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Abstract In recent decades, decomposition techniques have enabled increasingly more

applications for dimension reduction, as well as extraction of additional information from

geophysical time series. Traditionally, the principal component analysis (PCA)/empirical

orthogonal function (EOF) method and more recently the independent component analysis

(ICA) have been applied to extract, statistical orthogonal (uncorrelated), and independent

modes that represent the maximum variance of time series, respectively. PCA and ICA can

be classified as stationary signal decomposition techniques since they are based on

decomposing the autocovariance matrix and diagonalizing higher (than two) order statis-

tical tensors from centered time series, respectively. However, the stationarity assumption

in these techniques is not justified for many geophysical and climate variables even after

removing cyclic components, e.g., the commonly removed dominant seasonal cycles. In

this paper, we present a novel decomposition method, the complex independent component

analysis (CICA), which can be applied to extract non-stationary (changing in space and

time) patterns from geophysical time series. Here, CICA is derived as an extension of real-

valued ICA, where (a) we first define a new complex dataset that contains the observed

time series in its real part, and their Hilbert transformed series as its imaginary part, (b) an
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ICA algorithm based on diagonalization of fourth-order cumulants is then applied to

decompose the new complex dataset in (a), and finally, (c) the dominant independent

complex modes are extracted and used to represent the dominant space and time ampli-

tudes and associated phase propagation patterns. The performance of CICA is examined by

analyzing synthetic data constructed from multiple physically meaningful modes in a

simulation framework, with known truth. Next, global terrestrial water storage (TWS) data

from the Gravity Recovery And Climate Experiment (GRACE) gravimetry mis-

sion (2003–2016), and satellite radiometric sea surface temperature (SST) data

(1982–2016) over the Atlantic and Pacific Oceans are used with the aim of demonstrating

signal separations of the North Atlantic Oscillation (NAO) from the Atlantic Multi-dec-

adal Oscillation (AMO), and the El Niño Southern Oscillation (ENSO) from the Pacific

Decadal Oscillation (PDO). CICA results indicate that ENSO-related patterns can be

extracted from the Gravity Recovery And Climate Experiment Terrestrial Water Storage

(GRACE TWS) with an accuracy of 0.5–1 cm in terms of equivalent water height (EWH).

The magnitude of errors in extracting NAO or AMO from SST data using the complex

EOF (CEOF) approach reaches up to *50% of the signal itself, while it is reduced to

*16% when applying CICA. Larger errors with magnitudes of *100% and *30% of

the signal itself are found while separating ENSO from PDO using CEOF and CICA,

respectively. We thus conclude that the CICA is more effective than CEOF in separating

non-stationary patterns.

Keywords Independent component analysis (ICA) � Complex ICA (CICA) � Time

series analysis � Signal separation � Non-stationary decomposition � Terrestrial
water storage (TWS) � Sea surface temperature (SST)

1 Introduction

Geophysical and climatological observations, such as the time series of global terrestrial

water storage (TWS, Tapley et al. 2004), sea level (Shum and Kuo 2010), and sea surface

temperature (SST, Reynolds et al. 2002), contain many inherent time scales, which reflect

the complex processes that cause their variations. Traditionally, parametric methods such

as regression techniques have been applied to analyze these observations, for which one

assumes that the observed time series consists of different parts, for example, a trend

(defined as long-term evolution of the series), periodic components including seasonal

cycles, and a random part, i.e., noise. Multivariate linear regression (MLR) is a common

technique to perform such analysis (Rencher and Christensen 2012). Each part of the

model is then accounted for by introducing pre-defined base functions. Finally, the sought-

for parameters that are coefficients of the base functions are approximated using, e.g., a

least squares adjustment (Koch 1999).

Selecting appropriate base functions to meaningfully represent the behavior of obser-

vations is a difficult task in parametric techniques. For example, several studies indicate

that the long-term variability of climate records is not perfectly linear in time. Their

periodical components cannot be adequately explained by sinusoids, for example, see time

series of TWS in Schmidt et al. (2008) and also see discussions on the modulation of

amplitudes in SST time series (Moore et al. 2017). Furthermore, it is very difficult to detect

whether a trend in these time series is significant or whether it is part of an oscillation

(Matalas 1997). Therefore, statistical methods that extract data-adjusted spatial and
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temporal patterns from observations have garnered increased interest (von Storch and

Zwiers 1999).

Several principles have been developed in statistics to extract linear and/or nonlinear

parameterizations of random variables. The term ‘statistical decomposition’ is applied for

‘transforming’ or ‘separating’ multivariate sampled variables (e.g., observed geophysical

time series or model simulations) into ‘mathematical components’, which is also known as

‘statistical modes’ (Preisendorfer 1988). The algorithms that are used in the statistical

techniques to find such parameterizations can be categorized according to the statistical

information used in their decomposition procedure, for example, (a) ‘second-order’ and

(b) ‘higher-order’ techniques (Cardoso 1999; Hyvärinen 1999a). They can also be clas-

sified, based on how the statistics are estimated, into (A) ‘stationary’ and (B) ‘non-sta-

tionary’ techniques. Decomposition techniques have also been discussed under the ‘blind

source separation (BSS)’ theme, which aims at recovering unobserved patterns or ‘sources’

from observations that are a ‘mixture’ of these sources (in the presence of noise) measured

by an array of sensors (Hyvärinen and Oja 2000). In other words, the term ‘data matrix

(observations)’ used in decomposition techniques is equivalent with the ‘mixture (matrix)’

in BSS, and ‘statistical modes’ are equivalent with the terms ‘source(s)’ and ‘(de)mixing

matrix’ used in the BSS techniques. The BSS view has been applied in many disciplines

including computer science and feature recognition (e.g., Liu and Wechsler 2003),

biomedical sciences (e.g., James and Hesse 2005), brain imaging (e.g., Anemüller et al.

2003, 2004; Jung et al. 2005), and many other examples.

In general, second-order decomposition methods (a) try to find the statistical modes

(abbreviated as ‘modes’ henceforth) using only the information contained in the autoco-

variance or autocorrelation matrices, built on the observed time series. Therefore, the first-

order statistical moments, i.e., mean values, and then second-order moments, i.e.,

covariances, are used in (a). Higher-order decomposition methods (b) go one step further

than (a) by incorporating higher than two statistical moments (e.g., measures of statisti-

cal skewness and kurtosis) in their procedure (Hyvärinen 1999b). Therefore, methods in

(a) assume that the statistical moments of up to the second order adequately represent the

probability distribution of observations, while those of (b) are applied when the probability

distribution of time series is non-Gaussian. In this case, more statistical moments are

needed to represent the underlying distribution of the observations (see details in Forootan

2014, chapters 3 and 4).

By definition, a stationary process (A) corresponds to a situation in which the joint

probability distribution of variables (time series) does not change with time (Priestley

1988). In contrast, for non-stationary processes (B), the statistical measures (e.g., mean,

variance and higher-order statistical moments) change with time. The physical interpre-

tation of (B) is that the observations are associated with phenomena with a shape (ex-

tension) and/or strength that evolves in time. This is the case for many geophysical time

series; for example, by looking at the global hydrological water fluxes, one can see the

amplitude of seasonal cycles as well as their spread change in time (Eicker et al. 2016).

This can also be detected in longer time series such as precipitation, sea surface temper-

ature, and sea surface pressure (Hannachi et al. 2007; Timm et al. 2005), which reflect the

dynamic of spatially and temporally variable phenomena such as those related to the El

Niño Southern Oscillation (ENSO, Trenberth 1990), the North Atlantic Oscillation

(NAO, Feldstein 2003), and the Indian Ocean Dipole (IOD, Saji et al. 1999; Krish-

naswamy et al. 2015). Generally speaking, based on how the statistical information is

computed in (a) and (b), the techniques can potentially deal with stationary (A) and non-

stationary (B) property of time series.
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In the following paragraphs, common eigenspace techniques that are widely used in

climate, geophysics, and hydrology research for signal decomposition are introduced and

classified in the (a), (b), (A), and (B) categories. Our motivation to introduce a new

decomposition method is also justified.

