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Abstract

Many natural and man-made cellular bodies are light-weight, shock-absorbing, multi-

functional materials, capable of undertaking large elastic deformations. These prop-

erties are due to a complex system of local deformations which can lead to changes

in the material properties as the deformation progresses, but their study is non-

trivial since the corresponding stresses are non-trivial functions of volume fraction,

micro-geometry, and material properties of the components. For cellular bodies of

hyperelastic material, several main factors determine the magnitude of the stress

level, including the cell geometry, the cell wall thickness, and the presence of cell

inclusions. In this thesis, two nonlinear elastic parameters are identified, namely

a nonlinear elastic modulus and a nonlinear Poisson’s ratio, which are defined in

terms of the large stresses and strains in the elastic cell walls, and their utility in

estimating how different competing factors may contribute to the complex mechani-

cal behaviour of cellular structures is investigated. For the numerical analysis, finite

element simulations of periodic, honeycomb-like structures with a small number of

square, diamond, or hexagonal cells made from a nonlinear hyperelastic material are

presented. This study offers important insight into the fundamental behaviour of

cellular structures of nonlinear elastic material under large strains, and contributes

to illuminate key mechanical effects that are not visible under small strains.
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Chapter 1

Introduction

1.1 Background and motivation

Solid cellular structures are two or three dimensional bodies divided

into cells, the walls of which are made of a solid material capable

of undertaking large deformations without plastic failure or fracture.

Due to their exceptional mechanical efficiency, they are widespread in

nature and industry, from marine sponges and plant stems, which have

been around for million of years, to biomedical tissue scaffolds and

synthetic foams, which are under continuous research and development

[3,7,21,49,77,115,135] (figure 1.1.1). Galileo Galilei (1564-1642) first

suggested that bones must contain voids to account for their high

strength to weight ratio, and also observed that bones of a large animal

need to be thicker in proportion to their size than those of smaller

animals. Robert Hooke (1635-1703) introduced the word “cell” to

describe the microscopic structure of cork, as well as the classical law

ut tensio sic vis (as the extension, so the force) [58, 125].

In natural structures, the mechanical support system is usually

formed through a combination of increase in the cell number or size

and sustained sclerification of the cell walls. Dicotyledon stems (e.g.,

1
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Figure 1.1.1: Examples of natural and man-made cellular structures: (a) marine
sponge; (b) skull bone; (c) palm shoots; (d) stretchy scaffold for joints regrowth; (e)
giraffe skeleton.

magnolia, maple, oak, rose, sycamore, willow) increase their diam-

eter primarily by cell division which ultimately form the character-

istic annual rings. Monocotyledon stems (e.g., bamboo, corn, lily,

orchid, palm) prevent mechanical failure through a combination of

initiation of growth with a stem that is sufficiently wide for future

supply and support demands, and an increase in the stem diameter

and strength by cell wall expansion and lignification, especially toward

the stem periphery and base. Although some monocot plants attain

tree stature comparable with arborescent dicotyledons and conifers

(e.g., palm trees with maximum heights of 20-40 meters), their stems

are relatively slender [109]. By contrast, tall dicot trees have bigger

stem diameters relative to their height than small trees, even though

the wood density representing the relative quantity of the cell wall in

a given volume of wood tissue does not vary significantly among wood

species [44]. Bone tissue is another example of natural cellular solids,

and the bones of large animals are generally thicker in proportion to
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their size than those of small scale animals, while neck vertebrae have

lower density than limb bones. In [103], it was shown that apposition

and resorption of bony material are controlled by the magnitude of

the stresses, and that bones under stress become denser at the point

of stress. This explains in part why, in the long neck of the giraffe (Gi-

raffa camelopardalis) which contains the same number of vertabræas

that of the buffalo (Syncerus caffer) for example, the cervical verte-

brædecrease in mass with cranial distance, so that, one the one hand,

the mass of the head and neck is supported mainly at the base, and

on the other hand, the cranial extremity is lighter and easier to ma-

noeuvre than in buffaloes [130]. In Sauropod dinosaurs, necks were

found six times longer than in giraffes, and cervicals were estimated as

consisting of 60% air due to an air-sac system similar to those found

in extant birds, which made them both light and pneumatic [124]. In

living structures, there are many physiological and ecological factors

which influence their complex mechanical properties, which change

over time [8, 26, 49, 58, 65, 95]. From the mechanical point of view,

many natural and man-made cellular bodies are light-weight, shock-

absorbing, multi-functional materials, capable of undertaking large

elastic deformations. These properties are due to a complex system

of local deformations which can lead to changes in the material prop-

erties as the deformation progresses, but their study is non-trivial

since the corresponding stresses are non-trivial functions of volume

fraction, micro-geometry, and material properties of the components

(figure 1.1.2) [79, 80, 84,85,87–89].

For periodic cellular structures with uniform cell size, wall thick-

ness, and shape, if the size of the cell is small compared to the size
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Figure 1.1.2: Geometry-dependent deformations of cellular structures with stacked
(top) and staggered (bottom) cells of neo-Hookean material under vertical compres-
sion.

of a sample of the material, then effective theories can be derived

from a microscopic description of the problem via a “homogenisation”

or “averaging” technique. In this case, denoting by ε the ratio be-

tween the size of the cell and the size of the sample, an asymptotic

analysis, as ε goes to zero, can be employed. Although the word “ho-

mogenisation” was first used by Babuška [4] who pioneered numerical

approaches for homogenisation problems, the physical idea of averag-

ing over a heterogeneous medium was known since Maxwell [75] and

Poisson [105]. To date, many results, approximation formulas, and es-

timates have been obtained in this area. However, while the majority

of the existing homogenisation results are concerned with linear elas-

tic periodic media, for which a rigorous mathematical approach has

been established [2,22,62,99], the study of nonlinear elastic composites

presents considerable additional difficulties, both at the microscopic

and macroscopic levels [47, 127]. There is an increasing interest in

the nonlinear responses of periodic cellular structures capable of finite

(large) strain deformation, where material nonlinearities are expected

to play significant roles. For example, in [72], homogenisation tech-

niques are used to determine the macroscopic behaviour of porous

elastomers, as well as the associated evolution of their microstructure



1.1 Background and motivation 5

and the possible development of instabilities when finite deformations

occur; in [78], multiscale stability aspects of the superelastic behavior

of hexagonal honeycombs under in-plane compression are analysed,

and an in-depth parameter study is performed on the influence of dif-

ferent material laws on the finite strain deformation of honeycombs

with perfect and imperfect geometries, while finite element simula-

tions are shown to capture the behavior observed in the experiments;

in [119], homogenisation estimates for the finite strain effective re-

sponse of dielectric elastomer composites subject to electromechanical

loading conditions are obtained from available estimates for the purely

mechanical response combined with a partial decoupling approxima-

tion strategy. Homogenisation is not restricted to periodic structures,

but there are many important remaining questions about the influ-

ence of the properties and local behaviour of the material components

in cellular composite materials [31, 43, 109]. To answer some of these

question, there has been an increasing effort in combining physical ex-

periments and computer simulation [100–102,116,120,121,132]. While

particular structures seen in experiments can be mimicked computa-

tionally by various finite element implementations, in many cellular

structures, local deformations can lead to changes in the material

properties as the deformation progresses. When the cell walls are

made from a linear elastic material, it was noted that the mecha-

nism which dominates the deformation of cellular structures is that of

bending of the cell walls [13,27,28,40,49,76]. In nonlinear elastic ma-

terials, finite strain deformations are responsible for new mechanical

effects [10, 42, 69,82,83,86, 107,111].
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1.2 Scope of this thesis

The goal of this thesis is to analyse and compute the deformation of

cellular bodies within the framework of finite strain elasticity, which

in principle can provide a complete description of elastic responses in

the solid cell walls under loading, and provide new insight into the rich

mechanical responses of these structures by showing some interesting

behaviours which are not captured in the small strain regime. To

accomplish this, we employ the following strategy:

• Identify suitable mechanical parameters based on the large stresses

and strains in the hyperelastic cell walls;

• Develop an appropriate finite deformation analysis;

• Design and test adequate computer models;

• Estimate how the nonlinear parameters account for elastic be-

haviours in the model structures.

Specifically, we identify two nonlinear parameters, namely a nonlinear

elastic modulus and a nonlinear Poisson’s ratio defined in terms of

the large stresses and strains in the elastic cell walls, and investigate

their utility in estimating how different competing factors contribute

to the complex mechanical behaviour of these structures. The formal

derivation of key nonlinear elastic parameters in isotropic hyperelastic

materials is reviewed in [86]. Analytically, we consider generic cell wall

geometries under large strain deformations that can be maintained in

every homogeneous, isotropic, incompressible, hyperelastic body by

application of suitable tractions, such as a cuboid wall deformed by

simple or generalised shear, or bent into a circular wedge, a circular
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wedge straightened into a rectangular wall, and a circular cylinder or

tube under torsion [9, 50, 51, 53, 57, 98, 128]. For the numerical inves-

tigation, finite element simulations of honeycomb-like structures with

a small number of square, diamond, or hexagonal cells made from a

nonlinear hyperelastic material are presented. In the computer simu-

lations, the size of the cell and the size of the structure are comparable,

and therefore the mechanical effects are visible at the cell level and at

the structural level simultaneously. The model simulations were pro-

duced using the finite element procedure [11, 68, 96] available within

the open-source software Finite Elements for Biomechanics (FEBio)

environment [73].

In Chapter 2, we give a brief introduction to the mathematical

theory of finite strain elasticity relevant for the study presented in

this thesis. In Chapter 3, we define and analyse theoretically the

nonlinear elastic modulus representing the ratio between the stress

and the strain in an elastic body subject to finite deformations, such

as stretching, bending, straightening, and twisting. In Chapter 4,

we examine numerically a set of computational models representing

periodic, honeycomb-like structures with a small number of cells, and

show the behaviour of the nonlinear elastic modulus calculated as

the ratio between the mean effective stress and the mean effective

logarithmic strain in the elastic cell walls as the cell pressure, wall

thickness, or number of cells changes. In Chapter 5, we define the

nonlinear Poisson’s ratio for the model structures subject to uniaxial

extension as the negative quotient of the mean value of the logarithmic

horizontal strain to that of the logarithmic vertical strain in the solid

walls, and analyse its behaviour as the cell wall thickness or number of
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cells changes. In Chapter 6, we summarise our results and formulate

some further questions regarding the fundamental study of cellular

structures of nonlinear elastic material and its relevance to modern

applications. In the Appendix, we include some experimental evidence

of nonlinear elastic responses in periodic cellular structures obtained

from recent physical tests motivated and inspired by our theoretical

and computational results. However, since the experimental work was

carried out independently using materials with different constitutive

parameters, no attempt has been made to compare quantitatively the

experimental results with the numerical results reported in this thesis.



Chapter 2

Prerequisites and notation

Elasticity is the ability of a solid to return to its original shape af-

ter deformation due to loading. When the deformations under work-

ing loads are not detectable by the human eye, the solid’s configu-

ration can be considered as fixed, and any changes in the geometry

can be neglected. This so-called “small strain” assumption is at the

basis of the classical theory of linear elasticity, which is successfully

used in structural mechanics and many other engineering applications.

However, many modern applications (involving soft solids, inflatable

structures, polymers and synthetic rubbers) and biological structures

(such as plants and vital organs) involve large deformations. In the

framework of large deformations, finite elasticity covers the simplest

case where internal forces (stresses) only depend on the present de-

formation of the body and not on its history (i.e., it excludes plas-

ticity, viscosity, and damage). Because of the large deformations in-

volved, the mathematical models used in finite elasticity are always

nonlinear, and the numerical solution of the resulting mathematical

equations requires a careful approximation strategy and powerful al-

gorithms [9, 11, 50, 51,53,57, 68,96,98,128].

9
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2.1 Large strain deformation

Denoting by E the three-dimensional (3D) Euclidean space, a contin-

uous material body B occupies a compact domain Ω̄ of E, and is made

of particles whose positions at a time instant t define the configuration

of the body. More precisely, a configuration is a smooth mapping of

Ω̄ onto a region of E. Among all configurations, we choose one which

does not vary in time as the reference configuration. We then identify

each particle of the body with its position X in the reference config-

uration. The interior of the body is identified as an open, bounded,

connected subset Ω ⊂ E with boundary Γ = ∂Ω = Ω̄ \ Ω. We further

assume that Γ is Lipschitz-continuous, and in particular, that a unit

normal vector n exists almost everywhere along Γ.

Definition 2.1.1 The transformation which defines the deformation

of the body from the reference (material) configuration B0 to the cur-

rent (spatial) configuration B, is a one-to-one, orientation-preserving

mapping χ : Ω → E with det (Grad χ) > 0 on Ω, such that χ is

injective on Ω (figure 2.1.1). Since self-contact is allowed, this trans-

formation need not be injective on Ω̄.

Figure 2.1.1: Schematic of elastic deformation.
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Definition 2.1.2 The spatial point x = χ(X) corresponds to the

place occupied by the particle X after the deformation χ. The dis-

placement field is then defined, in the usual way, by u(X) = x−X.

Definition 2.1.3 (Lagrangian/material/reference representation) In

this representation, one fixes a particle X (Lagrangian variable) in

the reference configuration and observes its distortion χ(X). This

representation is typically used in solid mechanics.

