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Abstract

Recognising human actions from video sequences is one of the most important top-

ics in computer vision and has been extensively researched during the last decades;

however, it is still regarded as a challenging task especially in real scenarios due to dif-

ficulties mainly resulting from background clutter, partial occlusion, as well as changes

in scale, viewpoint, lighting, and appearance. Human action recognition is involved in

many applications, including video surveillance systems, human-computer interaction,

and robotics for human behaviour characterisation. In this thesis, we aim to introduce

new features and methods to enhance and develop human action recognition systems.

Specifically, we have introduced three methods for human action recognition. In the

first approach, we present a novel framework for human action recognition based on

salient object detection and a combination of local and global descriptors. Saliency

Guided Feature Extraction (SGFE) is proposed to detect salient objects and extract

features on the detected objects. We then propose a simple strategy to identify and

process only those video frames that contain salient objects. Processing salient objects

instead of all the frames not only makes the algorithm more efficient, but more import-

antly also suppresses the interference of background pixels. We combine this approach

with a new combination of local and global descriptors, namely 3D SIFT and Histo-

grams of Oriented Optical Flow (HOOF). The resulting Saliency Guided 3D SIFT and

HOOF (SGSH) feature is used along with a multi-class support vector machine (SVM)

classifier for human action recognition. The second proposed method is a novel 3D ex-

tension of Gradient Location and Orientation Histograms (3D GLOH) which provides
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discriminative local features representing both the gradient orientation and their relat-

ive locations. We further propose a human action recognition system based on the Bag

of Visual Words model, by combining the new 3D GLOH local features with Histo-

grams of Oriented Optical Flow (HOOF) global features. Along with the idea from

our first work to extract features only in salient regions, our overall system outper-

forms existing feature descriptors for human action recognition for challenging video

datasets. Finally, we propose to extract minimal representative information, namely de-

forming skeleton graphs corresponding to foreground shapes, to effectively represent

actions and remove the influence of changes of illumination, subject appearance and

backgrounds. We propose a novel approach to action recognition based on matching

of skeleton graphs, combining static pairwise graph similarity measure using Optimal

Subsequence Bijection with Dynamic Time Warping to robustly handle topological and

temporal variations. We have evaluated the proposed methods by conducting extens-

ive experiments on widely-used human action datasets including the KTH, the UCF

Sports, TV Human Interaction (TVHI), Olympic Sports and UCF11 datasets. Experi-

mental results show the effectiveness of our methods for action recognition.
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Chapter 1

Introduction

1.1 Human Activity Recognition

Human activity recognition and analysis, one of the most active topics in computer

vision, has drawn increasing attention and its applications can be found in video sur-

veillance, video annotation and retrieval, and human-computer interaction, etc. The

goal of action recognition is to automatically analyse ongoing activities from an un-

known video and aims to recognise the actions and goals of one or more agents from

a series of observations on the agents’ actions and the environmental conditions. The

challenges of human action recognition come from difficulties such as scaling, oc-

clusion and clutter. Another issue is the large variability in actions. When different

subjects are performing the same action, they do not have the same appearance and

their movements can be quite different for the same action. Even for a person perform-

ing the same action multiple times, each performance can be quite different from the

previous one (see Figure 1.1).

There are different types of human activities. Depending on their complexity, they can

be reasonably arranged into four distinct levels: gestures, actions, interactions, and

group activities [4]. Gestures are basic movements of a person’s body part, and are

the atomic components depicting the significant movement of a person. ‘Opening a

hand’, and ‘raising a leg’ are good examples of gestures. Actions are single-person

activities that may be composed by multiple gestures organised temporally, such as
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Figure 1.1: Challenges in human action recognition: different clothes, different

illumination, different background and action speed.

‘walking’, ‘hand-waving’, and ‘boxing’. Interactions are human activities that involve

two or more persons. For example, ‘two persons hugging’ is an interaction between

two people. Finally, group activities are the activities performed by conceptual groups

composed of multiple persons: ‘a group having a meeting’, and ‘two groups fighting’

are typical examples. In this research, the main focus is to improve the performance

and recognition accuracy of single person action and interactions from real-time video

sequences.

Action recognition has been extensively researched, although there are still challenges

for real-world applications. Earlier work on human action recognition in video [34,

164, 120] employed video datasets with mainly static cameras, simple and homogen-

eous backgrounds, and humans fully visible such as KTH [142] and Weizmann [179]

video datsets. The research focus was to explore classifiers with variations in actors and
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actions. In recent years the field of action recognition has in general moved towards

less controlled and much more challenging types of data such as sports [137, 146, 119]

or movies [86, 126]. For this task, methods that use local and global features such

as [99] have shown excellent results. Although many successful methods have been

proposed, there are still scopes for improvement, especially for real-world videos

which have wide variations in people’s posture and clothes, dynamic background and

partial occlusions. Therefore, robust classification is still an important issue in the

human action recognition problem and it is necessary to develop more robust alternat-

ives. It is possible for humans to identify and distinguish different actions because the

brain is capable of both learning new actions and recognising them. However, in com-

puter vision, this same problem has proven to be one of the most difficult and lasting

challenges in the field.

1.2 Problem statement

This dissertation focuses on the problem of action recognition in real video material,

recorded under different environmental conditions varying from a fixed, clean back-

ground to complex, cluttered and moving backgrounds. A wide range of human activ-

ities have been investigated in this research from single person activities such as walk-

ing, running, jogging, etc. to human activities involving complex interaction such as

high five, hug, hand shake, etc. We aim to address action recognition issues by introdu-

cing new methods for feature extraction, representation and classification to improve

the performance and accuracy of human action recognition. We motivate to address-

ing the action recognition problem from the fact that the foreground region carry more

robust information about the action. This helps to suppress the interference of back-

ground and thus makes the method more robust to background fluctuation. We will

explain the methods in details in the remaining chapters.
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1.3 Motivation

The development of computer vision has encouraged the occurrence of different novel

recognition methods in both images and video sequences. Although it is still challen-

ging to recognise a specific object from a dataset of images due to viewpoint change,

illumination, partial occlusions, and intra-class difference and so on, many successful

methods have been proposed, including those that are successfully extended from the

image domain into video analysis and action recognition. However, current methods

still need improvement, especially for real world videos and movies which have wide

variations in people’s posture and clothes, dynamic background, and partial occlusions.

To conquer these deficiencies, a lot of researchers focus on part-based approaches for

which only the ‘interesting’ parts of the video are analysed, rather than the whole video.

These ‘parts’ can be trajectories or flow vectors of corners and spatial temporal interest

points. Although part based approaches are promising they still suffer from inaccurate

detection and tracking of interesting parts due to background clutter and motion which

prevents a clear and informative representation.

The ability to detect, track, recognise and analyse human motion is beneficial for a

wide range of high-level applications that rely on representations extracted from visual

input. During the past few years, many approaches have been proposed to address

these problems [130, 182, 4].

Some examples of applications that could benefit from reliable and efficient human

action recognition are:

• Automated surveillance frameworks that monitor the overall public, utilised in

places, for example, airport terminals, government buildings and banks. Applic-

ations to monitor and recognise suspicious movement without human instruc-

tions have yet to be figured out. Having an automated solution limitlessly en-

hances the recognition of suspicious activities as it decreases the likelihood of

human distortion and misconception.
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• Safety systems for detecting vulnerable users, most prominently the extremely

youthful or the elderly such as systems to monitor users in and around occu-

pied train stations or on cars to caution others of possible danger or for security

monitoring.

• Health monitoring and preventative care for patients which have applications to

flawlessly detect and track people inside their own environment. For instance, a

system to monitor the elderly and alert the neighbourhood healing facility on the

off chance that they have a fall or excursion.

This thesis has used several challenging, publicly available datasets designed for hu-

man action recognition, which are still very challenging in the field and highlight the

ample ongoing room for improvement.

1.4 Thesis Contribution

The goal of this dissertation is the recognition of actions in uncontrolled, real video

data. The first part of our work is based on saliency to guide local and global features

which are employed for action classification. For this, existing approaches to describe

local information in videos are investigated and new methods are developed.

The second part of this work introduces a new descriptor for action recognition in

videos. We propose a novel effective feature called 3D GLOH (Gradient Location and

Orientation Histogram), which describes local spatially varying information for video

data. It detects interest points in the video and then describes them in 3D log-polar

coordinates.

Thirdly, we propose to extract minimal representative information, namely deforming

skeleton graphs corresponding to foreground shapes to effectively represent actions,

removing the influence of these typical variations. We propose a novel approach to

action recognition based on matching of skeleton graphs.
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To summarize, we provide the following main contributions:

• We introduce a novel framework for human action recognition based on sali-

ency guided local and global descriptors, by detecting only keypoints on salient

regions and then describing those using 3D SIFT descriptor. This work was

published in [1].

• We develop a novel local descriptor for video data based on histograms of gradi-

ent location orientations (3D GLOH) [2]. Our approach is based on a log-polar

orientations to compute 3D gradients locations histograms for salient keypoints.

Descriptor parameters are evaluated in depth and optimized for action recogni-

tion using bag-of-features representation.

• We develop a novel combination of local and global descriptors, which out-

performs existing descriptors in action recognition with challenging real-world

videos.

• We propose to represent actions in video sequences as sequences of deforming

skeleton graphs of foreground subjects. The representation has significant ad-

vantages of being insensitive to changes of illumination, subject appearance and

backgrounds. The proposed method is based on matching of deforming skel-

eton graphs. Our similarity measure takes into account topological variation,

temporal variation and alignment of periodic actions to improve its robustness.

Experimental results show that our method purely based on graph matching

outperforms state-of-the-art action recognition methods. Moreover, since our

method uses compact and highly abstract information, it achieves decent recog-

nition performance with even a single example from each category, which is a

very challenging scenario for existing methods. Due to the use of complement-

ary information, we achieve even better recognition performance by fusing our

method with an alternative image descriptor based method.
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1.5 Thesis road map

The remaining chapters of the thesis are organized as follows:

• In Chapter 2 an overview of the field of articulated human feature representa-

tion and recognition is presented. Moreover, evolution of human action recog-

nition in recent years is briefly presented to provide an introduction to different

approaches, different features, extraction, representation and classification tech-

niques used by researchers over the last three decades. In addition, a compre-

hensive review of popular, challenging datasets and their evaluation metrics are

also presented.

• Chapter 3 introduces a novel approach to extracting and representing features

for human action recognition. For feature representation and description, a new

method has been proposed based on saliency to guide the combined descriptor

to describe the video data, where saliency has been extensively researched to

represent the importance of image regions. The new descriptor combines two

different feature representations, the first one being the 3D SIFT descriptor (a

local descriptor) and the other being the HOOF descriptor (a global descriptor),

to get benefits from local and global descriptors to build robust and informative

descriptor. The pipeline of the proposed method will be illustrated in this chapter.

• Chapter 4 introduces a new 3D descriptor to better identify spatio-temporal

characteristics. A novel 3D extension of Gradient Location and Orientation

Histograms will be explained in details in this chapter. 3D GLOH descriptor

provides a discriminative local feature representing not only the gradient orient-

ations, but also their relative locations. In addition, a human action recognition

system based on the Bag of Visual Words model will be introduced, by com-

bining the new 3D GLOH local features with Histograms of Oriented Optical

Flow (HOOF) global features. Along with the idea from Chapter 3 to extract



1.5 Thesis road map 8

features only in salient regions, our overall system outperforms existing feature

descriptors for human action recognition for challenging real-world video data-

sets.

• Chapter 5 presents a method based on a shape-descriptor to extract minimal

representative information, namely deforming skeleton graphs corresponding to

foreground shapes to effectively represent actions, removing the influence of

changes of illumination, subject appearance and backgrounds. In this chapter

a framework of a proposed approach to action recognition will be presented.

The proposed method based on matching of skeleton graphs combining a static

pairwise graph similarity measure using Optimal Subsequence Bijection with

Dynamic Time Warping to robustly handle topological and temporal variations.

For common periodic actions, we extract a consistent starting frame from each

video to temporally align deforming skeleton graphs. Moreover, we further de-

velop a hierarchical matching strategy to significantly improve matching effi-

ciency while keeping recognition accuracy. All these proposed solutions will be

shown in this chapter. Comparison with state-of-the-art will be shown where the

proposed method outperforms the state-of-the-art methods on standard bench-

marks. For effectiveness, the method also has very good generalisability where

decent performance can be achieved with only a single example from each ac-

tion category since our method utilises complementary information to traditional

image descriptor based methods (as shown in chapter 3). This chapter further

demonstrates that even better performance can be obtained by fusing the output

of both methods.

• Chapter 6 summarises and concludes the thesis, highlights the achievements,

discusses the limitations, and points to future research directions.
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Chapter 2

Literature Review in Action

Recognition

2.1 Introduction

The human action recognition problem has remained a challenging task in computer

vision and multimedia content processing for more than two decades. Despite great

effort, this task is still challenging as videos are complicated with significant variations

even for the same type of action, making robust information extraction difficult. Firstly,

the subject under observation can be distinctive in appearance, pose and size. Secondly,

moving background, occlusion, non-stationary camera and complex environment can

impede the observation. Comprehensive reviews of the literature can be found in many

recent research papers [3, 4, 182, 15, 54, 138, 5, 33] addressing different aspects and

issues raised in the human action recognition field. Many existing action recognition

methods, including both low-level feature extraction and high-level representations,

are extended from the text and image domains. Different approaches have been intro-

duced to address the action recognition problem. Successful human action recognition

systems have balanced between the recognition accuracy and the efficiency of feature

extraction from the computational cost viewpoint. Accordingly, most research tries to

find out reliable and robust scheme to extract features and effective classification al-

gorithms to achieve the goal. In this chapter we will review the state-of-the-art methods

for action recognition in benchmark video datasets.
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2.2 Categorisation of Human Action Recognition

Human action recognition systems can be classified based on action representation

methods or feature representation methods. In the former categorisation, human ac-

tion recognition methods can be categorised into four classes: feature representa-

tion methods, bag of visual words (BoVW) [166, 180, 104, 131, 121], stochastic

methods [116, 136, 38] and graph-based methods [165, 171] (see Figure (2.1)). Re-

garding feature representations, human action recognition methods can be classified

into three classes based on the method of representing or extracting features from

video data: local features [77, 100, 32], global features [92, 83], and motion fea-

tures [16, 37, 129] (see Figure 2.2). Some methods combine different types of features

and action representations to improve performance. In addition, recent deep learning

based methods exploit large amounts of available training data to achieve human action

recognition without hand-crafted features.

Local feature representation-based methods extract local features in the spatial-temporal

domain to represent human actions. A set of spatio-temporal features are obtained in

a bottom-up structure [77, 143, 180]. In contrast global feature representation meth-

ods do not require the localisation of body parts. Rather, global body structure and

dynamics are utilised to represent human actions. In general, global approaches em-

ploy shape masks or silhouette information, stemming from background subtraction

or difference images, to represent actions [121]. As an example, shape-appearance

based approaches are based on building models to represent the actions and use these

models in recognition. The third category of feature representation is mainly based on

optical flow information [32, 26]. Optical-flow approaches depend on calculating the

optical flow [19, 60, 102] to encode the energy of the action and represent actions as

histograms of optical flow.

