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Abstract

Background: Dementia with Lewy Bodies (DLB) is the second most common form of dementia
in the elderly but has been overshadowed in the research field, in part due to similarities
between DLB, Parkinson's (PD) and Alzheimer’s diseases (AD). This overlap complicates
clinical care in that an accurate diagnosis is not always straightforward, and suggests that these
diseases may share common aetiology. We have recently shown that loci implicated in
susceptibility to PD and AD also play a role in DLB and that the proportion of genetic correlation
between these diseases is very similar, when the major risk locus for AD, APOE, is excluded.
These results demonstrate not only that DLB is genetically associated with these more common
diseases, but also that DLB has a strong and quantifiable genetic component that is unique.
Methods: Here we have performed the first large-scale genome-wide association study of DLB
in a combined cohort of 1,743 DLB patients and 5,033 controls. We exploited the recently
established Haplotype Reference Consortium panel as the basis for imputation to a total of 8.4
million high-quality imputed genotypes and performed independent replication and a meta-
analysis of significant and suggestive results.

Findings: Results confirm previously reported associations (APOE, SNCA, GBA) and provide
genome-wide significant signals for two novel loci (BCL7C/STX1B and CNTN1), in addition to
several loci with suggestive levels of association. Additionally, using the genome-wide SNP data
we estimate the heritable component of DLB to be approximately 36%.

Interpretation: These results allow us to characterize, for the first time, the role of common
genomic variability in DLB. They show unequivocally that common genetic variability plays a
role in this disease, that this variability is, to some extent, shared with PD and AD and, finally,
that there is a genetic component that seems unique to the disease.
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Introduction

Dementia with Lewy Bodies (DLB) is the second most common form of dementia
following Alzheimer’s disease (AD) . Despite this fact, very little attention has been devoted to
understanding the pathogenesis of this disorder, particularly when compared with the other
common neurodegenerative diseases such as AD and Parkinson’s disease (PD).

So far, the only fully penetrant genetic variability that has been identified and replicated
as a specific cause of DLB are SNCA point mutations and gene dosage. Three major factors
may have contributed to this low number of causative mutations: first, DLB, often a disease of
old age, is not commonly seen in multiplex kindreds, meaning that successful linkage studies
have been rare 2; second, the accurate clinical diagnosis of DLB is complex, with a relatively
high rate of misdiagnosis 3; and third, because even the largest cohorts of DLB samples have
been generally small, in many instances including as little as 100 patients *°. However, it is
currently indisputable that DLB has a strong genetic component. The epsilon-4 allele of APOE
6.7 is recognized to be a strong risk factor, as are heterozygous mutations and common
polymorphisms in the glucocerebrosidase gene (GBA)2. Both of these results have stemmed
from candidate gene association studies; it was known that APOE was strongly associated with
AD and GBA was a strong risk factor for PD/Lewy body disorders. In addition to these genetic
associations with susceptibility, we have recently provided evidence that DLB has a heritable
component °.

It has been shown that there is no overlap in common genetic risk between PD and AD
10 a fact that is not entirely surprising given the differences in phenotype. However, it is
reasonable to hypothesize that the overlaps and differences in clinical and pathological
presentation between DLB with both PD and AD stem, at least in part, from aspects in their
underlying genetic architecture and, consequently, disease pathobiology. Specific genes/loci
associated with disease as well as strength of association are factors that can be expected to
modulate these phenotypic overlaps and differences. However, despite these encouraging
findings, large-scale unbiased genetic studies in DLB have not yet been performed, which is
likely due to the difficulty in identifying large, homogeneous cohorts of cases.

To address the need for more powerful and comprehensive genetic studies of DLB, we
performed the first large-scale genome-wide association study in this disease, using a total of
1,743 cases and 5,033 controls. The majority of cases (n=1,324) were neuropathologically
assessed, providing a greater level of diagnostic detail. Controls used were derived from two
publicly available datasets and from the Mayo Clinic Florida control database. We performed
imputation using the most recent imputation panel provided by the Haplotype Reference
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Consortium enabling us to have a detailed overview of common and intermediate frequency

genetic variability.

Methods
Participants

All case subjects (n=1,687 in discovery and n=527 in replication stages) were diagnosed
according to the consensus criteria for either clinical or pathological diagnosis of DLB *. The
majority of cases were pathologically diagnosed (n=1,308 in discovery and 350 in replication
stages), and these were included only when the likelihood of a diagnosis of DLB was
“Intermediate” or “High” 1. Control subjects (n=4,370 in discovery and n=663 in replication
stages) are part of the “General Research Use” controls from the two studies publicly available
at dbGaP (The Genetic Architecture of Smoking and Smoking Cessation (phs000404.v1.p1)
and Genetic Analysis of Psoriasis and Psoriatic Arthritis (phs000982.v1.p1)) and the Mayo

Clinic Florida control database for the replication stage only.

Discovery stage genotyping and quality control

Case subjects (n=1,687) were genotyped in either lllumina Omni2.5M or lllumina
OmniExpress genotyping arrays (n=987 and n=700, respectively) (Table 1). Controls (n=4,370)
were genotyped in either lllumina Omni2.5M or lllumina OmnilM arrays (n=1,523 and n=2,847

respectively). Autosomal variants with GenTrain scores >0.7 were included in the QC stage. We

removed SNPs with a call rate <95%, HWE p-value in controls <1x10-7, or a minor allele

frequency (MAF) <0.01. Samples were removed if they had substantial non-European
admixture, were duplicates or first- or second-degree relatives of other samples, had a genotype
call rate <98% or had substantial cryptic relatedness scores (PI_HAT >0.1).

