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Es gibt den alles zersetzenden Zweifel, der jede sich anbietende
Wirklichkeit nur zerstören will und der schließlich in die Ver-
Zweiflung führt, weil sich nirgends mehr fester Halt findet.
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CHAPTER 1

Introduction

It is now roughly a century ago since Einstein developed his his theory of space,
time and gravitation – general relativity – in 1915. While many of its weak field
predictions could soon be tested, and have since been tested with ever increasing
accuracy, up until recently there have been little experimental insights into the
strong field regime of the theory. Notably, there has been the indirect verification of
gravitational waves radiating from the Hulse-Taylor pulsar binary by observing the
reduction of its rotation period over time. But it took until 2015 when gravitational
waves could first be detected directly, on our soil, using laser interferometers. Why
did it take one hundred years? The challenges were huge on many fronts. On the one
hand there is the enormous challenge to engineer interferometers which are sensitive
enough to measure such tiny changes in the length of their arms caused by fly-by
gravitational waves. But even with high enough accuracy, the gravitational wave
signals are still buried deep in the detector noise, which imposes a huge challenge on
the data analysis. One technique to deal with that is to comb the data with filters,
which match the gravitational wave signals. In order to apply this technique, the
waveforms have to be provided by the theory, ie by general relativity, or in practice,
by waveform models which are gauged against the theory.

The strongest sources of gravitational waves are black hole binaries in mutual
orbit, which spiral in and ultimately merge as a result of their decreasing separa-
tion due to the gravitational wave emission. The task to accurately calculate the
waveforms extracted from these systems in the full theory of relativity was another
major challenge, and required enormous advances in the field of numerical relativ-
ity. Only in 2005 did long term simulations become possible, covering the in-spiral,
merger and ring-down for the first time. Two approaches yielded success, which
di↵er in the way in which they avoid to have to deal with the black hole singularities
numerically. One of them excises a region around the singularities by engineering
from the numerical domain – the excision method. The other works in a gauge
in which the singularities are not on the numerical domain in the first place – the
moving puncture method.

Even though the binary black hole problem is now essentially solved, progress
has since been made in optimising the approaches. With this thesis we hope to con-
tribute to the improvement of the initial data formalism. In the moving puncture
approach, black holes are initially modeled via a wormhole geometry, which avoids
the singularity via its throat, bridging two asymptotically flat ends. However it has
been shown that the wormholes change their geometry, and asymptote to what has
been called trumpets during the evolution. A trumpet is still a singularity avoid-
ing representation of a black hole. It however lacks the second asymptotically flat
end of a wormhole, and instead connects the physical flat end to a throat of finite
area, where it terminates. Initial data in this form has since been constructed for
Schwarzschild and other black hole spacetimes, such as Bowen-York. The problem
to construct such initial data for Kerr spacetime, in a form which is suited for nu-
merical evolution code, however remains still open.
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2 1. INTRODUCTION

In this thesis we work towards a numerical derivation of Kerr trumpet initial
data in maximal gauge. In part 1 we summarise the necessary theoretical back-
ground as well as the relevant literature on trumpet initial data, and we lay out the
numerical methods which we use in part 2 to solve the initial data equations. In
part 2 we then present the novel research of this thesis. We outline the proposed
approach, and present our main results: the test of the approach in the special cases
of zero and maximal spin – ie for Schwarzschild and extreme Kerr spacetime. The
work of this thesis constitutes the first numerical construction of trumpet data for
these key examples, and lays the foundation for the construction of general trumpet
black-hole data in the future.



Part 1

Background





CHAPTER 2

The initial data formalism in 3 + 1 numerical relativity

The goal of this chapter is to arrive at the 3 + 1 initial data formalism in
weighted transverse decomposition and in conformal thin sandwich decomposition.
These provide the formal theoretical setting for the analyses in part 2. In section 1
we summarise general relativity in its original four-dimensional formulation. After
we perform a 3+ 1 split of spacetime in section 2, we then formulate the theory as
initial data problem in section 3. Finally, we develop the initial data formalism in
the weighted transverse decomposition in section 4, and relate it to the conformal
thin sandwich decomposition in section 5. For thorough standard text books on
the material presented here we refer to [1, 8].

Greek indices {µ, ⌫, . . . } refer to components of spacetime quantities, and latin
indices {i, j, . . . } denote components of spatial quantities. Component matrices are
denoted by brackets, ie [gµ⌫ ]. We denote K = trK for the trace of the extrinsic
curvature and other quantities, however we use � = det � for the determinant of
the spatial, and other metrics.

1. General relativity

Einstein’s theory of general relativity spacetime is modeled as a four-dimensional
semi-Riemannian manifold with signature (�+++). Gravitation enters by requir-
ing the spacetime’s metric gµ⌫ to satisfy the Einstein equationEinstein equation,

(1) R̃µ⌫ � R̃

2
gµ⌫ = 8⇡Tµ⌫ ,

where R̃µ⌫ and R̃ denote the Ricci tensor and Ricci scalar associated with the
spacetime metric; cf standard textbooks such as [46, 29, 34, 48]. Tµ⌫ denotes the
stress-energy tensor associated with the spacetime metric and the matter content.
Thus, the Einstein equation (1) relates a measure of spacetime geometry, specifically
of intrinsic curvature, to a measure of matter-energy density.

Einstein’s theory marked a paradigm shift of the way in which we think about
space, time and gravitation. These aspects of the theory are inherent in the four-
dimensional formulation. However, at the same time, this formulation has its prac-
tical limits when it comes to the construction of astrophysically relevant solutions
which lack a su�ciently high degree of symmetry, such as solutions to the binary
black hole problem. For these problems it is more natural, and turned out to be
more successful, to think in terms of a gravitational field in three-dimensional space
that evolves in time – a dynamic description that is obscured in the static picture
of the original, four-dimensional formulation.

2. The 3+1 split of spacetime

A particularly successful approach is the 3+1 formulation of general relativity
where one views a spacetime M as being chopped up into spatial hypersurfaces ⌃t,
called slices; cf [4, 49] or [1, 8]. A slices and foliationsone-parameter family {⌃t}, with M =

S
t ⌃t,

is called a foliation of M . Obviously a foliation is not unique to a spacetime, as
illustrated in figure 1. There are infinite ways to foliate it.

5
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Figure 1. The three-dimensional spatial slices ⌃t and ⌃0
t both

foliate the spacetime M . One space dimension is suppressed for
representability.

⌃t

xi

↵dt

⌃t+dt

xi � �idt

xi

Figure 2. Interpretation of the gauge functions: ↵ describes the
time lapse, and �i the spatial shift of the coordinates xi between
two neighbouring slices.

Let now {⌃t} be a foliation of spacetime. It is convenient to choose spatial basis
vectors that are tangent to the slices. The components of the spacetime metric gµ⌫
and it’s inverse gµ⌫ can then be written as

(2) [gµ⌫ ] =

�↵2 + �k�
k �i

�j �ij

�
and [gµ⌫ ] =

�1/↵2 �i/↵2

�j/↵2 �ij � �i�j/↵2

�
,

and the basis expansion of the metric, ie the line element, is given as

ds2 = (�↵2 + �i�
i)dt2 + 2�idtdx

i + �ijdx
idxj .

This does not pose a restriction on the metric – any metric can be written in this
way.spatial metric,

gauge functions
�ij denotes the spatial metric on the slices. ↵ specifies the time-lapse between

a slice ⌃t and a neighbouring slice ⌃t+dt along the line normal to the slices, and is
called the lapse function. �i on the other hand specifies the shift that the spatial
coordinates xi undergo with respect to the line normal to the slices, between time
t and t + dt. It is called the shift vector. Together ↵ and �i are referred to as
the gauge functions; cf figure 2. From (2) we see that instead of describing the
gravitational field as a four-dimensional metric gµ⌫ on spacetime M , we can as well
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describe it as a three-dimensional metric �ij together with a set of gauge functions
{↵,�i} on each slice of a foliation {⌃t} of M . This can be seen as a 3+1 description
of the gravitational field.

The standard 3+1 formalism however goes one step further and introduces the
extrinsic curvature Kij extrinsic curvatureon the slices. It can be defined as the Lie-derivative of the
spatial metric along the vector normal to the slices, up to a factor �1/2. Expressed
in a foliation adapted frame, this becomes

(3) Kij = � 1

2↵
(@t�ij �Di�j �Dj�i);

cf [1, p 70, 71]. Di denotes the covariant derivative with respect to �ij on the slices,
and since indices of spacial tensors are being pulled by the spatial metric we have
�i = �ik�

k. The 3 + 1 formulation then views the set {�ij ,Kij} on each slice of a
foliation {⌃t} as the fundamental variables describing the gravitational field, which
is again equivalent to providing the spacetime metric gµ⌫ on M .

3. The 3+1 formulation of general relativity

So far we have encountered three ways to describe the gravitational field in
spacetime, which we shall symbolically summarise by

gµ⌫ on M  ! {�ij ,↵,�i} on {⌃t}  ! {�ij ,Kij} on {⌃t}.
The former provides a four-dimensional description, while the latter two are 3 + 1
descriptions. The standard 3+1 formulation works with the quantities {�ij ,Kij}, ie
with the spatial metric and extrinsic curvature. What is left to do is to formulate
the laws of gravitation, ie the Einstein equation (1), in a 3 + 1 form for these
variables.

The idea is to first prescribe the gravitational field {�ij ,Kij} on an initial slice
⌃0 and to then evolve these quantities in time to obtain the field for all times, ie on
the foliation {⌃t}. This means that the 3+1 Einstein equations have to be split up
in a set of constraint and time evolution equations. While the constraint equations
will ensure that the gravitational field {�ij ,Kij} satisfies the laws of gravitation
on the initial slice ⌃0, the time evolution equations will ensure that this field also
evolves in time, ie from slice to slice, according to the laws of gravitation. The
latter also implies that the constraints will continue to be satisfied on all future
slices.

One of these equations, the time evolution equation for the metric, evolution equationsis readily
given by (3), which becomes clear if we rewrite it as

(4) @t�ij = �2↵Kij +Di�j +Dj�i.

To find the remaining equations, one has to consider various projections of the
spacetime Riemann tensor R̃µ

⌫⇢� associated with gµ⌫ onto the slices ⌃t and onto

the vector normal to the slices. This way R̃µ
⌫⇢� can be expressed in terms of the

spatial Riemann tensor Ri
jkl associated with �ij and the extrinsic curvature Kij

on the slices. Using then the Einstein equation (1) in the right places to relate the
geometric quantities to the matter sources, one obtains two additional constraint
equations (four in components), and an evolution equation for the extrinsic cur-
vature Kij ; cf [1, section 2.4, 2.5] or [8, section 2.5, 2.6, 2.7]. The latter is given
by

(5)
@tKij = ↵(Rij � 2KikK

k
j +Kij)�DiDj↵

� 8⇡↵
⇣
Sij � 1

2
�ij(S � ⇢)

⌘
+ �k@kKij +Kik@j�

k +Kkj@i�
k.
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Figure 3. Comic impression of a binary black hole simulation in
the 3 + 1 formulation of general relativity.

Here ⇢ denotes the energy density, Sij the stress tensor and S its trace, associated
with the matter sources, as measured by Eulerian observers. These are observers
living on world lines normal to the slices. Rij denotes the spatial Riemann tensor
associated with �ij . For later use we also write out the resulting evolution equation
for the trace of the extrinsic curvature:

(6) @tK = ��ijDiDj↵+ ↵
�
KijK

ij + 4⇡(⇢+ S)
�
+ �iDiK.

Together (4) and (5) are called the ADM evolution equations, after Arnowitt, Deser
and Misner; cf [4]. The form in which they are presented here is due to a refor-
mulation by York though; cf [49] and the discussion in [1, p 75f]. The constraint
equations on the other hand are given byconstraint equations

R+K �KijK
ij = 16⇡⇢,(7)

Dj(K
ij � �ijK) = 8⇡ji,(8)

where R denotes the spatial Ricci scalar associated with �ij and K the trace of the
extrinsic curvature on the slices. ji denotes the momentum density as measured
by Eulerian observers. (7) and (8) are called the Hamiltonian and momentum
constraint respectively, and together they build the Einstein constraints.

Together (4), (5), (7) and (8) can be viewed as a 3 + 1 formulation of the
Einstein equation (1). Hence as intended, general relativity is thereby formulated
as an initial data problem, where initial data is given by the specification of the
dynamical quantities �ij and Kij on a single slice in such a way that the constraints
are satisfied. The evolution equations then prescribe how this data evolves with
time, ie how it changes from one slice to the next. Figure 3 illustrates this with the
example of a binary black hole problem.

{�ij ,Kij}constrained and
free data

has twelve independent components in total, and there are four con-
straint equations (7) and (8). Hence, in principle one could construct initial data
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by directly prescribing eight components such that they correspond to the physi-
cal situation we are looking at, and by solving the constraints for the other four.
However in general it is non-trivial to specify the free data in such a direct way.
It turned out to be fruitful to formulate the constraints in terms of other, related,
quantities, which allow for a clearer specification of the free data, and from which
the true physical initial data can be reconstructed. There are several successful ap-
proaches. Most of them introduce a conformally related spatial metric and extrinsic
curvature, and then di↵er in how the latter is further decomposed. In the follow-
ing section we discuss the weighted transverse decomposition, which is particularly
suited to construct (quasi) equilibrium initial data. After that we will discuss the
conformal thin-sandwich and conformal transverse decompositions as special cases.

4. The weighted transverse decomposition

We will from now always refer to spatial quantities unless indicated otherwise.