Definition 2.1.4 (Eulerian/spatial/current representation) In this rep-

resentation, one fixes a point x (Eulerian variable) in the current con-

figuration and studies what happens at that point as the time pro-

gresses. This is generally used in fluid dynamics. It is not so easy to

describe free boundaries using this representation.

Deformation of line, area, and volume. The deformation χ is

governed by the deformation gradient

F = Grad χ =




∂χ1/∂X1 ∂χ1/∂X2 ∂χ1/∂X3

∂χ2/∂X1 ∂χ2/∂X2 ∂χ2/∂X3

∂χ3/∂X1 ∂χ3/∂X2 ∂χ3/∂X3


 .

Specifically, the deformation of line is given by the gradient matrix F,

the deformation of area by the cofactor matrix Cof F = det(F)F−T ,

and the deformation of volume by the Jacobian J = detF, as shown

below.

Nanson’s formula. [98, p. 88] If dl is the length of a line element in

the current configuration and dL is the element length in the reference

configuration, then

dl = FdL.
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If da is the element area in the deformed configuration and n is its out-

ward unit normal vector, and dA is the element area in the reference

configuration and N is its outward unit normal vector, then

da = dan, dA = dAN.

Then the current and reference element volumes are, respectively

dv = da · dl, dV = dA · dL,

and a volume element dV is transformed, after deformation, into the

volume element

dv = (det F) dV = JdV.

Hence

da · dl = dv = JdV = JdA · dL,

or equivalently,

da · FdL = JdA · dL.

This implies Nanson’s relation

nda = JF−TNdA = (Cof F)NdA,

where F−T =
(
F−1

)T
=

(
FT

)−1
.

Piola’s identity. If F is a deformation gradient, and J = detF, then

the following identities hold

Div(JF−T ) = 0, div(J−1FT ) = 0,
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where

Div T =




∂T1i/∂Xi

∂T2i/∂Xi

∂T3i/∂Xi


 and div T =




∂T1i/∂xi

∂T2i/∂xi

∂T3i/∂xi




denote the divergence of a second-order tensor field T = (Tij)i,j=1,2,3

in the reference and in the current configuration, respectively.

Recalling Nanson’s formula,

nda = JF−TNdA = (Cof F)NdA,

we deduce that

0 =

∫

B

div Idv

=

∫

∂B

nda =

∫

∂Bo

(Cof F)NdA =

∫

∂Bo

JF−TNdA

=

∫

Bo

Div(JF−T )dV,

which implies Div(JF−T ) = 0. This is due to the fact that B can be

chosen as an arbitrary measurable subset of the body, and therefore,

if the integral is equal to zero, then the integrated function is equal to

zero. Similarly,

0 =

∫

Bo

Div IdV

=

∫

∂Bo

NdA =

∫

∂B

(cof F)−1nda =

∫

∂B

J−1FTnda

=

∫

B

div(J−1FT )dv,

hence div(J−1FT ) = 0.

Polar decomposition theorem. Any invertible linear transforma-
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tion F, with detF > 0, has two unique multiplicative decompositions

of the form

F = RU (right polar decomposition),

F = VR (left polar decomposition),

where R is proper orthogonal (i.e., R−1 = RT , with the superscript T

denoting transpose, and detR = 1), representing the rotation tensor,

and U =
(
FTF

)1/2
and V =

(
FFT

)1/2
are symmetric and positive

definite, representing the right and left stretch tensors, respectively.

[128, pp. 52-53], [98, pp. 92-94]

The right Cauchy-Green tensor C = FTF measures the length of

an elementary vector after deformation in terms of its definition in the

reference configuration. The left Cauchy-Green tensor B = FFT mea-

sures the length of an elementary vector after deformation in terms of

its definition in the current configuration. By the polar decomposition

theorem,

V = RURT , (2.1.1)

hence the stretch tensorsU andV have the same eigenvalues {λi}i=1,2,3,

called the principal stretches [98, p. 94]. It follows that the right and

left Cauchy-Green tensors satisfy

B = V2 = RU2RT = RCRT , (2.1.2)

and have the same eigenvalues {λ2
i}i=1,2,3 [128, pp. 52-53]. Thus the
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following principal invariants are well defined

I1(B) = trB = I1(C),

I2(B) = tr(Cof B) =
1

2

[
(tr B)2 − tr

(
B2

)]
= I2(C),

I3(B) = detB = I3(C).

Finite strains. The polar decomposition theorem implies that, in

nonlinear elasticity, different strain tensors can be defined [86]:

• The Lagrangian strain tensors [98, p. 156]

e
(n)
L =





(Un − I) /n if n �= 0,

lnU if n = 0,
(2.1.3)

whereU is the right stretch tensor. In particular, when n = 2, the

so-called Green-Lagrange strain tensor is obtained, which is often

used in practice and is calculated also by the Finite Elements for

Biomechanics (FEBio) software [73] employed for our numerical

simulations (see Chapters 4 and 5).

• The Eulerian strain tensors [98, p. 159]

e
(n)
E =





(Vn − I) /n if n �= 0,

lnV if n = 0,
(2.1.4)

where V is the left stretch tensor. By (2.1.1),

e
(n)
E = Re

(n)
L RT . (2.1.5)

For small elastic deformations, all of these strain tensors are equivalent



2.1 Large strain deformation 16

to the infinitesimal strain from the linear elastic theory

e =
1

2

(
∇u+∇uT

)
.

Definition 2.1.5 We consider a function

m : B → R

defined over the set of bodies B, such that, for an arbitrary material

body B ∈ B,

m(B) ≥ 0,

and for any two separate bodies B,B′ ∈ B,

m(B ∪ B′) = m(B) +m(B′).

We call the quantity m(B) the mass of the body B.

Definition 2.1.6 We further assume that the mass m arises from a

mass density as follows

m(B) =
∫

B
ρ(x, t)dv(x),

where dv(x) is the volume element, and

ρ(x, t) ≥ 0, ∀x ∈ B.

We call ρ the mass density of the material in the configuration B.

Principle of mass conservation. Since, by definition, the mass does

not depend of the observer, this is an objective scalar, and therefore,
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for any arbitrary body B, assuming that no mass is lost or created,

d

dt
m(B) = 0 =

d

dt

∫

B
ρ(x, t)dv(x),

i.e., the mass is conserved regardless of the configuration occupied by

B. From the mass conservation principle it follows that, at any time t,

if B0 is a reference configuration of the body, with the corresponding

mass density ρ0 and volume element dV (X), and B is the current

configuration of the body, with the corresponding mass density ρ and

volume element dv, then

∫

B
ρ(x, t)dv(x) =

∫

B0

ρ0(X, t)dV (X).

Thus

Jρ = ρ0,

where J = detF and F = Grad χ is the gradient of the deformation χ

from B0 to B. This is due to the fact that B is an arbitrary measurable

set, and therefore, if the two integrals are equal, then the correspond-

ing integrated functions are equal. If the deformation is isochoric (i.e.,

J = 1), then ρ = ρ0.

Definition 2.1.7 The linear momentum of the material body B is

defined (in Eulerian form) by

M(B) = mv =

∫

B
ρ(x, t)v(x, t)dv(x),

where v(x, t) = χ̇(X, t) = ∂χ(X, t)/∂t is the velocity of the material.

Definition 2.1.8 The rotational (angular) momentum of the material
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body B with respect to a point x0 is defined (in Eulerian form) by

H(B) =
∫

B
ρ(x, t)(x− x0)× v(x, t)dv(x).

In what follows, we consider the concept of force in the context of

Newton mechanics, and refer to such forces as “applied forces”. Then

an applied force (or system of forces) acting on a material body B may

contain a body force defined by

Fb =

∫

B
ρ(x, t)b(x, t)dv(x),

where b is the (external) body-force density (body-force per unit mass)

defined on the body B (e.g., gravity), and a surface (contact) force

(traction)

Fc =

∫

∂B
c(x, ∂B)da(x),

where c is the (internal) contact force density defined over any piece-

wise smooth oriented surface in B∪∂B, and may consist of a tangential

component, which is parallel to the surface (e.g., friction), and a nor-

mal component, which is perpendicular to the surface (e.g., pressure),

and a(x) is the surface element. The resultant (total) applied force is

then

Fr =

∫

B
ρ(x, t)b(x, t)dv(x) +

∫

∂B
c(x, ∂B)da(x),

and the resultant moment (or torque) of the applied forces about a

point x0 is

Gr =

∫

B
ρ(x, t)(x− x0)×b(x, t)dv(x) +

∫

∂B
(x− x0)× c(x, ∂B)da(x).

Force balance laws. From Newton’s laws of dynamics, it follows that
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there is a balance between the resultant moment of applied forces and

the rate of change of linear momentum of the body

dM

dt
= Fr,

i.e.,

d

dt

∫

B
ρ(x, t)v(x, t)dv(x) =

∫

B
ρ(x, t)b(x, t)dv(x) +

∫

∂B
c(x, ∂B)da(x),

or equivalently,

∫

B
ρ(x, t)v̇(x, t)dv(x) =

∫

B
ρ(x, t)b(x, t)dv(x) +

∫

∂B
c(x, ∂B)da(x),

where v̇(x, t) = ∂v(x, t)/∂t = χ̈(X, t) = ∂2χ(X, t)/∂t2 is the accelera-

tion of the material. Similarly, there is a balance between the resultant

moment of applied forces and the rate of change of rotational (angular)

momentum of the body
dH

dt
= Gr,

i.e.,

d

dt

∫

B
ρ(x, t)(x− x0)× v(x, t)dv(x) =

∫

B
ρ(x, t)(x− x0)× b(x, t)dv(x)

+

∫

∂B
(x− x0)× c(x, ∂B)da(x),

or equivalently,

∫

B
ρ(x, t)(x− x0)× v̇(x, t)dv(x) =

∫

B
ρ(x, t)(x− x0)× b(x, t)dv(x)

+

∫

∂B
(x− x0)× c(x, ∂B)da(x).

From the above balance laws, we deduce that the body B is in static
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equilibrium if the total force and the total torque satisfy respectively

Fr =

∫

B
ρ(x)b(x)dv(x) +

∫

∂B
c(x, ∂B)da(x) = 0

and

Gr =

∫

B
ρ(x)(x−x0)×b(x)dv(x)+

∫

∂B
(x−x0)× c(x, ∂B)da(x) = 0.

Forces and stress. From the static equilibrium principle, we obtain

−
∫

∂B
c(x, ∂B)da(x) =

∫

B
ρ(x)b(x)dv(x).

We assume that c(x, ∂B) has the same value for all surfaces through

x, with the outward unit normal vector n at x, and denote c(x, ∂B) =

c(x,n). This is Cauchy’s fundamental postulate, stating that traction

is a function of x and depends on the internal surface only through its

outward normal n (i.e., it is not influenced by the curvature). Then

the following result holds.

Figure 2.1.2: Schematic of the components of the Cauchy stress tensor in a cuboid
of elastic material.

Cauchy theorem If c(x,n) is continuous in x, then there exists a

2nd-order tensor field σ, called the Cauchy (or true) stress tensor
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(figure 2.1.2), such that [98, pp. 146-147]

σ(x)n = c(x,n).

By the Divergence Theorem,

−
∫

B
div σ(x)dv(x) = −

∫

∂B
σ(x)nda(x)

= −
∫

∂B
c(x,n)da(x)

=

∫

B
ρ(x)b(x)dv(x).

Since B is an arbitrary measurable set, the fact that the integrals are

equal implies that the corresponding integrated functions are equal.

After eliminating the integral, we deduce the following equilibrium

equation in Eulerian (current) representation

div σ(x) + ρ(x)b(x) = 0 (3 equations).

Furthermore, the conservation of angular momentum implies

σ(x) = σ(x)T (symmetry).

See [98, 149] for a detailed proof. These field equations provide 3 scalar

equations for the 9 unknowns: {χi}i=1,2,3, {σij}i≤j=1,2,3. In order to

solve them, these equations must be completed by the constitutive

law for σ depending on material properties (6 scalar equations), and

supplemented by boundary conditions.

Definition 2.1.9 The normal stress is defined by

σn = n · (σn),
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where n is the unit vector in the normal direction (perpendicular to the

surface). If σn > 0, then the normal stress is tensile, and if σn < 0, then

the normal stress is compressive. The associated tangential (shear)

stress is defined by

σt = (σn)− [n · (σn)]n.

Definition 2.1.10 The hydrostatic stress tensor is defined as

σ = diag(−p) = −pI,

where p is a scalar function.

Piola transform. The Piola transform is the basic tool for trans-

forming the Cauchy stress tensor while preserving the structure of

the equations of equilibrium. In the reference configuration, by the

Divergence Theorem and Nanson’s formula, it follows that

∫

B
div σdv =

∫

∂B
σnda

=

∫

∂B0

σ (Cof F)NdA

=

∫

∂B0

PNdA

=

∫

B0

Div PdV,

where

P = σ Cof F = JσF−T

is called the 1st Piola-Kirchhoff (PK) stress tensor. Its transpose PT

is known as the nominal stress. From the above relations and the
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equilibrium equation involving the Cauchy stress tensor, we obtain

−
∫

B0

Div PdV = −
∫

B
div σdv =

∫

B
ρbdv =

∫

B0

ρ0b0dV,

where ρ0(X) = Jρ(x) and b0(X) = J−1b(χ(X)). Then the equilib-

rium equation in Lagrangian (reference) representation takes the form

−Div P(X) = ρ0(X)b0(X).

Since, in general, the 1st Piola-Kirchhoff stress is not symmetric, the

2nd Piola-Kirchhoff can be used instead. This is defined by

S = F−1P = JF−1σF−T .

