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Abstract

Recognising human actions from video sequences is one of the most important top-

ics in computer vision and has been extensively researched during the last decades;

however, it is still regarded as a challenging task especially in real scenarios due to dif-

ficulties mainly resulting from background clutter, partial occlusion, as well as changes

in scale, viewpoint, lighting, and appearance. Human action recognition is involved in

many applications, including video surveillance systems, human-computer interaction,

and robotics for human behaviour characterisation. In this thesis, we aim to introduce

new features and methods to enhance and develop human action recognition systems.

Specifically, we have introduced three methods for human action recognition. In the

first approach, we present a novel framework for human action recognition based on

salient object detection and a combination of local and global descriptors. Saliency

Guided Feature Extraction (SGFE) is proposed to detect salient objects and extract

features on the detected objects. We then propose a simple strategy to identify and

process only those video frames that contain salient objects. Processing salient objects

instead of all the frames not only makes the algorithm more efficient, but more import-

antly also suppresses the interference of background pixels. We combine this approach

with a new combination of local and global descriptors, namely 3D SIFT and Histo-

grams of Oriented Optical Flow (HOOF). The resulting Saliency Guided 3D SIFT and

HOOF (SGSH) feature is used along with a multi-class support vector machine (SVM)

classifier for human action recognition. The second proposed method is a novel 3D ex-

tension of Gradient Location and Orientation Histograms (3D GLOH) which provides
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discriminative local features representing both the gradient orientation and their relat-

ive locations. We further propose a human action recognition system based on the Bag

of Visual Words model, by combining the new 3D GLOH local features with Histo-

grams of Oriented Optical Flow (HOOF) global features. Along with the idea from

our first work to extract features only in salient regions, our overall system outper-

forms existing feature descriptors for human action recognition for challenging video

datasets. Finally, we propose to extract minimal representative information, namely de-

forming skeleton graphs corresponding to foreground shapes, to effectively represent

actions and remove the influence of changes of illumination, subject appearance and

backgrounds. We propose a novel approach to action recognition based on matching

of skeleton graphs, combining static pairwise graph similarity measure using Optimal

Subsequence Bijection with Dynamic Time Warping to robustly handle topological and

temporal variations. We have evaluated the proposed methods by conducting extens-

ive experiments on widely-used human action datasets including the KTH, the UCF

Sports, TV Human Interaction (TVHI), Olympic Sports and UCF11 datasets. Experi-

mental results show the effectiveness of our methods for action recognition.
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Chapter 1

Introduction

1.1 Human Activity Recognition

Human activity recognition and analysis, one of the most active topics in computer

vision, has drawn increasing attention and its applications can be found in video sur-

veillance, video annotation and retrieval, and human-computer interaction, etc. The

goal of action recognition is to automatically analyse ongoing activities from an un-

known video and aims to recognise the actions and goals of one or more agents from

a series of observations on the agents' actions and the environmental conditions. The

challenges of human action recognition come from dif�culties such as scaling, oc-

clusion and clutter. Another issue is the large variability in actions. When different

subjects are performing the same action, they do not have the same appearance and

their movements can be quite different for the same action. Even for a person perform-

ing the same action multiple times, each performance can be quite different from the

previous one (see Figure 1.1).

There are different types of human activities. Depending on their complexity, they can

be reasonably arranged into four distinct levels: gestures, actions, interactions, and

group activities [4]. Gestures are basic movements of a person's body part, and are

the atomic components depicting the signi�cant movement of a person. `Opening a

hand', and `raising a leg' are good examples of gestures. Actions are single-person

activities that may be composed by multiple gestures organised temporally, such as
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Figure 1.1: Challenges in human action recognition: different clothes, different

illumination, different background and action speed.

`walking', `hand-waving', and `boxing'. Interactions are human activities that involve

two or more persons. For example, `two persons hugging' is an interaction between

two people. Finally, group activities are the activities performed by conceptual groups

composed of multiple persons: `a group having a meeting', and `two groups �ghting'

are typical examples. In this research, the main focus is to improve the performance

and recognition accuracy of single person action and interactions from real-time video

sequences.

Action recognition has been extensively researched, although there are still challenges

for real-world applications. Earlier work on human action recognition in video [34,

164, 120] employed video datasets with mainly static cameras, simple and homogen-

eous backgrounds, and humans fully visible such as KTH [142] and Weizmann [179]

video datsets. The research focus was to explore classi�ers with variations in actors and
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actions. In recent years the �eld of action recognition has in general moved towards

less controlled and much more challenging types of data such as sports [137, 146, 119]

or movies [86, 126]. For this task, methods that use local and global features such

as [99] have shown excellent results. Although many successful methods have been

proposed, there are still scopes for improvement, especially for real-world videos

which have wide variations in people's posture and clothes, dynamic background and

partial occlusions. Therefore, robust classi�cation is still an important issue in the

human action recognition problem and it is necessary to develop more robust alternat-

ives. It is possible for humans to identify and distinguish different actions because the

brain is capable of both learning new actions and recognising them. However, in com-

puter vision, this same problem has proven to be one of the most dif�cult and lasting

challenges in the �eld.