Population outliers were determined by principal components analysis (PCA), using
SNPs passing the aforementioned quality-control filters. After linkage disequilibrium (LD)-based
pruning with version 1.9 of PLINK 2 to quasi-independence (variance inflation factor =2),
130,715 SNPs remained in the dataset. Genotypes for these SNPs were combined with
1000Genomes phase 3 genotypes for samples from the YRI, CEU, JPT, and CHB reference
populations, and subjected to PCA. Individuals lying farther than % of the distance between
CEU and JPT/CHB/YRI when plotted on the first two PCA axes were considered to have

substantial non-European admixture and were excluded.
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Imputation

We performed imputation using the most recent reference panels provided by the
Haplotype Reference Consortium (HRC v1.1 2016). Eagle v2.3 was used to pre-phase
haplotypes based on genotype data'®!4. Imputation was conducted using the Michigan
Imputation Server®®. Following imputation, variants passing a standard imputation quality

threshold (R? >= 0.3) were kept for further analysis.

Statistical Analysis of discovery stage

We used logistic regression as implemented in PLINK2!? to test for association of
variants with the binary case-control phenotype. Variants were examined under an additive
model (i.e. effect of each minor allele) and odds ratios (ORs) and 95% confidence intervals (Cis)
were estimated. To control for population stratification, we used coordinates from the top twenty
PCA dimensions as covariates in the logistic regression models. We utilized QQ plots and the
genomic inflation factor (A) to test for residual effects of population stratification not fully
controlled for by the inclusion of PCA and cohort covariates in the regression model.

Gene-wise burden tests were performed using all variants with an effect in protein

sequence and a maximum MAF of 5%, using SKAT-O %17 as implemented in EPACTS 18,

Replication genotyping

A total of 527 DLB cases and 663 controls from the Mayo Clinic were included in the
replication stage (Table 2). Replication was attempted for top variants showing a p-value in
discovery of less than 1x10®. A total of 32 signals were tested for replication using a Sequenom
MassARRAY iPLEX SNP panel (Supplementary Table 1). Power calculations for replication
sample size selection were performed using the R package ‘RPower’. An average statistical
power of 0.806 (95%CI=0.714-0.864) was estimated for the 32 signals, based on sample size,
variant frequency and effect size in the discovery stage and a replication p-value threshold of
0.05. Association in replication was tested using logistic regression models adjusted for age
(age at onset for the clinically diagnosed DLB patients, age at death for the high likelihood DLB
patients, and age at study for controls) and gender.

A combined analysis of stage 1 and 2 was conducted with GWAMA?® under a fixed-

effects model, using estimates of the allelic odds ratio and 95% confidence intervals.

Phenotypic variance explained

To estimate the phenotypic variance explained by the genotyped SNPs in this cohort we
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used GREML analysis as implemented in GCTA 22, We used the first ten principal
components as covariates and a disease prevalence of 0.1% 22. We have also estimated the
partitioned heritability by chromosome, where a separate genetic relationship matrix was
generated for each chromosome. Each matrix was then run in a separate REML analysis.
Linear regression was applied to determine the relationship between heritability and

chromosome length.

Results
Single variant analysis

Application of quality control filters to the dataset yielded high-quality genotypes at
448,155 SNPs for 1,216 cases and 3,791 controls. After imputation and quality control,
genotypes for 8,410,718 variants were available for downstream analyses. QQ plot and
genomic inflation factor (A=1.002) indicated good control of population stratification
(Supplementary Figure 1).

Five regions were associated with DLB risk at genome-wide significance (p<5x102®) in
the discovery stage (Figure 1; Table 3).

These included the previously described AD and PD loci APOE (rs429358, OR=2.4,
p=5.31x10"%), SNCA (rs7681440, OR=0.7412, p=1.45x10°) and GBA (rs35749011, OR=2.5,
p=1.77x107°). Additionally, loci overlapping BCL7C/STX1B (rs897984, OR=0.72, p=2.64x10%)
and GABRB3 (rs1426210, OR=1.32, p=4.63x10%) were also genome-wide significant. Two

additional regions surpassed a suggestive threshold of significance (p=1x10-%) in the discovery

stage, the first overlapping the SOX17 gene (rs139919032, OR=2.4, p=1.37x107) and the
second overlapping the CNTN1 gene (rs79329964, OR=1.5, p=4.35x107). The replication stage
of the GWAS design provided independent replication (p<0.05) for 4 of the loci (APOE, SNCA,
GBA, CNTNL1), all of which were also genome-wide significant in the combined analysis of both
stages (Table 3; Supplementary Table 1). The associations at GABRB3, BCL7C/STX1B and
SOX17 were not replicated. However, combined analysis of the discovery and replication stages
showed the BCL7C/STX1B association to survive genome-wide multiple testing correction
(p=1.19x108; Table 3).

The association observed at the SNCA locus represents an independent signal when
compared to the top association reported for PD. Despite the independence of the top
association signal from the largest PD GWAS, conditional analyses revealed a secondary
association peak (rs7681154) in strong LD (r2=0.92) with our lead SNP here with DLB
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(rs7681440). Indeed, the PD secondary SNP showed similar association in the present DLB
GWAS (p=1.27x10%). To gain insight into potential regulatory effects of this distinct SNCA
signal, we used eQTL data from GTEx and the Harvard Brain Bank Resource Center to
determine whether rs7681154 and rs7681440 influence gene expression as eQTLs. In the
GTEX data, the most associated SNP in DLB is a strong eQTL in the cerebellum for RP11-
67M1.1, a known antisense gene located at the 5’-end of SNCA, with the alternative allele
showing a reduction in expression of RP11-67M1.1 (Figure 2a). These results are compatible
with a model in which rs7681440 genotypes influence the expression levels of SNCA through
the action of RP11-67M1.1. More specifically, the alternative allele associates with a lower
expression of RP11-67M1.1 and consequently less repression of SNCA transcription (higher
SNCA expression), which is in accordance with a higher frequency of the alternative allele in
cases when compared to controls. Additionally, rs7681154 was associated with SNCA
expression in cerebellum using the Harvard Brain Bank Resource Center results (p=2.87x101)
(Figure 2b), with the alternate allele associated with increased SNCA expression. Such a
relationship between this locus and SNCA expression is supported by the high expression of
SNCA in brain and the association of rs7681440 with increased SNCA expression in whole
blood (p=2.13x10738) 23.24,