2.2 Hyperelastic materials

Hyperelastic (or Green elastic) materials are the class of homogeneous

elastic material models described by a strain (or stored) energy density

function (free energy per unit volume of the undeformed configura-

tion) [9,50,51,53,57,98,128]. In this thesis, we consider homogeneous

isotropic hyperelastic material, which can be described by a strain en-

ergy function W(F) depending only on the deformation gradient F.

Then, by the principles of material objectivity (frame indifference),

stating that constitutive equations must be invariant under changes of

frame of reference [128, p. 44], and material symmetry due to isotropy,

the scalar strain energy function can be expressed equivalently in

terms of the principal invariants, I1, I2, I3, of the Cauchy-Green ten-

sors B and C [122], or alternatively, in terms of the principal stretches,

λ1, λ2, λ3. In order to simplify the notation, we represent the strain
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energy function as W and infer its argument from the context [98].

The corresponding Cauchy stress tensor takes on the following repre-

sentation in terms of the left Cauchy-Green tensor B [9]

σ = β0I+ β1B+ β−1B
−1, (2.2.1)

where the elastic response coefficients

β0 =
2√
I3

(
I2
∂W
∂I2

+ I3
∂W
∂I3

)
,

β1 =
2√
I3

∂W
∂I1

,

β−1 = −2
√
I3
∂W
∂I2

(2.2.2)

are scalar functions of the principal invariants. For incompressible

materials,

σ = −pI+ β1B+ β−1B
−1, (2.2.3)

where p is the Lagrange multiplier associated with the incompress-

ibility constraint J = 1, also referred to as the arbitrary hydrostatic

pressure [98, p. 200].

Remark 2.2.1 Note that, by (2.2.1)-(2.2.3), the Cauchy stress tensor

σ and the left Cauchy-Green tensor B have the same eigenvectors, i.e.,

these two tensors are coaxial. This is an important observation for our

subsequent analysis where nonlinear elastic moduli will be defined.

Simple tension. Next, we consider a homogeneous isotropic hyper-

elastic material subject to the following triaxial stretch

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (2.2.4)
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where X = [X1, X2, X3]
T and x = [x1, x2, x3]

T denote the reference

(Lagrangian, material) and current (Eulerian, spatial) coordinates,

respectively, and λi > 0, i = 1, 2, 3, are positive constants. For a

hyperelastic body under uniaxial (simple) tension acting in the first

direction, the Cauchy stress takes the form

σ =




T 0 0

0 0 0

0 0 0


 . (2.2.5)

In this case, it can be shown that the corresponding deformation is a

simple extension in the direction of the (positive) tensile force, T > 0,

where the ratio between the tensile strain and the strain in the orthog-

onal direction is greater than one, if and only if the Baker-Ericksen

(BE) inequalities stating that the greater principal stress occurs in the

direction of the greater principal stretch hold [74, 82, 83, 91]. In other

words, the deformation corresponding to (2.2.5), where σ11 > 0, has

the form (2.2.4) where λ1 > λ2 = λ3 > 0 if and only if the following

BE inequalities hold

β1λ
2
iλ

2
j − β−1 > 0, for i, j = 1, 2, 3, i �= j. (2.2.6)

In the special case when this deformation is isochoric, i.e., I3 = 1, the

axial stretches take the form λ1 = λ and λ2 = λ3 = 1/
√
λ, and the

non-zero component of the Cauchy stress is

σ11 = (λβ1 − β−1)

(
λ− 1

λ2

)
.
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For this deformation, the BE inequalities are equivalent to

λβ1 − β−1 > 0, (2.2.7)

i.e., σ11 > 0 for λ > 1, and σ11 < 0 for λ < 1, or in other words, axial

tension produces elongation in the same direction, and axial com-

pression produces contraction in the same direction. So the pressure-

compression (PC) inequalities [128, p. 155] hold also. We conclude

that, for this deformation, BE ⇔ PC. In practice, a mean version of

the PC conditions is also acceptable, namely

σ1

(
1− 1

λ1

)
+ σ2

(
1− 1

λ2

)
+ σ3

(
1− 1

λ3

)
> 0, (2.2.8)

where λi and σi, i = 1, 2, 3, are the principal stretches and the prin-

cipal stresses, respectively, if not all λi are equal to 1. For the above

isochoric deformation, since σ22 = σ33 = 0, the PC inequality (2.2.8)

is

σ11

(
1− 1

λ

)
= (λβ1 − β−1)

(
λ− 1

λ2

)(
1− 1

λ

)
> 0, (2.2.9)

and is equivalent to the BE inequality (2.2.7).

Then, if λ > 1, the deformation is a simple (or uniaxial) extension

in the X1-direction, and if λ < 1, the deformation is a equibiaxial

extension in the orthogonal directions.

Necking instability. When subjected to the normal tension

λ1 = λ > 1, λ2 = λ3 = 1/
√
λ < 1, (2.2.10)

an hyperelastic material characterised by Ŵ(λ) = W(λ1, λ2, λ3) may

manifest the so-called necking instability whereby there exists a critical
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stretch λcr > 1, such that the function

Ŵ′(λ) =
∂Ŵ
∂λ

(2.2.11)

is not everywhere increasing as λ > λcr increases, and therefore the

force required to extend the material may decrease. In view of the sub-

sequent computational models, we consider here the classical Mooney-

Rivlin model [92] characterised by the strain energy density function

W(λ1, λ2, λ3) =
C1

2

(
λ2
1 + λ2

2 + λ2
3 − 3

)
+

C2

2

(
λ−2
1 + λ−2

2 + λ−2
3 − 3

)
,

(2.2.12)

where C1 > 0 and C2 > 0 are independent of deformation. If C2 = 0,

then this material model reduces to the classical neo-Hookean model

[110]. If a Mooney-Rivlin material is subject to the normal tension

(2.2.10), then the strain energy function (2.2.12) takes the form

W(λ) =
C1

2

(
λ2 + 2λ−1 − 3

)
+

C2

2

(
λ−2 + 2λ− 3

)
,

its derivative is

Ŵ′(λ) =
∂Ŵ
∂λ

= C1

(
λ− λ−2

)
+ C2

(
1− λ−3

)
,

and it always increases, since the second derivative is always positive,

i.e.,

Ŵ′′(λ) =
∂2Ŵ
∂λ2

= C1

(
1 + 2λ−3

)
+ 3C2λ

−4 > 0.

Hence, necking instability does not occur in Mooney-Rivlin materials.
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2.3 Boundary value problems

The equilibrium of an elastic body in the presence of a dead (constant)

load is described in terms of the Cauchy (true) stress by the Eulerian

field equation

−div σ(x) = f(x). (2.3.1)

The above governing equation is completed by the constitutive law for

σ depending on material properties, and supplemented by boundary

conditions. Since the domain occupied by the deformed material is

usually unknown, it is more convenient to rewrite the above equilib-

rium problem as an equivalent problem in the reference (undeformed)

configuration where the independent variables are X ∈ Ω. The corre-

sponding Lagrangian equation of nonlinear elastostatics is

−Div P(X) = f(X), (2.3.2)

where P = σ Cof F is the 1st Piola-Kirchhoff stress tensor, F =

Grad χ is the gradient of the deformation χ(X) = x, such that J =

detF > 0, and for dead loading, f(X) = Jf(x).

Boundary conditions. The general boundary value problem is to

find the displacement u(X) = x−X, for all X ∈ Ω, that satisfies the

equilibrium equation (2.3.2) subject to the Dirichlet (displacement)

boundary conditions

u(X) = uD on ∅ �= ΓD ⊂ ∂Ω, (2.3.3)

and the Neumann (stress) boundary conditions

P(X)N = g = τ (Cof F)N on ΓN = ∂Ω \ ΓD, (2.3.4)
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where N is the outward unit normal vector to the (reference) domain

boundary ∂Ω, and τn is the (true) applied surface traction in the

deformed configuration. At the boundary points where subsets with

Dirichlet conditions and Neumann conditions intersect, the Dirich-

let conditions take priority, and when subsets with different Neu-

mann conditions intersect, these conditions are imposed simultane-

ously. However, in many cases, the solution may not be unique.

Semi-inverse approach. The semi-inverse method is one of the

very few methods to obtain exact solution in continuum mechanics.

It consists of the following steps:

1. Describe:

(a) The material characteristics (e.g., hyperelastic), its geometry,

and whether it is in a static or dynamic state;

(b) The deformation and the boundary conditions.

2. Deduce:

(a) The material responses (stresses);

(b) The mechanical behaviour (e.g., stiffening or softening).

For many complex deformations, the deformation cannot be prescribed

and therefore the semi-inverse method cannot be employed. In some

cases, approximate solutions to the boundary value problem can be

obtained by suitable numerical procedures. For hyperelastic materials,

boundary value problems can be cast as variational problems which

can be used to generate finite element methods.



Chapter 3

Enhanced elasticity of core-rind

cellular structures

3.1 Introduction

In nature and engineering, cellular materials are designed to perform

certain functions while using as little material as possible (e.g., by

minimizing an objective such as volume or density), provided that

they meet some target values on common physical properties (e.g.,

strength, stiffness, thermal conductivity) [3, 7, 8, 19, 44, 49, 54, 58, 109,

114,115,131]. For example, many natural cellular structures maintain

their integrity under unforeseen or more typical loading conditions

by adjusting their composition or quantity in responses to changes in

loads through a combination of fibre reinforcement or thickening of the

walls in load-bearing regions: bones of larger animals are thicker in

proportion to their size than those of smaller animals, while bones in

the skull are less dense than those in the legs; in monocotyledon stems

(e.g., corn, palm, bamboo), mechanical failure is prevented through a

combination of initiation of growth with an overbuilt stem that is suf-

ficiently wide for future support demands and sustained sclerification

30
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(thickening and lignification) of cell walls toward the stem periph-

ery and base. Moreover, in many living, load-bearing structures, the

cells are not voids, but are chambers filled with a liquid or solid core.

For example, paw and foot cushions are part of the locomotor sys-

tem designed to absorb mechanical shock, redistribute excessive local

stress, and store and return elastic strain energy. Histologically, they

are soft cellular bodies built from closed compartments or cells sepa-

rated by collagen reinforced elastic septa and filled with fat (adipose

tissue) [1, 12, 23, 24, 60, 65, 67, 90, 93–95, 106, 112, 136]. While new op-

timisation criteria associated with different stages of development or

healing in natural structures are still to be identified, there is also a

need for appropriate theoretical approaches to be developed that take

into account the large stress and strain fields caused by physiological

or pathological change.

Figure 3.1.1: Schematic of natural cellular structure.

For “cell-filled” or “core-rind” composite structures (figure 3.1.1),

several main factors determine the magnitude of the stress level in the

cellular material, including the individual cell geometry, the cell wall

thickness, and the presence of cell inclusions. In the case of small strain

deformations, a comparison between empty and fluid-filled cells was

proposed by Warner et al. (1999) [134], where it was shown that, if a
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cell wall is bent, then the elastic modulus in the direction of the force

causing the deflection increases in a fluid-filled cell compared to that

of an empty cell. Indeed, if the underlying material is linearly elastic,

then the dominant mechanism for the deformation of a cellular body is

the bending of the cell walls, and thresholds on strength or stiffness can

be set as constraints in the optimal design process [49,115]. However,

an additional level of difficulty arises when the cell wall material is

nonlinear elastic, in which case, if the elastic modulus is constrained,

then the existence of a feasible solution is not guaranteed, and must be

established before this modulus can be used to predict other structural

properties. In figure 3.1.2, examples are shown where an optimal

solution (a) exists under the linear constraints and (b) does not exist

under the nonlinear constraints.

(a)
dd00

epi (d)f
f(d)

E(d)-C

(b)

d0

f(d)

E(d)-C

Figure 3.1.2: (a) Epigraph of function f : V = {d > 0 | E(d) ≥ C } → R, f(d) = d;
(b) Failure of constraint qualification E(d) ≥ C (V = ∅).

In this chapter, we compare the mechanical performance for in-

dividual cell walls of homogeneous, incompressible, isotropic, hyper-

elastic material in a single cell which is either empty or filled with

an incompressible fluid or a compliant, elastic core, and subject to

large strain deformations (figure 3.1.3). Analytically, for three generic

cell walls of nonlinear hyperelastic material under large strain defor-
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mations that can be maintained in every homogeneous, isotropic, in-

compressible, hyperelastic body by application of suitable tractions,

namely a rectangular beam bent into a circular wedge, a circular wedge

straighten into a rectangular wall, and a circular tube subject to tor-

sion, we prove that the nonlinear elastic modulus representing the

ratio between the stress and the strain in a principal direction asso-

ciated with the largest change of curvature increases with increasing

applied pressure, and also when the thickness of the wall increases or

when the wall becomes multi-layer. Similarly, if a circular tube is filled

with an incompressible elastic core, then the radial elastic modulus of

the cylindrical core is enhanced also by the presence of a surrounding

tube.

Figure 3.1.3: Schematic of (a) empty, (b) partially, and (c) fully filled circular tube.

