference formulation,
for comparison with Figure 3.2. The contour map is constructed in the same manner as Fig-
ure 3.1 and the agreement is good. There are some unphysical effects on the right-hand side
encroaching on the region of interest.

amplitude threshold was chosen to be higher than in Figure 3.2 (-10 rather than -12) so

as to disguise some edge effects that had encroached further into the domain.

Attempts were made to reduce the impact of this unphysical behaviour but, as can

be seen in Figure 3.16, the issues were never fully resolved. Efforts involved increasing

the order of the temporal and spatial schemes. At the inlet and outlet, the order of the

closure was reduced to improve the overall numerical stability of the scheme and sev-

eral combinations of boundary conditions were implemented. A higher order predictor
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for the explicit terms and integral constraint was also explored and the iteration of the

corrector step used in Togneri (2011) was reintroduced to little effect.

The work of Thomas et al. (2014) is based on a very similar formulation and was ca-

pable of producing a contour plot for Re = 700 with no unphysical growth at the domain

edges. However, having developed the spectral method to perform the same simulations

faster allows for larger Reynolds numbers and later times to be explored and so, while

these boundary issues could realistically have been resolved, the existence of an alterna-

tive, more efficient method renders this moot. All simulation results in the subsequent

chapters will have been attained by the spectral method.

Summary

The comparison of the simulation results with the behaviour predicted by the Floquet

eigenvalue problem has served to validate each method against the other. A qualitative

assessment of the spatial/temporal structures in Section 3.1 provided some insight into

the evolution of wavepackets in a Stokes layer, and a quantitative comparison with the

eigenvalue problem in Section 3.2 and Section 3.3 revealed that the temporal growth-

rate of the disturbance maximum appears to approach the predicted value. Also, it was

shown in Section 3.4 that in the one unstable case documented in this chapter (Re = 750)

the temporal evolution of each wavepacket suggests that this instability is absolute.

It is noted for all cases considered that the temporal growth-rate at each spatial loca-

tion is very close to the temporal growth-rate of the disturbance maximum. This suggests

that the transition from Floquet stability to Floquet instability appears to coincide with

the onset of absolute instability. From the cases considered, there does not appear to be

an intermediate region where the flow is convectively unstable before absolute instabil-

ity sets in. For other flows, such as the rotating disc boundary layer (Lingwood, 1997),

the transition from stability to instability coincides first with convective instability and

a further increase in Re corresponds to the onset of absolute instability.

Having validated the simulation (spectral method) against the linear stability anal-

ysis (Floquet method), a final comparison was made between the spectral and finite-

difference schemes for streamwise discretisation in Section 3.5. The problems arising

from the streamwise boundary conditions and the comparatively long running-time of

the finite-difference simulations only allowed for comparison of the space/time contour
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plots for three periods of wall oscillation. However, given the agreement between the

other methods and the close agreement with the work of Thomas et al. (2014), this was

deemed sufficient validation.
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Chapter 4

Absolute and convective instability

in periodic flows

Introduction

The leading-order behaviour of a perturbation to a temporally periodic flow can be in-

vestigated through the asymptotic evaluation of the exact integral solution to the distur-

bance equation. Such an analysis serves to highlight the deeper connection between the

eigenvalue problem discussed in Chapter 1 and the simulation of disturbance evolution

as discussed in Chapter 2 so that these approaches can be compared in more depth than

has been seen in Chapter 3. Additionally, this approach provides a framework for the

definitions of absolute and convective forms of instability, terms that have thus far been

used descriptively rather than rigorously.

The work described herein explores two different approaches to evaluating the solu-

tion integral: the method of steepest-descent and the eponymous method first developed

by Briggs (1964) in the field of plasma physics. Both approaches are equivalent but, due

to the different processes involved, more insight is provided by the consideration of both.

The extension of these methods to periodic media was first developed for the spatially

periodic case by Brevdo & Bridges (1996). This approach was then adapted to the time-

periodic regime in Brevdo & Bridges (1997) and the present work is based upon this ap-

proach. In particular, the solution integral is derived following Brevdo & Bridges (1997)

as closely as possible, while the asymptotic evaluation is developed from the steady cases

(Briggs, 1964; Bers, 1983; Lingwood, 1997; Huerre, 2002) to provide the level of detail
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that was deemed necessary to contextualise and inform the subsequent work.

The approach detailed here is revisited in Appendix A for the case of the Ginzburg–

Landau equation with periodic coefficients. For this equation, it is possible to write down

the exact solution to the differential equation. This provides a means of comparing the

leading-order analysis against the exact solution and is directly comparable with Brevdo

& Bridges (1997).

In Section 4.1 the solution is derived following Brevdo & Bridges (1997). The leading-

order behaviour of this integral is found in Section 4.2 by the method of steepest-descent

(Huerre, 2002) and Briggs’ method (Briggs, 1964), each adapted for the time-periodic

case. Additionally, the results of these sections provide a means of interpretation of

the numerical simulation results in terms of convective and absolute instability (which

are rigorously defined in this chapter) and through the derivation of the growth-rate

measures already used.

The methods discussed in this chapter are then applied to the semi-infinite Stokes

layer in Chapter 5.

4.1 Integral solution to the periodic problem

This section is concerned with finding an integral expression for the disturbance in a

periodic flow that is generated by some external forcing. Since Squire’s theorem (Squire,

1933) has been shown to hold for temporally periodic flows (Section 1.1), only the two-

dimensional problem will be considered in this section.

A 2D periodic solution to the nondimensional Navier–Stokes equations, U (y,τ), is

perturbed and the resulting equations are linearised and combined into a single partial

differential equation (PDE). This process is similar to the derivation of the disturbance

equations in Section 1.1 except that the x-dependence is retained. For this chapter, the

problem will be kept as general as possible so that the work is appropriate for any peri-

odic flow.

The independent variables of the resulting PDE are: τ > 0, the nondimensional time;

x ∈ (−∞,∞), the streamwise co-ordinate; and y, the wall-normal co-ordinate which may

be finite or semi-infinite. The equation describing the evolution of a perturbation to the
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basic state U is [
∂
∂τ
∇2 +ReU (y,τ)∇2 ∂

∂x
−ReU ′′ ∂

∂x
− 1

2
∇4

]
v(x,y,τ) = 0. (4.1.1)

This is not an equation one would generally expect to solve analytically, which is why

numerical methods are usually deployed. It is, however, possible to ascertain the leading-

order behaviour.

First, the problem is simplified by discretisation in y. This results in the y-derivatives

being replaced with matrix approximations and reduces the number of independent vari-

ables by converting the solution ψ(x,y,τ) to a vector ψ(x,τ) of size N . Though no partic-

ular discretisation need be committed to for this section, it is suggested that the reader

bear in mind the Chebyshev discretisation of Section 1.2.

The differential equation can then be written as the differential matrix problem,

 ∂∂τ
(
∂2

∂x2 I +D2
)

+ReU (τ)
(
∂2

∂x2 I +D2
)
−ReU ′′(τ)

∂
∂x
I − 1

2

(
∂2

∂x2 I +D2
)2v(x,τ)

= 0, (4.1.2)

where I denotes the identity matrix of size N . The basic state is incorporated in U (τ)

and U ′′(τ) which contain the discrete vector expressions of U (y,τ) and U ′′(y,τ) along

the diagonal andD j is the matrix approximation to the jth y-derivative. This differential

equation will be subject to some initial condition

v(x,0) = v0(x), (4.1.3)

with v0(x)→ 0 as x→±∞. Furthermore, it will be assumed that

v(x,τ)→ 0 as x→±∞ ∀τ. (4.1.4)

4.1.1 Fourier transform

The work of Brevdo & Bridges (1997) assumes a differential equation with time-periodic

coefficients, but of a slightly different form to (4.1.1). This required some minor adapta-

tion for the present work, though in essence the approach is the same.

Consider now the problem under some external forcing. This forcing can be used
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to generate the initial disturbance and some such forcing was described in (2.3.1). The

equation governing the response of the system to such forcing is

 ∂∂τ
(
∂2

∂x2 I +D2
)

+ReU (τ)
(
∂2

∂x2 I +D2
)
−ReU ′′(τ)

∂
∂x
I − 1

2

(
∂2

∂x2 I +D2
)2v(x,τ)

= ḡ(x,τ), (4.1.5)

with initial condition (4.1.3). The following Fourier transform can then be applied

w(α) =
∫ ∞
−∞
w(x)e−iαxdx, (4.1.6a)

w(x) =
1

2π

∫ ∞
−∞
w(α)eiαxdα, (4.1.6b)

where α can still be interpreted as a streamwise wavenumber but is now, in general,

complex. Note that a function is distinguishable from its transform by the choice of

independent variable.

Applying this transform to (4.1.5) gives

[
∂
∂τ

(
D2 −α2I

)
+ iαReU (τ)

(
D2 −α2I

)
− iαReU ′′(τ)− 1

2

(
D2 −α2I

)2
]
v(α,τ)

= ḡ(α,τ). (4.1.7)

Defining the operator K(α) =D2 −α2I , multiplying through by K−1(α) and rearranging

gives

∂
∂τ
v(α,τ) =

[1
2
K(α) + iαRe

(
U ′′(τ)K−1(α)−U (τ)

)]
v(α,τ) + g(α,τ), (4.1.8)

where g(α,τ) = K−1(α)ḡ(α,τ). The operator K is invertible since it only acts on vectors in

a space where the boundary conditions holds.

The operator

L(α,τ) =
1
2
K(α) + iαRe

(
U ′′(τ)K−1(α)−U (τ)

)
(4.1.9)

only has τ dependence through the basic state U , so L(α,τ) is 2π-periodic in τ . The

definition of this operator allows the problem to be written in the much more compact
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form
∂
∂τ
v(α,τ) = L(α,τ)v(α,τ) + g(α,τ), (4.1.10)

with initial condition

v(α,0) = v0(α), (4.1.11)

where v0(α) is the Fourier transform of v0(x). This is a similar expression to that derived

in Brevdo & Bridges (1997).

4.1.2 Fundamental matrix and Floquet theory

Consider now the matrix initial-value problem formulated for the associated homoge-

neous system,
∂
∂τ

Φ(α,τ) = L(α,τ)Φ(α,τ), (4.1.12)

with initial condition

Φ(α,0) = I . (4.1.13)

The matrix Φ is the fundamental matrix of the problem and so the columns are linearly

independent vectors from which any solution can be constructed. The periodicity of

L suggests the application of Floquet theory to solve the differential equation, so the

solution is decomposed as

Φ(α,τ) =Q(α,τ)eA(α)τ , (4.1.14)

where Q(α,τ) is a non-singular, smooth, 2π-periodic matrix function of τ . Taking this

expression at τ = 0, the initial condition reveals that Q(α,0) = I . From periodicity we

must therefore have Q(α,2π) = I . Thus,

A(α) =
1

2π
log

(
Φ(α,2π)

)
, (4.1.15)

It will be assumed here that A(α) is analytic for all α ∈ C. This conjecture is justified in

some detail in Brevdo & Bridges (1996) for the spatially periodic case.

It follows from this assumption that

Q(α,τ) = Φ(α,τ)e−A(α)τ (4.1.16)

is an entire function in α.
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4.1.3 Laplace transform

The Floquet decomposition can be used to transform the forced problem to a problem

with constant coefficients by making the substitution

v(α,τ) =Q(α,τ)f (α,τ), (4.1.17)

where f is a vector function. Since v satisfies (4.1.10), differentiation with respect to τ

gives,
∂Q
∂τ

f +Q
∂f
∂τ

= Lv + g = LQf + g, (4.1.18)

where the independent variables have been ignored. It follows from the above consider-

ation of (4.1.12) that

∂Q
∂τ

f +Q
∂f
∂τ

= LΦe−Aτf + g,

=
∂Φ
∂τ

e−Aτf + g,

=
∂
∂τ

[
QeAτ

]
e−Aτf + g,

=
(
∂Q
∂τ

+QA
)
f + g.

Cancellation of the (∂Q/∂τ)f terms results in a differential equation in f with constant

coefficients and a periodic forcing,

∂
∂τ
f (α,τ)−A(α)f (α,τ) =Q−1(α,τ)g(α,τ). (4.1.20)

The initial value is found from v = Qf by recalling that Q(α,0) = I and v(α,0) = v0(α),

giving

f (α,0) = v0(α). (4.1.21)

The following Laplace transform can be applied to this problem (a function and its trans-

form are again distinguished by their independent variables):

w(µ) =
∫ ∞

0
w(τ)e−µτ dτ, (4.1.22a)

w(τ) =
1

2π

∫ σ+i∞

σ−i∞
w(µ)eµτ dµ. (4.1.22b)
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The appropriate choice of σ is made below.

The resulting equation is

[A(α)−µI ]f (α,µ) = s(α,µ), (4.1.23)

where

s(α,µ) = −
∫ ∞

0
Q−1(α,τ)g(α,τ)e−µτ dτ − v0(α). (4.1.24)

The solution to (4.1.20) in Laplace space can then be written as

f (α,µ) = [A(α)−µI ]−1 s(α,µ). (4.1.25)

The notation used here differs from that implemented in Brevdo & Bridges (1997),

where the Laplace transform was introduced based on some frequency ω that is related

to the Floquet exponent used here by ω = iµ. The symbol µ is then used to denote that

Floquet multiplier in Brevdo & Bridges (1997). The decision to diverge from this notation

was made for consistency with the rest of the current work. Note also that it could be

considered misleading to refer to the ‘frequency’ of the disturbance without taking into

account the periodic component in the Floquet normal-mode form.

4.1.4 Fourier and Laplace inversion

To transform back into physical space, first apply the inverse Laplace transform (4.1.22b)

to (4.1.25) to get f (α,τ). This then gives

v(α,τ) =
Q(α,τ)

2π

∫ σ+i∞

σ−i∞
[A(α)−µI ]−1 s(α,µ)eµτ dµ, (4.1.26)

where

σ >max
{
µr | det[A(α)−µI ] = 0, α ∈ R

}
. (4.1.27)

It will be seen below that this choice of σ ensures that causality is satisfied.

The inverse Fourier transform (4.1.6b) is then applied, giving the integral solution to

the forced problem (4.1.5) as

v(x,τ) =
1

4π2

∫ ∞
−∞
Q(α,τ)

∫ σ+i∞

σ−i∞
[A(α)−µI ]−1 s(α,µ)eµτ+iαxdµdα. (4.1.28)
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4.1.5 Dispersion relation

When performing the integration in (4.1.28), the existence of poles in the complex plane

are important. We can see from (4.1.28) that the integrand is not defined when the matrix

[A(α)− µI ] is singular, i.e. when det[A(α)− µI ] = 0. In other words, the integrand is not

well defined at the eigenvalues of the matrix A. The dispersion relation will be defined

to be the characteristic polynomial of this matrix

D(α,µ) = det[A(α)−µI ] . (4.1.29)

Roots of D (being singularities of the integrand) are responsible for non-trivial solu-

tions to the problem. In other words, the dispersion relation is a relationship between α

and µ for which the roots indicate that the system allows for normal mode solutions with

this wavenumber and Floquet exponent. This means that solving D(α,µ) = 0 is equiva-

lent to solving the eigenvalue problem described in Chapter 1, except that now α ∈ C in

general.

The integral solution (4.1.28) can be rewritten to show explicitly that roots to the

dispersion relation generate poles in the integrand. This is achieved by introducing the

adjugate matrix of [A(α) − µI ]. The adjugate of a matrix is the transpose of the cofactor

matrix and is defined in this way so that the identity

[A(α)−µI ]−1 =
1

det[A(α)−µI ]
adj [A(α)−µI ] (4.1.30)

holds. Here, adj denotes the adjugate which is not to be confused with the adjoint of the

matrix. Due to the manner in which it is constructed, adj [A(α)−µI ] is well-defined for

any choice of α and µ since every entry of A is well-defined. This allows for (4.1.28) to be

rewritten as

v(x,τ) =
1

4π2

∫
F
Q(α,τ)

∫
L

G(α,µ)
D(α,µ)

eµτ+iαxdµdα, (4.1.31)

where

G(α,µ) = adj [A(α)−µI ]s(α,µ),

and the contours F and L are the inversion contours for the Fourier and Laplace trans-

forms. That is, the real line and the straight line (σ − i∞,σ + i∞), respectively. This shows

explicitly that the integrand has poles when D(α,µ) = 0.
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The roots of the dispersion relation are of interest so define the µ-roots of D to be the

values of µ satisfying D(α,µ) = 0 for some given α and let the α-roots be the values of α

satisfying D(α,µ) = 0 for some given µ. Note that (as shown for α ∈ R in Chapter 1) for

any given α there are an infinite number of µ-roots (and vice versa). For this reason, it is

sometimes considered necessary to introduce a subscript to indicate that this is one value

of many, i.e. µj(α) for j = 0,1,2, ... describes all µ-roots of D and α±k (µ) for k = 0,1,2, ...

describes all α-roots, with the superscript indicating the sign of the imaginary part (the

significance of this will be discussed later). In most cases only the most dominant roots

are of interest and these may be indicated by dropping the subscript.

4.2 Leading-order asymptotic behaviour

The leading-order behaviour of the solution integral (4.1.31) will now be considered in

the case of an impulsive forcing ḡ(x,τ) = δ(x)δ(τ) where δ is the Dirac-delta function. It

is important to consider a forcing localised in both space and time so that after the initial

excitation the asymptotic behaviour is dictated by the properties of the flow. For instance,

it would be misleading to refer to a disturbance as absolutely unstable when the flow is

subjected to forcing at regular time intervals. In particular, an impulsive excitation is

used since this will excite all wavenumbers and frequencies equally.

There are two approaches to deducing the asymptotic behaviour of this integral: the

method of steepest-descent (Huerre, 2002; Lingwood, 1997) in which the µ-integral is

performed first, and Briggs’ method (Briggs, 1964; Bers, 1983; Lingwood, 1997) in which

the α-integral is performed first. An excellent comparison of these methods is presented

by Lingwood (1997) for the rotating disc boundary layer in which the local velocities are

dependent on the radial direction. This review has greatly informed the current work

and differs from the present analysis through the steady, spatially inhomogeneous basic

state.

It will be shown that the leading-order behaviour deduced is independent of the ap-

proach taken, but a naïve application of the steepest-descent method results in only a

necessary condition for absolute instability. Briggs’ method provides the framework for

a sufficient condition via the collision criteria.

For the entirety of this section a variable, its Fourier transform, and its Laplace trans-

form are all denoted by the same symbol with the distinction being in the independent
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variable. For instance, f (x,τ) is a spatial function, f (α,τ) denotes the Fourier transform

and f (x,µ) denotes the Laplace transform while f (α,µ) has been acted on by both trans-

forms. This convention was used in Brevdo & Bridges (1996, 1997).

4.2.1 Integration contours

Consider the integral solution (4.1.31). In order to perform the integration along the

F and L contours, they will be closed by semi-circles of infinite radius such that the

integrand converges to zero along the semi-circular path, hence making no contribution

to the integral.

First, consider the contour F and assume that x > 0. In this case the contour can be

closed in the top half of the complex α-plane since

eiαx→ 0 as αi → +∞,

so the integrand vanishes in this limit. In the case x < 0 the contour must be closed in

the bottom half-plane to ensure the same convergence. Hence, poles in the integrand for

αi > 0 contribute to the downstream (x > 0) evolution of a disturbance and poles with

αi < 0 contribute to the upstream (x < 0) evolution. This is illustrated in Figure 4.1b.

Consider now the contour L when τ > 0. In this case the contour will be closed in the

left half-plane since

eµτ → 0 as µr →−∞,

so the integrand vanishes in this limit. This is illustrated in Figure 4.1a. Notice that

choosing σ such that all poles are on the left-hand side of L has ensured causality since

for τ < 0 the integrand converges to zero in the right half-plane. The integral is therefore

zero for τ < 0 since there are no poles contained within this contour. In other words, the

choice of σ has ensured that the disturbance cannot develop for any times prior to the

forcing.

In addition to the contours, Figure 4.1 shows the curves µ(F) and α±(L). These curves

are the poles of the integrand generated along the contours of integration. The curve

µ(F) represents the µ-roots of D for α ∈ F and α±(L) represent the α-roots of D for µ ∈ L

(with the superscript indicating upstream or downstream contribution). It was previ-

ously noted that for a given α or µ an infinite number of poles exist, but in the figure
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µr

µi

µ(F)

L

τ > 0 τ < 0

(a)

α−(L)

α+(L)

x > 0

x < 0F αr

αi

(b)

Figure 4.1: Sketch of the integration contours and the corresponding poles in the complex µ-
plane (a) and complex α-plane (b). The closure of the Fourier contour F above the real line
corresponds to x > 0 to ensure that the integrand vanishes on this infinite-radius semi-circle.
The closure below the real line corresponds to x < 0. The closure of the Laplace contour L to the
left of the imaginary axis corresponds to τ > 0 as the integrand vanishes on this infinite-radius
semi-circle. Closure to the right corresponds to τ < 0. The poles contained in these closed
contours therefore contribute to the asymptotic evaluation of the solution integral and only the
poles corresponding to the leading-order are shown. The poles correspond to the roots of the
dispersion relationD. The curve µ(F) denotes the dominant µ-root for α ∈ F and α±(L) denotes
the dominant α-roots for µ ∈ L with the superscript indicating whether the poles correspond to
x > 0 or x < 0. Since σ was chosen to ensure that all poles occur to the left of L, when τ < 0
there is no contribution to the asymptotics, enforcing causality.

only the poles with the greatest contribution are shown. For the µ-roots this means that

<{µ(α)} ≥<{µj(α)} ∀j. (4.2.1)

Similarly,

={α+(µ)} ≤={α+
k (µ)} and

={α−(µ)} ≥={α−k (µ)} ∀k.

It should become clear as the analysis progresses exactly why these choices are considered

dominant.

4.2.2 Method of steepest-descent

The process described herein is adapted for a temporally periodic flow from Lingwood

(1997) and Huerre (2002).
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Laplace integration

Consider first the Laplace integral,

v(α,τ) =
1

2π

∮
CL

G(α,µ)
D(α,µ)

eµτ dµ, (4.2.3)

for some given α where CL is the closed contour described above: the line L with semi-

circular closure to the left. This is then related to v(x,τ) by

v(x,τ) =
1

2π

∫
F
Q(α,τ)v(α,τ)eiαxdα. (4.2.4)

Notice that v(α,τ) is not exactly the Fourier transform of v(x,τ) due to the appearance of

Q(α,τ) but this is a practical definition that incorporates the periodicity of the problem

and keeps notation compact and efficient.

The integral (4.2.3) can be evaluated by appealing to Cauchy’s residue theorem which

states that for a complex function f being integrated along a closed contour C with poles

cj (j = 1, . . . , J) inside C, ∮
C
f (z)dz = 2πi

J∑
j=1

Res(f , cj ), (4.2.5)

where Res(f , cj ) is the Residue of the integrand f at the pole cj .

For integrands that can be written in the form f (z) = g(z)/h(z) where g and h are

holomorphic and h(cj ) = 0, such as (4.2.3), the residue can be calculated by

Res(f , cj ) =
g(cj )

h′(cj )
(4.2.6)

provided h′(cj ) , 0 (this means that cj is a simple pole). Here, ′ denotes differentiation

with respect to the variable of integration (in this case z). Applying this method to (4.2.3)

gives

Res
(
G(α,µ)
D(α,µ)

eµτ ,µj(α)
)

=
G
(
α,µj(α)

)
∂D
∂µ

(
α,µj(α)

)eµj (α)τ , (4.2.7)

with µj(α) being any µ-root of D for the given α. This gives,

v(α,τ) = i
∞∑
j=1

G
(
α,µj(α)

)
∂D
∂µ

(
α,µj(α)

)eµj (α)τ . (4.2.8)
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Since the leading-order behaviour as τ →∞ is of interest, denote by µ(α) the µj(α) with

largest real part as in (4.2.1). It is clear from (4.2.8) that this is the most dominant term

as τ→∞. Note that α ∈ F, µ(α) lies on the curve µ(F) shown in Figure 4.1a.

Performing the Laplace integration in this way has resulted in

v(α,τ) ∼ i
G
(
α,µ(α)

)
∂D
∂µ

(
α,µ(α)

)eµ(α)τ (4.2.9)

to leading order.

Fourier integration

The solution (4.1.31) can now be written as

v(x,τ) ∼ i
2π

∫
F
Q(α,τ)

G
(
α,µ(α)

)
∂D
∂µ

(
α,µ(α)

)eµ(α)τ+iαxdα. (4.2.10)

The leading-order behaviour of this integral as τ → ∞ can be found along the spa-

tial/temporal ray x/τ = V , where V is a constant, by the method of steepest-descent.

First, use x/τ = V to write the integral in the appropriate form

v(τ ;V ) ∼ i
2π

∫
F
Q(α,τ)

G
(
α,µ(α)

)
∂D
∂µ

(
α,µ(α)

)e[iαV+µ(α)]τ dα. (4.2.11)

By defining

ρ(α;V ) = iαV +µ(α), (4.2.12)

and setting

h(α,τ) =
i

2π
Q(α,τ)

G
(
α,µ(α)

)
∂D
∂µ

(
α,µ(α)

) . (4.2.13)

This integral can be written in the form

v(τ ;V ) ∼
∫
F
h(α,τ)eρ(α;V )τ dα, (4.2.14)

where h is 2π-periodic in τ .

To perform the method of steepest-descent, a point α∗ must be found such that ρ has
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a saddle point at this location, i.e.

∂ρ

∂α
(α∗;V ) = 0. (4.2.15)

From the definition of ρ, this is equivalent to the condition

∂µ

∂α
(α∗;V ) = −iV . (4.2.16)

It is important to note that the location of the saddle point α∗ depends on the ray of

interest (i.e. the choice of V ). The exponent ρ can be approximated near this saddle

point using the Taylor expansion

ρ(α;V ) ∼ ρ(α∗;V ) +
1
2
∂2ρ

∂α2 (α∗;V )(α −α∗)2. (4.2.17)

The integral contour F can be deformed to the path of steepest-descent through α∗. As

τ → ∞ the dominant contribution to the integral will arise in the vicinity of α∗ so the

deformed contour can be restricted to a small segment around α∗ before being extended

infinitely on either side. In evaluating the integral it is therefore appropriate to approxi-

mate h(α,τ) by h(α∗, τ) and use the Taylor expansion of ρ, giving

v(τ ;V ) ∼
∫ ∞
−∞
h(α∗, τ)e

[
ρ(α∗;V )+ 1

2 (α−α∗)2 ∂
2ρ
∂α2 (α∗;V )

]
τ

dα,

= h(α∗, τ)eρ(α∗;V )
∫ ∞
−∞

e

[
1
2
∂2ρ
∂α2 (α∗;V )τ

]
α2

dα.

The integral is of Gaussian form, giving the solution

v(τ ;V ) ∼ h(α∗;V )eρ(α∗;V )τ
√

−π
1
2
∂2ρ
∂α2 (α∗;V )τ

. (4.2.19)

Using the definitions of h and ρ gives the following leading-order expression for the

solution along ray x/τ = V ,

v(x,τ) ∼
Q(α∗, τ)G(α∗,µ∗)[

2πτ ∂
2µ
∂α2 (α∗)

] 1
2 ∂D
∂µ

(
α∗,µ∗

)e
3πi

2 +iα∗x+µ∗τ , (4.2.20)
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where α∗ is given by
∂µ

∂α
(α∗) = −iV (4.2.21)

and µ∗ = µ(α∗).

To an observer travelling along the ray x/τ = V the disturbance will therefore take the

form of a wave with complex wavenumber α∗. Temporally the wavepacket will take the

quasi-periodic form described by the product of a 2π-periodic function with exp(µ∗τ).

The observed growth over each period along this ray is given by the real part of the

exponent in (4.2.20), that is

λ(V ) = −={α∗}V +<{µ(α∗)} (4.2.22)

Fixed spatial location (V = 0)

At face value, this suggests that absolute instability can be found by setting V = 0 to

consider the leading-order temporal behaviour at any spatial location since

x/τ = 0⇒ x = x0 = constant.

In this case α∗ is the point satisfying

∂µ

∂α
(α∗) = 0. (4.2.23)

Relating this derivative to derivatives of the dispersion relation D gives

∂D
∂α

=
∂D
∂µ

∂µ

∂α
(4.2.24)

so, for µ∗ = µ(α∗), the condition (4.2.23) is equivalent to

∂D
∂α

(
α∗,µ∗

)
= 0, (4.2.25)

meaning that there is a saddle point of the dispersion relation at α∗. Using this fact gives

∂2µ

∂α2 =
∂2D

∂α2

[
∂D
∂µ

]−1

, (4.2.26)
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and so the leading-order response (4.2.20) can be written as

v(x,τ) ∼
Q(α∗, τ)G(α∗,µ∗)√

2πτ ∂
2D
∂α2

(
α∗,µ∗

)
∂D
∂µ

(
α∗,µ∗

)e
3πi

2 +iα∗x+µ∗τ . (4.2.27)

In general, the condition (4.2.25) is interpreted as a saddle point which manifests

when mapping from the µ-plane to the α-plane. This is a computationally demanding

problem since α appears to the fourth power in the eigenvalue problem whereas µ only

appears linearly. Instead, an equivalent condition will be used. Namely, this is the ex-

istence of a cusp at this location (Kupfer et al. , 1987) when mapping from the α-plane

to the µ-plane. The relationship between saddle points and cusps becomes apparent by

observing that
∂α
∂µ
→∞ as µ→ µ∗ (4.2.28)

is a direct consequence of (4.2.23). The location of such a cusp would then dictate tem-

poral growth along any ray x/τ = 0 when<{µ∗} > 0 and decay when<{µ∗} < 0 according

to (4.2.22).

Necessary but not sufficient condition

Implicit in the above analysis is the assumption that the multiple Riemann sheets of µ(α)

can be considered separately. However, this is not always the case. The evaluation of

the Fourier integral is only valid if there is no singularity of the integrand near enough

to the saddle point that the deformation to the path of steepest-descent is impossible

(Lingwood, 1997). Such a singularity exists when ∂D/∂µ = 0 and the location of this pole

is a branch point of µ(α) and so the Riemann sheets cannot all be considered separately

near such a singularity.

This highlights the possibility of this approach being invalid in some cases, but ensur-

ing validity requires a careful consideration of the geometry of µ(α) in the neighbourhood

of the steepest-descent path (Lingwood, 1997).

