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The state of classifier incongruence in decision making systems incorporating multiple classifiers is often 

an indicator of anomaly caused by an unexpected observation or an unusual situation. Its assessment is 

important as one of the key mechanisms for domain anomaly detection. In this paper, we investigate the 

sensitivity of Delta divergence, a novel measure of classifier incongruence, to estimation errors. Statisti- 

cal properties of Delta divergence are analysed both theoretically and experimentally. The results of the 

analysis provide guidelines on the selection of threshold for classifier incongruence detection based on 

this measure. 
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1. Introduction 

Many sensor data analysis systems involve multiple classifiers

to interpret input data, which leads to improved performance by

virtue of exploiting complementary information derived from mul-

tiple modalities of sensing, multiple representations, contextual in-

formation, and hierarchical structuring of the interpretation pro-

cess. In addition to increased performance, an important corollary

of involving multiple experts in decision making is the ability to

flag anomalies by looking for discrepancy between their outputs,

referred to as incongruence. 

Anomaly detection, i.e. finding patterns in data that do not con-

form to expected normal behaviour [1] , has been studied in many

areas including statistical signal processing and pattern recogni-

tion [2–7] , as well as a wide variety of applications, such as intru-

sion detection for cyber-security [8–11] , surveillance [12,13] , video-

based crowd-behaviour analysis [14–16] and fault detection in sen-

sor systems [17,18] . A large number of techniques have been devel-

oped for this problem, including the methods based on e.g. clas-

sification, clustering, statistical modelling, among many others, as

surveyed by Chandola et al. [1] , Markou and Singh [6,7] , and Patcha

and Park [19] . The basic approach to anomaly detection adopted in
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ll these techniques is to compare incoming data against a refer-

nce model that embodies normality. This approach is also known

s outlier detection. 

Despite this effort, the development of good models of nor-

ality for diverse applications is not without challenges. More-

ver, detecting anomalies in multiple classifier systems raises ad-

itional issues. It has been argued in [20] that in order to iden-

ify and distinguish the multifaceted nature of anomaly and take

ppropriate control actions, a more complex system consisting of

everal other mechanisms are needed in addition to outlier de-

ection. They include data quality assessment, classifier decision

onfidence estimation and classifier incongruence detection [20] .

mong these mechanisms, classifier incongruence detection, in

ther words measuring the disagreement between the classifiers

mbodied in the system, is of paramount importance. It helps

o differentiate between certain types of anomalous events such

n out-of-context event, where an event is unexpected, a rare

vent, where a given configuration of components occurs very in-

requently, or an unknown structure [20] . This mechanism is the

ubject and focus of this paper. 

A simple example of anomaly detection using incongruence is

ut-of-vocabulary word detection in speech recognition [21] . A

peech recognition system would typically involve a hierarchical

ecision making strategy based on the outputs of noncontextual

nd contextual classifiers. Noncontextual classifiers operating at a

ow level of representation attempt to identify phonemes based

n the speech content, whereas contextual classifiers combine this
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ow level symbolic representation with prior knowledge to seg-

ent and recognise larger semantic units such as words. Implic-

tly, in this complex decision making process, we get two opinions

bout the identity of each phoneme: one derived from the con-

extual classifier and one from its noncontextual counterpart. For

uccessful speech understanding, we do not necessarily need to be

oncerned with the low level interpretation process. However, by

onitoring the outputs of both contextual and noncontextual clas-

ifiers we may glean very useful information which could enable

s to qualify the failure of the speech recognition system to inter-

ret input data. For instance, if the low level classifier makes confi-

ent decisions about the identity of the phonemes, but a sequence

f the detected phonemes does not produce a meaningful output,

he system may be encountering an out-of-vocabulary word. Dis-

erning such nuances in sensor data interpretation would allow

s to act accordingly. This, however, requires a reliable method

f classifier incongruence detection which can spot and discrim-

nate disagreements in classifier opinions about one or more

ypotheses. 

Detecting incongruence can be formulated as a statistical hy-

othesis testing problem [6] . This typically involves some propo-

ition, referred to as a null hypothesis and a test statistics. If the

utcome of the test statistics is consistent with its known distri-

ution model, then the null hypothesis is accepted. An outlier of

hat distribution would lead to the hypothesis rejection. An obser-

ation is considered an outlier at a given level of significance, i.e. if

he test statistics value exceeds a threshold corresponding to some

estigial probability, such as 5% or 1%. Accordingly, the proposition

n incongruence detection is that two classifier outputs are congru-

nt. If the test statistics exceeds a threshold corresponding to the

equired level of significance then the hypothesis is rejected, that

s the classifier outputs are deemed incongruent. Let us empha-

ise here that measuring classifier incongruence is meaningful only

hen a dominant class probability output by a classifier exceeds

 certain confidence level and there is sufficient margin between

he probabilities of the dominant class and the next strongest

lass. 

Clearly the test statistics is a crucial component of a hypothesis

esting process. The choice not only influences its statistical prop-

rties, but also how faithfully it reflects the concept tested. For in-

tance, the throw of a coin and counting the number of heads in

esting whether the coin is biased introduces a statistical element

n the test process. A much more transparent test would consist

n looking at both sides of the coin, which would immediately, in

nambiguous terms, establish whether the coin is biased or not.

t is the choice of the experiment of repeated trials, and the head

ount, which makes the hypothesis testing more difficult than it

eeds to be, and injects randomness in the experimental outcome.

oreover, this particular choice only reflects the phenomenon to

e tested indirectly, rather than in the most transparent way pos-

ible. 

A classical classifier incongruence test statistic is the Kullback–

eibler (KL) divergence known as Bayesian surprise [22] . However,

t has recently been pointed out that this measure has some de-

ciencies. In particular in multiclass problems, it has been shown

o be unpredictably affected by the probabilities of nondominant

lasses (referred to as clutter) and a variant of the KL divergence,

eferred to as Decision–Cognizant KL (DC-KL) divergence has been

roposed instead [23] . Some other undesirable properties of KL

ype divergence, induced by its log function, have been rectified

y the recently proposed Delta divergence [24] . However, the key

uestion not addressed so far, is whether the superior theoretical

roperties of Delta divergence are robust to estimation errors. For

xample, in multiple classifier fusion, sensitivity to errors changed

he ranking of the product and sum fusion rules, although the for-

er is founded on sound theoretical principles. 
The aim of this paper is to investigate error sensitivity of Delta

ivergence as a measure of classifier incongruence. The study in-

ludes a theoretical analysis of a few special cases to gain intuitive

eeling for the behaviour of Delta divergence in noisy conditions.

 more comprehensive investigation is carried out by simulation

tudies where the space of class a posteriori probabilities is sam-

led to estimate the probability distribution of noise-free Delta di-

ergence values for various scenarios. The samples of the a pos-

eriori probability distributions are then corrupted by estimation

rrors and their impact on Delta divergence is measured experi-

entally. The aggregation of the statistical distributions of Delta

ivergence over different scenarios and the distribution of noise-

ree Delta divergence values produces the final test statistics dis-

ribution which can be used to determine appropriate classifier

ncongruence detection thresholds. Although the simulation stud-

es are limited by the assumptions made regarding the estimation

oise, their main merit is to give the reader a better understand-

ng of the behaviour of Delta divergence. For practical purposes we

ropose guidelines for incongruence detector design, given a train-

ng set of class probability estimates. The design procedure is il-

ustrated on a problem of detecting incongruence of noncontextual

nd contextual classifiers developed to recognise action and activ-

ty in breakfast dataset videos. 