For solid cellular structures with uniform cell size, wall thickness,

and shape, another important question is whether the same volume

of cell wall material has the same effect when arranged as many small

cells or as fewer large cells. For the bending and stretching of a cuboid

wall, the straightening and stretching of an annular wedge, and the

extension and torsion of a circular cylindrical tube, we demonstrate

that the mean value of the nonlinear elastic modulus representing the

ratio between the stress and the strain in the direction associated with

the largest change of curvature in multiple thin walls deforming sepa-
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rately is greater than the mean modulus of a single thick wall, and this

modulus increases as the number of thin walls increases while the total

volume of elastic material remains fixed. Since the results obtained

here are independent of the choice of the strain energy function de-

scribing the cell wall material, the nonlinear elastic modulus identified

here can be taken as indicative for finding the optimum wall thickness,

number of walls, or cell pressure under similar deformations in a wide

range of different hyperelastic materials. In contrast, when the cell

wall material is linearly elastic, the elastic modulus of the cell wall is

independent of initial cell pressure [48, p. 253]. For a circular tube

of nonlinear elastic material also, the classical torsion modulus, mea-

sured as the ratio between the torque and the twist, increases as the

tube thickness increases, but is independent of the applied pressure.

In Section 3.2, we define and analyse the nonlinear elastic modulus

for a rectangular wall which is bent into an annular wedge. Similarly,

in Section 3.3, we study the elastic modulus for an annular wedge

which is straighten into a rectangular wall. In Section 3.4, we investi-

gate the moduli of a circular tube which is stretched and twisted.

3.2 Bending of rectangular walls

A cuboid cell wall with reference geometry (X, Y, Z) ∈ [X1, X2] ×

[−Y0, Y0]× [−Z0, Z0], where X1, X2, Y0 and Z0 are positive constants,

is deformed by the triaxial stretch [128, pp. 186-188]

X̃ = aX, Ỹ =
1√
a
Y, Z̃ =

1√
a
Z, (3.2.1)
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where (X̃, Ỹ , Z̃) and (X, Y, Z) are the Cartesian coordinates for the

deformed and the reference configuration, respectively, and a is a pos-

itive constant. For the deformation (3.2.1), the deformation gradient

satisfies 


dX̃

dỸ

dZ̃


 = F




dX

dY

dZ




and is equal to:

F =




dX̃/dX 0 0

0 dỸ /dY 0

0 0 dZ̃/dZ


 =




a 0 0

0 1/
√
a 0

0 0 1/
√
a


 .

The associated left Cauchy-Green tensor and its inverse are respec-

tively

B = FFT =




a2 0 0

0 1/a 0

0 0 1/a


 , B−1 =




1/a2 0 0

0 a 0

0 0 a


 .

By the representation (2.2.3), the non-zero components of the corre-

sponding Cauchy stress tensor take the form

σ
(0)

X̃X̃
= −p+ β1a

2 +
β−1

a2
, σ

(0)

Ỹ Ỹ
= σ

(0)

Z̃Z̃
= −p+

β1
a

+ β−1a.

Next, the deformed wall is “bent” into a sector of a circular cylindrical

tube (annular wedge) by the deformation [128, pp. 186-188]

r =
√
2X̃, θ = AỸ , z =

Z̃

A
, (3.2.2)
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where (r, θ, z) ∈ [r1, r2]× [−θ0, θ0]× [−z0, z0] are the cylindrical polar

coordinates for the current configuration, and r1, r2, θ0, z0, and A are

positive constants (figure 3.2.1).

The combined deformation given by the successive deformations

(3.2.1) and (3.2.2) takes the form [128, pp. 186-188]

r =
√
2aX, θ =

AY√
a
, z =

Z

A
√
a
. (3.2.3)

For this deformation, the gradient satisfies




dr

rdθ

dz


 = F




dX

dY

dZ


 .

hence, in terms of the current cylindrical polar coordinates (r, θ, z),

the deformation gradient takes the form

F =




∂r/∂X 0 0

0 r∂θ/∂Y 0

0 0 ∂z/∂Z


 =




a/r 0 0

0 Ar/
√
a 0

0 0 1/(A
√
a)


 .

The corresponding left Cauchy-Green tensor and its inverse are re-

spectively

B = FFT =




a2/r2 0 0

0 A2r2/a 0

0 0 1/(A2a)


 ,

B−1 =




r2/a2 0 0

0 a/
(
A2r2

)
0

0 0 A2a


 .
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By (2.2.3), the non-zero components of the associated Cauchy stress

tensor can be expressed as follows

σrr = −p+ β1
a2

r2
+ β−1

r2

a2
,

σθθ = −p+ β1
A2r2

a
+ β−1

a

A2r2
,

σzz = −p+ β1
1

A2a
+ β−1A

2a.

(3.2.4)

In the absence of body forces, by the equilibrium equation (2.3.1), the

components of the Cauchy stress tensor satisfy the following system

of equilibrium equations [98, p. 65]

∂σrr
∂r

+
1

r

∂σθr
∂θ

+
∂σzr
∂z

+
1

r
(σrr − σθθ) = 0,

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σzθ
∂z

+
1

r
(σrθ + σθr) = 0,

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
1

r
σrz = 0.

(3.2.5)

By the semi-inverse method, since for the given deformation (3.2.3),

the stress components (3.2.4) depend only on the radius r, the system

of equilibrium equations (3.2.5) reduces to

∂σrr
∂r

+
1

r
(σrr − σθθ) = 0. (3.2.6)

Then, integration with respect to r of equation (3.2.6) together with

(3.2.5) gives [128, p. 185-187]

σrr = −σrr(r1)−
∫ r

r1

β1
r

(
a2

r2
− A2r2

a

)
dr+

∫ r

r1

β−1

r

(
a

A2r2
− r2

a2

)
dr,

σθθ = σrr − β1

(
a2

r2
− A2r2

a

)
+ β−1

(
a

A2r2
− r2

a2

)
,

σzz = σrr + β1

(
1

A2a
− a2

r2

)
− β−1

(
r2

a2
− A2a

)
.

The deformation (3.2.2) superposed on (3.2.1) is a suitable approx-
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Figure 3.2.1: Schematic of finite bending (right) and straightening (left). The verti-
cal distance between the ends of the wall may increase (closed, filled cell) or remain
unchanged (open cell).

imation for the bending cell walls in a periodic structure as illustrated

schematically in figure 3.2.2. In this figure, the cross-section sample

of a structure with originally cuboid cells represented in figure 3.2.2

(a) deforms such that the initially vertical walls bend into circular

walls, while the horizontal walls remain virtually horizontal and may

extend or contract longitudinally, as shown in figure 3.2.2 (b) and (c).

When the cells are filled with a compliant liquid or solid core, and the

internal volume of the cells is preserved throughout the deformation,

pre-stretching of the cell walls may be caused by the pressure in cell

core before the walls bend. In order to study the changes in the me-

chanical properties of the walls in a filled cell compared to those of

an empty cell, we assume that in both cases, the walls are deformed

by (3.2.1) followed by (3.2.2). However, the non-zero pressure causing

the pre-stretch is maintained in the filled cell, whereas in the empty

cell, this pressure is removed. The same approach is employed for the

analysis of other deformations in the subsequent sections.
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(a) (b) (c)

Figure 3.2.2: Sample of periodic cellular structure with cell walls that are (a)
straight, (b) bent outside the cell, or (c) bent inside the cell.

3.2.1 Nonlinear elastic modulus

When the walls bend inside the cell, the distance between the ends of

the deformed wall in the empty cell can remain equal to the length of

the undeformed wall, i.e.,

Y0 = r1 sin θ0 < r1θ0 = r1
AY0√

a
.

Hence A >
√
a/r1 >

√
a/r, for all r ∈ (r1, r2]. Thus, we assume that,

in the filled cell, the vertical distance between the ends of the wall will

increase farther than in the empty cell, i.e., Ā > A, where Ā and A

are the constant parameters for the deformation (3.2.2) in the filled

and the empty cell, respectively (figure 3.2.1).

For the deformed state due to (3.2.3), the radial direction is a prin-

cipal direction. Assuming that this deformation is a contraction in

the radial direction, i.e., Brr = a2/r2 < 1, by the PC inequalities, the

associated stress component is negative (radial compression). Setting

σrr = −p0 ≤ 0 at the curved surface r = r2, the radial stress takes the
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form

σrr =− p0 +

∫ r

r2

β1
r

(
A2r2

a
− a2

r2

)
dr

+

∫ r

r2

β−1

r

(
a

A2r2
− r2

a2

)
dr

≤− p0 ≤ 0, r ∈ [r1, r2].

In the above integrals, the integrands are positive due to the fact that

β1 > 0, β−1 ≤ 0, and A2r2/a > 1 > a2/r2. Since r < r2, both integrals

are negative, and hence σrr increases as r increases. The radial stress

can be written equivalently as follows

σrr =σrr(r1) +

∫ r

r1

β1
r

(
A2r2

a
− a2

r2

)
dr

+

∫ r

r1

β−1

r

(
a

A2r2
− r2

a2

)
dr, r ∈ [r1, r2].

For the deforming wall, we define the nonlinear elastic modulus as

the ratio between the Cauchy stress and the logarithmic strain [11,

pp. 218-219] in the radial direction

E =
σrr

lnB
1/2
rr

. (3.2.7)

We can define this modulus since, by Remark 2.2.1, the Cauchy stress

tensor σ and the left Cauchy-Green tensor B are coaxial. Since both

σrr < 0 and 1/ lnB
1/2
rr < 0 increase as r increases, it follows that E

decreases when r increases. To see this, we denote f(r) = σrr < 0

and g(r) = 1/ lnB
1/2
rr < 0, and since f and g increase with r, the

first derivatives of these functions satisfy f ′ > 0 and g′ > 0, hence

(fg)′ = f ′g + fg′ < 0, implying that fg decreases as r increases.

Influence of cell pressure. We first compare the values of the
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modulus of elasticity (3.2.7) when the cell is empty and when the

cell is filled with an incompressible fluid or solid core. Let σ′ and σ

represent the Cauchy stress of the wall in a filled and in an empty cell,

respectively, and E′ and E denote the corresponding elastic moduli. If

σ′
rr(r2) = −p0 < 0 and σrr(r2) = 0, then, at equal strains

E′ − E =− p0
ln(a/r)

+
1

ln(a/r)

∫ r

r2

β1r

a

(
A

′2 − A2
)
dr

+
1

ln(a/r)

∫ r

r2

β−1a

r3

(
1

A′2
− 1

A2

)
dr

≥− p0
ln(a/r)

> 0, r ∈ [r1, r2].

In the above integrals, the integrands are positive due to the fact that

β1 > 0, β−1 ≤ 0, and A′ > A, and both integrals are negative since

r < r2. Then −p0 < 0 and ln(a/r) < 0 imply that the radial elastic

modulus of the deformed wall is larger in the filled cell than in the

empty cell, and the gap between the respective moduli increases as

the magnitude of p0 increases.

Another possible situation is when the internal volume of the filled

cell begins to increase under the deformation (3.2.3) of the cell walls,

and the walls become free from the pressure due to the incompressible

inclusion, which now occupies less than the total internal volume of

the deformed cell. In this cell, the vertical distance between the ends of

the wall may increase farther than in the filled cell with fixed internal

volume, and we set A′′ =
√
A′2 + δ2 as the constant parameter for the

deformation (3.2.2), where δ2 > 0.

Let σ′ and σ′′ denote the Cauchy stress of the wall in a filled cell

with fixed and increased internal volume, respectively, and E′ and E′′

be the respective elastic moduli. If σ′
rr(r2) = −p0 < 0 and σ′′

rr(r2) = 0,
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then, at equal strains

E′ − E′′ =− p0
ln(a/r)

+
1

ln(a/r)

∫ r

r2

β1r

a

(
A

′2 − A
′′2
)
dr

+
1

ln(a/r)

∫ r

r2

β−1a

r3

(
1

A′2
− 1

A′′2

)
dr

=− p0
ln(a/r)

− δ2

ln(a/r)

∫ r

r2

β1r

a
dr

+
δ2

A′2 (A′2 + δ2) ln(a/r)

∫ r

r2

β−1a

r3
dr,

≤− p0
ln(a/r)

> 0, r ∈ [r1, r2].

In the above integrals, β1 > 0, β−1 ≤ 0, and r < r2. Then there exists

δ20 > 0, such that

E′ − E′′ > 0, ∀δ2 ∈ (0, δ20).

Finally, comparing the elastic moduli in the cell with increasing inter-

nal volume and in the empty cell, we obtain

E′′ − E =
1

ln(a/r)

∫ r

r2

β1r

a

(
A

′′2 − A2
)
dr

+
1

ln(a/r)

∫ r

r2

β−1a

r3

(
1

A′′2
− 1

A2

)
dr

> 0, r ∈ [r1, r2].

In the above integrals, the integrands are positive due to the fact that

β1 > 0, β−1 ≤ 0, and A′′ > A, and both integrals are negative since

r < r2. Then ln(a/r) < 0 implies that the radial elastic modulus of

the deformed wall is larger in the filled cell with increasing internal

volume and no internal pressure than in the empty cell.
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We conclude that, for sufficiently small δ2,

E′ > E′′ > E ,

i.e., the radial elastic modulus of the deforming wall is larger in the

filled cell with fixed internal volume (and non-zero cell pressure) than

when the internal volume increases (and there is no internal pressure),

and smaller in the empty cell.