Without this additional consideration, the method of steepest-descent does not pro-

vide a sufficient condition for absolute instability as not all saddle points satisfy the col-

lision criteria (Brevdo & Bridges, 1997). In terms of the saddle point in the α-plane, this

criteria requires that the branches of the saddle point originate in different half-planes.

This can be interpreted as the saddle point representing the coalescence of a downstream
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mode and an upstream mode. It will be shown that for a saddle point that does not satisfy

this criteria, there is no asymptotic contribution.

The method of steepest-descent provides a necessary condition for absolute instabil-

ity, namely that the dispersion relation D has a saddle point in the complex α-plane at

α∗ satisfying<{µ(α∗)} > 0. The location of saddle points can be found by adapting the

eigenvalue solver developed in Chapter 1. This will be detailed later. In order to provide

insight into the origin of the collision criteria, Briggs’ method will now be described.

4.2.3 Briggs’ Method

The process described herein is adapted from Briggs (1964) and Lingwood (1997). It is

also informed by the review of this method carried out by Bers (1983). Since the clas-

sification of absolute and convective instabilities is of primary interest here, only the

behaviour along the ray x/τ = 0 will be considered for this method. It is straightfor-

ward to explore any other ray in the same manner as for the method of steepest-descent

(Lingwood, 1997).

Fourier integration

The derivation of Briggs’ method requires the Fourier integral to be performed first. The

contour along which this integral is performed depends on whether considering x > 0

(downstream) or x < 0 (upstream). Let C+
F be the contour consisting of F closed by a

semi-circle in the upper half-plane and C−F be closed in the lower half-plane. In the fol-

lowing analysis the upstream and downstream cases will involve very similar expressions

so let x+ denote x > 0 and x− denote x < 0. It then becomes possible to write the sepa-

rate expressions for upstream and downstream evolution in a single line. Utilising this

compact notation, the Fourier integral can be written as

v(x±,µ) =
1

2π

∮
C±F

Q(α,τ)
G(α,µ)
D(α,µ)

eiαx
±

dα, (4.2.29)

which can be related to v(x±, τ) by performing the Laplace integral,

v(x±, τ) =
1

2π

∫
L
v(x±,µ)eµτ dµ. (4.2.30)
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Letting H(x) denote the heavyside function,

H(x) =

 1 x > 0,

0 otherwise

provides a means of writing (4.2.29) for all x,

v(x,µ) =H(x)v(x+,µ) +H(−x)v(x−,µ), (4.2.31)

and a similar expression holds for v(x,τ). It is straightforward to apply Cauchy’s residue

theorem in this case, noting that the poles in each half-plane only contribute to the rele-

vant choice of x±. Remembering that α±k (µ) denotes the α-roots of D with upstream (−)

or downstream (+) contributions, we can write

Res
(
Q(α,τ)

G(α,µ)
D(α,µ)

eiαx
±
,α±k (µ)

)
=Q(α±k (µ), τ)

G
(
α±k (µ),µ

)
∂D
∂α

(
α±k (µ),µ

)eiα
±
k (µ)x± , (4.2.32)

having used the g/h rule described above. This gives the two expressions

v(x±,µ) = ±i
∞∑
k=1

Q(α±k (µ), τ)
G
(
α±k (µ),µ

)
∂D
∂α

(
α±k (µ),µ

)eiα
±
k (µ)x± , (4.2.33)

where the ± at the start of this expression arises since the two contours are oriented in

opposite directions. Take the positive value for x > 0 and the negative value for x < 0. For

the downstream expression, take all the ± signs to be ‘+’, and take them all to be ‘−’ for

the upstream behaviour.

Observing the sign of the imaginary parts in the exponential terms reveals that the

upstream (downstream) expression consists of a superposition of modes that decay in the

upstream (downstream) direction. Inspection of these terms also justifies the selection of

dominant modes according to (4.2.2).

Taking this expression and performing the Laplace transform can, in principle, reveal

the detailed impulsive response. However, to deduce the asymptotic behaviour of v(α,µ)

as τ →∞ it is convenient to deform the Laplace contour L as far to the left as possible.

In order to explore this deformation consider a given µ and, fixing the imaginary part,

decrease the real part as far as possible. This process needs to be performed for all initial

µ on L, i.e. for all values of the imaginary part.

136



Absolute and convective instability in periodic flows

µr

µi
L

µ1

(a)

αr

αi

F̃

(b)

Figure 4.2: A sketch showing that as µ is moved horizontally (a), the poles corresponding to
α-roots of D also move (b). When µ1 is reached, a pole that originated in the lower half-plane
is now in the upper half-plane and so the contour F has been deformed to F̃ to ensure that both
the upstream and downstream expressions are continuous during the movement of µ.

If this horizontal movement can be continued into the stable region (µr < 0) for all

choices of the imaginary part then the largest term will decay as τ → ∞, but if there

exists a µ0 in the right half-plane beyond which this movement becomes invalid, then

this results in asymptotic temporal growth at every spatial location (as τ→∞).

Branch points and analytic continuation

As µ is moved left, the corresponding α-roots move around the complex plane and it is

possible for these poles to cross the real axis. For demonstrative purposes, let µ1 denote

a point along the horizontal path of µ such that a pole in the lower half of the α-plane

has crossed into the upper half-plane. An illustration of this is given in Figure 4.2.

This results in a discontinuous jump in the value of v(x+,µ) since there is now an

additional pole contained within the contour C+
F (so the jump is the size of the residue at

this pole). Hence, the µ at which this mode first touches the real axis is a branch point of

v(x+,µ). There is also a discontinuity in v(x−,µ) from the removal of a pole from within

the contour C−F . These same arguments hold in reverse for a pole moving from the upper

half-plane to the lower half-plane.

Branch points can be found for all possible imaginary parts of µ and branch curves

can be drawn as the locus of these branch points. The branch curve will be equivalent

to the curve µ(F) in Figure 4.1 since the branch points form just as a pole crosses into a

different half-plane, i.e. when α ∈ R.
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To deal with these branch curves, analytic continuations of v(x±,µ) can be defined

by deforming the F contour around these problem points to F̃ (see Figure 4.2) and then

closing the contour in the same manner as above. Letting C̃±F denote the deformed, closed

contours, the analytic continuations of v(x±,µ) can be written as

ṽ(x±,µ) =
1

2π

∮
C̃±F

Q(α,τ)
G(α,µ)
D(α,µ)

eiαx
±

dα. (4.2.34)

It is readily confirmed that that these are analytic continuations of v(x+,µ) and v(x−,µ)

since they are identically zero on the right-hand side of L and ṽ(x±,µ) are well defined at

any branch point. Cauchy’s residue theorem can then be used to write

ṽ(x±,µ) = ±i
∞∑
k=1

Q(α±k (µ), τ)
G
(
α±k (µ),µ

)
∂D
∂α

(
α±k (µ),µ

)eiα
±
k (µ)x± , (4.2.35)

which differs from (4.2.33) in the definition of α±k (µ). The superscript now refers to the

origin of the pole when µ ∈ L. If a pole crosses the real α-axis from above it remains

in the expression for ṽ(x+,µ) and if it crosses the real axis from below it remains in the

expression for ṽ(x−,µ). This allows for the possibility of ṽ(x,µ) growing with respect to

one or both spatial directions.

As for v(x,µ), the analytic continuation can be written for all x in terms of the heavy-

side function,

ṽ(x,µ) =H(x)ṽ(x+,µ) +H(−x)ṽ(x−,µ). (4.2.36)

Second-order poles (saddle points)

As µ is continually moved to the left, it is possible to define analytic continuations of

v(x+,µ) and v(x−,µ) until there is no further deformation of the F contour that is valid.

Let µ0 denote the point along the horizontal movement at which two poles originating

in opposite half-planes coalesce at α0. That is, as µ→ µ0 there exist k1 and k2 such that

α+
k1

(µ)→ α0 and α−k2
(µ)→ α0, see Figure 4.3. The deformed F contour is then pinched,

meaning it must pass through the pole at α0.

Being the point of coalescence of two simple poles, α0 is a double pole of the integrand

and therefore must satisfy
∂D
∂α

(α0,µ0) = 0. (4.2.37)
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µr

µi
L

µ0

(a)

αr

αi

F̃

α0

(b)

Figure 4.3: A sketch showing the pinching of the Fourier contour. As µ is moved horizontally
to µ0 (a), poles originating in each half-plane collide at α0 (b). This constrains the deformed
Fourier contour F̃ to pass through this point. This double pole now contributes equally to
both the upstream and downstream expressions. Notice that if this collision was between two
modes originating in the same half-plane, the contour would not be constrained in this way,
indicating the need for the collision criteria.

This results in an infinite contribution to both ṽ(x+,µ) and ṽ(x−,µ).

It is important to note that there is only a pinching of the deformed F contour if this

double pole corresponds to the collision of poles that originated in opposite half-planes.

The collision of poles that originate in the same half-plane produces a finite contribution

to ṽ(x±,µ).

It will now be shown that while it is informative to find a pair (α0,µ0) satisfying

D(α0,µ0) = 0, (4.2.38a)

∂D
∂α

(
α0,µ0

)
= 0, (4.2.38b)

which describes a saddle point of the dispersion relation, it is also necessary for this sad-

dle point to be of pinch-type, meaning that this collision is between two poles originating

in opposite half-planes. Only pinch-type saddle points contribute to the asymptotic be-

haviour as τ → ∞. This condition is referred to as the collision criteria in Brevdo &

Bridges (1997) and this term is also used for the current work.

To illustrate the behaviour around some double root α0 the dispersion relation can be
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expressed in some vicinity of α0 by the Taylor expansion,

D(α,µ) =D(α0,µ0) +
∂D
∂α

(
α0,µ0

)
(α −α0)+

∂D
∂µ

(
α0,µ0

)
(µ−µ0) +

1
2
∂2D

∂α2

(
α0,µ0

)
(α −α0)2+

1
2
∂2D

∂µ2

(
α0,µ0

)
(µ−µ0)2 +

1
2
∂2D
∂α∂µ

(
α0,µ0

)
(α −α0)(µ−µ0) + ... (4.2.39)

Using (4.2.38) and the fact that |α − α0| = O(|µ − µ0|
1
2 ) (a result carried across from the

steady case), retaining only the two largest terms gives

D(α,µ) ∼ ∂D
∂µ

(
α0,µ0

)
(µ−µ0) +

1
2
∂2D

∂α2

(
α0,µ0

)
(α −α0)2. (4.2.40)

This is an approximation to the dispersion relation in the neighbourhood of the double

pole. Set D(α,µ) = 0 to find a leading-order expression for the poles that collide at this

location. This gives

α ∼ α0 ± i
[
2
∂D
∂µ

(
α0,µ0

)] 1
2
[
∂2D

∂α2

(
α0,µ0

)]− 1
2

(µ−µ0)2. (4.2.41)

Note that, by design, α→ α0 as µ→ µ0.

Differentiating (4.2.40) with respect to α gives

∂D
∂α

(
α,µ

)
∼ 2

∂µ

∂α
(α0)

∂D
∂µ

(
α0,µ0

)
+
∂2D

∂α2

(
α0,µ0

)
(α −α0), (4.2.42)

and since ∂D/∂α = 0 it is also known that ∂µ/∂α = 0. This equation can then be written

as
∂D
∂α

(
α,µ

)
∼ ±i

[
2
∂D
∂µ

(
α0,µ0

)∂2D

∂α2

(
α0,µ0

)] 1
2

(µ−µ0)
1
2 . (4.2.43)

This reveals that, in a neighbourhood of α0, there are two poles moving towards one

another in opposite directions. Hence, if α0 denotes the collision point of two modes

originating in the same half-plane, then as α → α0 the terms in the expression (4.2.35)

cancel out since ∂D/∂α has opposite sign for each of the colliding modes.

Returning to the case in which α0 denotes a pinching point (collision between two

poles originating in opposite half-planes), both the contours C±F pass through α0. Here,
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ṽ(x±,µ) are given to leading order by

ṽ(x±,µ) ∼ ±iQ(α0,µ0)
G(α0,µ0)
∂D
∂α

(
α0,µ0

)eiα0x
±
, (4.2.44)

with the ± sign arising from the different orientations of the closed contours C±F . From

(4.2.43) it is clear that ∂D/∂α will have opposite signs for ṽ(x+,µ) and ṽ(x−,µ). Con-

sidering this sign difference along with that due to the contour orientation means that

ṽ(x+,µ) = ṽ(x−,µ). Thus, using (4.2.36) and the fact that H(−x) = 1−H(x) gives

ṽ(x,µ) ∼
±iQ(α0,µ0)G(α0,µ0)[

2∂D∂µ
(
α0,µ0

)
∂2D
∂α2

(
α0,µ0

)] 1
2

eiα0τ
eiα0τ

√
µ−µ0

, (4.2.45)

for all x. The ± depends on which of ṽ(x+,µ) and ṽ(x−,µ) are assigned the positive and

negative value from (4.2.43), remembering that the poles could have crossed the axis

several times before colliding so this must be found for any specific case of interest.

Laplace integration

The pole at µ0 is a branch pole arising from the square root singularity in (4.2.45) and

thus there is a horizontal branch cut to the left of µ0. Note that the method allows for an

infinite number of such µ0 for the continuous choice of imaginary part.

The Laplace integration can be performed over a contour L̃ that does not pass through

any of these branch cuts, i.e. it must lie to the right of the branch pole that appears

furthest to the right as shown in Figure 4.4.

Ignoring the ±, this gives

v(x,τ) ∼
Q(α0, τ)G(α0,µ0)[

2∂D∂µ
(
α0,µ0

)
∂2D
∂α2

(
α0,µ0

)] 1
2

eiα0x

2π

∫
L̃

eµτ
√
µ−µ0

dµ, (4.2.46)

where L̃ can be defined so that its end points are ±i∞. The integration is performed by

making the substitution

µ′ = −i
√
τ(µ−µ0)⇒

dµ′

dµ
= − i

2

√
τ

µ−µ0
(4.2.47)
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µr

µi
L

(a)

µr

µi

L̃

(b)

Figure 4.4: A sketch showing how L̃ can be defined. In (a), the movement of µ to the left of the
L contour reveals three singularities with horizontal branch cuts (from the square root in the
Taylor expansion). In (b), L has been deformed to L̃ so that all branch cuts continue to lie on
the left of this contour. In reality, since this process is performed for all possible values of µi ,
the locus of all branch cuts will form a curve. Provided this curve lies to the left of L̃, the exact
position of the contour is unimportant but it is straightforward to ensure that the endpoints of
L̃ are ±i∞.

so that µ′→±∞ as µ→±i∞ and thus

∫
L̃

eµτ
√
µ−µ0

dµ =
2i
√
τ

∫ ∞
−∞

eµ0τ−(µ′)2 dµ′

dµ
dµ

=
2ieµ0τ

√
τ

∫ ∞
−∞

e−(µ′)2
dµ′

= 2i

√
π
τ

eµ0τ .

This gives the leading-order behaviour as

v(x,τ) ∼
Q(α0, τ)G(α0,µ0)√

2πτ ∂D∂µ
(
α0,µ0

)
∂2D
∂α2

(
α0,µ0

)e
3πi

2 +iα0x+µ0τ , (4.2.49)

where α0 is the location of the pinch-type saddle point with µ0 = µ(α0) furthest right in

the µ-plane.

Notice that (4.2.49) is the same as (4.2.27) in the case that α∗ is a saddle point of

pinch-type. Both α∗ and α0 have been defined as saddle points of the dispersion relation,

but through Briggs’ method it is ensured that α0 satisfies the collision criteria.
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Spatially amplifying waves

Consider the possibility that the branch cut that is furthest to the right is to the left of

the imaginary axis. In this case the contour L̃ can be chosen to be the imaginary axis in

the µ-plane. Such a flow is not subject to absolute instability since all contributions along

the ray x/τ = 0 decay as τ →∞. In this case it is convenient to formulate the eigenvalue

problem to find a complex α for a prescribed, purely imaginary µ (instead of finding a

complex µ for a prescribed, real α).

When this approach is appropriate (i.e. in absolutely stable systems) the resulting

disturbance exhibits exponential behaviour in the streamwise x direction. For instance,

if αi > 0 the disturbance displays exponential growth for x > 0 and decay for x < 0. This

approach is often referred to in steady stability analysis as the spatial problem whereas

the temporal problem is that with the prescribed, real wavenumber.

4.3 Interpretation of results

Assume for this section that it is implicit in any reference to a saddle point that the col-

lision criteria is satisfied. A framework will be now be provided to distinguish between

convective and absolute instabilities when presented with the evolution of a disturbance

such as those discussed in Chapter 3. Consider the case in which the external forcing is

an approximation to the impulse g(x,τ) = δ(x)δ(τ) so that all wavenumbers and frequen-

cies are seeded approximately equally.

4.3.1 Definitions of absolute and convective instability

A stable solution will be defined for the present work as a solution v satisfying

max
x
{v(x,τ)} → 0 as τ→∞. (4.3.1)

A solution is considered unstable if the condition

max
x
{v(x,τ)} →∞ as τ→∞ (4.3.2)

holds. Notice that the possibility of a finite limit is not accounted for in either of these

definitions. This is because the linear stability characteristics are explored only through
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roots of the dispersion relation, which only allows for disturbances with exponential

growth/decay. In other settings, it may be necessary to define instability as any distur-

bance that is not stable according to (4.3.1).

The category of unstable solutions can be further decomposed into two forms of in-

stability depending on the behaviour of the solution at a fixed spatial location. In addi-

tion to satisfying (4.3.2), a convective instability exhibits temporal decay at every spatial

location,

v(x0, τ)→ 0 as τ→∞ ∀−∞ < x0 <∞. (4.3.3)

An absolute instability is one that grows with time at every location so will here be de-

fined as a disturbance that, in addition to satisfying (4.3.2), also satisfies

v(x0, τ)→∞ as τ→∞ ∀−∞ < x0 <∞. (4.3.4)

Again, the possibility of a finite limit is not considered in this framework.

An alternative means of describing these definitions is by considering the disturbance

evolution along spatial/temporal rays. A disturbance is categorised as unstable if there

exists some ray x/τ = V along which the disturbance grows with time and stable if no

such ray exists. If unstable, the instability is categorised as convective if temporal decay

is observed along the ray x/τ = 0 and absolute if this ray displays temporal growth. Re-

casting the above definitions in terms of rays results in essentially the same definitions

as used in Schmid & Henningson (2001).

4.3.2 Disturbance maximum

Consider the evolution of the disturbance maximum. Whether this is associated with

temporal growth or decay leads to the classification of the disturbance as stable or unsta-

ble.

Leading-order temporal behaviour

The expression for the growth along a given ray (4.2.22) can be differentiated with respect

to V ,

λ = −αiV +µr ⇒ dλ
dV

= −αi .

Setting this derivative to zero reveals that maximum growth is observed when αi = 0.
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Consider α ∈ R (since the maximum growth should correspond to such a value). Let

µ(α) denote the corresponding Floquet exponent so that this pair satisfy D(α,µ(α)) = 0.

Now let αmax be the real wavenumber that corresponds to the maximum growth-rate,

∂µr
∂α

(αmax) = 0. (4.3.5)

It follows that ∂µ/∂α is purely imaginary at this α. This is consistent with the saddle

point condition (4.2.21) since V must be real. It is now possible to select V so that an ob-

server moving along the ray observes a complex wavenumber αmax and Floquet exponent

µ(αmax). Hence, define Vmax such that

∂µ

∂α
(αmax) = −iVmax. (4.3.6)

An observer travelling along the ray x/τ = Vmax will then observe a growth of

λ(Vmax) = µr(αmax), (4.3.7)

since α ∈ R. This means there must exist some ray Vmax which displays the growth-

rate of the least stable mode for α ∈ R. Along this ray the asymptotic behaviour of the

disturbance for large times is given by

v(x0 +Vmaxτ,τ) ∼ Bmax(τ)
1
√
τ

eµ(αmax)τ , (4.3.8)

where Bmax is a matrix function that is 2π-periodic and includes all of the constants in

(4.2.20). Since it was observed from differentiating (4.2.22) that the ray corresponding

to greatest growth corresponds to αi = 0, the growth of the disturbance along the ray

x/τ = Vmax is greater than along any other ray. It follows from (4.3.8) that the disturbance

maximum should, in general, asymptotically behave like the least stable mode for α ∈ R.

The wavenumber αmax and Floquet exponent µ(αmax) can be found by solving the

eigenvalue problem for an appropriate selection of α ∈ R and selecting the α correspond-

ing to largest µr , as seen in Section 3.2. If µr(αmax) < 0 the disturbance is stable, and if

µr(αmax) > 0 the disturbance is unstable.

Note that no real value of Vmax can be chosen unless (4.3.5) is satisfied. This means

that if the least stable mode does not correspond to a local maximum, there is no valid
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ray along which this mode will manifest. This additional condition is used to justify

the selection of the predicted dominant mode when Re = 700 in Section 3.2. In this

case, the local maximum at α = 0.3727 was selected rather than the least stable mode at

α = 0. The maximum at α = 0 is not a turning point so (4.3.5) is not satisfied here. This

argument only holds for α ∈ R which allows the real and imaginary parts of the saddle

point condition to be considered separately.

Measuring the temporal growth-rate

Unlike in the single wavenumber case, the leading-order behaviour also incorporates a

1/
√
τ term multiplied by the expected normal mode solution as can be seen in (4.3.8). It is

expected that the disturbance maximum will display a superposition of each mode with

its complex conjugate (as for the single wavenumber case) so, taking the wall vorticity as

being representative of the disturbance evolution, the disturbance maximum is expected

to have the form

max
x
{ζ(x,0, τ)} ≈ 1

√
τ

(
p1(τ)eµτ + p2(τ)eµ̄τ

)
, (4.3.9)

for large τ . The 2π-periodic functions p1 and p2 are related through a half-period time-

shift, complex conjugation and multiplication by a constant, but only the periodicity is

necessary for this method.

An alternative to simply using the wall values would be to take the integral over the

wall-normal domain to account for the variation of ζ with y, but there is little practical

difference between these two approaches so measuring only the wall vorticity is well

justified for its simplicity.

Using this approach to measure the temporal growth associated with the disturbance

maximum has several drawbacks. First, the leading-order behaviour is deduced for the

ray x/τ = Vmax that exhibits greater growth than any other ray, but the choice of ray along

which this growth can be measured is not immediately apparent.

The location of this ray can be approximated by considering the wavepacket spacing,

but a small error in the choice of Vmax would mean that the measured growth-rate be-

comes less accurate with time as the spatial location associated with this ray at a given

time (x = τVmax) diverges from the actual value.

For this reason, the global maximum is taken at each time which causes some dis-

continuities in the time-history when subsequent maxima correspond to different spatial
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locations. This produces spurious results. Instead, the envelope of the wall vorticity

will be taken using a Hilbert transform and the time-history of this real-valued, positive

function will be used instead. Some information is lost through this approach, namely

the value of µi , but the temporal growth-rate µr can be calculated for each time step by

assuming the wall-vorticity to be of the form

max
x
|ζ(x,0, τ)| = 1

√
τ
p(τ)eµrτ , (4.3.10)

for large τ , where |f | is shorthand to denote the envelope of a function f , calculated by

the Hilbert transform.

Utilising the periodicity of p allows for the construction of the system

f0 = A, (4.3.11a)

f1 = Aλ, (4.3.11b)

where

f0 =
√
τ0 maxx|ζ(x,0, τ0)|, (4.3.12a)

f1 =
√
τ0 + 2πmaxx|ζ(x,0, τ0 + 2π)|, (4.3.12b)

A = p(τ0)eµrτ0 , (4.3.12c)

λ = e2πµr . (4.3.12d)

It can then be deduced that

µr =
1

2π
log(f1/f0), (4.3.13)

or, substituting the original known values back in,

µr(τ0) =
1

2π
log

(√
1 +

2π
τ0

maxx|ζ(x,0, τ0 + 2π)|
maxx|ζ(x,0, τ0)|

)
. (4.3.14)

This measure can be used to approximate the temporal growth-rate of the disturbance

maximum at a given time. This can then be compared with the expected growth-rate

found from the Floquet eigenvalue problem. This comparison was made in Section 3.2

using the identical expression (3.2.1). If µr > 0 the disturbance is unstable and if µr < 0

the disturbance is stable.
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4.3.3 Fixed spatial locations

By considering the temporal evolution of the disturbance at fixed spatial locations, un-

stable disturbances can be categorised as convective or absolute. Unstable disturbances

that exhibit temporal decay at every spatial location are convectively unstable and dis-

turbances that growth at every spatial location are absolutely unstable.

Leading-order temporal behaviour

Now consider the ray x/τ = 0, i.e. the laboratory frame. If temporal growth is observed

in this frame, the solution is absolutely unstable. For this frame of reference, the saddle

point condition becomes
∂µ

∂α
(α∗) = 0. (4.3.15)

In addition to this condition, it is also necessary that the saddle point is of pinch-type.

when this is the case, the asymptotic temporal behaviour of the disturbance at some

spatial location x0 for large τ is given by

v(x0, τ) ∼ B0(τ)
1
√
τ

eµ(α∗)τ , (4.3.16)

where B0 is a matrix function that is 2π-periodic and incorporates all the constants in

the full expression (4.2.27). If the growth-rate λ(0) =<{µ(α∗)} is positive, then the dis-

turbance is absolutely unstable.

Measuring temporal growth-rates

When considering the temporal evolution of a disturbance at a fixed streamwise location

it can be seen from (4.3.16) that, once the complex conjugate is incorporated, the wall-

vorticity will approach

ζ0(τ) = ζ(x0,0, τ) ≈ 1
√
τ

(
p1(τ)eµ0τ + p2(τ)eµ̄0τ

)
(4.3.17)

for large τ , where x0 is some fixed streamwise position, µ0 is the Floquet exponent as-

sociated with the evolution at a fixed spatial location and p1, p2 are 2π-periodic in τ .

Unlike the ray of maximum growth, it is trivial to ascertain the ray x/τ = 0 simply by

fixing x0. Furthermore, since the time-history at a fixed spatial location will have none
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of the problems associated with that of the disturbance maximum, the complex values

of the vorticity can be retained. Making use of the periodicity of p1 and p2 the following

system of equations can be derived

ζ0(τ0) =
1
√
τ0

(
p1(τ0)eµ0τ0 + p2(τ0)eµ

∗
0τ0

)
, (4.3.18a)

ζ0(τ0 + 2π) =
1

√
τ0 + 2π

(
p1(τ0)eµ0τ0e2πµ0 + p2(τ0)eµ

∗
0τ0e2πµ0

)
, (4.3.18b)

ζ0(τ0 + 4π) =
1

√
τ0 + 4π

(
p1(τ0)eµ0τ0e4πµ0 + p2(τ0)eµ

∗
0τ0e4πµ0

)
. (4.3.18c)

Then define

f0 =
√
τ0ζ0(τ0), (4.3.19a)

f1 =
√
τ0 + 2πζ0(τ0 + 2π), (4.3.19b)

f2 =
√
τ0 + 4πζ0(τ0 + 4π), (4.3.19c)

B1 = p1(τ0)eµ0τ0 , (4.3.19d)

B2 = p2(τ0)eµ
∗
0τ0 , (4.3.19e)

λ = e2πµ0 , (4.3.19f)

which results in the system of equations

f0 = B1 +B2, (4.3.20a)

f1 = B1λ+B2λ
∗, (4.3.20b)

f2 = B1λ
2 +B2λ

∗2. (4.3.20c)

This is an identical system of equations as for the single wavenumber case and can be

solved in the same way to give

λr =
={f2/f0}

2={f1/f0}
, (4.3.21a)

|λ| =

√
−
={f2/f1}
={f0/f1}

, (4.3.21b)
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and thus

<{µ0} =
1

2π
ln(|λ|), (4.3.22a)

={µ0} =
1

2π
cos−1

(λr
|λ|

)
. (4.3.22b)

Reintroducing the original variables gives the following expression for <{µ0} at each

time,

<{µ0(τ0)} = 1
2π

ln
[
−
√

1 +
4π
τ0

={ζ(x0,0, τ0 + 4π)/ζ(x0,0, τ0 + 2π)}
={ζ(x0,0, τ0)/ζ(x0,0, τ0 + 2π)}

]
. (4.3.23)

This measurement can be used to deduce the nature of an unstable solution: convective

or absolute. The disturbance can be shown to be unstable using (4.3.14), and then if the

instability is absolute<{µ0} > 0 and if the instability is convective<{µ0} < 0. Use was

made of (4.3.23) in Section 3.4 with the identical expression (3.4.1).

Summary

In this chapter, it was shown that the response of a temporally periodic flow to an im-

pulsive excitation can be described by a solution integral (Section 4.1). Two methods

were then implemented in Section 4.2 to deduce the leading-order behaviour of this in-

tegral as τ →∞. Both the method of steepest-descent and Briggs’ method were adapted

from the approaches well documented for the steady problem (Briggs, 1964; Bers, 1983;

Lingwood, 1997; Huerre, 2002).

Both methods were in agreement with regards to the expression for the leading-order

behaviour of the disturbance at fixed spatial locations. This behaviour is dictated by

the locations of saddle points in the dispersion relation in the complex α-plane (or the

corresponding cusps in the complex µ-plane). It was shown through Briggs’ method that

an additional condition is that the saddle point is of pinch-type. That is, it satisfies the

collision criteria that the branches of the saddle point originate in opposite halves of the

complex α-plane. A brief discussion touched on why a naïve application of the method

of steepest-descent can overlook this condition.

The concepts of absolute and convective instability were properly defined in Sec-

tion 4.3. By appealing to the expected form of the leading-order behaviour, a means of
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measuring both the temporal growth of the disturbance maximum and the growth at any

fixed streamwise location was derived, as used in Chapter 3.

The necessary and sufficient conditions described in this chapter will be applied to

the semi-infinite Stokes layer in Chapter 5. This will provide further insight into the

evolution of disturbances in this flow and allow for a more detailed comparison of the

two methods than was possible in Chapter 3.
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Chapter 5

The cusp map method for the

semi-infinite Stokes layer

Introduction

In Chapter 4, the leading-order behaviour of an impulse response to a general periodic

flow was found. The necessary and sufficient conditions for absolute instability in this

regime, as reported in Brevdo & Bridges (1997), were then deduced in analogy with the

steady case. In this chapter, these conditions will be applied to the semi-infinite Stokes

layer in support of the interpretation of the simulations results presented in Chapter 3:

that this flow is subject to absolute instability.

First it is noted that, in addition to being temporally periodic, the velocity profile of

the Stokes layer is completely reversed by a time shift of half a period (antiperiodicity).