1.2 Problem statement

This dissertation focuses on the problem of action recognition in real video material,

recorded under different environmental conditions varying from a �xed, clean back-

ground to complex, cluttered and moving backgrounds. A wide range of human activ-

ities have been investigated in this research from single person activities such as walk-

ing, running, jogging, etc. to human activities involving complex interaction such as

high �ve, hug, hand shake, etc. We aim to address action recognition issues by introdu-

cing new methods for feature extraction, representation and classi�cation to improve

the performance and accuracy of human action recognition. We motivate to address-

ing the action recognition problem from the fact that the foreground region carry more

robust information about the action. This helps to suppress the interference of back-

ground and thus makes the method more robust to background �uctuation. We will

explain the methods in details in the remaining chapters.
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1.3 Motivation

The development of computer vision has encouraged the occurrence of different novel

recognition methods in both images and video sequences. Although it is still challen-

ging to recognise a speci�c object from a dataset of images due to viewpoint change,

illumination, partial occlusions, and intra-class difference and so on, many successful

methods have been proposed, including those that are successfully extended from the

image domain into video analysis and action recognition. However, current methods

still need improvement, especially for real world videos and movies which have wide

variations in people's posture and clothes, dynamic background, and partial occlusions.

To conquer these de�ciencies, a lot of researchers focus on part-based approaches for

which only the `interesting' parts of the video are analysed, rather than the whole video.

These `parts' can be trajectories or �ow vectors of corners and spatial temporal interest

points. Although part based approaches are promising they still suffer from inaccurate

detection and tracking of interesting parts due to background clutter and motion which

prevents a clear and informative representation.

The ability to detect, track, recognise and analyse human motion is bene�cial for a

wide range of high-level applications that rely on representations extracted from visual

input. During the past few years, many approaches have been proposed to address

these problems [130, 182, 4].

Some examples of applications that could bene�t from reliable and ef�cient human

action recognition are:

� Automated surveillance frameworks that monitor the overall public, utilised in

places, for example, airport terminals, government buildings and banks. Applic-

ations to monitor and recognise suspicious movement without human instruc-

tions have yet to be �gured out. Having an automated solution limitlessly en-

hances the recognition of suspicious activities as it decreases the likelihood of

human distortion and misconception.
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� Safety systems for detecting vulnerable users, most prominently the extremely

youthful or the elderly such as systems to monitor users in and around occu-

pied train stations or on cars to caution others of possible danger or for security

monitoring.

� Health monitoring and preventative care for patients which have applications to

�awlessly detect and track people inside their own environment. For instance, a

system to monitor the elderly and alert the neighbourhood healing facility on the

off chance that they have a fall or excursion.

This thesis has used several challenging, publicly available datasets designed for hu-

man action recognition, which are still very challenging in the �eld and highlight the

ample ongoing room for improvement.

1.4 Thesis Contribution

The goal of this dissertation is the recognition of actions in uncontrolled, real video

data. The �rst part of our work is based on saliency to guide local and global features

which are employed for action classi�cation. For this, existing approaches to describe

local information in videos are investigated and new methods are developed.

The second part of this work introduces a new descriptor for action recognition in

videos. We propose a novel effective feature called 3D GLOH (Gradient Location and

Orientation Histogram), which describes local spatially varying information for video

data. It detects interest points in the video and then describes them in 3D log-polar

coordinates.

Thirdly, we propose to extract minimal representative information, namely deforming

skeleton graphs corresponding to foreground shapes to effectively represent actions,

removing the in�uence of these typical variations. We propose a novel approach to

action recognition based on matching of skeleton graphs.
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To summarize, we provide the following main contributions:

� We introduce a novel framework for human action recognition based on sali-

ency guided local and global descriptors, by detecting only keypoints on salient

regions and then describing those using 3D SIFT descriptor. This work was

published in [1].

� We develop a novel local descriptor for video data based on histograms of gradi-

ent location orientations (3D GLOH) [2]. Our approach is based on a log-polar

orientations to compute 3D gradients locations histograms for salient keypoints.

Descriptor parameters are evaluated in depth and optimized for action recogni-

tion using bag-of-features representation.

� We develop a novel combination of local and global descriptors, which out-

performs existing descriptors in action recognition with challenging real-world

videos.

� We propose to represent actions in video sequences as sequences of deforming

skeleton graphs of foreground subjects. The representation has signi�cant ad-

vantages of being insensitive to changes of illumination, subject appearance and

backgrounds. The proposed method is based on matching of deforming skel-

eton graphs. Our similarity measure takes into account topological variation,

temporal variation and alignment of periodic actions to improve its robustness.

Experimental results show that our method purely based on graph matching

outperforms state-of-the-art action recognition methods. Moreover, since our

method uses compact and highly abstract information, it achieves decent recog-

nition performance with even a single example from each category, which is a

very challenging scenario for existing methods. Due to the use of complement-

ary information, we achieve even better recognition performance by fusing our

method with an alternative image descriptor based method.
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1.5 Thesis road map

The remaining chapters of the thesis are organized as follows:

� In Chapter 2 an overview of the �eld of articulated human feature representa-

tion and recognition is presented. Moreover, evolution of human action recog-

nition in recent years is brie�y presented to provide an introduction to different

approaches, different features, extraction, representation and classi�cation tech-

niques used by researchers over the last three decades. In addition, a compre-

hensive review of popular, challenging datasets and their evaluation metrics are

also presented.

� Chapter 3 introduces a novel approach to extracting and representing features

for human action recognition. For feature representation and description, a new

method has been proposed based on saliency to guide the combined descriptor

to describe the video data, where saliency has been extensively researched to

represent the importance of image regions. The new descriptor combines two

different feature representations, the �rst one being the 3D SIFT descriptor (a

local descriptor) and the other being the HOOF descriptor (a global descriptor),

to get bene�ts from local and global descriptors to build robust and informative

descriptor. The pipeline of the proposed method will be illustrated in this chapter.

