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Simple analytic model for subduction zone thermal structure
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SUMMARY
A new analytic model is presented for the thermal structure of subduction zones. It
applies to the deeper regions of a subduction zone, where the overriding mantle is no
longer rigid but flows parallel to the slab surface. The model captures the development
of one thermal boundary layer out into the mantle wedge, and another into the
subducting slab. By combining this model with the analytic model of Royden (1993a,b),
which applies to regions in which the overriding plate is rigid, a nearly complete
analytic model for the thermal structure of a steady-state subduction zone can be
achieved. A good agreement is demonstrated between the output of the combined
analytic model and a numerical finite element calculation. The advantages of this
analytic approach include (1) efficiency (only limited computing resources are needed);
(2) flexibility (non-linear slab shape, and processes such as erosion, and shear heating
are easily incorporated); and (3) transparency (the effect of changes in input variables
can be seen directly).
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of properties dependent on temperature (e.g. total lithospheric
INTRODUCTION

strength) can be evaluated to a constrained error. Analytic
Thermal structures of subduction zones are important for models also allow one to see directly the impact of changing
understanding many observations, including subduction zone the input parameters.
magmatism, surface heat flow, gravity signature, seismic velocity, The first analytic solution to the thermal structure of a

seismic attenuation, seismicity and metamorphism, and for subduction zone was by McKenzie (1969). He assumed sub-
estimating the rheology and mineralogy of subduction zones. duction of lithosphere into a constant-temperature mantle.

Numerical methods (finite difference and finite element) have This model illustrated how the slab would heat up with time,
been used to calculate the thermal structure of subduction but did not include the effect of the cooling of the mantle by
zones for three decades (e.g. Toksöz et al. 1971; Honda 1985; the subducting slab. Davies & Stevenson (1992, Appendix A)

Davies & Stevenson 1992). These methods can in principle presented a solution where the subducting lithosphere cooled
(1) cope with a wide range of geometries and boundary con- the mantle, as well as allowing the mantle to heat the slab. In

ditions; (2) provide a solution throughout the model domain; this model it was assumed that the mantle flow was parallel

and (3) model the time evolution. Their major disadvantage is and equal to the slab velocity, and that the slab had an initial

linear thermal gradient. Molnar & England (1990) presentedthat they can be expensive to develop, set up and calculate.

For example numerical calculations are very time-consuming an analytic solution for the temperature on the interplate thrust

(i.e. where the overriding plate is rigid), derived by equatingto set up if realistic slab shapes are to be incorporated. There

have been very few attempts to generate thermal models of heat fluxes across the thrust. Royden (1993a,b) extended this

to allow the solution for the temperature structure for bothsubduction zones with an angle of dip other than constant.

These include that by Ponko & Peacock (1995), who modelled the downgoing plate and the overriding rigid lithosphere,

assuming no lateral heat conduction (which holds well forthe shape of a subduction zone by approximating it by two

straight line segments; and that by van den Beukel (1990) and low angles of dip). Her solution allowed the incorporation of

shear and radioactive heating. One can also prescribe accretionco-workers, who modelled a subducting slab as an arc of a

circle. If one needs to model many subduction zones at a fine (or erosion) of material to the downgoing plate, and erosion

of (or deposition at) the surface of the overriding plate. Steadyresolution incorporating realistic slab shapes, then utilizing

analytic models is the only way presently available. Another state is assumed in all the analytic solutions in the reference

frame fixed to the overriding plate.advantage of an analytic model is infinite resolution, so integrals
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In this paper, I will first introduce an improvement to the to the subducting slab. This will be some tens of kilometres

model of Davies & Stevenson (1992), which allows for an greater than the thickness of the mechanical lithosphere, and
initial thermal boundary layer in the mantle wedge as well can be expected to vary with the convergence velocity.
as in the slab. I then show how this model can be combined The boundary conditions assumed are as follows.
with the model of Royden (1993a) to provide a flexible tool

For y=0 (Fig. 1b) ,to model the thermal structure of subduction zones. Finally,
I compare two similar models, one produced numerically, and

the other by an appropriate combination of analytic models.

NEW ANALYTIC MODEL
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The analytic model assumes (1) that the mantle above the slab

flows parallel to the subducting plate and at the same velocity,
and (2) that the conduction down the slab dip can be ignored.
If the mantle wedge is well coupled to the subducting slab,

then the first assumption is a good approximation at least
As y�2 , T (all x)� T

1
, (1b)

close to the slab surface. If the thermal gradient perpendicular
to the slab surface is much greater than the thermal gradient As x�2 , T (all y)� T

1
. (1c)

down the slab dip, then the second assumption is also a good
approximation. Eq. (1a) implies that the minimum temperature at the thrust