Let Aij be the traceless part of the extrinsic curvature Kij , ie

Aij = Kij � K

3
�ij .

Further conformal relationwe introduce a scalar function  , the conformal factor, and define confor-
mally related quantities to the (spatial) metric �ij and Aij by

(9) �ij =:  4�̄ij and Aij =:  �2Āij .

The exponents of  are chosen for convenience; cf [1, p 93, 94; in particular
eq (3.2.10)]. The respective quantities with pulled indices are defined in such a way
that indices of conformally related quantities are pulled by the conformal metric; eg
�ij =:  �4�̄ij and Aij =:  �10Āij and so forth. The weighted transverse decom-
position further introduces a positive scalar weight function �, a vector potential
V i and a symmetric trace free tensor M ij ; cf [35]. These have no a priori physical
or geometric interpretation, however allow for a decomposition of the independent
degrees of freedom into free and constraint data. The respective conformally related
quantities are defined by

�̄ :=  �6�, V̄ i := V i and M̄ ij :=  10M ij .

The conformally related traceless part of the extrinsic curvature can then be written
in terms of these quantities as

(10) Āij = M̄ ij +
1

�̄
(L̄V )ij ,

with the action of the longitudinal operator L̄ given by,

(L̄V )ij := D̄iV j + D̄jV i � 2

3
�̄ijD̄kV

k.

D̄i denotes the covariant derivative with respect to the conformal metric. One can
then express the constraints in terms of the new quantities as constraints in

weighted transverse
decomposition�̄ijD̄iD̄j � 1

8
 R̄� 1

12
 5K2 +

1

8
 �7ĀijĀ

ij = �2⇡ 5⇢,(11)

(�̄L̄V )i � (L̄V )ijD̄j ln �̄ + �̄D̄jM̄
ij � 2

3
�̄ 6D̄iK = 8⇡�̄ 10ji.(12)

In the Hamiltonian constraint ĀijĀ
ij is understood to be given in terms of M̄ ij ,

�̄ and V i by (10). In the momentum constraint we used the vector laplacian �̄L̄,
which is given by

(�̄L̄V )i := D̄j(L̄V )ij = D̄2V i +
1

3
D̄iD̄jV

j + R̄i
jV

j .
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Together with the matter parameters {⇢, ji},
(13) {�̄ij , M̄ ij ,K, �̄}
specifies the free data, and the constraints are solved for { , V i}. Note however
that the constraints are coupled and in general have to be solved simultaneously.
The physical data {�ij ,Kij} can then be recovered from these quantities by

�ij =  4 ̄ij and Kij =  �10Āij +
1

3
�ijK

together with (10).
Out of the initial data set (13), the symmetric trace-free tensor M̄ ij and the

scalar weight �̄ have no a priori geometric interpretations, and neither has the
vector potential V i of the solution set. Depending on the underlying problem, it
therefore can be of advantage to relate these quantities to quantities with a clear
geometric interpretation, as discussed in the next section. This allows for a clearer
way to choose the free data.

5. The conformal thin-sandwich decomposition

The conformal thin-sandwich decompositionconformal
thin-sandwich
decomposition

, cf [50], represents the special case
of the weighted transverse decomposition for which

(14) V i = �i, �̄ = 2↵̄, and M̄ ij = �@t�̄ij/2↵̄.
Hence the free data set is given by

{�̄ij , @t�̄ij ,K, ↵̄},
together with the matter parameters, and the constraints are solved for { ,�i}.
Therefore all quantities in the initial data and constraint data sets have a clear
geometric interpretation. In more detail: by associating the symmetric trace-free
tensor M̄ ij with the time derivative of the conformal metric @t�̄ij , and the scalar
weight �̄ with a lapse ↵̄, one ends up solving the momentum constraint for a cor-
responding shift �i. The respective correspondence can be seen from the time evo-
lution equation for the conformal metric, which we get by inserting (14) into (10):

(15) Āij =
1

2↵̄

�
(L̄�)ij � @t�̄ij

� , @t�̄
ij = (L̄�)ij � 2↵̄Āij .

That means that the gauge functions {↵̄,�i} used in the conformal thin-sandwich
equations are such that they are consistent with the initial change in the conformal
metric @t�̄ij specified in the free data set.

Clearly the physical initial data slice constructed, ie the initial data set {�ij ,Kij},
in the end relies neither on the specific gauge, nor on the specified initial change of
the conformal metric with time, used in the conformal-thin sandwich formulation.
And of course one is not obliged to use this gauge in a time evolution. However,
one may very well make use of this feature of the decomposition to simultaneously
derive a gauge, together with the initial data, which yields a desired evolution. The
obvious example for such a case isstationary and

quasi-stationary
initial data,

Killing gauge

stationary or quasi-stationary initial data. That
is, initial data for which {@t�ij = 0, @tKij = 0} throughout the evolution or on the
initial data slice. The gauge which yields a stationary evolution is referred to as
the Killing gauge, a name derived from the notion of Killing vector fields in the
treatment of symmetries in di↵erential geometry; cf [46, section C.3]. As we will
see in section 3, trumpet initial data is an example of stationary initial data, when
evolved with the corresponding Killing gauge.

If one attempts to derive a certain gauge together with the initial data, using
the conformal thin-sandwich decomposition, one might rather want to solve for the
lapse instead of providing it as part of the free data set. One can do this by utilising
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the time evolution equation for the trace of the extrinsic curvature (6) together with
the Hamiltonian constraint (7) to derive an elliptic equation for the lapse ↵̄; cf [1,
p 103f] or [8, p 77f]:

(16)
D̄2( 7↵̄) = ( 7↵̄)

✓
7

8
 �8ĀijĀ

ij +
5

12
 4K2 +

R̄

8
+ 2⇡ 4(⇢+ 2S)

◆

�  5@tK +  5�iD̄iK.

In other words, by exchanging ↵̄ for @tK in the free data set, and adding equa-
tion (16) to the constraints, one now has extended conformal

thin-sandwich
decomposition

{�̄ij , @t�̄ij ,K, @tK}
as the free data set, and the constraints are solved for { , ↵̄,�i}. This approach is
called the extended conformal thin-sandwich decomposition.

We conclude this chapter by stating in summary that the weighted transverse
decomposition and the original conformal thin-sandwich decomposition can be re-
garded as virtually identical. The only di↵erence is that in the latter case the
data {�̄, V i, M̄ ij} is given clear geometric interpretation, ie {↵̄,�i, @t�̄ij}, which
however only applies to a hypothetical time evolution of the initial data constructed
with the approach, not to the physical initial data {�ij ,Kij} itself.





CHAPTER 3

Initial data for black hole simulations

The excision and moving
punctures

first stable simulations capturing the in-spiral, merger and ring-down of
binary black holes in coalescence, and the gravitational waves extracted from this
system, was achieved in 2005; cf [37, 17, 5]. Two approaches succeeded. One is
the excision method, in which the black hole horizons are tracked throughout the
evolution, and declared as the inner boundaries of the numerical grid; cf [43]. The
black hole singularities are thereby artificially excised from the numerical domain.
On the other hand, there is the moving puncture method in which the singulari-
ties are avoided in a more natural way by virtue of the chosen gauge and evolution
equations. At the time of writing, both methods still exhibit their individual advan-
tages and disadvantages – both on a technical level and in their applicability. We
will focus exclusively on the moving puncture method here. In section 1 we show
how standard black hole initial data is constructed as wormhole data in the moving
puncture approach. Section 2 discusses how these slices change from wormholes
to trumpets by virtue of the applied gauge conditions, and how this motivates the
construction of trumpet initial data. Finally, in section 3 we summarise the current
status of research on trumpet initial data. This then also marks the starting point
of the new work presented in this thesis.

1. Wormhole initial data

Initial data for black hole simulations using the moving puncture approach are
typically provided as a slice of wormhole geometry. We shall illustrate the defining
features of such a slice with the example of Schwarzschild spacetime. In a Penrose
diagram, a wormhole slice joins spatial infinity of the physical half of the Kruskal-
Szekeres extension i0R to spatial infinity of the nonphysical half i0L through a throat
of finite area; cf figure 4. The Schwarzschild in

isotropic coordinates
standard Schwarzschild wormhole foliation is given

by isotropic coordinates {xµ} = {t, r, ✓,�}. It can be obtained from Schwarzschild
coordinates {xµ0} = {t0, r0, ✓0,�0} by the transformation

(17) t0 = t, r0 =  2r, ✓0 = ✓ and �0 = �, with  = 1 +
m

2r
.

The resulting foliation {↵,�i, �ij} is then given by

(18) ↵ =
1�m/2r

1 +m/2r
, �i = 0 and �ij =  4�̄ij ,

with

[�̄ij ] = diag[1, r2, r2 sin(✓)2].

Let us emphasise some properties. First, from (17) we can see that r0 goes to infinity
as r goes to infinity or 0. The former corresponds to physical spatial infinity i0R while
the latter corresponds to spatial infinity of the non-physical half of the spacetime
i0L. Since puncturethe latter infinity is compactified to the point r = 0, it is also referred
to as puncture in isotropic coordinates. The throat is located at the minimum
Schzwarzschild radius r0 = 2m which corresponds to r = m/2. The fact that a
wormhole slice is singularity avoiding, ie that the Schwarzschild singularity r0 = 0

13
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(a)

(b)

Figure 4. (a) shows a selection of slices of a wormhole foliation
of Schwarzschild spacetime in a Penrose diagram. The embedding
of a ✓ = const surface of one of these slices into Euclidean space is
shown in (b). Both plots have been published in [24].

is not on the slice, is of primary importance to numerical simulations. Second, the
slice is conformally flat since the components �̄ij are those of the flat metric in
spherical coordinates. Third, from (3) we find Kij = 0, which implies K = 0. It

time-symmetry and
maximality

is intuitively clear that the former condition implies that the initial slice is time-
symmetric, ie that it is symmetric with respect to its neighbouring slices of a time
evolution. Likewise, the latter condition states that the initial slice is maximal, ie
its volume element � is extremal with respect to its neighbouring slices of a time
evolution; cf [1, section 4.2.2]. To illustrate this we choose for a second an initial
gauge of ↵ = 1/2 and �i = 0. From the definition of the extrinsic curvature (3) we



1. WORMHOLE INITIAL DATA 15

then have

(19) @t�ij = �Kij =) �ij@t�ij = �K.

Now, from Jacobi’s formula for the derivative of the determinant we have

@t� = ��ij@t�ij .

Using this in (19) we find
�K = @t�/�.

Hence, for finite �, K = 0 if and only if @t� = 0, ie i↵ the time change of the spatial
volume element is zero, which is what we wanted to show. Finally, we note that the
analytical foliation {↵,�i, �ij} as given by (18) is stationary. In practice however,
most numerical simulation codes cannot stably evolve a maximal wormhole initial
data slice using the stationary Killing gauge {↵,�i} from (18). To be more precise,
the codes typically have problems with a lapse that is not non-negative, which is
the case here. We will elaborate on this and its practical consequences further in
section 2.

We multiple black hole
initial data

will focus on single black hole spacetimes in this text, but for complete-
ness we mention that multiple black hole initial data is usually modeled as some
sort of superposition of wormholes. We will not go into details here, but merely
present a short summary. For more detail we refer to [1, section 3.4] and [8].
First, time-symmetric data

– Brill-Lindquist
consider time-symmetric initial data, for which Kij = 0 on the initial slice;

cf [1, section 3.4.1]. For vacuum and a metric which is chosen to be conformally
flat we then have a trivially satisfied momentum constraint (8) and a Hamiltonian
constraint (11) given by the flat space Laplace equation

�̄ij@i@j = 0.

For asymptotically flat boundary conditions the following are examples of solutions:

(20)  = 1,  = 1 +
m

2r
, and  = 1 +

nX

�=1

m�

2|~x� ~x�| .

The first solution corresponds to a flat slice of Minkowski spacetime. The second
solution corresponds to the single Schwarzschild wormhole solution of mass m with
puncture at r = 0 as described above. Finally, the third solution corresponds to
a slice with n wormhole punctures, located at the spatial coordinates xi

�. The
bare masses m� di↵er from the ADM masses of the individual black holes for
n > 1. The corresponding relation is given in [1, (3.4.13)]. Initial data of this
type is referred to as Brill-Lindquist puncture data; cf [15]. For two black holes,
these data, when evolved represents a head-on collision of two non-spinning black
holes. Early simulations, using a fixed puncture approach, were already successful
at evolving these data; cf [2]. Moving puncture evolutions of these data have then
been performed for example in [41].

Of initial linear and
angular momentum –
Bowen-York

greater astrophysical relevance is initial data for multiple black holes which
exhibit linear and angular momentum, in particular initial data for binary black
holes in quasi-circular orbit prior to merger. In moving puncture simulation codes
this is usually given as Bowen-York initial data; cf [12] as well as [1, section 3.4.2]
or [8, section 12.2]. It is based on an analytical vacuum solution V i

BY to the mo-
mentum constraint (12) for free data

(21) {�̄ij flat, M̄ ij = 0,K = 0, �̄ = 1},
which encodes the linear and angular momentum of a black hole at the puncture
r = 0. The corresponding conformal extrinsic curvature ĀBY

ij is referred to as the
Bowen-York extrinsic curvature. Since the momentum constraint is linear in this
case, multiple spatially translated Bowen-York curvatures can be superposed to
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represent the extrinsic curvature for multiple black holes with linear and angular
momentum. Motivated by (20) the Bowen-York Hamiltonian constraint is then
expected to have a solution of the form

(22)  = 1 +
nX

�=1

m�

2|~x� ~x�| + u,

ie of the Brill-Lindquist solution plus a deviation u; cf [13]. The individual ADM
masses of the black holes are given in terms of the bare masses m� by [1, (3.4.32)].
In the ansatz (22), the poles of  at the wormhole punctures are absorbed by the
analytically prescribed Brill-Lindquist part, while u is regular everywhere. The
Hamiltonian constraint can then be solved for u numerically, which completes the
initial data formalism.

