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Response to reviewer 1 on the article ‘Basestock Policies
with Reservations’

Nicky van Foreest, Ruud Teunter, Aris Syntetos

July 29, 2017

We thank the referee for the comments on our paper. To discuss these comments we summarize
them for convience and then state how we dealt with it.

a) Typo on Page 5, line 55.

Repaired

b) page 10, Figure 1: It is not clear for me, which situation for the delivery lead-time is illustrated
in Figure 1. I had an exponentially distributed replenishment lead- time in mind, but this
does not fit to the rates in the Figure. Please explain which assumption for the replenishment
lead-time is made for the Figure.

It was indeed unclear, and also incomplete. We repaired the figure itself and changed the
caption to indicate that replenishment times are exponentially distributed.

c) Page 13, line 257: Please explain, why demands and replenishments over the time interval
(t, t+L] are uniformly distributed. Alternatively, give a reference. (Similar on page 15, line
284)

We now provide a reference to the book of Tijms, as we already refered to this book at other
places in the article. The result is actually very interesting, and it states that for a Poisson
process, given that n arrivals occured in some (finite) interval, the arrival epochs are uni-
formly distributed. The result can also be found in other books, such as Ross [1], as ‘order
statistics’.

d) Page 14: At the moment I could not follow the derivation for the formula for Qb,i(k,n). I
am missing a clear definition of pb,i(k,n) and qb,i(k,n). Further, more explanation is needed.
Perhaps a small example can also help as an illustration.

After much efforts to satisfy your request, it turned out that our analysis was too simple and,
in fact, not correct. We tried to rederive our results and discovered that we overlooked an
elementary, but very important, detail. The process {B(t), I(t)} for constant leadtimes is not
a Markov process. As a result, our analysis provides a good approximation (we checked this
with simulation), but was not entirely correct. Thus, no wonder that it was hard to follow. We
are grateful for your critical reading. We decided to remove this part from the paper.

The consequences are not really severe in our opinion because most of our numerical work
relied on the exponential leadtimes; the analysis of this case was (and is) correct. Thus, all
managerial insights remain the same.

The case with constant L and r = 1 was also correct, so this part is not affected. In fact,
we expanded our analytical work for this case, because while trying to address your above
comment, we realized that a few extra steps were easy to achieve when r = 1.

We decided to handle the cases with constant L and r > 1 with simulation. This enabled us to
check all our other cases too. All models are now consistent.

Finally, we changed Figure 3 into Figures 3 and 4, also in view of your point (f) below.

All in all we hope that new text is much clearer now.
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e) Page 14, line 274: I think the last equation in (16) is only correct, if all paths in the lattice
have the same probability to be chosen. Why is this correct?

Given the changes to the updated paper, this point is no longer relevant.

f) Figure 2: Why is the average number of backorders increasing with increasing reser- vation
level? I thought that the reservation level should help to prevent additional backorders and
should only lead to an increase of the duration of a backorder. Can you please explain this?

We address this explicitly now in Eq. 11, which states that for the basestock policy and
reservation policies alike,

E {I}= S−λE {L}+E {B} ,

that is, the expected on-hand inventory is equal to the order-up-to level S minus the expected
demand during the leadtime plus the expected number of backlogged demand. Thus, if the
reservation level r > 0 makes the inventory level higher (which we expect to be the case), then
E {B} must also increase, provided we don’t change S and λE {L}.

It took us some time to realize that the above generic equation was the easiest key to seeing
this, perhaps, paradoxical relation.

References
[1] S.M. Ross. Stochastic Processes. John Wiley & Sons, 2nd edition, 1996.
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Response to referee on the article ‘Basestock Policies with

Reservations’

Nicky van Foreest, Ruud Teunter, Aris Syntetos

July 29, 2017

We thank the referee for his/her comments on the paper. To discuss these comments we state
them for convience and then explain how we dealt with it.

1. Typo on Page 5, line 55.

Repaired

2. P.11, l. 206: The authors note ‘Under the assumption that the lead-time L is exponentially
distributed, it is clear that the joint process {B(t), I(t); t ≥ 0} is an ergodic Markov process.’
Just claiming ‘it is clear’ is a little too vague. Either, the authors give a few more details
why it is ‘clear’, or they should give at least a good reference where the reader can find some
theory.

We provide a specific reference, i.e., Theorem 4.3.1, in Tijms’ book (a reference we already
included in the paper), and comment on the existence on the stationary distribution p in
Section 4.

3. P.12, l.231: Should that be C∗
r = minS{CS,r}?

Sure. We repaired it.

4. P.13, l. 257 and p.15, l. 285: In both paragraphs, it is stated that demands arrive ‘uniformly’
distributed. How is this related to the assumption on p. 8, l. 168 that the demand arrives
in single units in accordance to a Poisson process with rate l?

We now provide a reference to theorem 1.1.5 in Tijms’ book. The result is known as the
‘order statistic’, that is, given the number of Poisson arrivals in some interval, then the
arrival epochs are uniformly distributed on the interval.

5. In summary, the referee found some notations in the paper slightly confusing.

To meet this point we decided to give this aspect a rather rigorous overhaul. However, after
much efforts to satisfy this point, it turned out that our analysis was too simple and, in
fact, not correct. We overlooked an elementary, but very important, detail: the process
{B(t), I(t)} for constant leadtimes is simply not a Markov process. As a result, our analysis
provides a good approximation (we checked this with simulation), but was not entirely
correct. We decided to remove this part from the paper. We like to thank you for your
critical reading on this point.

Luckily the consequences are not really severe in our opinion because most of our numerical
work relied on the exponential leadtimes; the analysis of this case was (and is) correct. Thus,
all managerial insights remain the same.

The case with constant L and r = 1 was also correct, so this part is not affected. In fact,
we expanded our analytical work for this case, because while trying to address your above
comment, we realized that a few extra steps were easy to achieve when r = 1.
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We decided to handle the cases with constant L and r > 1 with simulation. This enabled us
to check all our other cases too. All models are now consistent.

Finally, we changed Figure 3 into Figures 3 and 4, also in view of your point (10) below.

All in all we hope that new text is much clearer now.