In the following sections, we will explain briefly the categorisation of feature repres-

entation schemes.
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2.3 Feature Representation: Local Features

Human action recognition has been extensively researched through methods based on

local representations. Methods based on local feature extraction, also known as local

methods, encode a video sequence as a collection of local spatio-temporal features

(local descriptors). Low-level features play a fundamental role in representations of

human actions. In the last decades, many spatio-temporal descriptors have been pro-

posed and shown to be effective for action recognition. These local descriptors are

extracted from spatio-temporal interest points (STIPs) which can be sparsely detec-

ted from video sequences by detectors [84, 34, 100]. The features extracted from

local descriptors are characterised with high dimensionality. As a result, generating

codebooks is needed to acquire optimal codebooks with small size. This is usually ac-

complished by using one of the representation methods as shown in Figure 2.1. More

details of these methods will be explained in section 2.7. Local approaches are popular

feature extraction methods due to their many advantages:

• Resistance and less sensitivity to the noise in background, partial occlusion,

viewpoint, and changes caused by illumination variation.

• Compared to global features, avoidance of some preliminary steps, e.g. back-

ground subtraction.

• Flexibility to model the local interactions between multiple features by using a

local spatial-temporal feature-based representation.

If the video dataset contains individual actors recorded in clear environment with static

camera, global descriptors give acceptable results with low cost but the effectiveness of

these descriptors is related to the scenes and the accuracy of localisation or detection

of the region of interest (ROI). For example, motion energy image (MEI) features

[13] are global features which work by identifying regions with motion as regions of
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interest. Conversely, local descriptors can better deal with changes in the environment

but usually with higher computational costs.

2.3.1 Feature Detectors

In low-level feature representation methods, the key step to extract features from video

is to detect interest points considered to be more informative than others, and describe

them using some feature descriptors. Many approaches have been proposed to detect

interest points. The most popular ones include SIFT detector [100] which works in

2D, space-time interest points detector (STIPs) [84, 85], (which extends the Harries

detector [58] to 3D), temporal Gabor filters [17, 34], Hessian detector [112] (based on

the determinant of the spatio-temporal Hessian matrix).

Lowe [100] introduced the Scale Invariant Feature Transform (SIFT) detector based

on detecting maxima and minima of the difference-of-Gaussian in scale space. For

each octave of scale space, the initial image is repeatedly convolved with Gaussians

at different scales to produce the set of scale space images. Adjacent Gaussian im-

ages are subtracted to produce the difference-of-Gaussian images. After each octave

is produced, the Gaussian image is down-sampled by a factor of 2, and the process

is repeated. Maxima and minima of the difference-of-Gaussian images are detected

by comparing a pixel to its neighbours at the current and adjacent scales. The SIFT

detector has the ability to identify a large number of keypoints. These keypoints are

robust, informative, and affine and scale invariant.

Laptev [84] extended the Harris [58] and Forstner [45] interest point detectors to 3D

detectors. The idea is based on extending the spatial domain of interest points into

the spatio-temporal domain by requiring the image values in space-time to have large

variations in both the spatial and the temporal dimensions. They proposed that the

interest point can be detected at different types of interest point movement. However,

the Harris corner detector is sensitive to changes in image scale, as a result it does not
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provide a good basis for matching images of different sizes.

The Dollar detector [34] calculated a response function for each keypoint of video

sequences. To calculate this response function two distinct linear filters are used.

2D Gaussian kernel filter is the first filter that is applied on the spatial axis and 1D

Gabor filter is the second filter that is used for the temporal axis. They applied a

spatio-temporal interest point detector to find local regions of interest in space and

time (cuboids) which serve as the substrate for action recognition.

2.3.2 Feature Descriptors

To capture more information and features from detected keypoints, a description for

these key points is needed to represent and encode the video information. Methods

have been proposed to describe local interest points, each of which is denoted by

I(x, y, t), where I represents input image, x and y indicate the spatial and t indicates

time of the point. A local patch is considered around each detected interest point. The

detected patches are described to represent the actions. In this section, some descriptors

used in human action applications will be introduced.

Many efforts have been made to extract and describe meaningful and robust inform-

ation. Several feature descriptors have been successfully adapted from the image do-

main to the video domain to enhance the accuracy of human action recognition. Scov-

anner et al. [143] extended the SIFT descriptor [100] to the spatio-temporal domain.

Willems et al. [164] proposed the extended SURF (ESURF) descriptor, which is the

generalisation of the SURF descriptor [12] to video by evaluating with changing scales

and orientations. Their evaluation however was conducted only on datasets with a

single actor and clear recording environments such as KTH.

Klaser et al. [77] represented video sequences as a 3D histogram of gradients. They

extended the idea of Histogram of Oriented Gradients (HOG) [31] on images to video
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Figure 2.3: Describing spatio-temporal points (HOG3D descriptor): the support

region around a point of interest is divided into a grid of gradient orientation his-

tograms; each histogram is computed over a grid of mean gradients; each gradi-

ent orientation is quantised using regular polyhedrons [77].

to allow dense sampling of the cuboid with different scales and locations in the spatio-

temporal representation (Figure 2.3). Laptev et al. [86] proposed the combined HOG/HOF

descriptor which represents appearance by HOG and local motion by Histogram of

Flow (HOF) [32]. A drawback of HOG features is that the local descriptors are ex-

tracted at a fixed scale; therefore, the size of the human in the image can have great

influence on the performance.

Recently, Zhang et al. [180] introduced a 3D feature descriptor called simplex-based

orientation decomposition (SOD), and combined it with a BoVW framework to recog-

nise actions. The SOD descriptor is based on decomposing visual cue orientations in

the spatio-temporal domain into three angles and transforming the decomposed angles

into a simplex space, where the simplex space is a generalisation of the notion of a

triangle or tetrahedron to arbitrary dimensions. They used the simplex space in the

features representation to construct a compact, representative description of 3D visual

features. Then, quadrant decomposition was performed to compute the final feature

vector used for classification by combining the decomposed histograms from all quad-

rants.

Yeffet and Wolf [175] employed a feature descriptor named local trinary patterns

(LTP), which was inspired by the local binary patterns (LBP) and successfully used
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for action recognition. Every pixel at each frame was encoded as a short string of

ternary digits (trits) by comparing this frame to the previous and the next frames. The

frame was then divided into (m × n) regions and the histograms of the trinary strings

were computed for each of the m × n region. These histograms were accumulated

every few frames and the vector which contains all concatenated histograms serves as

a video descriptor for the video. However, in practice the reliability of the descriptor

decreases significantly under large illumination variations [150].

2.3.3 Feature Trajectories

Feature trajectories are one of the effective methods for representing video data. Tra-

jectory approaches are recognition approaches that interpret an activity as a set of

space-time trajectories [111, 110, 70]. Commonly, trajectories are extracted using

Kanade-Lucas-Tomasi (KLT) feature tracker [111, 110]. KLT tracker [154] tracks win-

dows of pixels and identifies windows that contain sufficient texture. Action recogni-

tion uses the velocity history of the tracked keypoints or matching SIFT descriptor [147]

between two frames.

For more encoded information from video data, researchers proposed to use dense tra-

jectories to describe the features [155, 70, 157, 125]. Wang et al. [155] introduced

a dense trajectory descriptor represented by tracking interest points (Figure 2.4). In-

terest points are sampled at spatial-temporal uniform intervals. Tracking is based on

displacement information from a dense optical flow field. Based on the work of dense

trajectories [155] Jiang et al. [70] proposed a method to represent the object relation-

ships by encoding pairwise dense trajectory codewords. Another work improves the

trajectories by using dense optical flow to estimate human motion [157].

Because the efficiency of storage and the speed of classification are limited due to

the dense samples in the feature space [70], researchers introduced improved dense

trajectories by reducing the dimensions and adopting a fast method for classification
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(a) (b) (c)

Figure 2.4: Illustration of dense trajectory description. (a): Feature points are

sampled densely for multiple spatial scales. (b): Tracking is performed in the

corresponding spatial scale over L frames. (c): Trajectory descriptors are based

on its shape represented by relative point coordinates as well as appearance and

motion information over local neighbourhood pixels along the trajectory [155].

such as [170]. In this work, PCA was used to reduce the number of features.

Moreover, Svebor et al. [74] treated the human action problem as two steps. The first

step is video frame segment extraction and the second step is video frame tracking. The

tracking is based on the motion and colour channels. In the second step, every segment

is tracked separately both forward and backward in time in the video sequence based

on its motion and colour. As a result, the space-time segment is the set of bounding

boxes obtained from the tracking process.

Trajectory-based methods have their advantages but also face challenges to cope with

self-occlusions, change of appearance, and problems of reinitialisation.



2.4 Feature Representation: Global Features 18

Figure 2.5: Shape masks for recognising tennis actions [72]

2.4 Feature Representation: Global Features

Methods based on global representations, also called holistic methods, treat a video

sequence as a whole rather than applying sparse sampling using STIP detectors or

extracting trajectories. In holistic representations, spatio-temporal features are directly

learnt from raw frames in video sequences. Global representations have recently drawn

increasing attention [29, 71, 53, 26], because they are able to encode more visual in-

formation by preserving spatial and temporal structures of actions occurring in a video

sequence. Compared to local methods, global representations encode extracted fea-

tures as a whole, and are obtained in a top-down manner. Therefore, global descriptors

are usually less time consuming to calculate and easier to implement. They give robust

results in less challenging scenarios such as those with static background.

2.4.1 Shape-Appearance Features

Modelling of human pose and shape has received a great attention from researchers in

recent years. Several approaches for action recognition used human shape masks and

silhouette information to represent the human body and its dynamics. It is known that

action recognition methods based on the human silhouette play an effective role in hu-

man action recognition. The shape analysis approaches aim to describe and locate the
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Original frame Original frameMEI MHI MEI MHI

Figure 2.6: Shape masks from difference images for computing motion history

images (MHI) and motion energy images (MEI) [13].

changes in the human body shape. Shape-based approaches convert video frames into

static shape patterns and in the recognition phase compare the patterns with pre-stored

ones. In earlier work in this field, Yamato et al. [72] are among the first to propose sil-

houette images (Figure 2.5). They computed a grid representation over the silhouette

and computed for each cell the ratio of foreground to background pixels. The grid rep-

resentations are quantised into a vocabulary, and actions are then learnt as sequences

of words using a Hidden Markov Model (HMM). Chomat et al. [29] created motion

templates and a Bayes classifier was used to perform action recognition. Bobick and

Davis [13] used shape masks from difference images to detect human actions. They

employed so-called motion energy images (MEI) and motion history images (MHI) as

the action representation, as illustrated in Figure 2.6. More precisely, MEIs are binary

masks that indicate regions of motion, and MHIs weight these regions according to the

point in time when they occur (the higher the weight is the more recent). This approach

is the first to introduce the idea of temporal templates for action recognition.

In recent work on shape approaches, Gorelick et al. [52] proposed a method to form a

3D spatial-temporal representation by stacking segmented silhouette frame-by-frame.

Yang et al. [174] treated human pose as latent information and used it to assist the task

of action recognition. They represented the action as a model that integrates action

recognition and pose estimation. In [71] action interest regions are first localised and
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Figure 2.7: Action representation using histograms of pose primitives [153]

shape-motion descriptors are computed from them.

For shape descriptors, the histogram of oriented gradient (HOG) [31] was used to

encode the shape of each subregion, and then all the histograms were concatenated

to form a raw shape feature vector. These features combined with an optical flow

descriptor [37] formed the final representation for actions. In other work [153], ac-

tion classes were represented by histograms of pose primitives using HOG to classify

actions. They extended a standard HOG based pose descriptor to better deal with back-

ground clutter and articulated poses by exploiting a non-Negative Matrix Factorisation

(NMF) basis representation of gradient histograms as shown in Figure 2.7. Ikizler and

Duygulu [62] modelled the human body as a sequence of oriented rectangular patches.

The authors encoded the video features using BoVW, which they called as bag-of-

rectangles. Maji et al. [108] introduced a new representation of human pose called

"poselet activation vector". The action was represented by estimating the 3D pose of

the head and torso, given the bounding box of the person in the image.



2.5 Feature Representation: Motion Features 21

2.5 Feature Representation: Motion Features

Human-centric approaches based on optical flows and generic shape information form

another sub-class of global methods. A number of research works depend on an optical

flow technique to transform the motion information from input video to feature vectors.

As one of the first works in this direction, Polana and Nelson [129] proposed a human

tracking framework along with an action representation using spatio-temporal grids

of optical flow magnitudes. The action descriptor is computed for periodic motion

patterns. By matching against reference motion templates of known periodic actions

(e.g., walking, running, swimming) the final action can be determined.

In another approach purely based on optical flow, Efros et al. [37] tracked actions in

videos and computed a descriptor on the stabilised tracks using blurred optical flow.

Their descriptor separated x and y flows as well as positive and negative components

into four different channels, as shown in Figure 2.8. For classification, a test sequence

is frame-wisely aligned to a database of stored, annotated actions. The same human-

centric representation based on optical flow and human tracks for action recognition

was employed by Fathi and Mori [43]. As a classification framework, the authors

use a two-layer AdaBoost variant. In the first step, intermediate features are learnt by

selecting discriminative pixel flow values in small spatio-temporal blocks. The final

classifier is then learnt from all previously aggregated intermediate features.

Rodriguez et al. [137] proposed a method to use flow features in a template matching

framework. The features are represented by spatio-temporal regularity flow informa-

tion. The regularity flow shows improvement over optical flow since it globally minim-

ises the overall sum of gradients in the frame sequence. Rodriguez et al.’s method [137]

learnt cuboid templates by aligning training samples via correlation. For classification,

test sequences are correlated with the learnt template using a generalised Fourier trans-

form that allows for vectorial values.

Ali [7] introduced features depending on pure optical flow [59]. These features are
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Figure 2.8: Constructing the motion descriptor based on optical flow [37]. (a)

Original video frame, (b) Optical flow Fx,y, (c) Separating the x and y components

of optical flow vectors, (d) Half-wave rectification of each component to produce

4 separate channels, (e) Final blurred motion channels.

called kinematic features. Each kinematic feature produced three-dimensional inform-

ation by computing optical flow of a sequence of images to increase spatiotemporal

patterns. To reduce the dimensions into a more manageable two-dimensional form,

they assumed that the representative dynamics of the optical flow were captured by

these spatiotemporal patterns in the form of dominant kinematic trends or kinematic

modes. Kinematic features are used to extract different aspects of motion dynamics

existing in optical flow which are computed by performing Principal Component Ana-

lysis (PCA) on kinematic features to reduce the dimensionality of the features. These

features include divergence, vorticity and symmetry. As a result they capture most of

the dynamic information and achieved increased recognition. The weakness of kin-

ematic features is that they are view dependent and therefore give different optical

flows from different view directions even on the same scene.

The features extracted directly from optical flow are inaccurate [59] because they are

affected by noise and illumination environment changes. To improve the features

which are selected from optical flow in [132, 141], Ramadass [132] proposed an im-
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provement on the optical flow algorithm to increase the features which can be taken

from optical flow. The proposed algorithm eliminated irrelevant features by computing

Euclidean distance of separation of various features and correspondingly filtering use-

ful low level features for extraction. Despite the fact that good results were achieved

by motion descriptors, the methods based on optical flow have limitations due to the

difficulty in reliable optical flow estimation, e.g. aperture problems, smooth surfaces,

and discontinuities.