The geometry and co-ordinate axes for the model are defined is T0 , while the mantle temperature away from the subduction
in Fig. 1(a), and the temperature at y=0 is defined in Fig. 1(b). zone is assumed to be T1 . The initial width of the thermal
The x-axis is perpendicular to the slab surface, with the positive anomaly in the mantle wedge is d, while the thickness of the
direction being into the subducting plate, and the positive subducting thermal lithosphere is assumed to be h. Eqs 1(b)
y-axis is in the down-dip direction. The origins of both axes and 1(c) follow, since a steady-state solution is assumed. The
are on the top surface of the subducting plate at the shallowest assumption of constant temperature (T1 ) with depth through
depth for the calculation. The sensible shallowest depth for the mantle far away from the subduction zone is valid if one
the model is the point in the mantle at which the asthenosphere is solving for potential temperature in a vigorously convecting
flow in the overriding mantle wedge first becomes parallel asthenosphere. One can convert from potential temperature

to actual temperature by adding the appropriate adiabatic

gradient. Both the diffusivity k, and the subduction velocity v

are assumed to be constant throughout the solution domain.

The heat transfer equation is

∂T
∂t

+vΩVT =kV2T +
Q

rCp
, (2)

where T is temperature, t is time, v is the velocity vector, k is

thermal diffusivity, Q is any volumetric heat source or sink, r

is density, and Cp is specific heat capacity. If we assume a

steady state (∂T /∂t=0), a reference frame attached to the

overriding plate (such that v is the convergence velocity), no

heat sources or sinks (Q=0), that the subduction zone extends

infinitely in the z-(along arc) direction (so ∂T /∂z=0, etc.), that

the velocity is parallel to the y-axis (v
x
=0), and that the down-

dip temperature gradients are much lower than the gradients

perpendicular to the slab surface (∂2T /∂y2%∂2T /∂x2) then

eq. (2) reduces to

v
y
∂T
∂y

=k
∂2T
∂x2

. (3)

Adapting a solution from Carslaw & Jaeger (1959, eq. 1, p. 53),

by replacing t with y/v, it can be shown that

T =
1

2√pyk/v P2

−2
f (x∞) exp[−(x−x∞)2/(4yk/v)] dx∞ (4)

(a)

(b)

Figure 1. (a) The geometry, orientation and co-ordinate system of the

analytic thermal model. Negative x is out into the overriding mantle
is the solution of eq. (3), where f (x) is the input boundarywedge, and positive x is into the slab. x=0 is the upper surface of
condition (i.e. the temperature at y=0). With f (x) as displayedthe slab. (b) The initial temperature at y=0, i.e. the temperature of the

slab as it subducts into the asthenosphere. in Fig. 1(b) and defined in eq. (1a), the integral in eq. (4)
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(a)

(b)

Figure 2. Solutions for the analytic model (eq. 4). It is assumed that the lithosphere thickness h=100 km; the initial thickness of the boundary

layer in the mantle wedge d=20 km; the thermal diffusivity k=10−6 m2 s−1 ; the mantle temperature T1=1325 °C; the initial minimum temperature

on the thrust T0=100 °C; and that the subducting velocity, v, is (a) 10 cm yr−1 (b) 1 cm yr−1. Note that the solution illustrates not only the heating

of the subducting slab with distance down dip, but also the cooling of the mantle wedge. At slower subduction velocities, the heating of the slab

and the cooling of the wedge are more pronounced at shallower depths. The horizontal axis is the x-axis (i.e. across the slab), while the vertical

direction is in the y-direction (i.e. down dip).
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reduces to expect this simple adaptation to produce reasonable results

provided the fundamental assumptions still hold. Since one
can expect the mantle wedge flow near the slab surface toT =T

1
+AT

1
−T

0
h BGAx−h

2 B [erf (−b)−erf(−a)]
remain parallel to the surface of a slab with varying dip, and

the conduction to remain dominantly perpendicular to the
surface, the underlying assumptions of the analytic model will−ASky

vpB [exp (−b2 )−exp (−a2 )]H remain valid. Away from the slab surface ( |x|&0), in regions

of slab curvature, this adaptation stretches or compresses the
+AT

1
−T

0
d BGAx+d

2 B [erf(−e)−erf (− f )] thermal field in the down-dip direction. Provided the down-
dip thermal gradient is small (a required assumption of the

basic model ), this is not a problem. So provided the slab
curvature is not too high, this adaptation should allow the−ASky

vpB [exp (−e2)−exp (− f 2 )]H , (5)
analytic model to be applied to realistic slab shapes. This

adaptation could also be applied to numerical models. Thiswhere
simple adaptation is easy to implement with this analytic
model since the co-ordinate system of the calculation is tieda=

x

√4yk/v
, b=

x−h

√4yk/v
,

to the subducting slab. As pointed out earlier, the extra effort
in incorporating realistic slab shapes in numerical thermal
models is demonstrated by the fact that all subduction zonee=

x+d

√4yk/v
, f =

x

√4yk/v
=a ,

thermal models published to date involve either simple
approximations to slab shapes or even cruder constant slab dip.and erf is the error function, which can be approximated by

polynomials to desired levels of accuracy (Abramowitz & Stegun

(1964). Fig. 2(a) shows the solution for the case v=10 cm yr−1, COMBINING ANALYTIC MODELS
while Fig. 2(b) is for v=1 cm yr−1. Note that the models