Principal component analysis (PCA), also called empirical orthogonal function (EOF,

Preisendorfer 1988), is among the most popular second-order analysis techniques, there-

fore classified as (a), and often used to extract dominant orthogonal modes from datasets in

various disciplines (see, e.g., Wallace et al. 1992; Fenoglio-Marc 2001; Wouters and

Schrama 2007; Omondi et al. 2013). More recently, the higher-order statistical technique

of independent component analysis (ICA, Cardoso and Souloumiac 1993; Hyvärinen

1999a, classified here as (b)) has been introduced in order to decompose these data into

statistically independent components (e.g., Aires et al. 2002; Westra et al. 2007; Hannachi

et al. 2009; Frappart et al. 2010, 2011). Forootan and Kusche (2012, 2013) argue that

different physical processes generate statistically independent source signals that are

superimposed in geophysical time series; thus, application of ICA likely helps separating

(extracting) their contribution from the total signal. Therefore, in the recent studies (e.g.,

Forootan et al. 2012; Awange et al. 2014; Boergens et al. 2014; Gualandi et al. 2016;

Ming et al. 2016), ICA has been preferred over the ordinary extensions of the PCA/EOF

approach, such as the rotated EOF (REOF) technique applied in, e.g., Richman (1986) and

Lian and Chen (2012).

PCA and ICA (respectively a and b as defined above) are stationary techniques. This

means that for PCA, the autocovariance matrix or autocorrelation matrix (see, e.g.,

Preisendorfer 1988) is used to estimate the orthogonal (statistically uncorrelated) modes.

For ICA, the diagonalizing higher (than second)-order statistical tensor (Cardoso and

Souloumiac 1993; Forootan and Kusche 2012) or a measure of non-Gaussianity

(Hyvärinen 1999b; Boergens et al. 2014) is used to estimate the independent modes. The

mentioned ICA criteria are formulated with the fundamental assumption that the estimated

statistics (cumulants or non-Gaussianity measures) do no evolve in time, i.e., the stationary

assumption. Although both PCA and ICA techniques are efficient in separating signals

with various temporal behaviors, they cluster out-of-phase variability of time series as

demonstrated in Horel (1984) and Forootan (2014).

As a result, the ordinary PCA approach has been modified to better deal with non-

stationary information, which yielded methods such as the extended empirical orthogonal

function (EEOF, Weare and Nasstrom 1982) and the complex empirical orthogonal

function (CEOF, Rasmusson et al. 1981). EEOF is also called multi-channel singular

spectrum analysis (MSSA, Broomhead and King 1986a, b). Non-stationary is introduced in

these techniques by incorporating time and/or space lag information while estimating

statistical moments (for more details, see, e.g., Hannachi et al. 2007). Various applications

indicate a better performance of these extensions when extracting non-stationary behaviors

in a few dominant modes (see, e.g., Rangelova et al. 2012; Forootan et al. 2016).

In this study, the ICA technique is extended to deal with non-stationarity of geophysical

time series, similarly to how CEOF extends PCA. This has been done by generating a new

dataset that contains the observed time series in its real part. The out-of-phase patterns of

these time series are estimated by applying a Hilbert transformation (Horel 1984) and are

considered to be the imaginary part of the new dataset. The Hilbert transformation shifts

the observed time series by 90� in the frequency domain and therefore introduces infor-

mation about (an approximation of) the rate of change of original time series in the

decomposition process (see Appendix 1). The derived complex dataset is used in the ICA

procedure of Forootan and Kusche (2012) to extract the dominant independent space and
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time amplitudes and associated phase propagations. This new extension of the ICA method

is called ‘complex ICA (CICA)’ in this paper.

It is worth mentioning that different criteria exist, which can be used to measure mutual

independence of sources and equivalently for implementing ICA/CICA. For example, Fu

et al. (2015) argue that three properties, i.e., non-Gaussianity, non-whiteness, and non-

circularity, are implemented in most of the ICA algorithms to approximate statistical

independence. Given the fact that considering only one of these properties might not be

sufficient to separate sources with variety of probability distributions, they introduce a new

CICA algorithm that combines these three criteria and illustrate its benefits particularly

when sources have proportional covariance matrices. In this study, the main aim is to

extract trends, cyclic, and semi-cyclic sources with distinguished frequencies, which avoid

the mentioned problem. Therefore, we use the joint approximate diagonalization of

eigenmatrices (JADE, Cardoso and Souloumiac 1993, 1995), which is a tensorial approach

and is straight forward to be used for estimating the independence of statistical modes (see

Sect. 2). The efficiency of JADE in separating cyclic signals is proved in Forootan and

Kusche (2013).

An advantage of CICA over the already existing EEOF/MSSA and CEOF techniques is

that it incorporates higher-order statistical information, which likely reduces clustering of

different physical modes within single extracted ‘mathematical’ modes (see the results in

Sects. 5 and 6). It is worth mentioning that most previous CICA algorithms have been

defined for random variables that are naturally complex (e.g., Cardoso and Souloumiac

1993). Thus, a distinguished difference of the presented algorithm with existing ones is the

transformation from real-valued time series to the complex variables, applying the ICA

technique, and finally recovering the independent modes that reconstruct (an approxima-

tion of) the introduced real-valued time series. A classification of the methods mentioned

above into a, b, A, and B is provided in Table 1.

After briefly reviewing the mathematical derivation of CICA, we focus on assessing the

skill of CICA for extracting relevant information from for two geophysically meaningful

applications. First, we use time series of TWS from the Gravity Recovery And Climate

Experiment (GRACE, Tapley et al. 2004) mission (March 2002 onwards). GRACE TWS

data represent integrated changes in all forms of water storage above and underneath the

surface of the Earth, i.e., the sum of groundwater, soil moisture and permafrost, surface

water, snow/ice, and biomass. These changes cause anomalies of different time scales that

must be separated to allow their interpretation. Here, we assess whether it is possible to

isolate the long-term linear trends in TWS from seasonal changes alongside semi-cyclic

Table 1 Classification of the decomposition techniques with respect to the statistical information used in
their process

Second order (a) Higher order (b)

Stationary (A) PCA/EOF (e.g., Preisendorfer 1988) ICA (e.g., Forootan and Kusche
2012, 2013)

REOF (e.g., Richman 1986)

Non-stationary
(B)

EEOF/MSSA (e.g., Broomhead and King
1986a, b)

CICA (this study)

CEOF (e.g., Rasmusson et al. 1981)
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variability due to the dominant influence of the ENSO. Therefore, through a careful

synthetic study, we will justify the application of CICA for extracting ENSO and non-

ENSO modes from GRACE TWS data similar to Eicker et al. (2016).

The second application of CICA involves the analysis of SST data over the Atlantic and

Pacific Oceans. Using this example, we will show whether complicated non-stationary

variations such as those related to NAO can be separated from the Atlantic Multi-decadal

Oscillation (AMO). The separation of ENSO and the Pacific Decadal Oscillation (PDO) is

also discussed.

The contribution of this study is threefold: (1) CICA is mathematically defined, and the

details of estimating associated complex space and temporal components are described. (2)

The skill of CICA is compared to CEOF and ordinary PCA in a realistic simulated

environment, where the true mathematical modes are known by definition. This simulation

specifically addresses the separation of a trend from seasonal and low-frequency climate-

driven patterns, here due to ENSO, in the presence of realistic TWS noise. (3) Finally,

CICA is assessed when applied on a long-term realistically synthesized SST data set to

ensure its efficiency and applicability on different types of geophysical/climate time series.

2 Complex Independent Component Analysis (CICA)

Statistical analysis techniques aim at decomposing random variables, here stored in

observed time series, into (empirical) modes or ‘sources’, which are estimated by assuming

mutual orthogonality (Preisendorfer 1988) or mutual independence (Hyvärinen 1999a)

between them. To generally formulate statistical decompositions, let us consider X to be

the data matrix that contains m sampled random variables (measured time series) with

length of n. Here, X contains xi ¼ ½x11; x21; . . .; xn1�T; i ¼ 1; . . .; p in its columns. We also

assume that each column is temporally centered, i.e., the column-wise temporal means

have already been removed. This assumption does not harm the general applicability and

performance of statistical decomposition techniques as discussed in Cardoso (1999).

