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ARTICLE INFO ABSTRACT

With dwindling available agricultural land, concurrent with increased demand for oil, there is much current
interest in raising oil crop productivity. We have been addressing this issue by studying the regulation of oil
accumulation in oilseed rape (Brassica napus L). As part of this research we have carried out a detailed lipidomic
analysis of developing seeds.

The molecular species distribution in individual lipid classes revealed quite distinct patterns and showed
where metabolic connections were important. As the seeds developed, the molecular species distributions
changed, especially in the period of early (20 days after flowering, DAF) to mid phase (27DAF) of oil accu-
mulation. The patterns of molecular species of diacylglycerol, phosphatidylcholine and acyl-CoAs were used to
predict the possible relative contributions of diacylglycerol acyltransferase (DGAT) and phospholipid:dia-
cylglycerol acyltransferase to triacylglycerol production. Our calculations suggest that DGAT may hold a more
important role in influencing the molecular composition of TAG. Enzyme selectivity had an important influence
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on the final molecular species patterns.
Our data contribute significantly to our understanding of lipid accumulation in the world's third most im-

portant oil crop.

1. Introduction

Plant oils are major agricultural commodities with a current market
value of over US$120 billion [1]. Moreover, demand for such oils has
been increasing at about 5% per year for the last five decades [2]. So
far, improvements in productivity and sowing larger areas have man-
aged to keep pace with demand. However, finite agricultural land, in-
creasing populations and more widespread use of crops for renewable
chemicals/biofuels suggest that plant oils will soon be in short supply
[3].

Although the basic characteristics of oil synthesis in terms of en-
zymology are well understood in the model species Arabidopsis [4-6],
less is known about crop plants and, in particular, our knowledge of its
regulation is much less secure [7]. More detailed research has revealed
subtleties of the biosynthetic process, with new, relevant enzymes dis-
covered [see [3]], multiplicity of pathways demonstrated [8] and
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compartmentation of triacylglycerol accumulation made evident [9].

We have studied the regulation of oil accumulation in crops, partly
by the application of flux control analysis [10-13]. These experiments
have revealed important overall characteristics of the process but often
could not delineate some of the details such as the subsidiary flux of
fatty acids from the basic Kennedy pathway into and out of phospha-
tidylcholine (PC), either in terms of polyunsaturated fatty acid pro-
duction [14,15] or via phospholipid:diacylglycerol acyltransferase
(PDAT) [16]. To elucidate some of these details and to further our
knowledge of regulation, we have utilised lipidomics. Since modern
lipidomics is useful for identifying metabolic networks and testing hy-
potheses about control [17] we have used it here to elucidate details of
metabolism and further our knowledge of regulation.

The overall process to synthesise accumulating triacylglycerol
(TAG), ultimately in seed lipid droplets [18], begins with the de novo
synthesis of fatty acids in plastids [4,19,20]. After seven basic cycles of
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2 carbon additions, palmitoyl-ACP is produced which can be hydro-
lysed to release palmitic acid or elongated using [-ketoacyl-ACP syn-
thase II (KASII) to give stearoyl-ACP. A very active A9-desaturase in
plastids [21] ensures that most plants produce a mixture of palmitic and
oleic acids (in about a 1:4 ratio) as end products of de novo synthesis.
Transport of fatty acids from the plastid and their addition to the cy-
tosolic acyl-CoA pool has been discussed recently [22]. In addition, the
role of acyl-CoA binding proteins (ACBPs) in this process and sub-
sequent participation in fatty acid modification is largely unresolved
[23]. Lipid assembly via the Kennedy pathway [24] and ancillary re-
actions, in the endoplasmic reticulum, has been well discussed [3-5].
Overlaid on this detailed biochemistry is work which has revealed
overall control of carbon flux such as by WRI1 (WRINKLED1) [25] or
FUSCAS3 transcription factors [26]. In addition, experiments have used
a push/pull engineering strategy [27] where carbon is channelled into
lipid biosynthesis and the end stages of oil accumulation, such as dia-
cylglycerol acyltransferase (DGAT) increased to prevent build-up of
intermediates. This has been applied to soybean seeds [28] and also to
other tissues [e.g. [29]].

Oilseed rape is one of the major world oil crops, yielding about 12%
of total world oil market [30]. It is the major Northern European and
Canadian oil crop and, because of its close relation to Arabidopsis and
ease of genetic manipulation, has been extensively modified to produce
renewable chemicals or speciality fatty acids [31,32]. Brassica napus has
two distinct groups of cultivars — the low erucate (LEAR) and high
erucate (HEAR) types (where erucic acid is cis-13-docosenoic acid
(22:1)). HEAR has mainly industrial uses, while LEAR is more ex-
tensively grown (called Canola in Canada) and is used predominantly
for human consumption and animal feed.

Our previous biochemical experiments identified diacylglycer-
ol:acyl-CoA transacylase (DGAT) as an important regulatory enzyme in
B. napus for carbon flux into oil [33,34] and over-expression of DGAT
was shown to increase TAG accumulation [35] in both greenhouse
experiments and field trials [36]. Further experiments have given de-
tailed information about flux control of oil synthesis in this crop [12].
In particular (and in contrast to other oil crops that we studied [7]), our
experiments in oilseed rape indicated that lipid assembly exerted more
control over oil accumulation than fatty acid biosynthesis [12,35].