Onespurious radiation disadvantage of Bowen-York initial data is, that it does not correspond to
black holes only, but to black holes plus some spurious gravitational radiation, often
referred to as junk radiation; cf for example [18]. In binary black hole simulations
this junk radiation typically falls o↵ rather quickly, and is negligible in most cases.
Its contribution to the total energy and angular momentum of the spacetime how-
ever increases with the angular momenta of the black holes. This puts limits on the
applicability of the moving puncture approach to high spin black hole binaries. We
however point out, that it is in principle possible to produce puncture initial data
that go beyond the Bowen-York solution in this regard; cf for example [28, 39, 51].

2. Trumpet initial data

In the previous section we have seen that standard moving puncture initial data
models black holes as wormholes, which avoid the physical black hole singularities
via their throats of finite area. When the first binary black hole moving puncture
simulations succeeded in 2005, cf [17, 5], this feature of the initial data slices was
well understood both numerically as well as analytically. The advances in the
time evolution part of the method which lead to success were however to a greater
extend guided by trial and error experimentation with di↵erent gauge conditions
and evolution equations. The 1 + log slicing conditions for the lapse [11] as well
as a the �-driver shift conditions [2, 3] should be mentioned here, as well as the
step to allow the conformal factor to evolve, and thereby the punctures to move
across the numerical grid with the simulation [17, 5]. Hence it was less understood
at the time, if and how the singularity avoidance was maintained throughout the
simulation; cf for example [38].

Forapparent change in
topology

the case of a single Schwarzschild black hole moving puncture simulation,
this question was first answered in [25]. There it was shown that the slices loose
contact to the non-physical asymptotically flat end i0L, and asymptote to a state
of stationary evolution, at which they instead terminate at a throat of finite area
within the horizon, thereby still avoiding the black hole singularity; cf figure 5.
In the evolution of the conformal factor  this transition is reflected in that its
initial O(1/r) divergence evolves to a O(1/

p
r) divergence. In [16] it was shown

that the phenomenon is caused by a combination of the use of both, a skew grid
of finite resolution, as well as of a �-driver shift condition, which draws the grid-
points away from i0L and into the black hole horizon. In the limit of an infinite
resolution this retraction would not occur. The numerical slices would continue to
resemble a wormhole topology, however with a geometry and gauge di↵erent to that
of wormholes represented by isotropic coordinates (18). Furthermore, the evolution
would not be stationary.

Thesetrumpet slices findings suggested the construction of initial data which already exhibits
the geometry to which the numerical slices would otherwise asymptote to anyway.
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Figure 5. Penrose diagram showcasing the retraction of the
numerical slices from i0L in a moving puncture simulation of a
Schwarzschild black hole. The plot shows actual simulation data
and has been published in [24].

A single Schwarzschild black hole moving puncture evolution using this initial data
would then be stationary right from the beginning. Because of their characteristics
these proposed slices are called trumpets, or also slices with an asymptotically flat
end and an asymptotically cylindrical end. The notion of trumpets extends to
black hole spacetimes in general. We shall illustrate their defining features here
with the example of Schwarzschild spacetime. A trumpet slice connects physical
spatial infinity i0R to a throat of finite area, where the slice also approaches future
time-like infinity of the nonphysical half i+L ; cf figure 6. An attempt of a more
general rigorous definition can be found in [21].

It maximal
Schwarzschild
trumpets

turned out that a solution closely related to maximal Schwarzschild trumpets
was derived and discussed in [22] by Estabrook et al in as early as 1973, both
numerically and analytically, and later by alternative approaches; eg in an elegant
height function approach in [9, 10] summarised in [1, section 4.3.2], or further
in [33]. The potential use of these slices for numerical simulations due to their
singularity avoidance via a throat has already been recognised in [22]. However,
while these slices do approach i+L , they also still connect to i0L. The physical half
of the Estabrook et al slices in the t ! 1 limit can be regarded as representing a
maximal trumpet slice though. Yet, the coordinates in which these solutions have
been presented were of a form which is not suited for the moving puncture formalism
of today. We quote here their stationary maximal Schwarzschild trumpet foliation
{↵,�i, �ij} which is obtained as the t!1 limit to their family of solutions. With
C = 3

p
3/4 it is given by

(23) ↵ =

r
1� 2m

r0
+

C2

r04
, �r0 =

↵C

r02
and �r0r0 =

1

↵2
,

and all other components are trivial, or equivalently as {�ij ,Ki
j} with

[Ki
j ] = C/r0

3
diag[2,�1,�1].

The lapse is zero at r0 = 3m/2 which marks the throat, and goes to 1 at infinity,
which marks the asymptotically flat end. In order to prepare this solution for the
moving puncture formalism, the metric (23) has to be conformally related to the flat
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(a)

(b)

Figure 6. (a) shows a selection of slices of a trumpet foliation of
Schwarzschild spacetime in a Penrose diagram. The embedding of
a ✓ = const surface of one of these slices into Euclidean space is
shown in (b). Both plots have been published in [24].

metric in spherical coordinates. Thetrumpet puncture
ansatz

corresponding conformal factor has first been
derived numerically in [26] by solving the Hamiltonian constraint with a trumpet
puncture ansatz of the form

 = O(1/
p
r) + u,

and where we know from (17) that the new radial coordinate r is given by

(24) r0 =  2r.

Recall that a moving puncture simulation with wormhole initial data in isotropic
coordinates finds the trumpet slices. Becausequasi-isotropic

coordinates
of this relation to Schwarzschild in

isotropic coordinates we call these kind of coordinates quasi-isotropic. Shortly after,
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the conformal factor has been derived analytically in [7], however as function of r0;
(25)

 2 =
4r0

2r0 +m+
p
4r02 + 4mr0 + 3m2

 
8r0 + 6m+ 3

p
8r02 + 8mr0 + 6m2

(4 + 3
p
2)(2r0 � 3m)

!1/
p
2

.

With (24) this also provides the transformation from the original coordinates (23)
to quasi-isotropic coordinates, however only in an implicit form, since it cannot be
analytically inverted to explicitly give r in terms of r0. One can then check the
asymptotic behaviour

lim
r!0

 =

r
3m

2r
and lim

r!1
 = 1,

which, as discussed above, is characteristic to trumpets – a conformally flat end
at infinity, and a throat at the trumpet puncture r = 0. In summary, maximal
Schwarzschild trumpet moving puncture initial data is given analytically, though
implicitly, by conformally relating (23) with  given by (25), and transforming
to quasi isotropic coordinates by (24). When this data is evolved with the gauge
functions (23) transformed to quasi-isotropic coordinates, the simulation is indeed
stationary as also shown in [26].

These 1+ log Schwarzschild
trumpets

results have been expanded on in [24], where 1+log Schwarzschild trum-
pet initial data has been derived and evolved analytically. Figure 6a is taken from
there, and shows a stationary simulation of this data with 1 + log and �-driver
gauge conditions by default used in moving puncture binary black hole simulations.

3. Beyond the single Schwarzschild trumpet

The findings summarised in the previous section suggest that ideal black hole
puncture initial data would be a 1 + log trumpet slice of Kerr spacetime, and
an according generalisation of that in the case of binary black holes. Since [24],
where the essential results on single Schwarzschild trumpet puncture initial data
were summarised and finalised, progress in trumpet research has been made on
multiple fronts. The construction of trumpet initial data for boosted, spinning or
binary black holes of Bowen-York type has been demonstrated for di↵erent cases
in [27, 30, 6]. Rigorous existence and uniqueness proofs for Bowen-York trumpet
solutions have been given in [19, 23, 47].

Analytical trumpet solutions for Schwarzschild black holes in [20], and for Kerr
black holes in [21], have been derived recently, however in a gauge which is not suited
for current numerical evolution codes – the problem to derive Kerr trumpet initial
data in a suitable gauge remains open. We hope to make a significant contribution
towards solving this open problem with this thesis; cf part 2.





CHAPTER 4

Numerical methods

In this chapter we outline the numerical methods which we use to solve the
constraint equations in part 2. Section 1 discusses numerical grids and grid func-
tions in one and two dimensions. We then go on to derive finite di↵erence derivative
approximations in section 2, and discuss their numerical errors. In sections 3 and 4
we show how to write partial di↵erential equations in one and two variables in finite
di↵erence form. We also discuss how to formulate boundary conditions, and how to
solve linear boundary value problems using the Thomas algorithm and successive
over-relaxation. Finally, section 5 deals with linearisation and iteration to solve
nonlinear boundary value problems. For further reading on numerical methods we
refer to [31, 36].

Throughout this chapter, i and j denote numerical grid indices, not spatial
tensor indices as in the rest of the text.

1. Finite di↵erence grid and grid functions

Consider a function

h : R � [smin, smax]! R,
s 7! h(s).

For uniform skew grida finite di↵erence approximation to this situation we define the discrete set of
points

s =

⇢
s 2 [smin, smax]

����s = smin +�s(i� 1/2) 8i 2 {1, 2, . . . , n} with 2 < n 2 N
�
,

where �s = (smax � smin)/n. We regard s as ordered by the index i and shall
therefore also write it as a row

(26) s = [si] = [s1, s2, . . . , sn].

s is called a uniform skew grid on [smin, smax]; uniform since its points are spaced
equally with si+1 � si = �s for each pair of consecutive points, and skew, or stag-
gered, since there are no grid points on the boundaries smin, smax. The first and
last grid points are given by s1 = smin +�s/2 and sn = smax ��s/2 respectively.
We will exclusively work with uniform skew grids in part 2; uniform for simplicity,
and skew to avoid divisions through zero in our numerical approximations which
commonly occur on the boundaries of black hole spacetimes. In ghost pointsorder to be able
to provide boundary conditions when we solve di↵erential equations in finite di↵er-
ences in part 2, we also need to define the ghost points

s0 = s1 ��s and sn+1 = sn +�s.

The grid and the ghost points are illustrated in figure 7. The finite di↵erence
approximation to h on s is then given by a restriction of its domain on the grid,
and we will denote its values by

hi = h(si) 8si 2 s.

21
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s
smin smax

s1 s2 . . . si . . . sn�1 sns0 sn+1

Figure 7. Illustration of a uniform skew grid on [smin, smax] and
the corresponding ghost points at the example n = 10.

The above definitions can be generalised to functions in two or more variables:

h : R2 � [smin, smax]⇥ [tmin, tmax]! R,
(s, t) 7! h(s, t).

Wetwo dimensional grid then also define a grid t = [tj ] = [t1, t2, . . . , tm] on [tmin, tmax] in the same way
as we did for (26), and then define the grid on the whole domain as the matrix of
points

S = [(si, tj)] =

2

64
(s1, t1) · · · (s1, tm)

...
. . .

...
(sn, t1) · · · (sn, tm)

3

75 .

This is illustrated in figure 8. The values of the finite di↵erence approximation to
this function are then written as

hij = h(si, tj) 8(si, tj) 2 S.

2. Finite di↵erence derivative approximations

In order to solve di↵erential equations in finite di↵erences, we also need to work
with finite di↵erence approximations of derivatives. Consider the Taylor series of
h(s± �s) at �s = 0;

(27) h(s± �s) = h(s)± �sh0(s) +
�s2

2!
h00(s)± �s3

3!
h000(s) +

�s4

4!
h(4)(s)± · · · .

Solving for h0(s) and �s = �s, and evaluating at si yieldsforward and
backward derivatives

(h0)i = h0(si) =
h(si +�s)� h(si)

�s
+O(�s) =

hi+1 � hi

�s
+O(�s),(28)

(h0)i = h0(si) =
h(si)� h(si ��s)

�s
+O(�s) =

hi � hi�1

�s
+O(�s),(29)

for the plus and minus sign respectively to lowest non-vanishing order in �s. Drop-
ping the higher order terms, we refer to (28) and (29) as the first forward and back-
ward di↵erence approximation to h0 respectively; first since we truncate at lowest
order, and forward or backward since we compare the value at si with the value at
si+1 or si�1 respectively. The error we make due to truncation is of order �s.

Alternatively one can use the first central approximation to h0 for which the
truncation error is of order �s2. It is obtained from (27) by forming the expression

h(s+ �s)� h(s� �s) = 2�sh0(s) +
�s3

3
h000(s) + · · · ,

which can again be solved for h0(s) and �s = �s, and evaluated at si to yieldcentral derivative

(30) (h0)i =
hi+1 � hi�1

2�s
+O(�s2).

Because of the higher order truncation error of the central approximation we will
use it preferably to the forward and backward approximations in part 2 wherever
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smin

tmax

tmin

smax
0,0

0,1

...

0,j

...

0,m

0,m+1 1,m+1 · · · i,m+1 · · · n,m+1 n+1,m+1

n+1,m

...

n+1,j

...

n+1,1

n+1,0n,0· · ·i,0· · ·1,0

1,1 n,1

i,j

1,m n,m

Figure 8. Illustration of a uniform skew grid on [smin, smax] ⇥
[tmin, tmax] and the corresponding ghost points. In this example
smax � smin = tmax � tmin and n = m = 10. Points (si, tj) are
labeled by their corresponding indices i, j.

possible. The approximations to higher derivatives can be obtained similarly. We
quote here the result for the first central di↵erence approximation for h00;

(31) (h00)i =
hi+1 � 2hi + hi�1

�s2
+O(�s2).