� Chapter 4 introduces a new 3D descriptor to better identify spatio-temporal

characteristics. A novel 3D extension of Gradient Location and Orientation

Histograms will be explained in details in this chapter. 3D GLOH descriptor

provides a discriminative local feature representing not only the gradient orient-

ations, but also their relative locations. In addition, a human action recognition

system based on the Bag of Visual Words model will be introduced, by com-

bining the new 3D GLOH local features with Histograms of Oriented Optical

Flow (HOOF) global features. Along with the idea from Chapter 3 to extract
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features only in salient regions, our overall system outperforms existing feature

descriptors for human action recognition for challenging real-world video data-

sets.

� Chapter 5 presents a method based on a shape-descriptor to extract minimal

representative information, namely deforming skeleton graphs corresponding to

foreground shapes to effectively represent actions, removing the in�uence of

changes of illumination, subject appearance and backgrounds. In this chapter

a framework of a proposed approach to action recognition will be presented.

The proposed method based on matching of skeleton graphs combining a static

pairwise graph similarity measure using Optimal Subsequence Bijection with

Dynamic Time Warping to robustly handle topological and temporal variations.

For common periodic actions, we extract a consistent starting frame from each

video to temporally align deforming skeleton graphs. Moreover, we further de-

velop a hierarchical matching strategy to signi�cantly improve matching ef�-

ciency while keeping recognition accuracy. All these proposed solutions will be

shown in this chapter. Comparison with state-of-the-art will be shown where the

proposed method outperforms the state-of-the-art methods on standard bench-

marks. For effectiveness, the method also has very good generalisability where

decent performance can be achieved with only a single example from each ac-

tion category since our method utilises complementary information to traditional

image descriptor based methods (as shown in chapter 3). This chapter further

demonstrates that even better performance can be obtained by fusing the output

of both methods.

� Chapter 6 summarises and concludes the thesis, highlights the achievements,

discusses the limitations, and points to future research directions.
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Chapter 2

Literature Review in Action

Recognition

2.1 Introduction

The human action recognition problem has remained a challenging task in computer

vision and multimedia content processing for more than two decades. Despite great

effort, this task is still challenging as videos are complicated with signi�cant variations

even for the same type of action, making robust information extraction dif�cult. Firstly,

the subject under observation can be distinctive in appearance, pose and size. Secondly,

moving background, occlusion, non-stationary camera and complex environment can

impede the observation. Comprehensive reviews of the literature can be found in many

recent research papers [3, 4, 182, 15, 54, 138, 5, 33] addressing different aspects and

issues raised in the human action recognition �eld. Many existing action recognition

methods, including both low-level feature extraction and high-level representations,

are extended from the text and image domains. Different approaches have been intro-

duced to address the action recognition problem. Successful human action recognition

systems have balanced between the recognition accuracy and the ef�ciency of feature

extraction from the computational cost viewpoint. Accordingly, most research tries to

�nd out reliable and robust scheme to extract features and effective classi�cation al-

gorithms to achieve the goal. In this chapter we will review the state-of-the-art methods

for action recognition in benchmark video datasets.
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Figure 2.1: Categorisation of human action recognition representation methods

Figure 2.2: Categorisation of human action feature representations
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2.2 Categorisation of Human Action Recognition

Human action recognition systems can be classi�ed based on action representation

methods or feature representation methods. In the former categorisation, human ac-

tion recognition methods can be categorised into four classes: feature representa-

tion methods, bag of visual words (BoVW) [166, 180, 104, 131, 121], stochastic

methods [116, 136, 38] and graph-based methods [165, 171] (see Figure (2.1)). Re-

garding feature representations, human action recognition methods can be classi�ed

into three classes based on the method of representing or extracting features from

video data: local features [77, 100, 32], global features [92, 83], and motion fea-

tures [16, 37, 129] (see Figure 2.2). Some methods combine different types of features

and action representations to improve performance. In addition, recent deep learning

based methods exploit large amounts of available training data to achieve human action

recognition without hand-crafted features.

Local feature representation-based methods extract local features in the spatial-temporal

domain to represent human actions. A set of spatio-temporal features are obtained in

a bottom-up structure [77, 143, 180]. In contrast global feature representation meth-

ods do not require the localisation of body parts. Rather, global body structure and

dynamics are utilised to represent human actions. In general, global approaches em-

ploy shape masks or silhouette information, stemming from background subtraction

or difference images, to represent actions [121]. As an example, shape-appearance

based approaches are based on building models to represent the actions and use these

models in recognition. The third category of feature representation is mainly based on

optical �ow information [32, 26]. Optical-�ow approaches depend on calculating the

optical �ow [19, 60, 102] to encode the energy of the action and represent actions as

histograms of optical �ow.

In the following sections, we will explain brie�y the categorisation of feature repres-

entation schemes.
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2.3 Feature Representation: Local Features

Human action recognition has been extensively researched through methods based on

local representations. Methods based on local feature extraction, also known as local

methods, encode a video sequence as a collection of local spatio-temporal features

(local descriptors). Low-level features play a fundamental role in representations of

human actions. In the last decades, many spatio-temporal descriptors have been pro-

posed and shown to be effective for action recognition. These local descriptors are

extracted from spatio-temporal interest points (STIPs) which can be sparsely detec-

ted from video sequences by detectors [84, 34, 100]. The features extracted from

local descriptors are characterised with high dimensionality. As a result, generating

codebooks is needed to acquire optimal codebooks with small size. This is usually ac-

complished by using one of the representation methods as shown in Figure 2.1. More

details of these methods will be explained in section 2.7. Local approaches are popular

feature extraction methods due to their many advantages:

� Resistance and less sensitivity to the noise in background, partial occlusion,

viewpoint, and changes caused by illumination variation.

