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Abstract
Conditioning-like infarct limitation by enhanced level of hydrogen sulfide  (H2S) has been demonstrated in many animal 
models of myocardial ischemia/reperfusion injury (MIRI) in vivo. We sought to evaluate the effect of  H2S on myocardial 
infarction across in vivo pre-clinical studies of MIRI using a comprehensive systematic review followed by meta-analysis. 
Embase, Pubmed and Web of Science were searched for pre-clinical investigation of the effect of  H2S on MIRI in vivo. 
Retained records (6031) were subjected to our pre-defined inclusion criteria then were objectively critiqued. Thirty-two 
reports were considered eligible to be included in this study and were grouped, based on the time of  H2S application, into 
preconditioning and postconditioning groups. Data were pooled using random effect meta-analysis. We also investigated 
the possible impact of different experimental variables and the risk of bias on the observed effect size. Preconditioning with 
 H2S (n = 23) caused a significant infarct limitation of − 20.25% (95% CI − 25.02, − 15.47). Similarly, postconditioning 
with  H2S (n = 40) also limited infarct size by − 21.61% (95% CI − 24.17, − 19.05). This cardioprotection was also robust 
and consistent following sensitivity analyses where none of the pre-defined experimental variables had a significant effect on 
the observed infarct limitation.  H2S shows a significant infarct limitation across in vivo pre-clinical studies of MIRI which 
include data from 825 animals. This infarct-sparing effect is robust and consistent when  H2S is applied before ischemia or 
at reperfusion, independently on animal size or sulfide source. Validating this infarct limitation using large animals from 
standard medical therapy background and with co-morbidities should be the way forward.

Keywords Preconditioning · Postconditioning · Hydrogen sulfide · Ischemia/reperfusion · Systematic review · Meta-
analysis

Introduction

Re-establishing coronary blood flow by either mechani-
cal (primary percutaneous coronary intervention) and/
or pharmacological (thrombolytic agents) treatment is 

essential to limit myocardial damage following acute 
myocardial ischemia. In industrialised countries, there 
has been a significant improvement in surgical practice 
and standard care with an estimate of only one out of 
four patients with acute ischemic heart attack admitted 
to early reperfusion intervention dying [41]. Despite 
this improvement in the survival rate following heart 
attack, there has also been a considerable increase in 
long-term co-morbidity and mortality in those patients, 
which is often a function of the primary infarction. This 
emphasises the urgent need for treatments which have a 
therapeutic value for patients with ischemic heart dis-
ease. Although an enormous number of mechanical and 
pharmacological interventions have reported promising 
infarct-limiting effects experimentally, none has success-
fully been clinically translated since the first experimen-
tal evidence of infarct limitation by ischemic conditioning 
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was reported by Murry et al. [43]. The reasons behind this 
failure have been discussed in a number of recent reviews 
and position papers [18, 20, 23] which emphasised three 
main issues regarding pre-clinical studies. First, there is 
a “disconnection” between the preclinical and the clini-
cal studies. The complexity of the clinical situation for 
ischemic heart disease patients needs to be reflected in 
pre-clinical investigations. This includes common co-
morbidities and co-medications which most patients have 
and are known to modify the response to many cardio-
protective manoeuvres experimentally [22, 25]. Second, 
poor reporting of pre-clinical study methodology and 
protocols could potentially lead to unnecessary clinical 
trials [2, 22]. Third, there has been a growing emphasis 
on interrogating the literature and the careful examina-
tion for the pre-clinical evidence using comprehensive, 
unbiased approaches before conducting any clinical trial 
[7, 21, 22].