A systematic assessment of genetic loci previously associated with AD or PD showed no
evidence of other genome-wide significant associations in this DLB cohort (Supplementary
Figures 5 to 64). These include the TREM2 locus, where the p.Arg47His variant has been
shown to have a strong effect in AD 2. In our cohort this variant did not show genome-wide
significant levels of association (OR=3.4; p=0.002), despite the overrepresentation in cases.
Similarly, MAPT, which is strongly associated with PD and has been previously linked to DLB 2°,
shows no strong evidence of association in this study (rs17649553; OR=0.86; p=0.0126).

Gene burden analysis

Gene based burden analysis of all low frequency (MAF < 0.05) and rare variants
changing the amino acid sequence, showed a single genome-wide significant result comprised
of 6 variants at GBA (p.Asn409Ser, p.Thr408Met, p.Glu365Lys, p.Arg301His, p.lle20Val and
p.Lys13Arg), (p=1.29x10'%). No other gene showed evidence of strong association with disease

or overlap with single variant analysis (Table 4).

Estimation of heritability of DLB

Using the first ten principal components as covariates and a disease prevalence of 0.1%,


https://paperpile.com/c/N9IcR7/LGZ5+e6kl
https://paperpile.com/c/N9IcR7/lRxsL
https://paperpile.com/c/N9IcR7/3vMYB

estimation of the phenotypic variance attributed to genetic variants showed a heritable
component of DLB of 36% (+ 0.03). Results for the chromosome-partitioned heritability are
presented in Figure 3. As expected for a common complex disease, we found a strong
correlation between chromosome length and heritability (p = 6.875x107).

Interestingly, the heritability for DLB at chromosome 19 is much higher than what would
be expected given chromosome size and likely reflects the role of APOE. It should also be
noted that chromosomes 5, 6, 7 and 13 all have higher heritability for DLB than expected, while

none of them have variants with genome-wide significant results.

Discussion

This is the first comprehensive, unbiased study of common and intermediate frequency
genetic variability in DLB. We identified five genome-wide significant associations (APOE,
BCL7C/STX1B, SNCA, GBA, and, CNTNL1).

The most significant association signal is observed at the APOE locus (APOE E4) which
has been previously shown to be highly associated with DLB ©7. As described APOE E4 is the
major genetic risk locus for AD and has been implicated in cognitive impairment within PD
although not with PD risk per se. It has also been observed to affect the levels of both B-amyloid
and Lewy body pathology in brains of patients 2/, and in a small Finnish dataset the E4
association with DLB was largely driven by the subgroup with concomitant AD pathology 28.

The second strongest association is observed at the SNCA locus and we were able to
confirm the different association profile between DLB and PD that we had previously reported .
SNCA is the most significant common genetic risk factor for PD, with rs356182 having a meta-
analysis p-value of 1.85x10%2 (OR:1.34 [1.30-1.38]) in PDGene. This variant is located 3’ to the
gene 2, while in DLB no association can be found in that region (Figure 4). Additionally, the
most associated SNP reported here for the SNCA locus (rs7681440) has a meta-analysis p-
value>0.05 in PDGene. Interestingly, when performing a conditional analysis on the top PD

SNP (rs356182), Nalls and colleagues reported an independent association at the 5’ region of

the gene (rs7681154, OR:0.841, p=7.09x10-19). It is tempting to speculate that these differences

may reflect pathobiological differences between the two diseases, perhaps mediated by
differential regulation of gene expression. We show that the top DLB locus contains an eQTL in
the cerebellum for a SNCA antisense gene and SNCA itself, with a consistent model of
increased SNCA expression. However, further investigation of the identified significant eQTLs is

needed: the effect was observed for only one brain region, even though other regions are
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present in the GTEXx dataset, many with similar sample sizes, and include regions preferentially
affected by Lewy body pathology (substantia nigra, frontal cortex, caudate). This could plausibly
result from low overall expression of SNCA-AS1 and higher cerebellum RNA quality when
compared to other assayed brain regions in the GTEx data. Nonetheless, it is interesting to note
that both eQTLs’ effects fit with a model of increased SNCA expression in cases compared to
controls.

The top hit at the GBA locus (rs35682329) is located 85,781bp downstream of the gene
and is in high LD (D": 0.9; R2: 0.8) with p.Glu365Lys (also reported in the literature as E365K,
E326K, rs2230288), which has been suggested as a risk factor for DLB 8. The top associated
variant for PD at this locus is the rs71628662 (PDGene meta-analysis OR:0.52 [0.46-0.58] and
p-value 6.86x1028). This variant is also in high LD with the top SNP identified here (D’: 0.9 and
R?:0.8). Interestingly in this study we show that APOE and GBA have similar effect sizes in DLB
(ORs of 2.5 and 2.2, respectively). Gene burden based analysis showed GBA as the only
genome-wide significant association with DLB risk. The inexistence of other associations should
be interpreted with some caution. As we are not ascertaining the complete spectrum of genetic
variability, it is possible that other genes will have a significant burden of genetic variants that
were simply not captured in our study design, despite using the most recent imputation panel.