It was already noted in Chapter 1 that this feature constrains the locations of eigenval-

ues (which must appear in complex conjugate pairs). This and other symmetries will be

explored in this chapter and the manner in which these symmetries constrain the condi-

tions for absolute instability will be discussed.

The temporal variation of the impulse response to the Stokes layer at Re = 750 will

be explored through the locating of cusps with certain characteristics. This will provide

further insight into some of the features discussed in Chapter 3 and it will be confirmed

that the behaviour predicted by these cusps is consistent with the numerical simulations.
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5.1 Symmetries in antiperiodic flows

It was shown in Chapter 4 that a disturbance in a temporally periodic flow displays tem-

poral growth at all spatial locations if there is a saddle point of the dispersion relation

that corresponds to the collision of an upstream developing mode with a downstream de-

veloping mode. In addition to having a period of 2π, the Stokes layer is also antiperiodic

with an antiperiod of π. That is, the velocity profile is exactly reversed by a time shift of π

(half a period). This results in a blurring of the definitions of upstream and downstream

(as was discussed in Section 3.1) and so it may be expected that the antiperiodicity would

influence the collision criteria. In this section, the manner in which the antiperiodicity

of a flow can constrain the dispersion relation is explored.

Consider the eigenvalue problem (1.2.7) as derived in Chapter 1,

∂
∂τ
Lψ(y,τ) =

[1
2
L−µ− iαReU

]
Lψ(y,τ) + iαReU ′′ψ(y,τ), (5.1.1)

where ψ(y,τ) is 2π-periodic in τ and

L =
∂2

∂y2 −α
2.

This describes a disturbance with wavenumber α, Floquet exponent µ, and periodic

eigenfunction ψ. That is, the solution is characterised by

[
α,µ,ψ(y,τ)

]
, (5.1.2)

which is equivalent to D(α,µ) = 0.

There are a series of actions that can be performed that preserve the characteristic of

solving the disturbance equation (5.1.1). First, taking the complex conjugate yields

∂
∂τ
Lψ̄(y,τ) =

[1
2
L− µ̄+ iᾱReU

]
Lψ̄(y,τ)− iᾱReU ′′ψ̄(y,τ).

Comparison with the original equation gives a solution characterised by

[
− ᾱ, µ̄, ψ̄(y,τ)

]
. (5.1.3)

This shows that if D(α,µ) = 0 then D(−ᾱ, µ̄) = 0 and will be referred to as the complex con-
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jugate symmetry. This symmetry holds for all flows since the periodicity/antiperiodicity

has not been used.

A time shift of τ → τ +π is equivalent to taking U → −U . This should not alter the

asymptotic dynamics since these are only meaningful for τ → ∞. The antiperiodicity

may be used to deduce more solutions from (5.1.2). Taking the original equation (5.1.1)

this time shift can be applied, giving

∂
∂τ
Lψ(y,τ +π) =

[1
2
L−µ+ iαReU

]
Lψ(y,τ +π)− iαReU ′′ψ(y,τ +π).

This yields the time-shift symmetry,

[
−α,µ,ψ(y,τ +π)

]
, (5.1.4)

so if D(α,µ) = 0 then D(−α,µ) = 0.

Finally, performing both this time shift and complex conjugation yields

∂
∂τ
Lψ̄(y,τ +π) =

[1
2
L− µ̄− iᾱReU

]
Lψ̄(y,τ +π) + iᾱReU ′′ψ̄(y,τ +π),

giving the complex conjugate & time-shift symmetry,

[
ᾱ, µ̄, ψ̄(y,τ +π)

]
. (5.1.5)

Therefore, if D(α,µ) = 0, then D(ᾱ, µ̄) = 0.

Gathering all of these equivalences together reveals that if [α,µ,ψ(y,τ)] solves the

eigenvalue problem then so must [−α,µ,ψ(y,τ +π)], [ᾱ, µ̄, ψ̄(y,τ +π)] and [−ᾱ, µ̄, ψ̄(y,τ)].

In terms of the dispersion relation, for which the eigenfunction ψ is not important,

this means that ifD(α,µ) = 0 then it must also hold thatD(−α,µ) =D(ᾱ, µ̄) =D(−ᾱ, µ̄) = 0.

5.1.1 Special cases

Consider the special case α ∈ R. In this case conjugation has no effect, i.e. ᾱ = α. Hence,

the complex conjugate symmetry becomes

[
−α, µ̄, ψ̄(y,τ)

]
, (5.1.6)
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and the complex conjugate & time-shift symmetry becomes

[
α, µ̄, ψ̄(y,τ +π)

]
. (5.1.7)

Comparing (5.1.7) with (5.1.2) shows that for a given α ∈ R, if µ is an eigenvalue,

then µ̄ must also be an eigenvalue. This was already discussed in Chapter 1, though it

is interesting to note that this symmetry no longer holds for complex α. Comparison of

(5.1.6) with the time-shift symmetry (5.1.4) gives the same result for −α.

Hence, if D(α,µ) = 0 and α ∈ R, then it must also hold that D(α, µ̄) = 0.

Another special case of interest is when µ̄ = µ. This is clearly the case when µ ∈ R but

the harmonic decomposition allows for further instances where this essentially holds.

Remember that the periodic function ψ is decomposed into harmonics in (1.2.8),

ψ(y,τ) =
∞∑

n=−∞
ψn(y)einτ . (5.1.8)

as discussed earlier. This means that if µ is an eigenvalue then µ ± ki must also be an

eigenvalue for k ∈ N. This is because k can simply be absorbed into the infinite sum as a

relabelling.

If µi = 1/2, taking the complex conjugate of µ is equivalent to taking µ→ µ− i so, for

µ of the form

µ = µr +
ik
2
, for k ∈ Z, (5.1.9)

it follows that if µ is an eigenvalue then µ̄ must necessarily be an eigenvalue (regardless

of the value of α) since conjugation is equivalent to an integer shift in the imaginary part

of µ.

In this special case, the complex conjugate symmetry becomes

[
− ᾱ,µ, ψ̄(y,τ)

]
, (5.1.10)

and the complex conjugate & time-shift symmetry becomes

[
ᾱ,µ, ψ̄(y,τ +π)

]
. (5.1.11)

Comparison of (5.1.11) with (5.1.2) reveals that for a given µ of this form, if α is an
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eigenvalue then ᾱ must also be an eigenvalue. The same must hold for −α and −ᾱ.

Hence, if D(α,µ) = 0 with µ = µr + ik/2, then it must also hold that D(ᾱ,µ) = 0.

5.1.2 Demonstration of symmetries and modal coalescence

The symmetry of the dispersion relation will now be demonstrated through solution of

the eigenvalue problem. First, the eigenvectors associated with two complex conjugate

µ-roots of the dispersion relation for a fixed, real α will be considered. It will be shown

that, as predicted above, these eigenvectors are time-shifted, complex conjugates of one

another. Following this, the special case in which two µ-roots have coalesced on the real

line will be considered and it will be shown that in this case the eigenvector displays the

same symmetry with itself.

Below, it will be assumed that each eigenvalue µ has a single corresponding eigen-

function ψ. This is not necessarily always the case since repeated eigenvalues can be

associated with two or more linearly independent eigenfunctions. When multiple eigen-

functions are associated with a single eigenvalue, these functions span a subspace. This

is called the eigenspace and is of the same dimension as the number of linearly indepen-

dent eigenfunctions.

For the following two examples, there are no repeated eigenvalues so the eigenspace

is of dimension one. This is consistent with all of the examples explored in the present

work so higher dimension eigenspaces are not considered in any detail. However, the

possibility of repeated eigenvalues should not be ignored. Where appropriate, the issues

arising when the eigenspace is of a higher dimension are alluded to.

Real α, complex conjugate µ

Consider α ∈ R. Let µ be one possible µ-root of the dispersion relation corresponding

to this α. Letting ψ denote the eigenfunction associated with µ, we can characterise this

solution by [
α,µ,ψ(y,τ)

]
.

Furthermore, it has already been shown that (for real α) there must also be a solution

[
α, µ̄, ψ̄(y,τ +π)

]
,
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due to the symmetries of the problem. The problem explored here is linear, meaning that

if any function is a solution to the problem, then so too is any constant multiple of this

function. This means that, when µ is not real (i.e. µ and µ̄ are distinct), the eigenfunctions

associated with µ and µ̄ are expected be related by

ψ(y,τ ;µ) = Cψ̄(y,τ +π; µ̄), (5.1.12)

where C is some complex constant that arises due to the linearity of the problem. For

this α, the eigenfunctions associated with these two values of µ should be time-shifted,

complex conjugated versions of the same function up to this multiplicative constant.

This assertion is made under the stated assumption that the eigenspace has a dimen-

sion of one. In the case of repeated eigenvalues, the symmetry arguments only suggest

that the linearly independent eigenfunctions span the same subspace. The equivalence

of eigenfunctions thus becomes more difficult to show.

In order to demonstrate whether (5.1.12) holds, the eigenvectors are found by the

method described in Section 1.4. Here, the term eigenvector refers to the discrete ap-

proximation to the eigenfunction (rather than the concatenated vector found directly by

the numerical approach). Let µ denote the eigenvalue with positive imaginary part so

that µ̄ has negative imaginary part and introduce the notation,

ψ1(y,τ) = ψ(y,τ ;µ), (5.1.13a)

ψ2(y,τ) = ψ(y,τ ; µ̄). (5.1.13b)

Now, as an example fix α = 0.374. Solving the eigenvalue problem results in the unstable

Floquet exponents µ = 0.198063 ± 0.108927 and no repeated eigenvalues. The eigen-

vectors corresponding to these eigenvalues should be linearly related by (5.1.12). This

equivalence is illustrated in Figure 5.1a. The appropriate eigenvectors can be extracted

and are shown at a fixed y location over a period of oscillation in Figure 5.1b and Fig-

ure 5.1c.

To demonstrate that these eigenvectors are indeed equal under complex conjugation

and a time shift of half a period, note that it follows from (5.1.12) that the ratio

ψ1(y,τ)
ψ̄2(y,τ +π)

, (5.1.14)
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Figure 5.1: The eigenvalue problem has been solved for α = 0.374 and the resulting eigenval-
ues have been plotted in (a). In (b) and (c), the real and imaginary parts of the 2π-periodic
eigenvectors have been plotted for the complex conjugate pair of eigenvalues in the unstable
region of the µ-plane (indicated with circles) for a fixed y location corresponding to the maxi-
mum absolute value when τ = 0. Choosing a different y location makes little difference to the
qualitative features.

is independent of y and τ and can be determined using a single choice of these parame-

ters. Here, the constant C will be defined as

C =
ψ1(y = y0, τ = 0)
ψ̄2(y = y0, τ = π)

, (5.1.15)

where y0 is the location of the absolute value of ψ1 when τ = 0. The eigenvector ψ2 was

then rescaled by dividing by C and compared against an unchanged ψ1. In Figure 5.2, the

real and imaginary parts are compared separately and the agreement is excellent. For this

example it has thus been demonstrated that the eigenfunctions exhibit the anticipated

symmetries.
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Figure 5.2: Comparison ofψ1 at the fixed y location with the complex conjugate ofψ2 shifted by
half a period. In (a) the real parts are compared and in (b) the imaginary parts are compared.
The agreement is clear. A marginally thicker, dashed line was necessary to indicate the two
different curves.

To check consistency, the ratio (5.1.14) was calculated for several choices of y and τ .

For all cases tested this ratio was equal to C as defined in (5.1.15).

Real α, real µ

Consider now a case in which the two complex conjugate eigenvalues have coalesced on

the real line. In this case the eigenvalue is its own complex conjugate, and thus the corre-

sponding eigenfunction should display the same symmetry with itself (again, assuming

that each eigenvalue has only a single corresponding eigenfunction). In other words, tak-

ing a time shift of half a period and conjugating the eigenvector is expected to produce

an identical periodic function up to a multiplicative constant.

Since there is only one eigenvalue/eigenvector pair of interest, denote by ψ(τ) the

eigenvector corresponding to this value of µ for a given α. Since an eigenvector is only

given up to a multiplicative constant, the symmetry of the periodic eigenvector with

itself can only be defined up to this constant. This means that the time-shifted, complex

conjugate of the eigenvector is a constant multiple of the original eigenvector. Thus, the

constant C can be defined as in (5.1.15) with ψ1(τ) = ψ2(τ) = ψ(τ) and is used to rescale

the eigenvector for comparison with the original ψ.

For demonstrative purposes take α = 0.374732. The eigenvalues for this α are plotted

in Figure 5.3a with the eigenvalue of interest being the only one in the unstable region of
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Figure 5.3: The eigenvalue problem has been solved for α = 0.374732 and the resulting eigen-
values are plotted in (a). The real and imaginary parts of the 2π-periodic eigenvector are plot-
ted in (b) for the only eigenvalue in the unstable region of the µ-plane (indicated with a circle)
for a fixed y location corresponding to the maximum absolute value when τ = 0. Choosing a
different y location makes little difference to the qualitative features.

the complex µ-plane. In this example there is again no evidence of repeated eigenvalues

so the linear comparison (5.1.12) is appropriate. The (single) corresponding periodic

eigenvector is plotted in Figure 5.3b at a fixed y location.

When comparing the eigenvector in Figure 5.3 with those in Figure 5.1, the most

striking feature is that in the current case the disturbance reaches a high-amplitude twice

in a period rather than once. This is to be expected since a second peak is required for the

periodic eigenvector to exhibit the required symmetry. It is interesting to note that this

eigenvector is not dissimilar to what would be observed if the eigenvectors corresponding

to µ and µ̄ in Figure 5.1 were summed. This consistent with the interpretation of the µ in

Figure 5.3a being a coalescence of the complex conjugate pairs seen in Figure 5.1a.

In order to ensure that the eigenvector ψ satisfies the anticipated symmetry, the real

and imaginary parts are compared with the time-shifted, complex conjugated, rescaled

ψ. These plots are shown in Figure 5.4 and again the agreement is excellent. It is worth

noting that in this case the multiplicative constant satisfies |C| = 1. This means that there

is no amplification of the eigenvector within a single period of wall motion. This could

have been anticipated since the growth or decay of the eigenfunction is dictated by the

real part of the eigenvalue µ.
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Figure 5.4: Comparison of ψ at the fixed y location with its complex conjugate shifted by half
a period. In (a) the real parts are compared and in (b) the imaginary parts are compared. The
agreement is clear. Again, a marginally thicker, dashed line was necessary to indicate the two
different curves.

5.2 Collision criteria for antiperiodic flows

It has now been shown that the dispersion relation corresponding to a flow that is tempo-

rally antiperiodic is constrained by the symmetries associated with this antiperiodicity.

It is expected that these symmetries will in turn constrain the existence of saddle points

of the dispersion relation. To explore this possibility, Briggs’ method will now be revis-

ited for flows displaying the symmetries discussed in Section 5.1. The steepest-descent

method will not be revisited since it is more difficult to show that the collision criteria is

satisfied whereas in Briggs’ method this condition is clear and explicit.

First note that due to the time-shift symmetry, it must always hold that

D(α,µ) = 0 ⇐⇒ D(−α,µ) = 0.

This means that if there is a downstream growing mode there must also be an upstream

mode growing with the same growth-rate and vice versa. Therefore, if α0 denotes a

pinch-point of the dispersion relation, then there must be another pinch-point at −α0.

This dos not significantly impact the existence of collisions but is important to consider

when visualising the movement of α-roots in the complex plane.

Consider now the initial set-up as sketched in Figure 4.1. The contour F lies on the

real line. This means that for any µ ∈ µ(F) it must also hold that µ̄ ∈ µ(F) since it has been
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shown that, for real α,

D(α,µ) = 0 ⇐⇒ D(α, µ̄) = 0,

from the complex conjugate & time-shift symmetry when α ∈ R. The curve µ(F) must

therefore be symmetric in the real axis.

The process, as before, is to select some µ on L and, fixing the imaginary part, move to

the left. It is not possible for a collision to occur that satisfies the collision criteria until

at least one α-root of the dispersion relation reaches the real axis. Thus, there is no be-

haviour of interest until the leftward path of µ touches the curve µ(F) (at such a point the

corresponding α-root lies on F, i.e. the real axis). Notice that this demonstrates through

the framework of Briggs’ method what has already been shown through the method of

steepest-descent: that the temporal growth-rate of a disturbance at all spatial locations

is bounded from above by the temporal growth-rate of the disturbance maximum, which

corresponds to α ∈ R. It also suggests that any collisions with µ to the right of µ(F) do

not satisfy the collision criteria.

In order to provide an illustration of how the symmetries of the flow may constrain

the existence of absolute instability, we focus on the case where the imaginary part of µ

is selected to take the value k/2 for some k ∈ Z. This value is fixed throughout the whole

process, so for any µ along the horizontal path from L to µ(F) it must hold that

D(α,µ) = 0 ⇐⇒ D(ᾱ,µ) = 0

from the complex conjugate & time-shift symmetry in this special case. That is, for any

µ along this path, the corresponding α-roots appear in complex conjugate pairs. As µ is

moved to the left, the corresponding movement of all α-roots is therefore symmetric in

the real axis.

When µ reaches the curve µ(F), at least one α-root touches the real axis. According to

the complex conjugate & time-shift symmetry there must be another α-root that touches

the real axis in the same location due to the symmetric motion of α-roots. In Figure 5.5

the symmetric movement of the α-roots and the subsequent collision of complex conju-

gate modes on the real line is demonstrated.

This shows that the symmetries of the problem ensure that there is a collision of

α-roots on the real line for all µi = k/2. Moreover, this collision must satisfy the colli-
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Figure 5.5: A sketch illustrating a collision that is constrained by the flow symmetries. In (a)
three paths are chosen between L and µ(F) along which the movement of the corresponding
α-roots of D must be symmetric in the real axis since µi = k/2 for all µ on each path. In (b) the
movement of several α-roots is demonstrated for any one of these paths. The complex conjugate
symmetry means that when one α-root touches F from one side, there must be another α-root
that touches F from the other side. Thus F is pinched on the real line. In addition to the
complex conjugate symmetry there is a α→−α symmetry. Hence, for any collision that causes
a pinching of the F contour at α0, there must be another collision that causes a pinching of F
at −α0.

sion criteria since it is a coalescence of a complex conjugate pair. The F contour is thus

pinched on the real line.

Implicit in this work is the assumption that each eigenvalue has only one associated

eigenfunction. If this is not the case, the apparent collision of α-roots does not necessarily

correspond to a coalescence of eigenfunctions in the manner demonstrated in Figure 5.3.

That is, if the α-roots pass over one another but the eigenfunctions remain distinct, this

would not necessarily manifest as a collision. This consideration is not explored here

since every case that has been inspected satisfies the assumption of a one-dimensional

eigenspace, however this logical possibility should not be overlooked.

In Figure 5.5, the coalescence of two simple poles of the integrand into a second

order pole is considered. There is no reason that higher order collisions cannot occur but

it should be noted that, for the special cases (µi = k/2 and αi = 0), the symmetry of the

poles in the real axis of the α-plane means that only poles of an even order are possible.

This is because collisions on the real axis occur between complex conjugate pairs.

For instance, if there is a collision of two α-roots at some α0 and a third root was

to collide at the same location then so must the complex conjugate of this third root,

resulting in a fourth-order pole of the integrand at α0.
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Note also that in this case the collision on the real axis of two poles originating in the

same half-plane must be accompanied by a collision of their complex conjugates at the

same location. This suggests that it is not possible for a collision with µi = k/2 and αi = 0

to occur that does not satisfy the collision criteria.

5.2.1 Other Collisions

It has been shown that the antiperiodicity of the Stokes layer has constrained the prob-

lem in such a way that there must be saddle points of pinch-type. However, it has not

been possible to draw conclusions about collisions not caused by the flow symmetry. For

instance, it is possible that there is a collision on the real line as µ undergoes the de-

scribed movement from L to µ(F) even if the imaginary part is not prescribed the special

value discussed above. If this is the case, it is not possible to discern from symmetry

arguments whether such a collision is of pinch-type or whether the F contour can be

deformed around this point.

Furthermore, there has been no discussion of collisions that occur at complex α. How-

ever, such collisions require µ to be moved past the curve µ(F) and so even those satis-

fying the collision criteria will contribute a growth-rate at each spatial location lower

than that observed for α ∈ R. These collisions would therefore be of less consequence in

deducing the leading-order asymptotic behaviour of the disturbance.

5.2.2 Harmonic and subharmonic temporal evolution

The saddle points that arise in the argument above must have={µ∗} = k/2 for any k ∈ Z.

It will now be shown that these cusps can be categorised as either harmonic or subhar-

monic based on the temporal variation they describe.

Consider even k = 2m so that={µ∗} = m ∈ Z. Due to the harmonic decomposition of

the disturbance, any such case is equivalent to ={µ∗} = 0 so we can write µ∗ = µr ∈ R.

Using the expression for the leading-order behaviour at a fixed spatial location (4.3.16),

ψ(x0, y,τ) ∼ 1
√
τ
p(y,τ)eµrτ , (5.2.1)

where p is 2π-periodic in τ . It is clear that this expression (ignoring the 1/
√
τ term)

describes a quasi-periodic function in τ with quasi-period 2π (according to the specific

definition of quasi-periodicity used in this work). The quasi-period is equal to the period
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of the underlying wall motion so, in consistency with the terms used in Chapter 3, this

behaviour is termed harmonic.

Now consider odd k = 2m+ 1, meaning={µ∗} = 1/2 +m for any m ∈ Z. This problem

can be reduced to={µ∗} = 1/2 so we can write µ∗ = µr + i/2 with µr ∈ R. Appealing again

to (4.3.16) gives

ψ(x0, y,τ) ∼ 1
√
τ
p(y,τ)eµrτ+ i

2τ =
1
√
τ
p(y,τ)

[
cos

(τ
2

)
+ isin

(τ
2

)]
eµrτ . (5.2.2)

The function in square brackets is periodic in τ with period 4π and so the function

p(y,τ)
[
cos

(τ
2

)
+ isin

(τ
2

)]
also has a period of 4π. Such a disturbance has a quasi-period of twice that of the under-

lying wall motion and is thus termed subharmonic.

The terms harmonic and subharmonic were used descriptively in Chapter 3, and it

has now been shown how this distinction can be rigorously defined by considering the

imaginary part of the Floquet exponent.

5.3 The cusp map method

The leading-order evaluation of the solution integral via the method of steepest-descent

provides a necessary condition for absolute instability: that the dispersion relation D

has a saddle point in the complex α-plane at some α∗ (and a corresponding cusp in the

complex µ-plane at some µ∗) such that<{µ∗} > 0. It was then shown that in addition to

this condition, the double root of the dispersion relation must be caused by the collision

of modes originating in opposite half-planes. It has also been shown, by appealing to the

symmetries of the flow, that collisions of this type should occur in the Stokes layer when

α ∈ R and µi = k/2 for k ∈ Z.

The method that will now be implemented, based on these results, is that a straight

grid in the complex α-plane, located around the real line, will be mapped through roots

of the dispersion relation to the complex µ-plane using the eigenvalue solver developed

in Chapter 1. Cusps in the complex plane can then be found, indicating the existence of

a corresponding saddle point (Kupfer et al. , 1987). It will be assumed that the collision

criteria is satisfied if these cusps display the anticipated properties of collisions that are
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constrained by the antiperiodicity of the flow.

5.3.1 Cusp maps in the pure Stokes layer

In Chapter 3, the impulse response of the semi-infinite Stokes layer was explored. The

results presented for Re = 750 appeared to suggest that there is absolute instability since

the impulse response undergoes temporal growth at each spatial (streamwise) location.

Furthermore, at each spatial location considered the disturbance was found to display a

subharmonic form of temporal variation.

The case of the semi-infinite Stokes layer at Re = 750 will now be revisited in the

context of the cusp map method outlined above. A search for cusps will be conducted in a

neighbourhood of the real line since the symmetry arguments presented above anticipate

the existence of cusps with α∗ ∈ R and that these will correspond to={µ∗} = k/2 (k ∈ Z).

It may be recalled that an intriguing feature of the variation in µ as α is moved along

the real line is the existence of the small finger-like protrusions. The fingers are formed

when the complex conjugate pairs of µ coalesce on the real axis, move along the real

axis, then leave the real axis once more. This behaviour is described and documented in

Blennerhassett & Bassom (2002) and in Section 1.4. The generic nature of this behaviour

is explored in a simplified setting in Appendix B.

The significance of these features in finding absolute instability is that along such

fingers the imaginary part of µ is fixed while the real part increases and decrease. When

plotted in the complex plane, this suggests that these features may display characteristics

associated with cusps. Furthermore, these protrusions occur when µi = 0 which means

that the symmetry of the flow should ensure that there are cusps in these locations.

Presented in Figure 5.6 are three unstable cusps found at the locations of these pro-

trusions. These cusps all correspond to real α∗ and have={µ∗} = 0 so describe harmonic

temporal evolution. These cusps should contribute to the asymptotic evolution of the

disturbance at every streamwise location since cusps with ={α∗} = ={µ∗} = 0 are ex-

pected to satisfy the collision criteria, based on the symmetry arguments implemented in

Section 5.1. Furthermore, they contribute temporal growth at each streamwise location

since <{µ∗} > 0 in all three cases. Cusps that contribute harmonic temporal variation

will sometimes be referred to as harmonic cusps for brevity.

The dispersion relation was explored further to locate the anticipated cusps with
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Figure 5.6: Three cusps found in the pure Stokes layer at Re = 750. The straight grids in the
α-plane are shown in (a), (c), (e) and have been mapped via D(α,µ) = 0 to the complex µ-
plane in (b), (d), (f), respectively. The circled crosses indicate the location of µ∗ and α∗ in each
case, with the nearest grid lines indicated by greater thickness to better demonstrate the cusp
characteristics in the µ-plane. All 3 cusps have<{µ∗} > 0 and={µ∗} = 0 and correspond to
the fingers described earlier.

168



The cusp map method for the semi-infinite Stokes layer

0.371372 0.3713725 0.371373 0.3713735 0.371374 0.3713745 0.371375

αr

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

α
i

×10
-5

(a)

0.197 0.1971 0.1972 0.1973 0.1974 0.1975 0.1976 0.1977

µr

-0.4985

-0.4984

-0.4983

-0.4982

-0.4981

-0.498

-0.4979

-0.4978

-0.4977

-0.4976

-0.4975

µ
i

(b)

0.378097 0.3780975 0.378098 0.3780985 0.378099 0.3780995 0.3781

αr

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

α
i

×10
-5

(c)

0.1987 0.1988 0.1989 0.199 0.1991 0.1992 0.1993 0.1994 0.1995

µr

-0.4986

-0.4985

-0.4984

-0.4983

-0.4982

-0.4981

-0.498

-0.4979

-0.4978

-0.4977

-0.4976

µ
i

(d)

0.3848325 0.384833 0.3848335 0.384834 0.3848345 0.384835 0.3848355

αr

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

α
i

×10
-5

(e)

0.195 0.1951 0.1952 0.1953 0.1954 0.1955 0.1956

µr

-0.4986

-0.4985

-0.4984

-0.4983

-0.4982

-0.4981

-0.498

-0.4979

-0.4978

-0.4977

-0.4976

µ
i

(f)

Figure 5.7: Three more cusps found in the pure Stokes layer at Re = 750. The straight grids
in the α-plane are shown in (a), (c), (e) and have been mapped via D(α,µ) = 0 to the complex
µ-plane in (b), (d), (f), respectively. The circled crosses indicate the location of µ∗ and α∗ in
each case, with the nearest grid lines indicated by greater thickness to better demonstrate the
cusp characteristics in the µ-plane. All 3 cusps have<{µ∗} > 0 and={µ∗} ∼ −1/2.
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={µ∗} = 1/2. Such cusps do not correspond to the finger-like protrusions. Presented

in Figure 5.7 are three such unstable cusps located between each of the harmonic cusps

shown in Figure 5.7. Since these cusps also satisfy the collision criteria and <{µ∗} > 0

for each, they describe subharmonic temporal variation at every spatial location and will

thus be referred to as subharmonic cusps.

Note the very small scales required to properly observe these cusps, which have sim-

ilar growth-rates to one another and the harmonic cusps already seen. Since it is difficult

to ascertain the growth-rates from these figure, Table 5.1 shows the locations of α∗ and

µ∗.

Figure <{α∗} ={α∗} <{µ∗} ={µ∗}
5.6a,5.6b 0.374732 0 0.200921 0
5.6c,5.6d 0.381463 0 0.199897 −5× 10−13

5.6e,5.6f 0.368012 −2× 10−6 0.196484 −5× 10−6

5.7a,5.7b 0.3713742 2× 10−21 0.1973202 -0.4974585
5.7c,5.7d 0.3780994 7× 10−7 0.1990632 -0.4975318
5.7e,5.7f 0.3848347 0 0.1952561 -0.4975586

Table 5.1: The values of α∗ and µ∗ corresponding to Figure 5.6 and Figure 5.7. Notice that for
the cusps that contribute subharmonic temporal variation (={µ∗} = 1/2), the values are given
to an extra decimal place due to the finer grids used.

A drawback of this method is that the locations of the cusps can only be approxi-

mated by the nearest grid-line. If the plots of Figure 5.6 and Figure 5.7 were observed at

smaller scales it would reveal that these values of (α∗,µ∗) do not correspond to the exact

locations of cusps. This combined with the limited precision of numerical methods offers

a plausible explanation for why the subharmonic cusps have={µ∗} ∼ 0.497 rather than

= 1/2.

Since all α∗ lie on the real axis, these cusps can be compared against the growth-rate

curve for real α (Figure 3.7a) by plotting the values of<{µ∗} against α∗. This confirms,

in Figure 5.8, that the harmonic cusps shown in Figure 5.6 do in fact all lie on the fin-

gers protruding from the growth-rate curves. The subharmonic cusps of Figure 5.7 lie

between these fingers. It is interesting to note that the fingers are evenly spaced in α, and

so too are the cusps that lie halfway between them.

Some of the ideas discussed in Chapter 3 will now be revisited since the cusp map

method provides further insight into the evolution of these disturbances. Consider the

pure (semi-infinite) Stokes layer at Re = 750.
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Figure 5.8: The growth-rate µr is plotted against real α for the pure Stokes layer with Re = 750
(a). A small portion at the tip of this curve is shown in (b) and the locations of the cusps are
indicated by circled crosses. The cusps are roughly evenly spaced in α and occur either at the
tip of the finger or halfway between them. Only the six cases of Figure 5.6 and Figure 5.7 are
indicated but it is assumed that this pattern would hold for all cusps.
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Figure 5.9: The temporal growth-rates corresponding to the disturbance maximum and the
temporal evolution at three different locations in the pure Stokes layer at Re = 750. This plot
is the same as Figure 3.11 except the measured growth-rate of the disturbance maximum is
included (•), as seen in Figure 3.7b for the first ten periods of wall motion.