While the classic Kennedy pathway underpins lipid assembly during
TAG biosynthesis [24], in plants extra enzyme steps are important
[3,9,14]. In particular, PDAT [16] provides an acyl-CoA-independent
source of fatty acids for TAG assembly. However, the relative im-
portance of PDAT in different oil crops is currently uncertain [see 9].
Nevertheless, PDAT can be said to complement activity of DGAT [37] at
least in some plants e.g. Arabidopsis. Measurements of DGAT and PDAT
in oilseed rape showed that PDAT has rather little activity [12]. How-
ever, these measurements were made in vitro under optimal enzymatic
conditions and may not reflect accurately the situation in vivo. Like-
wise, genetic manipulation of DGAT and/or PDAT creates artificial
stresses. Moreover, although transcriptional profiling of B. napus
showed that expressed sequence tag (EST) abundance for DGAT is much
higher than for PDAT [38], this may not translate directly into enzyme
activity. It was partly to address these questions that we have used li-
pidomics in the present study. With improvements in mass spectro-
metry over the last two decades, the use of lipidomics has gathered pace
[39-42]. Such techniques have been applied to plant tissues [43-45].

As part of our studies to elucidate details of the regulation of lipid
accumulation in oilseed rape, we have used a range of techniques in-
cluding basic biochemistry [33,34], use of transgenic lines [35,36], flux
control analysis [12,35] and MALDI analysis [46]. To extend and
complement these studies we have now applied detailed mass spec-
trometric (MS) analysis to developing oilseed rape seeds. The lipidomic
data has provided important information about lipid metabolism during
oil accumulation that reveals details of the biochemical pathways and
enzymology involved.
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2. Materials and methods
2.1. Materials

Brassica napus cv. Westar seeds were a kind gift from Professor R.J.
Weselake (University of Alberta, Edmonton, Canada). Seeds were ger-
minated in multipurpose compost (MS Levington compost) mixed (3:1)
with fine sand. Seedlings were placed in seed trays and grown for
10 days before transplanting individually into 8-inch. pots. Growth was
in a greenhouse with a temperature of 23 °C and supplemental lighting
to maintain a light intensity of 250 umolm~2s~ ! with a 16 h light
period. Flowers were hand pollinated and tagged on the day of flower
emergence.

2.2. Lipid extraction and standard analysis

Siliques were harvested at 20, 27 and 35 days after flowering (DAF),
representing early, mid and late phases of lipid accumulation in oilseed
rape [47]. Ten seeds (~45 mg fresh weight) from different siliques
were harvested for each biological repeat. Tissues were treated with
isopropanol at 70 °C for 30 min followed by a two-phase extraction
procedure [48] shown to be efficient (> 98%) for the lipids analysed
from plant tissues. The washed lower phase was taken to dryness under
nitrogen, dissolved in chloroform and stored at — 20 °C under nitrogen
until further analysis.

Non-polar lipids were separated by thin layer chromatography
(TLC) using a solvent mixture of hexane/diethylether/acetic acid
(80:20:1, by vol.). Polar lipid classes were separated by 2-dimensional
TLC using chloroform/methanol/water (65:25:4, by vol.) in the first
direction and chloroform/acetone/methanol/acetic = acid/water
(50:20:10:10:5, by vol.) in the second. Spraying with 0.2% (w/v) 8-
anilino-1-naphtholenesulphonic acid in anhydrous methanol and
viewing under U.V. light [49] was used to reveal lipid bands. Standards
were obtained from Nu-Chek Prep. Inc., Elysian, MN, USA.

For analysis of acyl composition, individual lipid bands were sepa-
rated from TLC plates and fatty acid methyl esters (FAMEs) were pre-
pared by acid-catalysed methylation (2.5% H,SO,4 in methanol). An
internal standard of nervonic acid (cis-15-tetracosenoic acid, 24:1) was
used. FAMEs were separated on a 30m X 0.25mm i.d. capillary
column (Elite 225, Perkin-Elmer, Normalk, CT, USA) using a Clarus 500
gas chromatograph with a FID detector [50]. FAMEs were routinely
identified by comparison of retention times with those of a GC-411
standard (Nu-Chek) with identities confirmed by GC-MS (see [51]).
Perkin-Elmer TotalChrom software was used for data acquisition and
calculations. These methods were used to calculate amounts of the
different lipid classes from oilseed rape (on a fatty acid basis).

2.3. Lipidomic analysis

Dried lipid extracts were re-suspended in 1 ml chloroform:methanol
(2:1; v/v) and further diluted five times with the same solvent, then
mixed 1/1 (v/v) with the internal standard solution (IS) before se-
paration by LC/MSMS. A quality control (QC) sample was prepared by
pooling 20 pl of each sample together. The IS solution was prepared by
dilution of stock solutions of dimyristoyl phosphatidylcholine (PC 28:0,
final concentration in IS solution: 0.738 pmol/ml), dimyristoyl phos-
phatidylethanolamine (PE 28:0, final concentration in IS solution:
0.785 pmol/ml), dimyristoyl phosphatidic acid (PA 28:0, final con-
centration in IS solution: 0.813 pmol/ml), didodecanoyl glycerol (DAG
24:0, final concentration in IS solution: 4.379 pmol/ml), and deuter-
ated-trihexadecanoyl glycerol (d5-TAG 48:0, final concentration in IS
solution: 24.618 pmol/ml). All standards were purchased from Avanti
Polar Lipids (Alabaster, USA).

LC separation was undertaken on an UHPLC 1260 (Agilent, Santa
Clara, USA) using hydrophilic interaction liquid chromatography
(HILIC) for phospholipids (PC, PE and PA) and reverse phase (RP) for
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A 50 Fig. 1. Analysis of acyl glycerols at a mid-point (27 DAF) of
45 - lipid accumulation in oilseed rape.
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non-polar lipids (DAG and TAG). HILIC conditions were: Injection vo-
lume 2 pl, mobile phase A: 95% acetonitrile/5% 25 mM ammonium
formate pH 4.6, mobile phase B: 50% acetonitrile/50% 25 mM ammo-
nium formate pH 4.6, column: Kinetex HILIC, 2.1 x 150 mm, 2.6 pum,
column temperature: 30 °C, flow rate 0.5 ml/min, gradient: 0 min: 0.1%
B, 6 min: 75% B, 7 min:90% B, 7.1 min 0.1%B, 10.1 min: end of run. RP
conditions were, Injection volume 2 pl, mobile phase A: 40% acetoni-
trile/60% 10 mM aqueous ammonium formate, mobile phase B: 90%
isopropanol/10% 10 mM ammonium formate in acetonitrile, column:
Zorbax Eclipse Plus C18, 2.1 x 50 mm, 1.8 um, column temperature:
40 °C, flow rate 0.4 ml/min, gradient: 0 min: 20% B, 2 min: 75% B,
6 min: 100% B, 9 min:100% B, 9.01 min 20%B, 11 min: end of run. All
solvents were LC-MS grade from Fischer (Pittsburg, USA).