In 1989, hydrogen sulfide  (H2S) was first detected in 
rat brain [61], after long being recognised as a toxic gas. 
It is now recognised as one of the gasotransmitters fam-
ily along with nitric oxide (NO) and carbon monoxide 
(CO). There is an increasing body of evidence demon-
strating an essential role of  H2S in health and disease 
[60]. Experimentally, enhanced levels of  H2S have been 
shown to elicit infarct-limiting effect against myocardial 
ischemia/reperfusion injury (MIRI) in mouse [31], rat 
[33], rabbit [38] and pig [45]. Promisingly, SG1002, a 
novel  H2S prodrug, has recently successfully completed 
a phase I clinical trial showing a promising margin of 
safety in failing heart patients [48]. The cardioprotec-
tive mechanism(s) by which  H2S induces its cardiopro-
tection are not fully understood. However, there is gen-
eral consensus that it is mainly through either activating 
the reperfusion injury salvage kinase (RISK) pathway, 
promoting endogenous antioxidant capacity or preserv-
ing mitochondrial integrity [5, 14]. Different approaches 
have been used to enhance  H2S level in vivo with either 
conventional inorganic sulfide salts, organic  H2S donors 
or phosphodiesterase inhibitors, which we are going to 
collectively term “H2S boosters” in this analysis. These 
approaches have been shown to limit various markers of 
MIRI ex vivo and in vivo.

We conducted a comprehensive systematic review 
and meta-analysis to evaluate the effect of  H2S on acute 
myocardial infarction across the in vivo MIRI preclini-
cal studies. In addition, we also performed an additional 
analysis to provide further insights into the external valid-
ity and how the observed infarct limitation by  H2S could 
be influenced by different experimental models or phar-
macological approaches. Furthermore, we investigated 
internal validity of our finding and how reporting quality 
of included studies and publication bias could have an 

impact on the results and the general conclusion of our 
study.

Methodology

Systematic review and data collection

The systematic review was conducted according to the 
preferred reporting items for systematic review and meta-
analysis (PRISMA) guideline [40]. JSB and QGK per-
formed the literature search of the electronic databases 
Embase, Medline and Web of Science using selected key-
words and MeSH terms where appropriately specific to 
each database (see the supplementary material).

Inclusion/exclusion criteria

The search included the literature that investigated the 
effect of  H2S on infarct size in in vivo models of MIRI, 
published between January 01, 2005 and December 16, 
2016 considering that the first in vivo report was published 
in 2006 by Sivarajah et al. [55]. The search only included 
studies which are available in English. Publications were 
independently retrieved from the electronic literature and 
checked for duplication (Fig. 1). The search results were 
then subjected to the inclusion criteria (Table 1a). Inclu-
sion criteria were developed in accordance with PICOS 
approach [44]. Reports were included if they characterised 
the effect of a  H2S booster (pre- and/or post-ischemia) 
versus vehicle or no treatment on the infarct size follow-
ing MIRI in vivo. Studies were excluded at this stage if 
there was no documented reperfusion phase or if the coro-
nary artery occlusion was permanent. Reports were also 
excluded where  H2S treatment was continued throughout 
ischemia/reperfusion protocol, throughout reperfusion 
phase, or given more than 10 min after the commence-
ment of reperfusion. In vitro or ex vivo studies were also 
excluded. Disagreements between the primary review-
ers were resolved by secondary reviewer (GFB). Studies 
employing genetically modified animals or animals with 
co-morbidity, such as diabetes, heart failure, or high blood 
pressure, were excluded. Experimental studies where an 
 H2S booster was concomitantly administered with other 
pharmacological treatment, whether it is known for its 
cardioprotective properties or not, were also not included. 
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Critical appraisal

The quality and rigour of studies were examined using the 
critical appraisal tool (Table 1b) which allowed unbiased, 

comprehensive evaluation of the studies at full-text 
level. Corresponding authors were contacted by email to 
enquire about missing information. Thirty-five papers were 

Fig. 1  PRISMA diagram of systematic review and data selection at different stages

Table 1  Lists of (a) inclusion criteria and (b) critical appraisal tool

(a) Inclusion criteria
 1. In vivo investigation
 2. Documented duration of ischemia and reperfusion
 3. Documented time and dose of the exogenous  H2S booster(s)
 4. Infarct size determined by a recognised method
(b) Critical appraisal checklist
 1. Characteristics of the animal model (age/weight/sex)
 2. Whether the animals were randomly assigned for the control or the treatment group
 3. Details about the  H2S enhancer used including its name, source, dose, route of administration and the time of intervention
 4. Whether the experimental protocol is clearly reported including the duration of ischemia and reperfusion and the end point of interest
 5. Infarct size determination is clearly detailed
 6. Evaluation of the study design including group size and the statistical power
 7. Whether a blind-approach of analysis was adopted by the experimentalist at any stage to carry out the measurements and/or to analyse the data
 8. Whether the data were statistically analysed using an appropriate test
 9. Whether data interpretation was precise and supports the study conclusion
 10. Whether study limitations and/or conflicts of interest were clearly documented
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considered to meet the inclusion criteria and passed critical 
appraisal to be included in this study (Fig. 1).