6. P14, 1.275. In summary the referee asks us to explain how we dealt with the numerical
aspects of solving the stationary distribution p for a Markov chain with transition rate
matrix Q.

We now provide a reference to Tijms’ book, section 3.4, where a few numerical methods are
discussed how to solve pQ = 0. We also refer to the numerical package that we used to
actually compute p.

We are open to making our code publicitly available, either on our homepage or via github.
If the reviewer thinks this will serve a general purpose (and Omega or the publisher does
not object), then we would be glad to comment the code and share it.

7. P. 16, l. 295 (but also earlier in the paper): Maybe I missed it, but the authors never clearly
define what Q is. The reader get a rough intuition from the model analysis, but maybe a
list of notation would be helpful.

Given the above mentioned changes, this point is no longer relevant as it refers to text that
has been removed (which we did to meet the earlier comment 5)

8. MODEL ANALYSIS: I missed one important aspect. How did you optimize the base stock
level S and the reservation level r? Section 4 ‘Analysis’ is mainly about determining the
steady-state probabilities for a given S and r. In Section 2 you note that the fixed backorder
cost complicate an exact optimality analysis. Nevertheless, I think the paper needs some
more analysis regarding the solvability of the problem and how one can find the joint optimal
solution (r∗, S∗).

We just used full enumeration over a large grid. In the new remark, Remark 5.1, we specif-
ically address how we found suitable upper bounds on S and r to ensure that the optimal
values would lie in the grid.

9. In the numerical section, the authors present several graphs where they either fix r or S and
show the effect on expected inventory level, expected backorder, and fill rate. Is it possible
to find the joint optimum? In Section 5.2, the authors further present the influence of the
fixed backorder cost π on the percentage gain G from allowing stock reservation. Here it
would be interesting: (i) what is the optimal solution (r∗, S∗) for the different levels of p and
(ii) what E(I) and E(B) under the optimal policy? This relates to my previous point and
requires beforehand a mathematical analysis how to find r∗(S) and S∗(r) as well as (r∗, S∗).

10. P. 18, Figure 2: I would use separate captions for the left and right figure, e.g., Figure 2a
and Figure 2b. Additionally, the captions should be more ‘to the point’.

We decided to split most of the figures of the paper into separate figures. We also organized
the former Figure 3 such that now S runs along the x-axis and r is fixed along a set of
experiments. In our opinion the graphs are much nicer now.

We hope to have improved the clarity our captions.

11. Managerial explanation of the graphical results: The authors primarily repeat the numbers
that can be seen from the graphs. However, they should also give a brief managerial intuition
why these results are like that. What are drivers or trade-offs?

We now provide short summaries at the end of each numerical section. In hindsight, we
completely overlooked this critical point. Hopefully the referee is satisfied with these more
managerial summaries.
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1. We consider single-item inventory systems and motivate that, for many
practical purposes, the cost structure should include costs per backorder
per unit time and costs per backorder.

2. Under such cost structures, it is no longer optimal to serve backordered
demand in a FIFO sequence.

3. We propose another class of policies, so-called reservation policies, to han-
dle replenishments and backorders. Such policies aim to keep sufficient
items on-hand to meet new demand, i.e., prevent the occurrence of backo-
rders. Only when the on-hand inventory is above a certain level, a reserva-
tion policy starts to use replenishment orders to meet backlogged demand.
Thus, it does not satisfy backorders when the on-hand inventory level is
too low.

4. We provide analytical and numerical models to show that reservation poli-
cies can significantly reduce average cost, while the average backlogging
times do not increase considerably.

1



,

,

1



Basestock Policies with Reservations

Nicky D. Van Foreest, Ruud H. Teunter

Department of Economics and Business, University of Groningen, P.O.Box 800 9700 AV

Groningen, The Netherlands

Aris A. Syntetos

Logistics and Operations Management, Cardiff Business School, Cardiff University, Cardiff
CF10 3EU, UK

Abstract

All intensively studied and widely applied inventory control policies satisfy de-

mand in accordance with the First-Come-First-Served (FCFS) rule, whether

this demand is in backorder or not. Interestingly, this rule is sub-optimal when

the fill-rate is constrained or when the backorder cost structure includes fixed

costs per backorder and costs per backorder per unit time. In this paper we

study the degree of sub-optimality of the FCFS rule for inventory systems con-

trolled by the well-known base-stock policy. As an alternative to the FCFS rule,

we propose and analyze a class of generalized base-stock policies that reserve

some maximum number of items in stock for future demands, even if backorders

exist. Our analytic results and numerical investigations show that such alterna-

tive stock reservation policies are indeed very simple and considerably improve

either the fillrate or reduce the total cost, without having much effect on the

backorder level.

Keywords: Inventory Theory and Control; base-stock models; stock

reservation policies

∗Corresponding author
Email addresses: n.d.van.foreest@rug.nl (Nicky D. Van Foreest),

r.h.teunter@rug.nl (Ruud H. Teunter), syntetosa@cardiff.ac.uk (Aris A. Syntetos)
URL: http://nicky.vanforeest.com (Nicky D. Van Foreest)

Preprint submitted to OMEGA July 29, 2017



1. Introduction

Nearly all single-item continuous-time inventory models with positive replen-

ishment leadtimes and backlogging use one of two ‘extreme’ cost structures. In

one extreme, backorder costs are proportional to the backorder duration and

there is no fixed cost associated with backordering a customer. In the other5

extreme, there is just a fixed cost per backorder and the cost per unit time

per backorder is ignored. See e.g. Axsäter (2006) or Zipkin (2000) for further

discussion of both cost models.

It is well-known, see e.g. (Zipkin, 2000, Section 3.3.), that when the cost

b per unit time per backorder is positive and the cost π per backorder is 0,10

meeting backorders in a First-come-First-Served (FCFS) sequence minimizes

backlogging durations, and that a base-stock policy makes an optimal trade-off

between backlogging and inventory cost. In the other case, i.e., π > 0 and

b = 0, there is no need to satisfy backorders at all; in fact, it is best to drop the

FCFS rule altogether, and consider an inventory model with lost sales. In this15

situation the incentive is to limit the rate at which backorders occur, thereby

explaining the popularity of the fillrate service criterion for such cases.

