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Seismic, outcrop and well data from West Iberia and Newfoundland are used to investigate sediment 
stacking patterns during continental breakup as a function of tectonic subsidence. In West Iberia, two 
breakup sequences are revealed on seismic data by marked strata offlap oceanwards from the present-
day continental shelf. This character is similar to Newfoundland, where correlative strata comprise 
Lower Cretaceous–Cenomanian coarse-grained siliciclastics accumulated around local sediment-source 
areas. The interpreted data reveal that the two breakup sequences: 1) materialise sediment bypass 
onto continental-slope depocentres that experienced important tectonic subsidence during continental 
breakup, but without showing typical syn-rift growth packages; 2) generate specific forced-regressive 
stratigraphic intervals that relate to uplift and exhumation of the proximal margin. Subsidence and 
sediment stacking patterns in both West Iberia and Newfoundland reflect similar continental breakup 
processes as they evolved from the upper lithosphere- to their mantle-breakup stages. On both margins, 
coarse-grained siliciclastic units on the proximal margin give rise to thick shaley successions in deep-
water basins. This work also confirms that in a setting dominated by a significant sediment influx, 
yet lacking the burial rates of continental slope basins in Newfoundland, West Iberia comprised 
accommodation-driven basins during continental breakup, not necessarily sediment starved. As a 
corollary of our analysis, we classify breakup sequences around the world based on the characteristic 
lithologies of their regressive–transgressive depositional cycles.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Rift basins developed on future continental margins experi-
ence periods of enhanced subsidence that precede continental 
breakup by 10s of Ma (Peron-Pinvidic and Manatschal, 2009; 
Pérez-Gussinyé, 2012; Brune et al., 2014; Jeanniot et al., 2016). 
Yet, the last stages of rifting leading to continental breakup also 
record tectonic uplift on proximal areas of continental margins, ex-
huming older syn-rift strata deposited landward from a hinge zone 
(Jansa and Wade, 1975), or slope fault system (Alves et al., 2009). 
Hinge-zone exhumation accompanies the continental breakup pro-
cess per se (Braun and Beaumont, 1989), and reflects the charac-
teristic two-stage plate breakup evolution of Huismans and Beau-
mont (2011). According to these authors, type I margins as West 
Iberia and Newfoundland experience crustal-necking breakup be-
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fore mantle breakup is finally achieved. Type II margins such as SE 
Brazil and West Africa, which are wider and show a thinner upper 
lithosphere when compared with type I, record mantle-breakup 
at first before the crust is ruptured in a second regional event. 
Fault-cantilever models, depth-dependent stretching, isostatic com-
pensation of mass during necking and lithospheric rupture, shear 
heating and mineral-phase transitions in the mantle, have all 
been invoked to explain hinge-zone uplift as a function of margin 
types and relative magmatic inputs (e.g. Kusznir and Ziegler, 1992;
Braun and Beaumont, 1989; Huismans and Beaumont, 2011; Hartz 
et al., 2017).

Following the recognition of continental breakup as a pro-
longed event, Soares et al. (2012) identified a breakup sequence
in NW Iberia and related it to the two-step breakup of conti-
nental margins in Huismans and Beaumont (2011). The breakup
sequence partly correlates with the depositional hiatus of breakup 
unconformities formed on the proximal margin (e.g. Falvey, 1974;
de Graciansky and Chenet, 1979) and is associated with a dis-
cernible unconformity-bounded stratigraphic sequence of regional 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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extent, showing distinct depositional architectures to older (syn-
rift) strata and younger (drift) units (Fig. 5 in Soares et al., 2012). 
This breakup sequence marks the transitional period that spans 
from the onset of continental breakup to the establishment of ther-
mal relaxation as the main process controlling subsidence on fully 
rifted margins, regardless of the type of non-volcanic margin (type 
I or II), age(s) of continental breakup (Beranek, 2017), or the rela-
tive importance of magmatism to the breakup process per se.

This work goes beyond the published models to reveal that con-
tinental breakup in West Iberia and Newfoundland was associated 
with widespread (forced) regression, and sediment bypass towards 
continental-slope basins, in response to the exhumation of large 
parts of the proximal margin (Figs. 1a and 1b). We demonstrate 
that bypass units in continental-slope basins off West Iberia are 
composed of siliciclastic intervals that were chiefly deposited by 
gravitational processes in a tectonically active setting. We show 
that bypass units record a gradual transgression to form marked 
regressive–transgressive (R—T) depositional cycles. These deposi-
tional cycles were generated as West Iberia and Newfoundland 
evolved from their upper lithosphere (crustal) breakup stage to 
mantle breakup and ocean spreading. They form depositional se-
quences resolved at seismic, borehole and outcrop scales (Figs. 1c 
and 1d). In summary, this paper addresses the following research 
questions:

a) What is the architecture of breakup sequences in continental-
slope basins, and how these strata are identified on seismic 
data as stratigraphic markers of continental breakup?

b) How the stacking patterns documented at borehole and out-
crop relate to the subsidence histories of continental-slope and 
distal sedimentary basins offshore West Iberia and Newfound-
land?

c) Can breakup sequences be classified based on their key litho-
logical character (and depositional facies) along the Atlantic 
Ocean and other rifted continental margins?

2. Data and methods

2.1. Seismic and borehole analyses

Regional (2-D) seismic data from West Iberia and Newfound-
land are used together with unpublished outcrop and well data 
(Fig. 1). The criteria of Driscoll et al. (1995), Sinclair (1995), Alves 
et al. (2009) and Soares et al. (2012) are used in the identifi-
cation of key tectonic events affecting the North Atlantic region 
(Figs. 2a to 2c). Relative dates for seismic and stratigraphic units 
at borehole and outcrop are based on published and unpublished 
information from the Lusitanian Basin (Atrops and Marques, 1986; 
Wilson et al., 1989; Hiscott et al., 1990; Alves et al., 2003a, 2003b; 
Dinis et al., 2008; Turner et al., 2017), Porto Basin (Moita et al., 
1996), Iberia Abyssal Plain (Wilson et al., 1996, 2001; Eddy et al., 
2017), proximal NW Iberia (Groupe Galice, 1979; Boillot et al., 
1989; Murillas et al., 1990, Tucholke and Sibuet, 2007), and on 
published data from the Canadian and Irish margins (Driscoll et 
al., 1995; Sinclair, 1995; Williams et al., 1999; Shipboard Scientific 
Party, 2004; Gouiza et al., 2017; Dafoe et al., 2015).

Unpublished information from exploration wells Pe-1, Go-1, 
20B-1, 5A-1 and Lu-1 in West Iberia, together with dredge data 
published in Mougenot et al. (1979), are used locally to corroborate 
our seismic-stratigraphic interpretations. DSDP Site 398 and ODP 
Sites 637–641, 897–901 and 1065–1070 comprise important infor-
mation used to correlate seismic-stratigraphic units across West 
Iberia (Fig. 1b). In detail, DSDP Site 398 drilled into Hauterivian 
syn-rift strata to reveal a turbidite-rich succession with interca-
lated debrites in West Iberia. ODP Site 1069 drilled into basement 
rocks and Berriasian–Valanginian syn-rift strata (unit 6) blanketed 
by Albian–Turonian sediment (unit 5) (Wilson et al., 2001). This 
same unit 5 was later correlated with the breakup sequence by 
Soares et al. (2012) (Fig. 2c).