2.6 Discussions about Feature Representations

As explained in the previous section, different schemes of local and global represent-

ations have been proposed to improve the recognition accuracy. However, existing

methods still suffer from the limitations for each representation. To overcome these

difficulties and benefit from the advantages of different representations, researchers

proposed to combine local and global representations to produce a more reliable de-

scription for video contents such as [148, 67, 87, 71]. A key advantage of local fea-

ture based approaches is their flexibility with respect to the type of video data. Local

descriptors represent a video as features extracted from a collection of patches, ideally

invariant to environmental clutter, appearance change and occlusion, and possibly to

rotation and scale change as well. Global descriptors, on the other hand, treat each

video frame as a whole, which is easier to implement and has lower computational

costs. Combining features can take the advantages of individual features and provide a

trade-off between performance and effectiveness.

2.7 Human Action Representation Methods

The common human action representation methods are feature representation, Bag of

Visual Words (BoVW), Stochastic-based, Convolution Neural Network, and Graph-
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based methods. In brief words, BoVW methods recognise human action by applying

a clustering algorithm on feature descriptors to build visual vocabulary [89, 166, 180,

120, 121, 156, 172]. Stochastic-based methods build statistical models to represent

human actions (e.g. Hidden Markov Models (HMM)) [136, 124, 83]). Graph-based

methods represent an action as a graph [165, 95] to obtain a model used in the classi-

fication process. In the following sections we will explain the categorisation of human

action systems based on these methods.

2.7.1 Bag-of-Visual-Words (BoVW)

A popular representation, based on local features, is the Bag-of-Visual-Words (BoVW)

model. It starts from document retrieval applications where orderless strategies are a

popular choice for representing textual data. The bag-of-words model was firstly used

to represent text documents as recurrence distributions over words and has been applied

extensively in this domain [140]. The framework of local spatio-temporal features with

Bag of Visual Words (BoVWs) has gained notable achievements and become one of the

most popular approaches in the recent work of action recognition [166, 180, 104, 131]

and showed a remarkable performance improvement on benchmark datasets.

Generally, a feature descriptor is a vector representation of the features for the local

neighbourhood of a given position. To obtain the final representation of an action,

the BoVW model is used which is based on mapping local features of each video se-

quence onto a pre-learnt dictionary. The visual vocabulary (or codebook) is computed

by applying a clustering algorithm (e.g. k-means) on feature descriptors obtained from

training sequences; each cluster is referred to as a visual word. Descriptors are quant-

ised by assignment to their closest visual words, and video sequences are represented

as a histogram of visual word occurrences [166, 180]. The coefficient of each local fea-

ture is determined by assigning this feature xi to its nearest codeword in the codebook

vocabulary using a certain distance metric. By using the Euclidean distance, then:
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ui,j =

1 if j = argminj=1,...,M‖xi − bj‖2

0 otherwise
(2.1)

Niebles and Li [121] represented video as spatio-temporal features with bag of visual

words. They extracted the interest points and clustered the features, and then mod-

elled actions by using a probabilistic Latent Semantic Analysis (pLSA) to localise and

categorise human actions. Laptev and Lindeberg [85] recognised actions based on

interest-point features. They first detected interest points using a Hessian detector, and

then described the features using scale-invariant spatio-temporal descriptors. Finally,

they clustered and recognised the actions based on the similarity of words inside the

clusters and the differences among clusters.

Wang et al. [156] recognised the action using BoVW framework with an SVM clas-

sifier. They represented the video by a combination of several descriptors, which are

HOG to describe the appearance, HOF (motion) and trajectories to describe the shape.

Moreover, they introduced a descriptor based on motion boundary histograms (MBHs)

which relies on differential optical flow. Schuldt et al. [142], Dollar et al. [34], and

Niebles et al. [120] proposed using of BoVW in action recognition. For the BoVW

representation in videos, feature detectors determine a set of salient positions present

in the video sequences.

A non-linear SVM is a popular classifier that is used in different works, e.g. Schuldt et

al. [142], Dollar et al. [34], Laptev et al. [86], Willems et al. [164], Le et al. [90] used

non-linear SVMs on a benchmark with different feature descriptors. Such histogram

representations have the ability to capture global statistics about the type of descriptors

that are present in the video sequence.
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2.7.2 Stochastic Approaches

There has been a focus on actions in video sequences, where the action can be represen-

ted as statistically predictable sequences of states, also called a state model. Stochastic

approaches are the methods that represent a human action as a model containing a set

of states. The models are statistically trained on feature vectors to generate a general

statistical model for action classification. In other words, the statistical model is de-

signed to generate a sequence with certain probability. Existing research has conceived

and used many stochastic techniques, such as Hidden Markov Model (HMMs) [116,

124, 136, 83, 44].

In HMM-based methods, a human action is assumed to be in one state at each time

frame, and each state generates an observation (i.e., a feature vector). In the next

frame, the system transits to another state based on the transition probability between

the states. Once transition and observation probabilities are trained for the models,

actions are commonly recognised by solving the evaluation problem. The evaluation

problem is to calculate the probability of a new input generated by a particular state

model. If the calculated probability is high enough, the state model-based approaches

are able to decide that the action corresponding to the model occurred in the given

input.

Feng and Perona [44] used a static HMM for action recognition where keyposes corres-

pond to states. Lu and Little [101] used a hybrid HMM where one model denotes the

closest shape-motion template while the other models position, velocity and scale of

the person in the image. Instead of modelling the human body as a single observation,

Ikizler and Forsyth [63] introduced 3D trajectories for body parts. They constructed

HMMs for the legs and arms individually, where 3D trajectories are the features. For

each limb, states of different action models with similar probabilities are linked. This

makes training easier, as the combinatorial complexity is reduced to learning dynam-

ical models for each limb individually. However, it leads to the problem of having
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to construct a large number of action HMMs, each using a subset of all joints, which

results in a large number of weak classifiers.

Several works aimed at improving pose representation by modelling the action and

selecting the action class whose corresponding model has the highest probability of

generating the observed sequence. Peursum et al. [128] used a factored-state hierarch-

ical HMM (FS-HHMM) to jointly model body dynamics per action class. Caillette et

al. [22] used a variable length Markov model (VLMM) to model observations and 3D

poses for each action. Natarajan and Nevatia [117] introduced a hierarchical variable

transition HMM (HVT-HMM) which consists of three layers that model composite

actions, primitive actions and poses.

A drawback of these models is that they have to make some assumptions in order to

be computationally tractable. It can also be hard to learn these models since there are

usually many model parameters to be set.

2.7.3 Graph-based Approaches

Graph-based approaches have many advantages. They integrate geometrical and topo-

logical features of the objects. They are considered as successful shape descriptors for

object recognition [139, 163] and matching [173, 35, 20] since graphs are efficient for

providing natural description of objects and effective for modeling complex structured

data [14, 57]. Based on these advantages, efforts have been undertaken during the

last two decades to employ graph characteristics in action recognition. These methods

usually differ by the way they construct graphs, features associated with graphs and

graph matching methods. Wu et al. [165] proposed graph-based action recognition by

constructing two graphs to model the action in the video. These graphs are named

Video Cooccurrence Graph (VCG) and Video Successiveness Graph (VSG), respect-

ively as shown in Figure 2.9. The vertices in these two graphs correspond to the local

features and the edges represent the relationship between the vertices. A family of
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Context-Dependent Graph Kernels (CGKs) is used for action recognition.

Wang and Sahbi [161] presented a graph-based action recognition method. They rep-

resented an action as a Directed Acyclic Graph (DAG), and used a kernel machine to

recognise the action. To construct the graph, dense trajectories are extracted and then

clustered using the agglomerative method. The resulted features are mid-level fea-

ture components which corresponds to the vertices of the DAG, and the relationship

between vertices correspond to the edges of the graph.

Aoun et al. [8] introduced an approach for action recognition by constructing a graph

based on local features. In their work, the action is modelled by two graph sets: Spa-

tial Video Graph Set (SVGS) and Temporal Video Graph Set (TVGS). The graph-

based substructure pattern mining algorithm (gSpan) [171] was then applied to retrieve

the spatial and temporal sub-graphs. The histograms of the spatial sub-graphs and

temporal sub-graphs are computed. These two types of histograms form the video

descriptor, and a bag of sub-graphs method is used to recognise the action in the video

sequences.

Recently, Liang et al. [95] constructed a model for action recognition in videos with

a Spatio-Temporal And-Or Graph (STAOG), which contains four types of nodes: the

leaf nodes for representing a batch of local classifiers, the or-nodes for specifying

an appropriate selection from the leaf-nodes, the and-nodes for verifying the holistic

appearance of action within the video frame, and the root-nodes for classification and

temporal testing. Other recent work [99] represented action as a graph based on Spatio-

Temporal Interest Points (STIPs). STIPs are clustered into different labels and each

label stands for a kind of movement. Then, all labelled STIPs are defined as nodes of

the directed graphs.

Gaur et al. [47] modelled the action in a video as a string of feature graphs (SFGs) by

treating a video as a spatio-temporal collection of primitive features (e.g., STIP fea-

tures). They divided the features into small temporal bins and represented the video

as a temporally ordered collection of such feature bins, each bin consisting of a graph-
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Figure 2.9: The illustration of the CGKs based human action recognition. (a) A

video sequence is represented by VCG and VSG together. (b) Different orders

CGKs are computed on both video graphs. (c) Combine the CGKs together using

GMKL algorithm and learn action classifiers simultaneously [165].

ical structure representing the spatial arrangement of low-level features. A video then

becomes a string of such graphs and comparing two videos is to match two strings of

graphs.

2.8 Deep Learning based Approaches

Deep learning has also been used by researchers for detecting and recognising complex

events in video sequences. The two main types of techniques in deep learning for action

recognition are convolutional neural networks (CNNs) [167, 144, 158, 160, 61, 158]

and recurrent neural network (RNN) [168, 118].
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Deep learning using convolutional neural networks (CNNs) was introduced by Yann et

al. [91] in computer vision applications. Convolutional Neural Networks (CNNs) have

been demonstrated as an effective class of models for understanding image content,

giving state-of-the-art results on image recognition, segmentation, detection and re-

trieval [42, 30, 49]. Motivated by this success of CNNs in image processing applic-

ations, researchers are working intensely towards developing CNNs for video pro-

cessing. The first attempt to use CNNs in human action recognition was introduced

by Taylor [152], who introduced a model that learns feature map representations of

image sequences from pairs of successive images (Figure 2.10). Baccouche et al. [9]

proposed to capture the nature of video data based on 3D Convolutional Neural Net-

works. The network was trained to assign a vector of spatio-temporal features to a

small number of consecutive frames (see Figure 2.11). Simonyan [144] introduced

an architecture based on spatial and temporal streams which were then combined by

fusion. The spatial stream performed action recognition from video frames, whilst the

temporal stream was trained to recognise action from motion using dense optical flow

(see Figure 2.12).

The second common type of deep learning neural networks is Recurrent Neural Net-

works (RNNs). RNNs are a class of Neural Networks specialised in sequential pro-

cessing. While in Feed-Forward Neural Networks the inputs and outputs are fixed in

size and independent among samples, RNNs’ inputs and outputs can be of arbitrary

size and depend on previous observations. One of the main issues that emerges when

using RNNs is what is known as the vanishing gradient problem [78]. In Feed-Forward

Neural Networks, the gradient is propagated backwards to the input of the model, while

in RNNs the gradient is back propagated both within the same neuron to previous time

steps, and also to the previous layers. While these deep models are effective and pro-

duce promising performance on action recognition, typically the models have millions

of parameters and the training of such models requires a large amount of training data.

Therefore, such techniques may not perform well if the available training data is lim-

ited.
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Figure 2.10: Feature maps inferred from the KTH actions dataset. A subset of 6

(4x4 max-pooled) feature maps 32 in total inferred from sequences of a walking

action. Rows correspond to features, and columns correspond to frames [152].

Unlike images, videos are often much larger in size, which means it is difficult to feed

a whole video into deep learning architectures that often have large memory demands.

Training a CNN or RNN requires significant computational resources for many itera-

tions. Therefore, researchers try to learn CNNs and RNNs on sampled frames or very

short video clips [162]. However, video-level label information can be incomplete or

even missing at frame/clip level. This incomplete information leads to the problem of

false label assignment.

2.9 Video Datasets of Action Recognition

The first step in developing a human action recognition system using machine learning

is to acquire an adequate human action database. The dataset should be sufficiently

rich in a variety of human actions. Moreover, the creation of such a dataset should
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Figure 2.11: A 3D-Convolutional Network architecture for spatio-temporal fea-

ture construction for human action recognition [9].

Figure 2.12: A Two-stream architecture for video action recognition [144].

correspond to real world scenarios. The quality of the input media that forms the

dataset is one of the most important aspects one should take into account. Based on

this, researchers introduced different video datasets.
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As shown in Figure 2.13, an ideal human action dataset should address the following is-

sues to suit the needs of the target application: (i) the input media should include either

still images and/or video sequences, (ii) the amount of data should be sufficient, (iii) in-

put media quality (resolution, grayscale or colour), (iv) number of subjects performing

an action, (v) sufficient number of action classes, (vi) sufficient changes in illumin-

ation, (vii) large intra-class variations as needed (e.g., variations in subjects’ poses),

(viii) variations in recording conditions. Based on these, many video datasets have

been introduced to address these issues. Generally, video datasets can be classified

based on the type of the problem to: controlled action analysis (simple and static back-

ground) such as KTH [142] and Weizmann [179] datasets, real-world action analysis

(complex and static background) such as UCF-Sports [137], Olympic sports [119],

HMDB51 [80] and UCF101 [146], and interaction analysis (real world videos in-

volving interaction) wherevideos were collected from recordings and TV shows such as

TVHI [126] and Hollywood [86]. The following survey papers [36, 25] provide extens-

ive discussions about datasets. Based on these assumptions, we evaluate our methods

on a range of action recognition benchmark datasets mainly KTH, the UCF-Sports, TV

Human Interaction (TVHI), Olympic sports and UCF11 which address these issues. In

the following subsections we present the characteristics for each dataset.

2.9.1 KTH dataset

The KTH dataset [142] consists of 6 actions (Boxing, Handclapping, Handwaving,

Jogging, Walking and Running, see Figure 2.14) which were recorded under controlled

settings with approximately static motion cameras, clear environment and different

scenarios (outdoors, outdoors with different scales, outdoors with different clothes and

indoors). Each action was performed by 25 persons and each person was recorded to

perform the same action 4 times. The whole video dataset contains 600 video clips

with length ranging from 100-700 frames. The standard test setup was provided (train-

ing/test separation) to allow fair comparison between different methods. Although

this data was recorded under controlled environment, it still remains popular for hu-
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Figure 2.13: An ideal human action recognition dataset

man action classification, as it provids a good evaluation criterion for many new meth-

ods [9, 180, 99].

2.9.2 The UCF-Sports dataset

The UCF-Sports dataset [137] contains 10 sport actions (Diving, Golf swinging, Kick-

ing, Lifting, Horseback riding, Running, Skating, Swinging, Walking), as shown in

Figure 2.15. The video clips in the UCF-Sports action dataset were collected from

various broadcast sports channels (e.g. BBC and ESPN), in total composed of 150

videos. The UCF-Sports dataset has large intra-class variation with real world record-

ing environment settings. The standard test setup was provided (leave-one-out testing)

to allow fair comparison with different methods.
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Boxing Handclapping Handwaving Jogging Running Walking

Figure 2.14: KTH dataset: consists of 6 actions (Boxing, Handclapping, Handwav-

ing, Jogging, Walking and Running).