It is actually quite remarkable that most literature on inventories with

backlogging and positive leadtimes concentrates on either of the cases, i.e.,

(b > 0, π = 0) or (b = 0, π > 0). Hadley and Whitin (1963) discuss in their sem-20

inal work, already published over fifty years ago, that a realistic cost structure

for backlogging should contain both cost components. They model the cost of

notifying the backordered customer as a fixed cost and argue that loss of good-

will may be proportional to the backlog duration. Chen and Zheng (1993) also

reason that backorder costs are partially fixed and partially duration-dependent,25

although they do not provide any real life examples. Empirical evidence for the

relevance of both cost components is provided by Kline and Betke (2004). In a

report prepared for FedEx Services, they distinguish six categories of backorder

costs, c.f. Table 1 : ‘customer notification’, ‘information processing’, ‘packag-

ing’, ‘warehousing’, ‘freight’, and ‘other issues’. Note from the descriptions that30
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Table 1: Categories and estimates of costs per backorder, based on an empirical study involving

40 companies in a variety of industries (Kline and Betke (2004)).

Cost Category Description Cost per Backorder

Customer notification Notify customer of backordering $0.74

Information processing Extra calls for processing backorders $3.94

Packaging Carton and void $0.49

Warehouse Efficiency loss in picking and handling $2.68

Freight Shipping backordered item to customer $5.43

Other Loss of goodwill or orders, cancellations ???

Total USD 13.28

five of these categories include fixed costs per backorder and are (mostly) inde-

pendent of the backorder’s duration. One reason is that these costs originate

from the need to handle backorders separately from the regular items in the

same order line. Only the sixth ‘other issues’ category concerns less tangible

costs related to loss of goodwill and loss of (future) demand. Kline and Betke35

(2004) do not provide an estimate on the nature of these costs. This is not en-

tirely surprising: as already remarked by Hadley and Whitin (1963), it is very

difficult to quantify cost related to these ‘other issues’. Notwithstanding this

difficulty, it is reasonable to model the unwillingness to wait for long amounts

of time as cost per unit time, hence this sixth component is best modeled by40

a combination of a fixed cost per backorder and a cost per unit time. Thus,

taking the costs of all six categories together, we see that fixed backorder costs

often make up a large part of the total backorder costs for companies.

Besides stock-out costs related to logistics, firms can also opt to compensate

customers for out-of-stock experiences by offering monetary payments, store45

credit, rain checks or discount coupons, see Su and Zhang (2009). Verhoef and

Sloot (2005) find through consumer surveys that such marketing instruments

are appreciated by customers, and Bhargava et al. (2006) and Dong and Rudi

(2004) discuss their use by firms. These marketing related costs are all per
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backorder rather than per backorder per unit time.50

Based on these logistic and marketing arguments, we contend that practically

relevant cost structures should comprise a fixed cost π per backorder and a cost b

per backorder per unit time.

Given this situation, we argue in this paper that the sequence in which

backorders are satisfied needs attention. The reason is neither the policy that55

satisfies backorders using the FCFS rule, which is optimal for (b > 0, π = 0), nor

the policy that never satisfies backorders, which is optimal for (b = 0, π > 0), is

close to optimal for cases in which the cost includes components per backorder

and per backorder per unit time, i.e., when (b > 0, π > 0). As an alternative,

we recommend for situations with (b > 0, π > 0) that we should still meet all60

backorders but sometimes later than under the FCFS rule. In other words, we

propose to replace the common FCFS rule by another sequencing rule to satisfy

backorders.

This new rule is a simple generalization of the base-stock policy. Observe

that base-stock policies balance holding costs against the total cost of backo-65

rdering by suitably setting the order-up-to level S. In our proposal, the main

idea is to also address the trade-off between the fraction of backorders (related

to π) and their average duration (related to b). Rather than delivering in FCFS

sequence, the new policy does not always satisfy backorders at the very moment

a replenishment arrives, but reserves replenishments to increase the on-hand in-70

ventory level when it is low. This on-hand stock then serves to directly meet

new demand, hence prevent new backorders to occur. Only when the inven-

tory level is above some fixed reservation level, backorders are satisfied with

replenishments. A consequence of this rule is that average backlogging times

are longer than under the FCFS rule, which might seem ‘unfair’. In our opinion,75

however, fairness should be captured by the relative value of b and π. When π

increases, it becomes more important to prevent backlogging.

With this paper we make three contributions. First we start a discussion

about the (implicit) use of FCFS to meet backorders. In view of the above, we

claim that delivering backorders in a FCFS sequence is often misaligned with80
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practically relevant cost models, i.e., cost models in which fixed backorder costs

are not negligible. Second, we propose a class of simple (stock reservation)

policies to exploit the possibilities offered by deviating from FCFS. Third, we

develop models to analyze the benefits of these reservation policies. In these

models we assume that demands arrive according to a Poisson process, and we85

consider both constant lead-times and exponential replenishment lead-times.

For both cases, we provide examples in which we determine all relevant per-

formance measures, including the holding cost, fillrate, number of backorders

and backorder duration. By varying the reservation level, we study the trade-

off between inventory and backordering levels on the one hand, and fillrate on90

the other hand. Finally, we compute the costs savings that can be obtained

with reservation policies. The numerical investigations provide insightful and

encouraging results: using reservation policies can lead to substantial cost sav-

ings, up to 30% if π is considerably larger than b, and still more than 5% for

more balanced cases.95

The remainder of this paper is organized as follows. In Section 2 we discuss

relevant literature. Section 3 provides a detailed system description. Next, we

consider in Sections 4.2 and 4.1 the consequences of modeling the replenishment

lead-times as constant or as exponentially distributed random variables. Sec-

tion 5 presents numerical insights obtained from these models. In Section 6 we100

conclude and discuss interesting directions for further research.