MS/MS analysis was undertaken on a 6460 triple quadrupole
(Agilent, Santa Clara, USA) with an electrospray ionisation source.
Parameters were as follows: gas temperature 300 °C, gas flow 51/min,
nebulizer 45 psi, capillary 3500 V. DAG and TAG were analysed with
positive ionisation as ammonium adducts, using both single ion mon-
itoring (SIM) for sum composition (e.g. TAG 54:3) and multiple reaction
monitoring (MRM) transitions to neutral loss of a single fatty acyl (e.g.
TAG 16:0/18:2/18:2 to 18:2 neutral loss). Although only single fatty
acyl MRM transitions were monitored, TAG species are reported with
three fatty acyls (e.g. TAG 16:0 18:2 18:2) based on preliminary LC-
high-resolution-MS/MS data acquired on a quadrupole-time of flight

Sample D

instrument. Details of the MS/MS data are given in Supplementary
Table 1. PC, PA and PE were analysed using MRM transitions to
headgroup and fatty acid fragments using both positive and negative
ionisation. A full list of SIM and MRV, including parameters and ad-
ducts, can be found in Supplementary Table 2.

After instrument stabilisation with six injections of a QC sample,
instrument stability was monitored by injecting a QC sample and a
blank every six sample injections. QC injections were used to calculate
coefficient of variations (CoV) for each SIM and MRM. All reported
species had CoV lower than 25%.

2.4. Lipidomic data processing

Relative quantification data were extracted wusing Agilent
MassHunter Quantitative Analysis (QQQ) software. The data were
manually curated to ensure that the software integrated the right peaks.
Areas under curve (AUC) of the extracted ion chromatograms peaks for
each SIM/MRM transition were extracted to Excel. A correction factor
was applied to account for the multiplicity of fatty acids in some mo-
lecular species of TAG (e.g. TAG 18:1 18:1 18:1). For HILIC, isotopic
correction was performed on AUC of the phospholipids according to
[52]. AUCs were normalised either to that of internal standards and to
sample weight, or to total intensity in a lipid class. Statistical analysis
was performed using a generalised linear model with gaussian
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distribution.
2.5. Acyl-CoA profiling

Seeds from siliques harvested at 20, 27 and 35 days after flowering
(DAF) were frozen in liquid nitrogen and then extracted after [53] for
reverse-phase LC with electrospray ionisation tandem mass spectro-
metry (multi reaction monitoring; using a SCIEX 4000QTRAP instru-
ment) in positive ion mode. LC-MS/MS MRM analysis followed the
methods described in [54]. Acyl-CoA were separated using an Agilent
1200 LC system; Gemini C18 column, 2 mm inner diameter, 150 mm
with 5 pum particles. For the purpose of identification and quantifica-
tion, standard acyl-CoA esters with acyl chain lengths from C14 to C20
were synthesised from free acids or lithium salts (Sigma-Aldrich, St
Louis, Missouri, USA). Heptadecanoyl coenzyme A (ammonium salt)
was used as an internal standard in each analytical run. Retention times
also confirmed using acyl-CoA standards from Avanti.

3. Results
3.1. Analysis of lipid molecular species at a midpoint of lipid accumulation

In order to evaluate the lipidomic methodology we analysed mole-
cular species of major lipid classes at a mid-point of lipid accumulation
in oilseed rape. Previous studies [47] and our own with B. napus cv.
Westar [46] have shown that the rapid period of lipid accumulation was
in the period 20-35 DAF. A mid-point at 27 DAF was selected and
analyses made of the accumulating TAG, the important metabolic in-
termediates, DAG, PA, and PC, as well as the second most prevalent
seed phosphoglyceride (PE) as a comparator.

After separating the acyl glycerols by reverse phase HPLC, the main
molecular species of DAG and TAG are shown in Fig. 1A and B, re-
spectively. Their full analyses are given in Supplementary Tables 3 and
4. Fig. 1 shows four separate biological repeats and it can be seen that
these were reproducible for both DAG and TAG.

For DAG, the main molecular species corresponded to 36:2 (18:1/
18:1) and 36:3 (18:1/18:2) (Fig. 1A). The molecular species 36:2 and
36:3 represented around 45% and 33% of the total, respectively, as
might be expected given the overall lipid composition of oilseed rape oil
[2]. Less prevalent, though still significant, species were those con-
taining greater amounts of polyunsaturated fatty acids (36:4, 36:5) or
palmitic acid (34:1, 34:2).

Four separate biological samples were analysed for their TAG mo-
lecular species composition (Fig. 1B, Supplementary Table 4). Again,
there was good reproducibility with only one of four samples showing
moderate deviation from the others. This was in spite of inherent bio-
logical variability and the significant number of steps from harvesting
to analysis. Two TAG species were prominent with 54:3 (18:1/18:1/
18:1) being > 54:4 (18:1/18:1/18:2). As seen with the DAG molecular
species, other prominent molecular species were usually those con-
taining additional unsaturation (54:5, 54:6) or with palmitate (52:2,
52:3). However, four additional TAG molecular species contained
stearate (54:2 (18:0/18:1/18:1), 7%) or very long chain fatty acids
(VLCFAs) such as gondoic (cis-11-eicosenoic acid, 20:1) (56:3 (18:1/
18:1/20:1), 4%), behenic (docosanoic acid, 22:0) (58:2 (18:1/18:1/
22:0), 3%) and lignoceric (tetracosanoic acid, 24:0) (60:2 (18:1/18:1/
24:0), 2%) acids. It was notable that erucate was not detected in the
TAG species analysed for cv. Westar at 27 DAF.