Borehole data from Newfoundland are interpreted based on 
open-source information from BASIN-Natural Resources Canada 
(NRCan). The interpretations in this paper also benefit from pub-
lished data in Tankard and Welsink (1987), Tankard et al. (1989), 
Withjack et al. (1998), Shipboard Scientific Party (2004) and Dafoe 
et al. (2015).

2.2. Well and pseudo-well backstripping

In this study, we use 1-D Airy backstripping techniques to de-
rive the tectonic subsidence-uplift history (i.e. in the absence of 
sediment and water loading; Watts and Ryan, 1976; Steckler and 
Watts, 1978) at borehole and pseudo-well locations along the West 
Iberia and Newfoundland margins (Fig. 1). We analyse backstrip-
ping results from nine (9) wells on the continental shelf and upper 
continental slope of West Iberia (in Cunha, 2008), build eight (8) 
pseudo-wells in West Iberia’s continental-slope basins (Fig. 1b) and 
six (6) well models offshore Newfoundland (Flemish Pass and Or-
phan basins) (Fig. 1a).

Offshore Newfoundland, subsidence models are based on pub-
lished stratigraphic information from Natural Resources Canada 
(NRCan Basin Database) (Fig. 1a). The available paleoenvironmental 
data, and published palaeogeographic reconstructions (e.g. Sibuet 
et al., 2012), suggest shallow-water deposition during the Early 
Cretaceous, deepening to outer neritic and bathyal (>200 m) envi-
ronments in the Late Cretaceous and Cenozoic.

The well models for the proximal margin of West Iberia were 
built using data from completion reports and geophysical logs 
(e.g. neutron porosity, sonic and density logs). Paleoenvironmental 
data indicate neritic (shelf) depositional environments (<200 m) 
in most proximal wells throughout the Mesozoic and Cenozoic (see 
Cunha, 2008 and Supplementary Table 1 for details on data utilised 
and associated uncertainties), except for wells Pe-1, Lu-1 located 
on the upper continental slope (Fig. 1b).

The pseudo-wells compiled for the slope basins of West Iberia 
(PW-1 to PW-8, Fig. 1b) are based on reliable stratigraphic con-
straints interpreted along TGS seismic profiles, which were depth-
converted using: a) stack velocity data from TGS, and b) con-
straints from wide-angle seismic data (in Cunha, 2008). In the 
backstripping calculations we account for a rapid increase in pa-
leowater depths during the latest Jurassic–Early Cretaceous as a 
result of advanced rifting leading to continental breakup, a char-
acter: a) in agreement with paleoenvironmental data from ODP 
Sites on the Iberia Abyssal Plain (e.g. Concherio and Wise, 2001;
Wilson et al., 2001; Mohn et al., 2015; Figs. 2b and 2c), and b) 
correlating with the ages of the syn-rift and breakup sequences
documented in this study. Due to the lack of reliable paleoenvi-
ronmental constraints beyond the continental shelf, a large uncer-
tainty (up to 1800 m) was assumed for paleowater depths during 
the modelling.

For the pseudo-wells in West Iberia, and for all modelled explo-
ration wells from Newfoundland, we use the default compaction 
curves provided by the Genesis petroleum systems modelling soft-
ware Zetaware Inc. (see Supplementary Tables 1 and 2 for param-
eterisation). For the eustasy term of the backstripping equation we 
assume the Steckler and Watts (1978) sea-level curve, which is 
based on the backstripping analysis of wells offshore USA’s East 
Coast, where the syn- and post-rift depositional records are well 
preserved. It should be noticed that potential basin exhumation 
events have not been modelled due to the lack of apatite fission-
track and organic matter maturity data. Thus, the upward shifts 
observed in tectonic subsidence curves for the proximal margin of 
West Iberia are due to sea-level rises in the absence of sedimenta-
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Fig. 1. a) Bathymetric map from offshore Newfoundland highlighting the seismic and borehole data interpreted in this work. b) Bathymetric map of West Iberia highlighting 
the location of industry wells, DSDP and ODP wells, pseudo-wells (PW-1 to PW-8), and interpreted seismic data. Red boxes indicate the areas in West Iberia in which 
borehole data were modelled. Outcrop locations 1 to 3 are also highlighted on the map. c) Interpreted segment of the SCREECH 2 seismic transect acquired across the 
Newfoundland margin. The U reflection is marked in red, and represents a bright seismic reflection that overlies transitional crust throughout the Newfoundland Basin 
(Karner and Shillington, 2005). At some places, the rugged basement between fault blocks may consist of slumped serpentinite. d) Interpreted segment of the IAM9 seismic 
transect across the Iberia Abyssal Plain margin. The IAM9 transect is located about 40 km south of the drilling transect LG12. The seismic profile (Pickup et al., 1996) shows 
open triangles that refer to M-Series magnetic anomalies interpreted by Srivastava et al. (2000). Vertical grey lines mark the limit between thinned continental crust and 
transitional lithosphere on the right and the boundary between smooth and rough basement within transitional lithosphere on the left. See Figs. 1a, 1b and 3a for location of 
the seismic profiles, which show an interpretation modified from Sibuet and Tucholke (2012). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
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Fig. 2. Stratigraphic panels correlating units in both Newfoundland and West Iberia from the onset of continental rifting in the Triassic, to its end in the Turonian. a) Stratig-
raphy of the Jeanne d’Arc Basin and its NE continuation towards the Flemish Pass Basin. Note that breakup sequences A and B occur on both the Newfoundland and West 
Iberian margins. b) Stratigraphy of the Alentejo, Lusitanian and Porto basins on the proximal margin of West Iberia. Note the marked hiatus between Aptian and Upper Juras-
sic strata in NW Iberia, in the region to the north of the Nazaré Fault (see Fig. 3a). c) Lithological data for DSDP Site 398 revealing the character of syn-rift strata, Breakup 
Sequence B and drift units drilled offshore Porto. The panel in a) was modified from Sinclair (1995). The panel in b) is modified from Wilson et al. (1989). The column in c) 
is based on Groupe Galice (1979) and Réhault and Mauffret (1979). (For interpretation of the colours in this figure, the reader is referred to the web version of this article.)
tion, e.g. in the Berriasian–Valanginian, Cenomanian and Turonian–
Maastrichtian.