Data extraction and statistical analysis

Our primary outcome was the weighted (unstandardised) 
mean difference (WMD) in infarct size (IS %) between the 
experimental group  (H2S-treated group) and the control 
group. We identified 65 independent comparisons in the 
35 included articles (Table 2). The number of animals in 
the control group was corrected based on the number of 
comparisons for each series of experiments (n/number of 
comparisons) [59]. We also identified two experimental vari-
ables, namely the animal model size and source of  H2S, as 
a secondary outcome which might influence the effect size 
and heterogeneity.

Comparisons were divided into two main groups: pre-
conditioning group (pre-H2S), where  H2S booster was given 
any time before the onset of ischemia, and postconditioning 
group (post-H2S), where  H2S booster was administrated dur-
ing regional ischemia or at the commencement of reperfu-
sion. The rationale for grouping the comparisons according 
to the time of intervention was due to the fact that these 
two windows of intervention arguably have different clinical 
applications. For instance, pre-H2S could be applied when 
the onset of ischemia is predictable (planned surgery), while 
post-H2S could be used as adjunctive therapy with reperfu-
sion in STEMI patients.

Meta‑analysis

For each independent comparison, the raw effect size (as a 
primary outcome) was calculated by subtracting the mean 
infarct size of the experimental group from the infarct size 
of the control group along with its correspondent 95% confi-
dence interval (95% CI). We pooled raw effect sizes in each 
main group using random effect meta-analysis which takes 
into consideration between-comparison- and within-compar-
ison variations and weights each comparison accordingly. 
Heterogeneity across different experimental protocols and 
models, within each main group, was quantified using I2 sta-
tistics [27, 59]. All analyses were carried out using Review 
Manager (RevMan 5.3.5 Copenhagen, Denmark: The Nordic 
Cochrane Centre, The Cochrane Collaboration, 2014).

Sensitivity analysis

We also carried out subgroup analyses using univariate 
meta-regression based on pre-defined experimental factors 
(as a secondary outcome) which might potentially have an 
impact on the observed effect size of  H2S and heteroge-
neity. The percentage of between-comparison variability 
explained by the variable of interest was evaluated by I2 and 

adjusted R2 statistics. The level of significance was adjusted 
to account for multiple comparisons using the Holm–Bon-
ferroni method [26]. Furthermore, we also tested the robust-
ness of our findings by conducting an additional stratified 
meta-analysis using standardised mean difference (SMD). 
SMD represented the mean difference in infarct size between 
control and  H2S-treated groups divided by the pooled stand-
ard deviation of the mean.

Risk of bias

We also characterised the quality of study reporting for 
included studies using a predefined 20-point scoring scale 
based on the ARRIVE guidelines [34]. This was carried out 
by JSB and GFB independently and aimed to evaluate the 
rigour and transparency of included reports. Publication 
bias, in terms of effect size and degree of precision, was also 
evaluated independently by QGK and GFB by visual inspec-
tion of funnel plot of mean difference (MD) vs standard error 
of the mean (SD) for all included studies.

Results

Study selection process

Our initial search of the databases identified 8969 records 
(Fig. 1); 2938 duplicates were removed at this stage. 6031 
reports were screened independently by QGK and JSB at 
the title level to check for relevancy to our study scope. 459 
reports were considered relevant and screened at the abstract 
level to investigate if they met the inclusion criteria. As a 
result, 135 papers passed to the full-text review along with 
two studies which were identified through “snow-balling” 
at this stage. These articles were independently critiqued by 
JSB and QGK using our pre-defined, comprehensive criti-
cal appraisal tool. Finally, 32 papers were included in our 
analysis (Table 2), from which we included 58 controlled 
comparisons. We then divided the comparisons based on 
the time of intervention into pre-H2S (23 comparisons) and 
post-H2S (35 comparisons) groups.