The key metabolic intermediate, phosphatidate (PA), was analysed
and the main species are shown in Fig. 2A with full data in Supple-
mentary Table 5. As for the DAG results (Fig. 1), the main molecular
species were 18:1/18:1 and 18:1/18:2 at about 30% and 27%, respec-
tively. However, 16:0/18:2 and 18:2/18:2 were also significant, at
14-15% which was higher than for DAG (Fig. 1A). Other notable spe-
cies were 18:2/18:3 (9%), 16:0/18:3 (5%) (Fig. 2A) and 16:1/18:1
(1%).
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Fig. 2. Analysis of phosphoglycerides at a mid-point (27 DAF) of lipid accumulation in
oilseed rape.

Phosphatidate (A), phosphatidylcholine (B) and phosphatidylethanolamine (C) molecular
species were separated by hydrophilic interaction liquid chromatography (HILIC) and
analysed by multiple reaction monitoring as detailed in Materials and methods. Four
individual biological samples are shown, each of which was analysed with technical
triplicates (means + SD shown). Individual molecular species of 1% or greater abun-
dance are detailed with full information of all species detected given in Supplementary
Tables 5-7. The relative amounts of the PA, PC and PE at 27 DAF were 0.32 + 0.14,
2.37 * 0.17 and 0.38 * 0.03 g fatty acid/mg FW embryo, respectively, as measured
by TLC/GLC.

The major molecular species of PC are shown in Fig. 2B with full
data in Supplementary Table 6. The major species were 18:1/18:1
(38%) and 18:1/18:2 (27%). As for DAG and PA, other significant
species were those containing palmitate (16:0/18:1 (9%), 16:0/18:2
(8%), 16:0/18:3 (3%)) or increased unsaturation (18:1/18:3 (7%),
18:3/18:3 (9%)) (Fig. 2B, Supplementary Table 6).

Because PC is intimately involved in TAG synthesis in oil crops
[1,14], we also analysed phosphatidylethanolamine (PE) which is
synthesised by a similar pathway to PC [24,55] but neither participates
directly in fatty acid desaturation [56] nor is involved in TAG accu-
mulation [5,57]. The pattern of molecular species (Fig. 2C) was no-
ticeably distinct from PC (Fig. 2B). Full data is shown in Supplementary
Table 7. In order of abundance the molecular species were 18:1/18:2
(24%), 16:0/18:2 (19%). 18:2/18:2 (15%), 18:1/18:1 (13%), 18:1/18:3
(8%), 16:0/18:1 (6%), 16:0/18:3 (6%) and 18:2/18:3 (2%).
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20 Fig. 3. Changes in the percentages of major molecular species of
triacylglycerol during oil accumulation in oilseed rape.
18 Triacylglycerol molecular species were analysed by multiple
16 reaction monitoring (MRM) using a triple quadrupole instrument
after separation of lipid species by reverse phase liquid chro-
2 14 matography (RPLC) as described in Materials and methods.
> Three developmental time points were analysed, 20, 27 and
2 12 35 days after flowering (DAF), representing early, mid and late
% 10 stages of oil accumulation respectively in B. napus cv. Westar.
é Means = s.d. (n =5) are shown. *P < 0.05, **P < 0.01,
= 8 *#*P < 0.001. Major molecular species (> 1% total) are de-
E tailed here, with further information on minor species listed in
6 Supplementary Table 8. The amounts of triacylglycerol at the
4 three stages were 15.17 = 0.35, 72.55 = 0.58 and
146.98 + 0.84 ug fatty acid/mg FW, respectively, as measured
by TLC/GLC.
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3.2. Changes to molecular species during lipid accumulation

The development of an oil seed typically occurs in three main stages
— cell division, oil accumulation and dehydration [58]. The rapid phase
of oil accumulation in B. napus cv Westar is from around 20 DAF to 35
DAF [46,47]. We analysed seeds from 20 DAF to represent early oil
accumulation, 27 DAF as a mid-point and 35 DAF for towards the end of
significant oil accumulation [46,47].

Changes in the main TAG molecular species during the 20-35 DAF
period are shown in Fig. 3. The most prominent species at all time
points were 18:1/18:1/18:1 and 18:1/18:1/18:2, in keeping with the
overall fatty acid composition of the accumulating TAG [2,32]. The
next most abundant TAG species were those containing a single satu-
rated fatty acid (16:0/18:1/18:1, 16:0/18:1/18:2, 18:0/18:1/18:1) or
more highly unsaturated species (18:1/18:1/18:3, 18:1/18:2/18:2,
18:1/18:2/18:3). The total detected TAG molecular species are given in
Supplementary Table 8 where it will be noted that those TAG molecules
containing VLCFAs are only minor components.

During the oil accumulation period there was a general shift to-
wards more unsaturated TAG molecular species. This was particularly
noticeable with those containing palmitate or stearate reducing be-
tween 20 and 27 DAF. In addition, although minor species, those with
very VLCFAs tended to increase during the oil accumulation period
(Supplementary Table 8).