The widely used PCA is usually applied to extract few orthogonal modes from obser-

vations that represent the dominant part of their variance. Thus, by applying PCA on the

data matrix X, orthogonal modes can be estimated, which fairly well approximate the data

as Xj ¼ �PjKjE
T
j , where j\minðn; pÞ is the number of retained modes and Xj is an

approximation of X. Each principal component (PC, P), its associated singular value

(stored indiagonal entries of K), and empirical orthogonal function (EOF, E) represent an
orthogonal mode of X or its approximation Xj. In practice, the j modes are estimated by

eigenvalue decomposition of the autocovariance matrix C ¼ 1
n

XTX (see, Forootan

2014, pp. 25–27). It is clear from the above definition that C contains only the instanta-

neous time series, which justifies that PCA is a stationary approach since it does not

consider any out-of-phase information about the time series in its criterion.

Forootan and Kusche (2012) follow (e.g., Comon 1994a, b; Aires et al. 2002) and

formulate ICA as a rotated extension of the PCA transformation as

X ’ Xj ¼ PjRjR
T
j ET

j ; ð1Þ

where X and Xj are n� p temporally centered data matrices. The n� j and p� j matrices

Pjð¼ �PjKjÞ and Ej are derived from PCA (Preisendorfer 1988). To derive the ICA modes,

an optimum j� j rotation matrix Rj has to be defined that rotates either �Pj or Ej while at
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the same time making their columns as statistically independent as possible. Defining a

proper rotation matrix (R) requires an optimization of a measure of independence, for

which one needs to use higher than two statistical moments (see different solutions of ICA

in, e.g., Cardoso and Souloumiac 1993; Comon 1994a, b; Hyvärinen 1999a). This justifies

that ICA is a higher-order statistical decomposition method. Considering Eq. (1), it is clear

that ICA is a stationary approach since it relies on the same information retained by the

PCA modes.

Complex ICA (CICA) is the focus of this paper and is derived in three steps: (Step 1)

introducing non-stationary information by defining a new complex dataset; (Step 2)

decomposing the complex data into orthogonal components using an eigenvalue decom-

position technique; and (Step 3) rotating the orthogonal components to estimate inde-

pendent patterns.

Step-1 In order to introduce non-stationary information into the decomposition proce-

dure, we define a complex field (Y) that contains the observed time series (X) as its real

part and their Hilbert transformation as its imaginary part (multiplied by i ¼
ffiffiffiffiffiffiffi

�1
p

). Thus,

Y ¼ X þ i H Xð Þ; ð2Þ

where H performs the Hilbert transformation and adds an approximation of the first time

derivative of observations (X) into Eq. (2), see the justification in Appendix 1.

Step-2 The complex field (Y) in Eq. (2) is decomposed into orthogonal components

using an eigenvalue decomposition as

Y ’ Yj ¼ �P
Y

j K
Y
j EY

j

H
; ð3Þ

where the columns of the n� j matrix �P
Y

j are (temporal) complex principal components

(CPCs). Similarly, the columns of the p� j matrix EY
j contain complex values and cor-

respond to the spatial components (CEOFs). Finally, H indicates the Hermitian transpose

and the j� j matrix KY
j contains the real-number singular values in its main diagonal

entries. The upper-index ‘Y’ is used to distinguish the decompositions derived from the

new complex dataset.

The autocovariance (CY ¼ 1
n

�

XTX þHðXÞTHðXÞ þ iðXTHðXÞ � HðXÞTXÞ
�

) used to

perform the above decomposition (Eq. 3) contains information on the cross-spectral val-

ues, averaged over all frequencies (�p\wk\p) that exist in the observed time series

X and their Hilbert transformation (HðXÞ). Therefore, its decomposition yields complex

orthogonal components of PY
j and EY

j , which retain the propagating disturbances present in

the original data matrix X. It should be mentioned here that, when a priori knowledge on

the spectral frequency range of a certain pattern exists, then it is better to filter the original

data and exclude those frequencies before implementing Eq. (3). This can be done by

applying a band-limited filter (centered on the known frequency) to the data and its Hilbert

transformation. Such pre-filtering will enhance extraction of not yet discovered cyclic or

semi-cyclic patterns (Horel 1984).

Step-3 Complex independent components are estimated here by rotating the orthogonal

components of Eq. (3), similar to the formulation in Eq. (1), as
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Y ’ Yj ¼ PY
j RY

j RY
j

H
EY
j

H
; ð4Þ

where here RY
j is an j� j orthogonal rotation matrix (RY

j RY
j

H ¼ RY
j

H
RY

j ¼ Ij, and I being

the identity matrix), which should be defined.

Statistical independence is defined based on the probability density function (PDF) by

stating that random variables are independent if and only if their joint distribution can be

factorized to the product of their marginal distributions (Hyvärinen 1999b) as

pðs1; s2; . . .; sjÞ ¼
Y

j

i¼1

pðsiÞ; ð5Þ

where s is a discrete random variable taking values of s1; s2; . . .; sn with probabilities of

p1; p2; . . .; pn, respectively. In Eq. (5), pðs1; s2; . . .; sjÞ denotes the joint PDF and pðsiÞ
denotes the marginal PDF of each source. Therefore, in order to estimate independence,

one needs to estimate either the joint and marginal PDFs of the rotated components (PY
j RY

j

or EY
j RY

j ) in Eq. (4) or an approximation of their PDFs. In this study, the diagonalization of

the fourth-order statistical cumulants (presented in Forootan and Kusche 2012) is used as

our approximation to find a proper RY
j in Eq. (4).

Statistical properties of a random variable can be described by its statistical moments or,

more conveniently, by its cumulants, denoted here as K(x), which can be defined via the

cumulant-generating function g(t) as the logarithm of the moment-generating function

gðtÞ ¼ log½EðetxÞ� ¼
P1

n¼1 jn
tn

n!. Therefore, the cumulants jn can be obtained by n times

differentiating the expansion of g(t) and evaluating the result at zero, or jn ¼ on

otn
gðtÞjt¼0.

The cumulant of the sum of two statistically independent random variables s1 and s2 can be

written as the sum of the cumulant of each, i.e., js1þs2ðtÞ ¼ log½Eðetðs1þs2ÞÞ� ¼
log½Eðets1ÞEðets2Þ� ¼ log½Eðets1Þ� þ log½Eðets2Þ� ¼ js1ðtÞ þ js2ðtÞ. This can be simply

extended to more than two random variables (see, e.g., Cardoso and Souloumiac 1993).

In general, the fourth-order cumulants of complex random variables can be defined as

KY xi; x
�
j ; xk; x

�
l

� �

¼ E xix
�
j xkx

�
l

� �

� E xix
�
j

� �

E xkx
�
l

� �

� EðxixkÞE x�
j x�l

� �

� E xix
�
l

� �

E x�
j xk

� �

;
ð6Þ

where E(.) is the expectation operator, and � represents the complex conjugate. Cardoso

and Souloumiac (1995) show that for a multivariate case (several random variables), the

fourth-order cumulant tensor can be defined using an arbitrary matrix M as

QYðMÞ ¼ E ðx�MxÞðxx�Þð Þ � CY trace ðMCYÞ � CYðM þ MTÞCY ; ð7Þ

with CY being the autocovariance matrix. The required rotation matrix Rj for diagonalizing

Eq. (7) can be computed, for example, using the joint diagonalization (JD) approach as

described below.

The cumulant tensor QY in Eq. (7) for either complex EOFs (CEOFs) or complex PCs

(CPCs) contains n4 entries, i.e., the number of fourth-order cross-cumulants. Using the JD

algorithm, Rj is found as the minimizer of the squared off-diagonal cumulant entries
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f RY
j

� �

¼
X

j

t 6¼s

f 2ts F ¼
X

n2

m¼1

RY
j

H
QYðMmÞRY

j ; ð8Þ

where t and s represent the row and column of each entry. An optimum j� j orthogonal

rotation matrix RY
j (RY

j RY
j

H ¼ RY
j

H
RY

j ¼ Ij) is the solution of Eq. (8), which replaces the

rotation matrix in Eq. (4) to identify complex independent components. It is worth men-

tioning that since the cross-cumulants in Eq. (6) or Eq. (7) are only an approximation of

the statistical independence in Eq. (5), the optimization criterion in Eq. (8) can be solved

with a restricted number of iterations. As a result, the statistical components derived from

ICA/CICA might not always be ‘perfectly’ independent and rather ‘as independent as

possible’ (Cardoso and Souloumiac 1995). For simplicity, however, here, we call the

estimated components ‘independent.’