2. Related Literature

The cost structure that is most commonly used in the inventory control

literature assumes that backorder costs are incurred per backorder per unit time,

i.e., analogous to inventory holding costs. Obviously, for such a cost structure105

it can never be optimal to reserve stock for future demand while backorders

exist, and so FCFS is optimal. It is also well-known that then the optimal

policy is characterized by a re-order level and an order-up-to level, or just by

an order-up-to (i.e., base-stock) level if the fixed ordering cost is negligible, c.f.
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e.g. Axsäter (2006) or Zipkin (2000).110

The case with (b = 0, π > 0) is discussed in (Zipkin, 2000, Section 3.3.7)

and it is concluded that, as the cost b per unit time per backorder “captures

more of customers’ actual experience than” the cost π per backorder, the case

(b > 0, π = 0) deserves the most focus. Notwithstanding this, in view of Table 1,

there are significant costs related to backordering customers, even though these115

costs are not directly observable by the customer. Thus, customers’ experience is

not the only relevant aspect that needs to be incorporated in the cost structure,

internal costs should not be overlooked. Moreover, just the fact that customers

have to wait, independent of the estimated duration, may make them turn away.

For this reason also, π should be positive. Therefore, in realistic backordering120

cost models both π and b need to be non-negligible.

The fixed cost component π, however, complicates an exact optimality anal-

ysis, due to the fact that the resulting cost function is in general no longer a

convex function of the inventory position (the on-hand inventory minus backo-

rders plus all items on order, if any). Rosling (2002) proves that, under some125

mild conditions on the demand distribution, the resulting cost function is a

quasi-convex function of the inventory position, so that base-stock policies are

still long-run average optimal for such inventory systems. However, it is im-

portant to remark that this optimality result only holds under the assumption

that backorders are satisfied on a FCFS basis. As discussed in the Introduction,130

under the general backorder cost structure, it may be better to reserve some

stock for possible future demands even if backorders exist.

Even though the concept of stock reservation is not new, to the best of

our knowledge it has not been considered for basic inventory systems with a

single stocking point and a single demand class. In multi-echelon models, as135

considered by many authors, see e.g. Clark and Scarf (1960); Federgruen and

Zipkin (1984); Graves and Willems (2000); Rosling (1989), stock can be re-

served (although this is not the term usually employed) at an upstream echelon

to correct future imbalances at downstream echelons. Thus, these policies use

stock reservation to reduce the effects of demand variability. In our setting,140
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we reserve stock to reduce the occurrence of backorders. Inventory policies

with (complete or partial) reservations have also been considered for systems

with multiple demand classes, in which case those policies could be referred

to as rationing or discrimination policies, depending on the context, see, e.g.,

de Véricourt et al. (2001); Gayon et al. (2009); Marklund (2006); Teunter and145

Klein Haneveld (2008). The latter article also provides a classification of the ex-

isting literature on systems with multiple demand classes. Such systems arise in

practice if, for instance, customers can choose different service level agreements

(platinum, gold, silver), if equipment criticality affects the criticality of spare

part demand, or if customers receive preferential treatment based on Advanced150

Demand Information (ADI). We refer to Marklund (2006) for a discussion of

other mechanisms that achieve some form of reservation. It might seem that

our reservation policies also split the demand into two types, i.e., new demand

and backordered demand, so that new demand is served directly from on-hand

stock (if available) while backordered demand is only served when the on-hand155

inventory level is sufficiently high. This policy, however, differs considerably

from rationing policies: there the class of the order depends on the customer

type, which is known beforehand, not on the inventory level as observed by

arrivals. In other words, rationing policies deal with situations in which there

is a natural classification of customer demand, while we deal with only one de-160

mand class. In summary, in the multi-echelon or rationing settings, the policies

do not address (the prevention of) backorders, nor the consequences of serving

backorders from replenishments.

3. Model

We consider a single-item continuous-review inventory system with backo-165

rdering and positive lead-times. Demand arrives in single units in accordance

with a Poisson process with rate λ; let N(t) denote the demand that arrived up

to time t and, with this, let N(s, t] = N(t)−N(s) denote the the demand dur-

ing (s, t]. Each demand generates a replenishment order that will be delivered
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a replenishment lead-time later. We assume that the replenishment lead-times170

Li, i = 1, 2, . . ., associated with the i-th order are i.i.d. random variables with

mean EL.

Let I(t) be the inventory level at time t, and B(t) the number of backo-

rders. The (right-continuous with left limits) inventory process {I(t); t ≥ 0}

and backorder process {B(t); t ≥ 0} are controlled by a base-stock policy with175

order-up-to level S, and a reservation level r ≥ 0. This policy places a replen-

ishment order when the inventory position hits a reorder level of S − 1, so that

the inventory position (after ordering) is always equal to the base-stock level

S. Only when the inventory level is equal or higher than r, replenishments

are used to meet the backorders. Otherwise, they are added to the inventory180

on hand. The policy also includes a rejection level R to limit the number of

backorders in the system: demand that arrives when the backorder level is R

and the on-hand inventory is zero will be rejected. The aim of including R is to

avoid technical and numerical difficulties related to infinite state spaces. (For

notational convenience, we suppress in the notation of the random variables I(t)185

and B(t) the dependency on the parameters of the policy.) The working of the

policy is illustrated in Figure 1 for the case that S = 4, r = 2, and R = 3.

More formally, suppose that a demand arrives at time t, then the behavior

is the same as under the regular base-stock policy, i.e.,

(
B(t), I(t)

)
=


(B(t−), I(t−)− 1), if I(t−) > 0,

(B(t−) + 1, 0) if I(t−) = 0,

(R, 0) if B(t−) = R, and I(t−) = 0,

(1)

where B(t−) = lims↑tB(s), and similarly for I(t−). Thus, demand that cannot190

be met from inventory is backordered. When a replenishment arrives at time t,

the reservation level comes into play:

(B(t), I(t)) =


(0, I(t−) + 1), if B(t) = 0,

(B(t−), I(t−) + 1)), if 0 ≤ I(t−) < r and B(t) > 0,

(B(t−)− 1, r), if I(t−) = r and B(t) > 0.

(2)
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Figure 1: The transitions of an inventory system controlled by a reservation policy with

order-up-to level S = 4, reservation level r = 2 and rejection level R = 3. A state (b, i)

has b backorders and i items on hand. Thus, in state (b, i), the number of outstanding

replenishments is k = S + b − i. The replenishment leadtimes are exponentially distributed

with mean µ. The arrows labeled by λ correspond to demand arrivals; the arrows with label kµ

correspond to replenishments when k orders are outstanding.