For a derivation of this and other approximations we refer to [31, section 5.2].
In optimal grid spacingall finite di↵erence derivative approximations, the truncation error increases

with the grid spacing �s to some positive power. Hence, if we had infinite com-
puting precision, then the smaller we chose �s, the higher the accuracy of the
approximation. However computing precision is finite, which introduces a roundo↵
error which will dominate the truncation error if �s gets su�ciently small – for
small �s the di↵erences in the quotients of (28), (29), (30), (31), etc, are small as
well. Thus given a computing precision, then for each function and point of evalu-
ation there is an optimal choice of �s which yields the highest possible derivative
approximation. In [31, table 5.4] this is illustrated at the example of (e�s)00 eval-
uated at s = 1 using the first central approximation of the second derivative (31).
For a six-digit precision the optimal approximation is achieved with �s ' 0.08,
while for an eight-digit precision it is achieved with �s ' 0.02 in this case.

Finally, we note that the above derivative approximations can analogously be
derived and applied to functions of more variables. We quote here the result for
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the mixed derivative @s@t:

(@s@th)ij =
hi+1,j+1 � hi+1,j�1 � hi�1,j+1 + hi�1,j�1

4�s�t
+O(�s2) +O(�t2).

3. One dimensional boundary value problems; tridiagonal matrix inversion

Consider the general, linear, second order partial di↵erential equation (PDE)
on [smin, smax] 2 R ,

(32) 0 + 1h+ 2@sh+ 3@
2
sh = 0,

subject to some boundary conditions. Here h as well as the coe�cients � are
functions of s. Using the tools developed in sections 1 and 2, we can write down a
finite di↵erence approximation of this equation on a skew grid s of n points on the
domain. UsingPDE in finite

di↵erences
first central approximations this yields

(33) 0i + 1ihi + 2i
hi+1 � hi�1

2�s
+ 3i

hi+1 � 2hi + hi�1

�s2
= 0.

The truncation error made by the approximation is of order �s2. This now repre-
sents a linear system of n algebraic equations. Its solution [hi] represents a finite
di↵erence approximation to the solution h of the original PDE (32). (33) can be
rewritten as

(34) aihi�1 + bihi + cihi+1 = di,

with

ai =
3i
�s2

� 2i
2�s

, bi = b1i �
23i
�s2

,

ci =
2i
2�s

+
3i
�s2

, di = �0i.

Theboundary conditions equations for i = 1 and i = n contain the values of the solution at the
ghost points s0 and sn+1, ie h0 and hn+1. This is where the boundary conditions
enter. Suppose we have a Dirichlet condition of value vmin at the lower boundary.
For small grid spacing �s this will be the average between the values of h at the
first grid point and at the ghost point:

(35)
h0 + h1

2
= vmin () h0 = 2vmin � h1.

Entering h0 from the latter expression into (34) for i = 1 we get

(36) (b1 � a1)h1 + c1h2 = d1 � 2vmina1,

for the first equation. This suggests the definition of modified coe�cients

ã1 = 0, b̃1 = b1 � a1, c̃1 = c1 and d̃1 = d1 � 2vmina1,

for i = 1, which carry the lower boundary condition. Suppose now that we have
a Neumann condition of slope wmax at the upper boundary. Using (30) with a
spacing of �s/2 this is approximated in finite di↵erence form by

hn+1 � hn

�s
= wmax () hn+1 = �swmax + hn.

Entering hn+1 from the latter expression into (34) for i = n we get

(37) anhn�1 + (bn + cn)hn = dn ��swmaxcn,

for the nth equation. This suggests the definition of modified coe�cients

ãn = an, b̃n = bn + cn, c̃n = 0 and d̃n = dn ��swmaxcn,
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for i = n, which carry the upper boundary condition. The full system with imple-
mented boundary conditions is now given by (36) for i = 1, (34) for i = 2, 3, . . . , n�1
and (37) for i = n. Together we can write this in matrix form as tridiagonal matrix

equation

(38)

2

6666664

b̃1 c̃1 0
a2 b2 c2

a3 b3
. . .

. . .
. . . cn�1

0 ãn b̃n

3

7777775

2

6664

h1

h2

...
hn

3

7775
=

2

6664

d̃1
d2
...
d̃n

3

7775
.

In analogy to the derivations above, a Neumann condition of slope wmin at the
lower boundary yields the modified coe�cients

ã1 = 0, b̃1 = b1 + a1, c̃1 = c1 and d̃1 = d1 +�swmina1,

while a Dirichlet condition of value vmax at the upper boundary yields the modified
coe�cients

ãn = an, b̃n = bn � cn, c̃n = 0 and d̃n = dn � 2vmaxcn.

The principal form of (38) is the same in all of the discussed cases.
We now drop the tildes again, keeping in mind that the coe�cients with indices

1 and n are modified. The Thomas algorithmtridiagonal form of the coe�cient matrix in (38) suggests
that one solves it using the Thomas algorithm; cf for example [31, section 2.4]
or [36, section 2.4.1]. We shall summarise it here without derivation. First, define
new coe�cients consecutively as

c0i =

8
><

>:

c1/b1 , i = 1
ci

bi � c0i�1ai
, i = 2, 3, . . . , n� 1

,

d0i =

8
><

>:

d1/b1 , i = 1
di � d0i�1ai

bi � c0i�1ai
, i = 2, 3, . . . , n

.

Then, obtain the solution from

hi =

(
d0n , i = n

d0i � c0ihi+1 , i = n� 1, n� 2, . . . , 1
.

4. Two dimensional boundary value problems; successive over-relaxation

Consider the general linear PDE on [smin, smax]⇥ [tmin, tmax] 2 R2 ,

(39) b0 + b1h+ b2@sh+ b3@th+ b4@s@th+ b5@
2
sh+ b6@

2
t h = 0,

subject to some boundary conditions. Here h as well as the coe�cients b� are
functions of s and t. Using the tools developed in sections 1 and 2, we can write
down a finite di↵erence approximation of this equation on a skew grid S of nm
points on the domain. Using PDE in two variables

in finite di↵erences
first central approximations this yields

(40)

b0ij + b1ijhij + b2ij
hi+1,j � hi�1,j

2�s
+ b3ij

hi,j+1 � hi,j�1

2�t

+ b4ij
hi+1,j+1 � hi+1,j�1 � hi�1,j+1 + hi�1,j�1

4�s�t

+ b5ij
hi+1,j � 2hij + hi�1,j

�s2
+ b6ij

hi,j+1 � 2hij + hi,j�1

�t2
= 0.
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The truncation errors made by the approximation is of order�s2 and�t2. This now
represents a linear system of nm algebraic equations. Its solution [hij ] represents
a finite di↵erence approximation to the function h of the original PDE (39).

In section 1 of chapter 7 we will use the Mathematica built in LinearSolve
command using the method Banded to solve the system (40). Insuccessive

over-relaxation
sections 2 and 3

of chapter 7 we will use successive over-relaxation (SOR). We shall outline this
technique here. For more on the method we refer to [36, section 20.5] and [8,
section 6.2.2]. The coe�cient of hij in (40) is given by

aij = b1ij �
2b5ij
�s2

� 2b6ij
�t2

.

Dividing (40) by that, and bringing all terms other than hij on the right hand side
yields

(41)

hij =
�1
aij

✓
b0ij + b2ij

hi+1,j � hi�1,j

2�s
+ b3ij

hi,j+1 � hi,j�1

2�t

+ b4ij
hi+1,j+1 � hi+1,j�1 � hi�1,j+1 + hi�1,j�1

4�s�t

+ b5ij
hi+1,j + hi�1,j

�s2
+ b6ij

hi,j+1 + hi,j�1

�t2

◆
.

Finally, bringing also hij on the right hand side we get

(42) 0 = rhs (41)� hij .

The right hand side of this equation expresses the di↵erence between hij directly,
and hij as calculated from the values at the neighbouring grid points; ie hi±1,j ,
hi,j±1, etc. Since (42) however merely represents an algebraic reformulation of the
original PDE in finite di↵erence approximation (40), it is clearly satisfied up to
errors of order �s2 and �t2 for the values of the finite di↵erence approximation
[hij ] to the solution h of (39). If we however enter an approximation [h⌫

ij ] to [hij ],
then the di↵erence on the right hand side of (42) yields a residual

(43) res⌫ij = rhs (41)⌫ � h⌫
ij ,

which specifies how close h⌫
ij is to hij . The idea of SOR is then to start with an

initial guess h0
ij of hij , and then update it following the iterative scheme

(44) h⌫+1
ij = h⌫

ij + ! res⌫ij ,

starting from ⌫ = 0 until a convergence criterion is met. The here introduced SOR
parameter ! 2 (0, 2) can be tweaked to improve the speed of convergence.

Theboundary conditions boundary conditions enter the solution scheme (44) via the residual since
its expression (43) contains the values at the ghost points for i = 1, i = n, j = 1 or
j = m. In analogy to what was discussed in section 3 we can eliminate these values
using the finite di↵erence approximations of the boundary conditions. We show
this at the example of Dirichlet conditions. First, considering figure 8, Dirichlet
conditions at smin, smax, tmin and tmax yield

(45)

h0j + h1j = 2h(smin, tj)

hn+1,j + hnj = 2h(smax, tj)

hi0 + hi1 = 2h(si, tmin)

hi,m+1 + him = 2h(si, tmax)

()
()
()
()

h0j = 2h(smin, tj)� h1j ,

hn+1,j = 2h(smax, tj)� hnj ,

hi0 = 2h(si, tmin)� hi1,

hi,m+1 = 2h(si, tmax)� him,

for the values at the ghost points across the edges. Yet left to specify are the values
at the corner ghost points, ie h00, hn+1,0, h0,m+1 and hm+1,m+1. Again with the
help of figure 8, for h00 we have

h00 + h01 = 2h(��s/2, tmin),
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and thus

(46)
h00 = 2h(��s/2, tmin)� h01

(45)
= 2h(��s/2, tmin)� 2h(smin, t1) + h11,

where in the last step we used the first equation of (45) to substitute for h01.
Assuming now that h(s, tmin)� h(smin, tmin) is odd we have

h(��s/2, tmin) + h(�s/2, tmin) = 2h(smin, tmin),

and thus

(47)

h(��s/2, tmin) = 2h(smin, tmin)� h(�s/2, tmin)

= 2h(smin, tmin)� h11 + h10

2
(45)
= 2h(smin, tmin)� h11 + 2h(s1, tmin)� h11

2

= 2h(smin, tmin)� h(s1, tmin),

where in the third line we used the third equation of (45) to substitute for h10.
Finally, using (47) in (46) we find

(48) h00 = 4h(smin, tmin)� 2h(s1, tmin)� 2h(smin, t1) + h11

for the value at the corner ghost point (s0, t0). In an analogous derivation we find

(49)

h0,m+1 = 4h(smin, tmax)� 2h(s1, tmax)� 2h(smin, tm) + h1m,

hn+1,0 = 4h(smax, tmin)� 2h(sn, tmin)� 2h(smax, t1) + hn1,

hn+1,m+1 = 4h(smax, tmax)� 2h(sn, tmax)� 2h(smax, tm) + hmn.

for the remaining three corner ghost points at (s0, tm+1), (sn+1, 0) and (sn+1, tm+1).
Defining now the modified residual fres⌫ij by using the obtained relations (45), (48)
and (49) to substitute for the values at the ghost points in res⌫ij , our final solution
scheme, which takes into account the boundary conditions, becomes

(50) h⌫+1
ij = h⌫

ij + ! fres⌫ij .

5. Linearisation of nonlinear equations

So far we only discussed linear PDEs. Nonlinear PDEs can often be solved
by iteratively solving their linearisations. We demonstrate this at the example of
the nonlinear PDE for the modified metric perturbation g, which we are going to
encounter in section 1 of chapter 7;

(51) d0 + d1g + d2@sg + d3@s@tg + d4
@sg@tg

1 + t(1� t)g
+ d5

g@sg

1 + t(1� t)g
= 0.

Consider the left hand side of this equation to be defined by a functional of g and
its derivatives;

F [g, @sg, @tg, @s@tg] = lhs (51).

The linearisation of F at (g, @sg, @tg, @s@tg) is then given by the first order Taylor
series

F [g, @sg, @tg, @s@tg] +
�F

�g
�g +

�F

�@sg
�@sg +

�F

�@tg
�@tg +

�F

�@s@tg
�@s@tg.

Assuming that the variation commutes with the partial derivatives, ie �@sg = @s�g,
etc, this yields

(52) b0 + b1�g + b2@s�g + b3@t�g + b4@s@t�g = 0,
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with

(53)

b0 = F [g, @sg, @tg, @s@tg],

b1 = d1 � d5
t(1� t)g@sg�
1 + t(1� t)g

�2 � d4
t(1� t)@sg@tg�
1 + t(1� t)g

�2 + d5
@sg

1 + t(1� t)g
,

b2 = d2 + d5
g

1 + t(1� t)g
+ d4

@tg

1 + t(1� t)g
,

b3 = d4
@sg

1 + t(1� t)g
,

b4 = d3.

(52) represents a linear PDE for the variation �g. Its coe�cients b� are functionals
of g and its derivatives. The original nonlinear PDE (51) can now be solved by the
iterative scheme

g◆+1 = g◆ + �g◆,

starting from an initial guess g0, and where �g◆ is obtained by solving the linear
PDE (52) at each iteration step.