Influence of wall thickness. Next, we compare the behaviour of two

walls of different thickness subject to the deformation (3.2.3). Taking

the original wall as the ‘thin’ wall, we assume that the ‘thicker’ wall

occupies the reference domain [X1, X
′
2]× [−Y0, Y0]× [−Z0, Z0], where

X ′
2 > X2, and denote by σ′ the Cauchy stress in this wall, and by E′ the

associated elastic modulus (3.2.7). Then setting σ′
rr(r

′
2) = σrr(r2) =

−p0 ≤ 0, we obtain

E′ − E =
1

ln(a/r)

∫ r2

r′2

β1
r

(
A2r2

a
− a2

r2

)
dr

+
1

ln(a/r)

∫ r2

r′2

β−1

r

(
a

A2r2
− r2

a2

)
dr

> 0, r ∈ [r1, r2].

In the above integrals, the integrands are positive due to the fact that

β1 > 0, β−1 ≤ 0, and A2r2/a > 1 > a2/r2, and both integrals are

negative since r2 < r′2. Then ln(a/r) < 0 implies that the radial

elastic modulus increases as the thickness of the cell wall increases.

Multi-layer wall. We also consider the case when a second wall

is “attached” to the first wall in the sense that the relative radial

displacement across the common interface is equal to zero, and both

walls deform by (3.2.3), while each wall may made from a different
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hyperelastic material. Specifically, let the second wall occupy the

domain [X2, X
′
2] × [−Y0, Y0] × [−Z0, Z0] in the reference state, and

[r2, r
′
2]× [−θ0, θ0]× [−z0, z0] in the deformed state, where X ′

2 > 0 and

r′2 > 0 are constants (figure 3.2.3).

Figure 3.2.3: Schematic of elastic bending of a two-layer wall, where each layer may
contain a different hyperelastic material.

We verify how the stiffness of the first wall is modified by the pres-

ence of the second wall. We denote by σ′ the Cauchy stress for either

walls, and by E′ the associated radial elastic modulus (3.2.7). When

the radial strain satisfies Brr < 1 for both walls, setting σ′
rr(r

′
2) =

−p0 ≤ 0, the radial stress of the second wall takes the form

σ′
rr(r) = −p0 +

∫ r

r′2

β′
1

r

(
A2r2

a
− a2

r2

)
dr+

∫ r

r′2

β′
−1

r

(
a

A2r2
− r2

a2

)
dr

≤ −p0, r ∈ [r2, r
′
2],

where β′
1 > 0 and β′

−1 ≤ 0 are the material responses for this wall.

For the first wall, the radial stress is

σ′
rr(r) =σ′

rr(r2) +

∫ r

r2

β1
r

(
A2r2

a
− a2

r2

)
dr

+

∫ r

r2

β−1

r

(
a

A2r2
− r2

a2

)
dr

≤ σ′
rr(r2), r ∈ [r1, r2],
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where β1 > 0 and β−1 ≤ 0 are the corresponding material responses.

If σ represents the Cauchy stress of the original wall when no other

wall is attached, such that σrr(r2) = −p0, then

E′ − E =
σ′
rr(r2) + p0

lnB
1/2
rr

=
1

ln(a/r)

∫ r2

r′2

β′
1

r

(
A2r2

a
− a2

r2

)
dr

+
1

ln(a/r)

∫ r2

r′2

β′
−1

r

(
a

A2r2
− r2

a2

)
dr

> 0, r ∈ [r1, r2].

In the above integrals, the integrands are positive due to the fact

that β′
1 > 0, β′

−1 ≤ 0, and A2r2/a > 1 > a2/r2, and both integrals are

negative since r2 < r′2. Then ln(a/r) < 0 implies that the radial elastic

modulus of the first wall is larger when a second wall is attached to

it in the direction of its decreasing curvature. Since the magnitude

of σ′
rr(r2) relative to −p0 increases when the thickness of the second

wall increases, the elastic modulus of the first wall increases with the

thickness of the attached wall.

This analysis extends to the case with multiply layered cell walls. In

particular, when a third wall, which may be made from a different ma-

terial occupying the reference domain [X ′
2, X

′′
2 ]× [−Y0, Y0]× [−Z0, Z0],

where X ′′
2 > 0 is constant, is further attached to the second wall in the

direction of its decreasing curvature, and the three walls deform simul-

taneously by (3.2.3), then the stiffness of both the first and the second

(middle) wall is enhanced by the contact with the adjacent walls. For

sandwich structures in bending, this implies that the stiffness of the

middle layer will be enhanced in part by the contact conditions with

the adjacent layers.
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Influence of number of walls when the total material volume

is fixed. We further examine the mean elastic modulus for two thin

walls which deform separately by (3.2.3) with that for a single thick

wall made from the same material and subject to the same deforma-

tion, when the total volume of the two thin walls is equal to that of

the thick wall. We take the two thin walls equal in size, with a thin

wall [X1, X2]× [−Y0, Y0]× [−Z0, Z0] deforming into [r1, r2]× [−θ0, θ0]×

[−z0, z0], and the thick wall [X1, X
′
2] × [−Y0, Y0] × [−Z0, Z0] deform-

ing into [r1, r
′
2] × [−θ0, θ0] × [−z0, z0], where X ′

2 − X1 = 2(X2 − X1),

implying that r
′2
2 − r21 = 2

(
r22 − r21

)
(figure 3.2.4).

d 2dd

Figure 3.2.4: Schematic of elastic bending of two thin blocks (left) and one thick
block (right).

In the radial direction, we define the mean elastic modulus for the

thin walls as

Ē =
2

r22 − r21

∫ r22

r21

Erdr,

and for the thick wall as

Ē ′ =
2

r
′2
2 − r21

∫ r
′2
2

r21

Erdr,

where E is the radial elastic modulus given by (3.2.7). Note that the

mean elastic modulus for the two equal thin walls is the same as for a

single thin wall.
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If the corresponding stresses satisfy σrr(r2) = −p0 ≤ 0 and σ′
rr(r

′
2) =

−p′0 ≤ 0, respectively, such that σrr(r1) = σ′
rr(r1), we obtain

Ē − Ē ′ =
2

r22 − r21

∫ r22

r21

Erdr − 2

r
′2
2 − r21

∫ r
′2
2

r21

Erdr

=
2

r22 − r21

∫ r22

r21

Erdr − 2

r
′2
2 − r21

∫ r22

r21

Erdr − 2

r
′2
2 − r21

∫ r
′2
2

r22

Erdr

=
2

r22 − r21

∫ r22

r21

Erdr − 1

r22 − r21

∫ r22

r21

Erdr − 1

r22 − r21

∫ r
′2
2

r22

Erdr

=
1

2(X2 −X1)

∫ X2

X1

EdX − 1

2(X2 −X1)

∫ X ′
2

X2

EdX

=
1

2(X2 −X1)

∫ X2

X1

[E(X)− E(X2 +X −X1)] dX

> 0.

The above inequality holds since E defined by (3.2.7) decreases as

r increases and r increases as X increases, hence E decreases as X

increases. Therefore the mean elastic modulus of the thin walls is

greater than the mean modulus of the thick wall.

Since the mean elastic modulus for n equal thin walls is the same

as for a single thin wall, the calculations remain unchanged when the

two thin walls [X1, X2] × [−Y0, Y0] × [−Z0, Z0] are replaced by four

equal walls [X1, X2]× [−Y0/2, Y0/2]× [−Z0, Z0].

The analysis extends to the case with n > 2 equal cell walls. For

example, if three equal thin walls having reference domains [X1, X2]×

[−Y0, Y0] × [−Z0, Z0] are compared with two equal thicker walls with

reference domains [X1, X
′
2]× [−Y0, Y0]× [−Z0, Z0], where 2(X

′
2−X1) =
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3(X2 −X1), which implies that 2
(
r
′2
2 − r21

)
= 3

(
r22 − r21

)
, then

Ē − Ē ′ =
2

r22 − r21

∫ r22

r21

Erdr − 2

r
′2
2 − r21

∫ r
′2
2

r21

Erdr

=
2

r22 − r21

∫ r22

r21

Erdr − 2

r
′2
2 − r21

∫ r22

r21

Erdr − 2

r
′2
2 − r21

∫ r
′2
2

r22

Erdr

=
6

3(r22 − r21)

∫ r22

r21

Erdr − 4

3(r22 − r21)

∫ r22

r21

Erdr

− 4

3(r22 − r21)

∫ r
′2
2

r22

Erdr

=
1

3(X2 −X1)

∫ X2

X1

EdX − 2

3(X2 −X1)

∫ X ′
2

X2

EdX

=
1

3(X2 −X1)

∫ X2

X1

[E(X)− E(X2 + (X −X1)/2)] dX

> 0.

It follows that the mean elastic modulus increases as the number of

equal thin walls increases when the total material volume remains un-

changed. Similar results are obtained when Brr > 1 (radial extension.

In this case, by the PC inequalities, the associated stress component

is positive, i.e. σrr > 0 (radial tension).

3.2.2 Optimisation problem

Since the radial elastic modulus (3.2.7) increases monotonically as

the thickness of the cell wall increases, we employ this modulus to

determine the minimum cell wall thickness for the deformation (3.2.3).

Assuming Brr < 1, we formulate the following optimisation problem

[41]

find r1 = sup V, V = {r < r2 | E(r) ≥ C } ,

where C > 0 is a given target value.
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The goal is to find the range of values for the internal radius r1

under which the above optimisation problem is well posed. For this

problem, the existence of a solution is guaranteed since the range of

admissible values V is a bounded non-empty set.

Next, we employ the radial elastic modulus to find the minimum

applied pressure for the deformation (3.2.3), and formulate the follow-

ing constrained optimisation problem

find p0 = inf V, V = {p > 0 | E(r) ≥ C } .

This problem also has a solution if the set of admissible values V is

non-empty. Since E(r) increases monotonically as p0 increases, there

exist p0 > 0, such that E(r) ≥ C for all r ∈ [r1, r2], i.e., the set V is

non-empty.

Similarly, the radial elastic modulus can be useful in finding the

minimum number of walls for the deformation (3.2.3) when the total

volume of material is fixed

find n0 = min

{
n ∈ N

∣∣∣∣∣
1

n(r22 − r21)

∫ r21+n(r22−r21)

r21

E(r)dr ≥ C

}
.

Since, for a fixed volume of elastic material, the mean elastic modulus

increases as n increases, the set of feasible values is non-empty, hence

this optimisation problem has a solution.

We conclude that constraints involving a bound on the radial elastic

modulus (3.2.7) guarantee a feasible solution to the problem of finding

the optimal wall thickness, surface pressure, or number of walls when

the total volume of solid material remains fixed under the deformation

(3.2.3). The epigraph for the corresponding optimisation function is
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dd00

epi (d)f
f(d)

E(d)-C

Figure 3.2.5: Epigraph of function f : V = {d > 0 | E(d) ≥ C } → R, f(d) = d.

illustrated graphically in figure 3.2.5.

3.3 Straightening of curved walls

A cell wall in the shape of an annular wedge with reference geometry

(R,Θ, Z) ∈ [R1, R2]× [−Θ0,Θ0]× [−Z0, Z0], where R1, R2, Θ0, and Z0

are positive constants, is first deformed by the uniform stretch [128,

pp. 188-189]

R̃ =
√
aR, Θ̃ = Θ, Z̃ =

Z

a
, (3.3.1)

where (R̃, Θ̃, Z̃) and (R,Θ, Z) are the cylindrical polar coordinates

for the deformed and the reference configuration, respectively, and a

is a positive constant. For the deformation (3.3.1), the deformation

gradient satisfies 


dR̃

R̃dΘ̃

dZ̃


 = F




dR

RdΘ

dZ



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and is equal to

F =




∂R̃/∂R 0 0

0 (R̃/R)∂Θ̃/∂Θ 0

0 0 ∂Z̃/∂Z




=




√
a 0 0

0
√
a 0

0 0 1/a


 .

The associated left Cauchy-Green tensor and its inverse are respec-

tively

B = FFT =




a 0 0

0 a 0

0 0 1/a2


 ,

B−1 =




1/a 0 0

0 1/a 0

0 0 a2


 .

By the representation (2.2.3), the non-zero components of the corre-

sponding Cauchy stress tensor take the form [128, p. 190]

σ
(0)

R̃R̃
= σ

(0)

Θ̃Θ̃
= −p+ β1a+

β−1

a
, σ

(0)

Z̃Z̃
= −p+

β1
a2

+ β−1a
2,

or equivalently, by setting −p0 := −p+ β1a+ β−1/a

σ
(0)

R̃R̃
= σ

(0)

Θ̃Θ̃
= −p0, σ

(0)

Z̃Z̃
= −p0 − β1a

(
1− 1

a3

)
+

β−1

a

(
a3 − 1

)
.
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Next, the deformed wall is “straightened” into a rectangular block by

the deformation [128, pp. 188-189]

x =
A2

2
R̃2, y =

Θ̃

A
, z =

Z̃

A
, (3.3.2)

where (x, y, z) ∈ [x1, x2] × [−y0, y0] × [−z0, z0] are the Cartesian co-

ordinates for the current configuration, and x1, x2, y0, z0, and A are

positive constants (figure 3.3.1).

The combined deformation given by the successive deformations

(3.3.1) and (3.3.2) is defined by [128, pp. 188-189]

x =
A2a

2
R2, y =

Θ

A
, z =

Z

Aa
. (3.3.3)

For this deformation, the gradient satisfies




dx

dy

dz


 = F




dR

RdΘ

dZ


 ,

hence, in terms of the current Cartesian coordinates (x, y, z), the de-

formation gradient is equal to

F =




∂x/∂R 0 0

0 (1/R)∂y/∂Θ 0

0 0 ∂z/∂Z




=




A
√
2ax 0 0

0
√
a/(2x) 0

0 0 1/(Aa)


 .