3. Geological setting

3.1. Newfoundland margin

The Grand Banks area comprises a series of large sedimen-
tary basins that are parallel to the continental slope to the south 
(Jeanne d’Arc, Flemish Cap Basins), and to the north towards the 
Orphan area (Fig. 3a). The Orphan Basin experienced continen-
tal breakup after the Aptian–Albian boundary, making it slightly 
younger than the Grand Banks basins (Gouiza et al., 2017). In com-
parison, the Jeanne d’Arc and Flemish Cap basins have strong affin-
ity with SW Iberia in terms of the ages of main stratigraphic units 
and their continental breakup histories. The Newfoundland Mar-
gin is, nevertheless, characterised by a much wider (up to 350 km) 
and sediment-laden continental shelf (Grand Banks region) record-
ing up to 18 km of strata (Tankard and Welsink, 1987).

The Grand Banks are located within the Appalachian orogenic 
belt and underlain by Precambrian–Paleozoic basement rocks of 
the Avalon terrane (Haworth and Keen, 1979). On a regional scale, 
its structure is characterised by an area of relatively unstretched 
crust, the Bonavista Platform, which extends 100–200 km to the 
east of Newfoundland (Fig. 3a). The Bonavista Platform is sur-
rounded by a number of Meso-Cenozoic rift basins that form an 
arcuate pattern between the Charlie Gibbs and the Newfoundland 
Fracture Zones (e.g. Tankard and Welsink, 1987). The geometry and 
distribution of these basins is primarily controlled by the Mesozoic 
reactivation of pre-existing tectonic fabrics in Paleozoic rocks (Ha-
worth and Keen, 1979; Enachescu, 1988).
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Fig. 3. a) Paleogeographic evolution of West Iberia and Newfoundland. The figure highlights the main sedimentary basins in Newfoundland and West Iberia, and principal 
structures separating different highs and depocentres on the two margins. Red dotted boxes highlight the location of wells modelled in this paper. Seismic profiles in Figs. 1c 
and 1d are also shown in the map. The map is modified from Tucholke and Sibuet (2007). b) Refraction profile across the seismic line in Fig. 1d, as adapted from Dean et al.
(2000). Triangles show Ocean Bottom Seismometer (OBS) locations on the sea floor. Numbers are velocities in km s−1. c) Velocity model for the seismic profile in Fig. 1c, as 
modified from Van Avendonk et al. (2006). Triangles show OBS locations on the sea floor. Numbers are velocities in km s−1. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
The main rift basins in the Grand Banks region are the Or-
phan Basin in the north, the Jeanne d’Arc, Flemish Pass and Carson 
basins in the central sector, and the Whale and Horseshoe basins 
in the south (Fig. 3a). They are characterised by distinct basin 
styles and are separated by 1st-order transfer faults (Tankard and 
Welsink, 1987). In the Jeanne d’Arc and Carson basins, listric nor-
mal faults (the Murre and Mercury faults) accommodate relatively 
large amounts of extension (Fig. 3a). These faults cut deep into the 
crust and sole out in dipping-to-the-west intracrustal décollements 
(Tankard and Welsink, 1987; Driscoll et al., 1995).

The Jeanne d’Arc Basin is the largest syn-rift basin in the 
Grand Banks region, and was established in the Late Triassic with 
the accumulation of fluvial and lacustrine sediments, followed 
by widespread deposition of evaporite deposits during the lat-
est Triassic–earliest Jurassic period (Tankard and Welsink, 1987) 
(Figs. 2a and 3a). This first rifting episode is followed by pro-
nounced post-rift thermal subsidence, which records the accumu-
lation of over 5 km of interbedded sequences of marine sand-
stones, shales and carbonates during the Middle Jurassic (Tankard 
and Welsink, 1987; Grant, 1988) (Fig. 2a). The Upper Triassic–
Middle Jurassic stratigraphic sequence in Newfoundland is similar 
to that found in the Lusitanian and Porto basins, along the on-
shore portion and continental shelf of West Iberia, but is 2–3 times 
thicker (e.g. Tankard and Welsink, 1987; Wilson et al., 1989) (see 
Fig. 3b).
The onset of the Late Jurassic rift event in the Grand Banks is 
marked by a basinwide unconformity. This short-span rift episode 
is followed by the deposition of carbonates (Rankin Formation), 
shales (Egret Formation) and coarse-grained sandstones in the 
Jeanne d’Arc Formation (Tankard and Welsink, 1987; Tankard et 
al., 1989; McAlpine, 1990) (Fig. 2a). These formations, and overly-
ing Cretaceous deposits in Newfoundland, have lateral equivalents 
in West Iberia (Figs. 2b and 2c).

3.2. West Iberia margin

West Iberia comprises a rifted continental margin with more 
than 40 discrete sub-basins recognised in deep-offshore regions 
(Alves et al., 2009). Major tectonic lineaments subdivide West 
Iberia into a SW Sector associated with the Tagus Abyssal Plain, 
and a NW Sector associated with the development of the Iberia 
Abyssal Plain (Figs. 1b and 3a). The continental slope dips gently 
to the west in SW Iberia, where thick Cretaceous–Cenozoic sed-
iments were accumulated oceanwards of a wide region of Late 
Cretaceous–Early Cenozoic exhumation and erosion (Alves et al., 
2003a; Pereira et al., 2011, 2017). In contrast, the continental 
shelf of NW Iberia is limited by the 100–120 m isobaths and 
does not exceed 60 km in width. Beyond the continental shelf 
of NW Iberia, an abrupt bathymetric drop was created by a slope 
fault system that separates continental-slope basins from the prox-
imal Lusitanian and Porto basins since, at least, the late Mesozoic 
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(Figs. 1b and 3a). Seamounts along the continental slope of West 
Iberia generally comprise non-volcanic rift-related horsts, some of 
which were uplifted during latest Cretaceous–Cenozoic inversion 
(Mougenot et al., 1979; Alves et al., 2003a).

Basement units beneath the continental margin of West Iberia 
comprised, at the time of the Triassic rift onset, a set of thick 
Variscan terrains (Capdevila and Mougenot, 1988). Crustal thick-
ness is considered to have been substantially larger at this time 
in West Iberia when compared to Newfoundland, which occu-
pied a more peripheral position in relation to the Variscan Orogen 
(Capdevilla and Mougenot, 1988; Mohn et al., 2015). The Variscan 
basement of West Iberia’s deep-offshore basins has recently been 
interpreted as part of a new terrain (Ribeiro et al., 2013). In the 
absence of data proving this later postulate, it is plausible to con-
sider the Variscan terrains of West Iberia as continuing offshore 
following the general NW to ESE trends recorded at outcrop. This 
assumption is based on evidence from offshore basins, with NW-
to ESE-trending rift-related structures developing over (and mim-
icking) Variscan structures and the trends of the basement fabric 
documented onshore. However, the extent and limits of some of 
the Variscan terrains are not fully known underneath the deep-
offshore basins of West Iberia.