In summary, the contributions of the paper include: 

• An error sensitivity analysis of Delta divergence utilising

marginalisation of the test statistics over different scenarios 
• Estimation of the statistical distribution of Delta divergence as

a basis for classifier incongruence threshold selection 

• Guidelines for classifier incongruence threshold selection in

practical anomaly detection systems 

The paper is structured as follows. The background and re-

ated work are the subjects of Section 2 . In Section 3 , Delta diver-

ence is introduced as a novel classifier incongruence measure and

ts properties are related to the Bayesian surprise measure which

s used as a baseline both theoretically and experimentally. The

tatistical properties of the proposed measure are investigated in

ection 3.1 . In Section 4 , a discussion on how to determine the

lassifier incongruence threshold is carried out via experimental

nalysis on synthetic and real data. Finally, in Section 5 , the main

esults of this study are summarised and the paper is drawn to

onclusion. 

. Related work 

The idea of using classifier incongruence for anomaly detection

as been advocated by Weinshall et al. in [25] . As in [25] , we con-

ider just two decision making experts, classifying the data into

ne of m possible categories. Let ˜ P (ω j | x ) and P (ω j | x ) , j = 1 , . . . , m

enote the a posteriori probabilities associated with the hypothe-

is that model ω j explains the input data, x , which have been es-

imated by the two experts. If the two distributions are identical

r similar, then the classifier outputs would be considered congru-

nt. For measuring incongruence, Weinshall et al. [25] advocated

he adoption of Itti’s Bayesian surprise measure [22] originally pro-

osed for detecting content changes in video. In particular, by con-

idering the a posteriori class probability distribution output by

ne of the experts as a reference, one can detect incongruence by

alculating 

 K = 

m ∑ 

j=1 

˜ P (ω j | x ) log 
˜ P (ω j | x ) 

P (ω j | x ) 
(1)

hich is basically the Kullback–Leibler divergence between the two

istributions. 
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The Kullback–Leibler divergence primarily measures the simi-

larity between the two probability distributions through an inverse

relationship. If the distributions are identical, or similar, the mea-

sure will tend to zero. A high value of the measure would indicate

differences in the a posteriori probabilities, and therefore high in-

congruence between the classifier outputs. There are other infor-

mation theory divergences that could be used for the same pur-

pose [26,27] . 

Alternatively, one could adapt any statistical measure of sim-

ilarity between two distributions and use it as a test statistic

for detecting classifier incongruence. More specifically, mapping

the classes onto consecutive numbers (bins) will create two dis-

crete probability distribution functions, resembling normalised his-

tograms, which sum up to unity. This analogy suggests that well-

known criteria, namely histogram similarity measures, mainly used

for calculating the goodness-of-fit between an empirical and a ref-

erence distribution, could be adapted for the purpose of measuring

classifier incongruence, although there are no reported attempts

in the literature to adopt them for this purpose. A comprehensive

analysis of the tests that can be used for measuring the similarity

between two histograms can be found in [28] . Examples are Chi-

square, Kolmogorov-Smirnov [29] , Cramér-von-Mises [30,31] , and

Anderson-Darling [32] tests; Geometric test using Bhattacharyya

distance, and likelihood-ratio and likelihood-value tests. We plan

to investigate the applicability of these histogram matching meth-

ods to the problem of incongruence detection in the future, but

here we are focusing on the established state of the art methodol-

ogy of incongruence detection constituted by the Bayesian surprise

measure. 

It should be noted that the term measures of surprise in

Bayesian analysis also refers to test statistics developed for out-

lier detection. This confusing terminology relates to the classical

notion of anomaly detection where instead of measuring the simi-

larity between two probability distributions, the aim is to compare

a single observation with the hypothesised distribution model [33–

39] . Recently in [40] , some state-of-the-art measures of surprise in

Bayesian analysis have been thoroughly analysed and modifications

have been proposed. However, these techniques are not relevant to

the topic addressed in this paper. 

Accordingly, Itti’s Bayesian surprise [22] and its decision cog-

nizant variant DC-KL [23] are the key existing technique for as-

sessing classifier incongruence in the literature. Thus, we shall

adopt them as a reference for our deliberation. The issues with the

Bayesian surprise measure can be listed as follows: 

1. It goes to infinity for any hypothesis ω for which P ( ω| x ) → 0

while ˜ P (ω| x ) � = 0 . This can occur even for insignificant hypothe-

ses and result in producing false alarms of incongruence. 

2. The measure is not symmetric, in a sense that if we use the

distribution of P ( ω| x ) as a reference instead of ˜ P (ω| x ) , we will

get a different value of the divergence. 

3. The divergence function may produce the same value for com-

pletely different scenarios and may diverge to infinity. Hence, it

is difficult to assess which values imply congruence / incongru-

ence, and define a suitable threshold. 

4. The measure is classifier decision agnostic. In other words, all

hypothesis (classes) are involved in the calculation of the sur-

prise. 

5. By virtue of Property 4, it is also strongly affected by estimation

errors on probabilities P ( ω| x ) and 

˜ P (ω| x ) . 
In contrast, DC-KL is decision cognizant, that is the measure ig-

nores all the terms associated with the classes that are not selected

by the decision rule. The main argument for ignoring the contri-

bution of the classes with non maximum posterior is that first of

all they contribute with a lot of irrelevant jitter to the value of the

similarity measure. This contamination is proportional to the num-
er of hypotheses. In other words, in multi hypotheses problems,

his background jitter potentially can bury the useful information,

.e. the probability differences for the classes selected by the de-

ision rule. The elimination of this clutter impacts favourably also

n Property 5. However, both KL and DC-KL share Properties 1–3

hich limit their ability to distinguish between classifier congru-

nce and incongruence robustly. Let us illustrate the limitation on

he real data application discussed in Section 4 , which is concerned

ith action and activity recognition videos. 

Breakfast dataset [41] is used for performing action and activ-

ty recognition from breakfast scenario videos, and is comprised

f 10 activities and 52 action classes. In our approach, the action

n each segment of a video is interpreted by a noncontextual and

 contextual classifier, the latter taking into account the complete

equence of actions to identify the breakfast scenario activity cap-

ured by the video. As an example, for the video segment repre-

ented by the key frame shown in Fig. 1 (a), the top ten hypotheses

utput by the two classifiers are shown in Fig. 1 (b). The classifiers

re clearly incongruent. Yet the corresponding KL and DC-KL in-

ongruence values, ˜ D D = 

˜ D K = 1 . 63 , are very low in the context of

he normal range of values of these test statistics shown in the his-

ograms in Fig. 2 (a) and (b), respectively. The histograms have been

omputed on a training set outputs of the two classifiers described

n detail in Section 4 . 

To avoid the problems associated with KL and DC-KL, we have

reviously proposed alternatives, which not only focus on the

ominant hypotheses flagged by the two experts [20,42] , but have

he additional advantage over [23] that their values are confined to

 finite range of [0, 1]. Although the methods in [20,42] have at-

ractive properties, their main disadvantage is that they are heuris-

ic. Overcoming this shortcoming, in a recent paper [24] we have

roposed a novel divergence, called Delta divergence ( D �), which

xhibits all the desirable properties of a test statistic ideally suited

or detecting classifier incongruence. Moreover, it is a proper infor-

ation theoretic divergence, with all the advantages of a measure

nderpinned by information theory. Note that in [23] , a detailed

heoretical and experimental analysis demonstrates the superiority

f Delta divergence over KL divergence. 