Meta‑analysis

Preconditioning the heart using  H2S boosters in vivo caused 
a significant limitation in infarct size of − 20.25% (95% CI 
− 25.02, − 15.47; Fig. 2) compared to control (p < 0.001, 
n = 23 comparisons). This meta-analysis included data from 
116 control animals and 197 animals that received  H2S 
boosters before ischemia. This overall effect size was accom-
panied by a high degree of heterogeneity measured using I2 
(91%, p < 0.001). In the post-H2S group,  H2S also caused a 
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significant infarct limitation of − 21.61% (95% CI − 24.17, 
− 19.05; Fig. 3), a result which was derived from 166 control 
animals and 346  H2S-treated animals (p < 0.001; n = 35 
comparisons). Likewise, we also observed a high degree of 
heterogeneity in the post-H2S group (I2 = 52%, p < 0.001).

Sensitivity analysis

We also investigated the effect of two crucial experimen-
tal variants which might influence the observed effect size, 
namely the experimental animal size and the source of  H2S. 
First, we divided each main group (i.e., pre-H2S and post-
H2S) based on the size of the experimental model into small 
(mouse and rat) and large models (rabbit and pig). There was 
no significant difference in the overall effect size between 
the groups (pre-H2S: p = 0.3194, adjusted R2 = 24.27% 
(Fig.  4a); post-H2S: p  =  0.6785, adjusted R2  =  4.74% 
(Fig. 4b). We also investigated whether any particular class 
of  H2S boosters have an impact on the efficacy of observed 
infarct limitation. Therefore, we divided each main group 
based on the class of  H2S booster into inorganic, organic 
and enhancer groups. Again, there was no significant dif-
ference in the overall effect size between these groups (pre-
H2S: p = 0.1331, adjusted R2 = 48.94% (Fig. 4a); post-H2S: 
p = 0.8959, adjusted R2 = 3.60% (Fig. 4b).

We examined the robustness of our findings by re-running 
our meta-analysis using SMD instead of WMD. Interest-
ingly, the results were similar in both cases and  H2S, again, 
showed infarct limitation.  H2S-induced preconditioning 
limited infarct size by − 2.46% (95% CI − 3.20, − 1.72, 
p < 0.001, Fig. 5) compared to control group with a simi-
lar degree of heterogeneity (I2 = 76%). Likewise, postcon-
ditioning the heart with  H2S boosters reduced myocardial 
infarction by − 2.11% (95% CI − 2.54, − 1.67, p < 0.001, 
Fig. 6) compared to the control heart with a similar degree 
of heterogeneity (I2 = 63%).

Risk of bias

We used a 20-point scoring scale to evaluate the quality of 
study reporting for included papers derived from ARRIVE 
guideline (Fig. 7). Included papers scored a median of 17 out 
of 20 with an interquartile range of 3. We also assessed the 
publication bias for the included papers by plotting the effect 
size (WMD) of each controlled comparison against its SD 
for pre-H2S and post-H2S groups using funnel plot (Fig. 8). 
Visual inspection of funnel plots showed that there might be 
underrepresentation of studies with negative or small effects. 
Furthermore, we also noticed that there were a few studies 
with moderate variance among included studies.

Fig. 2  Preconditioning the heart with  H2S in vivo. Forest plots of meta-analysis of preconditioning the heart with  H2S boosters on myocardial 
infarction, pooled using random-effect meta-analysis. Controlled comparisons included data from 116 control animals and 197 treated animals
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Discussion

The major findings of our systematic review and meta-anal-
ysis are that  H2S has a consistent and robust infarct-limiting 
effect against MIRI in pre-clinical studies. This robust effect 
was comparable when  H2S boosters were given before the 
onset of ischemia (preconditioning) or at the time of reperfu-
sion (postconditioning) based on in vivo data from almost 
900 animals. This cardioprotection also was independent 
from the animal size or the class of  H2S booster.