Thus, in case B(t) > 0 and I(t) < r, each replenishment is put on stock,

rather than used to decrease the number of backorders. Only when I(t) = r,

replenishments are used to fulfill backorders.195

If we write D(t) for the number of outstanding replenishments at time t,

then the base-stock policy with reservations ensures that I(t), B(t), D(t), and

the base-stock level S are related such that

S = I(t)−B(t) +D(t), for all t. (3)

If the reservation level r = 0 it follows from (1) and (2) that

I(t) ·B(t) = 0, for all t. (4)
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That is, if there is on-hand stock, there cannot be backorders, and vice versa.200

Consequently, in case r = 0, the joint backorder-inventory process reduces to the

(essentially) one-dimensional regular base-stock model without reservations. It

is well-known that in this system the number of replenishments at an arbitrary

moment in time is equal to the number of customers in an M/G/∞ queue,

hence the steady state probability pn that the system contains n replenishments205

is given by

pn = e−λEL (λEL)n

n!
. (5)

Observe also that pn is insensitive to the distribution of the lead time so that

this expression applies to L constant or exponentially distributed.

In case the reservation level r is not zero, the constraint in Eq. (4) no longer

holds and the analysis of the inventory system becomes considerably more dif-210

ficult. In particular, an insensitivity result similar to (5) does not exist, as we

show numerically in Section 5. For this reason we restrict the analysis in the

remainder to exponentially distributed and constant lead-times. In Section 4.1

we show that for both leadtime distributions, stationary distributions p = (pb,i)

exist that are equal to the limiting time-averages215

pb,i = lim
t→∞

1

t

∫ t

0

1{B(s) = b, I(s) = i} ds, (6)

where 1{·} is the indicator variable1. Let (B, I) be the (pair of) limiting random

variables of {B(t), I(t)} as t→∞.

It is of interest to remark in passing that the sum of the probabilities ‘along

a diagonal’ in Figure 1 must add up to the probabilities in (5). Specifically, if

n = S + b, then220

pb,0 + pb+1,1 + · · ·+ pb+r,r = pn. (7)

This follows since an external observer who just counts the number of ‘jobs’ in

the system and does not distinguish between whether the job is an inventory

item or a backlogged demand will attribute the right-hand probability to the

lumped set of states along the diagonal.

11{B} = 1 if B is true and 1{B} = 0 otherwise.
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Once the stationary distribution {pb,i} is known, we can compute, as func-225

tions of r and S, the expected inventory level

EI =
∑
b,i

i pb,i, (8)

the expected number of backorders

EB =
∑
b,i

b pb,i, (9)

the fillrate (as follows from the PASTA property, Wolff (1982))

FR := 1− P(I = 0) = 1−
∑
b

pb,0, (10)

and the rejection probability

PR := P(B = R, I = 0) = pS+R, (11)

where pS+R is given by (5) for n = S +R.230

If S + R is so large that the rejection probability can be neglected, we can

take the limit of the time-average of Eq. (3) to see that S = EI − EB + λEL,

and where we use that the expected demand during the leadtime ED = λEL.

Thus, EI and EB are related through

EI = S − λEL+ EB. (12)

Finally, noting that λ(1 − FR) is the rate at which demand is backlogged, it235

follows from Little’s law (Little (1961)) that the average backorder duration

satisfies

EWB =
EB

λ(1− FR)
(13)

Note that these relations already provide some insight into the consequences

of stock reservation policies. We expect, by reserving items, that the average

on-hand inventory EI increases. If S, λ and EL remain the same, an immedi-240

ate consequence of (12) is then that EB then also increases, which is perhaps

somewhat counter intuitive. From (13) we conclude that it is undesirable to aim
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for a fillrate of nearly 1 for any inventory system that allows for backlogging:

the average backlog time will become very large.

The cost structure includes a holding cost h per item on-hand per unit time,245

a cost b per backorder per unit time, and a cost π for each backorder. We do not

include ordering costs—in a sense this is implied by the fact that replenishments

occur in single units. With respect to rejection costs, recall that we use the

rejection level R to limit the state space. In our (numerical) investigation, we

search for an R that is so large that the rejection probability PR is negligible.250

Thus, we do not consider rejection costs. These considerations lead us to define

the long-run expected cost of a reservation policy with base-stock level S and

reservation level r as

CS,r = hEI + bEB + πλ(1− FR)

= h(S − λEL) + (h+ b)EB + πλ(1− FR),
(14)

where we use (12). Note that the performance measures EI, and so on, implic-

itly depend on S and r. The minimal cost for reservation level r becomes then255

C∗r = min
S
CS,r, (15)

and the minimal cost without reservations, i.e., r = 0, as

C∗0 = min
S
CS,0. (16)

With these concepts, let the relative efficiency gain be given by

G = 100%
C∗0 − C∗r
C∗r

. (17)

4. Analysis

First we analyze the inventory model under a policy with reservations when260

the lead-times are exponential, then we consider the model with constant lead-

times.
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4.1. Exponential lead-times

If replenishment lead-times are exponentially distributed then the process

{B(t), I(t), t ≥ 0} is a continuous-time Markov chain. Demand arrives at rate

λ and, in view of (3), replenishment orders arrive at rate

µb,i = (S + b− i)/EL

when B = b and I = i. From the relations (1) and (2) it is then straightforward

to obtain the state space and the associated transition rate matrix Q. Once we265

have Q, we can obtain (numerically) the stationary probabilities p = (pb,i) as

the unique normed solution of the system pQ = 0, c.f., Tijms (2003, Theorem

4.3.1).

With respect to the numerical analysis, Tijms (2003, Section 3.4) discusses

a number of general numerical procedures to solve pQ = 0. For our case we270

use a numerical toolbox2 to compute the left-eigenvector v, say, associated with

the eigenvalue 0 of the matrix Q. Then p = v/||v||, where ||v|| =
∑
i |vi|, is the

stationary probability vector.

4.2. Constant lead-times and Reservation level r = 1

In this section we derive a closed-form solution for the stationary distribution275

of the inventory system with constant lead-time L and a reservation level r = 1.