The main molecular species of DAG at the three developmental time
points are shown in Fig. 4. The major species at all times of oil accu-
mulation were 18:1/18:1 and 18:1/18:2, each representing 30-40% of
the total. Both of these species increase in abundance throughout de-
velopment. Other significant molecular species of DAG were those
containing palmitate (16:0/18:1, 16:0/18:2) or those which were more
unsaturated (18:1/18:3, 18:2/18:2, 18:2/18:3). The palmitate-con-
taining species as well as 18:2/18:3 decreased during oil accumulation
(Fig. 4). There were only very small amounts of DAG molecular species
(< 1%) containing palmitoleate or VLCFAs (Supplementary Table 9).

The main molecular species of PA, the immediate precursor to DAG
in the Kennedy pathway, are shown in Fig. 5 and all detected species
are given in Supplementary Table 10. The major species were 16:0/
18:2, 18:1/18:1, 18:1/18:2 and 18:2/18:2. Between 20 and 27 DAF
there were increases in the abundance of 18:1/18:1 and 18:1/18:2
species while 16:0/18:2 and 18:2/18:2 decreased (Fig. 5). Other sig-
nificant PA species were 16:0/18:1, 16:0/18:3, 18:1/18:3, 18:2/18:3
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and 18:3/18:3. In general, these maintained relatively steady propor-
tions during oil accumulation.

PC plays an important role during oil accumulation in crops [1,14].
The main molecular species of PC during oil accumulation in oilseed
rape are shown in Fig. 6 and a complete analysis of all detected species
in Supplementary Table 11. The two main molecular species at 27 and
35 DAF were 18:1/18:1 and 18:2/18:2 but both showed a significant
rise compared to 20 DAF (Fig. 6). This increase in proportion was
compensated by a decrease in the 16:0/18:2, 18:2/18:2 and 18:2/18:3
species by the mid stage of oil accumulation (i.e. between 20 and 27
DAF). Other significant PC molecular species (around 5%) were 18:0/
18:1, which increased between 20 and 27 DAF and 16:0/18:1 and 18:1/
18:3 which showed little change in proportion during development.
There were only minor amounts of PC species containing palmitoleate
or VLCFAs (Supplementary Table 11).

PE is synthesised by a similar pathway to PC [55,58], using DAG
from the Kennedy pathway. However, unlike PC, it does not appear to
be involved in active participation in seed oil accumulation [14,15,57]
nor as a significant substrate for fatty acid desaturation reactions
[56,59]. Therefore, we examined PE molecular species to compare with
those of PC. The main molecular species of PE are shown in Fig. 7 with a
complete breakdown of all species detected in Supplementary Table 12.
The pattern of molecular species was noticeably different from those of
PC (Fig. 6). While 18:1/18:2 was a major species, so were 18:2/18:2
and 16:0/18:2 (Fig. 7). The latter was the main species at 20 DAF. 16:0/
18:1, 18:1/18:1, 18:1/18:2 and 18:1/18:3 all showed increases be-
tween 20 and 27 DAF while 16:0/18:2 decreased. Other significant
species, each of which showed little change in proportion during oil
accumulation, were 16:0/18:3, 18:2/18:3 and 18:3/18:3.

In summary, PE, despite being formed by the same Kennedy
pathway as PC, showed very distinct differences in its molecular species
proportions, in keeping with the important role of PC (but not PE) in
fatty acid desaturation and in TAG accumulation.

3.3. Measurement of the acyl-CoA pool during seed development

A diverse variety of acyl-CoAs were detected in the developing
oilseed rape seeds ranging from the medium-chain myristoyl-CoA up to
very long chains of thirty carbons (Fig. 8). However, as expected, the
main acyl-CoAs present at all developmental points analysed (20-35
DAF) were oleoyl-, linoleoyl-, palmitoyl-, linolenoyl- and stearoyl- (in
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Fig. 4. Changes in the percentages of major molecular species of
diacylglycerol during oil accumulation in oilseed rape.

45 | | KKK Diacylglycerol molecular species were analysed by multiple re-
l_] action monitoring (MRM) using a triple quadrupole instrument
40 _|: after separation of lipid species by RPLC as described in
T Materials and methods. Three developmental time points were
35 | analysed, 20, 27 and 35 days after flowering (DAF), representing
o early, mid and late stages of oil accumulation, respectively, in B.
i_ 30 I napus cv. Westar. Means = s.d. (n = 5) are shown. *P < 0.05,
G **p < 0.01, ***P < 0.001. Major molecular species (> 1%
§ 25 total) are detailed here, with further information on minor spe-
= cies listed in Supplementary Table 9. The amounts of dia-
g 20 lml cylglycerol at the three stages were 0.23 + 0.01, 0.66 = 0.24
5 ks ik and 1.23 + 0.14 ug fatty acid/mg FW, respectively, as mea-
& 15 [ x [ sured by TLC/GLC.
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order of abundance). During oil accumulation, the amounts of oleoyl-
CoA, linoleoyl-CoA and linolenoyl-CoA increased significantly. Because
these were major components of the acyl-CoA pool, the total level al-
most doubled from 20 to 35 DAF. There were a large number of very
long chain acyl-CoAs. In general, these were both saturated and the n-9
monoene equivalents. The very long chain acyl-CoAs were most abun-
dant at the intermediate oil accumulation time point (27 DAF) and
reduced markedly by the latest (35 DAF) stage.

3.4. Can lipidomics inform judgements about enzymes used for
triacylglycerol accumulation?

It is accepted that there are several enzymes that can contribute to
TAG accumulation in oil crops, apart from the direct Kennedy pathway.
These particularly involve PDAT and metabolism around PC [1]. Direct
measurement of enzyme activities, such as PDAT and DGAT, can pro-
vide some information [12] but, of course, these are measured in vitro
under optimised conditions. Gene deletion is another technique and has
been applied to the analogous plant arabidopsis [37], but again, there

are problems for quantitative interpretation.