The rest of this paper focuses on Delta divergence. The aim

s to verify that the attractive properties of Delta divergence are

obust to estimation errors on the class probabilities output by

he two classifiers. We investigate the sensitivity of D � both an-

lytically and experimentally. Moreover, we show how the empiri-

al distribution of this novel incongruence measure could provide

 basis for selecting an appropriate classifier incongruence detec-

ion threshold at a given level of statistical significance. Note that

n practice, the only observable information are classifier outputs

hich are already subject to estimation errors. For such scenarios,

e propose practical incongruence detection guidelines and illus-

rate their use on a real data application concerned with action

nd activity recognition in breakfast scenario videos. 

. Statistical properties of D �

Delta divergence, proposed in [24] , has been developed from f-

ivergence [27] , known as variation distance, by merging all the

on-dominant class hypotheses into a single set. This preserves

he nature of the measure as a proper divergence of differences

etween two probability distributions, but has the beneficial ef-

ect of reducing the “clutter” injected by the terms associated with

he non-dominant hypotheses. The positive impact of this clutter

educing modification grows with the number of classes. Let us

enote the dominant hypotheses identified by two classifiers by

˜ = arg max ω ˜ P (ω| x ) and μ = arg max ω P (ω| x ) . Also, for the sake

f notational simplicity, in the following, we shall drop making ex-

licit references to specific observation x and denote the a poste-
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Fig. 1. (a) Key frame taken from an example Breakfast dataset segment (b) Probability distribution values belonging to the contextual and non-contextual classifiers given 

for a sample taken from the Breakfast dataset, for which ˜ D K = 

˜ D D = 1 . 63 . 
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Fig. 2. Histograms of Bayesian surprise (KL) (a) and D ecision-cognizant Bayesian surprise (DC-KL) (b) for the Breakfast dataset. 

r  

P

D

 

d  

(  

t  

D  

s  

t  

o  

b  

p  

v

 

t  

t  

I  

l  

i  

n  

a  

t  

i

 

i  

t  

t  

i  

d  

a  

a  

w  

w  

t  

t  

a  

t  

c  

d  

a  

d  

c  

t  

w

 

m  

d  

c  

c  

c  

t  

i  

c  

c  

D  

f  

c  

c  

i

iori class probabilities P ( ω| x ) simply as P ω , and 

˜ P (ω| x ) simply as
˜ 
 ω . Delta divergence is defined as 

 � = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

| P μ − ˜ P μ| μ = ˜ μ

max 
{| ̃  P ˜ μ − P ˜ μ| , | P μ − ˜ P μ| }

{ 

μ � = ˜ μ
P μ − ˜ P μ ≥ 0 

˜ P ˜ μ − P ˜ μ ≥ 0 

| ̃  P ˜ μ − P ˜ μ| + | P μ − ˜ P μ| 
{ 

μ � = ˜ μ
sgn (P μ − ˜ P μ) � = 

sgn ( ̃  P ˜ μ − P ˜ μ) 

(2) 

The focus of Delta divergence ( D �) given in (2) is solely on

ifferences between a posteriori probabilities of dominant classes

most probable classes identified by the two classifiers). When the

wo classifiers agree on the identity of the dominant hypothesis,

elta divergence measures only the difference between the corre-

ponding a posteriori class probabilities. When they disagree, and

he signs of the differences differ, Delta divergence equals the sum

f the absolute values of the respective differences. When the la-

els disagree, and both of the differences of the a posteriori class

robabilities are positive, it picks the maximum of the absolute

alues of these differences. 

Apart from clutter reduction, D � has a number of other attrac-

ive properties. It is independent of the actual values of a pos-

eriori class probabilities, and therefore of their surprisal content.

n other words, classifier incongruence measurement is not modu-

ated by the likelihood of the dominant hypotheses. The measure

s bounded and symmetric. In Section 4 we show that the robust-

ess to clutter also reduces the sensitivity of Delta divergence to

 posteriori class probabilities estimation error. All these charac-

eristics jointly make Delta divergence ideal for gauging classifier

ncongruence. 

D � takes values from the interval [0, 1]. In order to provide

nsight into the frequency of occurrence of its values, we sample

he space of different combinations of class probability distribu-
ions outputs ( P and 

˜ P ) uniformly, and make a note of the result-

ng incongruence measure values after they enter the calculation

efined in (2) . We then identify the scenarios in which classifiers

gree on the most probable hypothesis, or disagree (cases of label

greement and disagreement) separately, and create histograms, on

hich averaging over bins and normalization is applied to end up

ith probability distributions. The graphs given in Fig. 3 are es-

imated using a total number of 10 6 of such probability distribu-

ion pairs for problems involving a number of classes equal to 3

nd 6. Fig. 3 (a) shows the probability density functions of D � for

he cases of label agreement, Figure 3 -b shows distributions for the

ases of label disagreement; and Figure 3 -c depicts the aggregate

istributions for all cases (combination of label agreement and dis-

greement). In each subfigure, 3 class problems are indicated by

ashed lines, whereas 6 class problems are indicated by the solid

urves. Note that the indicated values of m are selected for illustra-

ion purposes and the trend for other values follow in accordance

ith the following analysis. 

The effect of the number of classes, m , on the incongruence

easure distribution can be observed by comparing the solid and

ashed lines in Fig. 3 . As m increases from 3 to 6, high values of in-

ongruence become more likely for the label agreement case. This

an also be deduced from (2) ; the upper limit for incongruence

an be shown to equal [1 − (1 /m )] . Note that as m goes to infinity,

his value becomes equal to 1. A related observation for this case

s the decrease in the likelihood of observing incongruence values

lose to zero when m increases. In the case of label disagreement,

ontrary to the findings for agreement, the realizations of lower

 � values are more probable for m = 6 than m = 3 . Accordingly,

or high D � values, the probability densities are lower for m = 6

ompared to m = 3 . Note that the upper limit of the disagreement

ase is equal to 1 for all m, as a result of the second condition

n (2) . 
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Fig. 3. Probability density functions (pdf) of D � for classifier label agreement on the most probable hypothesis (a), for classifier label disagreement (b), and for all cases (c). 

Dashed lines indicate the distributions obtained for 3 class problems, and solid lines for 6. 
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Combining the two sets of observations for the label agreement

and disagreement cases, it can be concluded that their correspond-

ing distributions get shifted towards each other as m increases.

This means that the bigger m is, the more difficult it becomes

to tell if an obtained/measured incongruence value emerges from

a scenario of agreement in the most probable hypothesis, or dis-

agreement. On the other hand, for smaller m , the overall incongru-

ence distribution has a higher variation within the range [0, 1]. The

effect of the incongruence distribution on hypothesis thresholding

is going to be further discussed in Section 4.3 . 

3.1. Error sensitivity 

In reality, the a posteriori probabilities for the various hypothe-

ses will be estimated by the two classifiers subject to estimation

errors. The aim of the error sensitivity study is for the reader to get

a feel for the effect of these estimation errors on the properties of

Delta divergence. The intention is not to provide a comprehensive

theoretical analysis, but instead consider a few simple cases where

analysis is possible to gain intuitive idea of the impact of estima-

tion errors. The subsequent simulation studies explore the scenario

landscape more thoroughly, but it should be noted that even here

the aim of the study is more educational than to present definitive

findings. The justification for this is that in practice we will not

have access to ground truth class probabilities, neither to estima-

tion errors, and a more practical methodology will be required to

design a class incongruence detector. Such a design methodology

will be presented in Section 4.6 and its application illustrated in

Section 4.6.1 . 

Let us denote the estimates of P ( ω| x ) and 

˜ P (ω| x ) by P (ω| x ) +
ηω (x ) and 

˜ P (ω| x ) + ˜ ηω (x ) respectively, where ηω ( x ) and ˜ ηω (x ) are

the estimation errors. We refer to the probability density functions

of these errors as q ( η) and ˜ q (η) accordingly. 