3.3. Mesozoic syn-rift and breakup sequences

Sedimentary basins in West Iberia reveal three major Mesozoic 
syn-rift episodes: Triassic (rift 1), Sinemurian–early Pliensbachian 
(rift 2) and late Oxfordian (rift 3) (Stapel et al., 1996; Leinfelder 
and Wilson, 1998; Alves et al., 2003b) (Fig. 2b). Rift 4 is recorded 
in continental-slope basins west of the Lusitanian Basin, Porto 
Basin, and in the zone of ‘transitional’ crust drilled by ODP Legs 
149 and 173 (Figs. 2c and 3a). Late Oxfordian–early Kimmerid-
gian extension in the Lusitanian Basin marks the onset of ocean 
spreading in SW Iberia (Wilson et al., 1989) or, as also suggested, 
precedes it by a few millions of years (Valanginian; Pinheiro et 
al., 1992, 1996). Alternative models consider continental breakup 
in SW Iberia as coinciding with the oldest magnetic anomaly in 
the Tagus Abyssal Plain (M20; 147 Ma), i.e. being late Tithonian 
in age (Srivastava et al., 2000) (Figs. 2b and 3a). Such an age cor-
relates with rifting and continental breakup in the southern part 
of the Grand Banks, and with the significant syn-rift subsidence 
recorded in the basins around the Bonavista Platform, Northern 
Newfoundland, during the Early Cretaceous (Wilson et al., 1989;
Sinclair, 1995; Nova Scotia Department of Energy, 2016). Hence, 
the oldest breakup unconformity in Iberia should be earliest Cre-
taceous in age and restricted to SW Iberia (Alves et al., 2009). 
This first breakup unconformity precedes a younger Aptian–Albian 
stratigraphic boundary developed in the northernmost portion of 
West Iberia into the Bay of Biscay (Soares et al., 2012; Eddy et 
al., 2017). Multiple breakup sequences were thus deposited in both 
West Iberia and Newfoundland as continental breakup propagated 
northwards and oceanwards. In West Iberia, as in Newfoundland, 
the youngest breakup sequence occurs above the Aptian–Albian un-
conformity (U reflector offshore Newfoundland), and is shown as 
a transparent to low-amplitude interval of black shales topped by 
strong seismic reflections in the ‘drift’ sequence (Figs. 1c and 1d).

4. Outcrop evidence of sediment bypass during continental 
breakup

In West Iberia, the bases of two Berriasian–Valanginian and 
Aptian–lower Turonian breakup sequences are marked by the sud-
den influx of coarse-grained siliciclastic deposits, and follow an 
architecture typical of forced-regressive systems tracts (e.g. Plint 
and Nummedal, 2000). Figs. 4a–4c show examples of these forced-
regressive episodes at coastal outcrops in the Lisbon region.
At location #1 (Espichel Cape), the Berriasian forced regres-
sion is marked by prograding (deltaic and fluvial) sandstones and 
conglomerates deposited over marine sands (Farta Pão forma-
tion) and karstified upper Jurassic limestones (Rey et al., 2006)
(Fig. 4a). Berriasian sandstones and conglomerates, part of Breakup 
Sequence A, correlate with widespread sand belts (deltaic and flu-
vial) that prograded from north and northeast during a main stage 
of basement rejuvenation and fault activity (Alves et al., 2009). At 
location #1, the Berriasian forced regression is marked by the sud-
den influx of quartz-pebble conglomerates and sandstones (Vale de 
Lobos unit, Rey et al., 2006), which are representative of continen-
tal environments with very minor marine influence (Fig. 4a). This 
episode gives gradually way to a transgressive maximum around 
the Valanginian–Hauterivian boundary, i.e. synchronously with the 
rift-climax stage recorded by DSDP and ODP data in NW Iberia 
(Groupe Galice, 1979; Wilson et al., 2001). The Berriasian forced-
regressive unit is a lateral equivalent of nodular lime mudstones 
with cyclinid foraminifera, minor sandstones and oyster-encrusted 
firmgrounds outcropping northwest of Lisbon. Close to Lisbon, 
the Berriasian forced-regressive strata are also unconformable over 
lowstand units (Farta Pão formation); these latter deposited at the 
end of the Late Jurassic, and marine carbonates and marls of the 
Mem Martins unit (Wilson et al., 1989) (Fig. 2b).

Location #2 (Praia da Calada) shows a similar regressive event 
in the form of upper Berriasian unchannelised sandstones (Torres 
Vedras formation; Breakup Sequence A) accumulated over upper-
most Jurassic–earliest Berrianian channel-fill and flood-plain de-
posits representative of fluvial environments (Lourinhã Formation) 
(Fig. 4b). At this location, the base of upper Berriasian strata is ero-
sional and dominated by quartz-pebble conglomerates and sand-
stones (Fig. 4b). Shale-bearing sandstones and thin (cm-scale) in-
tervals of grey mudstone occur towards the top of this regressive 
unit, where Thalassinoides and Skolithos burrows are also observed.

Location #3 (Praia da Crismina), records the sudden influx 
of shallow-marine sandstones in Breakup Sequence B over sha-
ley carbonate-shelf deposits (Rey et al., 2006) (Fig. 4c). Lower 
Aptian carbonates are overlain by fine and medium-grained mi-
caceous sandstones of upper Aptian–Albian age, which represent 
braided-river and estuarine deposits marking the base of the Al-
margem formation (Rey et al., 2006) (Figs. 2b and 4c). Con-
glomeratic levels, representing channel-fill deposits, occur inland 
from location #3, and are lateral equivalent to shelval and flu-
vial siliciclastics deposited above uppermost Jurassic strata north 
of Nazaré (Dinis et al., 2008). These deposits reveal transgres-
sive 2nd-order cycles until the Turonian (e.g. Rey et al., 2006;
Soares et al., 2012).

5. Correlative forced-regressive units in offshore basins

5.1. Newfoundland margin

In the Jeanne d’Arc and Flemish Pass Basins, multiple silici-
clastic intervals correlate with forced-regressive strata in West 
Iberia (Figs. 2a and 2b). In both West Iberia and Newfoundland, 
regressive intervals are associated with continental breakup in 
some margin sectors, while recording syn-rift extension in sec-
tors that were not yet posed to full breakup (Wilson et al., 2001;
Soares et al., 2012; Eddy et al., 2017).

Figs. 2a and 2b show a correlation panel between such a regres-
sive strata and equivalent shales/mudstones in deep-water basins. 
Of importance is the recognition of the Torres Vedras forma-
tion in West Iberia as equivalent to the Hibernia/Catalina/Eastern 
Shoals/Avalon Formations in Newfoundland, and the Almargem for-
mation as equivalent to the Ben Nevis Formation (Fig. 2). All these 
units comprise fluvial/deltaic to siliciclastic shelf units on both 
margins, and are interbedded with shaley intervals associated with 
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Fig. 4. Selected photographs showing key outcrops of breakup sequences A and B. See Figs. 1b and 3a for location. a) Location #1 (Espichel Cape) south of Lisbon showing 
the base of the Vale de Lobos formation, which represents the forced-regressive episode marking the base of Breakup Sequence A (Fig. 2). b) Location #2 (Porto da Calada) 
illustrating the base of Breakup Sequence A and the influx of unchannelised fluvial material in the Torres Vedras formation. c) and d) Base of Breakup Sequence B at Location 
#3 (Praia da Crismina) as documented at outcrop. At this location, fluvial sandstones of Aptian age were emplaced over a karst surface topping carbonates of the Ponta Alta 
formation (see Fig. 2b).
transgressive episodes. Clastic influence from continental sediment 
sources was more pronounced in West Iberia’s continental shelf 
and onshore basins, and should lead to deeper marine facies in 
continental slope basins, in essence equivalent to the Cape Broyle 
and Nautilus Formations offshore Newfoundland (Fig. 2a).