5.3.2 Growth and staggering of wavepackets

It was shown in Figure 3.11b (and reproduced in Figure 5.9) that when Re = 750 the

temporal growth-rate associated with a selection of streamwise location and the temporal

growth-rate associated with the disturbance maximum converge to very similar values in

twenty periods of wall oscillation. The subsequent discussion was cautious since the

asymptotic values of the growth-rate will not be reach in finite time.

It has since been seen in some detail that the temporal growth of the disturbance

maximum is dictated by the most unstable mode for real α (Section 4.3). Furthermore,
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Figure 5.10: The logarithm of local maxima plotted at the start of several periods shows that
at every time all wavepackets are of the same magnitude and that this magnitude increases at
a constant growth-rate (see Figure 3.13 for full description).

the temporal growth at any fixed point in space is dictated by the locations of cusps,

which have now been seen that correspond to real α. Moreover, the maximum growth-

rate over all α ∈ R is found at the tip of a finger which is also the location of the cusp with

maximum growth-rate. This suggests that the temporal growth at each spatial location

is indeed equal to that of the disturbance maximum.

While the cusp map method of Figure 5.6 and Figure 5.7 has only been employed for

Re = 750, the existence of the cusps was predicted by appealing to the symmetries of the

problem. These symmetries apply for all Re which suggests that similar cusps exist in all

cases. This suggests that there is no region of convective instability in the Stokes layer

between the regions of stability and absolute instability.

In Section 3.4, a subharmonic temporal variation was observed in which the wavepack-

ets are staggered periodically. Figure 3.13 (reproduced in Figure 5.10) illustrates that

each disturbance wavepacket (at a fixed location) undergoes the same growth each pe-

riod even though the location of each wavepacket changes each period.

The size of the arrows in Figure 3.13 and Figure 5.10 was not fully justified at the
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time, but the temporal growth-rate associated with each streamwise location has now

been found by the cusp map method. The cusp displaying maximum temporal growth

has a growth-rate of µr = 0.200921 and so, to account for the rescaling of time in these

plots the arrows are all of length 2πµr = 1.2624. Not only is the agreement clear, but the

agreement seems to improve for later times. This is to be expected from a comparison of

finite-time simulations against the asymptotically predicted behaviour. The differences

in the growth-rates for the 6 cusps shown in Figure 5.8 would not be visible on this plot.

5.3.3 Periodic orbits and subharmonic temporal variation

To some extent, it is surprising that at each streamwise location the temporal variation

of this disturbance is subharmonic since the most unstable cusp has imaginary part 0.

However, it has already been noted that the growth-rates of the 6 cusps discussed above

are incredibly close to one another so it is anticipated that no single cusp would become

sufficiently dominant for the others to be disregarded within the twenty periods of os-

cillation investigated. The behaviour at any given streamwise location is characterised

by a summation of several modes showing harmonic temporal growth and several show-

ing subharmonic temporal growth so the superposition would be expected to be subhar-

monic.

Superposition of harmonic and subharmonic modes

Having shown that the temporal growth-rate experienced by the disturbance at every

spatial location is consistent with the cusp map method, the temporal periodicity of the

disturbance in these locations can be investigated by normalising the value of the wall

vorticity at some initial time (so that it lies on the unit circle in the complex plane) and

comparing this with the normalised wall vorticity at the same phase of subsequent peri-

ods of wall oscillation in the same location.

For illustrative purposes, the superposition of multiple cusps with both harmonic

and subharmonic temporal characteristics (which will be referred to as harmonic modes

and subharmonic modes, respectively) will be simplified to just considering one of each

type (noting that subharmonic modes appear in complex-conjugate pairs).

The problem will be further simplified by assuming that these modes have equal

growth-rates, although it is known that the harmonic mode corresponds to marginally
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larger temporal growth.

It will be assumed that the wall vorticity at a fixed location ζ0(τ) = ζ(x0,0, τ) has the

form

ζ0(τ) = p1(τ)e(µr+
i
2 )τ + p2(τ)e(µr− i2 )τ + p3(τ)eµrτ , (5.3.1)

where p1, p2 and p3 are complex valued, 2π-periodic functions.

Fix an initial time τ0 and define the following constants

A = p1(τ0)e(µr+
i
2 )τ0 , (5.3.2a)

B = p2(τ0)e(µr− i2 )τ0 , (5.3.2b)

C = p3(τ0)eµrτ0 . (5.3.2c)

It is then possible to express ζ0 at the same phase of subsequent periods in terms of these

constants,

ζ0(τ0) = A+B+C, (5.3.3a)

ζ0(τ0 + 2π) = Ae2πµreiπ +Be2πµre−iπ +Ce2πµr = (−A−B+C)e2πµr , (5.3.3b)

ζ0(τ0 + 4π) = Ae4πµrei2π +Be4πµre−i2π +Ce4πµr = (A+B+C)e4πµr . (5.3.3c)

Observing the pattern, it can be stated that

ζ0(τ0 + 2kπ) =
(
(−1)k(A+B) +C

)
e2kπµr , (5.3.4)

for k = 0,1,2, ....

Without loss of generality, assume that ζ0(τ0) lies in the top right quadrant of the

complex plane, i.e. <{ζ0(τ0)},={ζ0(τ0} > 0. If this is not the case, the problem can be

adjusted by dividing all expressions by some complex number which ensures that this is

the case.

Consider the wall vorticity at some given time τ0,

ζ0(τ0) = A+B+C
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and call the complex argument of this value θ0. This is given by

θ0 = Arg[ζ0(τ0)] = arctan
(
={ζ0(τ0)}
<{ζ0(τ0}

)
= arctan

(
Ai +Bi +Ci
Ar +Br +Cr

)
. (5.3.5)

Now consider the wall vorticity after a period of wall motion has passed,

ζ0(τ0 + 2π) = (−A−B+C)e2πµr . (5.3.6)

Denote the complex argument of this value by θ1. For demonstrative purposes, assume

that ζ0(τ0 + 2π) also lies in the top right quadrant. Then

θ1 = Arg[ζ0(τ0 + 2π)] = arctan
(

e2πµr (−Ai −Bi +Ci)
e2πµr (−Ar −Br +Cr )

)
= arctan

(
−Ai −Bi +Ci
−Ar −Br +Cr

)
. (5.3.7)

Note the cancellation of the exponential amplification within the arctan. The expression

for θ1 varies depending on which quadrant ζ0(τ0 +2π) lies in so a full expression is given

by

θ1 = Arg[ζ0(τ0 + 2π)] =



arctan
( −Ai−Bi+Ci
−Ar−Br+Cr

)
if (−Ar −Br +Cr ) > 0,

π
2 − arctan

(−Ar−Br+Cr
−Ai−Bi+Ci

)
if (−Ai −Bi +Ci) > 0,

−π2 − arctan
(−Ar−Br+Cr
−Ai−Bi+Ci

)
if (−Ai −Bi +Ci) < 0,

arctan
( −Ai−Bi+Ci
−Ar−Br+Cr

)
±π if (−Ar −Br +Cr ) < 0.

(5.3.8)

Again, the exponential amplification cancels so the value of θ1 is dependent only on the

ratio of the real and imaginary parts of (−A−B+C).

The subsequent expressions of ζ0(τ0 +2kπ) for even k differ from the k = 0 case above

through multiplication by a real number (exponential amplification) and the expressions

for odd k are similarly related to the case k = 1. These real numbers cancel in the quotient

within the argument of arctan. Thus,

Arg[ζ0(τ0 + 2kπ)] =

 θ0 k = 0,2,4, ...

θ1 k = 1,3,5, ...
, (5.3.9)

which shows that if ζ0(τ0 + 2kπ) is divided by its magnitude (normalised) and the result-

ing complex values are plotted for k = 0,1,2, ... then for every even k these points will

lie in the same location on the unit circle (characterised by the angle θ0) and for every
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Figure 5.11: Examples of the expected behaviour of z(k) for the purely harmonic (a) and purely
subharmonic (b) cases. In (a), the value of z is independent of the choice of k. In (b) the value
of z depends on whether k is even or odd. Note that the line passing from z(2m+ 1) to z(2m) is
a straight line passing through the origin since θ1 = θ0 −π.

odd k the points will lie in a second location (characterised by the angle θ1). In order to

demonstrate this clearly, let

z(k) =
ζ0(τ0 + 2kπ)
|ζ0(τ0 + 2kπ)|

, (5.3.10)

so that it is anticipated that for k = 0,1,2,3..., the location of z on the unit circle will

alternate between two locations, with complex arguments of θ0 and θ1. It is therefore

convenient to introduce another number m so that z(2m) denotes the value of z for even

k and z(2m+ 1) represents odd k.

Consider the special case of a purely harmonic mode. In this case A and B are zero,

and so θ1 = θ0. Hence, z(k) all appear in the same location for all k. Considering the

case of a purely subharmonic mode, C = 0 so θ1 = θ0 − π. In this case, z(k) alternates

between two locations on opposite sides of the unit circle as k alternates between odd

and even. Examples of this behaviour are given in Figure 5.11. Considering harmonic

and subharmonic modes together means there is no such relationship between θ0 and

θ1.
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Figure 5.12: Measured behaviour of z(k) at 3 different locations (x = 700,1600,2500) for the
pure Stokes layer at Re = 750. The symbols indicate which location a point corresponds to
and each is labelled as z(2m) if it corresponds to even k and z(2m+ 1) if it corresponds to odd
k. If there is a general movement of values in a particular direction for increasing m, this has
been indicated by an arrow in said direction. However, even in these cases there is a somewhat
random distribution of points and for later times there is some evidence to suggest a reversal of
direction. In all three cases z(k) appear in two clusters (for even and odd k).

Comparison with simulations

It is anticipated that the temporal evolution of disturbances in the pure Stokes layer at

any spatial location will behave approximately in the manner described for the superpo-

sition of both types of mode, so z(k) is shown in Figure 5.12 for Re = 750. Considering the

fact that the model is a significantly simplified means of describing the modal behaviour,

the agreement is very good.

Shown in Figure 5.12 are the values of z(k) at the three x locations corresponding to

the wavepacket maxima and τ0 is taken to be as close to 4π as the discrete time-step

allows. For x = 700 the plotted points are for 1 < k < 18 and for x = 1600 and x = 2500
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this is restricted to 2 < k < 18 and 3 < k < 18, respectively. This removes points for times

in which the wavepacket at each location is still forming and thus does not conform to

the general behaviour.

Since the temporal growth-rates of the subharmonic cusps are lower than the growth-

rates of the harmonic cusps it is anticipated that in the limit τ → ∞ (or k → ∞), the

temporal evolution at any fixed spatial location will approach that of purely harmonic

growth. With this in mind it is somewhat unexpected that as k increases the clusters

move further apart for all locations. However, at the later times this drift becomes less

pronounced and there is some evidence to suggest that the direction reverses. This would

allow for the possibility of this plot approaching Figure 5.11a as τ→∞.

5.4 Wavepacket and cusp separation

The observation that, in this case, the cusps appear evenly spaced in α will now be dis-

cussed in some detail. Taking ∆cα to be the average distance between each of the subse-

quent α∗ in Table 5.1 (which agree to four decimal places) gives ∆cα = 0.003365. Much

in the same way as the spectral resolution parameter ∆α controls the domain size in the

simulations (see Section 2.3), it will be seen here that the value ∆cα appears to be strongly

related to the streamwise wavepacket separation of the impulse response.

The size of the structures associated with ∆cα are given by

2π
∆cα
≈ 1867.2. (5.4.1)

This value can be compared against the wavepacket spacing shown in Figure 3.6, for

which the average value at Re = 750 is Λ = 933.3. It is therefore intriguing to note that

2π/∆cα is remarkably close to 2Λ = 1866.6. In fact, these values are equal to the nearest

whole number.

The doubling of the wavepacket spacing Λ is not an arbitrary action that makes the

numbers coincide, but actually has physical significance. It has already been noted in

Section 3.4 that Λ is the distance between all wavepackets, regardless of when they occur

in the staggered structure. The length 2Λ therefore describes the streamwise distance

over which the same staggered pattern repeats itself. This is essentially the x-periodicity

of the structures (if the dispersive effects are ignored), so it is not surprising that this
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value is related to the resolution of cusps, ∆cα, in this way.

5.4.1 A simple model for the superposition of cusps

In order to assess the possibility of the value of ∆cα being responsible for the streamwise

wavepacket separation, consider a complex function of the form

Z(x,τ) =
N∑
n=0

An(x,τ)eiαnx+µnτ . (5.4.2)

The cusps are evenly spaced in α so let

αn = α0 +n∆cα (5.4.3)

where α0 and ∆cα can be taken from Table 5.1. Half of the cusps have={µ∗} = 0 and half

have={µ∗} = 1/2 so let

={µn} =

 0 n even,
1
2 n odd.

(5.4.4)

This leaves the choice of<{µn} and An(x,τ) to construct models of varying complexity.

The parameter N controls how many modes are considered. Here N = 5 will be fixed so

that only the 6 cusps found above are included in the problem.

Simplest model

The simplest model that will be explored here will fix<{µn} = 0.2 for all n and An(x,τ) =

1. It will be seen that a model this simple is capable of displaying subharmonic temporal

variation at every spatial location and a fixed wavepacket spacing of 2Λ.

The staggered behaviour of the wavepacket maxima for this model is indicated in

Figure 5.13. This plot shows that even though the lowest wavenumber in this model is

larger than 0.3, the interaction of several modes has resulted in a periodicity of about

1800, as anticipated by the selection of ∆cα. The locations of the maxima alternate as each

period completes in a manner analogous to the staggering of wavepackets in the Stokes

layer. This staggering continues for later times, but these are not shown here.

By adjusting the parameter ∆cα, the distance between peaks could be increased or

decreased. In Figure 5.14 the variation of |Z | with x is shown at τ = 0 for a selection of

∆cα and α0 = 0.3. This shows that as ∆cα is increased, the separation of the peaks of |Z |
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Figure 5.13: Spatial variation of the model (5.4.2) when<{µn} = 0.2 and An(x,τ) = 1 for all
n. In (a) the oscillatory nature of<{Z} is shown at τ = 0 (the start of the first period) with
three clear maxima. In (b), |Z | is plotted against x for two choices of τ = τ0 corresponding
to the start of the second and third periods. It can be seen that the locations of the maxima
are staggered: Every two periods the maxima return to the same location (but amplified) while
they lie halfway between these locations for the intermediate period.
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Figure 5.14: The variation of |Z | with x is shown at τ = 0 for ∆cα = 0.003,0.0035,0.004 which
should correspond to an imposed x-periodicity of 2π/∆cα ≈ 2094,1795,1571, respectively. This
corresponds with the locations of the peaks in |Z | in each case.

decreases. The separation of the peaks in each case appears to be 2π/∆cα, as expected.

Model with differing growth-rates

A slightly more realistic model is investigated by selecting the temporal growth-rates

<{µn} to be equal to the growth-rates associated with each cusp <{µ∗} which can be

found in Table 5.1. In this case, the fact that the cusps with <{µ∗} = 0 (subharmonic)

are associated with greater growth than those with<{µ∗} = 1/2 (subharmonic) is incor-

porated into the model. In Figure 5.15, it can be seen that this only slightly modifies the
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Figure 5.15: Comparison of the spatial variation of Z at two choices of τ0 that differ by 2π.
Shown in (a) is the result of the simplest model implemented here, where<{µn} = 0.2 for all n.
Shown in (b) is the same result for the model in which the temporal growth-rates are extracted
from Table 5.1, i.e.<{µn} =<{µ∗}. Both plots are in excellent agreement.

behaviour already seen.

The close agreement between these two models indicates that the different growth-

rates of the cusps do not have a strong impact on the structure of the impulse response.

In fact, the only discernible difference between these two cases in Figure 5.15 are slightly

lower amplitudes of the peaks when different growth-rates are incorporated. The struc-

ture is practically identical.

Inclusion of dispersive effects

One feature of the disturbance evolution not reproduced by this model is the manner in

which the family-tree structure evolves. When An(x,τ) = 1, the model (5.4.2) has infinite

spatial extent for all times. The impulse response can therefore be crudely approximated

by localising An in space and allowing for the diffusion of the structures as time pro-

gresses. Let

An(x,τ) =
1
√
τ

e−
x2

4γτ , (5.4.5)

so that An takes the form of a Gaussian that widens and decays as τ increases. The value

of γ is chosen so that as each period completes, the diffusive distance of Z matches the

separation of the wavepackets since this is what is observed for disturbances in the Stokes

layer. A value of

γ =
π

2(∆cα)2 (5.4.6)
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Figure 5.16: Contour plots showing the space/time evolution of Z in two cases for which<{µn}
are taken from Table 5.1. In (a), An(x,τ) = 1 and this imposes an exact periodicity on Z. In (b),
An(x,τ) has the form discussed in (5.4.5), which localises the extent of Z in space and allows
for diffusion as τ increases. The contour plots are constructed in the same way as elsewhere,
and the family-tree structure is clear in (b).

was found to be appropriate up to an O(1) adjustment.

The spatial/temporal evolution of Z is presented in the form of contour plots in Fig-

ure 5.16. In both cases, the growth-rates <{µn} are taken from the cusp locations (Ta-

ble 5.1). In one case An = 1 whereas in the other An takes the form (5.4.5). The analogy

of the latter with the family-tree structure suggests that it is the spacing between cusps

that is responsible for the structures observed and discussed throughout this work.

More complex models can be constructed in which An is given a different value for

each n. Also, larger values of N can be taken. The wall-normal variation can also be

included in An, which can also incorporate the temporal behaviour of the eigenfunction

associated with each cusp. The model was kept as simple as possible here but was still

found to display the family-tree structure observed in the much more complicated im-

pulse response in the Stokes layer.

The agreement between the observed disturbance evolution and the simplified model

employed here suggests that the existence of multiple cusps of harmonic and subhar-

monic type is significant in the generation of the complex and intriguing structures ob-

served in this flow. This means that while the leading-order behaviour of a disturbance

at a fixed spatial location is characterised by the most unstable cusp, such an approach
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would not provide any insight into the structures of the impulse response.

5.4.2 Investigation for other Reynolds numbers

The relationship between the streamwise separation of wavepackets in the Stokes layer

and the α separation of the cusps found for this flow has been explored for Re = 750. In

order to demonstrate that this relationship is independent of Re, the distance between

fingers protruding from the growth-rate curves will be measured for a selection of Re

and compared against the wavepacket spacing Λ presented in Figure 3.6.

The location of cusps in the complex µ-plane is a computationally expensive and time

consuming process. This means that it is not feasible to locate enough cusps to measure

the distance between them for a selection of Re and compare this against Λ. Instead, it is

recalled that the antiperiodicity of the flow ensures that cusps will exist for α ∈ R when

µ = µr + ik/2 (for any K ∈ Z). It has been observed when Re = 750 that the tips of the

fingers protruding from the growth-rate curves correspond to cusps with µ∗ ∈ R. It has

also been seen that there are cusps halfway between each of these with=µ∗ = 1/2.

It will now be assumed that this behaviour holds for all Re. Assuming that the tips of

fingers correspond to cusps is reasonable given that no curves have been observed that

display fingers for α < R. There is less evidence of the existence of cusps with={µ∗} = 1/2

between each finger but it will be assumed for efficiency that this is indeed the case.

Evidence of the assertion that the spacing of cusps with α is responsible for the

streamwise separation of wavepackets is provided by comparing 2π/∆cα with 2Λ. Alter-

natively, since the distance between fingers is assumed to be double the distance between

cusps, it is anticipated that
2π
∆αf

= Λ (5.4.7)

where ∆αf is the spacing between fingers and is expected to equal 2∆cα.

This comparison will be made for Re = 700,750,800,850. In all of these cases it was

confirmed that ∆αf is constant. Good agreement between this value and Λ will suggest

that the difference between the wavenumbers of adjacent cusps imposes the wavepacket

spacing on the problem.

In Figure 5.17, the wavepacket separation as predicted by ∆αf is compared against

the measured values of Λ already calculated for Re = 700,750,800 and there is clear

agreement. The case of Re = 750 is highlighted since the cusp locations have been found
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Figure 5.17: The streamwise wavepacket separation Λ, as measured from the simulations (see
Figure 5.17) is compared against 2π/∆αf , where ∆αf is the distance between fingers for each Re
(×). The case of Re = 750 is circled to indicate that this value of ∆αf is more accurate than in
any of the other cases. There is a discrepancy between the two values when Re = 800 which is
of size ∼ 2.

to a much higher accuracy in this case.

For the case of Re = 850, there appears to be a discrepancy between 2π/∆αf and Λ.

The imprecise nature of the measurements (of both ∆αf and Λ) means that a discrepancy

of this size is acceptable under the hypothesis that ∆αf and Λ are related in this manner.

During this brief investigation, it was observed that the length of the fingers seems

to decrease with increasing Re, similarly for Re < 700 there is little evidence of these

protrusions. The investigation was not extended to larger or smaller Re for this reason.

Further confirmation could be provided by considering a finer resolution of Re.

It is noted that in this investigation the finger separation for Re = 700 was found to

be ∆αf ∼ 0.0073. This value will be revisited in the next chapter.

5.4.3 Cusps and the Fourier spectrum

It was noted in Section 3.3 that for Re = 700,750, the Fourier spectrum of the distur-

bance at τ = 40π displays several peaks at distinct wavenumbers (see Figure 3.9). Having

observed that many of the features of the disturbance evolution are shared by the evo-

lution of the function Z, which consists of several modes at distinct wavenumbers, this

behaviour will now be explored in more detail.

In Figure 5.18, the Fourier spectrum of the wall vorticity after twenty periods of wall

184



The cusp map method for the semi-infinite Stokes layer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.36 0.365 0.37 0.375 0.38 0.385 0.39
ζ̂

(α
,0
,4

0π
)

α

Figure 5.18: The absolute value of the normalised Fourier spectrum of the wall vorticity is
plotted after twenty periods of wall motion, |ζ̂(α,0,40π)|. The locations of the peaks closely
correspond to the locations of cusps presented in Table 5.1. Hence, by the 20th period of wall
motion, the impulse response is behaving like a discrete set of modes with slightly different
growth rates, much like the model (5.4.2).

motion, ζ(x,0,40π), is plotted again (see Figure 3.9) over a smaller range of wavenumbers

so that the distinct peaks are clearer. Also shown in Figure 5.18 are the locations of

the cusps presented in Table 5.1. The locations of the peaks in the spectrum appear to

coincide excellently with the locations of the cusps.

The Fourier spectrum at this time is similar to how a numerical approximation to the

superposition of several delta functions at distinct α might appear. This supports the

findings above which indicate that the impulse response of this flow displays a structure

analogous to the function Z, as defined in (5.4.2), for which the Fourier spectrum would

be exactly the superposition of several delta functions at these locations.

Summary

In this chapter, the symmetries of the semi-infinite Stokes layer were explored (Sec-

tion 5.1) and it was shown that the antiperiodicity of the flow constrains the existence

of cusps that satisfy the collision criteria (Section 5.2).

The eigenvalue solver derived in Chapter 1 was then used as a discrete approximation

to the dispersion relation in Section 5.3. Six examples of cusps were found for the pure

Stokes layer at Re = 750 that satisfied the conditions predicted from appealing to the

flow symmetries. Half of these cusps describe harmonic temporal variation and half

describe subharmonic temporal variation. All six had very similar growth-rates. The

behaviour predicted by the cusps was then tested against the simulation results. It was
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also confirmed that at each spatial (streamwise) location, the temporal growth of the

disturbance was equal to the temporal growth associated with the disturbance maximum.

In Section 5.4, it was also seen that the spatial/temporal characteristics of the impulse

response are comparable to a simple model consisting of the superposition of modes with

alternating harmonic and subharmonic variation. This model was found to be capable of

recreating the streamwise wavepacket separation observed in Section 3.1 and the family-

tree structure of these wavepackets (once diffusion was taken into account). These results

suggest that the wavepacket separation is controlled by the α separation of the cusps with

and it was shown that there was good agreement between the α separation of fingers and

the measured wavepacket spacing for a small selection of Re.
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Chapter 6

The Stokes layer modified by

high-frequency noise

Introduction

Although the eigenvalue analysis (Chapter 1) and linear simulation (Chapter 2) have

been shown to be in good agreement (Chapter 3 and Chapter 5), experiments report a

critical Reynolds number less than half that predicted. This serious discrepancy suggests

that, for whatever reason, the mathematical model is failing to be representative of the

physical system.

Simplifying problems to the extent that analytical tools can be used involves strip-

ping the system of features that can reasonably be assumed to have negligible (or at

least minimal) effects. For instance: channels and pipes are generally assumed to be in-

finitely long which is appropriate provided the behaviour at inlets and outlets is of no

interest; the Blasius boundary layer is often approximated as being parallel even though

the boundary layer grows with distance from the leading edge; any boundary layer flow

(such as the Blasius boundary layer or the Stokes layer) is studied under the assumption

of a semi-infinite region of fluid, an assumption that is representative of flows in which

a second boundary or free surface is sufficiently far away; and for wake and jet flows an

infinite region is used and can be similarly justified.

In some cases it is possible to study these flows without such simplifications, espe-

cially when these effects are important, but the reason these assumptions are so prevalent

in the field is that in many cases the idealised flows are representative of real life. More-
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over, working in an idealised regime enables the development of tools and techniques

for application to more complex models. For example, surface roughness is often absent

from mathematical models (as is the case in the present work) but can, in some cases,

greatly effect the dynamics of the flow. Once a solver has been constructed for a flow

without surface roughness it is sometimes then possible to incorporate some approxima-

tion to this feature in the boundary conditions.

In the case of a Stokes layer, one particular feature removed from the mathematical

model and not present in steady flows is the noise associated with mechanically gener-

ating the plate oscillation. Reported as approximately 1% in some experiments (Clamen

& Minton, 1977; Eckmann & Grotberg, 1991; Hino et al. , 1976; Akhaven et al. , 1991) it

is unsurprising that the work of Hall (1978) and Blennerhassett & Bassom (2002, 2006)

do not consider its effect. As earlier studies in the field, the mathematical basis of the

method needed to be established first and foremost. However, the remarkable reduction

in Rec observed by Thomas et al. (2015) suggests that even noise of low amplitude can

have a dramatic effect on the stability of the flow.

As an early study into this modification, the noise model incorporated by Thomas

et al. (2015) is of the simplest appropriate form. Results were relatively insensitive to

parameters describing the exact form of the noise while a very small change in the mag-

nitude could reduce Rec significantly. This suggests that some model of noise should

be incorporated into the Stokes layer in order to be representative of the real-life flow

it is intended to approximate, even in the idealised environment of the linear stability

analysis.

In addition to destabilisation, the introduction of noise is in some cases accompanied

by qualitative changes to the disturbance evolution. In the monochromatic (single fre-

quency) Stokes layer the disturbance maximum is convected downstream, away from the

point of excitation, whereas in the nonmonochromatic (noisy) Stokes layer disturbances

have been observed with the disturbance maximum confined to a region near the ini-

tial point of excitation (Thomas, 2016). In these cases, there also appears to be a change

in the temporal evolution of the wavepackets from the subharmonic staggering already

discussed to harmonic behaviour.

In the following discussion, only the semi-infinite case will be considered (or the flow

in a channel that is wide enough to be a good approximation to the semi-infinite case).

There will be no steady mean flow, so the flow will be of a purely oscillatory form, though
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a mean flow could be incorporated in the same manner described in Chapter 1.

The reformulation of the problem will be performed in Section 6.1 followed by a dis-

cussion on the symmetries of this basic state. Throughout this chapter, the semi-infinite

Stokes layer already discussed in detail will be described as either the pure or monochro-

matic Stokes layer and will be compared directly against three cases: one of low-level

noise, one of significant noise, and one of high-level noise in Section 6.2. Finally, a para-

metric exploration will be conducted to explore the destabilising effect that noise can

have on the system in Section 6.3.

6.1 Basic state and problem formulation

6.1.1 Basic state for simulation

The methods described above will now be adapted to the case of an otherwise stationary

viscous fluid subjected to in-plane wall oscillation modified by high-frequency noise.

The nondimensional wall velocity will be described by

U ∗w =U0

[
cos(ωt) + δ

(
apcos(pωt) + bpsin(pωt)

)]
, (6.1.1)

where a2
p + b2

p = 1 so that δ is a measure of the level of noise. Note that an alternative,

equivalent expression is found by writing

apcos(pωt) + bpsin(pωt) = ±cos(pωt +φ),

where φ = arctan(bp/ap). This makes it clear that the parameter pair (ap,bp) controls the

phase of the noise.

In order for Floquet theory to be appropriate, let p be a positive integer so that the

wall motion still has the same period as the fundamental oscillation. The term fundamen-

tal is here used to refer to the purely sinusoidal component U0cos(ωt), recovered when

δ = 0.

The problem will be nondimensionalised in the same manner as for the monochro-

matic Stokes layer, using the frequency of the fundamental oscillation (ω) to define a

nondimensional time (τ) and the amplitude of oscillation (U0) as a velocity scale. Lengths

will also be scaled with δs, the Stokes layer thickness (1.2.1) associated with the funda-
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mental oscillation. The resulting nondimensional wall motion is

Uw = cos(τ) + δ
(
apcos(pτ) + bpsin(pτ)

)
. (6.1.2)

Under certain assumptions, this wall motion can used as a boundary condition in solving

the nondimensional Navier–Stokes equations to produce the basic state

UB(y,τ ;p) = e−ycos(τ − y) + δe−
√
py

[
apcos(pτ −√py) + bpsin(pτ −√py)

]
(6.1.3)

in the semi-infinite configuration. This can easily be incorporated into the linear simula-

tion simply by changing the basic state. This requires the derivatives

∂UB
∂y

= e−y [sin(τ − y)− cos(τ − y)]

+ δ
√
pe−
√
py

[
(ap − bp)sin(pτ −√py)− (ap + bp)cos(pτ −√py)

]
,

(6.1.4a)

∂2UB
∂y2 = −2e−ysin(τ − y)− 2δpe−

√
py

[
apsin(pτ −√py)− bpcos(pτ −√py)

]
. (6.1.4b)

Disturbances to this flow can now be simulated for a single fixed wavenumber and for

spatially localised impulse responses using the same methods as described in Chapter 2.