Thus, apart from the important information supplied by the lipi-
domic data per se, we sought to use them to evaluate the possible
contributions of DGAT and PDAT towards TAG accumulation. We chose
to use the mid-point of oil accumulation (27 DAF) for the evaluation
since this was typical of high biosynthetic rates and was not unduly
influenced by those tissues which were not primarily oleaginous. It was
clear from the acyl-CoA data (Fig. 8) that there was selectivity in the
fatty acids used for TAG formation with, for example, a low in-
corporation of myristate (e.g. Fig. 1 and Supplementary Table 4). We
used the acyl-CoA data from Fig. 8 for 27 DAF as potential substrates for
DGAT. For PDAT we used the data for PC (Fig. 6) and assumed an
enrichment at the sn-2 position of unsaturated fatty acids. Although we
have no data for B. napus cv. Westar, positional analysis of PC from a
variety of plants [60-62] suggests that the distribution of fatty acids in
the major molecular species (see Supplementary Table 11) would be 6%
16:0, 9% 18:0, 54% 18:1, 65% 18:2, 70% 18:3 for each fatty acid re-
spectively, at the sn-2 position. The only VLCFA detected in PC was
20:1, found in two very minor species, 18:1/20:1 and 18:2/20:1. We

35 Fig. 5. Changes in the percentages of major molecular species of
= phosphatidic acid during oil accumulation in oilseed rape.
55 M Phosphatidic acid molecular species were analysed by multiple
=i 1 reaction monitoring (MRM) using a triple quadrupole instrument
1 after separation of lipid species by HILIC as described in
o 25 ’_| Materials and methods. Three developmental time points were
i M I'Tﬂ analysed, 20, 27 and 35 days after flowering (DAF), representing
E 20 & early, mid and late stages of oil accumulation, respectively, in B.
o napus cv. Westar. Means = s.d. (n = 5) are shown. *P < 0.05,
= **p < 0.01, ***P < 0.001. Major molecular species (> 1%
.g 15 total) are detailed here, with further information on minor spe-
?"; ﬁ cies listed in Supplementary Table 10. The amounts of phos-
< 10 (_1 | B phatidic acid at the three stages were 0.34 * 0.25,
m = 0.32 * 0.14 and 0.11 = 0.07 pg fatty acid/mg FW, respec-
f—';T ‘ B tively, as measured by TLC/GLC.
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[m' Fig. 6. Changes in the percentages of major molecular species of
30 l-'—] ﬂ phosphatidylcholine during oil accumulation in oilseed rape.
Phosphatidylcholine molecular species were analysed by mul-
tiple reaction monitoring (MRM) using a triple quadrupole in-
25 |_| strument after separation of the lipid classes by HILIC as de-
LLL scribed in Materials and methods. Three developmental time
= l_| points were analysed, 20, 27 and 35 days after flowering (DAF),
35_ 20 I representing early, mid and late stages of oil accumulation, re-
G spectively, in B. napus cv. Westar. Means *+ s.d. (n = 5) are
é shown. *P < 0.05, **P < 0.01, ***P < 0.001. Major mole-
£15 pres cular species (> 1% total) are detailed here, with further in-
g formation on minor species listed in Supplementary Table 11.
% = The amounts of phosphatidylcholine at the three stages were
« 10 = I 1.37 + 0.12, 2.37 + 0.03 and 3.65 = 0.08 pg fatty acid/mg
|=| FW, respectively, as measured by TLC/GLC.
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have used the above crude approximation of sn-2 distributions in our
calculations. Moreover, although there is no data specifically for oilseed
rape, PDAT is assumed to use fatty acids from the sn-2 position of PC
[16]. In addition, our data represent a steady-state profile of seed lipids
and, since there is constant re-modelling of these, such metabolism may
mask accurate evaluation of DGAT and PDAT.

In Table 1 we have a comparison of the molecular species compo-
sition of TAG formed exclusively by the Kennedy pathway (DGAT) or
exclusively via PDAT with the actual data for accumulated TAG at 27
DAF (the data for DGAT and for PDAT assume no substrate selectivity).
It will be clear that while neither pathway gives a good match, the
molecular species of TAG that accumulated were nearer to those pre-
dicted from calculation of DGAT activity rather than PDAT. This would
be in keeping with in vitro estimation of activity [12] even though we
concur with the view that PDAT is likely to have significant input in
vivo, as suggested originally from gene suppression experiments with
arabidopsis [37].

Nevertheless, there are several TAG molecular species whose

percentages are significantly different from calculated amounts. 18:0/
18:1/18:1 and all species containing VLCFAs (20-24C) are higher
(Supplementary Tables 4 and 8) than calculated for the Kennedy
(DGAT) pathway while 18:1/18:1/18:2 and 18:1/18:2/18:2 are lower.
Clearly, substrate selectivity, for which we have little information, must
play an important role.

It is also worth noting that, although generally DGAT can account
for those species containing VLCFAs much better than PDAT (Table 1),
the acyl-CoA pool contained much lower amounts of 20:1 than several
other very long chain monoenes (Supplementary Table 13). Therefore,
because DAG contained no detectable 20:1 (Supplementary Tables 3
and 9) there must have been strong substrate selectivity for erucoyl-
CoA by the DGAT enzyme.