An association at the BCL7C/STX1B locus has been previously reported for PD 2°%,
The top PD-associated variants at this locus were rs14235 (synonymous) and rs4889603
(intronic), located at BCKDK and SETD1A, respectively. The top SNP identified in DLB at this
locus (rs897984) shows the same direction of association seen in PD (OR=0.93, 95%CI:0.90-
0.96) and a meta-analysis p-value of 1.34x10° (data from PDgene). This is a gene-rich region of
the genome (Figure 5) making it difficult to accurately nominate the gene driving the association.
Mining data from the GTEX project showed that rs897984 is not an eQTL for any gene in the
locus. Nonetheless, in both PD studies, the nominated gene at the locus was STX1B likely due
to its function as a synaptic receptor X, In addition, STX1B has a distinctive pattern of
expression across tissues, presenting the highest expression in the brain. In this tissue, when
compared to the closest genes in the locus (HSD3B7, BCL7C, ZNF668, MIR4519, CTF1,
FBXL19, ORAI3, SETD1A, STX4), STX1B also shows the highest levels of expression
(Supplementary Figure 3). Mutations in STX1B have recently been shown to cause fever
associated epileptic syndromes 32 and myoclonic astatic epilepsy 2.

The CNTNL1 locus has been previously associated with PD in a genome-wide study of
IBD segments in an Ashkenazi cohort 34, and with cerebral amyloid deposition, assessed with PET

imaging in APOE E4 non-carriers 5. This locus was also shown to be sub-significantly associated
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with clinico-pathologic AD dementia 3. The Contactin 1 protein encoded by CNTN1 is a
glycosylphosphatidylinositol (GPI)-anchored neuronal membrane protein that functions as a cell
adhesion molecule with important roles in axonal function 7%, Mutations in CNTN1 were found
to cause a familial form of lethal congenital myopathy *°. Contactin 1 drives Notch signalling
activation and modulates neuroinflammation events, possibly participating in the pathogenesis
of Multiple Sclerosis and other inflammatory disorders “°. A functional protein association
network analysis of CNTN1 using STRING shows it is in the same network as PSEN2
(Supplementary Figure 4), supporting its potential role in neurodegeneration. It is also worth
noting that LRRK2 is located less than 500kb away from the most associated SNP at this locus,
which could suggest that the association might be driven by variation at the LRRK2 locus. We
assessed LD across the region and that analysis revealed that rs79329964 is in equilibrium with
both p.Gly2019Ser (R?: 0.000043) as well as with the PD hit at this locus rs76904798 (R
0.003), suggesting it to be an independent association from the PD risk. Although samples were
not screened for p.Gly2019Ser directly, the variant was well imputed (R?=0.94). The exclusion
of all samples that carried the p.Gly2019Ser variant showed no significant effect on the
association at the CNTNL1 locus. It is worth noting that the p.Gly2019Ser variant showed a
higher minor allele frequency in cases when compared to controls (0.0021 and 0.0003
respectively).

In addition to performing a GWAS with clinico-pathologic AD dementia, Beecham and
colleagues 3¢ also analysed commonly comorbid neuropathologic features observed in older
individuals with dementia, including Lewy body disease (LBD). In this latter analysis, only the
APOE locus was found to achieve genome-wide significance. However, when testing known
common AD risk variants with coincident neuropathologic features, the authors identified hits at
SORL1 and MEF2C as nominally associated. In our cohort of DLB cases we found no genome-
wide significant associations between these variants and disease. Similarly, we had previously
reported an association at the SCARB2 locus with DLB”. In the larger dataset studied herein,

the association remained at the suggestive level and did not reach genome-wide significance

(top SNP in the current study rs13141895: p-value=9.58x10-4). No other variant previously

reported to be significantly associated with AD or PD in recent GWAS meta-analyses showed a
genome-wide significant association with DLB. The top AD or PD variants at the following loci
showed nominal (p<0.05) association levels: MAPT, BIN1, GAK, HLA-DBQ, CD2AP, INPP5D,
ECHDC3 and SCIMP. Additionally, variants previously suggested to be associated with Lewy-

related pathology in a Finnish cohort, did not show evidence of association in this study
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(Supplementary Table 2).

This is the first large-scale genome-wide association study performed in DLB. We
estimate the heritability of DLB to be approximately 36%, which is similar to what is known to
occur in PD 4%, This shows that, despite not having multiple causative genes identified so far,
genetics plays a relevant role in the common forms of DLB. Additionally, we provide evidence
suggesting that novel DLB loci are likely to be found at chromosomes 5, 6, 7 and 13 given the
high heritability estimates at these chromosomes. A significant majority of our case cohort in the
current study was comprised of cases with neuropathological diagnoses, which provides a
greater level of information for diagnostic accuracy. These results provide us with the first
glimpse into the molecular pathogenesis of DLB; they reveal that this disorder has a strong
genetic component and a unique genetic risk profile. From a molecular perspective, DLB does
not simply sit between PD and AD; instead, the combination of risk alleles is unique, with loci
that are established risk factors for those diseases having no clear role in DLB (e.g. MCCC1,
STK39, CLU, CR1 or PICALM). Further increases in the size of DLB cohorts will likely reveal
additional common genetic risk loci, and these will, in turn, improve our understanding of this
disease, its commonalities and differences with other neurodegenerative conditions, ultimately

allowing us to identify disease-specific targets for future therapeutic approaches.
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Tables

Table 1: Characteristics of the DLB discovery cohort of DLB.

Country of origin N N neur-opatho.logical Mean age Successfully N neur.opatho-logical
diagnosis at onset Genotyped diagnosis
Australia 79 79 1.93 65 72 72
Canada 29 15 2.22 67.5 6 3
Finland 34 34 0.94 94.3 * 24 24
France 18 18 35 64.8 16 16
Germany 58 0 241 67.8 0 0
The Netherlands 133 133 1.71 78.7* 132 132
Portugal 13 0 0.63 NA 11 0
Spain 133 16 0.94 73.2 132 15
UK 404 308 2.12 69.7 284 245
USA 786 705 1.93 71.9 539 467
Total 1687 1308 1.83 70.1 1216 974

N: number of samples; M:F: ratio of males to females. * Represents age at death, which was available for
these cohorts. These values were not used for calculation of the complete mean age at onset.