� Compared to global features, avoidance of some preliminary steps, e.g. back-

ground subtraction.

� Flexibility to model the local interactions between multiple features by using a

local spatial-temporal feature-based representation.

If the video dataset contains individual actors recorded in clear environment with static

camera, global descriptors give acceptable results with low cost but the effectiveness of

these descriptors is related to the scenes and the accuracy of localisation or detection

of the region of interest (ROI). For example, motion energy image (MEI) features

[13] are global features which work by identifying regions with motion as regions of
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interest. Conversely, local descriptors can better deal with changes in the environment

but usually with higher computational costs.

2.3.1 Feature Detectors

In low-level feature representation methods, the key step to extract features from video

is to detect interest points considered to be more informative than others, and describe

them using some feature descriptors. Many approaches have been proposed to detect

interest points. The most popular ones include SIFT detector [100] which works in

2D, space-time interest points detector (STIPs) [84, 85], (which extends the Harries

detector [58] to 3D), temporal Gabor �lters [17, 34], Hessian detector [112] (based on

the determinant of the spatio-temporal Hessian matrix).

Lowe [100] introduced the Scale Invariant Feature Transform (SIFT) detector based

on detecting maxima and minima of the difference-of-Gaussian in scale space. For

each octave of scale space, the initial image is repeatedly convolved with Gaussians

at different scales to produce the set of scale space images. Adjacent Gaussian im-

ages are subtracted to produce the difference-of-Gaussian images. After each octave

is produced, the Gaussian image is down-sampled by a factor of 2, and the process

is repeated. Maxima and minima of the difference-of-Gaussian images are detected

by comparing a pixel to its neighbours at the current and adjacent scales. The SIFT

detector has the ability to identify a large number of keypoints. These keypoints are

robust, informative, and af�ne and scale invariant.

Laptev [84] extended the Harris [58] and Forstner [45] interest point detectors to 3D

detectors. The idea is based on extending the spatial domain of interest points into

the spatio-temporal domain by requiring the image values in space-time to have large

variations in both the spatial and the temporal dimensions. They proposed that the

interest point can be detected at different types of interest point movement. However,

the Harris corner detector is sensitive to changes in image scale, as a result it does not
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provide a good basis for matching images of different sizes.

The Dollar detector [34] calculated a response function for each keypoint of video

sequences. To calculate this response function two distinct linear �lters are used.

2D Gaussian kernel �lter is the �rst �lter that is applied on the spatial axis and 1D

Gabor �lter is the second �lter that is used for the temporal axis. They applied a

spatio-temporal interest point detector to �nd local regions of interest in space and

time (cuboids) which serve as the substrate for action recognition.

2.3.2 Feature Descriptors

To capture more information and features from detected keypoints, a description for

these key points is needed to represent and encode the video information. Methods

have been proposed to describe local interest points, each of which is denoted by

I (x; y; t ), whereI represents input image,x andy indicate the spatial andt indicates

time of the point. A local patch is considered around each detected interest point. The

detected patches are described to represent the actions. In this section, some descriptors

used in human action applications will be introduced.

Many efforts have been made to extract and describe meaningful and robust inform-

ation. Several feature descriptors have been successfully adapted from the image do-

main to the video domain to enhance the accuracy of human action recognition. Scov-

anneret al. [143] extended the SIFT descriptor [100] to the spatio-temporal domain.

Willems et al. [164] proposed the extended SURF (ESURF) descriptor, which is the

generalisation of the SURF descriptor [12] to video by evaluating with changing scales

and orientations. Their evaluation however was conducted only on datasets with a

single actor and clear recording environments such as KTH.

Klaseret al. [77] represented video sequences as a 3D histogram of gradients. They

extended the idea of Histogram of Oriented Gradients (HOG) [31] on images to video
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Figure 2.3: Describing spatio-temporal points (HOG3D descriptor): the support

region around a point of interest is divided into a grid of gradient orientation his-

tograms; each histogram is computed over a grid of mean gradients; each gradi-

ent orientation is quantised using regular polyhedrons [77].

to allow dense sampling of the cuboid with different scales and locations in the spatio-

temporal representation (Figure 2.3). Laptevet al.[86] proposed the combined HOG/HOF

descriptor which represents appearance by HOG and local motion by Histogram of

Flow (HOF) [32]. A drawback of HOG features is that the local descriptors are ex-

tracted at a �xed scale; therefore, the size of the human in the image can have great

in�uence on the performance.

Recently, Zhanget al. [180] introduced a 3D feature descriptor called simplex-based

orientation decomposition (SOD), and combined it with a BoVW framework to recog-

nise actions. The SOD descriptor is based on decomposing visual cue orientations in

the spatio-temporal domain into three angles and transforming the decomposed angles

into a simplex space, where the simplex space is a generalisation of the notion of a

triangle or tetrahedron to arbitrary dimensions. They used the simplex space in the

features representation to construct a compact, representative description of 3D visual

features. Then, quadrant decomposition was performed to compute the �nal feature

vector used for classi�cation by combining the decomposed histograms from all quad-

rants.

Yeffet and Wolf [175] employed a feature descriptor named local trinary patterns

(LTP), which was inspired by the local binary patterns (LBP) and successfully used
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for action recognition. Every pixel at each frame was encoded as a short string of

ternary digits (trits) by comparing this frame to the previous and the next frames. The

frame was then divided into (m� n) regions and the histograms of the trinary strings

were computed for each of the m� n region. These histograms were accumulated

every few frames and the vector which contains all concatenated histograms serves as

a video descriptor for the video. However, in practice the reliability of the descriptor

decreases signi�cantly under large illumination variations [150].