4. Discussion

With recent discoveries of new enzymes involved in lipid accumu-
lation in oil crops, it is clear that our understanding of metabolism and

Fig. 7. Changes in the percentages of major molecular species of

40 phosphatidylethanolamine during oil accumulation in oilseed
rape.
35 Phosphatidylethanolamine molecular species were analysed by
... multiple reaction monitoring (MRM) using a triple quadrupole
instrument after separation of the lipid classes by HILIC as de-
30 wnx 'Ll scribed in Materials and methods. Three developmental time
° "_ points were analysed, 20, 27 and 35 days after flowering (DAF),
> 25 representing early, mid and late stages of oil accumulation, re-
2 spectively, in B. napus cv. Westar. Means *+ s.d. (n = 5) are
g 20 shown. *P < 0.05, **P < 0.01, ***P < 0.001. Major mole-
o cular species (> 1% total) are detailed here, with further in-
= formation on minor species listed in Supplementary Table 12.
- 15 The amounts of phosphatidylethanolamine at the three stages
& [_I were 0.42 = 0.07, 0.38 = 0.03 and 0.58 *= 0.04pg fatty
10 acid/mg FW, respectively, as measured by TLC/GLC.
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100 = Fig. 8. Distribution of acyl-CoA species during the rapid period
[ 200 of oil accumulation in oilseed rape. Means = S.D. (n = 5).
90 M —_ *P < 0.05, **P < 0.01, ***P < 0.001. The inset shows the
E 160 + total amount of acyl-CoAs at the three development times.
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Table 1 For seeds aged 27 DAF, the pattern of molecular species in PA was

Comparison of the distribution of TAG molecular species if they were generated by DGAT
or PDAT only with the actual percentages found. For the assumptions made in the cal-
culations, see the text in Section 3.4.

Molecular species % Molecular species

PDAT DGAT Actual TAG
16:0/18:1/18:1 1 7 6
16:0/18:1/18:2 2 8 5
16:0/18:2/18:2 2 2 2
16:0/18:1/18:3 <1 1 1
16:0/18:2/18:3 <1 <2 1
18:0/18:1/18:1 - 2 7
18:1/18:1/18:1 20 17 20
18:1/18:1/18:2 35 26 16
18:1/18:1/18:3 5 7 7
18:1/18:1/20:0 - 1 3
18:1/18:1/20:1 <1 - 4
18:1/18:1/24:0 - 1 2
18:1/18:1/24:1 - 1 1
18:1/18:2/18:2 20 11 6
18:1/18:2/18:3 6 7 8
18:1/18:2/22:0 - 1 2
18:1/18:3/18:3 1 1 2
18:2/18:2/18:3 2 2 1

particularly its regulation, is incomplete [1,4,6,9,14,63]. We have been
using a number of techniques to reveal features of the control of TAG
biosynthesis in a major oil crop, B. napus. These include classic bio-
chemistry [33,34], genetic manipulation [35], flux control experiments
[12] and MALDI-MSI to examine spatial and temporal aspects [46].
Here we report detailed lipidomic examination of important lipid
classes during the rapid period of lipid accumulation in oilseed rape.

Analysis of seeds at the mid-point of oil accumulation (27 DAF)
revealed the major molecular species detectable and confirmed ro-
bustness of the measurements. When comparing the non-polar lipids,
DAG and TAG (Fig. 1), the major DAG species (18:1/18:1 and 18:1/
18:2) clearly accounted for major TAG species. However, TAG con-
tained significant amounts of stearate as well as VLCFAs (Fig. 1 and
Suppl. Table 4) which were not detected in DAG (Fig. 1 and Suppl.
Table 3). Although the VLCFAs are all found in the acyl-CoA pool at 27
DAF (Fig. 8), they were not detected in PC at this time (Fig. 2 and Suppl.
Tables 6 and 11). This suggests that TAG species containing VLCFAs
originate from the DGAT reaction (see also Section 3.4).
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distinct from that of DAG, even though they are directly connected in
the Kennedy pathway for TAG formulation. This, presumably, reflects
the very significant flux of carbon between DAG and PC [1,4,14] and
the activity of FAD2 and FAD3 which use PC as substrate [56]. In ad-
dition, PA is used for synthesis of anionic phosphoglycerides
[24,55,58], however such reactions are likely to be minor in maturing
oilseed rape seeds. Indeed, radiolabelling of B. napus seeds with either
[1-'4C] acetate or [U**—C] glycerol gave only very minor incorporation
into cardiolipin (diphosphatidylglycerol), PG or PI (H. Woodfield, un-
published data).

Since both PC and PE are formed by a CDP-base pathway using DAG
[24,55,58] (PE can also be converted to PC by methylation [58,64]) we
included an examination of PE (as the second major phospholipid) in
our study. Fig. 2 shows that the distribution of molecular species in PC
and PE at 27 DAF is clearly different. This is to be expected from the
intimate involvement of PC, but not PE in TAG synthesis [1,4,14]. In
addition, evidence has suggested the cholinephosphotransferase and
ethanolaminephosphotransferase enzymes (catalysing the final step in
the CDP-base pathway) have been shown to have distinct character-
istics in soybean [65-67], although an isolated gene codes for both
activities [68]. On the other hand, two yeast enzymes which both show
equal similarity to the deduced amino acid sequence of the soybean
gene [68] have distinct characteristics [69].

For the rapid period of oil accumulation, we used samples of 20-35
DAF which we determined were appropriate in the cultivar used and in
agreement with other studies of B. napus [38,47]. Although the major
species of TAG and DAG remained broadly constant, there were sig-
nificant changes in their percentage distribution from early to late oil
accumulation (Figs. 3 and 4). For TAG there was a general increase in
more unsaturated species and in those containing VLCFAs during oil
accumulation (Fig. 3 and Suppl. Table 8). This was not reflected in the
DAG species (Fig. 4 and Suppl. Table 9), indicating the substrate se-
lectivity of DGAT [63] and/or the presence of separate pools of DAG
[4,8,14]. As discussed above, the absence of significant VLCFAs in PC,
preclude a role for PDAT in giving rise to the differences in VLCFA
content between DAG and TAG species with seed maturation. In con-
trast to the non-polar lipids, all three of the phosphoglycerides showed
significant changes in the relative distribution of their molecular spe-
cies during oil accumulation. Although PA, PC and PE each had a dis-
tinct distribution of molecular species, there were some consistent
changes in major species with maturation. Thus, all three
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phosphoglycerides showed decreases in 16:0/18:2 and increases in
18:1/18:1 and 18:1/18:2, particularly in the period 20-27 DAF. These
data corroborated previous measurements made via MALDI-MS [46].