The linear stability analysis, however, requires further modification.

6.1.2 Floquet reformulation

Consider the flow generated in a channel of dimensional half-width l by the in-plane wall

motion of both boundaries as described by (6.1.2), i.e. wall oscillation with noise. The

same nondimensionalisation can be performed, introducing the nondimensional channel

width h = l/δs. The resulting flow is described by

Ub(y,τ ;p;h) =<
{

cosh[(1 + i)y]
cosh[(1 + i)h]

eiτ
}

+ δ<
{

cosh[(1 + i)y
√
p]

cosh[(1 + i)h
√
p]

(ap − ibp)eipτ
}
, (6.1.5)

which is distinguished from the semi-infinite flow (6.1.3) by the lower case subscript.

It can readily be confirmed that results are virtually indistinguishable from the semi-

infinite case for h ≥ 14. The Floquet method will therefore be applied to Ub(y,τ ;p;16)

as an approximation to UB(y,τ ;p) since the bounded geometry is more natural for the

Chebyshev collocation method.
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The basic state Ub can also be written in the form

Ub =
[
u1(y)eiτ + ū1(y)e−iτ

]
+ δ

[
up(y)(ap − ibp)eipτ + ūp(y)(ap + ibp)e−ipτ

]
, (6.1.6)

where ū1 and ūp are the complex conjugates of u1 and up, respectively.

Stability equations

As before, this basic state will be perturbed by a 2D disturbance (expressed as a stream

function) and linearised about the basic state Ub. Assuming that the disturbance has a

normal-mode form in the streamwise direction, the wavenumber α will be fixed. Flo-

quet’s theorem is applied, as in (1.2.6), leaving the stability equation unchanged as

∂
∂τ
Lψ =

[1
2
L−µ− iαReU

]
Lψ + iαReU ′′ψ, (6.1.7)

see (1.2.7). The harmonic decomposition of ψ (1.2.8) can again be applied,

ψ(y,τ) =
∞∑

n=−∞
ψn(y)einτ . (6.1.8)

Considering (6.1.6), it is expected that the multiplication of Ub and ψ in (6.1.7) will

result in the nth harmonic ψn interacting with the adjacent harmonics ψn±1 in the same

manner that was observed for the monochromatic case (see Section 1.2). For this flow,

the introduction of the frequency p means that ψn is also coupled with ψn±p.

This can be seen once the stability equation (6.1.7) is rewritten as an infinite system

using (5.1.8) and (6.1.6). Comparing coefficients of exp(inτ) gives, for each n,

(L−α2 − 2µ− 2in)Lψn = iαRe
[
u1(Lψn−1 − 2iψn−1)+

ū1(Lψn+1 + 2iψn+1) + (ap − ibp)(Lψn−p − 2ipψn−p)+

(ap + ibp)ūp(Lψn+p + 2ipψn+p)
]
. (6.1.9)

Reduction to a matrix problem

As before, y-derivatives are approximated by pseudospectral matrices with the appro-

priate boundary conditions taken into account in the manner discussed in Section 1.2
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(Trefethen, 2000). This introduces the matrix operators

L→ L, (6.1.10a)

1
2

(
∂4

∂y4 − 2α2 ∂
2

∂y2 +α4
)
→ V , (6.1.10b)

M1 = L−1u1(L− 2iI ), (6.1.10c)

Mp = L−1(ap − ibp)up(L− 2ipI ), (6.1.10d)

which are similar to those for the monotonic case (1.2.12). This gives, for each n,

− iαRe
[
M̄1ψn+1 + M̄pψn+p

]
+ (L−1V − inI )ψn − iαRe

[
M1ψn−1 +Mpψn−p

]
= µψn. (6.1.11)

The infinite system is then truncated by assuming ψn = 0 for all |n| > N and the

harmonic vectors are concatenated into the vector φ as in (1.2.17). This again results

in an eigenvalue problem Aφ = µφ where the block tridiagonal matrix A has additional

non-zero blocks on the diagonals p above and below the main diagonal, i.e.

A =



C−N B∗1 0 . . . B∗p 0 . . . . . . 0

B1 C−N+1 B∗1 B∗p
...

0 B1 C−N+2 B∗1 −B∗p
...

. . .
. . .

. . .
. . .

Bp B1 C−N+p B∗1 B∗p

0
. . .

. . .
. . .

. . . 0
... Bp B1 CN−2 B∗1

...
... Bp B1 CN−1 B∗1

0 . . . . . . 0 Bp 0 . . . B1 CN



,

where

Cn = (L−1V − inI ),

Bk = −iαReMk for k ∈ {1,p},

B∗k = −iαReM̄k for k ∈ {1,p}.
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Figure 6.1: Comparison of neutral curves found by Thomas et al. (2015) (a) and those found
in the present study (b). For both the curves shown h = 16, (ap,bp) = (1,0) and δ = 0.01. The
noise frequencies are p = 69 (solid line) and p = 76 (chained line). The crosses and dotted line
in (a) show the critical Reynolds number for a selection of different values for p and these are
not reproduced in (b). In Thomas et al. (2015), the Reynolds number is denoted R (rather
than Re) and the wavenumber is denoted a (rather than α). The axes in (a) are labelled based
on this notation.

Validation

The methods described in Chapter 1 can now be used to solve this problem and thus

deduce the stability of the flow for given parameters. Fixing δ, p and (ap,bp) allows for

determination of neutral curves by pseudo-arclength continuation. This method can also

be adapted to deduce the temporal growth of a disturbance at any fixed spatial location

and hence deduce if an instability is convective or absolute via the cusp map method (see

Chapter 5).

Comparison of neutral curves with those presented in Thomas et al. (2015) for the

large channel (h = 16) are shown in Figure 6.1 confirming that the present study is ca-

pable of picking out the interesting features found by Thomas et al. (2015). This is a

significant contribution to the study of such a flow since these curves had yet to be re-

produced by an independently developed code. As yet, no attempt has been made to

explain the interesting qualitative features of these curves but the reproduction of iden-

tical features suggests that this is a physical phenomenon and not a spurious numerical

feature.
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6.1.3 Flow symmetries

It was previously observed for the pure Stokes layer that in addition to being periodic

with period 2π, the basic state is antiperiodic with antiperiod π. This symmetry was

then shown to constrain the existence of cusps in the complex plane, revealing that dis-

turbances in antiperiodic flows undergo a temporal growth at each streamwise location

that is associated with α ∈ R, as is the temporal growth of the disturbance maximum.

It will now be considered whether the modified basic state (6.1.3) is subject to the same

symmetry. Consider (6.1.3),

UB(y,τ ;p) = e−ycos(τ − y) + δe−
√
py

[
apcos(pτ −√py) + bpsin(pτ −√py)

]
,

and take a time shift of half a period, τ→ τ +π,

UB(y,τ +π;p) = −e−ycos(τ − y) + δe−
√
py

[
apcos(pτ + pπ −√py) + bpsin(pτ + pπ −√py)

]
.

Now, cos and sin are antiperiodic with period π so

cos(θ + pπ) =

 cos(θ) if p even,

−cos(θ) if p odd
(6.1.13)

and

sin(θ + pπ) =

 sin(θ) if p even,

−sin(θ) if p odd
(6.1.14)

for any θ. This can be shown by appealing to the appropriate trigonometric identities.

The case of odd p

Consider first the possibility that p is odd. In this case, a time shift of half a period,

τ→ τ +π, is equivalent to a complete reversal of direction, i.e.

UB(y,τ +π;p) = −UB(y,τ ;p). (6.1.15)

It follows that all of the symmetry arguments for the pure Stokes layer (as shown in Sec-

tion 5.1) must also hold in this case. Based on these arguments, collisions that satisfy the

collision criteria are anticipated on the real axis of the complex α-plane corresponding
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to µ = µr + ik/2 (k ∈ Z), see Section 5.2.

Also, for α ∈ R the µ-roots of the dispersion relation will appear in complex conjugate

pairs.

The case of even p

Now consider p even. In this case, a time shift of half a period reverses the sign of the

fundamental oscillation but returns the noise to its original value, i.e

UB(y,τ +π;p) = −e−ycos(τ − y) + δe−
√
py

[
apcos(pτ −√py) + bpsin(pτ −√py)

]
.

In this case the symmetry arguments used in Section 5.1 cannot be applied. However,

since p sits between two odd values it is anticipated that the behaviour would not be

dissimilar to that for odd p. This hypothesis will be discussed in detail later.

Possible convective properties of absolutely unstable flows

In the case of even p, the antiperiodicity of the flow breaks down and so it cannot be

assumed that there are cusps with α∗ ∈ R.

It was seen in Section 4.3 that the temporal evolution of the disturbance along the

ray with greatest temporal growth (x/τ = Vmax) is associated with α ∈ R. If the temporal

growth along the ray x/τ = 0 (fixed spatial location) is no longer associated with α ∈ R,

then there must be some other ray that experiences greater growth, i.e. Vmax , 0. In the

simulations, it is anticipated that this will manifest as the disturbance experiencing some

convection away from the point of excitation while simultaneously experiencing growth

at every spatial location.

Recall the convection of the disturbance maximum away from the point of excitation

in the monochromatic Stokes layer (discussed in Chapter 3). This feature would suggest

that Vmax , 0 for this flow (as is assumed when measuring the temporal growth of the

disturbance maximum). However, it was shown in Section 5.3 that the temporal growth

at every choice of x is equal to the growth of the maximum. It follows that the temporal

growth along the ray x/τ = Vmax is no greater than that along the ray x/τ = 0.

In the case of even p it is expected that some ray x/τ = V , 0 undergoes greater tempo-

ral growth than that seen along x/τ = 0. This suggests that the whole disturbance, rather

than just the disturbance maximum, will experience some form of convection along this
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ray.

To clarify, this behaviour is not to be confused with convective instability. In a con-

vectively unstable flow the entire disturbance moves away from the point of excitation

and there is decay at every spatial location. Described above is the possibility of an abso-

lutely unstable flow for which some ray exists that exhibits greater temporal growth than

displayed at each spatial location. Such disturbances will have convective properties but

still experience temporal growth at every spatial location. This behaviour is what might

generally be expected of an absolute instability, with the pure Stokes layer (and the noisy

Stokes layer with odd p) being a special case.

Near harmonic and near subharmonic modes

Having noted that the flow symmetries responsible for the significance of µ = µr + ik/2

(for k ∈ Z) no longer apply for even p, it is no longer expected that the cusps will display

purely harmonic temporal variation (associated with={µ∗} = 0) or purely subharmonic

spatial variation (associated with={µ∗} = 1/2). However, when µi is in a neighbourhood

of either of these values, the disturbance will experience temporal behaviour similar to

the harmonic and subharmonic variation already discussed.

To demonstrate this, consider the general form of a Floquet mode,

ψ(y,τ) = p(y,τ)e(µr+iµi )τ , (6.1.16)

where p is 2π-periodic in τ . Taking a τ→ τ + 2π shift yields

ψ(y,τ + 2π) = p(y,τ)e(µr+iµi )τe(µr+iµi )2π,

= e(µr+iµi )2πψ(y,τ),

= e2πµre2πiµiψ(y,τ).

This shows that the passing of a period of wall motion results in the amplification of the

disturbance through multiplication by the real number exp(2πµr ). There is also multi-

plication by the complex number exp(2πiµi), which has magnitude 1.

The latter of these actions performs a phase-shift on the disturbance. In particular, if

µi = 0 this is the same as multiplying by 1 (no change in the phase) and if µi = 1/2 this is

the same as multiplying by −1 (so the passing of a second period will act as multiplication
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by 1).

If µi is close to (but not equal to) 0, this is equivalent to multiplying by a complex

number of magnitude 1 that is near to 1. This describes a small shift in the phase of the

disturbance. A small enough phase-shift can have little to no impact on the disturbance

envelope and when this is the case it is fairly difficult to distinguish the temporal be-

haviour from a purely harmonic mode. Similarly, for a value of µi close to (but not equal

to) 1/2 the temporal variation could not easily be distinguished from a purely subhar-

monic mode.

In the following work, the terms near harmonic and near subharmonic will be used

to describe disturbances with µi in the neighbourhood of 0 or 1/2, respectively. It is

anticipated that the cusps found when p is even will be of such a form, at least for low

levels of noise that are broadly similar to the monochromatic flow.

6.2 Case studies

The introduction of noise to the Stokes layer has several effects on the disturbance evolu-

tion in addition to the destabilisation discussed in Thomas et al. (2015). These features

will now be explored utilising space/time contour plots and growth-rate measures for

direct comparison with the pure Stokes layer (Chapter 3). Particular focus will be placed

on the temporal evolution at fixed spatial locations through application of the cusp map

method.

Three cases will be considered in this section and will be described as low-level noise,

significant noise and high-level noise. These terms are used to reflect how much the qual-

itative features of the monochromatic flow have changed in each case. In all three cases

(ap,bp) = (1,0) and p = 60 will be fixed for consistency and for each case the remaining

parameters will be,

• Low-level noise: δ = 0.0002, Re = 750,

• Significant noise: δ = 0.0008, Re = 700,

• High-level noise: δ = 0.01, Re = 500.

Notice that Re is decreased as δ is increased since larger values of δ are associated with a

destabilised flow. These values of Re were chosen so that the growth-rates will be broadly

similar in all three cases.
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Having noted that there are anticipated differences between odd and even p, these

cases will also be compared against p = 59,61 to deduce how sensitive the flow is to

a unit shift in this parameter. Focus is placed on the even choice of p = 60 since it is

anticipated from the flow symmetries that there will be cusps for odd p when α ∈ R and

when µ = µr + ik/2, whereas for even p each cusp needs to be found individually.

An immediate assessment of the changes brought about by the introduction of noise

will be made by observing the spatial/temporal structure of the disturbances for the first

three periods of wall-motion. The temporal growth-rates associated with the disturbance

maximum and a selection of spatial locations will then be measured and the former will

be compared against the growth-rate curves for real α found through solving the Floquet

eigenvalue problem.

Further insight into the behaviour at fixed streamwise locations will be provided by

application of the cusp map method. Since p is even, it is not expected that cusps will

correspond to real α and the effect this has on the disturbance evolution will be explored

by comparing the results against those for p = 59,61.

6.2.1 Features of early evolution

The disturbance evolution will now be explored for the first three periods of wall motion

in the three cases of interest. It is shown that the presence of noise can disrupt the family-

tree structure discussed for the monochromatic case in Section 3.1.

Low-level noise

Figure 6.2 shows the spatial/temporal evolution of the impulse response in the case of

low-level noise (δ = 0.0002, Re = 750) for the first three periods of wall motion. This

figure is directly comparable with the monochromatic case at the same Re given in Fig-

ure 3.4. The disturbance displays a broadly similar family-tree structure: daughter

wavepackets are generated at the same times and the wavepacket spacing appears to

be the same. The disturbance maximum is still convected to positive x through subse-

quent wavepackets while each individual wavepacket decays until its grand-daughter

wavepacket is superimposed over it, resulting in the subharmonic temporal growth of

each wavepacket.

Unlike Figure 3.4, in Figure 6.2 the space between the wavepackets now shows a high
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Figure 6.2: Space/time contour plot of the logarithm of the wall vorticity envelope log|ζ(x,0, τ)|
for δ = 0.0002, (ap,bp) = (1,0) and p = 60 at Re = 750 for comparison with Figure 3.4,
constructed in the same way.

enough amplitude to be visible on this plot (both contour plots employ the same low

amplitude cut-off) and secondary wavepackets have been introduced that are generated

in the same direction and at roughly the same time as the weaker of the two daughter

wavepackets but are of greater amplitude and much closer to their respective mothers.

There are also weaker secondary wavepackets on the opposite side of each mother (the

same side as the strongest of the daughter wavepackets).

In this case these secondary wavepackets are much weaker than the dominant daugh-

ter wavepackets. It will be seen below that this feature becomes more significant for
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Figure 6.3: Space/time contour plot of the logarithm of the wall vorticity envelope log|ζ(x,0, τ)|
for δ = 0.0008, (ap,bp) = (1,0) and p = 60 at Re = 700. Can be compared against Figure 3.2
and is constructed in the same way.

larger levels of noise.

Significant noise

The corresponding contour plot for the case of significant noise (δ = 0.0008, Re = 700) is

shown in Figure 6.3 which can be compared with the monochromatic case at the same

Re in Figure 3.2. Not only does the disturbance now display growth at this Re but the

multiple wavepackets are now connected by regions of significant amplitude.

The family-tree structure is essentially retained and the spacing between local max-
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ima that will continue to be described as mother and daughter wavepackets has remained

invariant. It is interesting to note that in both this case and the case of low-level noise the

streamwise wavepacket separation is the same as for the monochromatic case at the same

Re. It is anticipated, based on the discussion in Section 5.4, that this will correspond to

the same αr separation of cusps.

A particularly interesting development is that the secondary wavepackets that were

introduced at low values of δ have become significant and are now more dominant

than the daughter wavepackets, meaning that the disturbance maximum now appears

confined to a corridor around the original mother wavepacket. This means that af-

ter only three periods of wall motion, temporal growth is observed at the locations of

the mother/daughter wavepackets and the disturbance displays much less weighting to-

wards positive x.

While there is no evidence in this plot of the disturbance structure undergoing con-

vection (as was predicted for even p) it is worth noting for a later discussion that any

movement of the disturbance maximum would be a good indication of the movement of

the disturbance as a whole since the disturbance maximum sits within the broader struc-

ture. Later, this observation will be used to inform an investigation into the convective

properties of this disturbance.

High-level noise

In Figure 6.4 the contour plot for the first three periods of wall motion is shown for the

case of high-level noise (δ = 0.01, Re = 500). The multiple wavepacket response has been

replaced with a single wavepacket that undergoes growth and travels in alternating di-

rections with the direction of travel being dictated by that of the wall motion. This figure

suggests that for any fixed x the disturbance undergoes harmonic temporal growth.

Notice the increased amount of white space for earlier times seen at the bottom of

Figure 6.4. This indicates that the disturbance undergoes greater temporal growth in the

case of high-level noise than in either of the other cases despite taking a significantly

smaller value of Re in this case (as will be confirmed later). The dramatic destabilisation

associated with increasing the level of noise will be explored in Section 6.3.

Note also that in this case the noise level of δ = 0.01 is comparable to that observed in

experiments. This suggests that the family-tree structure may not necessarily be present
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Figure 6.4: Space/time contour plots of log|ζ(x,0, τ)| for Re = 500, δ = 0.01 and p = 60 with
(ap,bp) = (1,0). There is little evidence of the family-tree structure for this level of noise.

in experimental observations.

This contour plot shows that beyond a certain level of noise, the spatial/temporal

evolution of disturbances no longer adhere to the structure and behaviour seen in the

monochromatic case. In the case of low-level noise, the secondary wavepackets are in-

troduced. These then become stronger than the daughter wavepackets causing the dis-

turbance maximum to lie approximately in the centre of the disturbance in the case of

significant noise. It is then possible that as this behaviour dominates it coincides with the

breakdown of the family-tree structure. Documenting cases with δ between the values of

0.0008 and 0.001 would be necessary for a stronger statement to be made.
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Again, having the disturbance maximum contained within the rest of the disturbance

indicates that any movement of the maximum is representative of the movement of the

entire impulse response. This suggests that the convective properties of this disturbance

may be explored by tracing the location of the disturbance maximum (as will be seen

later).

6.2.2 Temporal growth-rates

Both the temporal growth of the disturbance maximum and the temporal growth at some

fixed streamwise locations are now measured in the same manner as in Section 3.4. The

measured growth-rate of the disturbance maximum is compared against the growth-rate

predicted by the eigenvalue problem and the differences in the growth-rate curves are

discussed. The harmonic or subharmonic nature of the temporal evolution at fixed x is

observed and the corresponding growth-rate is measured.

Low-level noise

Figure 6.5a shows the temporal growth-rates associated with a range of α when δ =

0.0002 and Re = 750. Comparison with Figure 3.7a shows that for these parameters,

very little has changed except that the maximum growth-rate has marginally increased

(µr = 0.2072 rather than µr = 0.2009 in Figure 3.7a) as has the corresponding wavenum-

ber (α = 0.3748 rather than α = 0.3747 in figure 3.7a). The growth-rate curve also ap-

pears more jagged than in the monochromatic case, but is otherwise very similar.

Figure 6.5b compares this predicted growth-rate with that measured from the time-

history of the disturbance maximum at the start of each period by (4.3.14). The conver-

gence is clear and occurs at a similar rate as for the monochromatic case.

The time-history of the logarithm of the wall vorticity envelope at fixed streamwise

locations is shown in Figure 6.5c, showing a growing Floquet mode with a quasi-period

twice the period of the underlying flow. That is, in the case of low-level noise the distur-

bance evolution for fixed x remains subharmonic in time.

Figure 6.5d shows the temporal growth-rates at three locations, measured by (4.3.23).

Transient effects are significant for most of the time displayed, i.e. there is a less clear

convergence to a single value than in the monochromatic case. However, the disordered

behaviour present for most of the time does appear to settle down towards the end of the
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Figure 6.5: The Stokes layer with δ = 0.0002, p = 60 and (ap,bp) = (1,0) at Re = 750 (low-
level noise). In (a) the growth-rate associated with a selection of α are plotted and the most
unstable mode is selected (α = 0.3748 and µr = 0.2072). In (b) the temporal growth-rate
of the disturbance maximum is calculated with (4.3.14) at the beginning of each period and
compared with the predicted value. In (c) the logarithm of the wall vorticity envelope at x =
700,1600,2500 displays subharmonic temporal growth as in Figure 3.11a. In (d) the temporal
growth-rates are calculated at the beginning of each period using (4.3.23) for x0 = 700 (+),
x0 = 1600 (×) and x0 = 2500 (∗), showing convergence to a single positive value, though this
is slower than for the monochromatic case (Figure 3.11b).
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simulation. As for the pure Stokes layer, the temporal growth-rate at fixed x appears to

be approaching a value very close to that of the disturbance maximum.

Significant noise

Figure 6.6a shows the growth-rates associated with a range of α as found from Floquet

theory when δ = 0.0008 and Re = 700. This figure is drastically different to Figure 3.8a

which, aside from the small-scale protrusions, has a single peak at the dominant mode

(as do Figure 3.7a and Figure 6.5a). In this case there are multiple peaks and the growth-

rate is highly sensitive to the choice of α.

Figure 6.6b compares the predicted growth-rate with that measured using (4.3.14)

and the convergence to the predicted value is significantly slower than in the monochro-

matic case (note that Figure 3.7b shows only ten periods of wall oscillation whereas Fig-

ure 6.5b shows 20). This slower convergence may be a manifestation of the multiple local

maxima in the growth-rate curve (Figure 6.6a), suggesting that the impulse response re-

mains a complicated superposition of several distinct modes for longer.

Figure 6.6c shows the time-history of the logarithm of the wall vorticity envelope at

the approximate locations of local maxima. This figure indicates that the temporal evolu-

tion at these locations displays a quasi-periodic time-history with period equal to that of

the underlying basic state. In this case the subharmonic temporal variation has thus been

replaced by a harmonic temporal variation. This has coincided with the strengthening of

the secondary wavepacket and the disturbance maximum moving between two locations

with a period equal to that of the underlying oscillation.

High-level noise

The growth-rate curve for wavenumbers 0 ≤ α ≤ 0.5 is given in Figure 6.7a when δ = 0.01

and Re = 500. The maximum growth-rate is noticeably larger than in the previous two

cases at µr = 0.8447 and the corresponding wavenumber is much closer to that for the

monochromatic and low-level noise cases than for that of significant noise. The larger

growth-rate was anticipated from Figure 6.4 but the curve has a distinct shape unlike

any observed so far. There are two clear peaks of the growth-rate appearing at distinct

wavenumbers and in this case there is no evidence of the fingers protruding from the

curve.
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Figure 6.6: The Stokes layer with δ = 0.0008, p = 60 and (ap,bp) = (1,0) at Re = 700 (signif-
icant noise). In (a) the growth-rates associated with a selection of α are plotted and the one
expected to be most dominant is selected (α = 0.3006 and µr = 0.1604). In (b) the temporal
growth-rate of the disturbance maximum is calculated with (4.3.14) at the beginning of each
period and compared with the predicted value. In (c) the logarithm of the wall vorticity enve-
lope at x = 500,1400,2300 reveals harmonic growth. In (d) the temporal growth is measured
at the same streamwise locations using (4.3.23) at the beginning of each period, x0 = 500 (+),
x0 = 1400 (×) and x0 = 2300 (∗), showing convergence to a single positive value, though this
is again slower than for the monochromatic case.
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Figure 6.7: The Stokes layer with δ = 0.01, p = 60 and (ap,bp) = (1,0) at Re = 500 (high-level
noise). In (a) the growth-rate associated with a selection of α are plotted and the one expected
to be most dominant is selected (α = 0.3783 and µr = 0.8447). The imaginary part of µ is also
plotted showing that the lower peak corresponds to µi ∼ 1/2 and the higher peak corresponds
to µi ∼ 0. In (b) the temporal growth-rate of the disturbance maximum is calculated with
(4.3.14) at the beginning of each period and compared with the predicted value. In (c) the
logarithm of the wall vorticity envelope at x = −200,0,200 reveals harmonic growth. In (d)
the temporal growth-rates at these spatial locations are calculated at the beginning of each
period using (4.3.23) for x0 = −200 (+), x0 = 0 (×) and x0 = 200 (∗), showing convergence to
a single positive value.
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The imaginary part of the eigenvalue is also plotted in Figure 6.7a, revealing that

the two peaks also correspond to distinct values of µi . The peak observed at lower α

corresponds to µi ∼ 1/2 while the peak at larger α has µr ∼ 0. The imaginary part is not

plotted for other cases since this value is known to move between 0 and 1/2 over the

distance between fingers, i.e. at a fine scale not easily depicted in these figures.

In this case, near harmonic µi ∼ 0 and near subharmonic µi ∼ 1/2 behaviour is asso-

ciated with distinct wavenumbers. Furthermore, the difference in the size of these peaks

indicates that cusps corresponding to near harmonic temporal behaviour will dominate

over those corresponding to near subharmonic temporal behaviour which is consistent

with the apparently harmonic temporal growth at every fixed x in the contour plot Fig-

ure 6.4.

It is important to note that the vertical lines in the µi curve of Figure 6.7a indicate

that different modes become dominant as α is changed. For instance, a mode with µ ∈ R

is dominant from α = 0 to approximately α = 0.21, then a mode with µi ∼ 1/2 moves

further right in the complex plane. This mode moves into the unstable region (µr > 0),

causing the first peak, and then returns to the stable region of the complex plane. Then,

at approximately α = 0.34 a mode with µi ∼ 0 becomes dominant and moves into (then

out of) the unstable region, creating the second peak.

Figure 6.7b compares the predicted growth-rate of µr = 0.8447 against the temporal

growth-rates of the disturbance maximum measured from the simulation at the start of

each period using (4.3.14). This plot indicates much faster convergence to the asymptotic

value than for significant noise.

In Figure 6.7c, the logarithm of the wall vorticity envelope is given at three locations

and, as would be anticipated from the larger growth-rate, the slope of this curve is much

steeper than in the previous two cases. The disturbance displays two peaks each period

and provides the clearest evidence that the temporal variation of the disturbance at each

of these spatial locations is harmonic.

Figure 6.7d shows the instantaneous temporal growth-rates at these streamwise loca-

tions, measured by (4.3.23), and it is immediately clear that transient effects are prevalent

for a much shorter time than for the case of significant noise (see Figure 6.6d). In this

case, the convergence to the asymptotic temporal behaviour is faster with regards to the

temporal evolution of both the disturbance maximum and at any fixed spatial location.

Note that, for this case, the locations of local maxima are less clear due to the extent
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to which the family-tree structure has broken down. For this example, the streamwise

locations of interest were chosen as the initial point of excitation, x = 0, and one location

on either side, x = ±200.

6.2.3 Cusp maps

Cusps will now be found for the three cases of interest and, since p is even, these are no

longer expected to correspond to real α. As a result, the temporal growth-rate associated

with any fixed streamwise location is expected to be less than that of the disturbance

maximum. This feature will be explored in more detail later.

Low-level noise

A search for cusps in the vicinity of the real line was carried out for the case of low-level

noise (δ = 0.0008, Re = 750). It is anticipated that the cusps will be in a neighbourhood

of the real line because the behaviour in this case is similar to the monochromatic Stokes

layer.

Four cusps were found in this case and two of these are presented in Figure 6.8. Two

of these cusps contribute to near harmonic temporal behaviour at all spatial locations

and the others correspond to near subharmonic temporal variation (one of each is shown

in Figure 6.8). These plots are similar to those for the pure Stokes layer (see Figure 5.6

and Figure 5.7), though the curves are somewhat deformed compared to the noise-free

case. The most significant difference between these cusps and those of the monochro-

matic Stokes layer is that the locations have been shifted away from the real α-axis as

anticipated by the failure of the symmetry arguments in the case that p is even.

Remembering that the locations of these cusps will only be approximate due to the

limitations of the grid method, the locations of all four cusps found in this case are given

in Table 6.1. It is immediately apparent that not only are the values of={α∗} nonzero

in all cases, but that this value is close in all four cases. It is therefore possible that the

actual cusp locations correspond to the same value of={α∗}. This suggestion is explored

in Figure 6.9.

Furthermore, comparison of the cusp locations in this case with those presented in

Table 5.1 reveals that the cusps found in this case are located at the same<{α∗} as those

for the monochromatic case up to four decimal places. The cusp spacing is therefore

209



The Stokes layer modified by high-frequency noise

0.37473 0.374734 0.374738 0.374742 0.374746

αr

-5

-4

-3

-2

-1

0

1

2

3

4

5

α
i

×10
-4

(a)

0.2 0.22 0.24 0.26 0.28 0.3

µr

-8

-6

-4

-2

0

2

4

µ
i

×10
-3

(b)

0.3781 0.3781005 0.378101 0.3781015 0.378102 0.3781025 0.378103

αr

1.5

2

2.5

3

3.5

4

α
i

×10
-5

(c)

0.2004 0.20045 0.2005 0.20055 0.2006 0.20065 0.2007

µr

-0.4989

-0.4988

-0.4987

-0.4986

-0.4985

-0.4984

-0.4983

-0.4982

-0.4981

µ
i

(d)

Figure 6.8: Cusp maps in the case of low-level noise, i.e. Re = 750, δ = 0.0002, p = 60 and
(ap,bp) = (1,0). The features of these cusps are similar to those for the pure Stokes layer (see
Figure 5.6) except that they do not correspond to α ∈ R. In (a) and (c), the straight grids in the
α-plane are shown and the corresponding curves in the complex µ-plane are shown in (b) and
(d), respectively. In (b),={µ∗} ∼ 0 which corresponds to near harmonic temporal growth. In
(d),={µ∗} ∼ 1/2 which corresponds to near subharmonic temporal growth.