2.3.3 Feature Trajectories

Feature trajectories are one of the effective methods for representing video data. Tra-

jectory approaches are recognition approaches that interpret an activity as a set of

space-time trajectories [111, 110, 70]. Commonly, trajectories are extracted using

Kanade-Lucas-Tomasi (KLT) feature tracker [111, 110]. KLT tracker [154] tracks win-

dows of pixels and identi�es windows that contain suf�cient texture. Action recogni-

tion uses the velocity history of the tracked keypoints or matching SIFT descriptor [147]

between two frames.

For more encoded information from video data, researchers proposed to use dense tra-

jectories to describe the features [155, 70, 157, 125]. Wanget al. [155] introduced

a dense trajectory descriptor represented by tracking interest points (Figure 2.4). In-

terest points are sampled at spatial-temporal uniform intervals. Tracking is based on

displacement information from a dense optical �ow �eld. Based on the work of dense

trajectories [155] Jianget al. [70] proposed a method to represent the object relation-

ships by encoding pairwise dense trajectory codewords. Another work improves the

trajectories by using dense optical �ow to estimate human motion [157].

Because the ef�ciency of storage and the speed of classi�cation are limited due to

the dense samples in the feature space [70], researchers introduced improved dense

trajectories by reducing the dimensions and adopting a fast method for classi�cation
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Figure 2.4: Illustration of dense trajectory description. (a): Feature points are

sampled densely for multiple spatial scales. (b): Tracking is performed in the

corresponding spatial scale over L frames. (c): Trajectory descriptors are based

on its shape represented by relative point coordinates as well as appearance and

motion information over local neighbourhood pixels along the trajectory [155].

such as [170]. In this work, PCA was used to reduce the number of features.

Moreover, Sveboret al. [74] treated the human action problem as two steps. The �rst

step is video frame segment extraction and the second step is video frame tracking. The

tracking is based on the motion and colour channels. In the second step, every segment

is tracked separately both forward and backward in time in the video sequence based

on its motion and colour. As a result, the space-time segment is the set of bounding

boxes obtained from the tracking process.

Trajectory-based methods have their advantages but also face challenges to cope with

self-occlusions, change of appearance, and problems of reinitialisation.
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Figure 2.5: Shape masks for recognising tennis actions [72]

2.4 Feature Representation: Global Features

Methods based on global representations, also called holistic methods, treat a video

sequence as a whole rather than applying sparse sampling using STIP detectors or

extracting trajectories. In holistic representations, spatio-temporal features are directly

learnt from raw frames in video sequences. Global representations have recently drawn

increasing attention [29, 71, 53, 26], because they are able to encode more visual in-

formation by preserving spatial and temporal structures of actions occurring in a video

sequence. Compared to local methods, global representations encode extracted fea-

tures as a whole, and are obtained in a top-down manner. Therefore, global descriptors

are usually less time consuming to calculate and easier to implement. They give robust

results in less challenging scenarios such as those with static background.

2.4.1 Shape-Appearance Features

Modelling of human pose and shape has received a great attention from researchers in

recent years. Several approaches for action recognition used human shape masks and

silhouette information to represent the human body and its dynamics. It is known that

action recognition methods based on the human silhouette play an effective role in hu-

man action recognition. The shape analysis approaches aim to describe and locate the
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Figure 2.6: Shape masks from difference images for computing motion history

images (MHI) and motion energy images (MEI) [13].

changes in the human body shape. Shape-based approaches convert video frames into

static shape patterns and in the recognition phase compare the patterns with pre-stored

ones. In earlier work in this �eld, Yamatoet al. [72] are among the �rst to propose sil-

houette images (Figure 2.5). They computed a grid representation over the silhouette

and computed for each cell the ratio of foreground to background pixels. The grid rep-

resentations are quantised into a vocabulary, and actions are then learnt as sequences

of words using a Hidden Markov Model (HMM). Chomatet al. [29] created motion

templates and a Bayes classi�er was used to perform action recognition. Bobick and

Davis [13] used shape masks from difference images to detect human actions. They

employed so-called motion energy images (MEI) and motion history images (MHI) as

the action representation, as illustrated in Figure 2.6. More precisely, MEIs are binary

masks that indicate regions of motion, and MHIs weight these regions according to the

point in time when they occur (the higher the weight is the more recent). This approach

is the �rst to introduce the idea of temporal templates for action recognition.

In recent work on shape approaches, Gorelicket al. [52] proposed a method to form a

3D spatial-temporal representation by stacking segmented silhouette frame-by-frame.

Yanget al. [174] treated human pose as latent information and used it to assist the task

of action recognition. They represented the action as a model that integrates action

recognition and pose estimation. In [71] action interest regions are �rst localised and



2.4 Feature Representation: Global Features 20

Figure 2.7: Action representation using histograms of pose primitives [153]

shape-motion descriptors are computed from them.

For shape descriptors, the histogram of oriented gradient (HOG) [31] was used to

encode the shape of each subregion, and then all the histograms were concatenated

to form a raw shape feature vector. These features combined with an optical �ow

descriptor [37] formed the �nal representation for actions. In other work [153], ac-

tion classes were represented by histograms of pose primitives using HOG to classify

actions. They extended a standard HOG based pose descriptor to better deal with back-

ground clutter and articulated poses by exploiting a non-Negative Matrix Factorisation

(NMF) basis representation of gradient histograms as shown in Figure 2.7. Ikizler and

Duygulu [62] modelled the human body as a sequence of oriented rectangular patches.