Table 2: Characteristics of the replication cohort.

Country of origin N N neuropathological diagnosis M:F Mean age at onset
USA - cases 527 350 2.01 76.3
USA - controls 663 0 0.75 67.8 a

a Denotes age at examination for controls. For cases the age reflects age at onset for the clinical cases and

age at death for the path-diagnosed cases.



Table 3: Top signals of association at each locus that passed genome-wide or suggestive
thresholds for significance and their replication and meta-analysis p-values.

Discovery Replication Meta-Analysis
Named Region CHR  Position Variant R2 Eur_AF MA [MAF_A MAF_U OR L95 U95 P-value |Power MAF_A MAF_U OR L95 U95 P-value | OR L95 U95 P-value
APOE 19 45411941  rs429358 0949 0.149 C (0.283 0.14 241 214 27 5.31E-50 1 0.247 0.138 2.74 215 3.49 4.00E-16|2.46 222 274 3.31E-64
BCL7C/ISTX1B 16 30886643 rs897984* 0984 0609 T [0.334 0405 0.73 066 0.8 264E-10| 0.96 0.303 031 098 081 1.19 0.83 0.77 0.71 0.85 1.19E-08
SNCA 4 90756550 rs7681440* 0.996 052 C |0.411 0483 0.74 0.67 0.82 1.45E-09| 0.95 0.306 0.357 0.68 0.56 0.82 6.00E-05|0.73 0.67 0.79 9.22E-13
GBA 1 155121143 rs35682329 0.957 0.015 G |0.034 0.014 243 1.81 3.27 4.33E-09| 0.83 0.043 0.022 1.81 1.05 3.11 0.033 227 1.75 295 6.57E-10
GABRB3 15 26840998 rs1426210 0.982 0.315 G |0.348 0.293 132 12 146 4.63E-08| 0.9 0.24 0.268 0.84 0.68 1.04 0.1 122 1.11 1.33 2.05E-05
SOX17 8 55395693 rs144770207 0.937 0.018 G | 0.025 0.011 2.44 173 3.44 4.02E-07| 0.72 0.011 0.021 041 0.19 0.86 0.019 1.81 1.32 248 2.23E-04
CNTN1 12 41179589 rs79329964 0.993 0.062 A | 0.097 0.063 154 13 1.81 4.35E-07| 0.82 0.077 0.052 1.54 1.04 228 0.033 154 1.32 1.79 3.99E-08
CHR: Chromosome. R2: Imputation R-squared of each specific variant from HRC. OR: Odds ratio. L95: Lower
95% interval. U95: Upper 95% confidence interval. Eur_AF is the alternate allele frequency derived from the
European population of gnomAD?*. * Represents variants for which the gnomAD allele frequency
corresponds to the alternate allele and not the effect allele. Power refers to the calculated statistical power to
replicate the discovery signal, taking into account the replication sample size, effect and frequency in
discovery and an association threshold of p<0.05.
Table 4: Top gene burden results
CHR BEGIN END D NS FRAC_WITH_RARE ~ NUM_ALL_VARS  NUM_PASS_VARS  NUM_SING_VARS PVALUE
1 155204797 155210498 GBA 5016 0.05622 8 6 1 1.29E-13
22 39262224 39267761 CBX6 5016 0.010965 6 3 0 1.66E-05
11 130058428 130079477 ST14 5016 0.076754 20 11 2 4.29E-05
10 129347767 129350889 NPS 5016 0.076555 5 3 1 6.74E-05
4 40428010 40434855 RBM47 5016 0.0099681 3 2 1 0.00011289
11 18047141 18057637 TPHL 5016 0.0091707 8 5 0 0.00022217
6 31237124 31239829 HLA-C 5016 0.1262 32 10 1 0.00028923
19 45971941 45976122 FOSB 5016 0.00079745 4 2 1 0.00036517
1 44435005 44438171 DPH2 5016 0.004386 9 6 2 0.00043723
2 238785923 238820379  RAMP1 5016 0.00079745 2 2 1 0.00049746

CHR: Chromosome. NS: Number of samples with non-missing genotypes. FRAC_WITH_RARE : Fraction of
individual carrying rare variants below the allele frequency threshold (0.05). NUM_ALL_VARS : Number of all
variants defining the gene group. NUM_PASS_VARS : Number of variants passing the frequency and call-
rate thresholds. NUM_SING_VARS : Number of singletons among variants in NUM_PASS_VARS.
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Legends to Figures

Figure 1:

Manhattan plot showing genome-wide p-values of association. The p-values were obtained by
logistic regression analysis using the first 20 principal components as covariates. The y-axis

shows —log10 p-values of 8,410,718 SNPs, and the x-axis shows their chromosomal positions.
The y-axis was truncated at p-value of 1x102°. Horizontal red and green dotted lines represent

the thresholds of p= 5x10® for Bonferroni significance and p=1x10- for selecting SNPs for

replication, respectively.

Figure 2:

a) Boxplot showing the association between rs7681440 genotypes and RP11-67M1.1
expression in the cerebellum in 103 healthy post-mortem samples (p=2.00E°7) from the GTEXx
Consortium. Carriers of the GG genotype (alternative allele) show the lowest levels of
expression of the gene. Medians, interquartile ranges and individual data points are indicated.
See the GTEx website for details on methods.

b) Boxplot showing the association between rs7681154 and SNCA expression (p=2.865x101%)
in brain cerebellum in 468 healthy post-mortem subjects from the Harvard Brain Bank Resource
Center (www.brainbank.mclean.org) “%. Individuals with the alternate allele (C) had increased
SNCA expression in the cerebellum, on average, compared to those with the reference allele
(G) Sample size for each genotype group is denoted in parentheses. Details on the subjects,
experiments, and analytical methods of the eQTL study of the Harvard Brain Bank Resource
Center samples are described in Zhang et al. 2013 and www.brainbank.mclean.org.
Abbreviations: Homo Ref, homozygous for reference allele; Het, heterozygous; Homo Alt,

homozygous for the alternative allele.