The corresponding left Cauchy-Green tensor and its inverse are re-
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spectively

B =




2A2ax 0 0

0 a/(2x) 0

0 0 1/(A2a2)


 ,

B−1 =




1/
(
2A2ax

)
0 0

0 2x/a 0

0 0 A2a2


 .

By (2.2.3), the non-zero components of the associated Cauchy stress

tensor take the form

σxx = −p+ β12A
2ax+ β−1

1

2A2ax
,

σyy = −p+ β1
a

2x
+ β−1

2x

a
,

σzz = −p+ β1
1

A2a2
+ β−1A

2a2.

(3.3.4)

In the absence of body forces, by the equilibrium equation (2.3.1), the

non-zero components of the Cauchy stress satisfy

∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

= 0,

∂σyx
∂x

+
∂σyy
∂y

+
∂σzy
∂z

= 0,

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

= 0.

(3.3.5)

By the semi-inverse method, since for the deformation (3.3.3), the

stress components (3.3.4) depend only on x , the system of equations

(3.3.5) simplifies to
∂σxx
∂x

= 0, (3.3.6)

and integration with respect to x of equation (3.3.6) together with
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(3.3.4) gives [128, p. 189]

σxx = −p0,

σyy = σxx + β1

( a

2x
− 2A2ax

)
+ β−1

(
2x

a
− 1

2A2ax

)
,

σzz = σxx + β1

(
1

A2a2
− 2A2ax

)
+ β−1

(
A2a2 − 1

2A2ax

)
.

Figure 3.3.1: Schematic of straightening of a curved wall.

3.3.1 Nonlinear elastic modulus

For the deformation (3.3.3), the x-direction is a principal direction.

Assuming that this deformation is a contraction in the x-direction,

i.e., Bxx = 2A2ax < 1, by the PC inequalities, the associated stress

component is compressive, i.e.

σxx = −p0 ≤ 0, x ∈ [x1, x2].

Since p0 is constant, the stress component σxx is constant.

For the deforming wall, we define the nonlinear elastic modulus as

the ratio between the Cauchy stress and the logarithmic strain [11,

pp. 218-219] in the x-direction

E =
σxx

lnB
1/2
xx

. (3.3.7)
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Note that, since σxx < 0 is constant and 1/ lnB
1/2
xx < 0 decreases as x

increases, it follows that E increases as x increases.

Influence of internal pressure. We compare the values of the

modulus of elasticity (3.3.7) when the cell is empty and when the cell

is filled with an incompressible core. Let σ′ and σ denote the Cauchy

stress for the filled cell and the empty cell, respectively, and E′ and

E be the corresponding elastic moduli. Setting σ′
xx = −p0 < 0 and

σxx = 0, we obtain

E′ − E = − p0

ln(A
√
2ax)

> 0, x ∈ [x1, x2].

Hence the elastic modulus in the transverse direction of the deformed

wall is greater in the filled cell than in the empty cell, and the gap

between the two moduli increases as the magnitude of −p0 increases.

Influence of wall thickness. Since σxx is constant, if −p0 < 0, then

the elastic modulus (3.3.7) is a monotonic function of x and increases

as the thickness of the wall increases.

Influence of number of walls when the total material volume

is fixed. We also compare the mean elastic modulus of two thin

walls deforming separately by (3.3.3) with that of a single thick wall

made from the same material and subject to the same deformation,

when the total volume of the two thin walls is equal to that of the

thick wall. We take the two thin walls equal in size, with a thin wall

[R1, R2] × [−Θ0,Θ0] × [−Z0, Z0] deforming into [x1, x2] × [−y0, y0] ×

[−z0, z0], and the thick wall [R′
1, R2]× [−Θ0,Θ0]× [−Z0, Z0] deforming

into [x′1, x2]× [−y0, y0]× [−z0, z0], where R
2
2−R

′2
1 = 2(R2

2−R2
1), hence

x2 − x′1 = 2(x2 − x1).

In the x-direction, we define the mean elastic modulus for the thin
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walls as

Ē =
1

x2 − x1

∫ x2

x1

Edx,

and for the thick wall as

Ē ′ =
1

x2 − x′1

∫ x2

x′
1

Edx,

where E is the elastic modulus given by (3.3.7). Note that the mean

elastic modulus for the two equal thin walls is the same as for a single

thin wall.

If the associated stresses satisfy σxx = σ′
xx = −p0 ≤ 0, then

Ē − Ē ′ =
1

x2 − x1

∫ x2

x1

Edx− 1

x2 − x′1

∫ x2

x′
1

Edx

=
1

x2 − x1

∫ x2

x1

Edx− 1

x2 − x′1

∫ x1

x′
1

Edx− 1

x2 − x′1

∫ x2

x1

Edx

=
1

2(x2 − x1)

∫ x2

x1

2Edx− 1

2(x2 − x1)

∫ x1

x′
1

Edx

− 1

2(x2 − x1)

∫ x2

x1

Edx

=
1

2(x2 − x1)

∫ x2

x1

[E(x)− E(x1 + x− x2)] dx

> 0.

The above inequality holds since E defined by (3.3.7) is an increasing

function of x. Hence the mean elastic modulus of the thin walls is

greater than the mean modulus of the thick wall.

Since the mean elastic modulus for n equal thin walls is the same

as for a single thin wall, the calculations remain unchanged if the two

thin walls [R1, R2]× [−Θ0,Θ0]× [−Z0, Z0] are replaced by four equal

walls [R1, R2]× [−Θ0/2,Θ0/2]× [−Z0, Z0].

The analysis extends to the case with n > 2 equal cell walls.
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For example, when three equal thin walls having reference domains

[R1, R2]× [−Θ0,Θ0]× [−Z0, Z0] are compared with two equal thicker

walls with reference domains [R′
1, R2] × [−Θ0,Θ0] × [−Z0, Z0], where

2(R2
2 −R

′2
1 ) = 3(R2

2 −R2
1), hence 2(x2 − x′1) = 3(x2 − x1),

Ē − Ē ′ =
1

x2 − x1

∫ x2

x1

Edx− 1

x2 − x′1

∫ x2

x′
1

Edx

=
1

x2 − x1

∫ x2

x1

Edx− 1

x2 − x′1

∫ x1

x′
1

2Edx− 1

x2 − x′1

∫ x2

x1

2Edx

=
1

3(x2 − x1)

∫ x2

x1

3Edx− 1

3(x2 − x1)

∫ x1

x′
1

2Edx

− 1

3(x2 − x1)

∫ x2

x1

2Edx

=
1

3(x2 − x1)

∫ x2

x1

[E(x)− E(x1 + (x− x2)/2)] dx

> 0.

Thus the mean elastic modulus increases as the number of equal thin

walls increases if the total material volume remains unchanged. Sim-

ilar results can be obtained when Bxx > 1. In this case, by the PC

inequalities, σxx > 0.

3.3.2 Optimisation problem

Since the nonlinear elastic modulus defined by (3.3.7) increases with

the wall thickness, we can employ this modulus to find the minimum

wall thickness for the deformation (3.3.3). When Bxx = 2A2ax < 1,

we formulate the following optimisation problem [41]

find x2 = inf V, V = {x > x1 | E(x) ≥ C } ,
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where C > 0 is given. Since

E(x) = − p0

ln(A
√
2ax)

≥ C, for all x ≥ e−2C/p0

2A2a
,

we deduce that V is bounded and non-empty, hence the optimisation

problem has a solution.

If Bxx > 1, then the optimisation problem is

find x1 = sup V, V = {x < x2 | E(x) ≥ C } ,

where C > 0 is given. In this case, since

E(x) = − p0

ln(A
√
2ax)

≥ C, for all x ≤ e−2p0/C

2A2a
,

V is bounded and non-empty, hence the optimisation problem has a

solution.

The problem of finding the minimum surface pressure or number

of walls when the total volume of elastic material is fixed can be for-

mulated analogously.

Therefore the constraint represented by a bound on the elastic mod-

ulus (3.3.7) can be employed to determine the minimum wall thickness,

surface pressure, or number of walls when the total volume of solid

material remains fixed under the deformation (3.3.3).

3.4 Torsion of circular tubes and cylinders

A circular cylindrical tube (or annular wedge) occupying the domain

(R,Θ, Z) ∈ [R1, R2] × [−Θ0,Θ0] × [−Z0, Z0], where R1, R2, Θ0, and

Z0 are positive constants, is first deformed by the uniform stretch

(3.3.1). The deformed tube is then further subjected to the simple
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torsion [128, pp. 189-191]

r = R̃, θ = Θ̃ + τZ̃, z = Z̃, (3.4.1)

where (r, θ, z) and (R̃, Θ̃, Z̃) are the cylindrical polar coordinates for

the current and the pre-deformed tube, respectively, and τ is a positive

constant (figure 3.4.1). Note that, during the deformation (3.4.1),

the circular plane section at Z = 0 remains fixed, and each circular

plane section normal to the central axis remains plane and rotates

by an angle τZ. Hence this deformation can also be regarded as

a shear deformation in the transverse direction Θ. The combined

deformation given by the successive deformations (3.3.1) and (3.4.1)

takes the form [86], [128, pp. 188-191]

r =
√
aR, θ = Θ+

τ

a
Z, z =

Z

a
. (3.4.2)

For this deformation, the gradient satisfies




dr

rdθ

dz


 = F




dR

RdΘ

dZ


 ,

hence the deformation gradient in terms of the current cylindrical

polar coordinates (r, θ, z) is equal to

F =




∂r/∂R 0 0

0 (r/R)∂θ/∂Θ r∂θ/∂Z

0 0 ∂z/∂Z


 =




√
a 0 0

0
√
a τr/a

0 0 1/a


 .
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The associated left Cauchy-Green tensor and its inverse are respec-

tively

B = FFT =




a 0 0

0 a+ τ 2r2/a2 τr/a2

0 τr/a2 1/a2


 ,

B−1 =




1/a 0 0

0 1/a −τr/a

0 −τr/a a2 + τ 2r2/a


 .

By the representation (2.2.3), the non-zero components of the Cauchy

stress tensor take the form

σrr = −p+ β1a+ β−1
1

a
,

σθθ = −p+ β1

(
a+

τ 2r2

a2

)
+ β−1

1

a
,

σθz = β1
τr

a2
− β−1

τr

a
,

σzz = −p+ β1
1

a2
+ β−1

(
a2 +

τ 2r2

a

)
.

(3.4.3)

By the semi-inverse method, since for the deformation (3.4.2) the

stress components (3.4.3) depend only on r, the system of equations

(3.2.5) reduces to (3.2.6), and integration with respect to r of (3.2.6)

together with (3.4.3) implies [128, p. 190]

σrr =
τ 2

a2

∫
β1rdr,

σθθ = σrr + β1r
2τ

2

a2
,

σθz = r
τ

a

(
β1
a

− β−1

)
,

σzz = σrr − β1a

(
1− 1

a3

)
+

β−1

a

(
a3 − 1

)
+ β−1r

2τ
2

a
.
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Figure 3.4.1: Schematic of combined stretch and torsion of a circular cylindrical
tube.

3.4.1 Nonlinear elastic modulus

For the deformation (3.4.2), the radial direction is a principal direc-

tion. Assuming contraction in the radial direction, i.e., Brr = a < 1,

by the PC inequalities, the associated stress component is negative

(radial compression). Setting σrr = −p0 ≤ 0 at the external surface

r = r2, we obtain

σrr = −p0 +

∫ r

r2

β1r
τ 2

a2
dr ≤ −p0 ≤ 0, r ∈ [r1, r2].

Since, in the above integral, the integrand is positive, σrr is an increas-

ing function of r. Equivalently, the radial stress can be expressed as

follows

σrr = σrr(r1) +

∫ r

r1

β1r
τ 2

a2
dr, r ∈ [r1, r2].

For the deformed tube, we define the nonlinear elastic modulus as

the ratio between the Cauchy stress and the logarithmic strain [11,
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pp. 218-219] in the radial direction

E =
σrr

lnB
1/2
rr

. (3.4.4)

Note that, since σrr < 0 increases as r increases and 1/ lnB
1/2
rr < 0 is

constant, it follows that E decreases when r increases.

Influence of internal pressure. We first compare the values of the

modulus of elasticity (3.4.4) when the tube is empty and when the tube

is filled with an incompressible core. Let σ′ and σ denote the Cauchy

stress for the filled tube and the empty tube, respectively, and E′ and

E be the corresponding elastic moduli. Setting σ′
rr(r2) = −p0 < 0 and

σrr(r2) = 0, at equal strains, we deduce that

E′ − E = − p0
ln
√
a
> 0, r ∈ [r1, r2].

Hence the radial elastic modulus of the deformed wall is greater for

the filled tube than for the empty tube, and the gap between the

respective moduli increases as the magnitude of −p0 increases.

Influence of tube thickness. Next, we compare the behaviour of

two tubes with different wall thickness. Let σ′ denote the Cauchy

stress when r′2 > r2 and r′1 = r1, and E′ be the associated elastic

modulus (3.4.4). Since σrr is an increasing function of r, if σ′
rr(r

′
2) =

σrr(r2) = −p0 ≤ 0, then

E′ − E =
1

ln
√
a

∫ r2

r′2

β1r
τ 2

a2
dr > 0, r ∈ [r1, r2].