Figure 2.15: UCF dataset: contains 10 sport actions (Diving, Golf swinging, Kick-

ing, Lifting, Horseback riding, Running, Skating, Swinging, Walking).
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Handshake Highfive Hug Kiss Negative

Figure 2.16: TV Human interaction dataset: includes 5 action classes (Handshake,

Highfive, Hug, Kiss, and Negative) where Negative action does not contain any

interaction.

2.9.3 TV Human Interaction dataset

The TV-Human Interaction dataset [126] was collected from different TV shows. It in-

cludes 300 videos classified into 5 action classes (Handshake, Highfive, Hug, Kiss, and

Negative, Figure 2.16) where Negative action does not contain any interaction. Two

hundred of the clips contain one of the four interaction actions each action appearing

in 50 videos. Negative examples make up the remaining 100 videos. The length of the

video clips ranges from 30 to 600 frames. There is a great degree of variation between

different clips and also in several cases within the same clip. The variation consists of

the number of actors in each scene, their scales, and the camera angle, including abrupt

viewpoint changes at shot boundaries. The dataset is split for training/testing evenly

into two groups, each containing videos of mutually exclusive TV shows. Each group

contains 25 video clips of each interaction and 50 negative clips.
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Long-JumpHigh-Jump Pole-vaultTriple-Jump

Bowling PlatformTennis

Hammer Discus Shot putJavelin

Snatch Springboard Vault

Clean jerk

Basketball

Figure 2.17: Olymbic sport dataset: consists of 16 actions such as high-jump, pole-

vault, basketball lay-up, discus.

2.9.4 Olympic Sports dataset

Olympic Sports [119] was collected from sports videos. It contains significant camera

motion, which results in a high degree of variation between video sequences. The data-

set consists of athletes practising different sports, which were collected from YouTube

and annotated using Amazon Mechanical Turk. There are 16 sports actions (such as

high-jump, pole-vault, basketball lay-up and discus as shown in Figure 2.17), repres-

ented by a total of 783 video sequences.

2.9.5 UCF11 dataset

This action dataset [97] contains 11 categories: basketball shooting (b-shooting) ,
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Figure 2.18: UCF11 dataset: consists of 11 actions such as jumping, diving, horse

riding and swinging.

volleyball spiking (v-spiking), trampoline jumping (t-jumping), soccer juggling (s-

juggling), horse-back riding (h-riding), cycling, diving, swinging, golf swinging (g-

swinging), tennis swinging (t-swinging), and walking with 25 subjects. This dataset is

characterised with large variations in camera motion, object appearance, object scale,

and large intra-class variation in pose, etc. For each category, video clips are put into 25

groups, each with the same subject and similar background, and each group contains

more than 4 video clips. These videos were collected from YouTube.
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Chapter 3

Saliency Guided Local and Global

Descriptors for Effective Human

Action Recognition

3.1 Introduction

Local descriptors represent a video as features extracted from a collection of patches,

ideally invariant to environment clutter, appearance change and occlusion, and prob-

ably to rotation and scale change as well. Global descriptors, on the other hand, treat

each video frame as a whole, which are easier to implement and have lower compu-

tational costs. Combining features has been shown to be an effective way to improve

action recognition performance.

For human action recognition, although the focus is to recognise the action of the sub-

ject in video, existing feature descriptor based methods tend to be affected by the back-

ground of the video frames. To address this, this chapter presents a novel framework

for human action recognition based on saliency object detection and a new combina-

tion of local and global descriptors. We propose to first detect salient objects in video

frames and only extract features on such objects. We then propose a simple strategy to
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identify and process only those video frames that contain salient objects. Processing

salient objects instead of all the frames not only makes the algorithm more efficient,

but more importantly also suppresses the interference of background pixels. We com-

bine this approach with a new combination of local and global descriptors, namely 3D

SIFT and Histogram of Oriented Optical Flow (HOOF). The resulting Saliency Guided

3D SIFT - HOOF (SGSH) feature is used along with a multi-class support vector ma-

chine (SVM) classifier for human action recognition. Experiments conducted on the

standard KTH, the UCF-Sports, TV Human Interaction (TVHI) and Olympic sports ac-

tion benchmarks show that our new method outperforms the state-of-the-art competing

spatio-temporal feature-based human action recognition methods.

To address the action recognition problem, we take a powerful, commonly used Bag of

Visual Words (BoVWs) pipeline and focus on the feature extraction step for perform-

ance improvement. We propose to extract features on foreground objects identified by

saliency and use a new combination of local and global features that provide effective

complementary information (see Figure 3.1). Experiments were performed on stand-

ard datasets (KTH, the UCF-Sports, TVHI and Olympic sports), which showed that

the proposed method outperforms the state-of-the-art features for action recognition.

The use of saliency reduces the number of feature descriptors and thus also makes the

algorithm faster. More specifically, the major contributions of the proposed method

are:

1. Each video frame consists of many interest points, making their descriptions ex-

pensive to compute. However, not all the interest points are equally important.

We propose to estimate the importance of interest points by salient object detec-

tion and only keep those interest points on salient objects for action recognition.

This helps to suppress the interference of background and thus makes the method

more robust to background fluctuation, while at the same time reduce the running

times.

2. We further propose a simple strategy to filter out frames that do not contain
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foreground objects, also for the benefit of improved performance and efficiency.

3. We propose a novel combination of local and global descriptors, which has

shown good performance in action recognition.

The remaining sections in this chapter are organised as follows. Sections from 3.2

to 3.5 give the details of the proposed approach. The experimental setup and results are

discussed in section 3.6. Finally, discussion and conclusions are drawn in section 3.7.
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Figure 3.1: Overview of our novel saliency guided feature extraction pipeline.

Given a video sequence, the foreground object pixels are first identified on each

frame using a saliency detection method. We then extract a new combination of

local and global features guided by saliency, namely 3D SIFT for local features

and Histograms of Oriented Optical Flow (HOOF) for global features.
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Figure 3.2: The proposed pipeline of obtaining Bag of Visual Words (BoVWs)

representation for action recognition. It mainly contains five steps: (i) saliency

guided feature extraction, (ii) feature clustering, (iii) codebook dictionary gener-

ation, (iv) pooling and normalisation and (v) classification.

3.2 Proposed Approach

In this section we describe our proposed approach for action recognition. The pipeline

of the proposed approach is illustrated in Figure 3.2, which contains the following

five main steps. The first step is saliency guided feature extraction, where the salient

objects are detected firstly and only interest points on the objects are used. This step

involves saliency object detection and feature extraction. With saliency as guidance,

local and global features are then extracted to encode video information. In the training

step, including feature clustering and codebook generation, features extracted from the

training set are clustered to generate visual words. Histograms based on occurrences of

visual words in the training set are used as features to train classifiers. Finally, a multi-

class SVM classifier is used to achieve action recognition. The following subsections

explain each step in details.
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3.3 Saliency Guided Feature Extraction (SGFE)

3.3.1 Detection of Saliency Regions

Analysis and interpretation of image sequences have received a great amount of interest

in computer vision for the last few years. Not only because the detection of the most

salient region of an image has numerous applications, including object detection [24]

and recognition [73], image compression [65], image quality assessment [103], video

summarisation [107], and photo collage [50], to name a few, but it can also help to

obtain a semantic description of the content of a scene, because we do not need to use

all the available information. Therefore, it is not surprising that much work has been

done on saliency detection. Different aspects of distinctness have been examined be-

fore. Some algorithms look for regions of distinct colour [27, 56]. This is insufficient,

as some regions of distinct colour may be non-salient.

Other algorithms [24, 51] detect distinct patterns, such as the boundaries between an

object and the background which could lead to missing homogeneous regions of the

salient object, whereas [109] combines colour and pattern distinctness to detect sa-

lient objects that leads to improve saliency detection results. Figures 3.3, 3.4, 3.5,

and 3.6 show the results of applying this algorithm on KTH, the UCF-Sports, TVHI

and Olympic sports datasets. From these figures it can be seen that, the algorithm

works well with static and dynamic camera motion, where the first set (see Figure 3.3)

contains activities with less severe background clutter or motion like boxing, hand-

clapping, and handwaving and second, third and fourth sets (see Figures 3.4 , 3.5,

and 3.6) consist of activities with complex background and strong camera motion,

clutter, and deformable objects, such as kicking, lifting, skating and horse riding from

the UCF-Sport dataset, highfive, hug, and handshake from TVHI dataset, and disc

throw and bowling actions from Olympic sports dataset. We also tried alternatives al-

gorithms [94, 66, 169] for saliency detection but they failed to detect the salient regions
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precisely, as shown in Figure 3.7.

Figure 3.3: Salient object detection (KTH dataset) using [109]: different actions

(e.g. boxing, handclapping, handwaving, and jogging) with different recording

environments (indoor, outdoor) and different scales.

Alternatively, video saliency based methods are based on spatio-temporal mechanism.

They detect spatial saliency on single video frames and temporal saliency on inter-
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Figure 3.4: Salient object detection (the UCF-Sport dataset) using [109]: different

actions (e.g. kicking, lifting, skating, and horse riding) with real world recording

environment.

frame distinctiveness. The final saliency map is generated by fusing the spatial and

temporal saliency maps together and the saliency decision is made by weighting maps.

Kim et al. [75] introduced a spatio-temporal video saliency detection method. For spa-

tial saliency map detection, edge and colour orientation information is used, while ab-
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Figure 3.5: Salient object detection (TV Show Human Interaction TVHI dataset)

using [109]: different actions (e.g. handshake, highfive, and hug) with real world

recording environment.

solute inter-frame distinctness information is used for the temporal saliency map. The

final saliency map is generated by linearly combining the spatial and temporal saliency

maps with fixed weight for each map. In [93] spatial saliency detection was achieved

by computing colour information of edge preserving super-pixels, which were extrac-
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Figure 3.6: Salient object detection (Olympic sports dataset) using [109]: different

actions (e.g. basketball, disc throw, bowling, long jump and javelin throw ) with

real world recording environment.

ted with Turbopixels. For temporal saliency, they used the same mechanism but on

dense optical flow information of the video. The spatial and temporal saliency results

are then transformed into a conditional random field (CRF) [81] to label each pixel.
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(b) (c) (d) (e)(a)

Figure 3.7: Salient object detection: (a) The original frames from different data-

sets. (b) Margolin’s algorithm [109]. (c) Image signature based on foreground

properties [169]. (d) Graph Based Visual Saliency (GBVS) [66]. (e) Hypergraph

modelling [94].

Fang et al. [41] measured spatial saliency by extracting intensity, colour, and texture

features from Discrete Cosine Transform (DCT) coefficients, then detected temporal

saliency using the motion feature in the compressed domain, and designed a new fusion

method to obtain the final saliency maps.

Although video saliency methods can also be used, such methods are time-consuming

due to the computation redundancy using dense optical flow. Independently computing

saliency on every pixel of each frame is redundant, since most neighbouring frames

have high similarity. Since the image-based method works sufficiently well, we use it

in our methods.

Oikonomopouls et al. [123] adapted the idea of saliency region selection in spatial

images to the spatio-temporal video space. Salient points are detected by measuring

changes in the information content of the set of pixels in cylindrical spatio-temporal
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neighbourhoods at different scales. They used a sparse representation of a human ac-

tion as a set of spatio-temporal salient points that correspond to action-variation peaks

to recognise the action. Their method directly uses saliency information as features for

action recognition, whereas we use saliency information to guide more general feature

descriptors.

3.3.2 Description of Saliency Guided Feature Selection (SGFE)

The first step of our pipeline is to detect salient regions in video frames. This provides

a fast solution that addresses several key aspects related to action recognition. Firstly,

it detects the region of interest (ROI) and attention-grabbing object in a scene. We

assume that videos are taken at a reasonable distance and therefore foreground objects

do not occupy more than half of the pixels. Secondly, it selects the informative and

robust keypoints in the frames. Finally, it reduces the time required to encode the video

frame. Saliency detection research has largely been based on images. We use a state-

of-the-art image-based algorithm [109] and apply this to each video frame. The main

idea of this algorithm is to combine the colour and pattern distinctness. It is inspired

by the fact that the neighbouring pixels of each salient object are distinct in both colour

and pattern. Colour detection is performed by segmenting a video frame into regions

and then determining which region is distinct in colour. The colour distinctness of a

region is defined as the sum of L2 distances from all other regions in the colour space.

The pattern distinctness is determined by firstly extracting all 9 × 9 patches and com-

puting the average patch. Principal Component Analysis (PCA) is then applied to the

collection of patches. After that the pattern distance of a patch is defined as the L1

distance between the patch and the average patch, calculated in the PCA coordinates.

Doing so takes not only the difference between a patch and the average patch, but also

the distribution of patches into account. Unusual patches based on the distribution

will receive a high pattern distinctness. Because objects are more likely to be in the

centre of the frame, a Gaussian map surrounding the centre of frame is also generated.
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Figure 3.8: Salient object detection. First row: the original video frames. Second

row: the result of saliency detection. Third row: the binary image on the pro-

cessed frames. Fourth row: foreground objects in video frames. The left five

columns contain an example of the UCF-Sports (Horse-riding) and the right five

columns contain an example of the KTH dataset (Running).

The final saliency space map of a single patch px, S(px), is the product of the colour

distinctness map, patch distinctness map and the Gaussian map.

After saliency detection, a binary image is generated by thresholding (threshold 0.2

is used in our experiments) and used as a mask to extract foreground object from the

background. Figure 3.8 presents examples on salient object detection for some actions

in both KTH and UCF-Sports datasets. Saliency detection works well for both data-

sets. Note that we have found applying the image based saliency detection technique to

individual frames works very well for these datasets, including the UCF-Sports, TVHI

and Olympic datasets with complex background. As will be explained later in Sec-

tion 3.6, histogram-based features are used for classification, which makes the system

more robust to inaccuracies of saliency detection in individual frames.

As we will show later, this step improves the performance substantially by select-

ing only the interest points which are detected on objects and discard others in the
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Figure 3.9: Proposed video frames selection method

background.

3.3.3 Video Frame Selection

We introduce video frame selection method to keep only those video frames containing

foreground subjects for further processing. For frames without foreground subjects,

the saliency detector tends to classify background areas as salient regions. An example

illustrating this is shown in Figure 3.9. Since background usually covers more pixels

than the foreground, we select those frames with less than half of the pixels being

classified as salient for further processing and discard the remaining frames. This

simple heuristic works well for all the datasets tested in this work.

3.4 Feature Extraction

We extract two types of descriptors: local and global descriptors represented by 3D-

Scale Invariant Feature Transform (3D-SIFT) and Histogram of Oriented Optical Flow
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Figure 3.10: Interest point detection on KTH and UCF-Sports datasets: first and

third columns are the original frames, and second and fourth columns are frames

with salient object detection.

(HOOF), respectively as shown in Figure 3.1.

3.4.1 Local Features

Local features or interest points provide compact and abstract representations of pat-

terns in a video frame. To encode video data as a local feature, we need to firstly

detect interest points in a video frame and describe them effectively to capture video

information. Following sections 3.4.2 and 3.4.3 will explain that.