For the sake of simplicity, we shall assume that q ( η) and ˜ q (η)

are normal distributions with zero mean and standard deviation

σ . However, it should be emphasized that estimation errors have

to satisfy the conditions 

m ∑ 

ω=1 

ηω (x ) = 0 (3)

and 

0 ≤ ηω (x ) + P (ω| x ) ≤ 1 (4)

Thus, as probabilities have to be nonnegative as well as not

exceeding unity, the normality assumption for q ( η) has to break

down for a posteriori probabilities close to zero or one. In order

to satisfy these constraints, we shall simply assume that the tail

of the Gaussian, constrained by any of the conditions, is clipped;

and the remaining part of the distribution is normalized to have

under the curve area equal to 1. Dropping again explicit references
o observation x , for a noise-free posterior P , the resulting error

istribution, p ( η, P ), becomes 

p(η, P ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 i f 

{
η < −P 
η > 1 − P (

1 ∫ 1 −P 
−P q (η) 

)
q (η) i f −P ≤ η ≤ 1 − P 

(5)

An example is shown in Fig. 4 for P = 0 . 1 and q (η) = N(0 , 0 . 15) .

n Fig. 4 (a), the thin solid line depicts q ( η). The thick solid line

llustrates p ( η, P ), obtained by clipping the tail of q at the cut

ff point, −P = −0 . 1 , as indicated by the dashed line, followed

y normalization. On the other hand, in Fig. 4 (b), the thick solid

ine illustrates the probability density function r ( s ) of the estimate

 = P + η. It should be remembered that r is obtained as a convo-

ution of the distributions of P and η, such that 

(s ) = 

∫ ∞ 

λ= −∞ 

δ(s − P − λ) p(λ, P ) dλ (6)

inally, the thin line in Fig. 4 (b) is provided for convenience and

epicts what r ( s ) would look like if the condition (4) did not exist.

The estimation errors corrupting class a posteriori probabilities

ill cause estimation errors on the computed incongruence values.

t is evident that for incongruence measures involving summation

ver all the classes these probability estimation errors will create

igh background noise level which will make it difficult to mea-

ure incongruence (surprise) reliably. Hence, the proposed incon-

ruence measure in (2) , which involves summation over at most

wo classes (when μ � = ˜ μ) should be considerably more robust to

oise. Let us now investigate the statistical properties of D �. 

With the contamination by estimation errors, the incongruence

easure can be expressed as 

 � = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

| P μ − ˜ P μ + ημ − ˜ ημ| μ = ˜ μ

max 
{| ̃  P ˜ μ − P ˜ μ + ˜ η ˜ μ − η ˜ μ| , 
| P μ − ˜ P μ + ημ − ˜ ημ| }

{ 

μ � = ˜ μ
P μ − ˜ P μ ≥ 0 

˜ P ˜ μ − P ˜ μ ≥ 0 

| ̃  P ˜ μ − P ˜ μ + ˜ η ˜ μ − η ˜ μ| + 

| P μ − ˜ P μ + ημ − ˜ ημ| 

{ 

μ � = ˜ μ
sgn (P μ − ˜ P μ) � = 

sgn ( ̃  P ˜ μ − P ˜ μ) 

(7)

In the two class case, referring to (3) , the estimation errors are

ot independent. However, as we consider problems involving sev-

ral classes, we make the simplifying assumption that the prob-

bility estimation errors are statistically independent. The useful

ignal in each term defined by absolute value operators in (7) ,

hich is constituted by the difference of a posteriori class prob-

bilities, is corrupted by the difference of the two probability esti-

ation errors. As we assume that the errors are independent, the

robability distribution τ ( ν) of their difference ν = ημ − ˜ ημ, can

e given by a convolution of the two component distributions, i.e.
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Fig. 4. Distributions of noise (a) and a posteriori estimates (b) for N (0, 0.15). 

τ  

w  

w  

y  

e

 

a  

e  

i  

w  

b  

c  

e  

a

 

w  

c  

i  

m  

h

 

f

 

i  

e

D  

 

d  

a  

d

E

 

c  

o  

t  

i  

a

v  

T  

i

σ

T  

t

 

s

D  

A  

t  

d  

t  

1

 

v  

t  

T  

d  

n  

t  

t  

c  

t  

n  

T  

c

E

T

E  

w

E  

N  

(

E

(ν) = 

∫ ∞ 

−∞ 

p(ν − λ, 0) ̃  p (−λ, 0) dλ (8)

ithout loss of generality (w.l.o.g) for all pairs of error terms. It

ould be difficult to perform an exhaustive bias and variance anal-

sis of (7) . However, to get a feel for the effect of the estimation

rrors, we shall consider a few special cases. 

If the a posteriori probability of the most probable class for

ny expert is close to the cut-off points, then the corresponding

stimation error distribution will result in tail clipping as given

n (5) to satisfy (4) . Any clipping affecting individual components

ould then show its effect on the joint error distribution defined

y (8) . Therefore, while computing the expected value of the in-

ongruence measure given in (7) , the absolute value operation in

xpectations would create additional bias of the estimated value

s a result of clipping. 

In order to keep the analysis simple, in the following few cases

e will assume that no tail clipping of the error distributions oc-

urs. In order to obtain closed forms, a further assumption that the

dentities of the most probable hypotheses do not change has been

ade. Note that these constraints are not invoked in the compre-

ensive experimental study given in Section 4 . 

Case 1: Both classifiers produce identical probability outputs

or the most probable hypothesis 

In this case, we assume that the expert probability outputs are

dentical for the most probable hypothesis before the addition of

stimation noise. Hence, 

 � = | ημ − ˜ ημ| = | ν| (9)

As no tail clipping occurs, the difference of errors will also be

istributed normally with zero mean, but with variance 2 σ 2 . The

bsolute value operation will result in D � to have a half normal

istribution with mean 

{ D �} = 2 

∫ ∞ 

0 

ντ (ν) dν = 

2 √ 

2 π
√ 

2 σ

∫ ∞ 

ν=0 

ν exp {− ν2 

4 σ 2 
} dν = 

2 σ√ 

π

(10) 

The implication of the result is that even when there is a 100%

ongruence between the classifiers, the incongruence measure will

n average be nonzero, with the bias defined by the variance of

he a posteriori probability estimation errors. The variance of the

ncongruence measure in this ideal case will be given by the vari-

nce of the half normal distribution, i.e. 

 ar(D �) = 2 σ 2 (1 − 2 

π
) (11)
hus, the standard deviation σ� of errors on D � in this scenario

s 

� = σ

√ 

2(π − 2) 

π
(12) 

he results in (10) and (12) have bearing on the selection of a

hreshold on the incongruence measure to detect unusual events. 

Case 2: Both classifiers agree on the most probable hypothe-

is 

In this scenario the incongruence measure is 

 � = | P μ − ˜ P μ + ημ − ˜ ημ| (13)

ssuming none of the component estimation noise values violates

he axiomatic properties of probabilities, the true value of Delta

ivergence a = | P μ − ˜ P μ| will be corrupted by a noise term with

he distribution of a clipped Gaussian, rescaled by factor 1 − γ =
 − 1 

2 
√ 

πσ

∫ 0 
−∞ 

exp {− (ν−a ) 2 

4 σ 2 } dν . 