As remarked before, PA, PC and PE all had distinct differences in
their distribution of molecular species, despite their metabolic con-
nections [55,58]. There were also differences in the changes to their
molecular species during maturation. For example, while PA and PC
both showed a large decrease in their 18:2/18:2 species during oil ac-
cumulation (Figs. 5 and 6), PE did not (Fig. 7) similarly, there were
differences in the changes in species such as 18:0/18:1, 18:1/18:3 and
18:3/18:3. All this points to the subtle distinctions in metabolism for
phosphoglycerides which undoubtable reflects their different functions
in plant cells [70].

Although there are significant differences in the molecular species
of PC and PE, and indeed in their proportional changes in amounts
during maturation (Figs. 6 and 7), the major species alter in the same
direction. For instance, 16:0/18:2 and 18:2/18:2 both decrease while
18:1/18:1 and 18:1/18:2 increase. These changes are likely to reflect
the parallel alterations in DAG species (Fig. 4), since the latter is the
common substrate for PC and PE formation by the Kennedy pathway
[24].

A key question that has exercised plant scientists since the discovery
of PDAT [16] has been its contribution to TAG synthesis relative to
DGAT in different plants. This is important for efforts to increase oil
production since, although over-expression of DGAT seems to be ef-
fective in increasing TAG accumulation either alone [35,36] or as part
of a ‘push/pull’ strategy [28,29], information about PDAT is less clear
and suggests that it is less important for crops producing high oleate
such as oilseed rape [14]. Indeed, overexpression or knockout of Ara-
bidopsis PDAT1 resulted in significant changes in oil content (and fatty
acid composition) in leaves but not in seeds [71]. Nevertheless, it has
been shown that DGAT and PDAT have overlapping function for oil
accumulation in plants [9,37] and, depending on the crops, their re-
lative contribution may be quite different [4,62,72]. Evidence is accu-
mulating that PDAT may be particularly important for incorporation of
unusual (e.g. hydroxyl) fatty acids [1,4] and, to a certain extent, for
highly unsaturated molecules [63].

A recent paper has addressed such questions in Camelina sativa
where it was concluded that TAG accumulation was dominated by
DGAT in the cotyledon tissues but, in the plant, PDAT could compen-
sate for an absence of DGAT with no reduction in seed oil content [73].

Efforts to address the question of the relative importance of DGAT
and PDAT for TAG synthesis in oil crops have included measurements of
enzyme activity in vitro [10-12,63] and genomic manipulation
[37,71]. Even when measurements in vitro have been carried out very
carefully and in detail [63] there is always the problem that enzyme
specificity determinations in vitro may not reflect the selectivity (and,
hence, activity) at the substrate concentrations in vivo. Another method
that has been applied to soybean in particular in to use radiolabelling
from different precursors [14].

Although previous studies with in vitro enzyme measurements [12]
and transcription levels [38] suggested that DGAT was more important
for overall flux into TAG in oilseed rape, we were interested to see
whether our molecular species measurements could add useful in-
formation. This was particularly important in view of the current uses
of genetic manipulation to enhance oil production [6,72,74-76]. In-
deed, Bates has recently commented that the relative importance of
DGAT versus PDAT is a major uncertainty in plant lipid metabolism
[14].

As discussed in Section 3.4 we had to make assumptions in order to
calculate how the activities of DGAT or PDAT could account for the
final molecular species in TAG. These assumptions included the avail-
ability of all acyl-CoAs in the proportions detected (Fig. 8), an enrich-
ment of unsaturated fatty acids at the sn-2 position of PC [60-62] and
utilisation of fatty acids at the sn-2 position by PDAT [16]. For the
latter, recent experiments for safflower and sunflower suggest that fatty
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acids at the sn-1 position can also be used (at a quarter of the rate for
the sn-2 position) [63]. Two main conclusions can be made, first, the
pattern of TAG species matches better to an exclusive formation by
DGAT than by PDAT. Second, the actual TAG species distribution shows
large differences from calculated patterns, especially for 18:0/18:1/
18:1, 18:1/18:1/18:2 and 18:1/18:2/18:2 (Table 1).

As the apparent preferred use of DGAT over PDAT matches mea-
surement of these enzyme activities in vitro [12] and also the tran-
scriptome analysis based on EST sequencing where the PDAT orthologs
of B. napus were much lower than DGAT ESTs [38]. For B. napus seeds
the DGAT1 has much higher activity than DGAT2 [35] and over-ex-
pression of this isoform was effective in increasing oil yields in green-
house experiments and in field trials [36]. Again, this agreed with
measurements of ESTs in B. napus [38]. The differences noted in Table 1
are obviously due in a major part to substrate selectivity. Unfortunately,
we have no information for the oilseed rape enzymes but experiments
in other plant tissues revealed substrate specificity for PDAT [63] and,
especially, for DGAT [57,63,77]. Further experiments in this area,
especially for major oil crops, would be timely.

5. Conclusions

The data reported here describe lipidomic analysis of major lipids
involved in TAG formation in the major oil crop, B. napus. They are one
of the first such analyses of a developing plant tissue — the maturing
oilseed. The results show quite distinct molecular species distributions
in the various lipid classes and demonstrate the complex nature of
metabolism during oil accumulation. Theoretical calculations to com-
pare the possible selective contributions of DGAT or PDAT during TAG
biosynthesis suggest that DGAT is more important. However, the actual
pattern of TAG molecular species shows clearly that enzyme selectivity
has major importance in forming the accumulating oil. Our experiments
contribute significantly towards understanding how the final storage
lipid is formed within the world's third most important oil crop.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bbalip.2017.12.010.
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