Figure 3:
DLB heritability by chromosome. Heritability (y-axis) per chromosome is plotted against

chromosome length (x-axis). The red line represents heritability regressed on chromosome


https://paperpile.com/c/N9IcR7/euN4

length and the shaded grey area represents the 95% confidence interval of the regression

model.

Figure 4:

Regional association plot for the SNCA locus. Purple represents rs1372517, which is the most

associated SNP at the locus also present in the 1000Genomes dataset. The variant rs1372517
is in complete LD with rs7681440. Colours represent LD derived from 1000Genomes between

each variant and the most associated SNP.

Figure 5:
Regional association plot for the BCL7C/STX1B locus. Purple represents the most associated
SNP. Colours represent LD derived from 1000Genomes between each variant and the most

associated SNP.
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Supplementary Table 1: Replication stage associations

Clinical DLB patients vs. controls

High likelihood DLB Lewy body disease
patients vs. controls

Combined disease group vs. controls

MAF in MAF in MAF in high MAF in
Variant MA controls DLB OR (95% CI) P-value likelihood OR (95% CI) P-value combined OR (95% CI) P-value
(N=663) (N=177) DLB (N=350) disease group
rs10177808 C 9.8% 10.8% 0.99 (0.67, 1.46) 0.96 7.8% 0.76 (0.53, 1.09) 0.13 8.8% 0.86 (0.64, 1.17) 0.34
r$10900950 C 47.5% 50.3% 1.06 (0.83, 1.36) 0.65 45.1% 0.81 (0.65,1.00)  0.052 46.9% 0.92 (0.77, 1.11) 0.39
1$12695305 C 7.3% 9.0% 1.47 (0.96,2.25)  0.075 7.6% 1.21 (0.81, 1.80) 0.36 8.1% 1.32 (0.94, 1.85) 0.11
rs13010219 G 2.1% 2.6% 1.22 (0.54, 2.78) 0.63 3.3% 1.79 (0.92,3.49)  0.089 3.1% 1.48 (0.82, 2.67) 0.20
513237830 G 11.1% 11.0% 1.00 (0.67, 1.48) 0.98 10.3% 1.03 (0.73, 1.45) 0.87 10.5% 1.00 (0.75, 1.35) 1.00
rs1426210 G 30.7% 30.1% 0.93 (0.71, 1.24) 0.63 27% 0.82 (0.65, 1.05) 0.11 28.1% 0.84 (0.68, 1.04) 0.10
15144770207 G 2.1% 1.1% 0.40 (0.13, 1.21) 0.10 1.3% 0.35(0.14,0.83)  0.020 1.2% 0.41(0.19,0.86)  0.019
rs1958800 A 15.2% 16.6% 1.14 (0.80, 1.61) 0.47 19.8% 1.36(1.02,1.82)  0.038 18.7% 1.29 (1.00, 1.66)  0.050
152301134 A 48.6% 40.3% 0.71 (0.55,0.92)  0.009 38.6% 0.65(0.52,0.81)  0.0001 39.2% 0.67 (0.55,0.81) 3x10°
1s2498957 A 3.2% 1.4% 0.40 (0.15,1.05)  0.061 1.7% 0.61 (0.30, 1.22) 0.16 1.6% 0.58 (0.32,1.07)  0.082
1s25907 A 2.5% 1.1% 0.36 (0.12,1.09)  0.070 2.9% 0.89 (0.45, 1.77) 0.74 2.3% 0.73 (0.39, 1.36) 0.32
1s2722033 C 7.2% 8.7% 1.43 (0.92, 2.22) 0.11 7.4% 1.21 (0.80, 1.82) 0.37 7.8% 1.29 (0.91, 1.84) 0.15
152834213 G 24.4% 26.8% 1.19 (0.89, 1.58) 0.24 22.7% 0.96 (0.74, 1.25) 0.76 24.1% 1.06 (0.85, 1.32) 0.62
s34811744 A 2.0% 2.5% 1.32 (0.57,3.01) 0.52 3.0% 1.79 (0.89, 3.59) 0.10 2.8% 1.52 (0.82, 2.80) 0.18
1s35407583 A 7.7% 8.8% 0.98 (0.62, 1.55) 0.94 7.5% 0.80 (0.53, 1.21) 0.30 7.9% 0.87 (0.61, 1.23) 0.42
1$35682329 G 2.2% 4.0% 1.48 (0.73, 3.02) 0.28 4.6% 1.83(1.00,3.36)  0.051 4.4% 1.81(1.05,3.11)  0.033
1$35989721 C 4.8% 4.2% 0.89 (0.48, 1.64) 0.70 5.3% 1.01 (0.61, 1.66) 0.98 4.9% 1.00 (0.64, 1.54) 0.98
3429358 C 14.8% 29.4% 2.74(2.00,3.74) 2x107" 27.5% 2.85(2.15,3.78) 3 x 107" 28.2% 2.74(2.15,3.49) 4x10"°
1555864141 C 48.9% 55.6% 1.35(1.05,1.74)  0.020 47.4% 0.95(0.77, 1.17) 0.62 50.2% 1.08 (0.90, 1.30) 0.42
1856162468 A 7.1% 8.0% 1.09 (0.70, 1.71) 0.70 8.3% 1.21 (0.82, 1.78) 0.34 8.2% 1.18 (0.85, 1.65) 0.32
1s61454308 DEL  2.1% 0.9% 0.33(0.09, 1.16)  0.084 2.2% 0.71 (0.32, 1.57) 0.39 1.7% 0.61 (0.30, 1.25) 0.18
1$62227703 G 23.8% 24.6% 1.10 (0.82, 1.47) 0.53 22.0% 0.97 (0.75, 1.27) 0.84 22.9% 1.02 (0.82, 1.28) 0.86
156964466 A 40.7% 40.6% 0.92 (0.72, 1.18) 0.51 42.8% 0.97 (0.79, 1.21) 0.80 42.0% 0.99 (0.82, 1.19) 0.88
1571326956 T 23.8% 24.7% 1.11 (0.82, 1.48) 0.51 22.0% 1.00 (0.76, 1.30) 0.97 22.9% 1.04 (0.83, 1.31) 0.74
1571427040 A 2.0% 2.6% 1.31 (0.57, 3.00) 0.52 3.2% 1.86 (0.94,3.69)  0.077 3.0% 1.55 (0.84, 2.85) 0.16
1572987470 C 10.8% 11.1% 0.91 (0.63, 1.33) 0.63 8.3% 0.75 (0.53, 1.06) 0.11 9.3% 0.83 (0.62, 1.11) 0.22
1s7681440 C 47.0% 39.5% 0.73 (0.57,0.95)  0.016 37.3% 0.66 (0.53,0.82)  0.0002 38.0% 0.68 (0.56,0.82) 6x10°
rs78478169 C 23.7% 24.7% 1.11 (0.83, 1.49) 0.49 22.0% 0.99 (0.76, 1.29) 0.92 22.9% 1.03 (0.82, 1.30) 0.78
1579329964 A 5.2% 7.4% 1.37 (0.81, 2.31) 0.23 7.9% 1.54(0.98,2.42)  0.060 7.7% 1.54(1.04,2.28)  0.033
rs8129184 A 34.0% 35.8% 1.01 (0.77, 1.32) 0.95 36.0% 1.02 (0.81, 1.27) 0.87 36.0% 1.02 (0.84, 1.24) 0.85
1$897984 T 38.8% 36.9% 0.95 (0.74, 1.23) 0.72 36.7% 0.97 (0.77, 1.21) 0.78 36.8% 0.98 (0.81, 1.19) 0.83
15928779 C 23.8% 25.9% 1.17 (0.88, 1.56) 0.29 22.6% 1.02 (0.79, 1.33) 0.86 23.7% 1.08 (0.87, 1.35) 0.49