Now let us denote �P = P μ − ˜ P μ. To determine the expected

alue of Delta divergence let us note that under the above assump-

ions the compound noise distribution τ ( ν) in (8) is symmetric.

he argument �P + ν can be either positive or negative. However,

ue to the symmetry induced by the absolute value operation, we

eed to consider only the case when the argument is positive, as

he result for the negative argument will be exactly the same. In

his scenario �P can be either positive or negative. In the first

ase, which will occur with probability 1 − γ , the contribution to

he expected value will be c 1 = 

1 
1 −γ

∫ ∞ 

0 ντ (ν − a ) dν . When �P is

egative, the contribution to the mean will c 2 = 

1 
γ

∫ ∞ 

0 ντ (ν + a ) dν .

he expected value will be given by the weighted sum of these two

ontributions, namely 

{ D �} = (1 − γ ) c 1 + γ c 2 = 

∫ ∞ 

0 

ντ (ν − a ) dν + 

∫ ∞ 

0 

ντ (ν + a ) dν

(14) 

his can be alternatively expressed as 

{ D �} = 

∫ ∞ 

−a 

(ν − a ) τ (ν) dν + 

∫ ∞ 

a 

(ν + a ) τ (ν) dν (15)

hich after rearrangement becomes 

{ D �} = 2 

∫ ∞ 

a 

ντ (ν) dν + a (1 − 2 γ ) (16)

oting that 
∫ ∞ 

a ντ (ν) dν ≥ aγ , we find that the expected value in

16) will be positively biased, i.e. 

{ D �} ≥ a (17) 
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For a given σ , this bias will diminish with increasing a ≤ 0.5 and

γ → 0 as well. When a = 0 the bias will be equivalent to (10) of

Case 1. 

The positive bias of Delta divergence will suggest that the clas-

sifiers are less congruent than in reality. As a increases, the clip-

ping will monotonically decrease, reducing the positive bias. For

large enough differences in the support for the dominant hypoth-

esis (larger a ) provided by the two classifiers, the expected value

of the incongruence measure will become unbiased, as the contri-

bution of the first term of the expression in (16) will go to zero.

This is because there will be no clipping caused by the absolute

value operation at the boundary of 0, and the distribution of er-

ror differences τ ( ν) will remain Gaussian. At the same time the

factor γ will also approach zero. In general, however, estimation

error will be introducing a positive bias and the measured incon-

gruence will appear to be stronger than its true underlying value

(noise-free case). 

When the distributions of estimation noise on the probabili-

ties of the dominant hypothesis cease to be Gaussian due to the

boundary constraint effects, the compound estimation noise distri-

bution becomes complicated, rendering Case 2 intractable. In any

case, the argument of the absolute value operation will be dis-

tributed according to τ ( ν) in (8) . The inversion of the negative val-

ues of ν by the absolute value operation is likely to render the

estimated magnitude of Delta divergence once again positively bi-

ased. 

Case 3: Classifiers disagree on the most probable hypothesis 

In this case, as the classifiers disagree on the most probable hy-

pothesis, there is likely to be a gap between the a posteriori prob-

abilities determined by the classifiers for class μ and ˜ μ. Let us fo-

cus on the scenario where the signs of the probability distributions

are positive. Under the assumption that the differences in the esti-

mated a posteriori probabilities of the dominant hypotheses avoid

clipping, the form of τ ( ν) will remain Gaussian for all error terms

and the expected value of the incongruence measure will be 

E{ D �} = max 
{| ̃  P ˜ μ − P ˜ μ| , | P μ − ˜ P μ| } + b (18)

with the bias b dependent on the relationship between the argu-

ments of the max operator and the estimation noise distributions,

as discussed in Case 2 . The limiting case of Case 3 is when for

one classifier the maximum a posteriori probability is equal to one

while for the other it is zero, and vice versa. Then the estimation

error distributions are subject to severe clipping. Note that in this

case the estimation noise will tend to reduce the underlying differ-

ence between the a posteriori class probabilities and consequently,

the expected value of ν will be negatively biased by an offset equal

to the mean in (10) 

E{ D �} = [1 − E{ ν} ] = 1 − 2 σ√ 

π
(19)

Note that the effect of estimation noise will be studied experi-

mentally in Section 4 . 

3.2. Incongruence measure thresholding 

To flag incongruence between two classifiers, a suitable thresh-

old must be selected for the incongruence measure. When there

is complete agreement between the classifiers (i.e. Case 1), the

threshold for the half normal error distribution, | ημ − ˜ ημ| , should

be set, say, 3 standard deviations from the mean of the (unclipped)

normal distribution. Recalling that the variance of the normal dis-

tribution of the compound noise is 2 σ 2 , it follows that threshold

T � should satisfy 

T � ≥ 3 

√ 

2 σ = 4 . 24 σ (20)

In practice the estimated a posteriori probabilities will be different.

For instance, a contextual classifier is likely to have a sharper dis-
ribution of probabilities over the various hypotheses than a non

ontextual classifier. For a difference in a posteriori probabilities

hich would result in no error distribution folding and for abso-

ute value operator that would cause no bias, i.e. | P μ − ˜ P μ| = 3 
√ 

2 σ,

he threshold should be set at 

 � ≥ 3 

√ 

2 σ + 3 

√ 

2 σ = 8 . 48 σ (21)

. Experimental sensitivity analysis 

The theoretical analyses presented in Sections 3.1 –3.2 provide

ome insight into the incongruence measure distribution and hy-

othesis testing in the presence of noise. However, the basis it

rovides for selecting the test statistics threshold is incomplete for

everal reasons: 

• In general, it is not possible to obtain closed forms. 
• Each solution is for a specific scenario defined by the class

probability distribution, the corresponding noise-free incongru-

ence measure value, the level of noise, and its distribution,

which changes dynamically as a function of the class probabili-

ties for the dominant hypotheses. 

The aim of the simulation studies designed and reported in this

ection is to obtain a more comprehensive picture of the properties

f the test statistics and to develop a practical basis for setting an

ppropriate incongruence measure threshold. This will be achieved

y 

• conducting empirical studies of the effect of class probabil-

ity estimation noise on the distributions of the proposed test

statistic, which is parameterised by fixed noise-free incongru-

ence measure values and the number of classes involved in de-

cision making, 
• exploring the variations of the test statistic distribution as a

function of different scenarios giving rise to the same noise-free

incongruence measure value, 
• integrating the test statistic distribution over different scenar-

ios, and 

• integrating the test statistic distributions over a range of noise-

free incongruence values deemed to reflect the state of the two

classifiers being congruent. 

The successive integrations will yield a resulting test statistic

istribution which can be presented in terms of the area under

ts tail, facilitating the selection of a threshold that would meet a

pecified level of confidence in the acceptance of the hypothesis of

lassifier congruence based on the proposed measure. 

In Section 4.1 , we firstly consider an example scenario where

he two classifiers estimate identical posterior distributions for the

ost probable hypothesis and there is no noise tail clipping. The

esults of this section are expected to confirm the theoretical find-

ngs analysed in Case 1 given in Section 3.1 . In Section 4.2 we

onsider more general scenarios, parameterised by noise-free in-

ongruence measure values and estimation noise statistics. Further

xperimental studies regarding hypothesis thresholding are carried

ut in Sections 4.3 –4.5 . Finally in Section 4.6 , the practical implica-

ions and guidelines for incongruence detection are provided. This

ection also includes an example real data application for utilising

he provided guidelines. 