3.4.2 Interest Point Detection

In this step, one common approach is to use the Laplacian of Gaussian (LoG) as the

response function. We use Lowe’s approach to extract interest points [100]. An ap-

proximation of the LoG is used based on the difference of the image smoothed at dif-

ferent scales. The scale space of an image is defined as a function L(x, y, σ) which is

produced from the convolution of a Gaussian, G(x, y, σ), with an input image, I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.1)
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We adopt this to detect interest points on video frames. The response function is as

follows:

D(x, y, σ) = (G(x, y, hσ)−G(x, y;σ)) ∗ I(x, y) = L(x, y, hσ)− L(x, y, σ) (3.2)

where h =
√
2 is a parameter which controls the accuracy of the approximation [100].

We select only the interest points detected on the salient objects. Consequently, we

process the most important points in the video frames, which carry robust information

of an action. All points detected on the background are discarded. The motivation for

this is that the salient interest points are precisely those that maximise the discrimin-

ability between actions. Figure 3.10 shows the difference between the interest points

detected before and after applying the salient object detection in both datasets KTH

(boxing, running) and UCF-Sports (lifting, diving).

3.4.3 Local Feature Description

Local representations provide detailed information insensitive to global transforma-

tions. Scale Invariant Feature Transform (SIFT) descriptor [100] is one of the most

popular local representations due to its invariance to camera movement, robust to noise

and scaling. After detecting interest points using image-based SIFT for each video

frame, 3D-SIFT descriptor [143, 148] is used to represent local features of interest

points, owing to the fact that video frames have a spatio-temporal domain. The 3D

SIFT feature is extracted by computing the overall orientation of the neighbourhood

centred at an interest point, where the neighbourhood is an N × N × N cube. The

whole cube will be divided into M ×M ×M multiple sub-cubes. For each sub-cube

and each orientation, the orientation histogram with (b bins) is produced. Once this is

computed, we can create the sub-histograms which will encode the 3D SIFT descriptor.
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Figure 3.11: Optical flow calculation by using Brox’s method: first two rows for

UCF-Sports dataset (Lifting) and last two rows for KTH dataset (Running).

3.4.4 Global Feature

The motion representation as a global descriptor is particularly useful in action rep-

resentation due to its low computational cost and capability of capturing global mo-

tions. In our approach, we describe the motion by the HOOF descriptor [26] for each

video frame. For optical flow calculation, we use Brox’s method [19] as shown in Fig-

ure 3.11. Brox proposed a method to solve problems of discontinuities in the flows

field and aperture (the motion direction is ambiguous) [102]. First, optical flow is

computed at every frame of the video. Each flow vector is binned according to its

primary angle from the horizontal axis and weighted according to its magnitude (see

Figure 3.12). Thus, binning according to the primary angle, the smallest signed angle

between the horizontal axis and the vector, allows the histogram representation to be

independent of the (left or right) direction of motion so the contribution of each op-

tical flow vector to its corresponding bin is proportional to its magnitude. To make
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Figure 3.12: Histgram of Oriented Optical Flow (HOOF) with four bins [26], B =

4.

the histogram representation scale-invariant, the histogram is normalised to sum up to

1 [26].

3.5 Classification

For classification, we use a multi-class support vector machine (SVM) with the Radial

Basis Function (RBF) kernel [23]. A bag of visual words approach is used to encode

the videos. In clustering we use k-means algorithm to generate the vocabulary of

visual words. The feature vectors are mapped to closest visual words and a video is

then represented as the frequency histogram over the visual words.

3.6 Experimental Results

In the following sections, we will show the experimental results and the parameters

setup for both local and global descriptors of our approach.
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Figure 3.13: Computation of the 3D SIFT feature descriptor [148]

3.6.1 Parameters Setup for Local and Global Features

The patch size for the SIFT descriptor is a cube of 8× 8× 8 and each cube is divided

into sub-cubes of size 4 × 4 × 4. Each cube therefore contains 8 sub-cubes. For each

sub-cube the orientation histogram with 8 bins is produced. So we have 24 bins for

each sub-cube and for the whole cube all these sub-cube histograms are combined to

form a 192 (= 24 × 8) dimensional feature vector (see Figure 3.13), which is the 3D

SIFT feature descriptor. For HOOF descriptor each video frame is represented by a

feature vector with 150 bins. In our experiments, vocabularies are constructed with

k-means clustering with 1000 visual words for 3D-SIFT and 2000 for HOOF. Grid

search with 5-fold cross validation is used to optimise SVM kernel parameters.

3.6.2 Experimental Results

Table 3.1 shows our experimental results on the KTH, the UCF-Sports, TVHI and

Olympic sports datasets for the cases with and without the saliency guidance (i.e.
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Table 3.1: Action recognition with and without the Saliency Guidance for the

combined 3D SIFT and HOOF descriptors (SGSH and SH).

Dataset Descriptor Accuracy (%)

KTH

SGSH 97.2

SH 91.2

UCF

SGSH 90.9

SH 85.3

TVHI

SGSH 70.6

SH 65.3

Olympic sports

SGSH 79.9

SH 73.1

Figure 3.14: Confusion matrix on the KTH dataset (HC - Handclapping, HW -

Handwaving): SGSH .

SGSH and SH descriptors) respectively. All the tests were run based on the para-

meters listed in the above section. From the table, we can see that the SGSH descriptor

increases the accuracy by 6% for the KTH dataset, 5.6% for the UCF-Sports dataset,

5.3% for TVHI dataset and 6.8% for Olympic sports dataset. For the KTH dataset, the

confusion matrices are shown in Figures 3.14 and 3.15 with and without the saliency

guidance. It can be clearly seen that with the SGSH descriptor, the actions handwaving,

running and walking in the KTH dataset are recognised fully correctly. Other actions
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such as handclapping may still be confused, due to the similarity of the movement of

the actor between handclapping and handwaving. With the SH descriptor, confusions

exist between these actions including those not confused with SGSH. For example 5%

of walking actions were recognised as jogging. The sensitivity and specificity evalu-

ations for the SGSH descriptor are shown in Table 3.2, where the sensitivity is defined

as the proportion of actual positives (relevant actions) correctly identified as such, and

specificity means the proportion of actual negatives (irrelevant actions) correctly re-

cognised as irrelevant. From the table we can see that the actions handwaving, running

and walking have 100% sensitivity. From the error rate analysis, it can be clearly seen

that actions running and walking have the smallest error rates which means the method

is more effective in recognising such actions.

For the UCF sport dataset, the recognition rate for each action is given in the confu-

sion matrices in Figures 3.16 and 3.17), corresponding to SGSH and SH descriptors,

respectively. With the saliency guidance the recognition accuracies increase for all the

actions in the dataset. The sensitivity and specificity for each action of dataset are

shown in Table 3.3. High bar, Horse riding and walking have 100% specificity which

means these actions have no false negatives from other actions. For more complex

TVHI dataset, SGSH achieves 70.6% accuracy which is significantly better than the

state-of-the-art performance of 66.1% reported in the literature [177], while for the

Olympic dataset the accuracy increases by 2.6% compared to the best reported per-

formance [18]. Figures 3.18 and 3.19 present the confusion matrices for TVHI and

Olympic sports datasets, respectively. The evaluation of sensitivity and specificity is

reported in Table 3.4 for TVHI and Table 3.5 for Olympic dataset. For TVHI dataset,

all the actions have specificity equal to or greater than 0.8, while the Olympic dataset,

by using SGSH descriptor it can be observed that we have obtained good performance
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Figure 3.15: Confusion matrix on the KTH dataset (HC - Handclapping, HW -

Handwaving): SH.

Figure 3.16: Confusion matrix on the UCF-Sports dataset (HB - High bar

swinging, HR - Horse Riding): SGSH.

for most of the actions.

3.6.3 Running Time Cost

From a computational cost point of view, SGSH reduces the time required to process

the interest points by reducing the number of interest points detected on the video

frame and selecting only the informative frames, as shown in Table 3.6 for the boxing

action as an example. The number of interest points reduces substantially with saliency

guidance. Moreover, with the proposed video frame selection the number of processed

frames is also reduced significantly, as shown in Table 3.7 for the running action as

an example. In general, on a 2.50 GHz Windows 8 workstation with our current un-

optimised implementation the mean CPU-time to process an interest point is 0.090469
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Figure 3.17: Confusion matrix on the UCF-Sports dataset (HB - High bar

swinging, HR - Horse Riding): SH.

Figure 3.18: Confusion matrix for TV-Human Interaction dataset with our

method (with saliency guidance). HF (High Five), HS (Hand Shake), KS (Kiss)

and Neg (Negative): SGSH.

seconds for the 3D-SIFT descriptor and 0.397 seconds for the HOOF descriptor. On

average, a 2–5 time speedup is obtained with saliency guidance due to the reduced

number of feature points on each frame and reduced number of frames to be detected.

3.7 Conclusion

We have proposed a novel video feature extraction method based on saliency detection

with a new combination of local and global descriptors. Doing so reduces the time
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Figure 3.19: Confusion matrix for Olympic sports dataset with our method (with

saliency guidance): SGSH.

Table 3.2: Evaluation of the proposed method on the KTH dataset using statistical

measures: sensitivity, specificity, and error rate for each action: SGSH.

Sensitivity Specificity Error Rate

Box 0.972 0.994 0.0093

HC 0.925 1 0.0138

HW 1 0.983 0.014

Jog 0.94 1 0.00925

Run 1 0.994 0.005

Walk 1 0.994 0.005

complexity by processing only the interest points on foreground subjects. We also

propose to use video frame selection to discard frames without foreground subjects.

As a result, focusing on salience regions provides a powerful mechanism to treat only

the attention-grabbing objects in a scene and suppress the influence of the background.

Experiments show that the proposed method gives a significant improvement on the

action recognition for benchmark datasets (see Table 3.8 for KTH, Table 3.9 for UCF-

Sports, Table 3.10 for TVHI and Table 3.11 for Olympic sports) for comparisons with
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Table 3.3: Evaluation of the proposed method on the UCF-Sports dataset using

statistical measures: sensitivity, specificity, and error rate for each action: SGSH.

Sensitivity Specificity Error Rate

Diving 0.929 0.896 0.013

Golf 0.882 0.972 0.034

HB 1 1 0.001

Kicking 0.9 0.851 0.027

Lifting 0.83 0.959 0.013

HR 0.83 1 0.014

Running 0.923 0.981 0.020

Skating 0.916 0.973 0.027

Swinging 0.947 0.851 0.0139

Walking 0.9 1 0.0128

Table 3.4: Evaluation of the proposed method on the TVHI dataset using statist-

ical measures: sensitivity, specificity, and error rate for each action: SGSH.

Sensitivity Specificity Error Rate

HF 0.72 0.8697 0.126

Hug 0.518 0.8659 0.173

HS 0.7619 0.8723 0.08

KS 0.64 0.8721 0.14

Neg 0.68 0.8 0.16

best results reported on these datasets. The idea of using saliency guidance to improve

action recognition is general and in the future we would like to investigate combining

this with alternative features as well as its use in other recognition applications.
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Table 3.5: Evaluation of the proposed method on the Olympic sport dataset using

statistical measures: sensitivity, specificity, and error rate for each action: SGSH.

Sensitivity Specificity Error Rate

Bask 0.9 0.984 0.02

Bow 0.8 0.992 0.02

ClJe 0.9 1 0.007

DcTh 0.8 0.984 0.002

HmTH 0.75 0.984 0.029

LonJu 0.7 0.992 0.0024

HgJu 0.75 0.977 0.0026

JavTh 0.83 0.97 0.0029

Divpol 0.7 1 0.0022

Pova 0.875 0.992 0.0014

Shou 0.8 1 0.0014

Sna 0.7 0.984 0.0037

SrPO 0.75 0.977 0.0037

Ten 0.877 0.992 0.0014

TrJu 0.75 0.9849 0.002

Vault 0.875 0.992 0.0014
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Table 3.6: The average numbers of interest points without and with saliency guid-

ance (boxing as an example). The first column is the average number of keypoints

detected on the video frames. The second one is the average number of keypoints

which are detected only on the object.

Interest points/frame After SGFE

41 24

47 23

39 19

43 26

52 31

Table 3.7: Results of the proposed video frame selection approach (running as

an example). The first column is the duration of the video, the second column is

number of all the frames in the video, and the third column is the number of the

frames which contain the foreground object (object on-screen).

Duration/Seconds No of Frames Obj on-Scr

00:00:20 500 165

00:00:13 345 122

00:00:26 666 336

00:00:22 570 181

00:00:14 248 133
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Table 3.8: Recognition accuracy comparison on KTH dataset

Methods on KTH Accuracy(%)

Ghamdi et al. [6] 90.7

Liu et al. [96] 91.3

Iosifidis et al. [64] 92.1

Baumann et al. [11] 92.1

Kalser [76] 92.6

Ji et al. [69] 93.1

Wang et al. [155] 94.2

Rapits and Soatto [135] 94.8

Zhang et al. [180] 94.8

Wang et al. [156] 95.0

Yuan et al. [178] 95.4

SGSH 97.2
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Table 3.9: Recognition accuracy comparison on the UCF-Sports dataset

Methods on UCF-Sports Accuracy(%)

Raptis et al. [134] 79.4

Ma et al. [105] 81.7

Kalser [76] 85.0

Everts et al. [40] 85.6

Le et al. [90] 86.5

Yuan et al. [178] 87.3

Zhang et al. [180] 87.5

Wang et al. [156] 88.0

Wang et al. [155] 88.2

Ma et al. [104] 89.4

SGSH 90.9

Table 3.10: Recognition accuracy comparison on the TV-Human Interaction

dataset.

Methods on (TV-Human Interaction) Accuracy (%)

Patron-Perez [126] 32.8

Yu [176] 56.0

Gaidon [46] 62.4

Yu [177] 66.1

SGSH 70.6
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Table 3.11: Recognition accuracy comparison on the Olympic Sports dataset

Methods on Olympic Sports Accuracy (%)

Niebles et al. [119] 62.5

Tang et al. [151] 66.8

Liu et al. [96] 74.3

Wang et al. [156] 77.2

Brendel et al. [18] 77.3

SGSH 79.9
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Chapter 4

3D GLOH Features for Human Action

Recognition

4.1 Introduction

Many video classification techniques exploit combined spatial and temporal inform-

ation [34, 77, 143]. In such works, action recognition is based on local or global

features extracted from the space-time volume (STV) (see Figure 4.1). The STV is

formed by temporally stacking frames over a video sequence as a 3D cuboid of in-

tensity volumes. As an example of a 3D spatio-temporal local feature, Dollar [34]

applied a spatio-temporal interest point detector to find local regions of interest in the

cuboids of space and time for activity recognition. First, the cuboids of spatio-temporal

data surrounding a key point extracted from sample behaviours are clustered to form

a dictionary of cuboid prototypes. The histogram of the cuboid types is then used as

a feature descriptor for action recognition. For global spatio-temporal feature, Gorel-

ick et al. [52] proposed a method to generate 3D spatio-temporal shapes by stacking

segmented silhouette frame-by-frame. To improve the recognition rate and capture

more detailed information from video contents, inspired by the successful works based

on the idea of extending feature descriptors from the image domain to the video do-
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(a) (b)

Figure 4.1: (a) Spatio-temporal local feature descriptor [148]. (b) Spatio-temporal

global features (shapes) [52].

main [143, 77], we propose to extend the Gradient Location and Orientation Histogram

(GLOH) descriptor [113] to extract an informative, spatially localised descriptor from

video sequences.