The mechanism of  H2S-induced conditioning-like phe-
nomena is not fully understood yet, despite several signal-
ling molecules and pathways have been suggested to play 
a role. However, we here discussed potential conditioning 
mechanism(s) of  H2S based on the in vivo evidence included 
in this study. We took into consideration the causal and tem-
poral consequences of conditioning events and used a struc-
turing scheme previously proposed by Heusch [24]. This 
scheme is based on the general consensus that condition-
ing maneuver triggers a “stimulus” which in turn activates 
a “mediator” to transfer the cardioprotective signal to its 

“target”. In fact,  H2S itself has been demonstrated to be a 
crucial “chemical stimulus” of ischemic pre- [67] and post-
conditioning [28] to elicit their infarct-limiting effect. Aug-
mented level of  H2S activates similar signalling molecules 
and pathways to act as mediators to transmit its cardioprotec-
tive signal to its target(s). These signalling pathways mainly 
involve activating the RISK pathway components in the first 
minutes of reperfusion [3, 9, 10, 13, 33, 38, 45, 49, 65]. 
Notably, the activity of some micro-RNAs, namely micro-
RNA-21 [58] and mirco-RNA-1 [30], were also reported 
to serve as mediators of  H2S-induced cardioprotection. The 
key target of  H2S’s protection is the mitochondria, where 
the majority of salvage signalling pathways converges. 
Enhanced  H2S level protects against myocardial infarction 
via preserving mitochondrial function [17], maintaining 
membrane integrity [17, 65], limiting mitochondrial ROS 
generation [32] and inhibiting the opening of mitochondrial 
permeability transition pore (PTP) [10, 32, 65]. Moreover, 
mitochondrial  KATP channel is another target of  H2S protec-
tion [54, 55, 57]. However, the question yet to be answered 
is how  H2S triggers these signalling pathways to exert its 

Fig. 3  Postconditioning the heart with  H2S in vivo. Forest plots of meta-analysis of postconditioning the heart with  H2S boosters on myocardial 
infarction, pooled using random-effect meta-analysis. Controlled comparisons included data from 346 control animals and 166 treated animals
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infarct-limiting effect? It is highly unlikely that  H2S activates 
the RISK pathway through a ligand/receptor-based mecha-
nism as  H2S is a gaseous molecule and not a ligand. The 
most plausible mechanism could be through inducing post-
translation modifications (PTMs). Similar to nitrosylation, 
sulfhydration (or persulfidation) is a PTM induced by  H2S 
which could modify the structure and eventually the func-
tion of several proteins and channels. Recently, it has been 
demonstrated that  H2S activates PI3K/Akt signalling path-
ways through sulfhydrating phosphatase and tensin homolog 
(PTEN) abrogating its inhibitory effect [62]. Furthermore, 
sulfhydration is demonstrated to modify the activity of mito-
chondrial  KATP channel, another target of  H2S [54, 55, 57], 
and ATP synthase  (F1F0 ATP synthase/complex V) [39], 
the current proposed main component of PTP, which either 
is known to protect the mitochondria and eventually limit 
infarct size. Taken together, the role of sulfhydration in con-
ditioning with  H2S needs further investigation.

There are a number of important aspects which we 
observed in our review. Despite highly consistent over-
all effect size, we noticed a high degree of heterogene-
ity between the included studies. We conducted subgroup 
analyses to investigate whether some of the experimen-
tal variables which we predefined could influence the 
observed effect size and/or heterogeneity using meta-
regression. Others have previously shown, applying 
the same approach, that experimental model size could 
have a significant impact on effect size and heterogene-
ity observed with meta-analysis. For example, Lim et al. 
[37] reported that cyclosporine-induced infarct limitation 
in rodent models was absent in a large model (swine) of 
MIRI in vivo. Noteworthily, this could potentially explain 
the neutral clinical data of cyclosporine treatment in 
STEMI patients [25]. However, Bromage et al. [6] recently 
showed that the infarct limitation by remote ischemic con-
ditioning manoeuvre was consistent across in vivo studies, 
independently of the model size. Similarly, we previously 