The authors encoded the video features using BoVW, which they called as bag-of-

rectangles. Majiet al. [108] introduced a new representation of human pose called

"poselet activation vector". The action was represented by estimating the 3D pose of

the head and torso, given the bounding box of the person in the image.
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2.5 Feature Representation: Motion Features

Human-centric approaches based on optical �ows and generic shape information form

another sub-class of global methods. A number of research works depend on an optical

�ow technique to transform the motion information from input video to feature vectors.

As one of the �rst works in this direction, Polana and Nelson [129] proposed a human

tracking framework along with an action representation using spatio-temporal grids

of optical �ow magnitudes. The action descriptor is computed for periodic motion

patterns. By matching against reference motion templates of known periodic actions

(e.g., walking, running, swimming) the �nal action can be determined.

In another approach purely based on optical �ow, Efroset al. [37] tracked actions in

videos and computed a descriptor on the stabilised tracks using blurred optical �ow.

Their descriptor separated x and y �ows as well as positive and negative components

into four different channels, as shown in Figure 2.8. For classi�cation, a test sequence

is frame-wisely aligned to a database of stored, annotated actions. The same human-

centric representation based on optical �ow and human tracks for action recognition

was employed by Fathi and Mori [43]. As a classi�cation framework, the authors

use a two-layer AdaBoost variant. In the �rst step, intermediate features are learnt by

selecting discriminative pixel �ow values in small spatio-temporal blocks. The �nal

classi�er is then learnt from all previously aggregated intermediate features.

Rodriguezet al. [137] proposed a method to use �ow features in a template matching

framework. The features are represented by spatio-temporal regularity �ow informa-

tion. The regularity �ow shows improvement over optical �ow since it globally minim-

ises the overall sum of gradients in the frame sequence. Rodriguezet al.'s method [137]

learnt cuboid templates by aligning training samples via correlation. For classi�cation,

test sequences are correlated with the learnt template using a generalised Fourier trans-

form that allows for vectorial values.

Ali [7] introduced features depending on pure optical �ow [59]. These features are
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Figure 2.8: Constructing the motion descriptor based on optical �ow [37]. (a)

Original video frame, (b) Optical �ow Fx;y , (c) Separating thex and y components

of optical �ow vectors, (d) Half-wave recti�cation of each component to produce

4 separate channels, (e) Final blurred motion channels.

called kinematic features. Each kinematic feature produced three-dimensional inform-

ation by computing optical �ow of a sequence of images to increase spatiotemporal

patterns. To reduce the dimensions into a more manageable two-dimensional form,

they assumed that the representative dynamics of the optical �ow were captured by

these spatiotemporal patterns in the form of dominant kinematic trends or kinematic

modes. Kinematic features are used to extract different aspects of motion dynamics

existing in optical �ow which are computed by performing Principal Component Ana-

lysis (PCA) on kinematic features to reduce the dimensionality of the features. These

features include divergence, vorticity and symmetry. As a result they capture most of

the dynamic information and achieved increased recognition. The weakness of kin-

ematic features is that they are view dependent and therefore give different optical

�ows from different view directions even on the same scene.

The features extracted directly from optical �ow are inaccurate [59] because they are

affected by noise and illumination environment changes. To improve the features

which are selected from optical �ow in [132, 141], Ramadass [132] proposed an im-
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provement on the optical �ow algorithm to increase the features which can be taken

from optical �ow. The proposed algorithm eliminated irrelevant features by computing

Euclidean distance of separation of various features and correspondingly �ltering use-

ful low level features for extraction. Despite the fact that good results were achieved

by motion descriptors, the methods based on optical �ow have limitations due to the

dif�culty in reliable optical �ow estimation, e.g. aperture problems, smooth surfaces,

and discontinuities.

2.6 Discussions about Feature Representations

As explained in the previous section, different schemes of local and global represent-

ations have been proposed to improve the recognition accuracy. However, existing

methods still suffer from the limitations for each representation. To overcome these

dif�culties and bene�t from the advantages of different representations, researchers

proposed to combine local and global representations to produce a more reliable de-

scription for video contents such as [148, 67, 87, 71]. A key advantage of local fea-

ture based approaches is their �exibility with respect to the type of video data. Local

descriptors represent a video as features extracted from a collection of patches, ideally

invariant to environmental clutter, appearance change and occlusion, and possibly to

rotation and scale change as well. Global descriptors, on the other hand, treat each

video frame as a whole, which is easier to implement and has lower computational

costs. Combining features can take the advantages of individual features and provide a

trade-off between performance and effectiveness.

2.7 Human Action Representation Methods

The common human action representation methods are feature representation, Bag of

Visual Words (BoVW), Stochastic-based, Convolution Neural Network, and Graph-
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based methods. In brief words, BoVW methods recognise human action by applying

a clustering algorithm on feature descriptors to build visual vocabulary [89, 166, 180,

120, 121, 156, 172]. Stochastic-based methods build statistical models to represent

human actions (e.g. Hidden Markov Models (HMM)) [136, 124, 83]). Graph-based

methods represent an action as a graph [165, 95] to obtain a model used in the classi-

�cation process. In the following sections we will explain the categorisation of human

action systems based on these methods.

2.7.1 Bag-of-Visual-Words (BoVW)

A popular representation, based on local features, is the Bag-of-Visual-Words (BoVW)

model. It starts from document retrieval applications where orderless strategies are a

popular choice for representing textual data. The bag-of-words model was �rstly used

to represent text documents as recurrence distributions over words and has been applied

extensively in this domain [140]. The framework of local spatio-temporal features with

Bag of Visual Words (BoVWs) has gained notable achievements and become one of the

most popular approaches in the recent work of action recognition [166, 180, 104, 131]

and showed a remarkable performance improvement on benchmark datasets.