5.2. West Iberia margin

Figs. 5–7 show seismic profiles crossing the Iberia and Tagus 
Abyssal Plains. The profiles highlight distinct intervals of chaotic 
to partly continuous seismic reflections that terminate against 
the slope fault system, i.e. offlapping the continental slope but 
not showing typical syn-rift growth packages, and thus reflecting 
widespread regressive events in West Iberia. Two distinctive fea-
tures are observed in these essentially chaotic seismic units: a) 
draping and thinning of strata onto slope-bounding faults and as-
sociated bathymetry, which occurred together with enhanced foot-
wall degradation and axial flow(s) of sediment parallel to syn-rift 
topography; b) a predominance of mass-wasting and turbiditic de-
posits in these successions, as also revealed by DSDP and ODP 
borehole data (Figs. 2c and 3a). Such a depositional pattern is 
strongly clustered along syn-rift faults that bound both the modern 
continental slope and older (Mesozoic) rift basins.

Offlapping, regressive stratigraphic intervals were drilled by 
wells Pe-1 and Go-1 in SW Iberia, and Li-1 and Lu-1 in NW 
Iberia (Figs. 1b and 3a). Wells Li-1 and Go-1 are located on the 
proximal margin, on what was the Cretaceous continental shelf at 
the time of continental breakup. In contrast, wells Lu-1 and Pe-1 
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Fig. 5. a) Uninterpreted and b) interpreted seismic profile from NW Iberia highlight-
ing the location of pseudo-well 3 (PW-3), the time-depth of key seismic markers 
used to model subsidence, and the relative position of Breakup Sequence B. The 
location of the seismic profile is shown in Fig. 1b.

were drilled in upper slope areas flanking continental-slope basins 
(Figs. 1b and 3a).

5.2.1. SW Iberia
The basal, regressive strata in wells Go-1 and Pe-1 (SW Iberia) 

correlate with the regressive upper Berriasian siliciclastics (at the 
base of Breakup Sequence A) outcropping in locations #1 and #2 
(Figs. 1b, 3a and 8a). Onshore, the sequence reflects shallow ma-
rine to fluvial environments (Dinis et al., 2008), and marks the 
onset of continental breakup in the Tagus Abyssal Plain (Figs. 2b, 
3a and 8a). This first regressive episode is followed by a trans-
gressive event of probable Hauterivian age that is equivalent to a 
maximum flooding episode in the Cape Broyle Formation, offshore 
Newfoundland (Fig. 2a). This flooding episode is recorded, in West 
Iberia, by the Santa Suzana and Maceira members of the Cascais 
formation (Rey et al., 2006) (Fig. 2b).

5.2.2. NW Iberia
On continental-shelf and onshore basins of NW Iberia there 

is a recognised hiatus between uppermost Jurassic strata and re-
gressive Aptian siliciclastics (Almargem formation; Wilson et al., 
1989) (Fig. 2b). A similar regressive system to the Almargem for-
mation, of shallow marine to fluvial affinity, coincides with the on-
set of continental breakup in the Iberia Abyssal Plain (NW Iberia) 
during the late Aptian (Wilson et al., 2001; Soares et al., 2012;
Eddy et al., 2017) (Figs. 2b). Whereas in well 5A-1 almost all Cre-
taceous strata are missing, well Lu-1 crossed >800 m of Cretaceous 
units that record a marked increase in tectonic subsidence during 
the Early Aptian (Fig. 9).

In NW Iberia, regressive strata at the base of Breakup Sequence 
B were deposited above tilted siliciclastics and marls of lower Ap-
tian and older ages (Figs. 2b, 5 and 6; see also Mohn et al., 2015). 
At DSDP Site 398 and ODP Site 641, this same Aptian regressive 
event is recorded by the sudden influx of coarse debris flows and 
Fig. 6. a) Uninterpreted and b) interpreted seismic profile from NW Iberia revealing 
the time-depth of key seismic markers used in our subsidence models, and the 
relative position of Breakup Sequence B. The location of the seismic profile is shown 
in Fig. 1b.

slumped material accumulated in between intervals of black shales 
(Réhault and Mauffret, 1979; Soares et al., 2012) (Fig. 2c). Clastic 
influence from continental sediment sources was pronounced at 
this stage, contrasting with older syn-rift strata below and with 
post-Cenomanian drift units. In parallel, fault-scarp erosion is doc-
umented by the presence of breccias and debris flows with re-
worked Calpionellid-bearing limestones at borehole (Sibuet and 
Ryan, 1979; Dupeuble et al., 1987). These strata represent shal-
low marine facies typical of near-emergent footwall blocks (see 
also Azéma and Jaffrezo, 1983). Importantly, Breakup Sequence B 
reflects tectonic reactivation along the West Iberia margin, with 
marked rejuvenation of local sediment sources.

6. Analysis of tectonic subsidence curves

6.1. Newfoundland continental-slope basins

The backstripping results for Newfoundland reveal a marked 
contrast between extensional basins inboard of a continental slope 
fault system, where Lower Cretaceous (possibly including upper-
most Jurassic) strata sit on top of Paleozoic basement (wells E-21 
and J-87; NRCAN Basin database), and more distal basins to the 
east of this same system (wells F-66 and H-28; Figs. 1a, 3a).

The onset of latest Jurassic–Early Cretaceous extension in New-
foundland is interpreted to coincide with an episode of enhanced 
subsidence in continental-slope basins, with deposition of forced-
regressive strata that are equivalent to the lower Hibernia Forma-
tion in the Jeanne d’Arc Basin (Fig. 2a). The age of this marked 
subsidence pulse is consistent with that inferred from well back-
stripping in the Jeanne d’Arc basin (Bauer et al., 2010), but of 
higher magnitude in continental-slope basins. The tectonic sub-
sidence curves also suggest some diachronism between the Late 
Jurassic–Early Cretaceous rifting of the West Orphan (F-66), North 
Flemish Pass (I-78) and Southern Flemish Pass (C-60) basins, al-
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Fig. 7. a) Uninterpreted and b) interpreted seismic profile across SW Iberia with the 
location of pseudo-well 6 (PW-6), the time-depth of key seismic markers used in 
our subsidence models, and the relative position of Breakup Sequences A and B. 
The location of the seismic profile is shown in Fig. 1b.

though in this latter the upper Early Cretaceous subsidence pulse 
may be associated with post-rift wrenching (Foster and Robinson, 
1993). A final period of subsidence is then recorded in the Late 
Cretaceous–early Paleogene as Greenland and Canada were rifted 
apart (Hosseinpour et al., 2013), with large volumes of sediment 
being deposited in the West Orphan Basin at this time (wells H-28, 
J-87 and E-21) (Fig. 8c).