Fig. 4  Impact of experimental variables on the overall effect size of 
a preconditioning and b postconditioning with  H2S. Subgroup strati-
fication was used to obtain the weighted mean difference (WMD) 
along with the corresponding 95% confidence interval (95% CI) fol-
lowed by meta-regression to obtain the p value and avoid false-pos-
itive results. Studies that employed mice and rats were grouped as 
a “small animals” group, while those that used rabbit and pig were 

grouped as a “large animals” group. Studies were also grouped based 
on the source of  H2S to “inorganic” which included sulfide salts and 
gas, “organic” and “enhancers” which included phosphodiesterase 
inhibitors. The dotted line indicates the weighted mean difference 
(WMD). None of the experimental variables had a significant effect 
on the observed effect size
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demonstrated that enhanced level of nitric oxide (NO) 
in vivo, using different NO treatments, exerted infarct 
limitation independently of the model size across (22) pre-
clinical studies [4]. Our subgroup analyses showed that 
model size (rodent vs. non-rodent model) did not have a 
significant effect on either effect size or heterogeneity of 
 H2S treatments in both pre-H2S and post-H2S groups.

We also assessed whether using different  H2S boosters 
as a pharmacological approach to enhance  H2S level could 
behave differently in terms of infarct limitation and hetero-
geneity. There have been number of approaches employed 
to enhance  H2S level in vivo to investigate its effect on myo-
cardial infarction. Inorganic sulfide salts, namely NaHS and 
 Na2S, were the first class of  H2S boosters initially utilised to 
investigate the significance of enhancement  H2S on myocar-
dial infarction. However, they are impure salts that cause a 
sharp and short-lasting increase in  H2S level in vivo which 
make them unreliable  H2S boosters. Furthermore, off-target 
or even toxic effects are highly likely with the burst of  H2S 
achieved using sulfide salts due to the fact that  H2S has a 
narrow therapeutic window. More stable and controllable 
organic  H2S donors have been designed to overcome this 
limitation and have demonstrated infarct-limiting effect 
in vivo [10, 33, 57, 68]. Utilising triphenylphosphonium 
scaffold approach to target the mitochondria, we and oth-
ers have recently reported infarct limitation in vivo using 

AP39, a mitochondrial-targeting  H2S donor [10, 32], which 
have a significant implication considering the central role 
of mitochondria in MIRI. In a similar context, we have 
recently reported that the limit of infarct reduction by differ-
ent NO donors at reperfusion was consistently comparable 
[4]. Although there was a pattern of increased efficacy of 
postconditioning with  H2S enhancers, there was significant 
difference in the efficacy of any of the  H2S booster groups 
in terms of infarct limitation at the two times of interven-
tion. To note, the number of studies that employed large 
animal models was less than those that used small animals. 
Furthermore, we also noticed that the cardioprotective dose 
of some  H2S boosters could vary between different animal 
models. For instance, cardioprotective dose of GYY4137, a 
slow-releasing  H2S donor, was (26.6 µmol/kg) in the mouse 
model [10], while it was 10 times more in rat [33]. There is 
no obvious reason why the cardioprotection dose of these 
boosters might vary. However, it has been shown that there 
is a certain degree of dependency of  H2S on NO signalling 
to induce its cardioprotection. Arguably, this dependency 
on NO seems to be high in mouse [3] and partially fading as 
the animal size increase, such as in rat [33] until it becomes 
insignificant in large animals, such as rabbit [3]. Whether 
this hypothesis explains the variation in the cardioprotective 
dose of some  H2S boosters requires further investigation.

Fig. 5  Sensitivity test for the overall infarct limitation by pre-H2S in vivo. The overall effect size was calculated using standardised mean differ-
ence (SMD), pooled using random-effect meta-analysis. Controlled comparisons included data from 116 control animals and 197 treated animals
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Fig. 6  Sensitivity test for the overall infarct limitation by post-H2S in vivo. The overall effect size was calculated using standardised mean differ-
ence (SMD), pooled using random-effect meta-analysis. Controlled comparisons included data from 346 control animals and 166 treated animals