One can produce an analytic model for the thermal field of ashow cooling of the wedge and heating of the slab with depth.
whole subduction zone. This is done by combining the modelThe cooling and heating are more pronounced at shallower
of Royden (1993a,b) for the shallow region, where the over-depths for slower convergence velocities. From the analytic
riding plate is rigid, with the model described above for thesolution one can see that, apart from d and h (and the trivial
deeper region, where the surrounding mantle is fluid. In Fig. 4T0 and T1 ), the only other variable is the combination (ky/v)1/2.
we show the domains in which the various calculations wereHence a single result (e.g. Fig. 2a) can be used to provide the
undertaken. In regions 3 and 4 the linear gradient is from aresult for all k and v, by just varying the distance down dip ( y)
mantle potential temperature at 100 km depth to zero at theat which the temperature is evaluated. For example, Fig. 2(b)
surface. In regions 5 and 6 the temperature was set to thecould be obtained directly from Fig. 2(a) just by reducing the
mantle potential temperature. The temperature along the thrustscale in the down-dip direction by a factor of 10.

If one lets y be the accumulated distance down dip along
the slab surface, while one considers x to be the distance
locally perpendicular to the slab surface, then one can trivially

extend the model to a slab with variable dip down its length
(see Fig. 3). We do not demonstrate it rigorously, but one can

Figure 4. Illustration of the various domains that are used to calculate

the thermal structure of the complete subduction zone analytically. In

region 1 the model introduced in this paper is used. The small region

labelled N is ignored since the boundary condition of mantle temper-

Figure 3. Illustration of how the calculation might be trivially adapted ature is clearly unreasonable. The model of Royden (1993a,b) is used

in region 2. In regions 3 and 4 a linear gradient is input, while into solve for temperatures in curved subducting slabs. Note that y is

defined as the distance down dip, while x is the perpendicular distance regions 5 and 6 a constant temperature is input. No calculation is

undertaken in region 7. The heavy line is the mega-thrust. Thefrom the slab surface at that point. This adaptation can be expected

to be good provided that the slab curvature is low. It allows the temperature is extrapolated along the mega-thrust from region 2 to

region 1. This is done using the same increase of temperature withanalytic model to be used to obtain approximate thermal structures

for cases with varying slab shape. depth along the thrust as evaluated in region 2.
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(a)

(b)

(c)

Figure 5. (a) Thermal structure, in °C, derived from a numerical model for a subducting slab with a dip of 30° (after Davies & Stevenson 1992).

(b) The actual temperature values calculated analytically for a problem similar to (a); (c) final thermal structure achieved from (b), using simple

bilinear interpolation to obtain values in region 7 of Fig. 4 (the empty region in (b) where no calculations were undertaken). Note that (c) is very

similar to (a), illustrating that this approach can achieve good accuracy.

(the heavy line in Fig. 4), from the end of the Royden calcu- temperatures calculated in the analytic model. This was to
facilitate comparison with the results of a finite elementlation to the start of the Davies calculation, was calculated

assuming a linear extrapolation in depth of the deepest thrust numerical model that incorporated the adiabatic gradient into
its boundary conditions, and hence was solving for actual, nottemperature from the Royden model. After the calculation, the

adiabatic gradient was added throughout to the potential potential temperatures.
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(1993a,b) to allow extremely efficient thermal modelling
COMPARISON OF NUMERICAL AND

throughout a subduction zone, that is in both the thrust and
ANALYTIC MODELS

mantle wedge region. Such a model is very flexible, and is very
efficient computationally compared with numerical models.In Fig. 5(a), I show the temperature of the 30° dip model from

Davies & Stevenson (1992) solved using a finite element Provided that the assumptions on which the model is based
are valid, the results of the analytic model have been shownprogram, with an error function boundary condition on the

oceanic lithosphere and a linear geotherm for the continental to compare favourably with the results of a numerical model.

It is likely that the errors introduced from utilizing the analyticlithosphere. The thickness of the overriding mechanical litho-
sphere is 40 km, while the thickness of the thermal lithosphere model rather than a numerical method are less than the

inherent errors arising from uncertainties in model assumptionsis 100 km. I have converted the results of both models to

dimensional temperatures, assuming that the temperature at and parameter values.
the base of the lithosphere is 1350 °C, while the temperature
at the surface is assumed to be 0 °C.

A combined analytic model was produced for similar para- ACKNOWLEDGMENTS
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