6.2. West Iberia continental shelf (exploration wells)

All modelled exploration wells from West Iberia show pro-
nounced basement subsidence during Late Triassic–Early Jurassic 
rifting, followed by post-rift thermal quiescence (Fig. 8d). This pro-
longed period of quiescence was followed by a major depositional 
hiatus reflecting the exhumation of structural highs marginal to 
subsiding basins during Late Jurassic–Early Cretaceous rifting (e.g. 
wells 14C-1A, Do-1 and 5A-1; Figs. 1b, 3a and 8d). In essence, 
the Late Jurassic–Early Cretaceous rifting episode was focused to 
the west of the continental shelf and, consequently, tectonic subsi-
dence curves in proximal (shelf) areas, around wells 14C-1A, Do-1 
and 5A-1, contrast with that inferred at well Lu-1 located on the 
upper continental slope of NW Iberia (Porto Basin; Figs. 1b, 3 and 
8d). A similar pattern of accelerated subsidence is recorded in 
continental-slope basins offshore Newfoundland during this time 
period (Figs. 1a and 8c). In contrast, well Pe-1 in SW Iberia records 
pronounced subsidence in the late Mid Jurassic–early Late Juras-
sic, a character suggesting diachronism of rifting along West Iberia 
(Alves et al., 2009) (Fig. 8d).
6.3. West Iberia continental-slope basins (pseudo-wells)

Pseudo-wells PW-1 to PW-3 in the Galicia Interior and Northern 
Peniche basins (Fig. 3a), show ‘typical’ syn-rift subsidence during 
the Late Triassic–Early Jurassic, followed by prolonged, Early to Late 
Jurassic tectonic quiescence. The latest Jurassic–Early Cretaceous 
rift event is then characterised by an acceleration in tectonic sub-
sidence associated with an increase in paleowater depths (Fig. 9d). 
In contrast, PW-5 and PW-4 (located on structural highs) only 
show moderate to very moderate Mid–Late Jurassic subsidence. 
(Fig. 9d).

In SW Iberia, PW-6 to PW-8 suggest sag-like subsidence, at a 
near-constant rate, throughout the Late Triassic–Late Jurassic. In 
PW-6 and PW-8, located on the continental slope, Early Cretaceous 
subsidence is well defined, and occurs together with a marked in-
crease in paleowater depths, as also constrained by borehole data 
on the shelf and seismic-stratigraphic information (see Alves et al., 
2009). This same pulse was followed by prolonged, typical post-rift 
tectonic quiescence after 90 Ma (Turonian) (Fig. 9d).

We tested the models’ sensitivity to large uncertainties in the 
syn- and early post-rift paleowater depths, between a conserva-
tive (shallow) and maximum value, with a variation of up to 1800 
m. As depicted in Fig. 9c, the assumption of an uncertainty range 
for paleowater depth changes the relative proportions of syn- and 
post-rift subsidence, and has implications for the parameterisation 
of the rift model and of crust/mantle stretching factor estimations 
(e.g. Stewart et al., 2000). This uncertainty, however, does not nec-
essarily affect the interpretation of breakup sequences, which show 
specific seismic-stratigraphic patterns (and distributions) on re-
gional seismic data (Figs. 1c, 1d and 5–7). In most wells drilled 
on the continental shelf, the uncertainty in paleowater depths is 
relatively small (<100 m).

7. Discussion

7.1. Sediment influx into slope basins during continental breakup

The principal question arising from our subsidence models, and 
interpreted seismic-stratigraphic data, is why has such a moder-
ate volume of material been accumulated on the continental slope 
and rise of West Iberia whereas, comparatively, continental-slope 
basins in Newfoundland show significantly thicker Cretaceous and 
Cenozoic strata? The geometry and subsidence histories of tilt-
blocks in Newfoundland are key to understand this difference; 
they form extended crustal blocks off the Grand Banks and the 
Orphan Basin, some of which constituted barriers to sediment 
sourced from relatively broad areas (Tucholke and Sibuet, 2007;
Dafoe et al., 2015). The relatively small size of Iberia as an isolated 
tectonic plate would have also hindered the sourcing of larger vol-
umes of sediment into continental-slope basins. In addition to the 
latter point, the tectonic subsidence curves in this work show an 
important enhancement of subsidence in West Iberia that contrasts 
with basins in Newfoundland (Figs. 8c and 8d).

Enhanced subsidence in continental-slope basins of West Iberia 
can be explained: a) by continuous subsidence through the 
Jurassic–Early Cretaceous rifting phases, or b) by assuming a 
marked shift in tectonic subsidence towards the locus of con-
tinental breakup in the Tagus and Iberia Abyssal Plains, in the 
latest Jurassic–Early Cretaceous (see Alves et al., 2009). We now 
consider the latter hypothesis to be the most plausible, as the 
subsidence models in this paper quantify tectonic subsidence in 
excess of 3000 m in continental-slope basins of West Iberia during 
the crustal stretching phases that immediately preceded, and ac-
companied, continental breakup in the Iberia Abyssal Plain (Late 
Aptian–Turonian) and, presumably, in the Tagus Abyssal Plain 
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Fig. 8. a) Lithological, gamma-ray (GR) and deep-resistivity (ILD) for wells Pe-1 and Go-1 in SW Iberia, compared with b) wells Li-1 and Lu-1 in NW Iberia. c) Backstripped 
subsidence curves for key industry wells on the Newfoundland margin. d) Backstripped subsidence curves for key industry wells in West Iberia based on Cunha (2008). 
Location of wells in Figs. 1b and 3a. (For interpretation of the colours in this figure, the reader is referred to the web version of this article.)



178 T.M. Alves, T. Abreu Cunha / Earth and Planetary Science Letters 484 (2018) 168–183
Fig. 9. a) Pre-stack velocity curves from TGS data interpreted in this work. On the 
two graphs are shown the p-wave velocity distributions for NW and SW Iberia. 
Average velocities were used in the subsidence models for pseudo-wells 1 to 8. 
The solid black line corresponds to the two-way travel time (TWTT) velocity func-
tion derived from the interval velocities in TGS seismic profiles (Cunha, 2008). The 
solid red line is the TWTT velocity function derived from Dean et al. (2000) for the 
Southern Iberia Abyssal Plain, based on wide-angle seismic data. b) Estimated pa-
leowater depth and tectonic subsidence estimated for pseudo-well 3 (NW Iberia). 
c) Estimated paleowater depth and tectonic subsidence estimated for pseudo-well 
6 (SW Iberia). d) Tectonic subsidence curves for pseudo-wells 1 to 8, NW and SW 
Iberia. Note the subsidence curves for reference (average), shallow (conservative) 
and maximum paleowater depths in Figs. 9b and 9c. The location of the pseudo-
wells is shown in Fig. 1b. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

during the Early Cretaceous (Fig. 9). In essence, latest Jurassic–
Early Cretaceous tectonic subsidence in continental-slope basins 
was more intense than that recorded during the Triassic–Middle 
Jurassic (Fig. 8c, 8d and 9). In comparison, after a peak in sub-
sidence around the Oxfordian–Kimmeridgian boundary (Wilson et 
al., 1989), the Lusitanian Basin and onshore parts of the SW Iberia 
record widespread sea-level fall during the late Kimmeridgian, and 
subsidence was minimal on the proximal margin by the time rift 4 
(Berriasian–early Aptian) was developing in NW Iberia (Fig. 2).