It should be mentioned that in all experiments, each of the

robability distributions employed ( P and 

˜ P ) has been created by

niform sampling. Specifically, for a given m class problem and an

nstance x , the a posteriori probability output belonging to class

 n , P ( ω n | x ), is obtained by drawing a random sample from within

he range 
[
0 , 

(
1 − ∑ 

y<n P (ω y | x ) 
)]

. No te that the upper limit is up-

ated so that 
∑ 

ω P (ω| x ) = 1 , and the probability belonging to the

ast class, ω m 

, is assigned to P (ω m 

| x ) = 1 − ∑ 

y<m 

P (ω y | x ) without
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Fig. 5. Pdf curve for ˜ D � obtained for identical classifier outputs for the most prob- 

able hypothesis, affected by N (0, 0.10) noise with no tail clipping. 
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ampling. After creating 10 3 many P and 

˜ P distributions separately,

he set of all possible combinations of ( P , ˜ P ) are used in the ex-

eriments. Hence, the total number of instances, x , is made to be

qual to 10 6 . 

.1. Identical class probability outputs for the most probable 

ypothesis 

For this simple and somewhat unrealistic case, we assume that

he underlying posterior probabilities output by the two classi-

ers are identical for the most probable hypothesis (i.e. D � = 0 ),

nd that the identity of the most probable hypothesis (label) does

ot change after the addition of the estimation noise (Case 1 of

ection 3.1 ). 

There is of course an infinite number of posterior class proba-

ility distributions which fit this specification. In this case study,

e sample them subject to the constraint that the probability of

he dominant hypothesis for any expert is sufficiently far away

rom the boundaries of their interval of support so as not to cause

he estimation error distribution to have its tail clipped. The qual-

fying distributions, P and 

˜ P , are then corrupted by zero mean

aussian noise, and finally, incongruence measure distributions are

cquired from the corrupted distributions. The noisy incongruence

easures obtained are denoted as ˜ D �. 

The resulting distribution of ˜ D � given in Fig. 5 , which is ob-

ained for the standard deviation of the estimation noise σ = 0 . 1 ,

upports the theoretical findings in Section 3.1 . The curve is shown

o be in the form of a half normal distribution as discussed in

ection 3.1 , and the use of any value greater than 4 . 24 σ = 0 . 424

s a surprise threshold is depicted to retain at least ∼ 99.7% of

he distribution as given in Section 3.2 . Note that the number of

lasses, m , does not have an effect in this particular case, as the

erms to do with P and 

˜ P disappear from the calculation of sur-

rise as shown in (9) . 

.2. Distributions of ˜ D � for arbitrary class posterior probability and 

stimation error distributions 

In this set of experiments, we parameterise the scenarios by

arying noise-free D �, and study the impact of noise without ap-

lying restrictions on its characteristics such as tail clipping or la-

el change. 

Initially, for a given noise-free D �, all possible pairs of the prob-

bility distributions P and 

˜ P which output this value from (2) ,

re recorded. The process of selecting the probability distribution

airs takes the cases involving agreement and disagreement in

he most probable hypothesis into account separately. As a second

tep, noise drawn from the distribution p ( η), which is obtained by

egularising N (0, σ ) as given in (5) , is added to the selected P and
˜ 
 pairs. In these experiments, σ is set to 0.10. The resulting distri-

utions of noisy ˜ D are acquired from the corrupted P and 

˜ P . 
�
Using the histograms given in Fig. 3 , a few representative

noise-free) D � values have been selected to perform the analy-

is. These values are 0.3 for the case of label agreement, and 0.3

nd 0.7 for disagreement. The probability distribution functions of
˜ 
 � obtained for the label agreement case are given in Fig. 6 (a) and

b) for 3 and 6 class problems respectively. As for label disagree-

ent, Fig. 7 presents the results for the fixed value of D � = 0 . 3 ,

nd Fig. 8 for D � = 0 . 7 . 

It can be observed for all scenarios of label agreement and dis-

greement that the peak of the noisy incongruence measure dis-

ributions appear at the value where the input noise-free measures

re originally defined. However, the noise shows its effect through-

ut the [0,1] range and the intensity of this effect not only depends

n the values of D � and σ , but also on the number of classes,

 . For greater m , the impact can be observed to be marginally

maller, and hence a narrower spread of the surprise within the

ange [0,1] is acquired. 

.3. Integration over scenarios 

In this section, we concentrate on further experimental analysis

egarding hypothesis testing, where the task is to find a threshold

n our test statistic which would allow us to reject the hypothesis

t a given level of significance. 

The experimental analysis reported in Section 4.2 was based

n a variety of incongruence measure probability distributions ob-

ained for fixed input noise-free surprise values, sampled by our

xperimental procedure. However, as we will not know the char-

cteristics of the underlying scenarios in practice, it is more ap-

ropriate to integrate over the various scenarios by taking their

rior probability of occurrence into account. This integration can

hen be represented by a plot of the area-under-the-tail belonging

o the ˜ D � distribution as a function of threshold. 

The rationale for this integration can be explained using a sim-

le example. Looking at Fig. 8 , it can be observed that a threshold

f 0.5 can leave an important portion of some distribution curves

ut and cause false alarms during surprise detection. However, it

ay turn out that the cases with large lower tail areas for the

iven threshold may not be likely to occur with high probability,

.g. they might only happen when the estimation noise causes a

abel change. In other words, the contribution of these cases to the

robability of false alarm might be expected to be low. 

Hence, in this set of experiments, by taking the likelihood of

he distributions into consideration, the average sizes of the up-

er tail areas (% over the total area) are gauged for given thresh-

ld points. Note that the area estimates are parameterised by noise

evel. In Figs. 9 and 10 , the resulting graphs illustrating the upper

ail area (%) versus threshold are given for 3 and 6 class problems

espectively. In each figure, the results are obtained for different

xed noise-free surprise values and they are depicted using differ-

nt line types. The graphs at the top row are acquired using noise

istribution with standard deviation σ = 0 . 05 , whereas at the bot-

om row with σ = 0 . 1 . The first column corresponds to the results

btained from the case of label agreement, and the second column

pplies to disagreement. 

Confirming the experimental results presented in Section 4.2 ,

 comparison of Fig 9 (a) with Fig. 10 (a) shows that for any fixed

urprise threshold, the upper tail area size is greater for 3 class

roblems ( m = 3 ) compared to 6 classes ( m = 6 ) in the label agree-

ent case. This observation is valid for all values of σ and noise-

ree D � values. For the case of label disagreement, let us analyse,

or instance, the scenario in which noise-free D � = 0 . 5 and noise

= 0 . 05 by comparing Fig. 9 (b) and (b). The observation that the

pread of the surprise distribution within the [0,1] range is greater

or m = 3 than for m = 6 (as previously shown in Section 4.2 ) is

gain reflected in the respective area-under-the-tail curves. For ex-
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Fig. 6. Pdf curves of ˜ D � for the case of label agreement, obtained for D � = 0 . 3 corrupted by noise p ( η), for 3 class problems (a) and 6 class problems (b). 

Fig. 7. Pdf curves of ˜ D � for the case of label disagreement, obtained for D � = 0 . 3 corrupted by noise p ( η), for 3 class problems (a) and 6 class problems (b). 

Fig. 8. Pdf curves of ˜ D � for the case of label disagreement, obtained for D � = 0 . 7 corrupted by noise p ( η), for 3 class problems (a) and 6 class problems (b). 

Fig. 9. Upper tail area size versus ˜ D � threshold for different noise levels and different noise-free D � . Given for 3 class problems under the scenarios of classifier label 

agreement (a), and disagreement (b). 
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Fig. 10. Upper tail area size versus ˜ D � threshold for different noise levels and different noise-free D � . Given for 6 class problems under the scenarios of classifier label 

agreement (a), and disagreement (b). 
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mple, for ˜ D � = 0 . 6 , the upper tail area is just under 0.1 for m = 3 ,

hereas it is almost zero for m = 6 . 