In the above integral, the integrand is positive and r2 < r′2, hence the

integral is negative. Since ln
√
a < 0, the elastic modulus in the radial

direction increases when the thickness of the tube wall increases.
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Multi-layer tube. We also examine the case when the original tube

is surrounded by a second tube which is “attached” to it in the sense

that the relative radial displacement across the common interface is

equal to zero, and both tubes deform by (3.4.2). Specifically, when

the second tube occupies the domain [R2, R
′
2]× [−Θ0,Θ0]× [−Z0, Z0]

in the reference configuration, and [r2, r
′
2]× [−θ0, θ0]× [−z0, z0] in the

deformed configuration, where R′
2 > 0 and r′2 > 0 are constants, we

wish to verify how the stiffness of the first tube is modified by the

presence of the surrounding tube.

We denote by σ′ the Cauchy stress for either tubes, and by E′ the

associated elastic modulus (3.4.4). If the radial strain satisfies Brr < 1

for both tubes, then setting σ′
rr(r

′
2) = −p0 ≤ 0, the radial stress of the

second tube takes the form

σ′
rr(r) = −p0 +

∫ r

r′2

β′
1r
τ ′2

a2
dr ≤ −p0 ≤ 0, r ∈ [r2, r

′
2],

where β′
1 > 0 is the material response for this tube and τ ′ > 0.

For the first tube, the radial stress is

σ′
rr = σ′

rr(r2) +

∫ r

r2

β1r
τ 2

a2
dr ≤ σ′

rr(r2), r ∈ [r1, r2],

where β1 > 0 is the corresponding material response and τ > 0.

At the same strain, if σ represents the Cauchy stress of the original

wall when no other wall is attached, such that σrr(r2) = −p0, then

E′ − E =
σ′
rr(r2) + p0

lnB
1/2
rr

=
1

ln
√
a

∫ r2

r′2

β′
1r
τ 2

a2
dr

> 0, r ∈ [r1, r2].
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In the above integral, the integrand is positive and r2 < r′2, hence the

integral is negative. Since ln
√
a < 0, the radial elastic modulus in the

first tube is greater when it is surrounded by a second tube. Since

the magnitude of σ′
rr(r2) relative to −p0 increases as the thickness of

the second tube increases, the elastic modulus of the first tube also

increases when the thickness of the surrounding tube increases.

The extension to the case of multiple tubes is straightforward. For

example, when the second tube is further surrounded by a third tube

with the reference domain [R′
2, R

′′
2]×[−Θ0,Θ0]×[−Z0, Z0], where R

′′
2 >

0 is constant, and all three tubes deform by (3.4.2), the stiffness of

both the first and the second (middle) tube is enhanced by the contact

with their surrounding tubes.

Influence of number of tubes when the total material volume

is fixed. We further compare the mean elastic modulus for two thin

tubes deforming separately by (3.4.2) with that of a single thick tube

made form the same material and subject to the same deformation,

when the total volume of solid material in the two thin tubes is equal

to that in the thick tube. We take the two thin tubes equal in size,

with each thin tube [R1, R2] × [−Θ0,Θ0] × [−Z0, Z0] deforming into

[r1, r2]× [−θ0, θ0]× [−z0, z0], and the thick tube [R1, R
′
2]× [−Θ0,Θ0]×

[−Z0, Z0] deforming into [r1, r
′
2]×[−θ0, θ0]×[−z0, z0], where R

′2
2 −R2

1 =

2(R2
2 −R2

1), hence r
′2
2 − r21 = 2(r22 − r21) (figure 3.4.2).

In the radial direction, we define the mean elastic modulus for the

thin tubes as

Ē =
2

r22 − r21

∫ r22

r21

Erdr,
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and for the thick tube as

Ē ′ =
2

r
′2
2 − r21

∫ r
′2
2

r21

Erdr

where E is the radial elastic modulus given by (3.4.4). Note that the

mean elastic modulus for the two equal thin tubes is the same as for

a single thin tube.

Setting σrr(r2) = −p0 ≤ 0 and σ′
rr(r

′
2) = −p′0 ≤ 0 for the corre-

sponding stresses, respectively, such that σrr(r1) = σ′
rr(r1), yields

Ē − Ē ′ =
2

r22 − r21

∫ r22

r21

Erdr − 2

r
′2
2 − r21

∫ r
′2
2

r21

Erdr

=
2

r22 − r21

∫ r22

r21

Erdr − 2

r
′2
2 − r21

∫ r22

r21

Erdr − 2

r
′2
2 − r21

∫ r
′2
2

r22

Erdr

=
2

r22 − r21

∫ r22

r21

Erdr − 1

r22 − r21

∫ r22

r21

Erdr − 1

r22 − r21

∫ r
′2
2

r22

Erdr

=
1

r22 − r21

∫ r22

r21

Erdr − 1

r22 − r21

∫ r
′2
2

r22

Erdr

=
1

2(C2 − C1)

∫ C2

C1

EdX − 1

2(C2 − C1)

∫ C ′
2

C2

EdX

=
1

2(C2 − C1)

∫ C2

C1

[E(X)− E(C2 +X − C1)] dX

> 0,

where the change of variable X = r2 was applied, and C1 = r21,

C2 = r22, C
′
2 = r

′2
2 . The above inequality holds since E defined by

(3.4.4) decreases as r increases and r increases as X increases, hence

E decreases as X increases. Therefore the mean modulus of the thin

tubes is greater than the mean modulus of the thick tube.

Since the mean elastic modulus for n equal thin tubes is the same

as for a single thin tube, the calculations remain unchanged when the
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R1

R2

R1

R2'R2

R1

Figure 3.4.2: Schematic of combined stretch and torsion of two thin (left) and one
thick (right) circular cylindrical tubes.

two thin tubes [R1, R2] × [−Θ0,Θ0] × [−Z0, Z0] are replaced by four

equal tubes [R1, R2]× [−Θ0,Θ0]× [−Z0/2, Z0/2].

The analysis extends directly to the case with n > 2 equal thin

tubes.

Another result of interest concerns the changes in the mechanical

properties of a compliant cylindrical core which occupies the interior

of a filled circular tube when subject to combined stretch and torsion.

The cylinder occupies the domain [0, R1] × [−Θ0,Θ0] × [−Z0, Z0] in

the undeformed state, and the tube and the cylinder are deformed

simultaneously by (3.4.2). For the solid cylinder, such that σrr =

−p0 ≤ 0 at the side surface r = r1, the radial stress satisfies

σrr = −p0 +

∫ r

r1

β1r
τ 2

a2
dr ≤ −p0 ≤ 0, r ∈ [0, r1].

Influence of cylinder thickness. For two cylinders of different

initial radius, let σ′ be the radial stress when r′1 > r1, and E′ be the

associated elastic modulus (3.4.4). Setting σ′
rr(r

′
1) = σrr(r1) = −p0 ≤
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0 implies

E′ − E =
1

ln
√
a

∫ r1

r′1

β1r
τ 2

a2
dr > 0, r ∈ [0, r1].

In the above integral, the integrand is positive and r1 < r′1, hence the

integral is negative. Since ln
√
a < 0, the elastic modulus in the radial

direction increases as the radius of the cylinder increases.

Multi-layer cylinder. We now compare the values of the modulus of

elasticity, also defined by (3.4.4), when the cylinder is free and when it

is surrounded by a circular tube. Let σ̄ and σ denote the Cauchy stress

of the cylinder when this is enclosed in a tube and when it is is free,

respectively, and Ē and E be the corresponding elastic moduli. Since

Brr < 1, at equal strains, setting σ̄rr(r1) = −p0 < 0 and σrr(r1) = 0,

we obtain

Ē − E = − p0
ln
√
a
> 0, r ∈ [0, r1].

Hence the radial elastic modulus is greater for the cylinder deforming

within the tube, and the gap between the moduli increases as the

magnitude of −p0 increases.

Influence of number of cylinders when the total material vol-

ume is fixed. Finally, we compare the mean elastic modulus for

two separate thin cylinders with the mean modulus for a single thick

cylinder made from the same material and subject to the same defor-

mation, when the total volume of the thin cylinders is equal to that

of the thick cylinder. We take the two thin cylinders equal in size,

with each thin cylinder [0, R1]× [−Θ0,Θ0]× [−Z0, Z0] deforming into

[0, r1]× [−θ0, θ0]× [−z0, z0], and the thick cylinder [0, R′
1]× [−Θ0,Θ0]×

[−Z0, Z0] deforming into [0, r′1]× [−θ0, θ0]× [−z0, z0], where R
′2
1 = 2R2

1
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(figure 3.4.3).

Setting σrr(r1) = −p0 ≤ 0 and σ′
rr(r

′
1) = −p′0 ≤ 0 for the corre-

sponding stresses, respectively, such that σrr(0) = σ′
rr(0), yields

Ē − Ē ′ =
2

r21

∫ r21

0

Erdr − 2

r
′2
1

∫ r
′2
1

0

Erdr

=
2

r21

∫ r21

0

Erdr − 2

r
′2
1

∫ r
′2
1

0

Erdr − 2

r
′2
1

∫ r
′2
1

0

Erdr

=
2

r21

∫ r21

0

Erdr − 1

r21

∫ r21

0

Erdr − 1

r21

∫ r
′2
1

0

Erdr

=
1

r21

∫ r21

0

Erdr − 1

r21

∫ r
′2
1

0

Erdr

=
1

2C1

∫ C1

0

EdX − 1

2C1

∫ C ′
1

C1

EdX

=
1

2C1

∫ C1

0

[E(X)− E(C1 +X)] dX

> 0,

where the change of variable X = r2 was applied, and C1 = r21, C
′
1 =

r
′2
1 . The above inequality holds since E defined by (3.4.4) decreases

as r increases and r increases as X increases, hence E decreases as X

increases. Therefore the mean modulus of the two thin cylinders is

greater than the mean modulus of the thick cylinder.

Since the mean elastic modulus for n equal thin cyliners is the same

as for a single thin cylinder, the calculations remain unchanged if the

two thin cylinders [0, R1]× [−Θ0,Θ0]× [−Z0, Z0] are replaced by four

equal cylinders [0, R1]× [−Θ0,Θ0]× [−Z0/2, Z0/2].

The analysis extends directly to the case with n > 2 equal thin

cylinders.
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R1 R1'R1

Figure 3.4.3: Schematic of combined stretch and torsion of two thin (left) and one
thick (right) circular cylinders.

3.4.2 Optimisation problem

Since the radial elastic modulus defined by (3.4.4) increases with the

tube wall thickness, we employ this modulus to find the minimum

wall thickness for the deformation (3.4.2). Assuming Brr = a < 1, we

formulate the following optimisation problem [41]

find r1 = sup V, V = {r < r2 | E(r) ≥ C } ,

where C > 0 is given. Since

E(r) = − p0
ln
√
a
+

1

ln
√
a

∫ r

r2

β1r
τ 2

a2
dr ≥ C,

for all r2 ≥ r22 +
a2 ln a

β1τ 2

(
C +

p0
ln
√
a

)
,

where 0 < a < 1 and p0 < 0 imply

a2 ln a

β1τ 2

(
C +

p0
ln
√
a

)
< 0,
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we deduce that

E(r) ≥ C for all

√
r22 +

a2 ln a

β1τ 2

(
C +

p0
ln
√
a

)
≤ r < r2.

Thus V is bounded and non-empty and the optimisation problem has

a solution.

The problem of finding the minimum surface pressure or number

of tubes when the total volume of elastic material is fixed can be

formulated analogously.

We conclude that the constraint involving a bound on the elastic

modulus (3.4.4) can be employed to find the optimal tube thickness,

surface pressure, or number of tubes when the total volume of solid

material remains fixed under the deformation (3.4.2), regardless of the

material responses.

3.5 Summary

In this chapter, for hyperelastic cell walls subject to different non-

homogeneous deformations, we identified a nonlinear elastic modulus

representing the ratio between the stress and the strain in a principal

direction associated with the change of curvature, and proved that

this modulus: (i) increases as the thickness of the cell wall increases

or when the wall is multi-layer, (ii) is smaller for a single thick wall

than for multiple thin walls made from the same volume of material,

and increases as the number of thin walls increases while the volume of

material remains unchanged, and (iii) increases also as the internal cell

pressure increases. Since these results are independent of the choice

of the strain energy function describing the cell wall material, the
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nonlinear elastic modulus identified here can be taken as indicative for

finding the optimum wall thickness, number of walls, or cell pressure

under similar deformations in a wide range of different hyperelastic

materials.



Chapter 4

Computational models

4.1 Introduction

In this chapter, we assess numerically the independent influence of

mechanical features, such as: (i) the wall thickness, (ii) the number of

cells when the total volume of elastic material in the structure is fixed,

and (iii) the stiffness of the compliant inclusions on the collective be-

haviour of groups of cells under large strain deformations. To achieve

this, we model periodic, honeycomb-like structures with regular geom-

etry, such as square, diamond-shape, and hexagonal cells, formed from

a single piece of elastic material which occupies a thin square domain of

(dimensionless) side one in the X-(horizontal) and Y-(vertical) direc-

tions, and 0.1 in the Z-(out-of-plane) direction, such that the cells are

equal in size throughout the structure. Each structure is deformed by

imposing the following boundary conditions: the lower external hori-

zontal face is fixed in the second/vertical/Y -direction and free to slide

in the first/horizontal/X-direction and in the third/out-of-plane/Z-

direction; the upper external horizontal face is subject to a prescribed

vertical displacement and is free to slide horizontally and out-of-plane;

and the remaining external and internal cell faces deform freely.