By choosing Eq. (8) to approximate independence, we assume that the joint distribution

of de-correlated components is circular (see, e.g., Cardoso and Souloumiac 1995). This

assumption does not harm the extraction of cyclic and semi-cyclic components. In order to

separate sources with significantly non-circular joint distributions, one can use alternative

independence criteria similar to, e.g., Fu et al. (2015). It is also worth mentioning that the

strategy used to extend ICA to CICA shares the same view as in Horel (1984) for

expending PCA/EOF to CEOF. In other words, we assume that, when the underlying

processes are non-stationary, instantaneous observations and their out-of-phase records can

be considered in decomposition; thus, the proposed CICA is formulated in the mentioned

three steps. Other extensions of ICA to CICA exist that solve the signal separation problem

in the frequency domain (e.g., Sawada et al. 2005). Anemüller et al. (2003, 2004) provide

a frequency domain CICA algorithm and discuss its efficiency in extracting sources with

limited spectral extents. Addressing pros and cons of different CICA techniques for ana-

lyzing geophysical and climate records requires further research.

Choice of Spatial Complex ICA (SCICA) and Temporal Complex ICA (TCICA): For-

ootan and Kusche (2012) indicate that ICA can be applied in two ways, from which (a) one

can extract the statistically independent spatial patterns and their associated temporal

patterns; the decomposition is known as spatial ICA (SICA), and (b) statistically inde-

pendent temporal patterns and their associated spatial patterns are extracted, i.e., known as

temporal ICA (TICA). In the SICA, observations are interpreted as a sequence of spatial

snapshots; thus, one is interested in extracting stable spatial patterns from these observa-

tions. In the TICA, the hypothesis is that the sampled time series contain information of

various time scales. Thus, searching for temporally independent patterns can extract dis-

tinguishable variability from them. Similar to a real-valued ICA, spatial complex ICA

(SCICA method) and temporal complex ICA (TCICA) are derived from the following

equations.

SCICA: Considering Eq. (4), one can define ~SY as statistically independent (complex)

sources, and their associated (complex) temporal components can be derived as ~AY .

~S
Y

p�j ¼ EY
j RY

j
~An�j ¼ �P

Y

j K
Y
j RY

j : ð9Þ

TCICA: The Hilbert transpose of Eq. (4) provides YH ’ YH
j ¼ EY

j K
Y
j RY

j RY
j

H
PY
j

H
.

Accordingly, the temporal components are derived as S and the corresponding spatial

components are defined as AY . Both components contain complex entries.
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SY
n�j ¼ �P

Y

j RY
j AY

p�j ¼ EY
j K

Y
j RY

j : ð10Þ

Details of implementing the SCICA and TCICA algorithms are described in Algorithm 1

of Appendix 2.

The temporal amplitudes and their associated phase patterns can be estimated from the

complex independent components (CICs) in both SCICA and TCICA, which are formu-

lated below, where the subindex ‘S’ represents spatial components and the subindex ‘T’

corresponds to the temporal components.

Spatial Amplitude: AmplitudeS in Eq. (11) of the l’th component (with l 2
f1; . . .;minðn; pÞg and n and p to be the dimensions of X) is derived as

AmplitudeSð~slÞ ¼ ~sl � ~s�lð Þ1=2 and AmplitudeSðalÞ ¼ al � a�l
� �1=2

; ð11Þ

where ~sl is a column of ~SY in SCICA and al is a column of AY in TCICA. Here,‘�’ is a
vector valued operator that provides an element-by-element multiplication product of the

columns.

Spatial Phase: PhaseS in Eq. (12), that corresponds to the l’th component, is computed

from

PhaseSð~slÞ ¼ arctan
Imð~slÞ
Reð~slÞ

� �

and PhaseSðalÞ ¼ arctan
ImðalÞ
ReðalÞ

� �

; ð12Þ

for SCICA and for TCICA, respectively.

Temporal Amplitude: AmplitudeT in Eq. (13) can be estimated as

AmplitudeTð~alÞ ¼
�

~al � ~a�l
�1=2

and AmplitudeTðslÞ ¼
�

sl � s�l
�1=2

; ð13Þ

for SCICA and for TCICA, respectively.

Temporal Phase: PhaseT in Eq. (14) is estimated from

PhaseTð~alÞ ¼ arctan
Imð~alÞ
Reð~alÞ

� �

and PhaseTðslÞ ¼ arctan
ImðslÞ
ReðslÞ

� �

; ð14Þ

for SCICA and for TCICA, respectively. In order to estimate the phase patterns, the

division in Eqs. (12) and (14) is computed element by element.

Independent Mode: the l’th mode in Eq. (15) consists of a spatial and its associated

temporal component. Each mode of variability derived from the CICA decomposition

(including both TCICA and SCICA) can be estimated in a similar manner to the CEOF

decomposition, i.e.,

Modeð~alÞ ¼ Re
�

pY
l rYl rYl

H
eYl

H�
; ð15Þ

where l\minðn; pÞ and n and p are the dimensions of X. Here, pY ; rY and eY represent a

column of the matrices PY ;RY , and EY in Eq. (4), respectively. The operator Reð:Þ returns
the real part of the reconstructed time series.

Signal Reconstruction: Equation (16) is applied to reproduce (an approximation of) the

original matrix Xðn� pÞ, after applying the CICA, one can use

X ’ Xj ¼ Re
�

PY
j RY

j RY
j

H
EY
j

H�
: ð16Þ
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In Appendix 1, we provide the necessary formulation for estimating a Hilbert trans-

formation, while in Appendix 2, an algorithm is offered to implement CICA, and finally,

the uncertainty of independent modes is discussed in Appendix 3.

3 Data

This sections describes the two sorts of data that are used for testing decomposition

techniques and also for generating synthetic tests.

3.1 Global Terrestrial Water Storage (TWS)

To perform our investigations, we use monthly 1� � 1� global terrestrial water storage

(TWS) changes from the Gravity Recovery And Climate Experiment (GRACE, Tapley

et al. 2004) satellite mission. Monthly TWS data along with their corresponding errors,

which are based on the RL05 spherical harmonics from the Centre for Space Research

(CSR) at the University of Texas, are downloaded from https://grace.jpl.nasa.gov/data/get-

data. The data consist of 155 fields and cover 2002.29–2016.53. The effect of glacial

isostatic adjustment is accounted for by applying the corrections from Wahr and Zhong

(2013).

3.2 Global Sea Surface Temperature (SST)

Monthly reconstructed global 1� � 1� Reynolds SST data (Reynolds et al. 2002) that are

frequently used for climate studies are considered here as an example of a long-term

(1982–2016) climate dataset. The data are downloaded from https://www.esrl.noaa.gov/

psd/data/gridded/data.noaa.oisst.v2.html.

3.3 Southern Oscillation Index (SOI)

ENSO is a large-scale ocean–atmosphere interaction in the Tropical Pacific, which affects

the climate of many regions of the Earth (Trenberth 1990; Forootan et al. 2016). El Niño

refers to the negative phase on ENSO, and its opposite phase is known as La Niña. El Niño

often produces dry years that cause drought, and the opposite happens during La Niña

years. The SOI is downloaded from https://www.ncdc.noaa.gov/teleconnections/enso/

indicators/soi/, which is a measure of the large-scale fluctuations in air pressure occurring

between the western and eastern tropical Pacific (i.e., the state of the Southern Oscillation).

Prolonged periods of negative (positive) SOI values coincide with abnormally warm (cold)

ocean waters across the eastern tropical Pacific typical of El Niño (La Niña) episodes.

3.4 Pacific Decadal Oscillation (PDO) Index

PDO is often described as a long-lived ENSO pattern within the Pacific. The PDO’s pattern

is more stable than ENSO’s, because its phase does not change sign for 20–30 years, while

that of ENSO only lasts 6–18 months. Shifts in the PDO phase can have significant

implications for global climate, affecting namely Pacific and Atlantic hurricane activity,

droughts and floods. The PDO index is downloaded from https://www.esrl.noaa.gov/psd/

data/correlation/pdo.data.
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3.5 North Atlantic Oscillation (NAO) Index

NAO is the dominant pattern of atmospheric variability over the North Atlantic Ocean,

especially in winter, which is usually measured as the difference in sea level pressure

between Iceland and the Azores (Hurrel 2003). Since the Atlantic storms mostly affect

climate in the Europe and USA, NAO has strong impact on the precipitation patterns in

these regions. The NAO index is downloaded from https://www.esrl.noaa.gov/psd/data/

correlation/nao.data.