Generally, a feature descriptor is a vector representation of the features for the local

neighbourhood of a given position. To obtain the �nal representation of an action,

the BoVW model is used which is based on mapping local features of each video se-

quence onto a pre-learnt dictionary. The visual vocabulary (or codebook) is computed

by applying a clustering algorithm (e.g. k-means) on feature descriptors obtained from

training sequences; each cluster is referred to as a visual word. Descriptors are quant-

ised by assignment to their closest visual words, and video sequences are represented

as a histogram of visual word occurrences [166, 180]. The coef�cient of each local fea-

ture is determined by assigning this featurex i to its nearest codeword in the codebook

vocabulary using a certain distance metric. By using the Euclidean distance, then:
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ui;j =

8
><

>:

1 if j = arg min j =1 ;:::;M kx i � bj k2

0 otherwise
(2.1)

Niebles and Li [121] represented video as spatio-temporal features with bag of visual

words. They extracted the interest points and clustered the features, and then mod-

elled actions by using a probabilistic Latent Semantic Analysis (pLSA) to localise and

categorise human actions. Laptev and Lindeberg [85] recognised actions based on

interest-point features. They �rst detected interest points using a Hessian detector, and

then described the features using scale-invariant spatio-temporal descriptors. Finally,

they clustered and recognised the actions based on the similarity of words inside the

clusters and the differences among clusters.

Wanget al. [156] recognised the action using BoVW framework with an SVM clas-

si�er. They represented the video by a combination of several descriptors, which are

HOG to describe the appearance, HOF (motion) and trajectories to describe the shape.

Moreover, they introduced a descriptor based on motion boundary histograms (MBHs)

which relies on differential optical �ow. Schuldtet al. [142], Dollar et al. [34], and

Niebleset al. [120] proposed using of BoVW in action recognition. For the BoVW

representation in videos, feature detectors determine a set of salient positions present

in the video sequences.

A non-linear SVM is a popular classi�er that is used in different works, e.g. Schuldtet

al. [142], Dollaret al. [34], Laptevet al. [86], Willemset al. [164], Leet al. [90] used

non-linear SVMs on a benchmark with different feature descriptors. Such histogram

representations have the ability to capture global statistics about the type of descriptors

that are present in the video sequence.
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2.7.2 Stochastic Approaches

There has been a focus on actions in video sequences, where the action can be represen-

ted as statistically predictable sequences of states, also called a state model. Stochastic

approaches are the methods that represent a human action as a model containing a set

of states. The models are statistically trained on feature vectors to generate a general

statistical model for action classi�cation. In other words, the statistical model is de-

signed to generate a sequence with certain probability. Existing research has conceived

and used many stochastic techniques, such as Hidden Markov Model (HMMs) [116,

124, 136, 83, 44].

In HMM-based methods, a human action is assumed to be in one state at each time

frame, and each state generates an observation (i.e., a feature vector). In the next

frame, the system transits to another state based on the transition probability between

the states. Once transition and observation probabilities are trained for the models,

actions are commonly recognised by solving the evaluation problem. The evaluation

problem is to calculate the probability of a new input generated by a particular state

model. If the calculated probability is high enough, the state model-based approaches

are able to decide that the action corresponding to the model occurred in the given

input.

Feng and Perona [44] used a static HMM for action recognition where keyposes corres-

pond to states. Lu and Little [101] used a hybrid HMM where one model denotes the

closest shape-motion template while the other models position, velocity and scale of

the person in the image. Instead of modelling the human body as a single observation,

Ikizler and Forsyth [63] introduced 3D trajectories for body parts. They constructed

HMMs for the legs and arms individually, where 3D trajectories are the features. For

each limb, states of different action models with similar probabilities are linked. This

makes training easier, as the combinatorial complexity is reduced to learning dynam-

ical models for each limb individually. However, it leads to the problem of having
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to construct a large number of action HMMs, each using a subset of all joints, which

results in a large number of weak classi�ers.

Several works aimed at improving pose representation by modelling the action and

selecting the action class whose corresponding model has the highest probability of

generating the observed sequence. Peursumet al.[128] used a factored-state hierarch-

ical HMM (FS-HHMM) to jointly model body dynamics per action class. Cailletteet

al. [22] used a variable length Markov model (VLMM) to model observations and 3D

poses for each action. Natarajan and Nevatia [117] introduced a hierarchical variable

transition HMM (HVT-HMM) which consists of three layers that model composite

actions, primitive actions and poses.

A drawback of these models is that they have to make some assumptions in order to

be computationally tractable. It can also be hard to learn these models since there are

usually many model parameters to be set.

2.7.3 Graph-based Approaches

Graph-based approaches have many advantages. They integrate geometrical and topo-

logical features of the objects. They are considered as successful shape descriptors for

object recognition [139, 163] and matching [173, 35, 20] since graphs are ef�cient for

providing natural description of objects and effective for modeling complex structured

data [14, 57]. Based on these advantages, efforts have been undertaken during the

last two decades to employ graph characteristics in action recognition. These methods

usually differ by the way they construct graphs, features associated with graphs and

graph matching methods. Wuet al. [165] proposed graph-based action recognition by

constructing two graphs to model the action in the video. These graphs are named

Video Cooccurrence Graph (VCG) and Video Successiveness Graph (VSG), respect-

ively as shown in Figure 2.9. The vertices in these two graphs correspond to the local

features and the edges represent the relationship between the vertices. A family of
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Context-Dependent Graph Kernels (CGKs) is used for action recognition.