In Figs. 9 (a) and 10 (a), a threshold around 0.7 can be observed

o cover more than 95% of the lower tail areas for the label agree-

ent cases in all scenarios. This means that almost all scenarios,

hich incorporate classifier agreement in the most probable hy-

othesis, will be perceived as congruence. However, it should be

orne in mind that a scenario where there is high discrepancy

etween the probability outputs of two classifiers, giving rise to

 high noise-free incongruence value, e.g. one greater than 0.5,

hould not necessarily be labeled as congruence even though there

s label agreement regarding the most probable hypotheses identi-

ed by these classifiers. Hence, depending on the choice of a noise-

ree D � cut-off for labelling congruence/incongruence, a more suit-

ble threshold for ˜ D � should be selected. 

Let us say we are using the cut-off value of D � = 0 . 5 such that

ll noise-free surprise values below 0.5 are to be detected as con-

ruence, and above this value for incongruence. Utilizing σ = 0 . 05 ,

t can be observed from Figs. 9 (a) and 10 (a) that the threshold

f ˜ D � = 0 . 4 labels all cases with D � = 0 . 6 as incongruence, and

 � = 0 . 1 , 0 . 3 as congruence with confidence around ∼ 95%. 

Proceeding with D � = 0 . 5 cut-off value and σ = 0 . 05 , and look-

ng at Figs. 9 (b) and 10 (b) to analyse the case of label disagree-

ent, it can be seen that employing a threshold of 0.4 (as in

he case of label agreement) results in identifying the scenarios

ith noise-free D � = 0 . 5 , 0 . 7 as incongruence, and scenarios with

 � = 0 . 2 as congruence with ∼ 90% confidence. 

Although the findings in this section are of importance to give

n insight into the effects of ˜ D � for fixed D � about the cases of

greement and disagreement separately, it should be noted that

n practice it is not possible to know in advance the values of

he noise-free incongruence measures or the nature of the prob-

em (giving rise to label agreement or disagreement). Hence, in

ection 4.4 , we will be marginalizing over these concepts after

electing a cut-off value for the noise-free measure to define the

ongruence-incongruence boundary. 
.4. Integration over noise-free congruence values 

In Section 4.3 we have integrated over various scenarios, each

efined by a fixed noise-free surprise value, and presented the

ndings for the cases of label agreement and disagreement sep-

rately. Here, we further integrate these area-under-the-tail dis-

ributions by aggregating over all noise-free surprise values be-

ow 0.5 for congruence, and above for incongruence. This process

akes the prior distributions of noise-free values into account and

arginalises over the scenarios of label agreement/disagreement

o reflect the use of the proposed measure in practice. Hence, the

hresholds suggested as a result of the experiments in this section

ill be different to those from Section 4.3 . 

The results of the experiments are provided in Fig. 11 for a 6

lass problem and for σ = 0 . 05 . Fig. 11 (a) indicates the confidence

n the decision to accept the hypothesis that the two classifiers

re congruent as a function of ˜ D �. It can be observed that, for

nstance, a threshold of 0.5 on the proposed measure would cap-

ure the classifier congruence cases at ∼ 95% confidence. Setting

he threshold to 0.6 would raise the confidence level to ∼ 100%.

owever, the plot in Fig. 11 (b) clearly indicates that we should

ot be too ambitious, as setting the threshold to yield high confi-

ence levels for detecting classifier congruence will inevitably lead

o unacceptable level of false negatives, i.e. declaring incongruent

lassifier outputs as congruent. For example, at 0.4 threshold we

ill correctly detect ∼ 100% of classifier incongruence instances,

ut this figure goes down to ∼ 80% for the threshold set at 0.5. 

Thus choosing a suitable classifier incongruence detection

hreshold is a question of trade-off between low false positives

nd low false negatives. In this context, it is important to bear in

ind, that in practical applications we will not normally be able

o generate the area-under-the-tail curves for incongruence cases.

he threshold selection will have to be based on such curves for

lassifier congruence cases only. 
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Fig. 11. Aggregate upper tail area versus ˜ D � for σ = 0 . 05 and 6 classes. Aggregated over D � < 0.5 for congruence (a) and D � ≥ 0.5 for incongruence (b). 

Fig. 12. ROC curves showing the capacity of ˜ D �, D K , ˜ D K , D D and ˜ D D to separate the 

state of congruence from incongruence computed for σ = 0 . 05 and 6 classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. True positive rates (TPR) calculated for a number of classes, after setting 

the false positive rate (FPR) to 0.05, for σ = 0 . 05 . 
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4.5. Relationship of Delta divergence with KL and DC-KL under noise 

The relationship of noise-free Delta divergence of Bayesian sur-

prise (KL) was already shown and discussed in [24] as the main

motivation for the development of the novel decision cognizant di-

vergence and its validation. It is pertinent to investigate whether

the favourable properties of Delta divergence vis-a-vis KL and its

decision cognizant variant DC-KL are preserved even when the a

posteriori class probability estimates are subject to errors. 

In Fig. 12 , we plot the Receiver Operating Characteristic (ROC)

curves of the noisy Delta divergence ( ̃  D �), noisy Bayesian surprise

( ̃  D K ) and noisy DC-KL ( ̃  D D ) for the 6 class problem and σ = 0 . 05 .

The ROC curves are computed by setting the boundary between

congruence and incongruence at D � = 0 . 5 . The figure also shows

the ROC curve for noise-free Bayesian surprise and DC-KL mea-

sures, given as D K and D D respectively. 

The results demonstrate that the ROC curves for the noise-free

Bayesian surprise and DC-KL measures are quite remote from the

top left corner (perfect separation) due to clutter, although DC-KL

shows better performance than KL. In the presence of estimation

noise, the areas under the ROC curves for ˜ D K and 

˜ D D are much

lower than that for ˜ D �. Moreover, as anticipated, the areas for ˜ D K 

and 

˜ D D are also smaller than that for D K and D D . Note that with

increasing levels of noise, the under-the-curve area sizes decrease,

but the ranking of the measures is maintained. It is also interesting

to mention that the area under the ROC curve for ˜ D � is larger than

the area related to the noise-free D K and D D as given in Fig. 12 for

σ = 0 . 05 , and this observation still holds for σ = 0 . 1 . 

In order to show the supremacy of Delta divergence over KL

and DC-KL for a varying number of classes, in Fig. 13 , we show

the results of an experiment where we set the confidence level for

false positives to 0.05 and calculate the corresponding true positive

rates of the given measures for 2,3,6,8,10 and 15 classes. The mea-
urements are performed for σ = 0 . 05 . It can be observed that TPR

or Delta divergence is better than that of DC-KL for all number of

lasses, and DC-KL outperforms KL except for 2 classes, where DC-

L becomes identical to KL as there is no ‘clutter” class in this sce-

ario. Note that the plots remain approximately constant for higher

umber of classes than 10 (not shown in the figure). 

.6. Practical implications 

The theoretical analysis and the simulation studies presented in

he paper are intended to provide an intuitive insight for the prop-

rties of the proposed incongruence measures. However, in prac-

ice, setting the decision thresholds is more likely to be based on

mpirical distributions of ˜ D � estimated on some anomaly free con-

ent. This can simply be achieved by histogramming the incongru-

nce measure values computed from the estimated class a poste-

iori probabilities on a stream of training sensor data. From such

 histogram the graph relating the upper tail area to threshold on
˜ 
 �, similar to that plotted in Fig. 11 (a), can be determined and a

uitable threshold selected, corresponding to a given level of con-

dence. This is a very pragmatic approach, as it makes use of the

osterior probabilities for all the hypotheses estimated by the data

nterpretation system. We do not need the ground truth values of

hese probabilities, neither noise estimates. 