Figure <{α∗} ={α∗} <{µ∗} ={µ∗}
6.8a,6.8b 0.374734 0.000022 0.206471 -0.004381

Not shown 0.368010 0.000026 0.201348 -0.003401
6.8c,6.8d 0.3781024 0.0000257 0.2004840 -0.4981533

Not shown 0.3713668 0.0000254 0.1989642 0.4883578

Table 6.1: The values of α∗ and µ∗ shown in Figure 6.8. Notice that for cusps that describe near
subharmonic temporal variation, the values are given to an extra decimal place due to the finer
grids used.

in good agreement, being ∆cα = 0.003364 in this case. This might have been anticipated

from the observation that the streamwise separation of wavepackets is equal in these two

cases.
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Figure 6.9: The growth-rate curve for α ∈ R for the case of low-level noise. In (a) the curve
is produced for 0 ≤ α ≤ 0.5 and in (b) as small portion of this curve (indicated by a box) is
presented. Aside from the destabilisation the main difference compared to the monochromatic
case (see Figure 5.8) is that the subharmonic modes now lie on inverted fingers. The growth-
rate curve when αi = 0.000026 is also shown in (b). This curve is qualitatively similar to
Figure 5.8 and the cusps roughly correspond to this value of αi .

While ={µ∗} is noticeably nonzero in Table 6.1 (compared to Table 5.1), justifying

the description of these cusps as near harmonic, in the near subharmonic cases={µ∗} is

actually closer to 1/2 than in the monochromatic case. Therefore, while these cusps are

described as near subharmonic due to the anticipated symmetry breaking, it cannot be

ruled out that these are numerical approximations to exactly subharmonic cusps.

Figure 6.9 shows a small section of the growth-rate curve for α ∈ R. This reveals

that the finger-like protrusions are still present and recognisable in this case and, though

not shown in the figure, they still correspond to harmonic modes with µi = 0. Where

Figure 6.9 differs from the monochromatic case (Figure 5.8) is in the inverted fingers

that are now present when µi ∼ 1/2. These features are responsible for the more jagged

appearance of the growth-rate curve in this case (compared to the monochromatic case).

Unlike the monochromatic case, the cusps do not correspond to real α so it would be

misleading to mark the cusp locations against this growth-rate curve in isolation. For this

reason Figure 6.9 also presents the growth-rate curve for nonreal α with αi = 0.000026.

A value in this area was chosen from the values observed in Table 6.1. For this value of

αi the growth-rate curve qualitatively agrees much better with that seen in Figure 5.8.

In particular, the cusps that correspond to near harmonic temporal growth lie on the

protruding fingers while those corresponding to near subharmonic temporal behaviour
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lie halfway between the fingers.

Physically, this suggests that the temporal growth of the disturbance at any stream-

wise location will be less than that of the disturbance maximum. However, this dis-

crepancy will be incredibly small and difficult to ascertain by extraction from the time-

histories. This is consistent with the similarities between this case and the monochro-

matic case.

Note that it is not immediately apparent, when p is even, whether the cusps satisfy

the collision criteria or not. A definitive proof that this is the case would be time con-

suming and computationally demanding. Instead, it is noted that these cusps are located

very close to those found for the pure Stokes layer and that the temporal evolution of

wavepackets is also similar in these two cases. This suggests that introducing this form

of noise has simply deformed cusps that are known to satisfy the collision criteria. It

is conjectured from this observation that the cusps presented in Figure 6.8 satisfy the

collision criteria.

This conjecture is supported by the agreement between the temporal growth-rates of

the disturbance at fixed spatial locations shown in Figure 6.5d and the values of<{µ∗}

given in Table 6.1.

Significant noise

Presented in Figure 6.10 are two cusps corresponding to near harmonic temporal growth

at every spatial location in the case of significant noise (δ = 0.0008, Re = 700). As for the

previous case, the cusps do not correspond to real α∗. In fact, in this case the cusps are

further from the real line and now correspond to={α∗} ∼ −0.00075.

The locations of these cusps are indicated in Table 6.2 and it is also observed that

={µ∗} , 0 for either of the cusps shown so the temporal behaviour associated with these

cusps is near harmonic. It is interesting to note that no evidence of near subharmonic

cusps halfway between the two shown in Figure 6.10 was found.

Figure <{α∗} ={α∗} <{µ∗} ={µ∗}
6.10a,6.10b 0.300800 -0.000789 0.152140 0.011465
6.10c,6.10d 0.308088 -0.000726 0.123530 0.019133

Table 6.2: The values of α∗ and µ∗ shown in Figure 6.10. Notice that both cusps describe near
harmonic temporal behaviour.

The growth-rate curve for significant noise is plotted again in Figure 6.11a. In this
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Figure 6.10: Cusp maps in the case of significant noise. That is Re = 700, δ = 0.0008, p = 60
and (ap,bp) = (1,0). In (a) and (c) the straight grids in the complex α-plane are shown and the
corresponding curves in the µ-plane are shown in (b) and (d), respectively. Again, the locations
of these cusps do not correspond to α ∈ R.

case the imaginary part of the eigenvalue is also plotted. This curve is difficult to in-

terpret as some of the vertical lines indicate a change in the dominant mode, while the

actual curves of µi remain fairly steep. Interestingly, when α > 0.34 the imaginary part

is highly oscillatory, as has been discussed for the monochromatic and low-level noise

cases, whereas for α < 0.34 the imaginary part remains close to zero, as observed for one

of the peaks in the high-level noise case.

An important feature of this curve is that the value of µi does not ever reach 1/2, so

in this case the most unstable mode for all α is never subharmonic. When α ∼ 0.41 the
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Figure 6.11: The growth-rate curve for α ∈ R for the case of significant noise. Plotting the
real and imaginary parts of the most unstable eigenvalues in (a) reveals that there are no
subharmonic modes when α ∈ R. In (b), the region near the cusps of Figure 6.10 is explored
and in addition to the growth-rate curve for αi = 0 is the growth-rate curve for αi = −0.00075.
This curve approximately passes through the cusps (marked by circled crosses) but there is no
evidence of the fingers protruding from the curves in this case.

value of µi does come into proximity of 1/2, but these near subharmonic modes are either

stable or only marginally unstable so will not be significant in the impulse response.

This supports the observation from Figure 6.7c that the temporal evolution at any

given x is harmonic. In Figure 6.11b the locations of the cusps given in Figure 6.10 are

marked against the curve with αi = −0.00075. This is chosen as the approximate value

of ={α∗} for these cusps. Unlike the case of low-level noise, neither of these curves

display the protruding fingers. However, it will later be seen that there are still features

resembling the fingers at larger α in this case.

It is more difficult to ascertain whether the cusps shown in Figure 6.10 satisfy the

collision criteria or not. Notionally, the cusp locations could be compared against the

locations of cusps in the monochromatic case at the sameRe, or for efficiency the locations

of fingers. This is not directly suitable since the search for cusps was conducted near to

the most unstable mode for α ∈ R which, in this case, lies at a lower value of α than any

fingers have been observed for the monochromatic case with Re = 700 (see Figure 3.8a).

However, the distance between <{α∗} suggests a separation of ∆cα ∼ 0.0073, which is

in agreement with the finger separation ∆αf found in the monochromatic case at this Re

(Section 5.4).

Also, recall that for odd p it has been predicted that cusps will have α∗ ∈ R. This

means that for both p = 59,61 there will be cusps that satisfy the collision criteria on
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the real line, suggesting that cusps close to the real line when p = 60 (such as those

presented in Table 6.2) may be deformations of these. Furthermore, the agreement with

the temporal growth displayed at each location in Figure 6.6d suggests that these cusps

may satisfy the collision criteria.

High-level noise

A search was also conducted in the case of high-level noise. Some cusps were found, but

none that remotely agreed with the temporal growth associated with fixed spatial loca-

tions in Figure 6.7d. Some examples were found with<{µ∗} > 0.85 and it was concluded

that these cusps do not satisfy the collision criteria since they display greater temporal

growth than observed for α ∈ R (for which the greatest growth observed is µr = 0.8447,

see Figure 6.7a).

It may be considered logical that cusps with greater growth-rate than that observed

for α ∈ R cannot satisfy the collision criteria as this would mean that the temporal growth

of the disturbance at any fixed spatial location would exceed the temporal growth of

the disturbance maximum. This should be an impossibility by the very nature of the

disturbance maximum. In Section 5.2, an additional argument (in the framework of

Briggs’ method) as to why cusps with <{µ∗} > maxα∈Rµr do not satisfy the collision

criteria is given. This argument is strongly related to the intuition described above.

Several cusps were also found with<{µ∗} < 0.8. It is unclear without a more in-depth

analysis whether such cusps satisfy the collision criteria, since according to Figure 6.7a

the most unstable cusp is expected to correspond to a temporal growth-rate much closer

to that of the disturbance maximum, i.e. ∼ 0.84.

None of these cusps were presented here since there was no evidence that they satisfy

the collision criteria. It is important to note the significance of this criteria and not as-

sume that it is satisfied for all cusps. Conveniently, for the monochromatic Stokes layer

or the noisy Stokes layer with odd p, it has been shown that cusps satisfying={α∗} = 0

and={µ∗} = k/2 (with k ∈ Z) should satisfy the collision criteria. When p is even, this is

not the case.

The approach taken here has been to report cusps that describe a temporal variation

at fixed streamwise locations that is in agreement with the simulation results. This does

not mean that the cusps shown in Figure 6.8 and Figure 6.10 definitely satisfy the colli-
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sion criteria, only that they are consistent with the observed behaviour. Any cusps that

are not consistent with the observed behaviour are not included. This does not mean

that these cusps definitely do not satisfy the collision criteria, as the simulations will

only display the temporal growth associated with the cusp with greatest<{µ∗}.

6.2.4 Comparison of even and odd p

In all of the cases considered, the cusps found do not lie on the real line, as anticipated

by the breaking of the flow symmetries when p is even. A direct result of this is that

there exists some ray x/τ = V along which the disturbances experience greater temporal

growth than at any given location x/τ = 0. It is therefore anticipated that these distur-

bances exhibit some convective properties.

In each of the three cases of interest, comparison will be made against the disturbance

evolution when p = 59,61 since for odd p the cusps should correspond to α∗ ∈ R. First, the

features up to ten periods of wall-motion are compared showing broadly similar features,

regardless of the choice of p. However, exploring the behaviour in more detail indicates

that the disturbances display some convective properties when p = 60 but remain centred

around the original mother wavepacket when p = 59,61 in the manner observed for the

monochromatic case.

Contour plots for the first ten periods of wall motion

Intuitively, it would be anticipated that changing p by 1 would leave the dynamics largely

unchanged. However, since the antiperiodicity of the flow when p is odd breaks down

when p is even, it is worth exploring how the behaviour of the disturbance when p = 60

compares to that when p = 59 and p = 61.

An immediate assessment of the qualitative difference between any disturbances can

be made by observing the contour plots. Contour plots provide a means of establish-

ing several important characteristics: existence of convective or absolute instability; har-

monic or subharmonic temporal evolution at fixed x; whether the disturbance maximum

is convected away or confined to a neighbourhood of the excitation; and also to what

extent the family-tree structure is present.

An extended contour plot for the first ten periods of wall motion in the case of low-

level noise (δ = 0.0002, Re = 750) is shown in Figure 6.12a. This reinforces the conclusion
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Figure 6.12: Contour plot for the first ten periods of wall motion. Each case is for Re = 750,
δ = 0.0002 with (a) corresponding to the case of low-level noise already discussed, p = 60. The
cases p = 59 (b) and p = 61 (c) are compared showing strong qualitative agreement.
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already drawn that, aside from relatively minor qualitative changes, the disturbance evo-

lution is largely unaffected by the presence of noise in this case. This contour plot can

be compared with that for the pure Stokes layer in Figure 3.12 and the main difference is

the magnitude of the disturbance in the regions between the wavepacket maxima.

Figure 6.12 also compares this contour plot against those for p = 59 and p = 61 with

all other parameters kept the same. In these figures, the streamwise wavepacket separa-

tion appears equal which is consistent with the suggestion that this feature depends only

on Re. Also, the temporal growth of each wavepacket is subharmonic in all three cases,

as can be seen from their staggered arrangement.

The disturbance maximum is convected away from the point of excitation in all three

cases in the same manner observed in the monochromatic case. It is interesting to observe

no clear qualitative changes between these three cases according to Figure 6.12. This is

to be expected in a case where the noise has had such little impact on the behaviour.

The equivalent contour plot in the case of significant noise is shown in Figure 6.13a

and the disturbance maximum appears to remain confined to a region around the initial

point of excitation. This is not what is anticipated from the cusp map method which sug-

gests that the whole disturbance should display some convective properties. However,

there is some suggestion at the top of this plot that the disturbance maximum has shifted

slightly in the direction of positive x.

This plot is compared against the cases p = 59,61 for which the temporal growth

associated with any spatial location is expected to be equal to that of the disturbance

maximum. These plots show no such sign of the maximum moving away from the initial

point of excitation but otherwise show essentially the same behaviour with harmonic

temporal variation at each x.

Recall that these plots are constructed by normalising the disturbance before cutting

off the lower magnitudes and taking the logarithm. This means that the apparent thin-

ning of the wavepacket extent as p is increased is the manifestation of a greater growth-

rate. In this case the unitary shift in p is responsible for a noticeable change in the growth

characteristics, but the qualitative behaviour of these disturbances is broadly similar.

Figure 6.14 presents the contour plot after ten periods of wall motion for the case

of high-level noise (δ = 0.01, Re = 500) which is compared against the cases p = 59,61.

In this case, the low-amplitude cut-off is taken to be smaller due to the greater tem-
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Figure 6.13: Contour plot for the first ten periods of wall motion. Each case is for Re = 700,
δ = 0.0008 with (a) corresponding to the case of significant noise already discussed, p = 60.
The cases p = 59 (b) and p = 61 (c) are compared showing qualitative agreement. In this case
the growth-rate appears to increase with increasing p.
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poral growth-rate of the disturbance maximum. These contour plots are virtually in-

distinguishable; in all three cases the growth-rate appears approximately equal and the

family-tree structure has completely broken down. In this figure there is no evidence of

the disturbance maximum convecting away from the initial point of excitation.

Evidence of convection

Earlier, it was stated for the cases of significant and high-level noise that having the dis-

turbance maximum contained within the body of the disturbance (approximately in the

centre) means that the movement of the maximum should be representative of the move-

ment of the disturbance. For this reason, the convective properties of these disturbances

will be explored by tracing the location of the disturbance maximum.

Consider the time halfway through each period of wall motion τ/2π ∈ {0.5,1.5,2.5, ...}.

The location of the disturbance maximum can be found at each of these times. No stag-

gering of this location is expected since the temporal behaviour associated with any fixed

spatial location appears to be harmonic (or at least near harmonic) in these cases.

It is anticipated that when p = 60 the disturbance maximum will be slowly convected

away from the initial point of excitation since there should be some ray x/τ = Vmax along

which the disturbance displays greater temporal growth than it does for any fixed x,

x/τ = 0. In the cases p = 59,61 it is anticipated that the disturbance maximum at this

selection of times will remain confined to the same location since the greatest growth is

associated with the ray x/τ = 0. These predictions are made based on whether the cusps

correspond to α ∈ R or not and are discussed near the end of Section 6.1.

In Figure 6.15, the locations of the disturbance maximum are plotted against time for

the three choices of p in the cases of significant and high-level noise. The anticipated

convection of the disturbance maximum is observed when p is even while this location

remains fixed when p is odd.

Notice that there is a jump in the location of the disturbance maximum near the

end of the simulation in the case of significant noise. This is due to the magnitude of a

different wavepacket becoming greater than the previous maximum. This is supposedly

a remaining manifestation of the family-tree structure and is noticeably absent in the

case of high-level noise for which the disturbance maximum moves approximately the

same distance each period.
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Figure 6.14: Contour plot for the first ten periods of wall motion. Each case is for Re = 500,
δ = 0.01 with (a) corresponding to the case of high-level noise case already discussed, p = 60.
The cases p = 59 (b) and p = 61 (c) are compared showing strong qualitative agreement.
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Figure 6.15: The location of the disturbance maximum when τ/2π = 0.5,1.5,2.5, ... for the
cases of significant and high-level noise. In (a), Re = 700 and δ = 0.0002 (significant noise). In
(b), Re = 500 and δ = 0.001 (high-level noise). In both cases, the disturbance maximum for p =
59,61 remains in the same location for each time whereas for p = 60 the disturbance maximum
begins to move away from this location. In (a) this convection only becomes apparent in the
last 5 periods of wall motion, while in (b) the convection is immediately apparent.

It is interesting to note that the convection of the disturbance maximum is much

stronger in the case of high-level noise than for significant noise even though there was

no evidence of this in the contour plot, Figure 6.14. This is because the contours are

much wider in Figure 6.14 so the location of the disturbance maximum is more difficult

to deduce than in Figure 6.13 where there are still distinct local maxima present in a

shape that still resembles the family-tree structure to some extent.

In the case of low-level noise, the family-tree structure is retained and the disturbance

maximum is immediately convected downstream so is not representative of the general

movement of the disturbance. In this case the convective properties of the disturbance

will instead be investigated by plotting the local maxima of the disturbance at a selection

of times. The equivalent plot for the monochromatic Stokes layer is given in Figure 3.13

(and reproduced in Figure 5.10).

In Figure 6.16 the locations of maxima are plotted against the logarithm of their am-

plitudes for p = 60 and p = 61. When p = 61, the structure is qualitatively similar to

the monochromatic case. In particular, the wavepackets at each time are approximately

equal in size as indicated by the dashed lines at the average value. This was anticipated

from the flow symmetries that constrain the locations of cusps to real α and hence exhibit

greatest temporal growth along the ray x/τ = 0.

When p = 60, some other ray exhibits the greatest temporal growth since the cusps
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Figure 6.16: The logarithm of the magnitude of the local maxima are plotted against the lo-
cations of these maxima at a selection of times (not including the global maxima which are
convected downstream) when Re = 750 and δ = 0.0002 (i.e. low-level noise). In (a), p = 60
is chosen and when compared to the monochromatic case (Figure 5.10) there is a clear tilting
of the structure: more negative x is associated with larger magnitudes at later times. In (b),
p = 61 is chosen and this plot is characteristically very similar to Figure 5.10, with dashed
lines indicating the average size of the maxima at each time instance.

do not correspond to real α (see Table 6.1). In this case the wavepackets on the left-hand

side of the plot become increasingly dominant over those on the right-hand side over

time. This indicates that the disturbance does indeed display convective properties as

anticipated.

It has now been shown that even when the impulse response is absolutely unstable

the disturbance can display convective properties. This is what is generally expected of

absolute instabilities since it is only in special cases that the cusps will have α∗ ∈ R. Note

that the immediate convection of the disturbance maximum in the low-level noise and

monochromatic cases is an unrelated feature.

Finally, it is noted that when p is even and the temporal growth along the ray x/τ = 0

(fixed spatial location) is less than the temporal growth along the ray x/τ = Vmax, it should

be possible to select the parameters so that the disturbance decays with time at every

spatial location while the disturbance maximum displays temporal growth. Such a dis-

turbance would be convectively unstable. The possibility of the existence of convective

instabilities in the noisy Stokes layer is not explored here but is suggested as future work.
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Growth-rate curves for even and odd p

To conclude the comparison between even and odd p, a segment of the growth-rate curves

for all of the cases discussed in this section are presented in Figure 6.17. In each plot, δ

and Re are fixed and the variation of µr with α in the range 0.365 ≤ α ≤ 0.385 is presented

for the three cases p = 59,60,61. These plots are accompanied by the corresponding

variation of µi .

The values of µi were manipulated for graphical clarity. In the case of p = 60 this

was generally achieved by plotting µi modulo 1 (except for in Figure 6.17d) and for odd

p use was made of the fact that for any µ-root of the dispersion relation, µ̄ is also a root

at the same α. In these cases |µi | was plotted. The manner in which µi was manipulated

was to ensure the clearest comparison between the curves for each p shown. This is why

0 < µi < 1 in all cases except for Figure 6.17d where it was concluded that the curve was

better represented crossing the real axis.

First, observe that in the case of low-level noise, the µr curves for odd p are qualita-

tively very similar to those explored for the monochromatic Stokes layer (Figure 6.17a).

There are fingers protruding from the curve at regular intervals of α and it can be seen

from Figure 6.17b that these correspond to µi = 0, furthermore, µi = 1/2 approximately

halfway between each of these fingers (note that the vertical lines in Figure 6.17b are a

manifestation of a sudden change in the location of µi). For all three values of p, and

for the monochromatic Stokes layer at the same Re, the fingers are found in the same

locations. This suggests that in each case the streamwise separation of wavepackets is

the same. As noted before, when p is even there are inverted fingers corresponding to

µi = 1/2.

In the case of significant noise, there is still evidence of the evenly spaced fingers for

all three choices of p, but these are significantly broader than in the previous case (Fig-

ure 6.17c). Note that this selection of α is greater than that considered in Figure 6.11

for which no fingers were observed and corresponds to the region with greatest varia-

tion in µi . The distance between the tips of these protrusions seems to be lower than

in Figure 6.17a and to the eye is consistent with the value of ∆αf = 0.0073 found for the

monochromatic Stokes layer at this Re (see Section 5.4).

It has already been notice in the case of significant noise, and is evident from Fig-

ure 6.17d, that for no choice of p is there an α corresponding to µi = 1/2. The closest
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Figure 6.17: The variation of µr with α is plotted for p = 60 (solid line), p = 59 (dashed line)
and p = 61 (chain) in (a), (c), (e). The corresponding variation of µi (modulo 1) is given in (b),
(d), (f). The plots (a) and (b) correspond to the case of low-level noise (δ = 0.0002, Re = 750).
The plots (c), (d) correspond to the case of significant noise (δ = 0.0008, Re = 700). The plots
(e), (f) correspond to the case of high-level noise (δ = 0.001, Re = 500).
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µi gets to this value seems to be approximately halfway between the fingers and, with

µi ∼ 0.4, these modes could be said to display near subharmonic behaviour.

In the cases of p = 59,61, this means that the types of cusps that are constrained by

the flow symmetries cannot appear between each finger (though this does not mean that

there are no cusps at these locations) and for p = 60 no cusps were found here. In the case

of odd p, the entire extent of the fingers still corresponds to µi = 0, whereas for p = 60 the

fingers correspond to µi ∼ 0 and it appears that µi = 0 only at the tips of these protrusions

(to the accuracy of these plots).

Finally, in Figure 6.17e the variation of µr with α for the case of high-level noise

shows little evidence of the finger structures observed in the other cases. It is, however,

intriguing to note from Figure 6.17f that for this range of α, all of the modes plotted

have µi = 0 when p is odd. This means that the curves shown display one of the main

features of the fingers. Having observed the broadening of fingers with increased noise,

it is possible that in this case the fingers have broadened to such an extend that they are

no longer discernible at this scale.

In the case that p = 60, µi = 0 at only one point in this range of α. This is consistent

with the observation in the previous case that µi = 0 across the entire extent of the fingers

for odd p but only at a single α for even p. However, in this case it is evident that the

wavenumber for which µi = 0 when p = 60 does not correspond with the local maximum

of µr . In the case of high-level noise in particular, exploration of a greater range of α

would be more informative.

6.2.5 Discussion

The evolution of disturbances in three different examples of the Stokes layer modified by

low-amplitude, high-frequency noise was explored. It was shown that for the cases con-

sidered, an increase in δ was capable of drastically destabilising the flow and that such

destabilisation was associated with a change in the temporal evolution of the disturbance

at fixed streamwise locations from subharmonic (with quasi-period twice the period of

the basic state) to harmonic (with quasi-period equal to the period of the basic state).

For the lower levels of noise considered, this change in temporal variation appeared

to coincide with the introduction and then strengthening of secondary wavepackets that

are generated much closer to their respective mother wavepacket than the daughter
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wavepackets discussed in the monochromatic case. For the case of high-level noise, the

impulse response displayed a spatial/temporal evolution that was not at all comparable

to the family-tree structure.

The cusp map method was applied in these cases and it was shown that, as was as-

serted based on symmetry arguments, for the choice of p = 60 there was no evidence

of cusps with α ∈ R. This meant that, since α ∈ R correspond to the greatest tempo-

ral growth along any ray x/τ = V (see Section 4.3), there is some ray along which the

disturbance undergoes temporal growth greater than that displayed at any fixed spatial

location. It was predicted, based on this observation, that when p = 60 the disturbance

would display some convective properties while also growing at each spatial location.

This was confirmed to hold for the three cases considered here.

Recalling that when p is odd, the symmetry arguments deployed for the pure Stokes

layer apply and ensure the existence of cusps with α∗ ∈ R, the same cases were considered

but with p = 59,61. As anticipated, it was seen that the disturbances did not display such

convective properties in these cases.

Throughout this section, the Floquet eigenvalue method was applied and compared

against the simulation results. It was seen that the breakdown of the family-tree structure

coincided with the breakdown of the fingers protruding from the growth-rate curves.

This is consistent with Section 5.4 where it was shown that the spacing of the fingers in α

is consistent with the streamwise separation of wavepackets in the streamwise direction.

There was no evidence of cusps with ={µ∗} = 1/2 in the case of significant noise,

and it was seen that in the case of high-level noise the modes corresponding to harmonic

and subharmonic temporal evolution (with µi = 0,1/2, respectively) are associated with

distinct wavenumbers and display significantly different growth-rates.

6.3 Parametric investigation

Having discussed in some detail the effect that high-frequency noise in the basic state can

have on the spatial/temporal evolution of disturbances, a broader investigation into the

effects of noise can be carried out. Due to the many parameters controlling the form of

the noise, this investigation will by no means be comprehensive and the focus will be on

the destabilisation that has been observed as δ is increased (Thomas et al. , 2015). As dis-

cussed earlier, the dramatic change in Rec that comes about for δ = O(0.01) is consistent
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with experimental observations but the other parameters, namely the noise frequency

p and phase (ap,bp), are more difficult to extract from experiments. Indeed, in experi-

ments the noise is expected to take a much more complicated form with a superposition

of many harmonics and the possibility of breaking the exact periodicity that is central to

the current approach.

The intention is to explore some of the observations reported by Thomas et al. (2015)

in more detail. First, it will be shown that the problem is fairly insensitive to the choice

of parameter pair (ap,bp), then the destabilisation will be explored for some choices of p.

Finally, a brief investigation into the sensitivity of the problem to the precise choice of p

will be presented.

6.3.1 Insensitivity to the phase of noise, (ap,bp)

The dependence of the problem on the phase of the noise will now be considered. Take

the parameter pair (ap,bp), related by a2
p+b2

p = 1. First, it will be shown that there appear

to be phase symmetries under which the asymptotic behaviour is unchanged which will

be presented and discussed. Evidence will then be provided to suggest that, aside from

these symmetries, the system is not particularly sensitive to the precise choice of (ap,bp).

Speculative phase symmetries

In addition to the symmetry between upstream and downstream, there is the possibility

of an additional symmetry in this flow that comes about through modification of the pa-

rameters that control the phase of the noise. No mathematical argument has been found

that utilises time shifts to show that such a symmetry must exist, but the eigenvalue

solver provides anecdotal evidence.

Consider first an even value of p. Let α ∈ R and set some (ap,bp). Fixing α, Re and p

(even) it conjectured that

(
(ap,bp)→ (bp,−ap)

)
results in

(
µ→ µ̄

)
,

with µ̄ being the complex conjugate of µ. Notice that under this transform the relation

a2
p + b2

p = 1 still holds and that this transformation amounts to a quarter-period shift in
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Figure 6.18: Fixed parameters p = 70, δ = 0.001, Re = 700 and α = 0.34. The eigenvalues are
plotted for a selection of initial (ap,bp) and compared against those when (ap,bp)→ (bp,−ap).
For each case this transform is performed 3 times and this has the effect of conjugating the set
of eigenvalues µ each time. The initial (ap,bp) are (0,1) in (a), (1/

√
2,1/
√

2) in (b), (1/2,
√

3/2)
in (c) and (

√
3/2,1/2) in (d). In all cases a2

p + b2
p = 1.

the phase of the noise. Performing this transformation again yields

(
(ap,bp)→ (−ap,−bp)

)
results in

(
µ→ µ

)
,(

(ap,bp)→ (−bp, ap)
)

results in
(
µ→ µ̄

)
.

This behaviour is consistent for all even values of p that were explored.

Some of the cases explored that displayed this symmetry are shown in Figure 6.18
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where four different initial values of (ap,bp) are taken and this transform is performed

three times. This supports the proposition stated above and highlights that performing

this transform twice gives (ap,bp)→ (−ap,−bp) and leaves the eigenvalues unchanged.

Table 6.3 shows the growth rates of the most unstable modes in Figure 6.18 for each of

the four cases considered. Note that for each plot in Figure 6.18 there is only one choice

of dominant growth-rate. This table shows that while this value is different in the four

cases considered it does not differ much, suggesting that the precise choice of (ap,bp) is

much less important than the choice of δ or p.

(a) (b) (c) (d)

<{µ} 0.974299 0.974986 0.975197 0.974430

Table 6.3: A comparison of the growth-rate of the most unstable modes associated with the dif-
ferent choices of (ap,bp). The letters (a), (b), (c) and (d) indicate which subfigure in Figure 6.18
the values correspond to, noting that complex conjugation does not effect the growth-rate. In
each case, the growth-rates are similar but not equal.

Consider now odd values of p. No plots are presented for this case but it is observed

that although the complex conjugation under (ap,bp)→ (bp,−ap) no longer holds, the set

of eigenvalues remain unchanged under a reversal of sign, i.e.

(
(ap,bp)→ (−ap,−bp)

)
results in

(
µ→ µ

)
.

Noting that (ap,bp)→ (−ap,−bp) is equivalent to δ→−δ, this shows that a reversal in the

sign of the noise (half-period shift in the phase) seems to leave the eigenvalues unchanged

for both odd and even p. Only in the case of even p does a quarter-period shift in the

phase appear to correspond to complex conjugation of the eigenvalues.

It is noted that this relationship breaks down when α is complex. The possibility that

the relationship might hold for complex α provided α → ᾱ was investigated and it was

found that this was not the case.