Part 2

Towards a numerical derivation of
maximal Kerr trumpet initial data





CHAPTER 5

The approach: maximal extreme Kerr trumpets in
three steps

In this chapter we outline the approach by which we work towards a numerical
derivation of maximal Kerr trumpet initial data. Section 1 covers the underlying
initial data system for basic choices such as vacuum, maximality and axial sym-
metry, and we identify the two main challenges: solving for the conformal metric,
further elaborated on in section 2, and choosing appropriate boundary conditions,
further discussed in section 3. Finally, we present the Kerr metric in quasi-isotropic
coordinates in section 5, and point out properties which will be of use later. In par-
ticular, we will support the claim that the slices of extreme Kerr in quasi-isotropic
coordinates are maximal trumpets.

1. The basic initial data system

As outlined in chapter 3, optimal black hole initial data would be a 1 + log
trumpet slice of Kerr spacetime in quasi-isotropic coordinates. Our impose maximalitydeclared goal
here is the numerical derivation of maximal Kerr trumpet initial data. As mentioned
in section 1 of chapter 3, maximal means that K = 0. This simplifies the constraint
equations significantly. At the same time, this gauge is well suited for single black
hole simulations, and is closely related to the more general 1+log slicing conditions
which are used to evolve binary black holes; cf [11]. Since we are solving for a black-
hole slice, we are in vacuum impose vacuum, so we have ⇢ = ji = 0. Furthermore, as discussed in
section 2 of chapter 3, single black hole trumpet data is stationary when evolved
with the Killing gauge functions. As discussed in section 5 of chapter 2, this, as
well as simplicity, motivates the choice M̄ ij = 0. Summarising the above choices,
so far we have {⇢ = 0, ji = 0} and

(54) {�̄ij , M̄ ij = 0,K = 0, �̄}
for the free data set (13), and we postpone the choices for �̄ij and �̄ for now. The
initial data equations in weighted transverse decomposition (11), (12) then reduce
to

�̄ijD̄iD̄j � 1

8
 R̄+

1

8
 �7ĀijĀ

ij = 0,(55)

(�̄L̄V )i � (L̄V )ijD̄j ln �̄ = 0.(56)

A further simplification to the system is made by imposing axial symmetry impose axial
symmetry

onto
our slice, which we can, since we are solving for a slice of Kerr spacetime. Hence,
all our quantities depend on two spatial coordinates only – on a radial coordinate
and on a coordinate describing the polar angle.

Our restrictions on the initial data system so far demand that we solve for an
axially symmetric maximal slice of a vacuum spacetime. We yet have to make sure
that it corresponds to Kerr spacetime, and that it is of trumpet geometry. two main challengesTo do
so, on the one hand, we have to introduce mass and spin parameters m and a, and
choose appropriate boundary conditions. These choices are by no means obvious.
Hence, this represents the first of our main challenges. On the other hand, we

31
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also have to make an appropriate choice for the conformal metric �̄ij which allows
the solution to be a Kerr slice. The convenient choice of a flat conformal metric
is denied since there are no conformally flat slices of Kerr spacetime; cf [44, 45].
Hence, finding a way to provide an appropriate conformal metric represents our
second main challenge.

2. Solving for the conformal metric

In order to provide the conformal metric �̄ij we use an approach analogously to
the one used in the extended conformal thin sandwich decomposition; cf section 5 of
chapter 2. There the time evolution equation for the trace of the extrinsic curvature
K is used to derive an equation which can be solved for the lapse ↵̄, and in the
case of equilibrium or quasi-equilibrium data we could set @tK = 0. Hence, for the
price of adding a quantity @tK to the initial data set, and an additional equation
to the constraints, one is able to solve for the lapse ↵̄ instead of providing it. In
the following we discuss our analogous approach to solve for the conformal metric
�̄ij . We discuss it first in full generality, and then restrict to our case of interest.

deriving an equation
for the conformal

metric

We stick with the time evolution equation for the extrinsic curvature, however
this time not for it’s trace K, but rather for its traceless part Āij . We use the
equation derived in [40], which is however expressed in terms of the BSSNOK
conformal extrinsic curvature. We shall here denote it by a tilde. Ãij has a di↵erent
conformal weighting than Āij , cf [1, p 83, footnote 25]. The relation between the
two is given by

Ãij =  �6Āij .

Keeping this in mind we now quote [40, (2.35)]:

(57)

@tÃij =  �4

✓
↵
⇣
Rij �  4

3
�̄ijR

⌘
�
⇣
DiDj↵�  4

3
�̄ijDkD

k↵
⌘◆

� 2↵ÃikÃ
k

j + D̄i�
kÃkj + D̄j�

kÃki � 2

3
D̄k�

kÃij + �kD̄kÃij

� 8⇡↵
⇣
 �4Sij � 1

3
�̄ijSk

k
⌘
.

Note that here Rij , R, ↵ and Di represent the physical quantities, not the con-
formally related ones. Now, instead of providing the conformal metric, we could
instead choose a value for @tÃij on our initial slice, and treat (57) as an additional
di↵erential equations to the constraints, which has to be solved for the conformal
metric �̄ij . Expressed as an extension to the weighted transverse decomposition, cf
section 4 of chapter 2, the free data set is then given by

(58) {@tÃij , M̄
ij ,K, �̄} and {⇢, ji, Sij}.

The set of constraints now comprises equation (57) in addition to the Hamiltonian
and momentum constraints (11) and (12), and are solved for { , V i, �̄ij}. The same
extension can of course also be applied to the conformal thin sandwich, or extended
conformal thin sandwich decompositions; cf section 5 of chapter 2.

Applying this now to our problem, we can dismiss the matter terms in (57)
since we deal with vacuum. Further, we solve for a stationary slice, so we choose
@tÃij = 0. Our additional equation for the conformal metric �̄ij is then given by

(59)
0 =  �4

✓
↵
⇣
Rij �  4

3
�̄ijR

⌘
�
⇣
DiDj↵�  4

3
�̄ijDkD

k↵
⌘◆

� 2↵ÃikÃ
k

j + D̄i�
kÃkj + D̄j�

kÃki � 2

3
D̄k�

kÃij + �kD̄kÃij ,
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which together with (55) and (56) represents our extended system of constraints.
We will further break down (59) for the case of extreme Kerr in section 1 of chap-
ter 7.

3. Finding boundary conditions

Let r 2 [0,1) be the radial coordinate and ✓ 2 [0,⇡] be the coordinate describ-
ing the polar angle. In choosing boundary conditions for the constraint quantities
 , V i and �̄ij , towards spatial infinity, r ! 1, we are guided by asymptotic flat-
ness. At the angular poles, ✓ = 0 or ✓ = ⇡, we can impose symmetric boundary
conditions, eg  (r,�✓) =  (r, ✓), since we have axial symmetry. The main chal-
lenge however represents the boundary at the puncture, ie at r = 0. This is where
we have to introduce the mass and spin parameters m and a in the proper way, and
impose conditions which ensure that we solve for a Kerr slice of trumpet geometry.

We lower boundary
condition for the
Hamiltonian
constraint

start by discussing the lower boundary condition, ie r = 0, for the Hamil-
tonian constraint (55). First, we assume that for small radii r we can write the
conformal factor  as the product of a radial dependent and an angular dependent
part;

(60)  (r, ✓) ⇠ ⇠(r)�(✓) as r ! 0.

As discussed in chapter 3 we know that for Schwarzschild and Bowen-York trumpets
the conformal factor exhibits a characteristic 1/

p
r behaviour at the puncture, and

we would assume that this also holds for Kerr. We thus set

⇠(r) = 1/
p
r

in our Ansatz (60), thereby assuming that we can pack the dependence on the black
hole parameters m and a entirely into the angular dependent part �. To deal with
the angular dependence, we attempt to follow the approach taken in [27, section V]:
By plugging the Ansatz (60) into the Hamiltonian constraint (55) one can derive
a di↵erential equation for � on the interval [0,⇡], for which symmetric boundary
conditions can be chosen.

In lower boundary
condition for the
momentum
constraint

order to find a lower boundary condition for the momentum constraint, we
will impose that for small radii r, the quantity ĀijĀ

ij for a Kerr trumpet exhibits
the same behaviour as for a Bowen-York trumpet. That is

(61) ĀijĀ
ij ⇠ ĀBY

ij Āij
BY =

18M2a2

r6
sin(✓)2 for small r,

where we took the expression for Bowen-York on the right hand side from [32,
(4.19)]. On the other hand, with our choice of M̄ ij = 0, we see from (10) that

(62) ĀijĀ
ij =

1

�̄2
(L̄V )ij(L̄V )ij .

The idea is then to look at this expression for small radii r and to use it together
with imposition (61) in order to derive a lower boundary condition for the vector
potential V i. Note that the weight function �̄ will enter this relation – the only
quantity out of the free data set (58) which has not yet been specified. We can thus
attempt to choose �̄ in such a way that the above relation yields a desirable lower
boundary condition for the momentum constraint (56) – a Dirichlet or Neumann
condition for instance; cf section 2 of chapter 6 and section 3 of chapter 7. Before we
move on there is an important point to make. The imposition (61) is motivated by
the observation that slices of Kerr spacetime in quasi-isotropic coordinates satisfy
this condition, which we will show in section 5; cf equation (72). It is important to
note however, that while quasi-isotropic coordinates represent a trumpet foliation
for extreme Kerr, they do represent a wormhole foliation for slow Kerr. We will
elaborate on this at the end of section 5. The use of (61) as imposition in the
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attempt to derive a slow Kerr trumpet is thus not guaranteed to yield success.
However, as we pointed out in section 3 of chapter 3, Bowen-York trumpets have
been rigorously proven to exist and be unique [19, 23, 47] and could be constructed
numerically [27, 30, 6].

We postpone for now a discussion of how to find a lower boundary condition
for the conformal metric �̄ij until section 1 of chapter 7.

4. Proceeding in three steps

In the previous sections of this chapter we outlined our approach to solve for
maximal Kerr trumpet initial data and highlighted the challenges we are facing in
doing it. Since in tackling these challenges we rely in part on educated guesses
and approaches which are not guaranteed to yield success from several sides, we
will apply our approach in three consecutive steps: first to the special case of
Schwarzschild spacetime, then to the special case of extreme Kerr spacetime and
finally to the case of Kerr spacetime in full generality. These special cases are on the
one hand simpler than the full problem, and on the other hand also provide us with
the convenience that we can compare to the analytically known data. The maximal
Schwarzschild trumpet solution has been discussed in section 2 of chapter 3, and
we will see that the maximal extreme Kerr trumpet is provided by Kerr in quasi-
isotropic coordinates in section 5. For the Schwarzschild case we do not need to
worry about a spin parameter and an angular dependence, and can also choose
the conformal metric to be flat. Likewise, for extreme Kerr we have a = m and
thus again a one-parameter family of solutions, such as for Schwarzschild. For the
extreme Kerr case we can test our approaches to solve for the conformal metric and
find the angular dependence of the lower boundary conditions. But we do not have
to implement all these things at once, since we can still use the analytically known
solution. Hence we can first solve the system prescribing the conformal metric and
all the boundary conditions, and later tackle these challenges one after the other.
Finally, for the general Kerr case, we will have to introduce a spin parameter, and
apply the approach to this case, where we will however not be guided by an analytic
solution any longer.

5. Kerr in quasi-isotropic coordinates

In the following chapters we will work in quasi-isotropic coordinates, or a com-
pactified version thereof. The standard coordinates in which the Kerr spacetime
metric is usually introduced are the Boyer-Lindquist coordinates, which we shall
denote by {xµ0} = {t0, r0, ✓0,�0}, and the components of the metric are usually
expressed in terms of auxiliary functions such as

⇢2 = r02 + a2 cos(✓0)2,

� = r02 � 2mr0 + a2,

⌃ = (r02 + a2)2 ��a2 sin(✓0)2.

Kerr in
Boyer-Lindquist

coordinates

The component matrix of the Kerr metric in Boyer-Lindquist coordinates [gµ0⌫0 ] is
then given by

[gµ0⌫0 ] =

2

664

gt0t0 0 0 gt0�0

0 gr0r0 0 0
0 0 g✓0✓0 0

gt0�0 0 0 g�0�0

3

775 ,
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with

(63)

gr0r0 = ⇢2/�, gt0t0 = �(1� 2mr0/⇢2),

g✓0✓0 = ⇢2, gt0�0 = �2mar0 sin(✓0)2/⇢2,

g�0�0 = ⌃ sin(✓0)2/⇢2.

Kerr in
quasi-isotropic
coordinates

The transformation to quasi-isotropic coordinates {xµ} = {t, r, ✓,�} is performed
by,

gµ⌫ =
@xµ0

@xµ

@x⌫0

@x⌫
gµ0⌫0 ,

with

t0 = t, r0 =
⇣
1 +

M + a

2r

⌘⇣
1 +

M � a

2r

⌘
r, ✓0 = ✓ and �0 = �;

cf [14, section II]. We pause here for a second to note, that in the special case of
zero spin, ie a = 0, this transformation reduces to (17), ie the coordinates would
then describe Schwarzschild in isotropic coordinates. Moving on, for the spacetime
metric components in quasi-isotropic coordinates [gµ⌫ ] we then have

(64) [gµ⌫ ] =

2

664

gtt 0 0 gt�
0 grr 0 0
0 0 g✓✓ 0
gt� 0 0 g��

3

775 =

2

664

gt0t0 0 0 gt0�0

0 (@r
0

@r )
2gr0r0 0 0

0 0 g✓0✓0 0
gt0�0 0 0 g�0�0

3

775 ,

where we now view all quantities as functions of the new coordinates {xµ}.
↵, �i and �ij of Kerr
in quasi-isotropic
coordinates

From (2) we can now read o↵ the 3 + 1 foliation form {↵,�i, �ij} of the Kerr
metric in quasi-isotropic coordinates; cf sections 2 and 3 of chapter 2. Calculating
the inverse of (64) we find

(65) gtt = � g��
g2t� � gttg��

(2)
= � 1

↵2
) ↵ =

s
g2t� � gttg��

g��

for the lapse, and similarly we find for the only non-vanishing component of the
shift

(66) g�� =
gt�

g2t� � gttg��
) �� = g����

(2)
=

g2t�
g2t� � gttg��

.