Moreover, the procedure allows us to handle an arbitrary number of backorders,

hence in the present case the rejection level R can be set to ∞. In Remark 4.3

below we discuss why the analysis below does not carry over to cases with r > 1.

To analyze such more general cases we therefore resort to simulation.280

Before we analyze the case with r = 1 in detail, we remark that the limits (6)

exist by Tijms (2003, Theorem 2.2.1) for any reservation level r. The condition

to check is that the process {B(t), I(t), t ≥ 0} is regenerative, but this follows

right away from the fact that whenever N(t − L, t] = 0, i.e., no arrivals occur

2The linalg module of scipy, a library with numerical tools developed for python
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during [(t−L, t], we have that (B(t), I(t)) = (0, S), hence the inventory process285

restarts at such moments.

Let us start for the case r = 1 with the computation of the probabilities

pb,0(t) = P(B(t) = b, I(t) = 0)

for t ≥ 2L. Clearly, the process {B(t), I(t), t ≥ 0} changes at demand epochs,

i.e., moments in time at which a demand arrives, and replenishment epochs,

i.e., moments in time at which a replenishment arrives. Now observe, e.g., from

Figure 2, that when I(t) = 0 the last epoch before t was a demand epoch rather

than a replenishment epoch. Moreover, when B(t) = b and I(t) = 0, it is

necessary that the demand N(t−L, t] during (t−L, t] is equal to S+ b. Hence,

pb,0(t) = P(D&N(t− L, t] = S + b)

where we write D for the event

D = {Last epoch before t was a demand}.

Then, by conditioning on the event N(t− L, t] = S + b, we see that

pb,0(t) = P(D |N(t− L, t] = S + b)P(N(t− L, t] = S + b)

= P(D |N(t− L, t] = S + b) e−λL
(λL)S+b

(S + b)!
,

(18)

where we use that N(t− L, t] is Poisson distributed. Thus, we need to find an

expression for P(D |N(t− L, t] = S + b).

For this purpose we condition next on the number of outstanding replenish-290

ments at time t−L, which is equal to the demand N(t−2L, t−L] that occurred

during (t − 2L, t − L]. Now note that, as the demand process is Poisson, the

random variables N(t − 2L, t − L] and N(t − L, t] are independent. Moreover,

by Tijms (2003, Theorem 1.1.5), if it is given that N(t − 2L, t − L] = k and

N(t − L, t] = S + b, the k replenishment and S + b demands occur uniformly295

distributed over the interval (t−L, t]. But in that case, the probability that the

last epoch before time t was a demand, must then be equal to (S+b)/(S+b+k),
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Figure 2: The up- and down-steps corresponding to replenishments, marked as r, and de-

mands, marked as λ, on the process graph with S = r = 1, compare Figure 1. Observe

that states (b, i) with i = 1 can only be entered when a replenishment arrives (whether the

distribution of L is exponential or constant). Similarly, the process {B(t), I(t)} only enters

states (b, i) with i = 0 when a demand occurs.

i.e.,

P(D |N(t− L, t] = S + b,N(t− 2L, t− L] = k) =
S + b

S +B + k
. (19)

Thus, with this, we obtain

P(D |N(t− L, t] = S + b) = e−λL
∞∑
k=0

S + b

k + S + b

(λL)k

k!
.

We can simplify this to

P(D |N(t− L, t] = S + b) = e−λL
S + b

(λL)S+b

∫ λL

0

yS+b−1eydy.

by using that, for α > 0,

∞∑
k=0

αk+n

(k + n)k!
=

n∑
k=0

∫ α

0

yk+n−1

k!
dy =

∫ α

0

yn−1
∞∑
k=0

yk

k!
dy =

∫ α

0

yn−1eydy,

and taking α = λL and n = S + b.

Finally, combining the above with (18) and noting that the result does not300

depend on t, we obtain the stationary distribution

pb,0 =
e−2λL

(S + b− 1)!

∫ λL

0

yS+b−1eydy. (20)

From this and (7) it follows that for b > 0, pb,1 can be obtained from

pb,0 + pb+1,1 = pS+b, (21)
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where pS+b is given by (5) with n = S + b. Of course, for b = 0 and i ≥ 1,

p0,i(t) = pS−i, i.e., equal to the basestock probabilities.

Remark 4.1. The fraction of time that the inventory level is zero is305

P(I = 0) = 1−
∞∑
b=0

pb,0(t). (22)

A particularly interesting formula for P(I = 0) results in case the base-

stock level S = 1. Combining (20) with (22) (and using the positivity of the

summands to reverse the integration and the sum) we have that

P(I = 0) = e−2λL
∫ λL

0

∞∑
b=0

yb

b!
eydy = e−2λL

∫ λL

0

e2ydy

=
1− e−2λL

2
.

Hence,

FR = 1− P(I = 0) =
1 + e−2λL

2
. (23)

Thus, in this case the probability of having stock on hand is at least 1/2. Inter-

estingly, this holds even for situations with very large lead-times, whereas the

traditional base-stock policies without reservations would lead to fillrates close

to 0%. This shows that even a reservation level of only one unit can increase the310

fillrate very significantly. The numerical results of the next section will show

that, also more generally, small reservation levels can have large effects.

Remark 4.2. From (21), pb,0 ≤ pS+b. Hence, for sufficiently large S, the

backlog probabilities can be neglected.