While the suggestion that there is a shift in the phase of the noise that leaves the

asymptotic behaviour unchanged is intriguing, no mathematical argument was found to

support the existence of any such symmetry.
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Simulation under different noise phases

Aside from the speculation that there is some form of symmetry under certain phase-

shifts of the noise, it was also noted that the growth-rates for a selection of (ap,bp) differ

only a little. This effect will now be explored through simulation results. The following

four cases will be discussed: (ap,bp) = (0,1), (1,0), (−1,0), (1/
√

2,1/
√

2). The noise level will

be fixed at δ = 0.01 so that the noise is of an amplitude that has significantly altered the

stability of the flow and the three cases p = 50,60,70 will be considered. The Reynolds

number will also be fixed at Re = 500, resulting in disturbances that are unstable for all

choices of p at this δ and Re.

Consider p = 50. Figure 6.19 shows the contour plots for the four choices of (ap,bp).

First, observe that these figures are not identical. However, in all four plots the growth

over the six periods shown appears approximately equal, the observable width of the

disturbances are approximately equal, and the disturbance maxima are confined to a

corridor near the point of excitation.

Figure 6.20 shows equivalent plots in the case p = 60 and the agreement is even more

striking. In this case there is little evidence left of the multiple wavepacket evolution

observed for the monochromatic Stokes layer and few discernible differences between

the figures. The same contour plots were constructed for p = 70, but these were virtually

indistinguishable from Figure 6.20 so are not shown.

Now that it has been observed that the current choices of (ap,bp) have had little effect

on the qualitative behaviour of disturbances, the temporal growth-rate of the disturbance

maximum can be compared in each case. Table 6.4 presents the values measured using

(4.3.14) and shows that for the choices of (ap,bp) considered, these growth-rates are in

agreement to at least 2 decimal places for all three choices of p.

(ap,bp)

p (0,1) (1,0) (−1,0) (1/
√

2,1/
√

2)

50 0.3384 0.3356 0.3366 0.3334
60 0.8436 0.8437 0.8438 0.8439
70 0.7917 0.7935 0.7942 0.7931

Table 6.4: Comparison of the growth-rates for four different choices of (ap,bp). Here, Re = 500
and δ = 0.01 in every case and p = 50,60,70 are considered. The growth-rates, measured from
the simulations using (4.3.14) at the final time-step, generally agree to at least 2 decimal places
for all values of (ap,bp) considered.
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Figure 6.19: Space/time contour plots of log|ζ(x,0, τ)| for Re = 500, δ = 0.01 and p = 50 for
four different choices of (ap,bp): in (a) (ap,bp) = (0,1), in (b) (ap,bp) = (1,0), in (c) (ap,bp) =
(−1,0), and in (d) (ap,bp) = (1/

√
2,1/
√

2). While the parameter choice clearly has some effect
on the spatial/temporal evolution, the features of these plots are broadly similar.

Notice that none of these values are as similar as might be suggested by the speculated

symmetries. In particular, the growth-rates when (ap,bp) = (−1,0), (0,1), (1,0) should be

indistinguishable if this symmetry does indeed hold. The fact that the growth-rates

in these cases are not particularly closer in value than they are to the case (ap,bp) =

(1/
√

2,1/
√

2) could either be due to the finite time of the simulations or might suggest

that the observed symmetry does not actually hold.
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Figure 6.20: Space/time contour plots of log|ζ(x,0, τ)| for Re = 500, δ = 0.01 and p = 60
for four different choices of (ap,bp): in (a) (ap,bp) = (0,1), in (b) (ap,bp) = (1,0), in (c)
(ap,bp) = (−1,0), and in (d) (ap,bp) = (1/

√
2,1/
√

2). The parameter choice has little effect
on the spatial/temporal evolution.

These results suggest that the evolution of disturbances in the Stokes layer modified

by high-frequency noise is relatively insensitive to the choice of parameter pair (ap,bp).

This is not definitive since a limited choice of parameters were considered. However,

these results do justify the decision to fix (ap,bp) = (1,0) for the following investigation

so as to reduce the parameter space with a minimal risk of missing important behaviour.
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6.3.2 Destabilisation with δ

In order to quantify the destabilisation caused by the introduction of noise, the critical

Reynolds number will be used. The critical Reynolds number Rec is defined as the largest

Reynolds number below which all disturbances are stable (i.e. the minimum point of the

neutral stability curve). In order to deduce Rec, the growth of modes for all α ∈ R need

to be considered at any given Re. Then, Rec is the choice of Reynolds number for which

the most unstable mode has a growth-rate of zero. In terms of the eigenvalue solver, the

growth-rates can be calculated for a selection of α and the peak of this curve represents

the most unstable mode. In terms of the simulations, the disturbance maximum will

display temporal growth (or decay) equal to the growth of the most unstable (or least

stable) mode.

While the asymptotically approached growth-rate cannot be deduced from the simu-

lations, it is not necessarily more convenient to deduce Rec from the eigenvalue problem.

Both approaches are computationally expensive but the benefit of utilising the simula-

tions is that the least stable (or most unstable) mode is found automatically, without

having to search across a range of α. It will be seen that this is a useful feature for this

particular flow.

Tracing the critical Reynolds number

Let (ap,bp) = (1,0), then for every choice of p and δ there will exist a critical Reynolds

number Rec, below which all disturbances are stable. It has already been shown by

Thomas et al. (2015) that δ = O(0.01) can result inRec less than half that of the monochro-

matic Stokes layer, bringing the value in line with that observed in experiments. Due to

the simplicity of the noise model used, it is impossible to select a value of p that will

allow a direct comparison with experiments so a selection of values will be chosen and

the variation of Rec with δ will be explored for each of these cases.

It has been shown that some disturbances take longer than ten periods to settle to a

value near that predicted asymptotically. However, after this length of time the measured

growth-rate is usually a reasonably good approximation. Furthermore, it has already

been observed that for some values of Re there are several peaks in the growth-rate curve

and so the dominant mode may move around in wavenumber-space (this consideration

will be discussed in more detail later). This and the speed with which these simula-
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Figure 6.21: The effect of δ on Rec for p = 50, p = 60 and p = 70. The value of Rec was
approximated from the simulations by measuring the growth rates at the end of ten periods of
wall oscillation and performing a bisection method to find the Re for which the growth rate is
approximately zero. In all three cases there is a dramatic reduction in Rec by the time δ = 0.01,
with the greatest reduction being in the case p = 70.

tions can be run using parallel computing means that simulation better lends itself to a

parametric investigation into Rec than the Floquet method.

The values of Rec were found to two decimal places. This was generally sufficient to

give a reasonable estimate of the zero growth-rate. The values were found by a bisection

method where the temporal growth-rate of the disturbance maximum was found for both

a stable and unstable choice of Re, and the neutrally stable point is predicted linearly

between them. The growth-rate at this Re is then measured and the process repeated.

Several predicted values of Rec were then compared with the Floquet method and were

found to be good approximations of neutral conditions.

Shown in Figure 6.21 is the result of this investigation for p = 50,60,70 showing that

there is a dramatic destabilisation in all three cases. In all three cases, an increase in δ

is associated with a decrease in Rec. According to Figure 6.21 a larger value of p also

corresponds to a lower value of Rec, but this observation should be viewed with caution,

particularly since it is possible that a fairly modest increase in δ could result in the curves

for p = 50 and p = 60 crossing one another. More insight into the variation of growth-

rates with p will be provided later.

Consistently for all three values of p, the Rec curves appear to be flattening out for
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larger δ. This suggests that further increases in δ would have a comparatively small effect

on the critical Reynolds number.

Switch in dominance of two modes

In Figure 6.21 there is a kink in the Rec curve for p = 70 at δ = 0.0016. This feature will

now be explored further.

Given the manner in which these curves are found from the simulations and thus only

provide approximations to Rec, it is important to rule out the possibility that this kink is

spurious. One of the reasons for utilising the simulations over Floquet theory was that

the disturbance maximum will always grow in time as the most unstable mode, whereas

any efficient method of tracing Rec from the eigenvalue solver will involve following a

particular mode (similar to the arclength continuation methods of Section 1.3).

It is anticipated that if there are two or more distinct modes that can become unstable,

the point at which they swap dominance could manifest like this kink. It has already

been noted that in the case of high-level noise there are two distinct modes at different

wavenumbers with different values of µi .

The possibility that the kink in Figure 6.21 is a manifestation of one mode becoming

dominant over another can be explored by investigating the behaviour of disturbances

on each side of the kink, just above the Rec curve to ensure disturbances are unstable.

Consider the two cases δ = 0.0014, Re = 535 and δ = 0.0018, Re = 490. In Figure 6.22

the growth-rates of a selection of modes are shown for 0 ≤ α ≤ 0.5 in both of these cases

(found from the Floquet eigenvalue problem). It is immediately apparent in Figure 6.22a

that the growth-rate curve displays two peaks for distinct wavenumbers. In Figure 6.22b

the previously larger peak has virtually vanished. This figure suggests that the kink in

Figure 6.21 is a manifestation of a change in dominant mode from that at the larger

wavenumber ∼ 0.4 to that at the lower wavenumber ∼ 0.3.

The values of µi are also plotted against α in Figure 6.22, revealing that the loca-

tions of the peaks in µr correspond to distinct values of µi , which is consistent with what

was observed for the case of high-level noise. That is, the peak at the lower wavenum-

ber corresponds to µi ∼ 1/2 (near subharmonic) and the peak at the larger wavenumber

corresponds to µi ∼ 0 (near harmonic).

For the two cases shown here, an increase in δ has resulted in the near subharmonic
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Figure 6.22: In (a) the real and imaginary parts of µ are shown for a range of α with fixed
Re = 535, δ = 0.0014 and p = 70. In (b) this is shown for Re = 490 and δ = 0.0018. The
peaks in µr support the behaviour observed in the simulations, and it is revealed that in both
cases the peaks found at α ∼ 0.27 correspond to µi ∼ 1/2, whereas the peak at larger α in (a)
corresponds to µi ∼ 0.

behaviour becoming dominant over the near harmonic behaviour. However, this is only

the case near the Rec curve since the critical Reynolds number for the harmonic peak

would presumably be described by a fairly smooth continuation of the first part of this

curve, before the kink (this would be close to the curve for p = 60).

The kink observed in Figure 6.21 is consistent with being a manifestation of a switch

in dominance of two modes. There is no evidence of such a switch for p = 50 or p =

60, though it is possible that such a feature occurs outside of the range of δ shown in

Figure 6.21. It has already been observed that the disturbance at Re = 500 when p = 60

and δ = 0.01 is dominated by the harmonic modes so if such a kink occurs when p = 60

it most likely does so outside of the range of this plot.

6.3.3 Noise frequency, p

Aside from the comparison made between the even case of p = 60 against the odd cases of

p = 59,61, only the three choices of p = 50,60,70 have been explored. While the problem

is less sensitive to the choice of p than to the noise level δ, the evidence suggests that the

value of p can have a significant effect on the disturbance evolution.

A thorough investigation into the sensitivity of disturbances to this parameter would

be time consuming and computationally expensive. However, it is necessary to ensure

that the features discussed above are consistent for a range of p. For this reason, a selec-

237



The Stokes layer modified by high-frequency noise

460

480

500

520

540

560

580

600

620

640

0 2 4 6 8 10 12 14 16 18 20

x

τ/2π

p = 65
p = 68
p = 75
p = 78
p = 80
p = 85

(a)

280

300

320

340

360

380

400

420

440

0 2 4 6 8 10 12 14 16 18 20

x

τ/2π

p = 65
p = 68
p = 75
p = 78
p = 80
p = 85

(b)

Figure 6.23: The location of the disturbance maximum is plotted against time for a range of p.
In (a) the other parameters are fixed at Re = 700, δ = 0.001 and (ap,bp) = (1,0). In (b) these
parameters are fixed at Re = 600, δ = 0.005 and (ap,bp) = (1,0). In both cases, the disturbance
maximum remains in approximately the same place when p is odd, near x = 510 in (a) and
near x = 425 in (b), but moves away from this location when p is even.

tion of p will be considered (with an equal number of even and odd values and excluding

the values already explored) and simulations will be run in these cases for δ = 0.001,

Re = 700 and δ = 0.005, Re = 600.

First, note that in all these cases the disturbance maximum lies within the structures

of the disturbance rather than being immediately convected away (not shown). The lo-

cation of said maximum will be treated as being representative of the general movement

of the disturbance. In Figure 6.23 the location of the disturbance maximum is plotted

against time, confirming that the disturbance displays convective properties when p is

even but not when p is odd. This is consistent with the behaviour discussed in Sec-

tion 6.2.

It is interesting to note from observing Figure 6.15 and Figure 6.23 is that the direc-

tion in which the disturbance moves (for even p) is not the same for all cases considered.

In fact, there is little evidence that this direction can easily be predicted.

A brief investigation into the effect of p on the growth of the disturbance maximum

was carried out. The temporal growth-rate of each disturbance maximum was calculated

from the time-history of the simulations by (4.3.14) for p = 55,56,57, ...,85, since this

process is computationally much faster than plotting the growth-rate curves at a suitable

resolution. The growth-rate is then plotted against p in several cases in Figure 6.24.

In Figure 6.24a, the Reynolds number is fixed at Re = 500 and µr is plotted against
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Figure 6.24: The temporal growth-rate µr of the disturbance maximum is measured from the
simulation time-history using (4.3.14). In (a), Re = 500 is fixed and three choices of δ are
explored. In (b), δ = 0.005 is fixed and three choices of Re are explored. In each case the
variation of µr with p is shown.

p for δ = 0.001,0.002,0.005. In Figure 6.24b, the level of noise is fixed at δ = 0.005 and

µr is plotted against p for Re = 500,600,700. The case δ = 0.005, Re = 500 is plotted

in both figures for reference. Note that for all Re considered the pure Stokes layer is

asymptotically stable, meaning that µr > 0 in Figure 6.24 indicates destabilisation.

In all cases shown in Figure 6.24, an increase in δ or Re results in an increase in the

growth of the disturbance maximum. However, the value of p corresponding to the peak

growth-rate is not at all consistent. WhenRe = 500, it is not until p reaches∼ 70 that there

is significant destabilisation. However, for larger Re, there are unstable disturbances for

all p considered, with a relatively steep variation.

For Re = 600 there is a local maximum of µr when p ∼ 78. The reducing gradient for

Re = 700 suggests that if there is a local maximum in this case it corresponds to p larger

than 85. There is also a local maximum around p ∼ 63 in the case δ = 0.005 and Re = 500.

Finally, observe that in all five cases shown, the problem is relatively insensitive to a

small change in p, though a large change in p can have a significant effect on the growth-

rate and spatial/temporal characteristics of a disturbance.

Summary

In this chapter, a simple model of noise was incorporated into the basic state to crudely

replicate that reported in experiments. The results presented here broadly agree with

those of Thomas et al. (2015): noise can have a destabilising effect on disturbances. The
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spatial/temporal features of impulse responses in several cases were explored, revealing

that under a sufficient level of noise the family-tree structure is disrupted and in many

cases the multiple-wavepacket structure observed for the pure Stokes layer is replaced

with a single-wavepacket response.

The focus of the current work has been on the temporal behaviour of the disturbance

at fixed streamwise locations through the application of the cusp map method, and it has

been shown that when p is odd the disturbance exhibits greatest temporal growth at a

fixed streamwise location, x/τ = 0. It has also been shown that when p is even, a ray exists

that undergoes greater temporal growth than at any fixed streamwise location, resulting

in a convection of the impulse response. It is noted that this effect appears to intensify

with larger δ.

Aside from these convective properties, the structural features of the disturbances

were found to be relatively insensitive to the choice of p in the limited cases considered

in this chapter, though the growth of a disturbance can change significantly with p.

The destabilisation of the flow with increasing δ was documented when p = 50,60,70,

suggesting that the variation of Rec with δ becomes less pronounced for larger δ. The de-

pendence of the problem on the parameter p was also briefly explored. Due to time

restraints a more thorough investigation into the p-dependence of the problem is consid-

ered outside of the scope of this work.

It was also confirmed in several cases that the phase of the noise, dictated by the

parameter pair (ap,bp), had a limited effect on the stability of the flow and the qualitative

features of the disturbance.
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The main focus of this work has been to compile and extend the existing work on the

stability of Stokes layers. In particular, the application of Briggs’ method (Briggs, 1964)

to show that the semi-infinite Stokes layer is subject to absolute instability has been a

constructive contribution to this body of work. In general, the investigation has centred

around the comparison between the linear stability analysis and simulations of distur-

bance evolution to develop a deeper understanding of the features and structures associ-

ated with this flow.

Future work

Due to a limit in resources and time there is a significant amount of work on this subject

still to be explored. In this section, suggestions for future work (alluded to throughout)

will be compiled in some detail.

Three-dimensional boundary layers

While the linear stability of three-dimensional boundary layers (unaligned composite

flow) was explored in Section 1.5, no further use of these results is made in the present

study. It would be interesting to explore the stability of this family of flows.

In particular, the stability of a mean flow modified by an oscillation in the direction

perpendicular to the main flow would be of interest since it has been shown in some cases

that in turbulent boundary layers a spanwise oscillation can reduce drag (Choi, 2005;

Quadrio & Ricco, 2010; Touber & Leschziner, 2012; Blesbois et al. , 2013). The present

work suggests that the stability of such a flow would be dictated by the stability of a

turbulent boundary layer with streamwise oscillation. Some insight into the behaviour

of such a flow could be provided by considering the simpler, laminar model of, say, the
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Figure 6.25: The single-wavenumber simulation is run in the cases: Re = 1224, α = 0.52 in
(a); Re = 1300, α = 0.55 in (b). In each case the absolute value of the vorticity ζ is taken and
the maximum value over the wall-normal direction is plotted. There is no clear indication of
growth or decay in either case.

Blasius boundary layer modified by a perpendicular Stokes layer. While it would be in-

formative to perform such an investigation regardless, there is some evidence to suggest

that a linear model is capable of reproducing the turbulent drag reduction (Duque-Daza

et al. , 2012).

Large wavenumbers

The linear stability analysis described in Chapter 1 fails to pick up some unexpected

behaviour for larger values of α. This issue is demonstrated in the work of Kong & Luo

(2016) where the stability of disturbances with α in this region is approximated in an ad

hoc manner. The simulations of the present study are broadly in agreement with regards

to the evolution of disturbances with these larger wavenumbers: even for large times the

growth/decay appears random.

Presented in Figure 6.25 are the time-histories of the maximum vorticity (over y)

and there is no clear growth or decay in either of the cases shown. This is consistent

with the behaviour observed by Kong & Luo (2016). It is less clear from the 10-period

snapshots whether some more regular behaviour is approached for longer times. It would

be interesting to deduce some means of quantifying the asymptotic behaviour in these

cases, be it through the Floquet method, frozen flow analysis or some other approach.

Interestingly, when larger wavenumbers were incorporated into the impulse response,

this had virtually no effect on the disturbance evolution.

242



Future work and conclusions

The ability to extend the neutral curves to larger α would mean a more thorough

investigation of the stability of this flow could be conducted, though there is currently

no clear explanation for why this is not possible. It would be particularly interesting if

there was evidence of the neutral curve turning and closing around itself, i.e. if there

is a value of α for which an increase in Re first results in a transition from stability to

instability and then a further increase in Re makes the disturbance once again stable.

Such behaviour would be expected since it was shown by Hall (1978) that the Stokes

layer is linearly stable in the limit Re→∞.

Nonlinearity

One of the main drawbacks of the Floquet method is that due to the large instantaneous

growth-rates within each period of oscillation it is possible that nonlinearity can set in

before the first period has even completed. Therefore, since the linear problem does not

experience the periodicity of the flow, the Floquet assumption breaks down. While a non-

linear stability analysis is a challenging prospect, it is relatively straightforward (albeit

more computationally expensive) to include the effects of nonlinearity in the disturbance

simulations.

Consider the nondimensional Navier–Stokes equations with the incompressibility

condition. The process implemented in Section 2.1 to deduce the equations governing

disturbance evolution (2.1.7) can be applied, but with the nonlinear terms retained. This

results in the modified governing equations

1
Re
∂ζ
∂τ

+US
∂ζ
∂x

+U ′′S v +
∂(uζ)
∂x

+
∂(vζ)
∂y

=
1

2Re

(
∂2

∂x2 +
∂2

∂y2

)
ζ, (6.3.2a)(

∂2

∂x2 +
∂2

∂y2

)
v = −∂ζ

∂x
, (6.3.2b)

u = −
∫ ∞
y

(
ζ +

∂v
∂x

)
dy. (6.3.2c)

In the finite-difference formulation, the additional nonlinear terms can be calculated

at each time-step and incorporated into the solver for the vorticity transport equation

(6.3.2a) within the explicit terms En (2.4.12). In the spectral formulation this is more

difficult since the individual Fourier modes no longer evolve independently. This means

that every time-step involves a transformation into physical space, so that the nonlinear

terms can be calculated, and then a transformation back into Fourier space to continue

243



Future work and conclusions

the simulation as before. This makes the spectral method significantly slower since the

Fourier transforms are computationally expensive. Whichever approach is taken, a much

finer temporal and spatial resolution is required for nonlinear problems. This further

increases computational expense and run-time.

In the nonlinear regime, Squire’s theorem no longer applies, so a fully nonlinear sim-

ulation would have to be three-dimensional. In this case the governing equations can be

deduced in essentially the same way. This again compounds the complexity of the prob-

lem so it would be logical to begin a nonlinear investigation with the two-dimensional

problem (6.3.2).

Such an investigation would be mainly concerned with disturbances that are linearly

highly damped. This would mean that nonlinear effects are fairly weak, though presum-

ably still important. Of particular interest would be whether the family-tree structure is

maintained, as this would provide a great deal of insight into experimental results. The

two-dimensional nonlinear problem was considered in Thomas et al. (2014) but due to

time restraints the current study did not investigate this extension.

The study of the stability of pulsatile flow in a channel is extended to the nonlinear

regime by Pier & Schmid (2017). Two regimes are reported that display distinct be-

haviours. In the cruising regime, once nonlinear effects become important, the nonlinear

behaviour dominates the disturbance evolution for all subsequent times. In the ballistic

regime, nonlinear effects are important during the times that the eigenvector displays

significant amplitude and linear effects dominate when the amplitude is small. That is,

the disturbance passes in and out of the nonlinear regime within each period of wall mo-

tion. As the relative magnitude of the periodic flow component increases, it is noted that

the cruising regime ceases to be important. This suggests that the pure Stokes layer may

only exhibit the ballistic regime. It would be of great interest to explore whether this is

indeed the case.

Transient, non-modal growth

It was noted when discussing the simulation results in Chapter 3 and Chapter 6 that there

is a length of time over which the impulse settles down before beginning to approach the

asymptotic behaviour. It may be of interest to explore this behaviour in more detail.

It is common for disturbances to undergo growth during this time, even in the cases
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where they are asymptotically stable. In general, this growth is not of exponential form

but rather it is algebraic and is thus referred to as non-modal. This behaviour is a direct

result of nonorthogonal eigenvectors, meaning that the resultant of two exponentially

decaying modes can exhibit growth for a short time (Schmid, 2007).

The investigation of the transient behaviour of disturbances in the Stokes layer could

provide insight into the experimentally observed behaviour since the large instanta-

neous growth rates associated with disturbances in this flow combined with transient

non-modal growth could cause early onset of nonlinear saturation. A consideration of

transient effects would therefore be an informative component of any further studies of

this flow. There has already been some work in this area (Hack & Zaki, 2015).

Absolute instabilities in other temporally periodic flows

One of the main motivators for the study of the Stokes layer is as a paradigm example

through which methods can be developed that are applicable to periodic flows in gen-

eral. For this reason, it would be interesting to see the present work extended to other

examples of periodic flows.

A particularly relevant family of flows to the present work is that in which the oscil-

latory flow is modified by a mean flow. In the special case of a purely oscillatory flow

there would be only absolute instability and in the limiting case of a purely steady uni-

directional flow there would be only convective instability. It would be interesting to

investigate the transition from one to the other and whether the mean flow could be used

to hold off the onset of absolute instability.

Such an investigation would be conducted over a large parameter space and so is be-

yond the scope of this work. It is also interesting to note that the case in which the mean

flow is at some angle to the oscillatory flow could easily be investigated as a straightfor-

ward extension, based on the transform discussed in Section 1.5.

The Stokes layer subject to noise

Due, in part, to the large parameter space associated with the noisy Stokes layer explored

in Chapter 6, only a limited investigation could take place. Several possible extensions

of the work presented here remain.
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A more thorough investigation

The focus of the present study has been on the destabilising effect of δ and an in-depth

investigation into the spatial/temporal behaviour of three cases, including application

of the cusp map method. It would be of great interest to see the same level of depth

extended to more cases.

The possibility that the flow is subject to convective instabilities, which temporally

decay at every spatial location, was noted. A future investigation could explore this pos-

sibility in detail. Additionally, a more thorough pinch-point analysis could be explored,

with possible aims being the prediction of the ray along which the disturbance is con-

vected when p is even and a detailed confirmation of whether the cusps presented here

do indeed satisfy the collision criteria.

It would also be interesting to explore a noise model that is not high-frequency or

low-amplitude. Taking p ∼ 10 and δ ∼ 1 would transform the problem from one with a

fundamental oscillation modified in some way to a superposition of two oscillations of

similar amplitude with related frequencies. It is unclear what effect this could have on

disturbance evolution.

Finally, the noise model could be implemented when investigating the stability of

composite flows (as described in Chapter 1). This would allow the impulse response

in such flows to be modelled in a more realistic manner for better comparison against

experiments.

Random noise simulations

In experiments, the form the noise takes is generally going to be much more complicated

than the model used here. While it would be computationally demanding to reformulate

the Floquet eigenvalue problem for a more random noise model (since the presence of

more frequencies results in more nonzero entries in the matrix), it would be relatively

straightforward to implement a more complex model in the linear simulations.

The wall motion could be given the form

Uw(τ) = cos(τ) + δ
P∑
p=0

[
apcos(pτ)±

√
1− a2

psin(pτ)
]

(6.3.3)
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which would generate a basic state

UB(y,τ) = e−ycos(τ − y) + δ
P∑
p=0

e−
√
pu

[
apcos(pτ −√py)±

√
1− a2

psin(pτ −√py)
]

(6.3.4)

The incorporation of multiple different frequencies would make the noise model much

more realistic and it would be possible to generate the values of ap randomly at the start

of the simulation to determine whether the precise form of the noise has a significant

effect on the stability.

It would also be interesting to introduce a noise model that breaks the periodicity of

the problem. Again, this would be more realistic as there is no reason the mechanically

generated noise in experiments would be identical each period. The linear stability anal-

ysis in this case would be possible if a subharmonic noise was introduced as this would

retain the periodicity, but the period of the flow would be a multiple of the period of the

fundamental oscillation. Alternatively, the periodicity could be properly broken with

relatively little effort in the simulations. For instance, the values of ap could be generated

randomly as each period completes (with care taken to ensure continuity) to generate a

highly random model of noise.

Carefully constructed experiments

While the destabilisation of the Stokes layer through the introduction of noise is consis-

tent with the experimentally observed behaviour in principle, the discrepancy between

the noise model and the real noise means that no direct comparisons can be made. Even

making changes to the noise model to make it more realistic, such as those discussed

above, would not give directly comparable results as the noise in experiments is incredi-

bly difficult to measure.

It may be interesting for an experiment to be constructed in which the noise is pur-

posely generated to have a form easily implemented in a linear stability analysis. This

would provide a means of validating the linear stability analysis against experiments

which, if successful, would mean that the Floquet approach is an appropriate means of

modelling oscillatory flows.
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Conclusions and final remarks

In Chapter 1, the current theoretical work on the linear stability of periodic flows (and

in particular Stokes layers) is compiled in a manner akin to the work on steady flows,

such as in Schmid & Henningson (2001). This proceeds from the derivation of linear

disturbance equations (from the Navier–Stokes equations) to the application of Squire’s

theorem in the unsteady case, reducing the stability problem to the eigenvalue problem

associated with a single equation (analogous to the Orr–Sommerfeld equation). The nu-

merical methods used to solve this eigenvalue problem are also discussed.

In addition, the work was extended to the consideration of three-dimensional bound-

ary layers. Influenced by Blennerhassett & Bassom (2007), it was found that an argument

similar to that required for Squire’s theorem held in such cases. Interest was restricted

to the case of a mean flow modified by oscillation at some angle to it and it was shown

that any case in which the flows are not aligned can be reduced to an equivalent aligned

problem with lower Reynolds numbers. The particular presentation of Squire’s theorem

for unsteady flows made the analogy between these transforms clear. This relationship

between the two-dimensional and three-dimensional boundary layers could prove useful

in future studies.

The reproduction in Chapter 1 of existing results from Blennerhassett & Bassom

(2002, 2006) and Thomas et al. (2011) not only serves to validate the existing work but

also provides an independent verification of their results. This is particularly relevant

since the use of Floquet theory to study the stability of periodic flows is a relatively re-

cent addition to the field and remains novel. This makes the present work significant as

one of only a few successful attempts at utilising this approach.

Some important results concerning the semi-infinite Stokes layer were the determi-

nation of the critical Reynolds number of Rec ∼ 707.8, in agreement with Blennerhassett

& Bassom (2002), and a discussion on the eigenfunction structure associated with Flo-

quet modes. The fingers protruding from the growth-rate curves for fixed Re and neutral

curves in the (α,Re)-plane were documented and discussed. These features were revis-

ited in Chapter 5 where their physical significance became apparent.

The finite-difference method described in Chapter 2 uses an almost identical formu-

lation to Togneri (2011), further developed by Duval (2012), and is adapted from the

same source code. This is due, mainly, to the significant amount of work required to
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independently develop a code that elegantly deals with this computationally demanding

problem. The spectral method used in the remainder of this work differs in the treatment

of the streamwise co-ordinate and allows for the code to be naturally adapted for parallel

computing, drastically reducing running times.

In the spectral method, the streamwise variation of the excitation is incorporated

through a transformation to Fourier space. The evolution of each Fourier component of

the disturbance (i.e. each choice of wavenumber α) is independent of the others and so

this problem lends itself to parallelisation. This approach was found to have significantly

greater computational speed than the finite-difference formulation. It is this spectral for-

mulation that distinguishes the present approach to linear simulation from the numerical

approach of Togneri (2011) on which it is based.