Finally, for the spatial metric component matrix we find

(67) [�ij ]
(2)
= diag[grr, g✓✓, g��]

(64)
=
(63)

diag


⇢2

r2
, ⇢2,

⌃

⇢2
sin(✓)2

�
.

 and �̄ij of Kerr in
quasi-isotropic
coordinates

Defining the conformal factor as

(68)  =
p
⇢/r,

from (9) we then have

(69) [�̄ij ] = diag


1, r2,

⌃

⇢4
r2 sin(✓)2

�
= diag[1, r2, r2 sin(✓)2(1 + h)],

where in the last step we defined the auxiliary function h(r, ✓) as

(70) h = ⌃/⇢4 � 1.

Note h as perturbation
from conformal
flatness

that h represents the deviation from conformal flatness, since if it was zero,
then �̄ij would reduce to the flat metric in spherical coordinates. We will capitalise
on that in section 1 of chapter 7, when we solve for the conformal metric in the
extreme Kerr trumpet case, and reduce the di↵erential equation for the metric (59)
to a single equation for h. We plan to do the same, and also impose a conformal
metric of the form (69) in the attempt to solve for the slow Kerr trumpet. While we
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can see from (69) that this indeed does hold for Kerr in quasi-isotropic coordinates in
general, we again have to keep in mind that these coordinates represent a wormhole
foliation for slow Kerr, not a trumpet foliation, as we will discuss at the end of this
section.

WeĀij for Kerr in
quasi-isotropic

coordinates

turn our attention now to the conformally related extrinsic curvature Āij .
Using what we have established so far in this section, it can readily be derived
by (10). We quote here the result from [26, section 5]. Note however that there is a
factor 2 missing on the right hand side of [26, (28)]. The non-vanishing components
are given by

(71) Ār� =
HE

r2
sin(✓)2 and Ā✓� =

HF

r
sin(✓),

with

HE =
1p
⌃

ma

⇢2
�
(r02 � a2)⇢2 + 2r02(r02 + a2)

�
,

HF = �
r

�

⌃

2ma3r0

⇢2
sin(✓)2 cos(✓).

From this we can then calculate the quantity ĀijĀ
ij = ĀijĀkl�̄

ki�̄lj . We can now
justify relation (61) by performing an expansion of ĀijĀ

ij at r = 0. Using (71) this
yields

(72) ĀijĀ
ij '

8
><

>:

2m4

r6
sin(✓)2 , extreme Kerr

8m2a2

r6
sin(✓)2 , slow Kerr

,

which shows that (61) is a valid proposition for Kerr in quasi-isotropic coordinates.
We note the di↵erent factors for the two cases in (72).

Letextreme Kerr
trumpet versus slow

Kerr wormhole

us conclude by elaborating on the claim that quasi-isotropic coordinates
represent a wormhole foliation for slow Kerr, ie a 2 (0,m), but a trumpet foliation
for extreme Kerr, ie a = m. We support this claim by two observations. First,
consider a quasi-isotropic sphere of radius r. The metric induced by (67) onto such
a sphere is given by

['ij ] = diag


⇢2,

⌃

⇢2
sin(✓)2

�
,

and hence the area of the sphere by

(73) A(r) =

Z 2⇡

0

Z ⇡

0

p
' d✓d� = 2⇡

Z ⇡

0

p
⌃ sin(✓) d✓.

Expanding
p
⌃ in a Taylor series at r = 0 yields

p
⌃ '

8
<

:

2m2 , extreme Kerr
(m2 � a2)2

16r2
, slow Kerr

,

to lowest order. From (73) we thus have

A(0)

(
= 8⇡m2 , extreme Kerr

!1 , slow Kerr
.

This is consistent with the claim. While r = 0 represents spatial infinity at the
other end of the wormhole for slow Kerr, it represents a throat of finite area 8⇡m2
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for extreme Kerr. Second, consider the behaviour of the conformal factor for small
radii r. An expansion of (68) at r = 0 yields

(74)  '

8
>>><

>>>:

�
m2(1 + cos(✓)2)

�1/4
p
r

, extreme Kerr
�
(m2 � a2)2

�1/4

2r
, slow Kerr

.

So for small r we see that for extreme Kerr  is of order 1/
p
r, which is characteristic

to a trumpet, while for slow Kerr  is of order 1/r, which is characteristic to a
wormhole; cf section 2 of chapter 3.





CHAPTER 6

A numerical derivation of maximal Schwarzschild
trumpet initial data

I this chapter we present the first of our main results of this thesis: a numerical
derivation of maximal Schwarzschild trumpet initial data in the weighted transverse
decomposition. The analytical maximal trumpet solution is available in this case,
and we discussed it in section 2 of chapter 3; cf (23). The goal of this chapter, is
however not the mere reproduction of this result, but rather to do it in an approach
that can be generalised for the cases of maximal extreme Kerr and Kerr trumpets.
We will thus only make nontrivial use of the analytic solution in two cases, and
otherwise act as if we would not have an analytical solution available. Those cases
are the imposition of the following asymptotic behaviours,

ĀijĀ
ij ⇠ 81

8

m4

r6
as r ! 0,(75)

 ⇠
r

3m

2r
as r ! 0.(76)

These will serve to choose proper physical boundary conditions that ensure that
we solve for a trumpet slice of a Schwarzschild black hole of mass m. We have
seen in section 5 of chapter 5, that both of these relations have a generalisation in
extreme Kerr; cf (61) and (74). We have also discussed there, that extreme Kerr in
quasi isotropic coordinates represents a maximal trumpet foliation. We thus build
our approach on the assumption that these relations have generalisations in the
maximal slow Kerr trumpet case as well, and that we can find them.

In section 1 we lay out the initial data system for maximal Schwarzschild trum-
pets in the weighted transverse decomposition. We also discuss how to solve for
the Killing gauge functions which yield a stationary evolution, and discuss the
solution process. In the following sections we then solve each of these equations
consecutively.

1. The maximal Schwarzschild trumpet initial data system

The basic initial data system laid out in section 1 of chapter 5 further simplifies
for Schwarzschild. First, we can choose the metric to be conformally flat for conve-
nience. Second, we have no angular momentum, ie a = 0. Hence the mass m is the
only parameter characterising the family of solutions. We can also choose spher-
ical coordinates {r, ✓,�} to adapt to the spatial symmetry, and we can expect all
quantities to depend on r only. Finally, we make our choice of the weight function
�̄, with which our free data set (54) becomes

(77)

⇢
[�̄ij ] = diag[1, r2, r2 sin(✓)2], M̄ ij = 0,K = 0, �̄ =

r2

1 + r2

�
,

together with vanishing matter parameters {⇢ = 0,ji = 0}. We will elaborate
on the choice of �̄ in section 2 when we point out its connection to the lower
boundary condition for the momentum constraint – recall the discussion in section 3
of chapter 5 surrounding imposition (61).

39
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WithSchwarzschild
trumpet initial data

system

(77), the basic initial data system {(55), (56)} then reduces to

�r +
1

8
 �7ĀijĀ

ij = 0,(78)

�rV
r � 2

r2
V r � 3

4
Ārr@r�̄ = 0,(79)

with

(80) Ārr =
4

3�̄

⇣
@rV

r � 1

r
V r
⌘

and ĀijĀ
ij =

8

3�̄2

⇣
@rV

r � 1

r
V r
⌘2

.

�r . ⌘ 1
r2 @r(r

2@r . ) denotes the radial part of the flat space Laplace operator, and
(80) follows directly from (10) with M̄ ij = 0. All coordinate functions depend on
r only, and the vector potential V i has a non-trivial radial component only, due to
spherical symmetry.

Equations (78) and (79) together represent a system of two coupled one-dimensional
ordinary elliptic di↵erential equations for the constrained data { ,V r}. The phys-
ical initial data {�ij ,Kij} can then be reconstructed by,

(81) �ij =  4 ̄ij and Kij =  �10Āij with Āij =
1

�̄
(L̄V )ij .

In addition to the constrained data { , V i}, which specifies the initial data slice,
we would also like to find the Killing gauge functions {↵,�i} by virtue of which this
data is evolved stationary. We can find the Killing lapse ↵ by using (16), which has
been derived from (6). InK = const equation the present case this reduces to

(82) �r( ↵)� 7

8
 �8ĀijĀ

ij( ↵) = 0.

We call it here the K = const equation. Finally,equation for �r we can find the Killing shift �r by
using the first equation of (80) in the conformal thin-sandwich case (14);

(83) @r�
r � 1

r
�r =

3

2
( �6↵)Ārr.

Alternatively we could get �r by solving the momentum constraint in the conformal
thin sandwich case.

The solution process is sketched in figure 9, where the equations are solved
clockwise, starting from the momentum constraint. The momentum constraint is
solved for the vector potential V r, from which we can calculate Ārr and ĀijĀ

ij ;
cf (80). With the latter we can then solve the Hamiltonian constraint for the
conformal factor  .  together with ĀijĀ

ij is then fed to the K = const equation
in order to obtain the Killing lapse ↵. Finally, we use ↵ together with Ārr to solve
equation (83) for the Killing shift �r.

The free data (77) only specifies that we attempt to solve for a maximal
Schwarzschild initial data slice. To further ensure that we solve for a slice of trum-
pet geometry, we have to choose appropriate boundary conditions. We will discuss
these for each equation in the respective section.

2. The momentum constraint

Following figure 9 we start with the momentum constraint (79). To begin our
discussion of the boundary conditions we note that the vector potential V r together
with our chosen weight function �̄ determine the value of the extrinsic curvature,
and especially of ĀijĀ

ij through the second equation of (80). Therefore, our choice
of boundary condition for V r has to be consistent with the asymptotic behaviour
of our choice of �̄ via this relation. As outlined in section 3 of chapter 5, we will
impose the r ! 0 behaviour of ĀijĀ

ij as (61) when we solve for the Kerr trumpet.
We can thus also use the correct behaviour for Schwarzschild, without harming the
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momentum

constraint

V r

ĀijĀ
ij

Ārr

Hamiltonian

constraint

 

 

K = const
equation

equation
for �r

↵

↵�r

Figure 9. The solution process.

generalisability of the approach. From impose behaviour of
ĀijĀ

ij for small r
the analytic solution presented in section 2

of chapter 3, we have

(75) ĀijĀ
ij ⇠ 81

8

m4

r6
as r ! 0.

If we now choose

(84) �̄ ⇠ r2 as r ! 0,

and a Taylor series Ansatz for V r, then we find from (80) and (75) that

(85) lim
r!0

V r(r) =
9
p
3

8
m2.

That means that a �̄ with the asymptotic behaviour (84) is consistent with the
mass determined Dirichlet condition (85) for V r at the lower boundary. For the
upper boundary condition, considering asymptotic flatness, we set

lim
r!1

V r(r) = 0,

and we choose that

(86) �̄ ! 1 as r !1.

While other choices may be legitimate, it is the natural choice to let the vector
potential go to zero and the weight function to a constant as the slice becomes
flat. Many choices may be made for �̄, which satisfy the asymptotic behaviour (84)
and (86). As already anticipated in (77) we choose

�̄ =
r2

1 + r2
.

We resultsnote that the momentum constraint (79) is solved analytically by

(87) V r =
9
p
3

8
m2

✓
1 + r

⇣
arctan r � ⇡

2

⌘◆
.

for our choices of �̄ and boundary conditions. However, as stated in the introduc-
tion to this chapter, we attempt to develop a numerical approach which can be
generalised to extreme Kerr and slow Kerr spacetime, for which an analytic solu-
tion to the momentum constraint would be di�cult to derive. We thus solve the
constraint numerically, using our own elliptic solver, based on tridiagonal matrix
inversion using the Thomas algorithm; cf 3 of chapter 4. For this, we compactify
the original domain r 2 [0,1) to s 2 [0, 1] by

r =
s

1� s
.
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Figure 10. (a) shows a plot of the numerical solution [V r] pro-
duced by our solver (black, dashed) together with the analytical
solution (red, line). The number of grid points is n = 2000. A
second order self-convergence test is shown in (b). Denoting the
interpolations of the solutions with n, 2n and 4n grid points by
V r
n , V

r
2n and V r

4n, we have V
r
2n�V r

n in (red, lined) and 4(V r
4n�V r

2n)
in (black, dashed).

Figure 10 shows the solution produced by our solver on a uniform skew grid of
2 000 points together with the analytical solution (87), as well as a second order
self-convergence test.