MA=minor allele; MAF=minor allele frequency; OR=o0dds ratio; CI=confidence interval. ORs, 95% Cls, and p-values result from logistic regression models adjusted for age (age at DLB diagnosis for the clinically diagnosed
DLB patients, age at death for the high likelihood DLB Lewy body disease patients, and age at study for controls) and gender. Variants were examined under an additive model, and therefore ORs correspond to each
additional minor allele. P-values < 0.0015 are considered as statistically significant after applying a Bonferroni correction for multiple testing.




Supplementary Table 2: Association p-values in DLB for variants showing the most significant association at each locus in PD, AD and

LB-related pathology

DISEASE CHR POS REPORTED GENE(S) SNP P-VALUE OR 95% CI DLB p-value @ DLB OR 95% CI
PD 4 90626111 SNCA rs356182 4.00E-73 1.32 [1.29-1.35] 0.1831 0.9341 [0.84-1.03]
PD 17 43994648 MAPT rs17649553 2.00E-48 1.3 [1.27-1.34] 0.0126 0.8606 [0.76-0.97]
AD 2 127892810 BIN1 rs6733839 7.00E-44 1.22 [1.18-1.25] 0.0275 1.114 [1.01-1.23]
PD 4 951947 TMEM175, GAK, DGKQ 1534311866 1.00E-43 1.27 [1.24-1.30] 0.01025 1.167 [1.04-1.31]
PD 1 155135036 GBA, SYTI11 rs35749011 1.00E-29 1.824 [1.72-1.93] 1.772E-09 2.533 [1.87-3.43]
AD 11 85867875 PICALM rs10792832 9.00E-26 1.1494 [1.12-1.18] 0.3379 0.953 [0.86-1.05]
AD 8 27467686 CLU rs9331896 3.00E-25 1.1628 [1.12-1.19] 0.5654 0.9724 [0.88-1.07]
AD 1 207692049 CR1 156656401 6.00E-24 1.18 [1.14-1.22] 0.1224 1.1 [0.97-1.24]
PD 3 182762437 MCCCl1 rs12637471 2.00E-21 1.1876 [1.15-1.22] 0.9495 1.004 [0.89-1.13]
PD 2 169110394 STK39 rs1474055 1.00E-20 1.214 [1.17-1.26] 0.5102 0.9539 [0.83-1.1]
PD 2 135539967 ACMSD, TMEM163 rs6430538 9.00E-20 1.1429 [1.11-1.17] 0.6149 0.9756 [0.89-1.07]
PD 4 15737101 BST1 rs11724635 9.00E-18 1.126 [1.1-1.15] 0.1021 0.9247 [0.84-1.02]
PD 1 205723572 NUCKSI1, RAB7L1 rs823118 2.00E-16 1.122 [1.09-1.15] 0.08666 0.9209 [0.84-1.01]
AD 11 59923508 MS4A6A rs983392 6.00E-16 1.1111 [1.09-1.15] 0.9336 1.004 [0.91-1.1]
AD 19 1063443 ABCA7 154147929 1.00E-15 1.15 [1.11-1.19] 0.9324 0.9946 [0.88-1.13]
AD 11 121435587 SORL1 rs11218343 1.00E-14 1.2987 [1.22-1.39] 0.6151 0.9374 [0.73-1.21]
PD 12 40614434 LRRK2 1576904798 5.00E-14 1.155 [1.12-1.19] 0.7628 1.021 [0.89-1.17]
AD 8 27195121 PTK2B 1528834970 7.00E-14 1.1 [1.08-1.13] 0.06481 1.097 [0.99-1.21]
PD 14 67984370 TMEM229B rs1555399 7.00E-14 1.1148 [1.09-1.14] 0.5962 0.9747 [0.89-1.07]
AD 7 143110762 EPHA1 rs11771145 1.00E-13 1.1111 [1.08-1.14] 0.3838 1.045 [0.95-1.15]
PD 10 121536327 INPP5SF rs117896735 4.00E-13 1.624 [1.49-1.76] 0.2254 0.7705 [0.51-1.17]
PD 6 32666660 HLA-DQB 1s9275326 1.00E-12 1.21 [1.16-1.26] 0.02004 0.8273 [0.71-0.97]
PD 23293746 GPNMB rs199347 1.00E-12 1.11 [1.08-1.14] 0.531 0.9697 [0.88-1.07]
PD 16 31121793 BCKDK, STXIB rs14235 2.00E-12 1.103 [1.08-1.13] 0.000001369 1.268 [1.15-1.4]
AD 6 32578530 HLA-DRBS, HLA-DRB1 rs9271192 3.00E-12 1.11 [1.08-1.18] 0.5224 1.035 [0.93-1.15]
PD 12 123303586 CCDC62 rs11060180 6.00E-12 1.105 [1.08-1.13] 0.4567 0.9649 [0.88-1.06]
PD 18 40673380 RIT2 1512456492 8.00E-12 1.11 [1.08-1.14] 0.2923 1.056 [0.95-1.17]
PD 11 133765367 MIR4697 rs329648 1.00E-11 1.105 [1.08-1.13] 0.4612 1.038 [0.94-1.15]
PD 15 61994134 VPSI13C rs2414739 1.00E-11 1.113 [1.08-1.14] 0.3731 1.049 [0.94-1.17]
PD 4 77198986 SCARB2, FAM47E rs6812193 3.00E-11 1.1 [1.07-1.13] 0.2897 0.9484 [0.86-1.05]
PD 20 3168166 DDRGK1 rs8118008 3.00E-11 1.111 [1.08-1.14] NA NA NA