Wang and Sahbi [161] presented a graph-based action recognition method. They rep-

resented an action as a Directed Acyclic Graph (DAG), and used a kernel machine to

recognise the action. To construct the graph, dense trajectories are extracted and then

clustered using the agglomerative method. The resulted features are mid-level fea-

ture components which corresponds to the vertices of the DAG, and the relationship

between vertices correspond to the edges of the graph.

Aoun et al. [8] introduced an approach for action recognition by constructing a graph

based on local features. In their work, the action is modelled by two graph sets: Spa-

tial Video Graph Set (SVGS) and Temporal Video Graph Set (TVGS). The graph-

based substructure pattern mining algorithm (gSpan) [171] was then applied to retrieve

the spatial and temporal sub-graphs. The histograms of the spatial sub-graphs and

temporal sub-graphs are computed. These two types of histograms form the video

descriptor, and a bag of sub-graphs method is used to recognise the action in the video

sequences.

Recently, Lianget al. [95] constructed a model for action recognition in videos with

a Spatio-Temporal And-Or Graph (STAOG), which contains four types of nodes: the

leaf nodes for representing a batch of local classi�ers, theor-nodes for specifying

an appropriate selection from the leaf-nodes, theand-nodes for verifying the holistic

appearance of action within the video frame, and the root-nodes for classi�cation and

temporal testing. Other recent work [99] represented action as a graph based on Spatio-

Temporal Interest Points (STIPs). STIPs are clustered into different labels and each

label stands for a kind of movement. Then, all labelled STIPs are de�ned as nodes of

the directed graphs.

Gauret al. [47] modelled the action in a video as a string of feature graphs (SFGs) by

treating a video as a spatio-temporal collection of primitive features (e.g., STIP fea-

tures). They divided the features into small temporal bins and represented the video

as a temporally ordered collection of such feature bins, each bin consisting of a graph-
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Figure 2.9: The illustration of the CGKs based human action recognition. (a) A

video sequence is represented by VCG and VSG together. (b) Different orders

CGKs are computed on both video graphs. (c) Combine the CGKs together using

GMKL algorithm and learn action classi�ers simultaneously [165].

ical structure representing the spatial arrangement of low-level features. A video then

becomes a string of such graphs and comparing two videos is to match two strings of

graphs.

2.8 Deep Learning based Approaches

Deep learning has also been used by researchers for detecting and recognising complex

events in video sequences. The two main types of techniques in deep learning for action

recognition are convolutional neural networks (CNNs) [167, 144, 158, 160, 61, 158]

and recurrent neural network (RNN) [168, 118].
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Deep learning using convolutional neural networks (CNNs) was introduced by Yannet

al. [91] in computer vision applications. Convolutional Neural Networks (CNNs) have

been demonstrated as an effective class of models for understanding image content,

giving state-of-the-art results on image recognition, segmentation, detection and re-

trieval [42, 30, 49]. Motivated by this success of CNNs in image processing applic-

ations, researchers are working intensely towards developing CNNs for video pro-

cessing. The �rst attempt to use CNNs in human action recognition was introduced

by Taylor [152], who introduced a model that learns feature map representations of

image sequences from pairs of successive images (Figure 2.10). Baccoucheet al. [9]

proposed to capture the nature of video data based on 3D Convolutional Neural Net-

works. The network was trained to assign a vector of spatio-temporal features to a

small number of consecutive frames (see Figure 2.11). Simonyan [144] introduced

an architecture based on spatial and temporal streams which were then combined by

fusion. The spatial stream performed action recognition from video frames, whilst the

temporal stream was trained to recognise action from motion using dense optical �ow

(see Figure 2.12).

The second common type of deep learning neural networks is Recurrent Neural Net-

works (RNNs). RNNs are a class of Neural Networks specialised in sequential pro-

cessing. While in Feed-Forward Neural Networks the inputs and outputs are �xed in

size and independent among samples, RNNs' inputs and outputs can be of arbitrary

size and depend on previous observations. One of the main issues that emerges when

using RNNs is what is known as the vanishing gradient problem [78]. In Feed-Forward

Neural Networks, the gradient is propagated backwards to the input of the model, while

in RNNs the gradient is back propagated both within the same neuron to previous time

steps, and also to the previous layers. While these deep models are effective and pro-

duce promising performance on action recognition, typically the models have millions

of parameters and the training of such models requires a large amount of training data.

Therefore, such techniques may not perform well if the available training data is lim-

ited.
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Figure 2.10: Feature maps inferred from the KTH actions dataset. A subset of 6

(4x4 max-pooled) feature maps 32 in total inferred from sequences of a walking

action. Rows correspond to features, and columns correspond to frames [152].

Unlike images, videos are often much larger in size, which means it is dif�cult to feed

a whole video into deep learning architectures that often have large memory demands.

Training a CNN or RNN requires signi�cant computational resources for many itera-

tions. Therefore, researchers try to learn CNNs and RNNs on sampled frames or very

short video clips [162]. However, video-level label information can be incomplete or

even missing at frame/clip level. This incomplete information leads to the problem of

false label assignment.

2.9 Video Datasets of Action Recognition

The �rst step in developing a human action recognition system using machine learning

is to acquire an adequate human action database. The dataset should be suf�ciently

rich in a variety of human actions. Moreover, the creation of such a dataset should
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Figure 2.11: A 3D-Convolutional Network architecture for spatio-temporal fea-

ture construction for human action recognition [9].

Figure 2.12: A Two-stream architecture for video action recognition [144].

correspond to real world scenarios. The quality of the input media that forms the

dataset is one of the most important aspects one should take into account. Based on

this, researchers introduced different video datasets.
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