3.6 Atlantic Multi-decadal Oscillation (AMO) Index

AMO represents long-duration changes in the sea surface temperature of the North Atlantic

Ocean, with cool and warm phases that may last for 20–40 years and introduce SST

difference of about 1–2�C between extremes. The warm phase of AMO prolongs droughts

and vice versa during its cold phase. The AMO index is downloaded from https://www.

esrl.noaa.gov/psd/data/correlation/amon.us.data.

4 Setting Up Three Synthetic Datasets

Extracting trend, acceleration, seasonality, and semi-cyclic behavior that are introduced by

large-scale ocean–atmosphere interactions are important for climatic and geophysical

interpretations. Therefore, we construct synthetic time series to investigate the performance

of statistical decomposition techniques, including the introduced CICA, in separating these

components from observations that contain a mixture of the mentioned components. In our

experiments, we use two frequently used datasets of 1� � 1� monthly global terrestrial water

storage (TWS) time series fromGRACE, as well as 1� � 1� monthly sea surface temperature

(SST) from Reynolds reanalysis (see Sect. 3 for more details). The length of GRACE

observations is only 155 months, and that of SST is 420 months.

Assume xðk;/; tÞ stores the time series of ‘real’ TWS or SST at a location with the

longitude k and the latitude / with t being time in years. To generate synthetic data, we

formulate the following regression:

xðk;/; tÞ ¼ b0ðk;/Þ þ b1ðk;/Þ � t þ b2ðk;/Þ cosð2ptÞ þ b3ðk;/Þ sinð2ptÞ
þ b4ðk;/Þ cosð4ptÞ þ b5ðk;/Þ sinð4ptÞ þ b6ðk;/ÞS1ðtÞ
þ b7ðk;/ÞHðS1ðtÞÞ þ b8ðk;/ÞS2ðtÞ þ b9ðk;/ÞHðS2ðtÞÞ þ nðk;/; tÞ;

ð17Þ

in which the coefficients of the regression represent various time-scale variabilities of TWS

and SST; b0 as an offset depending on the start point of the time series, b1 represents the
linear trend, b2 and b3 for the annual cycle, b4 and b5 correspond to the semi-annual cycle,

and finally b6; b7; b8, and b9 indicate changes due to ocean-atmosphere phenomena. A

temporal error n is assumed to be normally distributed ðn	Nð0; r2nÞÞ; therefore, it is
independent from the base functions and stands for the deviations between observations

and the fitted model. In Eq. (17), S1ðtÞ and S2ðtÞ can be introduced using climate indices

introduced in Sect. 3. Temporal components used in Eq. (17) are of interest of various

water resources and climate studies. For example, Fasullo et al. (2013), Eicker et al.

(2016), and Forootan et al. (2016) applied this approach to analyze the impact of climate

on global water storage and water fluxes, and precipitation over Australia, respectively. To

account for the out-of-phase impact of these climate phenomena on TWS or SST,HðS1ðtÞÞ
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and HðS2ðtÞÞ are used that represent the time series of indices after being shifted by

p=2 radian ¼ 90� in the frequency domain [see Eqs. (19) and (20) in Appendix 1].

4.1 Accounting for ENSO While Generating Synthetic Global TWS Data

To introduce large-scale teleconnection impact on global TWS time series, in Eq. (17), we

use the temporally normalized time series of the Southern Oscillation Index (SOI) and its

Hilbert transform as S1ðtÞ and HðS1ðtÞÞ, respectively (both time series are shown in

Appendix 1). In other words, to generate a synthetic TWS data, we account for ENSO’s

immediate and out-of-phase influence on TWS, with a fundamental assumption that the

temporal behavior of TWS changes due to ENSO is similar to SOI. This might be in reality

not perfectly true (see also Forootan et al. 2016), but the influence of this assumption is not

strong enough to alter the results of our assessment, during which we try to measure the

efficiency of decomposition techniques rather than focusing on a realistic estimation of

climate impacts on geophysical data. We exclude S2ðtÞ and HðS2ðtÞÞ while fitting Eq. (17)

to TWS data since the length of data is limited and using other climate indices will inhibit a

stable estimation.

4.2 Accounting for Dominant Teleconnections While Generating Synthetic
SST Patterns Over the Pacific and Atlantic Oceans

We consider more complicated non-stationary patterns than in the previous section, while

producing synthetic SST datasets. For this, 420 months of SST data from 1982–2016 is

considered over the Atlantic Ocean (box of � 66�–13�E and � 20�–31�N), and the Pacific

Ocean (box of 159�–275�E and � 30�–19�N). Over the Atlantic Ocean, we fit Eq. (17)

while replacing S1ðtÞ with the normalized North Atlantic Oscillation (NAO) index and

S2ðtÞ with the normalized Atlantic Multi-decadal Oscillation (AMO) index. Over the

Pacific Ocean, we use the same setup, but instead of Atlantic indices we use the normalized

Southern Oscillation Index (SOI) for S1ðtÞ and the normalized Pacific Decadal Oscillation

(PDO) index for S2ðtÞ. The temperature data over the continents are not masked and

included in our investigations. We should mention here that the spatial distribution,

including extension and strength of input data, has an impact on the results of decompo-

sition techniques as shown, for example, by Richman (1986). In this study, we do not focus

on this issue and assume that the spatial extension of data is pre-defined. Our main aim

here is to show how non-stationary information can be involved in the ICA procedure and

its benefits are discussed.

Time series of the temporally normalized NAO and AMO are shown in Fig. 1 (top).

Their spectral properties are estimated using the Least Squares Spectral Analysis (LSSA)

technique, while the significance of the extracted frequencies is tested as in Sharifi et al.

(2013), and the results are shown in Fig. 1 (bottom). Both time series are temporally

distinguishable (their correlation coefficient is found to be 0.22, which is relatively low).

Spectrally, the dominant frequencies of NAO and AMO are found to be well distin-

guishable, i.e., as expected, long-wavelength frequencies are dominant in the AMO and

those of NAO are mainly related to seasonal to multi-year cycles (see Fig. 1, bottom).

Similarly, the time series of the normalized SOI and PDO are shown in Fig. 2 (top), and

their power spectrum is shown in Fig. 2 (bottom). These two time series are found to be

spectrally more similar than the Atlantic Indices, because many dominant frequencies are

repeated in both time series. Their correlation coefficients are also 0.38, which is larger

than that of NAO and AMO. Comparing power spectrum in Fig. 1 (bottom) and Fig. 2
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Fig. 1 The North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO) indices
(top), and their associated power spectrums (bottom)

Fig. 2 The Southern Oscillation Index (SOI) and the Pacific Decadal Oscillation (PDO) indices (top), and
their power spectrum (bottom)
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(bottom), we derive a correlation coefficient of 0.34 between NAO and AMO, while this is

found to be 0.58 between the spectrum of SOI and PDO. Separating these similar patterns

is difficult for decomposition techniques; therefore, the three synthetic setups should be

well representative of real-word signal separation problems and a good testbed for the

decomposition techniques assessed in this paper.

4.3 Constructing the Synthetic Data

By predefining the base functions in the form of Eq. (17), we have already determined the

behavior of the synthetic time series. In the following section, we compute realistic

amplitudes for them to be as close to the real datasets as possible. Therefore, regression

coefficients of b̂0. . .b̂9 are estimated using a least squares adjustment (LSA, Koch 1999).