In Chapter 3, the methods of linear simulation allow for an investigation into the spa-

tial/temporal structure of disturbances generated by impulsive forcing. The localisation

of the forcing in space is not permitted by the single wavenumber approach of the Flo-

quet method since the underlying assumption is spatial homogeneity. However, as the

impulsive forcing passes and the spatial homogeneity returns, the response becomes a

superposition of all the wavenumbers seeded in the initial excitation.

The running-time benefits of the spectral method allowed for the behaviour to be

documented for an unprecedented twenty periods of wall motion when utilising the

computational resources of the Raven cluster (courtesy of ARCCA). Having reproduced

the family-tree structure reported in Thomas et al. (2014) in the first three periods, it

was observed that as time progresses this structure evolves into a pattern of staggered

wavepackets that spread out from the point of excitation in a dispersive manner (with

the disturbance maximum consistently on one side of the disturbance). It was illustrated

that in the case of an unstable disturbance this structure appeared to be associated with

subharmonic temporal growth at every spatial location, i.e. absolute instability. Further-

more, it was shown that even for near-critical values of Re, the temporal growth-rate of

the disturbance at several fixed streamwise locations approaches a value similar to that

of the disturbance maximum.

Throughout this chapter, comparison was made between the temporal evolution of

the disturbance maximum and the asymptotic behaviour predicted by Floquet theory.

The agreement of these growth-rates was demonstrated and the Fourier spectrum of the
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impulse response was explored, indicating that as time progresses the wavenumber ex-

pected to correspond to the temporal growth of the disturbance maximum becomes in-

creasingly dominant.

In Chapter 4, the leading-order behaviour of the solution integral was determined

by two methods. Briggs’ method (Briggs, 1964) was found to be appropriate for peri-

odic flows with some minor adjustments, as was the method of steepest-descent (Huerre,

2002).

The resulting conditions agree with those reported by Brevdo & Bridges (1997) ex-

cept that more detail has been provided in the asymptotic evaluation through adaptation

of the methods utilised in the steady case (Lingwood, 1997). Through this framework it

was straightforward to clearly define convective and absolute instability as well as de-

ducing an appropriate means of measuring, from the simulation results, the temporal

growth associated with both the disturbance maximum and the disturbance at any fixed

streamwise location. The main purpose of this detailed discussion was to ensure that the

application to the semi-infinite Stokes layer is appropriate and well informed.

Described in Chapter 4 is the pinch-point condition on the dispersion relation. In

summary, this condition is the collision of two α-roots of D(α,µ) as µ undergoes a hori-

zontal movement across the original integration contour L. Such a collision contributes

to the asymptotic temporal behaviour of a disturbance at every streamwise location pro-

vided these α-roots originate in opposite half-planes (this is called the collision criteria).

It was observed that this results in a saddle point of the dispersion relation in α which

must be of pinch-type (i.e. with branches originating in opposite half-planes).

In general, the location of such saddle points is explored by mapping a straight grid

in the complex µ-plane to the complex α-plane through D(α,µ) = 0. Due to the compu-

tational infeasibility of this approach, it was deemed more appropriate for the present

study to instead perform the mapping of a straight grid in the α-plane to the µ-plane.

In this case, the locations of cusps in the µ-plane indicate a saddle point of the disper-

sion relation. It then remains to ensure that any cusp corresponds to a saddle point of

pinch-type.

Perhaps the main results of this work are contained within Chapter 5. First, it was

observed that the antiperiodicity of the Stokes layer can be used to indicate that the

existence of collisions that satisfy the collision criteria must occur for α ∈ R and µ =
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µr + ik/2 (with k ∈ Z).

The eigenvalue solver developed in Chapter 1 was then adapted for the locating of

cusps in the complex µ-plane and it was shown that those found satisfied the conditions

predicted by the symmetry analysis. The cusps also had an even spacing in α and al-

ternated between those that contributed a harmonic temporal variation and those that

contributed a subharmonic temporal variation. Intriguingly, the harmonic cusps were

located at the tips of the protruding fingers while the subharmonic cusps were located

halfway between each of these.

The features of the disturbance evolution discussed in Chapter 3 were then revis-

ited to illustrate that both methods are in good agreement. In particular, it was found

that a simple function constructed from the superposition of six modes (with the char-

acteristics of the cusps) was capable of displaying behaviour similar to the family-tree

structure of the Stokes layer. This model was able to predict the streamwise separa-

tion of wavepackets from the separation of the cusps in α. Furthermore, through the

summation of alternating harmonic and subharmonic modes, the staggered wavepacket

structure was reproduced.

The observation reported in Thomas et al. (2015) that the introduction of noise to the

wall motion is associated with a destabilisation of the flow is supported in Chapter 6. It

was found that for all the cases considered an increase in noise level (δ) past a certain

point resulted in a dramatic reduction of the critical Reynolds number. In some cases (in

particular when p = 70) this could result in Rec ∼ 300 when δ = 0.01, which is broadly

in agreement with experiments. For smaller values of δ, the critical Reynolds number

remained practically unchanged. There were no cases found for which an increase in δ

noticeably stabilised the flow.

It was also shown that while modest levels of noise leave many features of the distur-

bance evolution unchanged, increasing the noise level can result in a spatial/temporal

development completely unlike the family-tree structure observed in the pure Stokes

layer. In the case for which the noise level is large enough to have significantly altered

this behaviour, the multiple-wavepacket response is replaced with a single-wavepacket

response, the disturbance maximum is confined to lie within the body of the disturbance,

and a harmonic temporal behaviour is observed at every spatial location (in addition to

the destabilisation). Two other cases were explored that showed some of the gradual
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change that presumably leads to this new behaviour as δ is increased.

This chapter also included the application of the cusp map method to provide insight

into the effect of noise on the dispersion relation and the effect this has on the disturbance

evolution. It was seen that while this flow is subject to the same symmetries as the pure

Stokes layer when p is odd, this symmetry breaks down when p is even. As a result of this

symmetry breaking, there exists some spatial/temporal ray over which greater temporal

growth is observed than at any fixed spatial location when p is even. When p is odd (as in

the pure Stokes layer), no such ray existed. This proposition was demonstrated in several

cases by showing that the disturbance undergoes convection along such a ray when p is

even but not when p is odd. For all of the cases explored here the disturbance grows

with time at every spatial location, so all of the disturbances are absolutely unstable even

when they exhibit some convective properties.

Overall, the linear development of disturbances in the semi-infinite Stokes layer were

explored through a Floquet stability analysis and a spectral (in the streamwise direction)

method of linear simulation. These two approaches were compared in some detail, and

the application of Briggs’ method ensured that this comparison was as rigorous as ap-

propriate. Some previous results were reproduced and insight was provided into some

of the more intriguing features such as the wavepacket spacing and the protrusion of

fingers from the growth-rate curves. Of great significance was the provision of evidence

that the semi-infinite Stokes layer is subject to absolute instability.

The same methods applied to the semi-infinite Stokes layer were then applied to a

modification that incorporated a simple model of noise. The effects that increasingly

large levels of noise can have on the disturbance evolution were documented. It was

shown that increasing the level of noise could be associated with a destabilisation of the

flow as well as a breakdown of the spatial/temporal structures that characterise distur-

bance evolution in the pure Stokes layer.
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Appendix A

The Ginzburg–Landau equation with

periodic coefficients

Introduction

The Ginzburg–Landau equation is one of the simplest PDEs that incorporates convection,

diffusion and growth/decay (the features associated with hydrodynamic stability) and

as such is an interesting model problem to provide insight into the behaviour of more

complicated systems. This section will be concerned with the study of the Ginzburg–

Landau equation with periodic coefficients

∂u
∂t

=
∂2u

∂x2 + a(t)
∂u
∂x

+ b(t)u, for t > 0 and −∞ < x <∞, (A.1)

where it will be assumed that a and b are T -periodic so that Floquet theory can be ap-

plied. This problem lends itself well to the development of the tools required to locate

the threshold between convective and absolute instability for periodic flows, as detailed

in Brevdo & Bridges (1997), because of the comparative simplicity and the existence of

an exact solution.

Much of the work presented here is a reproduction of that discussed in Brevdo &

Bridges (1997). Furthermore, the conditions for absolute instability are the same as those

discussed in Chapter 4, so will not be derived again here.

The term pointwise will be used throughout to refer to the temporal growth at all fixed

spatial locations.
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Analytic solution with global and pointwise growth-rates

This section follows exactly from the work of Brevdo & Bridges (1997). Consider the

initial condition

u(x,0) = e−
px2

4 , (A.2)

for p > 0. The exact solution of (A.1) subject to this condition can be written as

u(x, t) =
eβ(t)
√

1 + pt
e

(
− p(x+α(t))2

4(1+pt)

)
, (A.3)

where

α(t) =
∫ t

0
a(s)ds, β(t) =

∫ t

0
b(s)ds. (A.4)

The solution is subject to growth if the size of the integral across the spatial domain

increases with time. Integration of (A.3) leads to

∫ ∞
−∞
u(x, t)dx = eβ(t)

∫ ∞
−∞
u0(x)dx = et

β(t)
t

∫ ∞
−∞
u0(x)dx, (A.5)

so provided the integral of u0 is finite, growth is observed if β(t)/t gives a positive con-

tribution over a period. Hence define

b̄ =
β(T )
T

=
1
T

∫ T

0
b(s)ds. (A.6)

The solution (A.3) is exponentially stable if b̄ < 0 and exponentially unstable if b̄ > 0.

To distinguish between absolute and convective instability, consider the solution at

some spatial location x0 and rearrange (A.3) to get

u(x0, t) =
1

√
1 + pt

etγ(x0,t) (A.7)

where

γ(x0, t) =
β(t)
t
−
(
α(t)
2t

)2

−
x0

(
x0 + 2α(t)

)
− α

2(t)
pt

4t2
(
1 + 1

pt

) . (A.8)

So, again considering the net contribution over the period of α and β, by defining

ā =
α(T )
T

=
1
T

∫ T

o
a(s)ds, (A.9)
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it can be seen that the solution has a pointwise growth-rate of

b̄ − ā
2

4
. (A.10)

The solution is absolutely unstable if ā2 < 4b̄ (with b̄ > 0) and convectively unstable if

ā2 > 4b̄ (with b̄ > 0).

Condition for absolute instability

Let D(k,µ) denote the dispersion relation associated with (A.1) with wavenumber k and

Floquet exponent µ. As has been seen in Chapter 4 and Brevdo & Bridges (1997), there

is absolute instability if there is some k0 and µ0 that correspond to a saddle point of D,

that is

D(k0,µ0) = 0, (A.11a)

∂D
∂k

(k0,µ0) = 0. (A.11b)

It is also necessary that the branches of this saddle point originate in opposite halves of

the complex k-plane (this is the collision criteria).

By performing the process detailed in Brevdo & Bridges (1997) and Chapter 4 to the

Ginzburg–Landau equation with periodic coefficients, the dispersion relation is found to

be

D(k,µ) = −k2 + ikā+ b̄ −µ, (A.12)

using the same definitions of ā and b̄ from (A.9) and (A.6), respectively. Hence, the roots

of the dispersion relation satisfy

µ = b̄ − k2 + ikā. (A.13)

Instability is present if there exists a single k for which µr > 0. According (A.13), the

solution is stable for all b̄ ≤ 0. When b̄ > 0 the solution is unstable for all k in the range

−
√
b̄ < k <

√
b̄. Over all k, the most unstable normal mode corresponds to k = 0 and in

this case there is instability for b̄ > 0 and stability otherwise.

Absolute instability will be found for a complex pair (k0,µ0) that produce a saddle
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point in the complex k-plane, so consider

D(k0,µ0) = −k2
0 + ik0ā+ b̄ −µ0 = 0, (A.14a)

∂D
∂k

(k0,µ0) = −2k0 + iā = 0. (A.14b)

This gives

k0 = i
ā
2
, (A.15a)

µ0 = b̄ − ā
2

4
. (A.15b)

Finally, the condition that the colliding k-roots originate from different half-planes (col-

lision criteria) must be checked. An expression for k in terms of µ can be found from

rearranging (A.13) to give

k1,2(µ) =
iā
2
±

√
− ā

2

4
+ b̄ −µ. (A.16)

Fixing µi = ={µ0} = 0 and thus letting µ = µr , the origin of the colliding roots can be

found as µ is moved away from µ0 towards the right-half of the complex plane (and so

past the original contour for the Laplace integral). That is, by letting µr →∞. Taking this

limit gives

k1→ +i
√
µr , (A.17a)

k2→−i
√
µr . (A.17b)

Therefore, k1 and k2 originated in opposite half-planes so the collision criteria is met,

and it can be concluded that (A.1) has absolutely unstable solutions if this collision cor-

responds to<{µ0} > 0, i.e.

b̄ − ā
2

4
> 0. (A.18)

Note that the conditions for instability and for absolute instability found using this

method are in perfect agreement with the conditions found from inspecting the analytic

solution. This is not surprising since both methods are exact.

258



The Ginzburg–Landau equation with periodic coefficients

Floquet method

Eigenvalue problem to determine stability

Here, a Floquet eigenvalue problem will be constructed in a manner analogous to that

presented in Chapter 1. The numerical methods implemented in Chapter 5 can then be

explored for the Ginzburg–Landau equation with periodic coefficients to show that this

approach is consistent with the exact methods discussed above.

Consider the equation (A.1). It will now be assumed that the differential operator is

2π-periodic and that the coefficients have the form

a(t) =Uacos(t) + ā, (A.19a)

b(t) =Ubcos(t) + b̄, (A.19b)

for real Ua and Ub. It can be easily verified by taking the integrals over a period and

dividing by T = 2π that ā and b̄ play the same role in this example as in the general case.

It is expected that Ua and Ub will have no effect on the stability of the flow so both will

be set to 1.

Assume a Floquet normal-mode of the form

u(x, t) = eµtQ(t)eikx, (A.20)

where Q is 2π-periodic. This results in the equation

dQ
dt

= −k2Q+ ika(t)Q+ b(t)Q −µQ. (A.21)

The periodicity of Q allows a harmonic decomposition of the form

Q(t) =
n=∞∑
n=−∞

qneint . (A.22)

Furthermore, the periodic coefficients can be written in exponential form

a(t) =
Ua
2

[
eit + e−it

]
+ ā, (A.23a)

b(t) =
Ub
2

[
eit + e−it

]
+ b̄. (A.23b)
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Substitution of these into (A.21) and comparing coefficients of exp(int) results in an infi-

nite system of equations satisfying, for each n,

1
2

[Ub + ikUa]qn−1 + [ikā+ b̄ − k2 − in]qn +
1
2

[Ub + ikUa]qn+1 = µqn. (A.24)

Truncating this system by assuming qn = 0 for |n| > N and collecting the remaining har-

monics into the vector

ψ = (q−N ,q−N+1, . . . , qN−1,qN )T (A.25)

allows for this problem to be written as the eigenvalue problem Aψ = µψ for the tridiag-

onal matrix defined as

A =



C−N B 0 . . . 0

B C−N+1 B
...

0
. . .

. . .
. . . 0

... B CN−1 B

0 . . . 0 B CN


(A.26)

where

B =
1
2

[Ub + ikUa], (A.27a)

Cn = b̄ − k2 + i(kā−n). (A.27b)

This eigenvalue problem can easily be solved in Matlab with N = 10 large enough to

make results insensitive to a larger choice of N . For every complex eigenvalue µ, µ ± ik

will also be an eigenvalue because the k can be absorbed into the n of the harmonic

decomposition. The problem will thus be restricted to µ satisfying 0 < µi < 1. The growth

of the solution manifests as µr , and this can be plotted against −1 ≤ k ≤ 1 for comparison

with the analytic solution.

The numerically calculated growth-rate for this range of k is shown in Figure A.1a.

The theory predicts that µr = b̄ − k2 and the agreement is excellent. Furthermore, the

theory predicts that the maximum growth over all k is equal to b̄ (this corresponds to

k = 0). Figure A.1b also shows excellent agreement between the numerical method and

the exact solution.
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Figure A.1: Growth-rates µr for −1 < k < 1 with Ua = Ub = ā = 1. (a) shows curves for
b̄ = 0,0.1,0.2,0.3 with b̄ = 0 on the bottom and b̄ increasing as the curves move up the plot.
The lines correspond to the exact value predicted by theory and the crosses correspond to the
numerically calculated values. (b) shows the maximum growth over all k for several b̄. Again,
the line corresponds to the exact values and the crosses correspond to numerically calculated
values.

In Figure A.1, results are given for fixedUa, Ub and ā since the theory suggests that µr

is independent of these parameters. A brief parametric investigation was carried out to

confirm the invariance of results with respect to Ua and Ub and µi was found to depend

on ā in the expected way, that is µi = kā for each k.

Cusp map method

This approach describes a method by which the nature of an unstable solution can be

determined (be it absolute or convective) from the dispersion relation. If the dispersion

relation has a saddle point for some k0,µ0 that satisfies the collision criteria, then there

is a contribution to the temporal asymptotics of the solution at any fixed spatial location.

For a numerical approximation to the dispersion relation, as described by the Floquet

formulation, such a saddle point can be found by mapping a straight grid in the complex

µ-plane to the complex k-plane through roots of the dispersion relation. This involves

solving the eigenvalue problem for a given µ to ascertain k.

In general, this is a more computationally demanding method than finding k for a

given µ. Instead, a straight grid in the complex k-plane will be mapped through roots of

the dispersion relation to the complex µ-plane. It is shown in Kupfer et al. (1987) that
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Figure A.2: ā = 3 and b̄ = 1. The grid in the complex k-plane (a) is mapped by the dispersion
relation to the complex µ-plane (b) and no cusp is observed. Solution is absolutely stable.

the existence of a cusp in the µ-plane is equivalent to the existence of a saddle point in

the k-plane. The cusp map method was utilised in Chapter 5 for the pure Stokes layer

and in Chapter 6 for the noisy Stokes layer.

Presented in Figure A.2 is an example of a mapping from a straight grid in the com-

plex k-plane to a curved shape in the complex µ-plane through the dispersion relation.

In this case there is no cusp so the solution is absolutely stable. This is consistent with

the theory since in this case b̄ − ā2/4 < 0.

In Figure A.3, the parameters were chosen so that according to the theory the solu-

tion would exhibit a pointwise growth of zero (i.e. b̄ − ā2/4 = 0) and it can be seen that

this manifests as a cusp for which µr = 0. An absolutely unstable example is shown in

Figure A.4, in which the cusp is located in the unstable region µr > 0. Note that the the-

oretically predicted pointwise growth-rate corresponds to the location of the real part of

the cusp. For the parameters used in Figure A.4, the pointwise growth is b̄ − ā2/4 = 0.75.

The final example, shown in Figure A.5, reveals that it is possible for a cusp to exist

while the solution is absolutely stable. The cusp is in the region µr < 0 so pointwise decay

is observed. This is expected for all unstable solutions to (A.1), and for Figure A.2 it is

expected the the cusp would exist at µr = b̄ − ā2/4 = −1.25 which is outside of the range

considered.
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Figure A.3: ā = 2 and b̄ = 1. The grid in the complex k-plane (a) is mapped by the dispersion
relation to the complex µ-plane (b) and a cusp is observed at <(µ) = 0. Solution exhibits
neutral pointwise stability.
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Figure A.4: ā = 1 and b̄ = 1. The grid in the complex k-plane (a) is mapped by the disper-
sion relation to the complex µ-plane (b) and a cusp is observed with <(µ) > 0. Solution is
absolutely unstable.

Note that for all the cases shown, b̄ > 0 so the solution is unstable and thus experi-

ences global growth. It is also worth considering that for the cases in which a cusp exists

in the range considered, some of the grid lines in the k-plane overlap existing lines in
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Figure A.5: ā = 1.5 and b̄ = 0.1. The grid in the complex k-plane (a) is mapped by the disper-
sion relation to the complex µ-plane (b) and no cusp is observed with<(µ) < 0. Solution is
absolutely stable.

µ-space. Another interesting feature is that the imaginary part of µ is only important

modulo 1 so any of the pictures can be vertically shifted by whole numbers in either di-

rection and still have the same meaning. Note that µ has not been restricted to 0 ≤ µi < 1

as this would make the structures almost impossible to interpret.

Saddle points

Due to the comparatively simple nature of the problem, it can easily be reformulated as

a quadratic eigenvalue problem in k so that the saddle point method outline above can

be performed.

The formulation is identical up to (A.24), which can be written as

[1
2
Ubqn−1 +

(
b̄ − in−µ

)
qn +

1
2
Ubqn+1

]
+ k

[ i
2
Uaqn−1 + iāqn +

i
2
Uaqn+1

]
− k2qn = 0. (A.28)

Concatenating the harmonic coefficients as in (A.25) results in the polynomial eigenvalue

problem

A0ψ + kA1ψ + k2A2ψ = 0 (A.29)
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where

A0 =



C−N
1
2Ub 0 . . . 0

1
2Ub C−N+1

1
2Ub

...

0
. . .

. . .
. . . 0

... 1
2Ub CN−1

1
2Ub

0 . . . 0 1
2Ub CN


(A.30)

with Cn = b̄ − in−µ,

A1 =



iā i
2Ua 0 . . . 0

i
2Ua iā i

2Ua
...

0
. . .

. . .
. . . 0

... i
2Ua iā i

2Ua

0 . . . 0 i
2Ua iā


(A.31)

and

A0 =



−1 0 . . . 0

0 −1
...

...
. . . 0

0 . . . 0 −1


. (A.32)

This problem can be solved in Matlab using the polyeig routine or alternatively through

construction of a companion matrix. This numerical approximation to the dispersion

relation can be used to map the effect that the motion of a straight line in the complex

µ-plane has on the complex k-plane. If a saddle point is formed, the collision criteria

is met and this point corresponds to µ with positive real part (growth), it is concluded

that there is absolute instability. If any of these conditions do not hold, there is either

convective instability or stability.

Presented in Figure A.6, Figure A.7, Figure A.8 and Figure A.9 are the mappings

found for the same parameters as Figure A.2, Figure A.3, Figure A.4 and Figure A.5, re-

spectively. It is comforting to see that the same conclusions can be drawn. For Figure A.6

and A.8, only µ in the unstable region (µr ≥ 0) are used, and the presence (Figure A.8)

or absence (Figure A.6) of the saddle point indicates whether the solution is absolutely

stable or not (provided the collision criteria is met).

The saddle points in Figure A.7 and Figure A.9 do not indicate absolute instability.

This is because the saddle point in Figure A.9 is found from a grid in the complex µ-plane
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Figure A.6: ā = 3 and b̄ = 1. The grid in the complex µ-plane (with<(µ) ≥ 0) (a) is mapped
by the dispersion relation to the complex k-plane (b) and no saddle point is observed. Solution
is absolutely stable.
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Figure A.7: ā = 2 and b̄ = 1. The grid in the complex µ-plane (a) is mapped by the dispersion
relation to the complex k-plane (b)and a saddle point is observed. Further inspection reveals
that this saddle point corresponds to<(µ) = 0 so solution exhibits neutral pointwise stability.

in the region µr ≤ 0. Similarly, though it is difficult to tell from Figure A.7, this saddle

point corresponds to µr = 0 (in fact it actually corresponds to µ = 0). Though not shown,

the map formed using the same straight grid in the µ-plane as Figure A.6 and Figure A.8
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Figure A.8: ā = 1 and b̄ = 1. The grid in the complex µ-plane (with<(µ) ≥ 0) (a) is mapped
by the dispersion relation to the complex k-plane (b) and a saddle point is observed. Solution
is absolutely unstable.

(i.e. µr ≥ 0) does not result in a saddle point when the parameters of A.9 are taken. This

is in agreement with the results of the cusp method.

Ultimately, the plots shown can not be used in isolation to locate absolute instability

since it has been shown that saddle points can exist in the case of absolute stability. This

problem is in some way tackled by the consideration of only the unstable region of µ-

space (µr > 0) but the collision criteria still needs to be met. Furthermore, these figures

do not indicate the location in the µ-plane that corresponds to the saddle point. This

can only be observed as the process is conducted (it is through this observation that it is

known that the saddle point in Figure A.7 corresponds to µ = 0). Similarly, it can only be

seen if the collision criteria is met by observing the process to ensure that for a fixed µi ,

for large µr the two corresponding k (those that are least stable) appear both above and

below the real k-axis. This is indeed the case for Figure A.8 so in this case the solution is

absolutely unstable.

When using the cusp map method, it is not clear in the same way how it can be

assured that the collision criteria are met.
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Figure A.9: The grid in the complex µ-plane (with<(µ) ≤ 0) (a) is mapped by the dispersion
relation to the complex k-plane (b) for ā = 1.5 and b̄ = 0.1. Though a saddle point exists,
<(µ) ≤ 0 suggests the solution is absolutely stable. Indeed, there is no saddle point for<(µ) ≥
0.

Summary

A variety of different methods have been used to deduce whether an unstable solution to

the Ginzburg–Landau equation with periodic coefficients (A.1) is absolutely or convec-

tively unstable. These methods have included inspection of the exact analytic solution

and a pinch-point analysis conducted exactly (supporting the inspection of the exact so-

lution) and numerically (from the viewpoint of both saddle points and cusp maps in the

complex plane). All of these methods are in good agreement as to whether a solution for

a particular choice of parameters is absolutely or convectively unstable.
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Appendix B

Model dispersion relation with

fingers

Introduction

While the fingers protruding from the growth-rate curves for the pure Stokes layer are

intriguing features, in this appendix it will be seen that such features can be seen in a

simple analytic dispersion relation.

When discussing the form of the fingers in Chapter 1, it is shown that as α is in-

creased, the complex conjugate pairs of µ meet at the real axis, move along the real line

in opposite directions, return to the same location and move away from the real axis

again in complex conjugate pairs. Such behaviour could be considered generic.

Take, for example, a quadratic curve that is dependent on some parameter. If, by

varying this parameter, the turning point of the quadratic repeatedly crosses the real

axis of the independent variable, three states are moved between:

• No real roots, in this case the quadratic curve does not cross the real axis. In this

case there are two complex roots that are complex conjugates of one another,

• A single repeated root, in this case the curve touches the real axis at a single loca-

tion,

• Two real roots, in this case the curve crosses the real axis twice.

It is not difficult to see how this can cause behaviour like that discussed for the fingers,

and such behaviour will now be demonstrated for a simple example.
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Model dispersion relation with fingers

Simple dispersion relation

Take a dispersion relation that is quadratic in µ,

D(µ) = µ2 +Bµ+C, (B.1)

which has been normalised so that the µ2 coefficient is 1. This means that the curve

has a single turning point that is a minimum. Introducing a parameter, α, that moves

the location of this minimum past the real µ-axis allows for transition between the three

states discussed above. Therefore, the dispersion relation of interest will be

D(α,µ) = µ2 + cos(6α)µ+ cos(50α). (B.2)

The trigonometric form of the coefficients B and C was chosen so that the three states are

moved between repeatedly and the numbers 6 and 50 were selected based on the desired

scaling with α. In particular, 0 ≤ α ≤ 1 will be of interest here.

Since (B.2) is of quadratic form in µ, the roots of D can be written exactly as

µ1,2 =
−cos(6α)±

√
cos2(6α)− 4cos(50α)

2
. (B.3)

Variation of µ with α

Consider the µ-roots of the dispersion relation (B.2). These are the values of µ that satisfy

D(α,µ) = 0 (B.4)

for some given α. In this section, the behaviour of the µ-roots will be explored for α ∈ R.

The µ-roots with the largest real part can be plotted against α using (B.3) with the

positive square root selected. The variation of the real and imaginary parts of µ with α

are presented in Figure B.1. It is immediately apparent that this curve displays behaviour

analogous to the fingers first seen in Chapter 1. Over this range of α, µr follows a gentle

curve that peaks around α = 0.3 and this curve is periodically interrupted by protrusions.

These protrusions correspond to µi = 0 and in between these locations µi varies between

0 and 1.

Also marked in Figure B.1 are eight crosses that span one of these fingers. These
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Figure B.1: The µ-roots of D (B.2) for 0 ≤ α ≤ 1. In (a) the real part µr is shown and in (b) the
imaginary part µi is shown. Crosses indicate the choices of α explored further in Figure B.2.
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Figure B.2: The behaviour of the µ-roots pairs for each of the α marked with (×) in Figure B.1.
In (a) α = 0.122841 and α is incremented by 0.016229 between plots. As α is increased, the
complex conjugate pairs of µ-roots move towards the real axis and converge at a point. The two
µ-roots then move in opposite directions along the real axis, turn around and converge back
to a single point. Two complex conjugate µ-roots then move away from the real axis. This is
directly comparable to Figure 1.8.

points have an equal spacing in α of 0.016229 and range from α = 0.122841 to α =

0.236444. It can be seen from Figure B.2 that the behaviour of the pair of µ-roots at each

of these α is directly comparable with that seen in the pure Stokes layer in Figure 1.8.
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Figure B.3: The dispersion relation (B.2) is plotted against µ ∈ R for three choices of α0. In (a),
α0 = 0.122841 and the curve D(α0,µ) does not cross the µ axis so there are complex conjugate
roots. In (b), α0 = 0.155299 and the curve D(α0,µ) has a single repeated real root. In (c),
α0 = 0.18775 and the curve D(α0,µ) has two real roots. The points indicated by (×) are the
locations of the real roots taken from Figure B.2.

Dispersion relation with α treated as a parameter

In order to provide additional insight into this behaviour, the dispersion relation (B.2)

will be explored for a selection of fixed, real α. Note that when µ is real, so is D. For this

section, the variation of D along the real line will therefore be considered.

Remember that D has been constructed so that it is a quadratic curve in µ when-

ever α is fixed. Here, three choices of α will be made to demonstrate the transition

between the three states discussed above. Based on the eigenvalues observed in Fig-

ure B.2, the wavenumbers of interest here will be: α0 = 0.122841, corresponding to com-

plex conjugate roots; α0 = 0.155299, approximately corresponding to a repeated root;

and α0 = 0.18775, corresponding to two real roots.

In Figure B.3, the quadratic curve D(α0,µ) is plotted against µ for these three choices

of α0. This demonstrates that for real µ, the parameter α has the effect of moving the

minimum of D over the µ-axis. When this minimum corresponds to D > 0, there are

no real roots and the complex roots are complex conjugates of one another. When the

minimum corresponds to D < 0, there are two real roots. When D = 0 there is a single

repeated real root.
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Summary

It has been shown here that the intriguing feature of fingers protruding from the growth-

rate curves of the semi-infinite Stokes layer can be reproduced using a significantly sim-

pler model. This illustrates that the behaviour is in some sense generic.
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