3. The Hamiltonian constraint

With V r obtained from the momentum constraint, we can now calculate ĀijĀ
ij

from (80), and use this in the Hamiltonian constraint (78). Wetrumpet puncture
ansatz

start by imposing
the trumpet puncture ansatz

(76)  ⇠
r

3m

2r
as r ! 0.
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As shown in section 2 of chapter 3 for Schwarzschild, and in section 5 of chapter 5 for
extreme Kerr, this 1/

p
r behaviour is a well established characteristics of trumpet

slices, and we plan to later generalise this ansatz for Kerr.
Moving on to the boundary conditions, for the upper boundary we can clearly

choose
lim
r!1

 = 1,

since we solve for an asymptotically flat slice. To  0 + u ansatzdeal with the
p

3m/2r diver-
gence (76) at the lower boundary, we follow the approach taken in [26] and [27],
and make an ansatz

 =  0 + u with  0 =
1

1 + r4

r
3m

2r
+

r4

1 + r4
,

which meets the boundary conditions for  on both ends. The correct asymp-
totic behaviour is now absorbed in the analytically prescribed function  0, and the
Hamiltonian constrained is solved for the regular deviation u. For the latter we
have the boundary conditions

u(0) = 0 and lim
r!1

u(r) = 0.

We resutscan now solve the Hamiltonian constraint with our solver using the Thomas
algorithm. Note however that the constraint is nonlinear, so we have to linearise
and iterate following the scheme

u◆+1 = u◆ + �u◆,

as discussed in section 5 of chapter 4. We start from the initial guess u0 = 0.
Figure 11 shows the deviation [u] and the resulting solution [ ] produced by our
solver on a uniform skew grid of 2 000 points, as well as a self-convergence test for
second order convergence. We note that we provide ĀijĀ

ij to our solver analytically
for the self-convergence test to ensure that we test in isolation from errors stemming
from the momentum constraint solver.

4. The Killing gauge functions

In the preceding two sections we constructed maximal Kerr trumpet initial data
{ , V r} numerically in the weighted transverse decomposition. We however also
want to find the Killing gauge functions {↵,�r} that yield a stationary evolution
of this data, ie we need to solve (82) and (83). Note that all of the required
functions for these equations are now provided by the solutions of the Hamiltonian
and momentum constraints; cf figere 9.

We know from (23) that the lapse has to freeze, ie go to zero at the puncture
r = 0. For the upper boundary condition we again consider asymptotic flatness.
Hence we have

↵(0) = 0 and lim
r!1

↵(r) = 1

as boundary conditions for (82). Likewise, for the Killing shift �r we choose

�r(0) = 0 and lim
r!1

�r(r) = 0.

Figure 12 shows the solutions obtained from our solvers with a grid on 2 000 points.
Self-convergence tests show again clear second order convergence.
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Figure 11. (a) Plot of the numerically obtained deviation [u]
(black, dashed) over the corresponding analytical curve (blue, line),
and the same for the solution [ ]; (black, dashed) over (red, line).
The number of grid points is n = 2000. A second order self-
convergence test is shown in (b). Denoting the interpolations of
the deviations with n, 2n and 4n grid points by un, u2n and u4n,
we have u2n�un in (red, lined) and 4(u4n�u2n) in (black, dashed).
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Figure 12. Plots of the Killing lapse (a) and Killing shift (b).
The numerical solutions are (black, dashed) over the analytical
solutions (red, line). The number of grid points is n = 2000.





CHAPTER 7

A numerical derivation of maximal extreme Kerr
trumpet initial data

In this chapter we solve for the maximal extreme Kerr trumpet in a gener-
alisation of the approached of the previous chapter. Each constraint equation is
treated separately. In section 1 we discuss the numerical solver for the conformal
metric. The solvers for the Hamiltonian and momentum constraints are discussed
in sections 2 and 3. We show convergence to the analytical solution for each of the
solvers, and elaborate on work in progress to combine them to solve the coupled
system simultaneously.

We will refrain from writing out grid indices here to avoid to overload the
notation with both, spatial and grid indices at the same time. Instead we use
shorthands, such as [��] to denote the matrix of values of �� on the numerical grid.

1. Solving for the conformal metric

In section 2 of chapter 5 we outlined our approach to solve for the conformal
metric �̄ij and arrived at the equation

(59)
0 =  �4

✓
↵
⇣
Rij �  4

3
�̄ijR

⌘
�
⇣
DiDj↵�  4

3
�̄ijDkD

k↵
⌘◆

� 2↵ÃikÃ
k

j + D̄i�
kÃkj + D̄j�

kÃki � 2

3
D̄k�

kÃij + �kD̄kÃij .

Further, metric ansatz with
perturbation h

in section 5 of chapter 5, we discussed that we make an ansatz of the form

(69) �̄ij = diag[1, r2, r2 sin(✓)2(1 + h)],

in which the only deviation from conformal flatness enters through the factor h(r, ✓)
to which we will refer to as metric perturbation. We will now perform a transfor-
mation into new coordinates {s, t} given by

r =
s

1� s
and ✓ = ⇡t,

such that the original domain [0,1)⇥[0,⇡] is compactified to [0, 1]⇥[0, 1]. Plugging
then (69) into (59) we arrive at a di↵erential equation for h for each component ij
of the equation. Each of these of course must yield the same solution h. We chose
the st-component, equation for hfor which the resulting equation takes the form

(88) c0 + c1h+ c2@sh+ c3@s@th+ c4
@sh@th

1 + h
= 0.

The coe�cients c� generally depend on the quantities  , ↵̄, ��, Ās� and Āt�, and on
the coordinates s and t directly. However, as stated in the beginning of this chapter,
for our first take we provide those quantities from the known analytical solution,
so we view the coe�cients as functions of the coordinates only for now; ie c�(s, t).
It turns out that c2 diverges for s! 0 and s! 1 as t�1 and (1� t)�1 respectively.

47
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To avoid problems caused by that with our numerical solver, we therefore define a
new quantity g which is related to h by

(89) h = t(1� t)g,

and to which we will refer to as the modified metric perturbation. Reformulat-
ing (88) as an equation for g we arrive at

(51) d0 + d1g + d2@sg + d3@s@tg + d4
@sg@tg

1 + t(1� t)g
+ d5

g@sg

1 + t(1� t)g
= 0,

where we again view the coe�cients d� as coordinate functions d�(s, t), which are
now all regular on the whole domain, including the boundaries.

(51) is clearly nonlinear.lienarisation Hence, as discussed in section 5 of chapter 4, we solve
it by iteratively solving its linearisation for a correction �g:

g◆+1 = g◆ + �g◆.

Here ◆ represents the iteration index. Therefore, the initial guess or current solution
g◆ gets corrected by �g◆ iteratively until a convergence criteria is met. We already
worked out the linearisation of (51) in section 5 if chapter 4. It is given by

(52) b0 + b1�g + b2@s�g + b3@t�g + b4@s@t�g = 0,

where the coe�cients b�, given by (53), now depend on the current solution g and
its derivatives, and apart from that are viewed as coordinate functions; ie b�[g](s, t).

Welinear solver use Mathematica’s LinearSolve command using the method Banded to solve
the finite di↵erence equation corresponding to (52) at each iteration step. The
solution failed to converge using two-sided finite di↵erence derivatives, but con-
verged using one-sided finite di↵erence derivatives. For completeness we mention
that we initially attempted to solve (52) by the same successive over-relaxation
methods which we already successfully applied to the Hamiltonian and momentum
constraints before; cf sections 2 and 3. This however did not succeed, and we as-
sumed that the method may not be applicable to this problem. In this context
we note that evaluating the coe�cients b� for the analytical solution of g on the
domain, we find that (52) is hyperbolic, cf [42, p 26], as opposed to all our other
constraint equations which are elliptic. Relaxation methods however are usually
applied to elliptic problems.

We turn now to the boundary conditions:boundary conditions For the correction �g we can choose a
Dirichlet condition of value 0 at all boundaries, since it should converge to zero. The
boundary conditions for g enter in the finite di↵erence evaluation of the coe�cients
b� at each iteration step. For our first take in tackling the problem, we will make
some use of the analytical solution here. A plot of the analytically given metric
perturbation h, cf (70), is shown in figure 12. The modified metric perturbation
g is respectively given by a multiplication of h by t(1� t); cf (89). For the angular
boundaries t = 0 and t = 1 we could use symmetric boundary conditions, eg
g(s,��t) = g(s,�t), since the axial symmetry clearly dictates all quantities to be
symmetric with respect to a transition through the poles. We however use Dirichlet
conditions of value 0 in our current version of the solver. Because of asymptotic
flatness we would expect the metric perturbation to vanish at infinity. Hence we
can also choose a Dirichlet condition of value 0 at s = 1. The only nontrivial
boundary condition is the lower boundary condition, ie at s = 0. In our first
attempt we simply make use of the analytical value given by (70), and implement
it as Dirichlet condition. Taking an extreme Kerr black hole of mass m = 1, our
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Figure 12. Plot of the metric perturbation h for an extreme Kerr
black hole of mass m = 1, as analytically given by (70).

chosen boundary conditions are then summarised by

h(0, t) = �1 + 16

(3 + cos(2⇡t))2
, h(s, 0) = 0,

h(1, t) = 0, h(s, 1) = 0.

The corresponding lower boundary condition for the modified metric perturbation
g is respectively given using (89). We will elaborate at the end of this chapter on
our strategy of how to come up with a lower boundary condition without making
direct use of the analytical solution.

We resultscontinue with the choice of an extreme Kerr black hole of mass m = 1.
Running the solver on a 32 ⇥ 32 grid, it hits the convergence criterion after 352
iterations, the latter being that the L2 norm of the residual of the finite di↵erence
equation, ie of the coe�cient [b0], divided by the number of grid-points gets smaller
than 10�8: ||[b0]||

n
< 10�8.

The resulting numerical solution [h] is shown in figure 13. Figure 14 shows the
error of the numerical to the analytical solution, and figure 15 the final correction
[�h] = [t(1� t)�g] which is obtained at the last iteration step.

We future workconclude this section with an outlook on future work on this solver. First,
so far we provided our solver with the analytic quantities  , ↵̄, ��, Ās� and Āt�,
which enter the coe�cients b�. Solving the full system of constraints these would
have to be provided from the other solvers. Second, as mentioned earlier in this
section, so far we provide the lower boundary condition for h, or g respectively, from
the analytical solution as well. One idea to avoid that would be to reformulate the
di↵erential equation (88), or (51) respectively, as an equation for a quantity (sh), or
(sg), which would meet a trivial Dirichlet condition of value 0 at the lower boundary.
Finally, our solver currently does not converge for arbitrary grid resolutions, which
in particular prevents us from performing a proper convergence test for now. At
the time of writing we did not yet have time for a proper look into this problem.
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Figure 13. Plot of the numerical (dots) together with the ana-
lytical solution (mesh) of h for an extreme Kerr black hole of mass
m = 1. The grid size is 32 ⇥ 32 and the convergence criterion is
||[b0]|| < 10�8.

Figure 14. Plot of the error of [h], ie the analytical minus the
numerical solution.

2. Hamiltonian constraint

In section 1 of chapter 5 we reduced the Hamiltonian constraint for our problem
already to the form

(55) �̄ijD̄iD̄j � 1

8
 R̄+

1

8
 �7ĀijĀ

ij = 0.
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Figure 15. Plot of the correction [�h] = [t(1�t)�g] after the final
iteration.

This is to be solved for the conformal factor  . As with the solver for the metric
perturbation discussed in section 1, we will as well provide all the other geometric
quantities in the equation analytically in our first take to solve (55). In this case
these are ĀijĀ

ij and h; cf section 5 of chapter 5. Note that R̄ is constructed from
h. Many of the steps to solve this equation are analogous to the ones performed in
section 1. Hence we will not go into as much detail on these here, but rather focus
on the di↵erences and results.

As solution ansatzwe have already seen with trumpet solutions, and can see from the analytic
solution (74), that  goes as 1/

p
r as r goes to 0. To deal with this divergence

in our solver we proceed in the same manner as in the case of the Schwarzschild
Hamiltonian constraint in chapter 6, and split  up into an analytical ansatz  0,
which carries the divergence, and into a regular deviation u, which we solve for;

(90)  =  0 + u.

We choose

(91)  0 = w1(r)

s
M

|r| (1 + cos(✓)2)1/4 + w2(r)
⇣
1 +

M

2r

⌘
.

The two weight functions w1(r) =
1

1+r4 and w2(r) =
r4

1+r4 are mediating between
the divergent first term for small r and the to asymptotical flatness corresponding
second term as r goes to 1. As already discussed in section 3 of chapter 5, thep
M/r factor of the first term in (91) can be guessed straightforwardly, while its

angular dependence (1+ cos(✓)2)1/4 cannot simply be guessed. In our first take we
will therefore prescribe it from the analytical solution (74). A strategy to solve for
it separately has already been discussed in section 3 of chapter 5; cf the discussion
surrounding (60). The absolute value under the square root in (91) merely serves
the purpose that  0 can also be evaluated at the ghost points o↵ the grid of our
numerical solver.

With (90), linearisationthe Hamiltonian constraint (55) represents now an elliptic equation
for the deviation u. Since it is nonlinear we solve it by linearisation and iteration
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Figure 16. Plot of the interpolation of the numerical solution [u]
produced by our solver. The grid size is 320 ⇥ 160. The breaking
conditions are set to max |![res]| < 10�8 or 60 000 iterations and
max |[�u]| < 10�8 respectively.

in the same way as in section 1, following the scheme

(92) u◆+1 = u◆ + �u◆,

where the initial guess or current solution u◆ is updated by a correction �u◆ which
is solved for at each iteration step ◆.

Tolinear solver,
initial guess and

boundary conditions

solve the linearised equation we use our own finite di↵erence successive over-
relaxation (SOR) solver, which we coded in Mathematica. Its SOR parameter ! is
set to 1, cf section 4 of chapter 4. We start with an initial guess of u1 = 0. Given
that the ansatz (91) has the correct behaviour towards r = 0 and r =1, we can set
Dirichlet conditions of value 0 for both u and �u at both the lower and the upper
boundaries. Expressed in the variables s and t that is

u(0, t) = 0, u(1, t) = 0,

�u(0, t) = 0, �u(1, t) = 0.