AD 6 47487762 CD2AP rs10948363 5.00E-11 1.1 [1.07-1.13] 0.03905 1.114 [1.01-1.24]
PD 14 55348869 GCHI1 rs11158026 6.00E-11 1.11 [1.08-1.14] 0.8457 0.9902 [0.9-1.09]
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0.6302
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0.1563
0.2435
0.4939
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0.2664
0.3643
0.5663
0.01155
0.05886
NA
0.1213
NA
0.5352
0.009792
0.4757
0.5929
0.06146
0.07867
0.5932
0.301
0.4627
0.67
0.6585
0.6805
0.5024
0.5514
0.7582
0.2597
0.2597
0.8225
0.233

1.034
1.077
0.9312
0.9353
0.9427
1.008
1.116
0.9319
0.8969
0.9525
0.9206
1.055
1.065
0.9649
1.131
0.9129
NA
0.9242
NA
0.8994
0.8198
0.966
0.9721
1.098
1.095
0.9021
1.074
1.052
0.975
0.9741
0.9759
0.9567
0.9615
1.016
1.11
1.11
0.9889
0.9417

[0.9-1.19]
[0.97-1.19]
[0.84-1.03]
[0.84-1.05]
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[1.01-1.23]
[0.85-1.03]
[0.76-1.06]
[0.86-1.06]
[0.83-1.02]
[0.96-1.16]
[0.93-1.22]
[0.85-1.09]
[1.03-1.24]
[0.83-1]
NA
[0.84-1.02]
NA
[0.64-1.26]
[0.71-0.95]
[0.88-1.06]
[0.88-1.08]
[1-1.21]
[0.99-1.21]
[0.62-1.32]
[0.94-1.23]
[0.92-1.20]
[0.87-1.09]
[0.87-1.09]
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LB 6 172942448 HLA-DPB1 1s9277682 0.00000501 3.27 [1.93-5.52] 0.4574 0.955 [0.85-1.08]

LB 18 1210675 Intergenic rs1472194 0.00000519  8.06 [2.84-22.87]  0.957 0.9944 [0.81-1.22]
LB 5 116388579  Intergenic 16872138 0.0000064 3.82 [2.07-7.45]  0.2241 0.9151 [0.79-1.05]
LB 5 116419511  Intergenic rs1459086 0.00000715 3.54 [1.99-6.30]  0.1367 0.8823 [0.74-1.04]

CHR: Chromosome. POS: Position according to hg19. PD refers to variants from Nalls M et al, Nat Genet, 2014. AD refers to Lambert JC, et al, Nat Genet, 2013. LB refers to
Peraulinna T, et al. Ann Clin Transl Neurol 2015.
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Supplementary Figure 1: Quantile-quantile (Q-Q) plot of observed versus expected P values of the
GWAS results following imputation. The straight dotted line in the Q-Q plot indicates the distribution
of SNPs under the null hypothesis.

50~ L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151617 19 22
Chromosome

Supplementary Figure 2: Non-truncated Manhattan plot showing genome-wide p-values of
association. The p-values were obtained by logistic regression analysis using the first 20
principal components as covariates. The y-axis shows —log10 p-values of 8,410,718 SNPs, and
the x axis shows their chromosomal positions. Horizontal red and green dotted lines represent
the thresholds of p= 5x10°® for Bonferroni significance and p=1x107° for selecting SNPs for
replication, respectively.
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Supplementary Figure 3: Tissue expression profiles for the genes located in the BCL7C/STX1B
locus. Data from the GTEx portal. STX1B shows much higher expression in brain tissues when
compared with other tissues and other genes in the locus.
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Supplementary Figure 4: Protein interaction network of CNTN1 using STRING. Network created
with a maximum number of 20 interactors and minimum required interaction score of 0.4.

Supplementary Figures 5 to 64: Co-localization of GWAS signals between DLB and either PD or
AD. Data for PD is derived from Nalls et al 2014, while for AD it is derived from Lambert JC et al
2013.
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