Fig. 7  Study reporting quality 
assessment. The research qual-
ity of included studies were 
evaluated independently by 
two reviewers according to the 
quality of study reporting using 
our pre-defined 20-item qual-
ity scoring system. Data were 
reported as a percentage for 
each quality item
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We were also interested in assessing the impact of other 
experimental variables which are also important on the 
external validity of our findings. As our main aim in this 
review was to characterise the effect of  H2S on infarct size 
across the preclinical studies, we, accordingly, excluded 
all studies which utilised animals with co-morbidities, co-
medications and risk factors such as diabetes, heart failure, 
hypertension or hypercholesterolemia. Therefore, insuffi-
cient number of studies in this review rendered these analy-
ses not applicable. Nevertheless, in vivo preclinical studies 
utilised animals with co-morbidities which were identified in 
our literature search are summarised in (Table 3). This table 
is very helpful and has a considerable value for the field 
of cardioprotection with  H2S as a starting point for future 
investigations characterising the impact of co-morbidities 
on  H2S protection. Co-morbidities and risk factors associ-
ated with cardiovascular disease are important determinants 
of the efficacy of any cardioprotective therapy and this has 
recently been discussed in some position papers by others 
[8, 20, 21, 23]. There is a significant contrast in the bio-
logical milieu between the experimental animals and the 
patients. The majority of the cardioprotective interventions 
that have been tested in a “reductionist model” employing 
young and healthy animals, arguably to effectively control 
the experimental conditions [50]. However, the vast majority 
of patients recruited in the randomised clinical trials have 
co-morbidities and/or risk factors including diabetes, aging, 
hyperlipidemia and hypertension. These co-morbidities 
and risk factors are shown to modify the efficacy of sev-
eral cardioprotective interventions [20, 22]. In addition, the 
potential impact of background medications on the exam-
ined efficacy of cardioprotective therapies is often neglected 
in the pre-clinical studies, despite the fact that most of the 
recruited patients are on standard medications. Similarly, 
current standard care could substantially alter the potency 

of cardioprotective therapies via either blocking the signal-
ling pathway or elevating the threshold which is needed to 
produce the cardioprotection [22, 47]. Therefore, clinical 
translation could be considerably enhanced through conduct-
ing future preclinical studies on animals with co-morbidities 
and from a background of standard medications.

Another important experimental variable is gender, tak-
ing into consideration the cardioprotection of oestrogen 
which is mainly mediated by triggering the reperfusion 
injury salvage kinase (RISK) pathway [42], a common 
signalling pathway with  H2S [33]. However, only 9% of 
included studies employed mixed gender. Another dimen-
sion to the reductionist model often employed in the pre-
clinical studies is the use of a single therapy which is too 
simplistic and underestimates the clinical complexity. In 
the view of the current failure in clinical translation, the 
use of two or more drugs in what is often called “combina-
tion therapy” has been suggested as an alternative approach 
[22]. Especially, some combination treatments have shown 
promising benefits in vivo [64] and in human [16]. With 
the current advanced feasibility in designing  H2S boosters 
which target different cellular compartments, it is tempting 
to suggest that combination therapy of different  H2S boost-
ers could potentially enhance the efficacy of  H2S-induced 
cardioprotection. Especially, different  H2S boosters signal 
through different protective mechanisms and could poten-
tially have additive infarct-limiting effect to each other 
which maximise the beneficial effect [1, 32]. Despite this 
very tempting idea along with very encouraging experimen-
tal data, this concept has not been investigated yet and needs 
to be conducted in well-designed studies. We have listed  H2S 
boosters which we think have potential clinical translatabil-
ity along with proposed mechanism(s) of cardioprotection 
(Table 4). This table would have a great value for the field 

Fig. 8  Evaluation of publication bias. A funnel plot showing the precision of the effect estimate in a preconditioning group and b postcondition-
ing group. The dotted line indicates the weighted mean difference (MD). SE standard error
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of cardioprotection and very helpful to test the concept of 
combination therapy in future investigations.

We also evaluated the internal validity of included studies 
including the quality of study reporting and publication bias 
and how these factors could have an impact on the observed 
results. The lack of full and comprehensive description of 
the methodological approach and study design could result 
in an overestimated effect size. By subjecting the included 
reports to our reporting quality assessment, included studies 
generally scored highly which is strengthening the validity 
of our study and it is due to our stringent inclusion criteria. 
Nevertheless, there was particularly poor reporting in a num-
ber of aspects including reporting any adverse effects (28%), 
a main determinant in any drug development. Reporting of 
sample size calculation was also poor (43%) which raises 
some important question regarding whether the study was 
sufficiently powered before commencing the experiments 
or allowed to continue until certain number of animals per 
group was achieved. Insufficient adherence to good quality 
research indicators could inevitably lead to false-positive 
results and overestimation of the effect size. As a conse-
quence, this might subsequently lead to further testing of 
a particular treatment in clinical trial, as a logical conse-
quence, which would be unethical and unnecessary. Fur-
thermore, low standard study reporting makes it difficult 
to ascertain whether the study was conducted according to 