In this chapter, we will introduce a novel effective feature called 3D GLOH, which

describes local spatially varying information for video data. It detects interest points

in the video and then describes them in 3D log-polar coordinates. This descriptor is an

extension of the 2D GLOH descriptor [113] and we will demonstrate that it better cap-

tures the characteristics of local video information than existing features. Moreover,

we propose an action recognition system that uses the 3D GLOH as local features, and

the histograms of oriented optical flow (HOOF) [26] as global features. We further

employ the idea from our work which introduced in Chapter 3, by extracting features

only in salient regions for action recognition. We evaluate the new combined descriptor

using a variety of video datasets. The new descriptor outperforms the state-of-the-art

descriptors for challenging real-world videos with uncontrolled complicated environ-

ment, such as the UCF-Sports , TV-Human Interaction and UCF11 datasets.

The main contributions of this work can be summarised as follows:
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Detect keypoints and 
describe them using 
3D GLOH descriptor

Reduce the dimension 
of the descriptor 

using PCA

Optical Flow 
Calculation

Histogram of 
Optical Flow

3D GLOH + HOOF (GLHF) to encode 
video data

Original Frames

Saliency detection

Region of Interest

Hug Hand Shake

Figure 4.2: Feature extraction using the S-GLHF (Saliency Guided 3D GLOH

and HOOF) descriptor in our action recognition system.
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1. We propose a novel 3D GLOH feature and demonstrate its usefulness for human

action recognition.

2. We develop a novel combination of local and global descriptors, which out-

performs existing descriptors in action recognition with challenging real-world

videos.

The following sections will present the main steps of the proposed descriptor and its

implementation and show experimental results on the benchmark datasets.

4.2 Proposed Method

The overall framework of our human action recognition system encodes video se-

quences using a combined local and global representation, along with the Bag of Visual

Words (BoVW) framework. The local features are represented by our proposed 3D

GLOH from only salient regions in the video frames [1] and the global features are

represented using HOOF, we call the combined feature S-GLHF. Figure 4.2 illustrates

the main steps of the proposed system for feature extraction. We now describe the

system with an emphasis on the novel 3D GLOH descriptor as follows.

4.2.1 3D Gradient Location and Orientation Histograms (3D GLOH)

To capture the gradient distribution and localise it in the neighbouring spatio-temporal

domain, we extend the GLOH descriptor proposed by Milkolajczky and Schmid [113]

to 3D in a log-polar location partitioning. GLOH is designed to increase the robust-

ness and distinctiveness of SIFT [113]. More specifically, we first detect interest points

on each frame using the standard 2D SIFT [100]. Common 3D detectors such as

Laptev [84] and Dollar [34] typically detect only a sparse set of features since a time-

consuming iterative procedure has to be repeated for each feature candidate separately.
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(a) (b) (c)

t=8

t=1

t=2

.
.

.

Figure 4.3: 3D GLOH representation: a) Neighbourhood of the interest point as

a cylinder with a diameter of 31 and 8 frames in the spatio-temporal domain. b)

Histogram computation over local regions with spatial domain split into 17 log-

polar location grid and temporal domain split into two halves. c) Histogram of a

local region.

Figure 4.4: The neighbourhood local region labelling at an interest point used for

computing the GLOH descriptor in a log-polar domain.
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Furthermore, the iterative procedure often diverges. As a result, detecting a low num-

ber of features is necessary to keep the computation time under control. On the other

hand, they claim that direct 3D counterparts to 2D interest point detectors are inad-

equate for the detection of spatio-temporal feature points, since true spatio-temporal

corners are quite rare. They propose to select local maxima over space and time of a

response function based on a spatial Gaussian convolved with a quadrature pair of 1D

Gabor-filters along the time axis. However, their approaches are not scale-invariant.

For each detected interest point, we consider its neighbourhood as a cylinder in the

spatio-temporal volume, with a diameter of 31 pixels in the spatial domain and a height

of 8 pixels (frames), 3 frames before the frame of detected interest point and 4 frames

after, along the temporal domain. The cylinder is further divided in both the spatial

and temporal domains to provide localised distribution. In the temporal domain, the

cylinder is split into two halves each with 4 frames (see Figure 4.3). In the spatial

domain, following [113] a log-polar location grid is used with three bins in the radial

direction (the radii are set to 6, 11, 15) and 8 in the angular direction for each slice,

which results in 17 location bins (see Figure 4.4), where the central bin is not divided

in angular directions. The Cartesian coordinate system is transformed into the polar

coordinate system through the following equations:

ri =
√
(xi − xc)2 + (yi − yc)2, (4.1)

θi = tan−1(yi − yc)/(xi − xc), (4.2)

where(xi, yi) is the coordinate of pixel in the Cartesian coordinate system, (ri, θi) is

the radius and the angle in the polar coordinate system. (xc, yc) is the coordinate of the

interest point. This leads to 17× 2 = 34 local regions in the spatio-temporal domain.

For each pixel in a local region, 3D gradients are calculated, similar to 3D SIFT [143,

148]. The 3D gradient orientation for each pixel is described using two angles θ and

φ, which are defined as follows:

θ(x, y, t) = tan−1(Ly/Lx), (4.3)
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φ(x, y, t) = tan−1(Lt/
√
L2
x + L2

y), (4.4)

where L is the intensity of the video frame, Lx, Ly, and Lt are partial derivatives,

respectively computed using finite difference approximations: L(x + 1, y, t)− L(x−

1, y, t), L(x, y+1, t)−L(x, y−1, t) and L(x, y, t+1)−L(x, y, t−1). θ and φ encode

the angles for the 3D gradient direction.

Each gradient orientation angle is quantised into N bins (by default we use N = 16).

As two angles are used to describe a 3D orientation, the descriptor is a vector of 2N×34

dimension.

The resulting descriptor is high dimensional, which makes computation expensive. For

example, when the default N = 16 is used, the histogram dimension is 2× 16× 34 =

1088. We use Principal Component Analysis (PCA) to reduce the dimensionality. The

covariance matrix for PCA is estimated using the training examples in the datasets, and

192 dominant eigenvectors are used to reduce the dimension to the same level as 3D

SIFT features.

4.2.2 Human Action Recognition using S-GLHF Descriptor

As we will show later, our proposed 3D GLOH descriptor is particularly effective

in describing local spatio-temporal distribution at each interest point. Following our

recent work [1], considering only keypoints in the foreground helps suppress the impact

of spurious keypoints by incorporating some “semantic” information. The 3D GLOH

descriptor is then complemented with a global descriptor namely HOOF [26], which

produces a histogram representing the motion in each frame of the video.

To represent the characteristics of a whole video, we employ a Bag-of-Visual-Words

framework. We build a vocabulary of visual words for each of the two descriptors

(3D GLOH and HOOF) using k-means clustering of features extracted from all the

training videos in the dataset. 2000 visual words are used for each descriptor as it gives

a good balance of efficiency and performance. Once this is done, each feature vector is
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mapped to the closest visual word in the vocabulary. For each video a feature vector is

obtained by concatenating two histograms measuring the distribution of visual words

in the video. This combined descriptor (which we call S-GLHF) takes advantages

from both local and global representations to describe the information of the video to

be more informative and selective. For classification, we use multi-class kernel SVM

classifier with Radial Basis Function (RBF) kernels. The SVM kernel parameters are

automatically optimised using grid search with 5-fold cross validation.

Figure 4.5: Benchmark datasets used to evaluate our method. Top to bottom:

images from videos in UCF-Sports, TV-Human Interaction and the KTH datasets.

4.3 Experimental results

In this section we report results on several benchmark datasets (see Figure 4.5), and

discuss how our method behaves with varying key parameters.
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Figure 4.6: The recognition rates of The UCF-Sports dataset for each individual

action and the total accuracy with saliency guidance (S-GLHF) and without sali-

ency guidance (NS-GLHF).

4.3.1 Results and Discussions

We performed extensive experiments using several standard datasets to study the ef-

fectiveness of our proposed 3D GLOH descriptor and the human action recognition

system.

For the UCF-Sports dataset, Figure 4.6 shows the performance of recognising each

class of videos using 3D GLOH and HOOF descriptors. The method works consist-

ently well in all categories, and in particular by using the saliency guidance, the re-

cognition rate increases for every class of videos (blue bars with saliency vs. orange
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Figure 4.7: Recognition rate of the UCF-Sports dataset using different numbers

of bins for the 3D-GLOH descriptor.

Di Go HB Ki Lf HR Rn Sk Sw Wa

Diving 0.85 0 0 0.15 0 0 0 0 0 0

Golf 0 0.94 0 0 0 0 0 0.06 0 0

HB 0 0 1.0 0 0 0 0 0 0 0

Kicking 0 0 0 0.90 0 0 0 0.05 0 0.05

Lifting 0 0 0 0 0.83 0 0 0 0.17 0

HR 0 0.09 0 0 0 0.91 0 0 0 0

Running 0 0 0 0 0 0 0.92 0 0 0.08

Skating 0.09 0 0 0 0 0 0 0.91 0 0

Swinging 0 0 0 0 0.06 0 0 0 0.94 0

Walking 0 0 0 0 0 0 0.05 0 0 0.95

Figure 4.8: Confusion matrix for The UCF-Sports dataset with our action recog-

nition system. HB (High bar), HR (Horse Riding).
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bars without saliency). A key parameter in the 3D GLOH descriptor is the number of

bins N when histograms are built. To investigate the behaviour of our method with

changing N , results are reported in Figure 4.7, and it can be seen that N = 16 achieves

good results and increasing N does not improve the performance further. Thus unless

for comparative purpose, we use this setting for all the experiments in the chapter. The

confusion matrix of the results obtained using our system is reported in Figure 4.8. We

compare our method with the state-of-the-art methods which reported the performance

on the UCF-Sports dataset (see Table 4.1). It can be seen that our method (S-GLHF)

outperforms the state-of-the-art methods by at least 0.6%. It is a significant improve-

ment considering that the current performance has already been over 90%.

The TV-Human Interaction dataset is more complicated as it involves interactions

between multiple subjects. Figure 4.9 shows the recognition rate of our approach for

each action. The highest recognition rate is obtained for the action High five, which

is 84%. Figure 4.10 depicts the confusion matrix of the result obtained using the pro-

posed method. The matrix shows that about 10% of the High five action is mistakenly

recognised as Hug or Hand shake actions due to the similarity among these actions.

The performance is consistently good, especially with saliency guidance. Compared

with existing methods tested on this dataset (see Table 4.2), our method achieves 75.3%

accuracy, which improves the accuracy of the proposed method in Chapter 3 (70.6%)

by a significant 4.7%, and the improvement is more significant with previously pub-

lished works reporting their performance on this dataset. The evaluation of the pro-

posed method using statistical measures, namely sensitivity and specificity is shown in

Table 4.3. In fact, for each action, our method achieves over 70% accuracy, which is

better than the average performance of the method described in Chapter 3. The compar-

isons of sensitivity (true positive rate) and specificity (true negative rate) are presented

in Figure 4.11 and Figure 4.12, respectively, showing that the new descriptor is more

effective that SGSH for each action category. The overall error rate is improved from
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Figure 4.9: The recognition rate of the TV-Human Interaction dataset for each

action using GLHF with and without saliency.

HF Hug HS KS Neg

HF 0.84 0.08 0.08 0 0

Hug 0 0.72 0.12 0.08 0.08

HS 0.08 0.12 0.72 0.08 0

KS 0 0.12 0.08 0.76 0.04

Neg 0.04 0.08 0.04 0.1 0.74

Figure 4.10: Confusion matrix for TV-Human Interaction dataset with our

method (with saliency guidance). HF (High Five), HS (Hand Shake), KS (Kiss)

and Neg (Negative).

13.58% to 7.68% with S-GLHF descriptor.

For the UCF11 dataset, the dataset is challenging due to large variations in camera
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Figure 4.11: The comparison of sensitivity (true positive rate) for the TVHI data-

set using S-GLHF and SGSH features.
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Figure 4.12: The comparison of specificity (true negative rate) for the TVHI data-

set using S-GLHF and SGSH features.

motion, object appearance and pose, object scale, viewpoint and illumination condi-

tions. From Table 4.4, we can reach the same conclusion that the proposed features

(S-GLHF) are effective in representing detailed video contents than SGSH features.
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Figure 4.13: Confusion matrix for UCF11 dataset with our method (saliency guid-

ance): SGSH.

Figure 4.14: Confusion matrix for UCF11 dataset with our method (saliency guid-

ance): S-GLHF.

Figure 4.13 shows the confusion matrix of SGSH descriptor and Figure 4.14 shows

confusion matrix of S-GLHF on the UCF11 dataset.

Our 3D GLOH feature exploits the spatio-temporal distribution of gradients to provide

a more discriminative descriptor. As a result, our 3D GLOH feature may not be very

effective if the video data contains little texture. An example of such kind of data

is the KTH dataset (see Figure 4.5). This dataset is relatively easy as it has a clean

background and was captured in a controlled environment. However, the images are

relatively low-resolution and do not contain much texture. Our method achieves 94.9%

accuracy, which is close to some of the recent methods [180] (94.8%) (see Figure 4.15)
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Figure 4.15: Confusion matrix on the KTH dataset (HC - Handclapping, HW -

Handwaving): S-GLHF.

but not as good as SGSH descriptor which achieves 97.2%. Figure 4.16 shows the com-

parison of the recognition rate using SGSH and S-GLHF descriptors. Nevertheless, for

more challenging real-world datasets, we have shown that the proposed 3D GLOH

descriptor is effective and outperforms existing methods.

4.4 Conclusion

In this chapter, we introduce a new local descriptor for video data namely 3D GLOH

and propose a human action recognition system using the proposed local descriptor

along with a global descriptor. The 2D GLOH descriptor is extended to video frames

by partitioning the cylindrical local neighbourhood of an interest point into spatio-

temporal bins and calculating 3D histograms of gradients in the local bins. The experi-

mental results show that the proposed the 3D GLOH descriptor is effective in capturing

localised spatio-temporal information and the overall system outperforms the state-of-

the-art methods in terms of recognition accuracy for challenging real-world datasets,
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Figure 4.16: The comparison of recognition rate for KTH dataset using SGSH

and S-GLHF features.

including UCF-Sport, TV-Human Interaction and UCF11 datasets. The proposed 3D

GLOH descriptor can be useful for analysing videos, especially for those with rich

textures. We would like to further investigate its effectiveness in other video analysis

applications.
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Table 4.1: Recognition accuracy comparison on the UCF-Sports dataset

Methods on (UCF-Sports) Accuracy (%)

Raptis [134] 79.4

Ma [105] 81.7

Kalser [76] 85.0

Everts [40] 85.6

Le [90] 86.5

Zhang [180] 87.5

Wang [156] 88.0

Ma [104] 89.4

SGSH (Chapter 3) 90.9

Our Method (S-GLHF) 91.5

Table 4.2: Recognition accuracy comparison on the TV-Human Interaction data-

set.

Methods on (TV-Human Interaction) Accuracy (%)

Patron-Perez [126] 32.8

Yu [176] 56.0

Gaidon [46] 62.4

Yu [177] 66.1

SGSH (Chapter 3) 70.6

Our Method (S-GLHF) 75.3
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Table 4.3: Evaluation of the proposed method on TVHI dataset using the statist-

ical measures: sensitivity and specificity.