Remark 4.3. As a final remark, the above analysis does not generalize to cases315

with r > 1. The reason is that, for r > 1, the occurrence of a replenishment

just before t does not guarantee that I(t) = 1. To see this, consider first

Figure 2. To enter state (1, 1), the last epoch must have been a replenishment

epoch. In Figure 1, state (1, 1) can be entered from states (1, 0) by means of

a replenishment, or from (1, 2) by means of a demand. Note further that the320

process {B(t), I(t), t ≥ 0} is not a Markov process. For this, it is necessary to

also keep track of the demand and replenishments epochs during (t− L, t].
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5. Numerical Results

We now provide several numerical scenarios to analyze the effect of the reser-

vation level r on the main performance measures. We start in Section 5.1 by325

taking a fillrate perspective, i.e. minimizing the holding cost whilst attaining a

certain minimum fillrate. As discussed in Section 1, this corresponds to a backo-

rder cost structure with a fixed cost per backorder only, where maximum benefits

can be expected from stock reservations. We then continue in Section 5.2 by

also including costs per backorder per unit time.330

For the numerical analysis we need to choose the rejection level R. Since we

only use a finite value of R to enforce a finite state space, we set R to 30 for all

our examples, as this turns out to be so large that the rejection probability is

negligible. Note that the search for an appropriate R is trivial as the rejection

probability is a decreasing function of R.335

5.1. fillrate perspective (cost per backorder only)

In our first scenario, c.f., Figures 3 and 4, we plot the fillrate FR and the

(time-)average number of backlogged jobs EB as functions of S for reservation

levels r = 0 i.e., the basestock model, r = 1, 2 and 3, respectively. Since the

average on-hand inventory EI and EB are related through (12) we leave out340

EI. For exponential L the procedure of Section 4.1 yields the computation of

the steady-state distribution p, from which FR and EB follow by the definitions

in Section 3. Note that for r = 0, FR does not depend on the distribution of L

by (5). For constant L and r = 1 we use the closed form solutions (20) and (21).

Finally, for constant L and r = 2, 3 we use simulation. The demand arrival rate345

is λ = 2 per period and the average replenishment leadtime is EL = 4 periods.

Based on the graphs in Figure 3 we can make a number of interesting obser-

vations. First, it is apparent that, as expected, the fillrate FR increases in S.

Second, the results are very similar for constant and exponentially distributed

lead-times. Third, for small order-up to levels S, policies with stock reservation,350

i.e., r > 0, dramatically outperform the regular basestock policy with respect to
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the fillrate criterion. As mentioned earlier, c.f. Eq. (23), when r = 1 and S = 1,

the fillrate FR is already at least 1/2, while it is nearly 0 for the basestock

model when there is high load during the leadtime, which is λEL = 2 · 4 = 8

in this case. Finally, for large values of S, e.g. S = 12, setting the reservation355

level to 1 rather than 0 increases the fillrate from 0.89 to 0.93. Thus, even for

S = 12, roughly a 4% increase in fillrate can be achieved simply by reserving

just one item on stock.

In Figure 4 we see that when S is small, the number of backorders EB

is large (due to the large leadtime demand) and it increases by about half a360

demand for each increment in r. When S is large, the expected backorder level

is anyway small, hence just marginally affected by r.

Furthermore, as constant and exponentially distributed lead-times appar-

ently lead to very similar results, we expect that the obtained insights carry

over to practical situations, as the constant and exponential distribution are365

at either extreme of nearly any reasonable model for practical leadtime dis-

tributions. Moreover, given the similar results, we henceforth only consider

exponentially distributed lead-times in our explorations, as the latter yields to

a numerical analysis rather than simulation.

Another interesting way to use the reservation level r is to increase r and370

decrease S such FR ≥ 0.9 with the aim to decrease the average inventory level

EI. We investigate this effect in Figure 5; the parameter values are the same as

in Figure 3. Reading the graphs from right to left, we observe that by reducing

the order-up-to level S from 13 to 12 and increasing r from 0 to 1, the fillrate

can be kept above 90%, whilst EI decreases from about 5 to 4. As observed375

earlier, and as follows from (12), the expected backorder level remains nearly

zero. When S becomes quite a bit smaller, and r larger, EI remains more or less

constant, while EB becomes quite large. However, comparing this to Figure 4,

EB is large when S is small, even for the basestock model. Thus, in situations

in which high fillrates are required, e.g. 90% or higher, S needs to be large.380

But then the resulting large on-hand inventory level can be reduced simply by

reserving one item, while EB is hardly affected.
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least 90%.

Finally, in Figure 6, we vary FR from 0.85 to 0.99 and compute the minimal

S required by the basestock policy to achieve the given FR and by the r = 1

policy. (Finding the minimal S is easy as FR is increasing in S.) Again we385

observe that the reservation policy often allows to reduce S by one and, as a

result, EI also by about one, thereby implying a saving of almost h in the

expected inventory cost. Also, as S is large, the average number of backorders

is hardly affected.

The above numerical analysis result in a set of simple heuristics. If the aim390

is to increase the fillrate (considerably), keep the order-up-to level S fixed and

change the reservation level from r = 0 to 1 or 2; the backorder level EB is

typically only marginally affected. If the aim is to reduce on-hand inventory,

set r to 1 or 2, and decrease S by 1 or 2. Perhaps reservation policies are

particularly interesting in the presence of constraints on the inventory space,395

such as at shops in city centers. As an example, suppose S can be at most 4.

For our present parameter setting, we see in Figure 3 that FR increases from

about 0.05 to about 0.5, i.e,. a ten-fold increase, by simply reserving one item,
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and the r = 1 policy such that the fillrate exceeds a given minimal value.

while the relative change in EB is just (4.5− 4)/4 ≈ 13%.

5.2. General backorder cost structure400

In most practical situations both the number of backorders and their (aver-

age) duration will matter. To understand this relation we consider a number of

numerical examples where we vary the backorder cost per unit time b and cost

per backorder π. We normalize the holding cost h to 1, and take b ∈ {1, 3, 10}

to study the effect of the relative value of backordering versus holding cost, and405

π = 0, 1, . . . , 25. Finally, we let λ ∈ {10, 20} and EL ∈ {1, 2} to study the effect

of the demand rate and the lead-time. Figure 7 shows the relative cost savings,

as defined in (17), of the best policy with reservations compared to the best

regular base-stock policy. To identify the optimal policy parameters we use a

full grid search, c.f., Remark 5.1.410

It is evident from Figure 7 that the best reservation policy nearly always

outperforms the best regular base-stock policy quite significantly. Moreover,

the steep increase at the left for all combinations of λ, EL and b implies that

even for relatively small values of π considerable cost savings can be achieved.
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Figure 7: The influence of the fixed backorder cost π on the percentage gain from allowing

stock reservations for all combinations of demand rate λ = 10, 20, lead-time EL = 1, 2 and

backorder cost rate b = 1, 3, 10, and holding cost rate h normalized to 1.
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Of course, the cost savings do decrease as the backorder cost b increases, as415

this implies that the cost of the number of backorders becomes relatively less

important than the cost of backlog duration. However, even for b = 10, a

moderate value of π = 5 is sufficient to obtain savings of at least five per cent

for all considered combinations of the demand rate and lead-time. We remark

that the absolute savings always increase in π as expected, but that they increase420

at a slower rate than the cost of the best policy without reservations at the high

end of the considered π range, which explains why the relative gain starts to

decrease at some point.