For the angular boundaries we set symmetric conditions:

u(s,�t) = u(s,��t), u(s, 1 +�t) = u(s, 1��t),

�u(s,�t) = u(s,��t), �u(s, 1 +�t) = �u(s, 1��t).

Figure 16results shows the interpolation of the solution [u] produced by our solver on
a 320⇥ 160 grid for an extreme Kerr black hole of mass m = 1. The corresponding
error is shown in figure 17. As breaking condition for the linear solver we set

max |![res]| < 10�8 or 60 000 iterations,

where ! denotes the SOR parameter and [res] the SOR residual matrix; cf section 4
of chapter 4. Consequently, as breaking condition for the iterative process (92) we
set

max |[�u]| < 10�8.
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(a)

(b)

Figure 17. Plot of the error of [u]. The positive error is shown
in (a), while (b) shows the interpolation of the negative error. Note
that the s-range is restricted to [0, 0.04] in the former case.

Finally, convergencewe demonstrate convergence at hand of the the line ✓ = ⇡/2, or t = 0.5.
Figure 18a shows the errors of the grid-lines closest to ✓ = ⇡/2 for five di↵erent
solutions of grid-sizes from 20 ⇥ 10 to 320 ⇥ 160. Figure 18b shows the same plot
where however the solutions are scaled for a second order convergence test. The
test shows a clean overlap for the lower three resolutions. The curve for the 160⇥80
resolution is slightly o↵, while the error of the 320⇥160 solution changes somewhat
in character. We assume that the chosen tolerance of 10�8 is too high to yield the
optimal accuracy with this resolution; cf section 2 of chapter 4.
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Figure 18. Convergence test for t ⇡ 0.5, ie ✓ ⇡ ⇡/2. (a) shows
the errors of [u] for resolutions 20⇥10 (black), 40⇥20 (red), 80⇥40
(purple), 160⇥ 80 (blue) and 320⇥ 160 (orange). In (b) these are
multiplied by 1, 4, 16, 64 and 256 respectively, to test for second
order convergence.

3. Momentum constraint

In section 1 of chapter 5 we reduced the momentum constraint for our problem
already to the form

(56) (�̄L̄V )i � (L̄V )ijD̄j ln �̄ = 0.

This elliptic equation is to be solved for the vector potential V i. Inuse conformal thin
sandwich approach

our first take
we use the conformal thin sandwich approach which we discussed in section 5 of
chapter 2. This means we prescribe the weight function as �̄ = 2↵̄, taking ↵̄
from (65), and consequently solve (56) for the shift �i, of which the only non-
vanishing component is that in �-direction; cf (66). We also prescribe the metric
perturbation h from (70).

To solve the momentum constraint we apply the same techniques as for the
Hamiltonian constraint in section 2. There are however two main di↵erences. First,
(56) is linear. Hence we do not need to linearise and iterate as in (92), but can
directly solve the constraint with our finite di↵erence successive over-relaxation
solver. Second, the solution �� is regular on the domain, including the boundaries.
Hence we do not need an ansatz of the form (90).
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As boundary conditions we choose the following: boundary conditions

��(0, t) = �1/2m, ��(s,��t) = ��(s,�t),

��(1, t) = 0, ��(s, 1��t) = ��(s, 1 +�t).

The angular boundary conditions are chosen to be symmetric. The upper boundary
condition, ie for s = 1, is motivated by asymptotic flatness. Finally, the only non-
trivial boundary condition is again the lower boundary condition, ie for s = 0. In
our first approach we use our knowledge of the analytical solution here, and simply
implement the known value as Dirichlet condition. We will discuss work in progress
to motivate a lower boundary condition without direct use of the analytical solution
at the end of this section.

As convergence criterion we set that convergence criterion,
SOR parameter
and resultsmax |![res]| < 10�8,

and we set the SOR parameter to ! = 0.9. For a grid-size of 160 ⇥ 80 our solver
passes this criterion after 58 178 iterations. Plots of the obtained solution [��] and
of its error are shown in figure 19. A convergence test at hand of the line t = 1,
or ✓ = ⇡/2, is shown in figure 20. The curves overlap nicely for the lower two
resolutions, while they are o↵ for the higher two resolutions. Again we assume
that in the latter cases the limiting factor is the chosen tolerance; cf section 2 of
chapter 4.

In calculation of Āij

and ĀijĀ
ij

the context of solving the whole system of constraints (55), (56) and (59), the
momentum constraint also serves the purpose of providing the extrinsic curvature
Āij and in particular the quantity ĀijĀ

ij for the other equations, which can be
calculated by (10), with M̄ ij = 0, and (62) respectively. In our current case where
we use the conformal thin sandwich approach this is

Āij =
1

2↵̄
(L̄�)ij and ĀijĀ

ij =
1

(2↵̄)2
(L̄�)ij(L̄�)

ij

respectively. Figure 21 shows the quantity r6ĀijĀ
ij calculated from our solution

with 160⇥ 80 grid points, as well as its error to the analytical value.

We conclude this section with a discussion on work in progress and future work
on this solver. In the preceding part of this section we used the conformal thin
sandwich decomposition, where �̄ = 2↵̄ and V i = �i. We were able to prescribe
↵̄, the killing lapse of the stationary extreme Kerr trumpet foliation, since this
foliation is readily given by the Kerr solution in quasi-isotropic coordinates.; cf
section 5 of chapter 5. This is however not the case for slow Kerr, for which the
quasi-isotropic solution represents a wormhole foliation. In our future work on the
maximal slow Kerr trumpet we will therefore not be able to prescribe the killing
lapse. We will instead have to work in the weighted transverse decomposition
and choose a weight function �̄ and solve the momentum constraint for a vector
potential V i. As discussed in section 3 of chapter 5 the challenge lies in the need
to find a lower boundary condition for V i, and we outlined our strategy to use the
imposition (61) to do so there. We could already successfully apply this strategy
in the case of the maximal Schwarzschild trumpet in chapter 6. In the following we
present our work in progress for extreme Kerr.

First, because of axial symmetry we can choose both the weight function �̄
and the vector potential V i to depend on the coordinates s and t only, ie to be
independent of �. Second, we impose the vector potential which we solve for to
have a non-trivial �-component only, ie [V i] = [0, 0, V �]T. Finally, to yield a simple
lower boundary condition, we impose that V � shall be independent of t at the lower
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(a)

(b)

Figure 19. Plot of the interpolation of the solution [��] (a) to-
gether with its error (b). The grid size is 160⇥80. The convergence
criterion is max |![res]| < 10�8.

boundary, ie
@tV

�(0, t) = 0.

Plugging this into the expression (L̄V )ij(L̄V )ij and developing it in a series around
s = 0 we find that

(L̄V )ij(L̄V )ij
s!0' 32

sin(⇡t)2

(3 + cos(2⇡t))2
@sV

�(0, t)2s2,

and multiplying this by 1/�̄2 we get from (62) that

(93) ĀijĀ
ij s!0' 32

@sV
�(0, t)2

�̄(s, t)2
sin(⇡t)2

(3 + cos(2⇡t))2
s2,
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Figure 20. Convergence test for t ⇡ 0.5, ie ✓ ⇡ ⇡/2. (a) shows
the errors of [��] for resolutions 20 ⇥ 10 (black), 40 ⇥ 20 (red),
80⇥40 (purple) and 160⇥80 (blue). In (b) these are multiplied by
1, 4, 16 and 64 respectively, to test for second order convergence.

to leading order in s. On the other hand, we said that we impose (61), or equiva-
lently for extreme Kerr, that we allow ourselves to use (72), ie

(94) ĀijĀ
ij s!0' 2m4

s6
sin(⇡t)2.

Equating (93) and (94) we arrive at the relation

(95) 1 =
4

m2

@sV
�(0, t)

�̄(s, t)

s4

3 + cos(2⇡t)
for small s.

To convince ourselves of the validity of this relation we check if it holds for the
gauge functions (65) and (66). In a series around s = 0 we find

2↵̄
s!0' 2

m4

s4

3 + cos(2⇡t)
and �� s!0' � 1

2m
+

1

2m2
s.

From the latter we see that @s��(0, t) = 1/2m2. Plugging this and the just quoted
behaviour of 2↵̄ into (95), we see that the relation is indeed satisfied.

We can now use relation (95) to find a lower boundary condition for V � in
accordance with a chosen �̄. We could for instance choose

�̄ =
4

m4

s4

3 + cos(2⇡t)
,

with which (95) yields
@sV

�(0, t) = 1/m2,
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(a)

(b)

Figure 21. Plot of the interpolation of [r6ĀijĀ
ij ] (a), as calcu-

lated from our numerical solution [��], together with its error (b).
The grid size is 160⇥ 80.

ie a Neumann condition of value 1/m2 at the lower boundary. We used this choice
of �̄ and the corresponding lower boundary condition in our solver, as well as other
combinations. While the solutions would generally converge, unfortunately the
quantity r6ĀijĀ

ij would not yield the correct value away from s = 0. At the time
of writing we are not sure why this is the case.
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[9] Beig R and Murchadha NÓ: Late time behavior of the maximal slicing of the Schwarzschild
black hole; Physical Review D (Volume 57, Issue 5), American Physical Society (1998).
DOI: 10.1103/PhysRevD.57.4728
Preprint: arXiv:gr-qc/9706046v1
Cited on page 17

59

https://doi.org/10.1103/PhysRevD.67.084023
https://arxiv.org/abs/gr-qc/0206072
https://doi.org/10.1103/PhysRevD.64.061501
https://arxiv.org/abs/gr-qc/0104020
https://doi.org/10.1103/PhysRevD.64.061501
https://link.springer.com/article/10.1007%2Fs10714-008-0661-1
https://arxiv.org/abs/gr-qc/0405109
http://link.aps.org/doi/10.1103/PhysRevLett.96.111102
https://arxiv.org/abs/gr-qc/0511103v1
http://dx.doi.org/10.1088/0264-9381/28/21/215003
https://arxiv.org/abs/1108.3550v1
http://link.aps.org/doi/10.1103/PhysRevD.75.067502
http://arxiv.org/abs/gr-qc/0701037
http://www.cambridge.org/9780521514071
https://doi.org/10.1103/PhysRevD.57.4728
https://arxiv.org/abs/gr-qc/9706046v1


60 Bibliography

[10] Beig R: The maximal slicing of a Schwarzschild black hole; Annalen der Physik (Volume 11,

Issue 5), Wiley-VCH (2000).
Preprint: arXiv:gr-qc/0005078v1
Cited on page 17

[11] Bona C et al: New Formalism for Numerical Relativity; Physical Review Letters (Volume 75,

Issue 4), American Physical Society (1995).
DOI: 10.1103/PhysRevLett.75.600
Preprint: arXiv:gr-qc/9412071v2
Cited on page 16, 31

[12] Bowen JM and York JW: Time-asymmetric initial data for black holes and black-hole colli-
sions; Physical Review D (Volume 21, Issue 8), American Physical Society (1980).
DOI: 10.1103/PhysRevD.21.2047
Cited on page 15
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Summary

This thesis is structured in two parts. In part 1 we summarise the necessary
theoretical background and the numerical tools in order to conduct the research
in part 2. In chapter 2 we summarise the 3 + 1 approach to numerical relativity,
with a focus on the initial data formalism in the weighted transverse and conformal
thin-sandwich decompositions. We then move on to discuss initial data for black
hole simulations in chapter 3, where we focus on the moving puncture approach.
We note that the standard gauge evolution equations force the initial numerical
wormhole slices to evolve into trumpet slices, which suggests the construction of a
priori trumpet initial data. We summarise the literature on trumpet research, with
a focus on maximal Schwarzschild trumpet initial data in its analytical form. In
chapter 4 we provide the necessary numerical tools and techniques, which we use in
part 2 to solve the constraint equations numerically. We focus on finite di↵erence
methods in connection with the Thomas algorithm and successive over-relaxation
to solve boundary value problems in one and two variables.

Part 2 contains the novel research of this thesis. In chapter 5 we discuss Kerr
in quasi-isotropic coordinates and point out that it represents a maximal trumpet
foliation for extreme Kerr, however a wormhole foliation for slow Kerr. We lay
out our approach to numerically derive maximal Kerr trumpet initial data. The
approach is based on the proposition that two nontrivial impositions on the con-
straints su�ce to construct the data numerically. We propose that these relations
can be generalised from Schwarzschild and extreme Kerr to slow Kerr. The main
motivation for this stems from the observation that the square of the extrinsic cur-
vature for Bowen-York shows the same behaviour as for Kerr for small radii, and
Bowen-York trumpets have been constructed successfully.

Our main results are then presented in chapters 6 and 7 in which we test our
approach for the special cases of zero and maximal spin, ie for Schwarzschild and
extreme Kerr. We succeed with Schwarzschild and present the first ever purely nu-
merical derivation of maximal Schwarzschild trumpet initial data in the weighted
transverse decomposition – our first main result. Because of the complexity of the
problem for extreme Kerr, we proceed in steps and start out by using more infor-
mation of the analytical solution to treat the constraints separately. For instance,
we provide the conformal metric to the Hamiltonian and momentum constraints,
and solve them successfully for the trumpet solution – our second main result. Fi-
nally we elaborate on how to relax the assumptions. In particular, we introduce an
additional equation which we can solve successfully for the function which describes
the deviation of the conformal metric from being flat – our third main result.
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