The selected threshold can be tested on an independent set of

nomaly free data of the same quality to check for false positives.

his again is realistic, and can be done without any ground truth

nnotation of the validation data. 

Commonly, the decision threshold would be based on a desired

evel of confidence that the classifier outputs are congruent. This is

ompatible with the standard methodology of statistical hypothe-

is testing for outliers in statistical anomaly detection [6] . It is also

onsistent with the underlying philosophy that any anomaly de-
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Fig. 14. Upper tail area for anomaly-free Breakfast dataset samples for training set. 
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ection system should be designed on anomaly free training data,

s anomalies, by definition, are very rarely observed, and there-

ore cannot be used in training. However, in some cases a few

nomaly observations may be available or even synthetically gen-

rated; anomalous objects or events could be inserted in the data,

r alternatively, some object models could be removed from the

odel database. For example, a few items could be removed from

he speech recognition system vocabulary, which would result in

ncongruence between the outputs of phoneme and word classi-

ers, indicating out of vocabulary word anomaly. The incongruence

hreshold level could then be checked for anomaly under-detection

false negatives) on realistic examples of anomalous, or at least in-

ongruous, situations. 

A set of guidelines to be utilized for measuring incongruence in

ractice can be given as follows: 

1. Using an anomaly-free training set of sensor data, the a pos-

teriori probabilities, which are computed by the classifiers for

various hypotheses as part of the data interpretation process,

are recorded. 

2. The adopted incongruence measure values are computed from

the probabilities obtained in Step 1, and their distribution is es-

timated. 

3. The area under the tail of the distribution determined in Step 2

as a function of threshold on the test statistic is computed. This

will produce a graph equivalent to the one shown in Fig. 11 (a). 

4. Using the plot derived in Step 3, a classifier incongruence hy-

pothesis testing threshold is selected for a specified confidence

level, as described in Section 4.3 . 

Note, if it is possible to create a validation set with syntheti-

ally injected anomalies, Steps 1-3 can be repeated so as to obtain

n under the tail distribution equivalent to Fig. 11 (b). In this sce-

ario, it will be possible to compute a ROC curve similar to those
Fig. 15. Key frames belonging to the main action (a) and the background act
rovided in Fig. 12 , and threshold selection can be made to reflect

 suitable balance between false positives and false negatives. 

Let us now demonstrate the use of these guidelines on the ac-

ion recognition problem defined on the Breakfast dataset. 

.6.1. Incongruence detection on Breakfast Dataset 

Breakfast dataset [41] is a current benchmark for action and ac-

ivity recognition from videos, which comprises 10 activities re-

ated to breakfast preparation, performed by 52 different individ-

als in 18 different kitchens. Each activity consists of a number of

ction units, and 48 different action units are observed in total. For

his dataset, the goal is twofold: (1) to recognise simple, primitive

ctions (such as cut fruit, take bowl ), (2) to recognise high level,

omplex activities (such as prepare salad ) by utilising the detected

ctions. In this section, we focus on the outputs of a contextual and

 non-contextual classifier, to illustrate the design of a classifier in-

ongruence detector based on the Delta divergence in a practical

cenario. 

We first extract low-level local features with improved dense

rajectories (iDTFs) [43] and reduce their size to half (from 426 to

13 elements) with PCA. Using the training set defined by the ex-

erimental protocol for the Breakfast Dataset [41] we estimate a

6 mode Gaussian mixture model of the empirical distribution of

he extracted features. The features are encoded to Fisher vectors

44] with the VLFeat toolbox [45] . Finally, L2 and power normali-

ations are applied to the Fisher vectors. The resulting Fisher vec-

ors are of size 2 × K × D , where K is the number of clusters of the

MM and D is the dimensionality of the PCA compressed iDTF de-

criptor. In our case, for K = 16 and D = 213 the size of each Fisher

ector is 6816 dimensions. We reduce this size to 64 dimensions

ith a second PCA. Having obtained the reduced dimensionality

isher vectors, we recognise actions in the dataset with the HTK

oolkit [46] . 

The HTK toolkit performs a non-contextual action recognition.

or each detected action, HTK provides its temporal extends ( i.e.

ts start and end point within the video), its class ( e.g. pour water,

tir milk ) and a detection score in the form of log-likelihood. The

TK toolkit contextual classifier performs activity recognition by

tilising information regarding each action’s neighbouring actions. 

The contextual classifier partitions each video in the Breakfast

ataset and assigns action labels to each of the resulting segments.

he noncontextual classifier uses the segmentation information de-

ived from the contextual classifier and also labels each segment

ndividually. Delta divergence values are then computed for all seg-

ents, using the class probability values output by the classifiers.

fterwards, the set of all segments are divided into two random

artitions for training and test, and anomalies are eliminated from
ion (b), extracted from an example test sequence in Breakfast dataset. 
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the training set. By selecting monotonically increasing values of

threshold for ˜ D �, the area under the tail of the Delta divergence

distribution can be computed for the anomaly-free training set, as

given in Fig. 14 . 

The operational threshold for incongruence detection can then

be selected to produce an appropriate level of confidence in the

acceptance of congruence hypothesis. Specifically, as an example,

for the distribution in Fig. 14 we identify the threshold of 0.63 at

2.5% confidence level. The amount of the false negatives detected

by this threshold in a separate test set is 2.6%, which is close to the

set confidence level, as expected. Interestingly, the test set contains

a few instances of classifier outputs producing incongruence value

close to unity. An example of such a case is shown in Fig. 15 . 

This true incongruence flags a situation where the video hap-

pens to contain a main action sequence of coffee making, as

demonstrated by the key frame in Fig. 15 (a), and a secondary se-

quence which takes place at the background after the comple-

tion of the main action, as given by the key frame in Fig. 15 (b).

The contextual classifier recognises the final segment of this video,

upon the completion of coffee making, as “no action”. However,

the noncontextual classifier labels it as “take bowl”, as this is an

action carried out by the background object at this time instance.

Hence, each of the classifiers produces a sensible response, how-

ever they focus on different interpretations, and this disagreement

is detected by the incongruence detector correctly. 

5. Conclusion 

We addressed the problem of classifier incongruence detection

for decision making systems engaging multiple classifiers (contex-

tual/noncontextual, multimodal). The problem has been cast as one

of statistical hypothesis testing, with the focus of the paper di-

rected on the choice of a suitable test statistics. It has been argued

that the challenging nature of the classifier incongruence detection

lies in the inherent fuzziness of the concept of incongruence, and

the effect of estimation errors on the classifier outputs. After re-

viewing the deficiencies of the state-of-the-art methods for classi-

fier incongruence detection, we carried out a theoretical and exper-

imental investigation of a recently proposed measure, Delta diver-

gence, with the aim of providing an intuitive feel for its behaviour.

The simulation studies were designed to estimate the probability

distribution of the test statistics for various scenarios defined in

terms of noise-free classifier incongruence measure values and es-

timation error statistics. The area under the tail of the distribution

for various thresholds on the test statistics can then be determined

to illustrate the effect of estimation noise on incongruence thresh-

old selection. Based on the theoretical findings, a set of guidelines

have been developed for selecting classifier incongruence thresh-

old in practice. The use of these guidelines has been illustrated on

the problem of action and activity recognition in breakfast scenario

videos recording the preparation of different types of dishes for

breakfast. 

As for future work, the analysis can further be expanded to ac-

count for scenarios where more than two decision making experts

are taken into consideration. Moreover, it would be interesting to

conduct an extensive comparative study of Delta divergence with

other families of divergence measures such as Bregman [47] and

Renyi [26] divergences. However these divergences would have to

be extended to decision cognizant equivalents first. 
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