Sensitivity Specificity

High five 0.84 0.9583

Hug 0.72 0.8878

Hand shake 0.72 0.9134

Kiss 0.76 0.9126

Negative 0.74 0.9620

Table 4.4: Recognition accuracy comparison on UCF11 dataset

Methods on UCF11 Accuracy(%)

Liu et al. [98] 70.4

Liu et al. [97] 71.2

Oikonomopoulos et al. [122] 71.2

Mota et al. [115] 74.5

Everts et al. [39] 78.6

Cho et al. [28] 86.1

SGSH 88.6

S-GLHF 89.9
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Chapter 5

Action Recognition based on Matching

of Deforming Skeleton Graphs

5.1 Introduction

Graph-based methods have achieved great success in image classification [114, 35].

Building on this success, graph-based methods have been generalised from the im-

age to the video domain [99, 161] to represent actions as graphs. Existing methods

however still encode local image descriptors at graph nodes and thus suffer from sim-

ilar limitations of image descriptors. Therefore, we instead propose to extract graphs

with minimal information, namely deforming skeleton graphs of foreground subjects,

to encode actions. Action recognition is then formulated as finding the best matched

deforming graphs. By doing so, our method is robust to typical variations such as the

appearance of the subject, background, lighting etc. The deforming skeleton graphs

can still change topology, due to the pose or imperfect extraction of foreground sub-

jects, and the temporal dynamics (speed of body movement) can vary from person to

person. To cope with such topological and temporal variations robustly, we adopt the

Optimal Subsequence Bijection algorithm [88] to measure the similarity between two

static graphs, which is combined with Dynamic Time Warping [133] to address tem-
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poral change. For periodic actions (e.g. running), video sequences may capture action

cycles from different starting points. We further develop a method to automatically

identify a representative frame to align such actions. Figure 5.1 illustrates the main

steps of the proposed method. Our method can be used to derive a similarity measure

between two dynamic skeleton graph sequences. The matching algorithm involves five

steps (saliency detection, graph construction, end node matching, graph matching, and

action matching). We will explain these steps in details in Section 5.

The main contributions of the work are:

• We propose to represent actions in video sequences as sequences of deforming

skeleton graphs of foreground subjects. The representation has significant ad-

vantages of being insensitive to changes of illumination, subject appearance and

backgrounds.

• We develop a method to recognise human actions based on matching of deform-

ing skeleton graphs. Our similarity measure takes into account topological vari-

ation, temporal variation and alignment of periodic actions to improve its robust-

ness. Experimental results show that our method purely based on graph match-

ing outperforms state-of-the-art action recognition methods. Moreover, since our

method uses compact and highly abstract information, it achieves decent recog-

nition performance with even a single example from each category, which is a

very challenging scenario for existing methods. Due to the use of complement-

ary information, we achieve even better recognition performance by fusing our

method with an alternative image descriptor based method.

• To improve efficiency, instead of matching a test video against each training

example, we extend our method by clustering training examples and performing

matching in a hierarchical manner. This improves the efficiency over 10 times

while maintaining the recognition rate.

The remainder of this chapter is organised as follows. Section 5 describes the proposed
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method in detail. Experimental results on two benchmark datasets for human action

recognition are presented in Section 5.3, and finally the conclusions and future work

are discussed in Section 5.4.
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5.2 Proposed Approach

The proposed method for action recognition is based on matching of deforming skel-

eton graphs. Given two input videos, we work out the dissimilarity measure (distance)

between the two deforming skeletons in the following five steps, as shown in Figure

5.1. The first step is to detect the salient regions in the video frames as in Chapter 3.

The skeletons (also known as medial axes) are then extracted from the foreground

shapes by applying morphological operations (dilation and thinning). Examples of ex-

tracted skeleton graphs for some benchmark videos are shown in Figure 5.2. It can

be seen that although not perfect, the extracted skeletons well represent the actions re-

gardless of the subject appearance and background. Moreover, skeleton matching has

a lower sensitivity to articulation. The extracted skeleton integrates geometrical and

topological features of the object, which provides an important shape descriptor for

object recognition. The advantage of matching skeleton graphs as opposed to match-

ing skeleton trees such as the Shock Tree [127] is that tree matching techniques require

to first convert skeleton graphs to trees. However, this may result in losing important

structural information. The third step is to compute for each graph the dissimilarity

measure between every pair of the end nodes. This is achieved by using the Optimal

Subsequence Bijection (OSB) algorithm [88] as it is known to be robust to topological

changes. The dissimilarity measure of two static graphs is then worked out by finding

the best matching between nodes that minimises the total costs [10]. This is further

generalised to two dynamic skeleton graph sequences, where a Dynamic Time Warp-

ing (DTW) [133] based matching algorithm is used to cope with temporal variation.

Given an input test video, action recognition is then formulated as finding the video in

the training set with the minimal dissimilarity measure. We further consider techniques

to choose representative frames and align frames to improve robustness and efficiency.

When the training set is large, we also propose a hierarchical matching strategy to
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speed up the computation.

5.2.1 Graph Representation based on Skeletons of Foreground Re-

gions

This section describes the initial steps of building skeleton graphs to represent ac-

tions. To identify foreground regions, similar to Chapter 3, we use a saliency detection

method [109] to extract the salient region from each video frame. We then apply mor-

phological thinning and dilation operations [82] to obtain the skeleton for each shape

region. The skeleton extraction is applied frame by frame. Although it is possible to

exploit coherence between frames, our simple strategy is preferred because some ac-

tions (e.g. sports) can be fast-moving, and shapes can change rapidly between adjacent

frames. Frame-by-frame extraction can also be beneficial to robustness in that one in-

accurate skeleton will not affect adjacent frames. Moreover, matching skeletons using

the OSB algorithm allows to deal with holes in the foreground region (i.e. cycles in the

skeleton) [10].

For each time step, the skeleton is represented using a graph, similar to [10]. An

example is shown in Figure 5.3. The graph nodes consist of endpoints where they

are connected to only one adjacent skeleton pixel and junction points where they have

three or more adjacent skeleton pixels. The remaining skeleton points form skeleton

branches which are edges in the graph.

So we can define the skeleton graph based on the following definitions.

Definition 1: The points in a skeleton graph are classified into three types: 1) endpoint,

which is a point having only one adjacent point. It represents an end node in the

skeleton graph; 2) junction point, which has three or more adjacent points. It represents

a junction node in the skeleton graph; 3) connection point, which is not an endpoint or

a junction point. It does not construct a node in the graph.
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Definition 2: A skeleton branch is a sequence of connection points between two dir-

ectly connected endpoints and/or junction points.

Definition 3: A skeleton path is the shortest path between a pair of end points on a

skeleton graph.

Definition 4: A path distance is the path dissimilarity between two sequences of end

node pairs in two graphs.

Figure 5.2: The skeleton graph representations for diving and kicking actions

from the UCF-Sports benchmark. Every three rows from top to bottom show the

original video frames, the salient regions, and the extracted skeletons from the

corresponding salient regions.
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Skeleton endpoint

Skeleton junction point

Skeleton branch

Detected object on video frame

Skeleton graph
Construction

Skeleton Graph

Figure 5.3: An example of the skeleton graph representation

A skeleton graph is built in the following way: The end points and junction points

are chosen as the nodes of the graph, and the edges of this graph are all the branches

between the nodes (see Figure 5.3). We represent the skeleton paths only between end

nodes, since these nodes are the salient points on the contour. The proposed graph

matching approach is based on the correspondences of the graph end nodes, not con-

sidering any junction nodes. The junction points can vary from one graph to another

for the same shape, so the graph could be sensitive to distance variation at the junction

point, which could result in incorrect graph matching [10].

5.2.2 Deforming Skeleton Graph Matching

To measure the dissimilarity of two sequences of deforming skeleton graphs G and G ′,

we start with two static skeleton graphs G and G′, where G ∈ G and G′ ∈ G ′. For

this purpose, we use the Optimal Subsequence Bijection based method [10], which

only matches endpoints, as they correspond more robustly to semantic parts, whereas

junction points can be easily affected by e.g. changing of poses [10]. The dissimilarity

measure d(G,G′) is calculated first for path pairs, then for vertex pairs, and finally
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for the graph pairs. Given two endpoint pairs u, v ∈ G and u′, v′ ∈ G′, the path

dissimilarity pd(p(u, v), p′(u′, v′)) between path p from u to v on G, and path p′ from

u′ to v′ onG′ is defined as the sum of the differences of skeleton radii at regular sample

points along the paths, and the difference of the path lengths, both normalised for scale

invariance [10].

(
{pdi} ,

{
pd′j
})

=



pd(p(vi0, vi1), p(v
′
j0, v

′
j1)) ... pd(p(vi0, vi1), p(v

′
j0, v

′
jN))

pd(p(vi0, vi2), p(v
′
j0, v

′
j1)) ...pd(p(vi,0, vi,2), p(v

′
j,0, v

′
j,N))

pd(p(vi0, vi3), p(v
′
j0, v

′
j1)) ... pd(p(vi0, vi3), p(v

′
j0, v

′
jN))

. ... .

pd(p(vi0, viK), p(v
′
j0, v

′
j1))... pd(p(vi0, viK), p(v

′
j0, v

′
jN))



Given a pair of vertices vi ∈ G and v′j ∈ G′, a set of path distances can be worked

out for vi (and v′j) respectively, between vi and the remaining endpoints in G in the

clockwise order starting from vi (similar applies to v′j) as shown in Figure 5.4, vi is

denoted as vi0 and v′j as v′j0 respectively. Denote these two path distance sequences as

{pdi} and
{
pd′j
}

. The distance d(vi, v′j) between the vertex pair vi and v′j is calculated

using Optimal Subsequence Bijection [88] which finds the optimal alignment between

the sequences with the option of skipping over elements in the sequences, which is

essential for coping with topological changes.

d(vi, v
′
j) = OSB

(
{pdi} ,

{
pd′j
})

(5.1)

Taking every vertex pair betweenG andG′, a matrix is obtained. An example is shown

in Figure 5.5. To cope with different vertex numbers, virtual vertices are introduced

(N4 in the example) with the average distance of all pairs assigned. The total distance

between two graphs d(G,G′) is then defined as the minimum total costs of bipartite

matching, which can be efficiently computed using the Hungarian algorithm.
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Start point in 
(G)

Start point
in (G’)

d(𝑣𝑖,𝑣′𝑗) = OSB (𝑝𝑑(𝑣𝑖, 𝑣
′
𝑗)) 

Dissimilarity of Vertex pair

𝑝𝑑(𝑣𝑖, 𝑣
′
𝑗) 

Dissimilarity measure of path 
pairs 

Hungarian (d 𝐺, 𝐺′ )
Dissimilarity of static graph pairs

𝑣𝑖0 𝑣′𝑗0

𝑣𝑖1

𝑣𝑖2

𝑣𝑖3

𝑣′𝑗1

𝑣′𝑗2𝑣′𝑗3

𝑣′𝑗4

Figure 5.4: Framework to compute the dissimilarity of end nodes between two

graphs using path distance matrix and optimal subsequence bijection algorithm

(OSB).

Given two human action graph sequences G : G1, G2, . . . , Gn and G ′ : G′1, G′2, . . . , G′m,

to consider whether two sequences represent the same action, the distance between

every pair of graphs d(Gi, G
′
j) is first calculated. Dynamic Time Warping (DTW) [133]

is applied to find the minimum cost matching d(G,G ′) between two sequences, which

helps eliminate the impact of spatio-temporal variations such as walking at different
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N1 N2 N3 N4

N1 0.0322    0.4106 0.6031 0.8272

N2 11.0096 0.5188 5.4467 4.2313

N3 12.4317    6.4898    0.3437 9.2047

N4 const const    const const

N1

N2N3

N1

N2N3

N4

Figure 5.5: Distance matrix between vertex pairs from two graphs for a Walking

action. The corresponding pairs that contribute to the minimum cost assignment

are highlighted.

speeds.

5.2.3 Frame Selection and Action Alignment

In principle, the previously defined distance measure between dynamic skeleton graphs

is sufficient to identify closely matched actions. However, a typical video sequence can

be quite long (e.g. containing over 100 frames), which makes computation slow. Based

on the observations that a relatively short video is usually sufficient to determine the

action, and poses usually only change slightly between adjacent frames, we only select

one in every K frames from the first M frames. As we will show later in experiments

(see section 5.3), the classification performance is stable when M is sufficiently large

and K is sufficiently small, which according to our experiments, can be achieved with

M = 50 (2 seconds for 25 fps videos) and K = 3, which means only 17 representative

frames are needed. An example is shown in Figure 5.6, where selected frames are

highlighted with green borders. This substantially reduces the matching cost while
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Figure 5.6: An example of Walking action. Selecting every K = 3 frames from

the first M = 50 frames of the video (giving a total of 17 selected frames shown

with green borders) is sufficient to characterise the action for recognition, while

substantially reducing the time complexity.

keeping the recognition rate.

Some common actions are naturally periodic, e.g. walking, running etc. When such

actions are captured in videos, however, they may start at any time of the cycle. Such

misalignment cannot be effectively coped with using Dynamic Time Warping. A trivial

solution would consider all the potential starting frames, and try to find the minimum

distance measure. This however is computationally expensive. We instead propose to

first detect periodic actions, and automatically choose a consistent starting frame to
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F1 F2 F3 ……

Selected frame as a beginning action point who 
has a minimum distance for all frames

…… Fn-2 Fn-1 Fn

Action Cycle

Figure 5.7: Automatic selection of consistent starting frame for periodic actions

based on the total minimum distance. Each video frame is compared with all

the other frames in the cycle, and the frame with the minimum total distance is

selected as the starting frame.

make video frames of cyclic actions temporally aligned.

Given an input video, we first need to identify whether this video represents a periodic

action, and if so, what is the cycle in terms of the number of frames. To make this

possible, we assume that the input video is long enough to have sufficient content of

two cycles. To robustly identify cycles, we take a sliding window of r contiguous

frames and find the best shift that leads to minimum total distance. The length of the

cycle c∗ is chosen to be the cycle c that gives the minimum total distance d∗:

d∗ = min
c,t

r−1∑
i=0

d(Gt+i, Gt+i+c), (5.2)

where t is the first frame of the former window, which is chosen such that frames

of both windows for comparison are within the available frames from the video. We

further denote t∗ as the optimal first frame. We treat a given video as containing a

periodic action if d∗ < δ. The parameters window size r and δ are chosen empirically

and they are fixed in our experiments. The window size r = 6 and δ = 0.4 are used
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in our experiments. Table 5.1 shows the distances between two cycles with different

window size of r and shift.

Note that this formulation may choose cycles which are multiples of true cycles. This

however does not cause a problem as we are only concerned to check whether a given

video is periodic, and if so to reliably identify a starting frame.

After finding the cycle of the action, we take one cycle of the action, and identify a

consistent starting frame s∗, which has a minimum distance to all other frames in the

cycle (see Figure 5.7):

s∗ = argmin
t∗≤s<t∗+c∗

t∗+c∗−1∑
i=t∗

d(Gs, Gi). (5.3)

This is well defined, even if the extracted cycles from different videos are originally

misaligned. Figure 5.8 shows two different videos for the walking action with different

environment conditions. In the first video the third frame with blue border is considered

as the starting frame and in the second video the first frame is treated as the starting

frame. The periodic actions are temporally aligned.

5.2.4 Hierarchical Matching

When using our dynamic graph matching technique for action recognition, in principle,

we only need to compare a test video with each training video to find the one with the

minimum distance, the category of which is then assigned to the test video. In practice,

however, if there are a large number of training videos, this can be slow. Figure 5.9

shows the comparison between clustered and exhaustive matching in terms of time

complexity and number of matching. To speed it up, we propose to classify a given

video in a hierarchical manner using k-means clustering.