Synthetic global TWS and SST time series are then generated using these estimated

coefficients as

Fig. 3 Properties of the simulation used for assessing the decomposition techniques used in this study.
Patterns are estimated by fitting Eq. (18) to 155 months of GRACE TWS covering 2002.29–2016.53: a

Linear trend b̂1, b coefficient of the cosine part of the annual cycle b̂2, c coefficient of the sine part of the

annual cycle b̂3, d coefficient of the cosine part of the semi-annual cycle b̂4, e coefficient of the sine part of

the semi-annual cycle b̂5, f coefficient of the SOI b̂6, g coefficient of the out-of-phase SOI b̂7, and h standard
deviation of the correlated noise
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x̂ðk;/; tÞ ¼ b̂0ðk;/Þ þ b̂1ðk;/Þ � t þ b̂2ðk;/Þ cosð2ptÞ þ b̂3ðk;/Þ sinð2ptÞ
þ b̂4ðk;/Þ cosð4ptÞ þ b̂5ðk;/Þ sinð4ptÞ þ b̂6ðk;/ÞS1ðtÞ
þ b̂7ðk;/ÞHðS1ðtÞÞ þ b̂8ðk;/ÞS1ðtÞ þ b̂9ðk;/ÞHðS2ðtÞÞ þ �ðk;/; tÞ:

ð18Þ

To illustrate this procedure, for example, the estimated coefficients that correspond to the

linear trend, annual, semi-annual, and the ENSO-related variability in TWS data are shown

in Fig. 3a–g. GRACE Tellus Web site provides TWS errors that are spatially correlated

and temporally random. These error fields (see the standard deviation of the produced noise

in Fig. 3h) are used as � in Eq. (18). For generating synthetic SST data, we use spatially

and temporally random fields with the standard deviation of 10% of the SST time series,

which is higher than the amplitude of errors in the real SST data. Therefore, in each

simulation, the true spatial and temporal solutions of the decomposition problem are

known. Thus, one can compare the components extracted by statistical methods with the

introduced patterns and evaluate the success of each method. In what follows, the intro-

duced patterns of TWS are shown, and to avoid duplicated figures, only the extracted

temporal components are presented. For the experiment with SST data, the introduced

patterns are not shown, but instead both spatial and temporal components derived from

decomposition techniques are discussed.

5 Assessing the Performance of Decomposition Techniques Using Global
TWS Data

Before assessing the complex ICA (CICA), we first compare the two stationary methods of

PCA and ordinary ICA when they are applied on the synthetic TWS data. Throughout this

paper, our investigations are restricted to the ‘temporal’ version of ICA, i.e., TICA and

TCICA, since we are interested in extracting temporally distinguished components as

simulated in Eq. (18). Root mean squares of errors (RMSE) and correlation coefficients are

used to measure similarity between the extracted components and the synthetic truth.

By definition, seven source signals (one linear trend, two annual, and two semi-annual

cycles, as well as two ENSO-related sources) plus noise exist in the synthetic TWS data. Thus,

we select the first seven dominant modes that are derived by applying PCA and TICA tech-

niques. The first three modes, extracted by both techniques, are found to be very similar to the

introduced linear trend (error of up to 3 mm/yr) and the annual sine and cosine cycles (error of

up to 4 mm in amplitude, results are not shown here). This was somewhat to be expected as

Forootan and Kusche (2013) indicate that ICA (Forootan and Kusche 2012) is able to perfectly

separate anunknownmixture of trend and sinusoidal signals in the data, provided that the length

of the dataset is infinite. Figure 4 shows the temporal patterns of the 4th to 7th modes, where

those of PCA are mutually orthogonal and those of temporal ICA (TICA) are statistically as

independent as possible. For brevity, the corresponding spatial components are not shownhere.

By a simple visual comparison, one can clearly see that the TICA results are closer to

the introduced signals. Particularly, TICA’s components in Fig. 4a, b are closer to the SOI

and its Hilbert transformation (RMSE: 0.3) than those of PCA (RMSE: 0.7), and also its

components in Fig. 4c, d better (than PCA) reproduce the introduced semi-annual cycles

(RMSE of: 0.2 from ICA compared to 0.8 from PCA). We also observe that the spatial

components of TICA are very similar to those in Figs. 3a–f. Another important result is

that the semi-annual component is repeated in the four modes of PCA, and the high-

amplitude ENSO peaks of 2010–2011 emerge in several orthogonal modes (clearly in PC4,
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PC5, and PC6, Fig. 4a–c). Therefore, we confirm Forootan and Kusche (2012)’s previous

conclusion that the PCA criterion, which seeks to retain the maximum variance in data,

might not be adequate to isolate cyclic and semi-cyclic (here ENSO-like) sources.

It is worth mentioning here that the setup of the synthetic experiment might have

influence on the performance of decomposition techniques. For example, we test another

experiment by excluding the ENSO-related changes from Eq. (18). Then, PCA and TICA

are applied on the new synthetic TWS data, for which the results indicate that both PCA

and TICA techniques successfully extract the introduced linear trend, as well as annual and

semi-annual cycles. The only difference is that a low amplitude annual cyclic is seen to be

Fig. 4 Comparison of PCA and temporal ICA (TICA) for decomposing synthesized TWS data. Here only
the temporal patterns of both techniques are shown, where PC4 and IC4 are shown in (a), PC5 and IC5 in
(b), PC6 and IC6 in (c), and finally PC7 and IC7 in (d). We also show the ENSO index (SOI) and its Hilbert
transformation in (b) and (a), respectively. All values are normalized; thus, they are unit-less
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mixed with the linear trend extracted by PCA (results are not shown). Based on these

experiments, we conclude that the simulated ENSO-related patterns contain cycles that are

close to the semi-annual cycle. Furthermore, its globally averaged standard deviation is

comparable with that of the semi-annual cycle. As a result, both ENSO-related and semi-

annual patterns are repeated in several modes as shown in Fig. 4.

We continue our investigation by testing the non-stationary techniques of CEOF (Eq. 3) and

temporal complex ICA (TCICA, Eq. 10) on the synthetic TWS data of Eq. (18) including ENSO

signal. As expected, CEOF and TCICA are able to separate the linear trend (mode 1), the annual

(mode 2), semi-annual (mode 3), and ENSO components (mode 4) in their first four modes. Thus,

unlike thestationaryPCAandICAtechniques, theydonotneedsevenmodes. InFig. 5,wecompare

the temporal components of the fourthmode (complexPC4, i.e.,CPC4, and temporal complex IC4,

i.e., TCIC4), where they likely correspond to the ENSO index (SOI). In Fig. 5 (top) and (bottom),

the (absolute)differencesof themwithSOIare shown, fromwhich the results indicate that theCICA

results are closer to the simulation (RMSE: 0.4 from CICA and 0.6 from CEOF). The results in

Fig. 5 also indicate that, similar to PCA,CEOFalso suffers from themixing problem,meaning that

individual spatial and temporalmodes of similar variances repeat in a number of orthogonalmodes.

For example, the semi-annual term can be clearly seen in the real part of CPC4 (Fig. 5, top).

It is worth mentioning that by multiplying the differences in Fig. 5 (top) and (bottom)

with the corresponding spatial patterns (Fig. 3f, g), one can estimate TCICA error in

Fig. 5 Comparison of CEOF and temporal complex ICA (TCICA) for decomposing synthesized TWS data.
(Top plot) shows the real part of the complex PC4 (CPC4) and temporal complex IC4 (TCIC4), where
(bottom plot) shows their imagery parts. We also show the ENSO index (SOI) and its Hilbert transformation
on top and bottom, respectively. All values are normalized and are thus unit-less. Blue and red bars indicate
the absolute differences between the ENSO index or its Hilbert transformed pattern and CPC4 or TCIC4
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extracting ENSO from global TWS data, for which we estimate errors of to up to 0.5–1 cm

in terms of equivalent water height. These results therefore indicate that the current level of

noise in the filtered TWS data does not have a dramatic impact on the performance of

statistical techniques in extracting (semi-)cyclic behaviors with the period of longer than

one year (see similar discussions in Kusche et al. 2016). Possible error sources occurred

while decomposing global TWS data are investigated in Talpe et al. (2017).

6 Assessing the Performance of Decomposition Techniques Using Long-
Term SST Data

In the previous section, we showed how introducing the higher-order statistical moments in

the form of ICA and adding non-stationary information in the form of CICA can improve

separation of ENSO from cyclic (seasonal) signals, although the length of observations was

only 155 months. In this section, we test whether CICA can (a) separate semi-cyclic

patterns that are spectrally similar, and (b) be successfully applied to any types of geo-

physical or climate time series. Therefore, here, long-term sea surface temperature (SST)

data are used to test statistical decomposition techniques. In the light of results in previous

section, the discussions are restricted to the comparisons between CEOF and TCICA.