high-quality research standards which eventually assuring 
that the data are valid. Noteworthily, failing to report a good 
quality research could possibility account for the observed 
heterogeneity in this meta-analysis. Nevertheless, the effect 
size by  H2S was consistent and robust despite the observed 
high heterogeneity which is reassuring.

We also investigated the publication bias within the 
included studies using funnel plot. The visual examination 
and the distribution of the effect size along with the preci-
sion of the measurement suggested that there might be an 
underrepresentation of studies with neutral or negative effect 
as well as studies with moderate precision in our analysis. 
However, it needs to be stressed here that studies with neu-
tral or negative data are often not given priority, if at all, to 
be submitted for publication by the majority of the research 
groups especially that it is highly likely that they will be 
rejected at the peer review stage.

Limitation

This review has included all studies which met our stringent 
inclusion criteria. However, we acknowledge that we were 
limited by not including papers which are not published in 
English language for a time and financial limitations. We 

Table 4  List of  H2S boosters with potential clinical translatability and proposed mechanism of infarct limitation

H2S booster Efficacy to limit 
infarct size (%)

Proposed mechanism(s) References

1 GYY4137 31–51 Activates PI3K/Akt/eNOS/GSK-3β signalling pathway [10, 30, 32]
2 Thiovalin 62 Triggers eNOS/NO signalling pathway [10]
3 AP39 43–56 Signals independently of cytosolic signalling pathways

Limits mitochondrial ROS generation
Inhibits  Ca2+-induced PTP opening in a cyclophilin-D-independent manner

[10, 31]

4 hs-MB 39 Unknown [11]
5 Ad.PKGIα 62 Activates PKG [12]
6 Zofenopril 29 Activates eNOS and increases plasma NO level

Upregulates the expression of antioxidant enzymes (thioredoxin-1, glutathione peroxi-
dase-1 and sodium dismutase-1)

[13]

7 JK-1 43–64 Unknown [30]
8 JK-2 55 Unknown [30]
9 4-OH-TBZ 48 Unknown [36]
10 DATS 65 Activates eNOS/NO signalling pathway [46]
11 Tadalafil 68 Activates PKG [48]
12 Cinaciguat 62–77 Increases PKG activity and CSE expression [49]
13 Beetroot juice 66 Unknown [50]
14 4CPI 36 Activates mitochondrial  KATP channel [54]
15 ADT 36 Activates AMPK and autophagic flux [60]
16 8a 38 Unknown [65]
17 8I 38 Unknown [65]
18 NSHD-1 36 Unknown [66]
19 NSHD-2 45 Unknown [66]
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also had to exclude studies with missing data or those which 
failed our critical appraisal to enhance the validity of this 
meta-analysis. Furthermore, we could not identify any par-
ticular variable behind the high degree of heterogeneity 
using our pre-defined experimental variables. In addition, we 
also acknowledge that the ARRIVE guideline was launched 
in June 2010 in the UK, while significant number of studies 
included in our analysis were either published before this 
date or conducted outside the UK.

Conclusion

This systematic review and meta-analysis shows a robust 
and highly reproducible infarct-limiting effect of  H2S against 
MIRI in pre-clinical studies. This robust effect was similar 
when  H2S was administrated before the onset of regional 
ischemia or at reperfusion despite the observed high het-
erogeneity which is reassuring. The current feasibility of 
designing stable and controllable  H2S boosters and selec-
tively targeting specific cellular compartments offer a unique 
opportunity to use a combination therapy of different  H2S 
boosters, which signal through different cardioprotective 
mechanisms, as an adjunct to standard reperfusion proto-
col. The focus of future investigations should be on charac-
terising the observed infarct-sparing effect of  H2S in large 
animal with co-morbidities, such as diabetes and age, and 
from background of the current standard polypharmacy in a 
well-designed preclinical studies.
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