The recognition of >3000 m of Early Cretaceous subsidence 
in PWs 1–3, 5–6 and 8 indicates that subsidence in continental-
slope basins of West Iberia did not result from the superposition 
of discrete extensional episodes, but rather from moderate, pro-
longed Triassic-Jurassic subsidence followed by an abrupt exten-
sional pulse in the latest Jurassic–Early Cretaceous (Fig. 9). This 
same period of transient (and enhanced) tectonic subsidence is not 
only related to a shift in the principal locus of extension towards 
the present-day Tagus and Iberia Abyssal Plains; it also accounts 
for: a) the relatively large water depth of basins in West Iberi-
a’s continental slope, as observed at present, b) the generation of 
thick slope degradation complexes interfingering with and capping 
syn-rift packages in deep-offshore basins, and c) the passive drap-
ing of continental slope basins recorded after continental breakup 
was completed (Figs. 5 to 7). This passive draping, when combined 
with our modelling results, suggests that the period of enhanced 
tectonic subsidence along West Iberia started in the latest Juras-
sic (?Tithonian) and was essentially over by the Turonian (90 Ma) 
(Figs. 2 and 9d).

Considering that only 1-D backstripping was performed for this 
paper, we do not fully document the effects of flexural isostasy on 
tectonic subsidence, which is a widely accepted model to deter-
mine the deformation of the lithosphere associated with long-term 
(>1 Ma) geological loads, such as rifting and sediment (Watts, 
2001 and references therein). Results from combined flexural back-
stripping and associated gravity modelling along West Iberia show, 
for instance, that the structure of the crust and associated gravity 
anomalies are best explained assuming a laterally varying effec-
tive elasticity for the lithosphere (Te; a proxy for the long-term 
strength of the lithosphere), with a low Te over stretched conti-
nental basement (Te ≤ 10 km), flanked by a stronger lithosphere 
in old oceanic and unstretched continental crust (Te ≥ 15 km) 
(Cunha, 2008; Cunha et al., 2010). These studies also show that 
Airy isostasy models may underestimate the amount of tectonic 
subsidence in the main depocentres along the slope-rise by up to 
1 km, and rift flank uplift over the shelf by hundreds of meters. 
Such an uplift may explain the Mid Jurassic–Early Cretaceous hia-
tus recorded on the hinge zone separating the Lusitanian Basin 
from continental-slope basins, with significant volumes of sedi-
ments feeding these latter. Although It is not within the scope of 
this paper to assess or model the mechanisms that control rift-
flank uplift, which may result from multiple processes (e.g. Rowley 
and Sahagian, 1986; Kusznir and Ziegler, 1992; Podladchicov et 
al., 1994; Hartz et al., 2017), such an analysis could provide valu-
able constraints on the magnitude of exhumation events inboard 
of continental-slope basins.

7.2. Depositional architecture of breakup sequences offshore Iberia and 
Newfoundland

Based on the tectonic subsidence data in this work, we pos-
tulate that significant mass-wasting and footwall degradation are 
associated with the continental breakup event on rifted conti-
nental margins, and that ‘drift’ units are gradually deposited dur-
ing a prolonged episode of tectonic and thermal subsidence that: 
a) floods continental margins, and b) follows exhumation and up-
lift in proximal basins. On seismic and borehole data, continental 
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breakup offshore NW Iberia records the deposition of turbidite 
successions and debrites that form a well-defined offlapping se-
quence on seismic data, particularly when associated with sand 
fairways that channelled siliciclastic material from the continental 
slope (Figs. 2a and 2b). In SW Iberia, the same phase of chaotic, 
offlapping sediment-bypass coincides with a marked period of sub-
sidence in continental-slope basins, which is better represented by 
the deposition of Breakup Sequence A as a relatively younger slope 
degradation complex (Fig. 7). The two offlapping intervals repre-
sent successive continental breakup events; latest Jurassic–Early 
Cretaceous in SW Iberia, and late Aptian–Turonian in NW Iberia 
(Figs. 5–7).

One key observation is that strata reflecting mass-wasting and 
sediment bypass, associated with the maxima in subsidence rate 
recorded on pseudo-well data (150–90 Ma), are gradually draped 
by a thick interval of wavy to sub-parallel, low-amplitude seismic 
reflections on both West Iberia and Newfoundland (Figs. 1c, 1d and 
5 to 7). This drape is interpreted to reflect ‘drift’ conditions on a 
fully rifted continental margin, and its initiation has been tenta-
tively dated as Late Cenomanian–Turonian in NW Iberia based on 
industry and DSDP/ODP wells (Soares et al., 2012). In SW Iberia, 
Breakup Sequences A and B are also gradually draped by drift 
units, as shown in Fig. 7. In contrast, tectonic subsidence curves 
for Newfoundland are much more stable for the period spanning 
the Aptian–Turonian, and subsidence was chiefly enhanced at the 
end of the Cretaceous in response to migration of the syn-rift axis 
along the Labrador Sea into west Greenland (Fig. 8c).

This fact leads us to propose that the continental breakup event 
in Newfoundland was dominated by hyperextension and large hor-
izontal displacements in crustal blocks, but records more moderate 
tectonic subsidence when compared to West Iberia. In fact, NW 
Iberia experienced widespread subsidence after complete separa-
tion of mantle lithosphere, with no major heave between crustal 
tilt-blocks accommodated after this stage. In this latter case, the 
presence of hyperextended tilt-blocks in parts of Newfoundland 
(Flemish Cap, Orphan Knoll) hints at significant crustal stretch-
ing, which is not as prominent in West Iberia’s continental slope 
basins. In addition, we interpret that the draping of breakup se-
quences is phased on newly-formed continental slopes after litho-
spheric breakup is initiated. It is also diachronous as continental 
breakup migrates along the strike of continental margins, a char-
acter well marked in Newfoundland. Locally, it is capable of gen-
erating younger degradation complexes above breakup sequences, as 
recorded in SW Iberia as an example of this same diachronous pro-
cess (Fig. 7). Hence, we support the view that footwall degradation 
on rifted continental margins may continue beyond the continen-
tal breakup events affecting distinct crustal segments (Huismans 
and Beaumont, 2011), thus generating footwall uplift and rotation 
away from the areas that evolve into full continental breakup at a 
given time, along a diachronous, migrating rift-continental breakup 
axis (see Alves et al., 2009).