Viewing Figure 7 from left to right and from top to bottom, it is apparent

that both a larger lead-time and a larger demand rate lead to larger savings from425

reserving stock. This can be explained by the increased safety stock without

reservations, creating a higher savings potential from reserving stock. Especially

the result that savings from stock reservations increase with the demand rate is

very encouraging, because demand rates may be (much) larger in many practical

settings. So, real savings may be even higher than the 5 to 30 per cent for the430

relatively small inventory systems we considered here.

In summary, in realistic cost settings in which backorder costs split into costs

per backorder π, whether this is hidden for the customer or not, and cost per

backorder per unit time b, reservation policies can reduce overall costs. This is of

course reasonable: reservation policies increase the fillrate hence reduce the cost435

associated with backordering demand. As this cost component is, practically

speaking, often not negligible, it actually should have been included in the

total cost for any basestock model, even though this leads a (much) harder

optimization problem.

Remark 5.1. We approach the search for the optimal S and r in Eqs. (15)

and (16) by means of a full grid computation. To obtain suitable boundaries

so that the grid contains the optimal S and r, note that necessarily r satisfies

0 ≤ r ≤ S. Thus, finding an upper bound on S suffices. For the basestock
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policy, i.e., r = 0 this is easy. From the second expression (14), i.e.,

CS,r = hS − hλEL+ (h+ b)EB + πλ(1− FR),

we see that C(S, 0) is a quasi-convex function of S, as hS is linear in S and440

EB and 1 − FR are monotone decreasing functions of S. For r 6= 0, observe

that (5) and (7) imply that EB → 0 and 1 − FR → 0 as S → 0. Thus,

for sufficiently large S, CS,r becomes (nearly) linearly increasing in S, for any

0 ≤ r ≤ S. In practice, a suitable upper bound S need not be large because of

the supra-exponential decay of pn in (5).445

6. Conclusions and Suggestions for Further Research

In this paper, we study single-item inventory systems with backordering

under continuous-review, positive lead-times, and controlled by a simple mod-

ification of the regular base-stock policy. This modification is based on the

introduction of a reservation level r, which is used as follows. When a replen-450

ishment order arrives and the inventory level is less than r, the replenishment

is put on stock rather than used to satisfy backordered demand (if any). Only

when the inventory level is equal to or higher than the reservation level r, backo-

rdered demand is met with replenishments. Thus, contrary to regular base-stock

policies, a policy with reservations does not satisfy customer demand in a FCFS455

order. The idea behind reserving replenishments, and deviating from the FCFS

delivery rule, is to be able to decrease the average inventory level, hence holding

cost, and/or increase the fillrate so that fixed backorder costs decrease. We

derive models to study the effects of reservations for the cases with constant

lead-times and exponentially distributed lead-times.460

With these models we show that, as a result of reserving stock, customers in

backorder have to wait somewhat longer on average, but the decrease in fixed

backorder costs significantly outweighs the time-related backordering cost, typ-

ically leading to a total cost reduction of 10% to 30%. Even if the fixed cost per

backorder is relatively small compared to the cost per backorder per unit time,465
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significant savings of 5% or more can be achieved for considered cases. More-

over, our results indicate that even larger savings may be achieved in realistic

settings with demand rates and lead times that are larger than the relatively

small ones that we considered. Also in situations in which on-hand inventory

is (physically or financially) constrained, reservation policies can achieve a con-470

siderable increase in fillrate.

Of course, there can be situations where backorder durations are so im-

portant that FCFS is preferred, but then our results are also valuable as they

provide motivation to reconsider the use of the fill rate as a, or the sole, relevant

performance measure. More generally, in situations where both the number and475

durations of backorders matter, our results offer a starting point for compar-

ing different inventory and replenishment policies and positioning the various

inventory performance measures.

Based on these results, we suggest that stock reservations are an interesting

alternative to FCFS deliveries in both theory and practice, hence research on480

adapting the FCFS rule is certainly merited.

In this initial exploration, we concentrate on fixed reservation levels, as such

policies are easy to implement in practice and also allow us to embed the reser-

vation structure in a base-stock policy which, as discussed above, is optimal

under the FCFS rule. We expect, however, that fixing reservation levels is not485

(always) optimal, nor that base-stock policies are optimal if stock reservations

are allowed. The optimal policy may be quite complex as it can depend on

momentary base-stock and inventory levels. We also point out that other mech-

anisms exist that achieve a form of reservation. For example, sale personnel

often quotes longer leadtimes to backordered customers than the average lead-490

time. This extra time serves as a hedge, but also enables to serve new customers

from incoming replenishments. How these mechanisms compare is interesting

to pursue further.

Although our exploration is restricted to backorder inventory systems, reser-

vation policies are also interesting to deploy in inventory systems with partial495

backordering, c.f. Porteus (1990). In this case a shortage becomes a lost sale
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with probability β and is backlogged with probability 1 − β. Each lost sale

results in a penalty cost. As reserving stock reduces the rate at which shortages

occur, the cost savings due to reservations may be considerable.

Besides analyzing these partial backordering systems, there are many other500

opportunities for further research. A first important direction is to extend our

model, for example, by including a fixed order cost and considering more general

policies such as (Q, r) or (s, S) policies. Another interesting direction is to

develop efficient algorithms to compute the optimal policy parameters, both

for models where the objective is to minimize the holding cost under a fillrate505

constraint as well as for models where the objective is to minimize the total

cost. These could be based on the assumption of exponential lead times to

speed up calculations, as our results indicate robustness with respect to the

lead time distribution. Since companies typically stock thousands of different

items, developing fast heuristics is also of interest.510
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