Furthermore, only the teleconnection patterns are compared below, instead of assessing the

trend and annual and semi-annual cycles.

Fig. 6 Performance of the temporal complex ICA (TCICA) in extracting NAO from SST data. (Top)
Spatial patterns of the real (left) and imaginary (right) parts of the fourth independent mode. Both anomaly
maps have a unit of �C percent. (Bottom) Real and imaginary parts of the fourth normalized temporally
independent component are shown. Blue and red bars indicate the absolute differences between the temporal
components and NAO or its Hilbert transformed time series
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6.1 Comparisons Over the Atlantic Ocean

The fourth and fifth independent modes from TCICA over the Atlantic Ocean are shown in

Figs. 6 and 7, which correspond to the SST changes due to the North Atlantic Oscillation

(NAO) and the Atlantic Multi-decadal Oscillation (AMO). Two spatial maps on the top of

both figures indicate the real and imaginary parts of the spatial component and the cor-

responding temporal patterns are shown in the bottom of both figures. In both figures, we

show the absolute values of the differences between the TCICA-derived temporal com-

ponents and the NAO or AMO indices as well as their Hilbert transformed time series. The

results indicate that the maximum value of the absolute differences is rarely greater than 1

(mean of 0.4), which corresponds to less than *16% of NAO or AMO signal. This can be

estimated using Eq. (16) while inserting the components in Figs. 6 and 7.

To compare with the TCICA results, the temporal components of the fourth and fifth

mode of CEOF over the Atlantic Ocean are shown in Fig. 8. The results indicate that the

multi-decadal pattern of AMO is repeated in both modes. This makes the maximum value

of absolute differences considerably larger then TCICA, i.e., in some instances 3 (see the

error bars in Fig. 8, bottom). In other words, the magnitude of errors in extracting NAO or

AMO using CEOF (mean of 0.9) reaches up to *50% of the signal itself.

In Fig. 6, the SST pattern preceding the NAO extends through the ocean from the

northeastern side of Atlantic (from *20�N see the plot of top left), extending down to

	 20�S (plot on the top right), so that the same sign is seen north and south of the equator.

One can see this propagation by estimating the spatial phase map using Eq. (12), where ~a

Fig. 7 Performance of the temporal complex ICA (TCICA) in extracting AMO from SST data. (Top)
Spatial patterns of the real (left) and imaginary (right) parts of the fifth independent mode in degrees
centigrade (�C) percent. (Bottom) Real and imaginary parts of the fifth temporally independent component
are shown that both are normalized. Blue and red bars indicate the absolute differences between the
temporal components and the AMO index or its Hilbert transformed time series
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contains the spatial maps shown on the top plots in Fig. 6. The results are, however, not

shown here. AMO is found to be spatially distributed as a dipole pattern with the equator in

the middle (see Fig. 7, top left and top right plots). Considering the temporal patterns in

Fig. 7 (bottom), one could expect cold or warm persistence SST in the Atlantic with the

periods of *25 years.

6.2 Comparisons Over the Pacific Ocean

The fourth and fifth independent modes from TCICA applied on the SST data within the

Pacific Ocean are shown in Figs. 9 and 10, respectively. Note that the first three modes are

related to the trend, annual, and semi-annual cycles that are not shown here. Both fig-

ures indicate that the spatiotemporal changes due to the ENSO and the Pacific Decadal

Oscillation (PDO) are fairly well extracted in two separate independent modes. However,

since the two phenomena are spatially and temporally correlated (see the discussions in

Fig. 8 Performance of CEOF in extracting NAO and AMO from SST data. (Top) real and imaginary parts
of the fourth orthogonal mode. (Bottom) Real and imaginary part of the fifth normalized temporal
component is shown. Blue and red bars indicate the absolute differences between the temporal components
and NAO or AMO, as well as their Hilbert transformed time series
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Fig. 9 Performance of the temporal complex ICA (TCICA) in extracting PDO from SST data. (Top) Spatial
patterns of the real (left) and imaginary (right) parts of the fourth independent mode. Both anomaly maps
have a unit of �C percent. (Bottom) The real and imaginary part of the fourth normalized temporally
independent component. Blue and red bars indicate the absolute differences between the temporal
components and PDO or its Hilbert transformed time series

Fig. 10 Performance of the temporal complex ICA (TCICA) in extracting SOI from SST data. (Top)
Spatial patterns of the real (left) and imaginary (right) parts of the fifth independent mode in �C percent.
(Bottom) The real and imaginary part of the fifth temporally independent component that is normalized and
is thus unit-less. Blue and red bars indicate the absolute differences between the temporal components and
the SOI index or its Hilbert transformed time series
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Sect. 4.2), the absolute values of the differences between the TCICA-derived temporal

components and the PDO or SOI indices as well as their Hilbert transformed time series

reach up to 2 (mean of 0.7, see the bar plot on the bottom of Figs. 9 and 10). These

differences are bigger than those over the Atlantic Ocean, and we expect that the overall

error that corresponds to the separation of SOI from PDO reaches up to *30% of the

signal. The performance of CEOF in separating the SOI- and PDO-related patterns is found

to be much worse than TCICA. In Fig. 11, the absolute differences between the temporal

components of the fourth and fifth orthogonal modes of CEOF over the Pacific Ocean and

SOI or PDO as well as their Hilbert transformed time series are shown. In both graphs,

evident cyclic behavior can be seen, whose amplitudes reach to the amplitude of the SOI or

PDO signals (mean of 1.2). It is worth mentioning that the considered level of SST noise

(10% of signal) does not significantly harm the decomposition results.

7 Summary and Conclusions

In recent decades, decomposition techniques have garnered increasing interest for analyzing

geophysical time series. In this study, we discussed the mathematical details of a number of

frequently used statistical decomposition techniques, namely principal component analysis

(PCA)/empirical orthogonal function (EOF), the more recent independent component anal-

ysis (ICA), and complex EOF (CEOF). With these existing techniques in mind, a novel

decomposition technique, called complex ICA (CICA), is introduced. CICA combines the

Fig. 11 Performance of CEOF in extracting SOI and PDO from SST data over the Pacific Ocean. Blue and
red bars indicate the absolute differences between the temporal components of the fourth orthogonal mode
and PDO as well as its Hilbert transformed time series (Top). Similar differences, to the top, but between the
temporal components of the fifth orthogonal mode and SOI as well as its Hilbert transformed time series
(Bottom). Time series are unit-less
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advantage of an ordinary ICA (Forootan and Kusche 2012), i.e., involving higher (than two)-

order statistical information embedded in the data into the decomposition procedure, and non-

stationary information as in CEOF (Horel 1984).

The mathematical details of CICA are described in detail, and an algorithm to imple-

ment the method has been provided (see Sect. 2 and Appendix 2). Three synthetic datasets

are also generated to test the proposed CICA technique in separating climate-related

patterns from multivariate terrestrial water storage (TWS, 2003–2016) and sea surface

temperature (SST, 1982–2016) time series. Our results indicate that CICA considerably

mitigates the clustering behaviors that usually occur after application of the second-order

statistical decomposition techniques. CICA also captures stationary and non-stationary

variability in both TWS and SST data in fewer number of modes. Particularly, we show

that, given the time series to be long enough (e.g., SST data used here), CICA can separate

complicated semi-cyclic patterns such as those of the El Niño Southern Oscillation

(ENSO) from the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation

(NAO) from the Atlantic Multi-decadal Oscillation (AMO).

The orthogonal property of PCA and CEOF decomposition is very useful since the

covariance matrix of any subset of retained modes is always diagonal. Both techniques also

capture the dominant part of the variance in the original dataset; therefore, their application

for dimension reduction is recommended. However, when the PCA or CEOF components are

treated individually, their results can be misleading since they mix physical processes with

similar variance properties (see Figs. 8, 11). In those cases, ICA and CICA are shown to be

better suited. Computational complexity of ICA and CICA is, however, higher than of sec-

ond-order techniques. Therefore, for those applications that require one to extract a portion of

total variance, for example, in dimension reduction studies, rather than interpreting individual

modes, second-order statistical techniques (PCA/CEOF)might be a better choice. CEOF and

CICA are found to be more efficient than PCA and ICA when the input data contain non-

stationary information. For example, using complex techniques, smaller number of modes

requires to retain a certain portion of the total variance in the original data.