To explain this, in the training stage, we apply k-means clustering on the training set to

cluster videos of each category into k centres (k = 5 is used in our experiments). In the
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Table 5.1: Distance between two cycles with different window size (r) and shift

(Walking action).

Shift r = 6 r = 7 r = 8 r = 9

8 2.0346 2.6213 2.6924 2.8123

9 4.5679 4.6341 4.7531 4.8179

10 1.7812 1.7903 2.0381 2.2345

11 2.6314 2.7631 2.9437 2.9978

12 1.1691 1.3231 1.5064 1.7103

13 3.4232 3.5341 3.7021 3.9012

14 1.1816 1.2949 1.6321 1.6945

15 0.7318 0.8413 0.9546 0.9934

16 0.3325 0.5361 0.7653 0.8765

17 3.0678 3.6539 4.5342 4.9398

18 4.5612 4.9376 5.2647 6.1523

classification stage, for a given video, we first compare its dynamic skeleton graph with

all the centres, assuming the minimum distance of all the centres is d̃, then we choose

all the videos whose cluster centre has a distance within ηd̃. η = 1.5 is used in our

experiments as shown in Figure 5.10. We use ηd̃ as the criterion to consider potential

videos which have a distance sufficiently close to the minimum distance. Among all

the chosen videos, the one that best matches the test video (i.e. with the minimum

graph distance) decides the classification category.
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s*

s*

Original frames

Object Saliency 
detection

Skeleton graphs

Figure 5.8: An example of detection of starting frames in the walking action for

action alignment. The frame with blue border is the detected starting frame s∗

with the minimum total distances to other frames in the same cycle.
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0 50 100 150 200 250 300 350 400 450

Number of Comparsion

Time (min)

Clustered Exhaustive

Figure 5.9: Comparison between clustered and exhaustive matching in terms of

time complexity and number of matching.
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5.2.5 Feature Fusion Schemes

Fusing multiple features, especially complementary ones, can be an effective method to

boost the performance of recognition systems in computer vision [48, 21]. Generally,

there are two types of fusion methods [145] namely: fusion at the feature level or

early fusion and fusion at the classifier level or late fusion (see Figure 5.11), where

figures 5.11 (a) and (b) represent early fusion schemes and figure 5.11 (c) depicts the

late fusion scheme. Fusion at the feature level or representation level is performed

using simple early fusion technique i.e. concatenation of features one after another.

Late fusion is employed in this work to achieve fusion at the classifier level (SVM and

graph matching classifiers).

5.2.6 Fusion with Image Descriptor based Method

Since our method is a shape-based method and only exploits the dynamics of fore-

ground shapes, it provides complementary information to those widely used image

descriptors. Thus it is reasonable to fuse the outputs of both our method and an existing

image descriptor based classifier. For this purpose, we use our proposed method [1],

which uses multi-class SVM to predict the probability of a test video belonging to each

action category. For simplicity, we use G to represent both the skeleton graph and the

video based on the context. Given a test video Gt, let us denote the minimum distance

between Gt and training videos in action category l as dl(Gt), the probability of Gt be-

longing to category l as Pl(Gt) [1]. We combine the information in a uniform way to

obtain the following preference score for Gt to belong to category l:

P̃l(Gt) = ω exp

{
−d

2(Gt)
σ2

}
+ (1− ω)Pl(Gt), (5.4)
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(a)

(b)

(c)

Figure 5.11: Different Fusion Schemes: Early Fusion (a and b) and Late Fusion

(c).

where exp(·) makes both terms in the same range of [0, 1], σ is a parameter to control

the mapping of distance to the probability and ω is used to balance the importance

between shape-based classification and image based classification. In our experiments,

the parameters σ and ω are automatically chosen using grid search and cross valida-

tion on the training set. As expected, the performance on KTH, the UCF-Sports and
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Olympic sports datasets using the combined approach is significantly better, achieving

98.6% accuracy on the KTH dataset, 93.1% on the UCF Sports dataset, and 82.8% on

Olympic sports dataset. More discussions will be provided in the next subsection.

5.3 Experimental Results

We now demonstrate the performance of the proposed method with comprehensive ex-

periments on the KTH [142], UCF Sports [137] and Olympic sports [119] benchmark

datasets.

5.3.1 Parameters and Running Times

As explained in Sec. 5.2.3 in the experiments, we take every K frames from the first

M frames for matching, to achieve trade-off between the accuracy and the efficiency.
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Figure 5.12: Recognition rate of KTH dataset using different number of M with

K = 3.
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To demonstrate the impact of these parameters, we use the KTH dataset and show the

classification accuracy with varying M and K. As shown in Tables 5.2 and 5.3, the

classification rate stays stable when M ≥ 50 and K ≤ 3, so we choose M = 50,

K = 3 in the remaining experiments which provides a good balance of accuracy and

efficiency. Figures 5.12 and 5.13 depict our experiments to select the key frames. The

figures show the recognition accuracy for each action and the overall accuracy of the

KTH dataset using different M and K. We tested our algorithm using MATLAB on a

2.5GHz Windows PC. With the current unoptimised code, using hierarchical matching

reduces the running time for classification of a video for the KTH dataset from about

2 hours to 1-2 minutes, for the UCF Sports dataset from about 4 hours to 3-5 minutes

and for Olympic sports dataset from about 8 hours to 6-8 minutes.

5.3.2 Performance on Standard Benchmarks

We compare the recognition rates of our method with the state-of-the-art methods on
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Figure 5.13: Recognition rate of KTH dataset using different number of K with

M = 50.
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Table 5.4: Recognition accuracy comparison of the proposed graph matching and

the fusion with image descriptor based method with the state-of-the-art methods

on the KTH dataset.

Methods on KTH Accuracy (%)

Somasundaram et al. [55] 90.1

Shuiwang et al. [68] 90.2

Ghamdi et al. [6] 90.7

Liu et al. [96] 91.3

Iosifidis et al. [64] 92.1

Baumann et al. [11] 92.1

Kalser [76] 92.6

Ji et al. [69] 93.1

Wang et al. [155] 94.2

Baccouche et al. [9] 94.3

Rapits and Soatto [135] 94.8

Zhang et al. [180] 94.8

Wang et al. [156] 95.0

Wang et al. [159] 95.1

Yuan et al. [178] 95.4

Liu et al. [99] 95.8

SGSH (Chapter 3) 97.2

Proposed Graph Matching 97.7

Fusion of Graph Matching with SGSH (Chapter 3) 98.6

standard benchmarks. Our method using graph matching alone achieves action re-

cognition rates of 97.7% for the KTH dataset, 92.3% for the UCF Sports dataset, and

80.5% for the Olympic sports dataset which outperform state-of-the-art methods (see

Tables 5.4, 5.5 and 5.6 for comparison with alternative methods). This shows that our
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Table 5.5: Recognition accuracy comparison of the proposed graph matching and

the fusion with image descriptor based method with the state-of-the-art methods

on the UCF-Sports dataset.

Methods on UCF Sports Accuracy (%)

Raptis et al. [134] 79.4

Ma et al. [105] 81.7

Kalser [76] 85.0

Everts et al. [40] 85.6

Le et al. [90] 86.5

Somasundaram et al. [55] 87.3

Zhang et al. [180] 87.5

Wang et al. [156] 88.0

Wang et al. [159] 88.6

Ma et al. [104] 89.4

Ma et al. [106] 89.4

SGSH (Chapter 3) 90.9

Proposed Graph Matching 92.3

Fusion of Graph Matching with SGSH (Chapter 3) 93.1

highly abstract method works well for both videos taken in a controlled environment

(KTH) and more diverse real-world videos (UCF-Sports and Olympic sports datasets).

5.3.3 Performance with Single Training Examples

Our method uses a highly abstract representation, which in principle should be able to

characterise an action with very few examples. To verify this, we performed a some-

what extreme test where only one video of each category is used as the training set
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Table 5.6: Recognition accuracy comparison of the proposed graph matching and

the fusion with image descriptor based method with the state-of-the-art methods

on the Olympic Sports dataset.

Methods on Olympic Sports Accuracy (%)

Niebles et al. [119] 62.5

Tang et al. [151] 66.8

Liu et al. [96] 74.3

Wang et al. [156] 77.2

Brendel et al. [18] 77.3

Proposed Graph Matching 80.5

Fusion of Graph Matching with SGSH (Chapter 3) 82.8

and all the remaining videos are used for testing. To avoid bias, we always take the

first video for training. This test can be useful in real-world scenarios, e.g. to find

actions similar to the one example chosen. The user does not need to prepare a com-

prehensive training set. This test however is challenging, so it is understandable that

performance will drop compared with the standard setup. Table 5.7 compares our skel-

eton graph based method with a state-of-the-art method based on image descriptors.

Our method still achieves decent performance: 95.2% accuracy on the KTH dataset,

88.1% accuracy on the UCF Sports dataset and 70.7% accuracy on the Olympic Sports

dataset whereas the performance of image descriptor based methods can suffer sig-

nificantly. Our method achieves accuracies of over 20% (for KTH and UCF Sports)

and 10% (for Olympic Sports) better than SGSH (Chapter 3) which achieves state-of-

the-art performance in the standard setup. This demonstrates that by using the highly

abstracted information, our method has good generalisability. With fewer examples

also means our method performs much faster, as for each test video, it only needs to

compare with several training videos (one for each category). In this test, our method

takes 1-3 seconds for the KTH dataset, 4-6 seconds for the UCF Sports dataset and
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Table 5.7: Recognition accuracy comparison using single training example on the

KTH, UCF-Sports and Olympic sports datasets.

Methods KTH (%) UCF Sports (%) Olympic Sports (%)

Our Proposed Method 95.2 88.1 70.7

SGSH (Chapter 3) 72.1 65.3 58.9

10-12 seconds for the Olympic sports dataset to classify an input video.

5.4 Discussion and Conclusions

We introduced in this chapter a novel action recognition method based on representing

actions as deforming skeleton graphs of foreground subjects and computing similarity

measures between them using optimal subsequence bijection based static graph match-

ing and dynamic time warping for temporal alignment. We further developed methods

to effectively select representative frames and consistent starting frames for periodic

actions. Our method addresses fundamental issues of many existing approaches, such

as sensitivity to changes of illumination and clothing. Similar actions are represen-

ted by similar graphs regardless of the various conditions in the environment. Our

method outperforms state-of-the-art methods on standard benchmarks. It works well

with very few training examples, and achieves decent accuracy even when only one

training example is provided for each category. We also demonstrated that our shape

based method provides complementary information to image descriptor based methods

and even better accuracy is achieved when these methods are combined.
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Chapter 6

Conclusions and Perspectives

6.1 Key Contributions

This thesis has presented and evaluated several contributions for action recognition

in real video data. To conclude our work, we summarise our key contributions and

discuss conclusions from our experiments we will then indicate interesting directions

for future research in this field.

The thesis aims at developing automatic techniques for recognising actions in uncon-

trolled, real-world video data. Our first contribution is to use saliency to guide the ex-

traction of local and global features which are then employed for action classification.

For this, existing approaches to describe local information in videos are investigated

and new methods are developed. In this work, we introduce a novel framework for

human action recognition based on saliency guided local and global descriptors, by

detecting keypoints only in salient regions and then describing those using 3D SIFT

descriptors. We also propose to use video frame selection to discard all the frames

without subjects. As a result, this reduces the time complexity since only keypoints

on the salient objects need to be processed. Using a combination of local and global

descriptors takes advantages of both descriptions to make the final descriptor inform-

ative and carry more powerful information about video content. Experiments show

that the proposed method gives a significant improvement on the action recognition

classification accuracy for benchmark datasets with different characteristics (realistic,
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interaction and controlled datasets).

A further contribution is to introduce a new descriptor for action recognition in videos.

We propose an effective feature descriptor called 3D GLOH (Gradient Location and

Orientation Histogram), which describes local spatially varying information for video

data. The 2D GLOH descriptor is extended to video frames by partitioning the cyl-

indrical local neighbourhood of an interest point into spatio-temporal bins and calcu-

lating 3D histograms of gradients in the local bins. It detects interest points in the

video and then describes them in 3D log-polar coordinates. Our approach is based on a

log-polar orientations to compute 3D gradients locations histograms for salient keypo-

ints. Descriptor parameters are evaluated in depth and optimised for action recognition

using bag-of-features representation. The experimental results show that the proposed

3D GLOH descriptor is effective in capturing localised spatio-temporal information

and the overall system outperforms existing methods in recognition accuracy for chal-

lenging real-world datasets, including UCF-Sport, TV-Human Interaction and UCF11

datasets.

Our last key contribution is extracting minimal representative information, namely de-

forming skeleton graphs corresponding to foreground shapes to effectively represent

actions. We propose to represent actions in video sequences as sequences of de-

forming skeleton graphs of foreground subjects. The representation has significant

advantages of being insensitive to changes of illumination, subject appearance and

backgrounds to effectively represent actions, removing the influence of these typical

variations. The proposed method is based on matching of deforming skeleton graphs.

Our similarity measure takes into account topological variation, temporal variation and

alignment of periodic actions to improve its robustness. Experimental results show that

our method purely based on graph matching outperforms existing action recognition

methods. Moreover, since our method uses compact and highly abstracted informa-

tion, it achieves decent recognition performance with even a single example from each

category, which is a very challenging scenario for existing methods. Due to the use of
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complementary information, we achieve even better recognition performance by fusing

our method with an alternative image descriptor based method.

6.2 Future work

The research presented in this thesis have raised more questions that it has answered.

There are still many improvements that could be considered from this work which

should be pursued.

Saliency guidance for local and global features: The idea of using saliency guidance

to improve action recognition is general and in the future we would like to investigate

combining this with alternative features as well as its use in other recognition applic-

ations. An interesting path for future work can be based on salient human tracks for

multiple body parts, e.g., for head, upper body, and full body. First, this can help

to render the tracking process more robust since additional constraints for relations

between the body parts are available. Another direction is to include deep learning

architectures in the saliency detection step in the pipeline of the proposed framework.

Examples of the deep learning architectures that have been proved successful archi-

tectures to detect salient in image content [181], AlexNet [79] and GoogLeNet [149]

which can be used in this step. We will investigate which neural network structure is

best suited for saliency detection in video sequences and evaluate the performance of

the different architectures.

3D GLOH local features: The proposed 3D GLOH descriptor can be useful for ana-

lysing videos, especially for those with rich textures. We would like to investigate

its effectiveness in other video analysis and video quality assessment applications.

Moreover, to increase the robustness of features some visual clues can be added such

as appearance, motion, structure, and context information.

Matching of deforming skeleton graphs: A limitation of the deforming skeleton

graph matching method is due to the nature of matching dynamic graph sequences, it
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can be time consuming. We address this by developing a hierarchical matching strategy

such that the detailed graph matching is only applied to promising candidates. We will

exploit this idea further by e.g. identifying candidates using some cascaded filtering

strategy. Another limitation is that at the moment we assume the foreground object

in each frame can be well represented by a single skeleton. This works sufficiently

well for single subjects, but does not work when multiple subjects are involved. In the

future we will investigate extending our framework to cope with cases when foreground

involves multiple skeleton graphs by exploring the prior knowledge of human skeleton

structure.
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