In Newfoundland the deposition of successive sandstone-rich 
breakup sequences is followed by the deposition of the shaley Ban-
quereau Group after the early Turonian (Sinclair, 1995), which 
represents the onset of drift strata in the Jeanne d’Arc Basin 
as rifting migrated to the Orphan Basin and Labrador Sea area 
(Fig. 2a). In NW Iberia, we denote the onset of the drift phase by 
widespread deposition of contourites (Wilson et al., 2001; Soares 
et al., 2014). Importantly, the end of the breakup sequence precludes 
a widespread condensed interval that spans the Santonian to the 
Maastrichtian (Groupe Galice, 1979; Wilson et al., 2001).

7.3. Types of break-up sequences on continental margins

Original interpretations of continental breakup along continen-
tal margins have taken into account the deposition of post-rift 
strata that are distinct from the extensional (syn-rift) sequences 
below (Falvey, 1974; Braun and Beaumont, 1989; Tucholke and 
Sibuet, 2007). However, recent data have also recognised the accu-
mulation of strata above syn-rift units that are attributed to ‘tran-
sitional units’, representing the cessation of rifting on continental 
margins. This is particularly the case in broad areas of SE Brazil, 
Equatorial Brazil, West Africa and the Gulf of Mexico (Beglinger 
et al., 2012b; Mohriak and Leroy, 2012; Pindell et al., 2014;
Davison et al., 2012; Zhao et al., 2016). In Australia, post-breakup 
sequences of Mesozoic and older ages (reaching ∼2000 Ma) have 
been recognised in offshore and onshore basins above distinct 
breakup unconformities (Hall et al., 2013; Holford et al., 2014).

Fig. 10 documents breakup sequences in multiple areas of the 
world based on the characteristic lithologies of their regressive–
transgressive (R—T) depositional cycles. The SE Brazil–West Africa 
conjugate records R—T cycles that are initiated by the deposition 
of shallow-water microbial carbonates, followed by >3 km-thick 
evaporites (Davison et al., 2012). In Equatorial Margins of Brazil 
and Africa, a similar R—T cycle is dominated by the accumulation 
of continental and shallow-marine strata (Greenhalgh et al., 2011;
Roberts and Bally, 2012). In Iberia and Newfoundland, a two-
fold distribution of regressive sandstones/conglomerates in proxi-
mal areas gives rise to shales (including black shales) and mass-
transport deposits in deeper parts of the two margins. Similar 
depositional patterns have been documented on margins as dis-
tinct as East Greenland, NW Morocco Argentina and South China 
Sea, to give a few examples. Such a broad record of R—T cycles 
during continental breakup permit us to classify R—T cycles in 
breakup sequences throughout the world as: a) sandstone–shale, b) 
carbonate–evaporite, and c) sandstone–carbonate cycles.

A very important control on continental breakup is the pres-
ence of inherited basement structures, as recorded in most regions 
where margins were finally rifted apart (Buiter and Torsvik, 2014). 
Another control on the architecture of breakup sequences are the 
postulated differences in geometry (and evolution) between type I 
and type II margins, and between these and magma-rich margins 
with marked seaward-dipping reflectors and significant volcanism. 
We thus propose that the character of breakup sequences follows 
the classification in this paper, and reflects profound differences in 
terms of the sedimentary, tectonic and thermal histories of rifted 
margins during continental breakup.

8. Conclusions

Seismic, outcrop and backstripping well and pseudo-well mod-
elling results justify, for the first time, the presence of offlapping 
strata deposited during continental breakup in West Iberia. This 
offlapping unit is associated with important tectonic subsidence in 
continental slope basins during continental breakup, and deposited 
a characteristic chaotic package that onlaps the continental slope 
to form an intermediate unit between drift and syn-rift strata. Sim-
ilar strata occur in Newfoundland, Orphan and Flemish Pass basins. 
The main conclusions of this study are as follows:

(1) Strata offlap and associated deposition of chaotic strata during 
continental breakup were associated with an acceleration in 
tectonic subsidence between ∼150 Ma (Tithonian) and ∼90 
Ma (Turonian), on both the West Iberia and Newfoundland 
margins. This acceleration was initiated during the last syn-
rift stage leading to continental breakup, and records marked 
peaks during Breakup Sequences A and B.

(2) The tectonic subsidence curves in this work suggest a transient 
subsidence stage occurring between the end of the stretching 
pulse and the establishment of the continental slope as a dis-
tinct morpho-tectonic feature.
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Fig. 10. Characteristic lithologies of regressive–transgressive depositional cycles in breakup sequences around the world. These breakup sequences can be divided in three main 
classes: a) sandstone–shale, b) carbonate–evaporite and c) sandstone–carbonate. Minor amounts of carbonate may occur in sandstone–shale breakup sequences. Geographic 
names (in bold) are shown together with the names of the stratigraphic formations representing breakup sequences (in italic). Stratigraphic information used for in this panel 
was taken from Klitgord and Schouten (1986), Horsthemke et al. (1990), Moore (1992), Chalmers and Pulvertaft (1993), Keeley and Light (1993), Light et al. (1993), Clark et 
al. (2014), Baker (1995), Sinclair (1995), Whitman et al. (1999), Chalmers and Pulvertaft (2001), Gabrielsen et al. (2001), Bradshaw et al. (2003), Kyrkjebo et al. (2004), Bird et 
al. (2005), Bosworth et al. (2005), Heine and Muller (2005), Brownfield and Charpentier (2006), Pedersen et al. (2006), Bueno et al. (2007), Condé et al. (2007), Córdoba et al.
(2007), França et al. (2007), Moreira et al. (2007), Soares et al. (2007), Alves et al. (2009), Schettino and Turco (2009), Espurt et al. (2009), Zachariah et al. (2009), Beglinger 
et al. (2012a), Beglinger et al. (2012b), Mello et al. (2012), Soares et al. (2012), Kaki et al. (2013), Tamannai et al. (2013), Tari and Jabour (2013), Cazier et al. (2014), Schmidt
(2014), Pindell et al. (2014), Brownfield (2016), Nova Scotia Department of Energy (2016), d’Almeida et al. (2016), Geissler et al. (2016), Howarth and Alves (2016), Ndiaye 
et al. (2016), Zhao et al. (2016), Biari et al. (2017), Gouiza et al. (2017) and Parsons et al. (2017). (For interpretation of the colours in this figure, the reader is referred to the 
web version of this article.)
(3) Changes in paleodepth (from shallow to deep reference val-
ues) used in the models do not change the overall profiles 
of tectonic subsidence, hence justifying the pronounced offlap 
revealed on seismic and borehole data as associated with con-
tinental breakup.

(4) Borehole data from West Iberia reveal finning-upward se-
quences in continental-slope basins, which reflect to a gradual 
deepening-upwards trend as continental breakup progressed 
into the drift stage.
(5) Earlier continental breakup in SW Iberia, when compared to 
NW Iberia, has led to enhanced Cretaceous subsidence and 
the putative stacking of two break-up sequences in continental 
slope basins.

As a corollary we suggest variable tectonic, paleogeographic and 
climatic settings acting on continental margins to result in dis-
tinct regressive–transgressive cycles, which can be classified as: 
a) sandstone–shale, b) carbonate–evaporite and c) sandstone–
carbonate.
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