A reliable estimation of sample length and uncertainty estimation of the CICA derived

modes is discussed in Appendix 3. Our numerical investigations indicate that a minimum

length of 100 months is required to separate linear trend, annual, and semi-annual cycles,

as well as the semi-cyclic ENSO from GRACE TWS data in the presence of realistic noise.

The assessment, however, only considers the statistical and numerical errors in estimating

statistically independent components, and the minimum length that is required to accu-

rately represent all spectral properties of the ENSO index has not been considered.

The ICAcriterion applied in this study is based on the joint diagonalization of the fourth-order

cumulants, which has been generalized by, e.g., Moreau (2001) to include a variety of higher-

order cumulants. In another attempt, Fu et al. (2015) provide a CICA algorithm that exploits

three types of statistical properties, i.e., non-Gaussianity, non-whiteness, and non-circularity, to

ensure the best possible approximation of statistical independence. Such extensions can be

applied to improve the estimation of independencewhen the time series are long enough, such as

SST data in this study. Applying ICA/CICA that requires computing more statistical moments

from the length-limited time series, such as those of GRACE TWS, might itself introduce

unwanted uncertainties. A rigorous investigation of such extensions will be addressed in future

research.TheCICAtechniquewill be applied in future contribution toextract newENSOindices

from ‘real’ datasets such as GRACE TWS, SST, and global precipitation.
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Appendix 1: Hilbert Transformation

Assume the columns of the data matrix X (shown by xt) to be a scalar field. This time

series can be represented by a discrete Fourier transformation as

xt ¼
X

k

aðxkÞ cosðxktÞ þ bðxkÞ sinðxktÞ; t ¼ 1; . . .; n; ð19Þ

where aðxkÞ and bðxkÞ are vector Fourier coefficients at frequency xk (with accepting

values between �p and p that are selected according to the sampling rate). Thus, values of

xk have to satisfy the Nyquist frequency rule and its equivalent wavelength should not

exceed the length of time series (Chatfield 1989, chapter 7).

The Hilbert Transformation introduces a p=2 phase shift in the frequency domain to

each individual time series (xt). Thus, the Hilbert transform (Hð:Þ) of xt is given by

H xtð Þ ¼
P

xk
aðxkÞ cosðxkt þ p=2Þ þ bðxkÞ sinðxkt þ p=2Þ; t ¼ 1; . . .; n; or

H xtð Þ ¼
X

k

bðxkÞ cosðxktÞ � aðxkÞ sinðxktÞ; t ¼ 1; . . .; n: ð20Þ

Comparing Eq. (20) with (19), it is clear that the resulted expansion in Eq. (20) is similar

to the first derivative of Eq. (19) with a difference that the frequency argument (xk) is not

involved in the Hilbert Transformation. For example, Fig. 12 shows the time series of SOI

and its Hilbert transformed time series.

Time [year]

Fig. 12 Time series of normalized monthly SOI and its Hilbert transformed time series
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Appendix 2: Spatial and Temporal Complex ICA Algorithms

Here, we present the CICA algorithm for both SCICA and TCICA, see Algorithm 1. The

complex field Y is generated by adding the Hilbert transform of Eq. (3) as the imaginary

part to the observed data matrix X, i.e., Y ¼ X þ i H Xð Þ. This is reflected in the stage 1. In
stage 2, Y is de-correlated by applying an eigenvalue decomposition, which provides the

complex components of �P
Y
and EY . In stage 3, one must select one of the transformations

ZSpatial ¼ ŴSpatialY or ZTemporal ¼ ŴTemporalY
H. In stage 4, the fourth-order cumulant

tensor Q is built using Eq. (7), while considering the entries of Z as its inputs, and in stage

5, an orthogonal rotation R̂Y is computed using the JD algorithm (Eq. 8). In stage 6, a

mixing matrix is derived, which is used to estimate spatially or temporally independent

components (ŜSCICA or ŜTCICA) in stage 6.
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Algorithm 1: Complex ICA algorithm based on diagonalization of the

fourth order cumulants
Data: X

Result: complex source signals SY /S̃Y , and corresponding

spatial/temporal components AY /ÃY

Default: ξ = 10−2/
√

(n), n is the length of time series;

1: Add the Hilbert transformation of X to the original data and derive

the complex data Y Eq. (2);

2: Estimate a whitening matrix Ŵ as ŴSpatial = Λ−1P̄H or

ŴTemporal = Λ−1EH ;

3: Compute de-correlated components by setting ZSpatial = ŴSpatialY or

ZTemporal = ŴTemporalYH ;

4: Estimate the cumulant tensor QZ using the entries of Z from Eq. (7)

and order it in Eq. (8);

5: Find a rotation matrix R̂ =
∏

i V̂i as the minimizer of the squared

off-diagonal cumulant entries of Eq. (8);

while Sweep each cumulant matrix of Eq. (8) and derive V̂i(θ) do

if off-diagonal elements are zero then
Select another pair;

else
θ is smaller than θmin = ξ;

Select another pair;

end

end

6: Estimate a mixing matrix for SCICA as ŴSCICA = R̂HŴSpatial or for

TCICA as ŴTCICA = R̂HŴTemporal ;

7: Estimate the source signals of S̃SCICA as ŴSCICAY or STCICA as

ŴTCICAYH . The corresponding patterns are derived as

ÃSCICA = P̄Y
j ΛY

j RY
j and ÂY

TCICA = EY
j ΛY

j RY
j
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Appendix 3: Reliability and Uncertainty of CICA Modes

The proposed ICA/CICA methods (Eqs. 1, 4) consist of a de-correlation step followed by a

rotation (Eqs. 9, 10). Both steps are based on statistical estimates (Eq. 7) and solving a

numerical optimization (Eq. 8). Given a known fourth-order cumulant tensor Q, one needs

to evaluate the minimum sample size N necessary to obtain a reliable estimation of tensor

Q̂N , which is close enough to the original Q. Assuming that Q̂N and Q are symmetric and

positive definite, a distance measure can be defined as

dN
2 Q̂N ;Q
� �

¼ trace log2 Q̂
�1=2

N QQ̂
�1=2

N

� �� �

: ð21Þ

In an ideal case, each section of Q̂
�1=2

N QQ̂
�1=2

N is equal to an identity IN , and consequently,

d becomes 0. In real cases, Eq. (21) evaluates as

dN
2 Q̂N ;Q
� �

¼ trace log2ðIN þ �Þ
� �

¼
X

N

i¼1

log2ð1þ �iÞ 
 N�2; ð22Þ

where �i is a symmetric error matrix. In Eq. (22), we assume that these errors are equally

distributed in each section of Q. This equation suggests that the separation error is related

to the number of independent of modes, i.e., reflected in N, and length of observations,

which changes the magnitude of �i.
An exponential function expð:Þ can be used to represent the likelihood of errors in

Eq. (22) as

qðdNÞ ¼ exp �1=2 � dN2 Q̂N ;Q
� �� �

; ð23Þ

where qðdNÞ varies between 0 and 1, with 1 being the perfect match of Q̂N and Q. one may

assume that qðdNÞ should be larger than 0.95 in order to be representative of an accept-

able estimation (see also Wu et al. 2008).

To numerically test this criterion, we consider the fourth cumulant tensor derived from a

synthetic GRACE TWS example with a length of 155 months as our truth. Then, in each

step, 5 months is randomly excluded from the synthetic dataset and Eq. (23) is evaluated.

In all estimations, seven independent modes (sources) are extracted similarly to the

original example shown in Sect. 4.1. This experiment indicates that a sample length of

longer than 100 months (without sequential data gaps) is required to guarantee a qðdNÞ that
is larger than 0.95.

Uncertainty Estimation of ICA Modes

In order to estimate the uncertainty of independent modes, one can follow a Bootstrap

approach (Efron 1979) by generating m realizations of the data matrix Xi; i ¼ 1; . . .;m by

considering the original data X and adding errors from its covariance matrix. Applying

Eq. (4) on these realizations yields m sets of components, from which the uncertainty of

independent modes can be estimated. Discussions on the uncertainty of decomposition

techniques applied on GRACE TWS data are demonstrated in Talpe et al. (2017).
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