72
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The numerical results recorded here were obtained by a standard

finite element procedure implemented within the open-source software

Finite Elements for Biomechanics (FEBio) environment [73] (see sup-

plementary material for original source files). We note that, in the

finite element simulations, the resulting nonlinear elastic deformations

of the cell walls are generally more complex that the idealised defor-

mations studied analytically in the previous chapter. Since the finite

element implementation requires the strain energy function for the

cell wall material to be specified a priori, the following two different

hyperelastic models were used:

(NH) In the first model, the cell walls and the cell cores were char-

acterised by a compressible neo-Hookean strain energy density

function

W(I1, I2, I3) =
µ

2
(I1 − 3− ln I3) +

λ

2

(
ln I

1/2
3

)2

, (4.1.1)

where µ = E/[2(1+ν)] > 0 and λ = νE/[(1+ν)(1−2ν)] > 0 are

constants, and are equal to the corresponding Lamé parameters

from the linear elastic theory. In the numerical examples, we set

E = 0.1 MPa and ν = 0.49 for the cell walls, and E = 0.01

MPa (cellular pads 1) or E = 0.005 MPa (cellular pads 2) and

ν = 0.495 for the cell cores.

(MR) In the second model, the cell walls and the cell inclusions were

described by the generalised Mooney-Rivlin strain energy density

function

W(I1, I2, I3) =
µ1

2

(
I
−1/3
3 I1 − 3

)
+

µ2

2

(
I
−2/3
3 I2 − 3

)

+
κ

2

(
I
1/2
3 − 1

)2

,
(4.1.2)
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where µ1 and µ2 are constants, such that µ = µ1 + µ2 > 0 is

the shear modulus, and κ > 0 is the bulk modulus form linear

elasticity. In the numerical models, we set µ1 = 0.0016 MPa,

µ2 = 0.032 MPa, κ = 1.6667 MPa for the cell walls, and µ1 =

0.0001 MPa, µ2 = 0.0032 MPa, κ = 0.3333 MPa (cellular pads 1)

or µ1 = 0.0002 MPa, µ2 = 0.0015 MPa, κ = 0.1667 MPa (cellular

pads 2) for the inclusions.
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Figure 4.1.1: Nonlinear elastic modulus E normalised to E for the NH and MR
models.

These material models are representative for nonlinear hyperelas-

tic materials exhibiting different mechanical behaviours under simple

tension or compression [25, 81, 137]. Specifically, the nonlinear elastic

modulus representing the ratio between the Cauchy stress and the log-

arithmic strain in the direction of the applied tensile or compressive

force [11, pp. 218-219],

E =
a3 − 1

a2 ln a
(aβ1 − β−1) , (4.1.3)

where a > 0 is the stretch in the corresponding direction, increases as

tension increases and decreases as compression increases for the NH

model (4.1.1), and decreases under increasing tension and increases
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under increasing compression for the MR model (4.1.2). The parame-

ter (4.1.3) illustrates the relative behaviour of the tensile or compres-

sive stress of the hyperelastic material under the finite deformation

(figure 4.1.1).

For the structural models, the nonlinear elastic modulus was com-

puted as the quotient of the average value of the effective Cauchy

stress σeff to the effective logarithmic strain lnC
1/2
eff . The effective

value of a symmetric tensor S was defined as [59, 64]

Seff =

√
3

2

[(
S− 1

3
tr(S)I

)
:

(
S− 1

3
tr(S)I

)]

=

√√√√3

2
tr

[(
S− 1

3
tr(S)I

)T (
S− 1

3
tr(S)I

)]

=
√

S2
11 + S2

22 + S2
33 − S11S22 − S22S33 − S33S11 + 3 (S2

12 + S2
13 + S2

23).

The average effective value was calculated as

S̄eff =
1

N

N∑

i=1

Si,

where N is the number of finite elements and Si is the effective value

on the element i.

The rest of the chapter is organised as follows: in Section 4.2,

numerical examples show the mechanical effects due to the presence

of cell inclusions; in Section 4.3, the mechanical influence of increasing

the cell wall thickness is illustrated numerically; in Section 4.4, the

effects of increasing the number of cells while preserving the overall

volume of cell wall material are recorded.
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4.2 Influence of cell inclusions

(a) (b)

(c) (d)

Figure 4.2.1: Undeformed (a,c) honeycomb structures and (b,d) cellular pads with
(a,b) stacked and (c,d) staggered cells.

For the cellular structures shown in figure 4.2.1 (a) and (c), the

cells are squares of approximate side 0.2 in the horizontal and vertical

directions, and are arranged periodically in a stacked or staggered con-

figuration throughout the structure. The cellular pads in figure 4.2.1

(b) and (d) are obtained by filling the empty cells of the corresponding

honeycomb structure with a hyperelastic material which is softer than

the cell wall material, and complies with the deformation of the cell

walls in the sense that the displacements are continuous across the

interface between the walls and the inclusions. In these figures, the

finite element mesh is also shown.

For the honeycombs, the internal cell faces are free, while for the

cellular pads, the displacements are continuous across the interface
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(a) (b)

(c) (d)

Figure 4.2.2: FEBio simulations of deformed structures with NH components sub-
ject to 50% stretch in the vertical direction, showing the non-homogeneous Green-
Lagrange strains in the first principal (vertical) direction for (a,c) honeycomb struc-
tures and (b,d) cellular pads 1 with (a,b) stacked and (c,d) staggered cells.

between the cell walls and cell cores. The non-homogeneous deforma-

tions of the cellular structures of NH materials where E = 0.1 MPa

for the cell walls and E = 0.01 MPa for the cell cores are depicted

in figure 4.2.2. Note that, for the structures with staggered cells, the

cell geometry changes as the original horizontal walls appear to ‘bend’

outside the cells. Analogous deformations were observed in structures

made from MR materials.

In figure 4.2.3 (a,c) and figure 4.2.4 (a,c), we record the mean val-

ues of the effective Cauchy stress vs. those of the effective logarith-

mic strain throughout the solid matter. In figure 4.2.3 (b,d) and fig-

ure 4.2.4 (b,d), the nonlinear elastic modulus representing the ratio

between the mean effective Cauchy stress and the mean effective loga-

rithmic strain is indicated. In the plots, square symbols correspond to
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Figure 4.2.3: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for cellular structures with
(a,b) stacked and (c,d) staggered cells of NH material.
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Figure 4.2.4: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for cellular structures with
(a,b) stacked and (c,d) staggered cells of MR material.
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Figure 4.2.5: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for cellular structures of NH
material with different contact conditions between cell walls and cell cores.
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(a) (b)

Figure 4.2.6: Cross-section of undeformed (a) cylindrical structure and (b) cellular
pad with wedge shaped cells.
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Figure 4.2.7: (a) Mean effective Cauchy stress (MPa) and (b) nonlinear elastic mod-
ulus (MPa) vs. mean effective logarithmic strain for cylindrical cellular structures
with wedge shaped cells of MR material.
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the cell walls in the empty cells structure, stars are for the overall filled

cells structure (cellular pad), triangles correspond to the cell walls in

the cellular pad, and plus symbols are for the cell cores.

From these results, we infer that the cell walls are stiffer in the cellu-

lar pads than in the corresponding honeycombs, and also in structures

where the elastic modulus of the inclusions is higher (cellular pads 1)

compared to those where the elastic modulus of the inclusions is lower

(cellular pads 2). The numerical results for the staggered cells in fig-

ures 4.2.3 and 4.2.4 differ only slightly from those corresponding to the

stacked cells, suggesting that the observed behaviour is mainly due to

the elastic stretch, while the bending of the initially horizontal walls

in the staggered cells is responsible for a reduction in both the stress

level and the stiffness of the cell walls relative to those in the stacked

cells.

The overall elastic modulus of the cellular pads also increases as

the stiffness of the elastic core increases. For structures made from

NH and MR components (figures 4.2.3 and 4.2.4, respectively), as the

deformation increases, the nonlinear elastic modulus in the cell walls

of NH material increases whereas in those made from MR material

may decrease (figure 4.1.1), but in all cases, the stiffness of the cell

inclusions increases. Consequently, while the mean elastic modulus

of the cellular pads made from NH materials clearly increases, the

mean elastic modulus of the pads made from MR materials is almost

constant.

We further assess the nonlinear elastic modulus of cellular pads

when gaps are allowed to open between vertical walls and cell core. In

this case, figure 4.2.5 shows that the stiffness of the cell walls where
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core separation occurs is higher than in the empty cells, but lower

than in the case when full contact between cell walls and cell core is

maintained everywhere. These differences in the respective cell wall

stiffness also appear to increase as the deformation increases. The

nonlinear elastic modulus of the cellular pads with or without gaps is

approximately the same, and appears slightly larger when full contact

between the cell walls and the cell core is maintained if the deformation

is sufficiently large.

Finally, we model cylindrical structures with wedge shaped cells

which are either empty or filled with compliant cores. For these mod-

els, the radius of the cross-section is (dimensionless) unity, the height

is 0.2, and the cross-section geometry is illustrated in figure 4.2.6. The

corresponding boundary conditions are: a small twist (1.5% of 360◦)

superposed on axial compression (up to 20% of 0.2) prescribed on the

upper circular face, zero displacements on the lower circular face, and

free side surface, while the internal faces of the empty cells are free,

and at the interface between the cell walls and the cell cores, the dis-

placements are continuous. For structures made from MR materials,

the resulting stress-strain diagrams and elastic moduli are indicated

in figure 4.2.7. In this case also, the nonlinear elastic modulus of the

cell walls is larger when the cells are filled than when the cells are

empty, and under sufficiently large deformation, slightly larger if the

elastic modulus of the elastic core is higher (cylindrical pad 1) than

when the elastic modulus of the core is lower (cylindrical pad 2). How-

ever, the overall elastic modulus of the cylindrical pads appears almost

insensitive to the core stiffness.
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4.3 Influence of cell wall thickness

In figure 4.3.1, the undeformed structures with uniform cell size and

different cell wall thickness to length ratio (t/L) are shown. The de-

formed structures of NH material are illustrated in figure 4.3.2, where

the initially horizontal walls of the staggered cells bend, while the in-

clined walls of the diamond cells are sheared. Similar deformations

were observed in structures of MR material. For the model structures

of NH or MR material, the mean values of the effective Cauchy stress

vs. those of the effective logarithmic strain throughout the solid walls

are shown in figures 4.3.3, 4.3.4, 4.3.5, and 4.3.6 (a,c). The values of

the associated nonlinear elastic modulus defined as the ratio between

the mean effective Cauchy stress and the mean effective logarithmic

strain are represented in figures 4.3.3, 4.3.4, 4.3.5, and 4.3.6 (b,d),

respectively. The numerical results suggest that the stress and the

nonlinear elastic modulus increase with the cell wall thickness.

Table 4.3.1: Vertical displacement under applied tensile force of 100 N at the top
horizontal boundary for cellular structures of NH material with square cells having
different cell wall thickness to length ratio.

Cellular Structure Cell Wall Thickness Vertical Displacement

Stacked Cells thin (t/L ≈ 0.15) 1.229
medium (t/L ≈ 0.33) 0.4428
thick (t/L ≈ 0.95) 0.1686

Staggered Cells thin (t/L ≈ 0.15) 1.756
medium (t/L ≈ 0.33) 0.5941
thick (t/L ≈ 0.95) 0.1965

To see how the stiffness of the deformed cell walls affects the be-

haviour of the overall structure, we further compare the behaviour of

the model structures wity square cells under a fixed vertical tensile

load applied at the top horizontal boundary, while the conditions at
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Figure 4.3.1: Undeformed model structures with stacked (top row), staggered (mid-
dle top row), diamond (middle bottom row), and hexagon (bottom row) cell geome-
try, and thin (left column), medium (middle column), and thick (right column) cell
walls.
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Figure 4.3.2: FEBio simulations of deformed structures with stacked (top row),
staggered (middle top row), diamond (middle bottom row), and hexagon (bottom
row) cell geometry, and thin (left column), medium (middle column), and thick (right
column) cell walls of NH material subject to 50% stretch in the vertical direction,
showing the non-homogeneous Green-Lagrange strains in the first principal (vertical)
direction.
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Figure 4.3.3: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for stacked cells structures of
(a,b) NH and (c,d) MR material with different cell wall thickness.
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Figure 4.3.4: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for staggered cells structures
of (a,b) NH and (c,d) MR material with different cell wall thickness.
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Figure 4.3.5: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for diamond cells structures
of (a,b) NH and (c,d) MR material with different cell wall thickness.
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Figure 4.3.6: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for hexagon cells structures of
(a,b) NH and (c,d) MR material with different cell wall thickness.
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the other boundaries remain as before. The values for the vertical

displacements obtained for each structure are recorded in table 4.3.1,

and confirm that, under the same vertical force, the structures with

thicker walls will deform less than those with thinner walls.

4.4 Influence of cell density

In figure 4.4.1, the undeformed structures with uniform cell size and

an increasing number of cells while the volume of solid material re-

mains unchanged are presented. In these models, for the stacked and

diamond cells, the ratio between the thickness and the length of the

cell walls is also unchanged as the number of cells increases, while for

the staggered and hexagonal cells, this ratio increases slightly. The

deformed structures of NH material are shown in figure 4.4.2. For

the structures of NH or MR material with an increasing number of

cells, the mean values of the effective Cauchy stress vs. those of the

effective logarithmic strain throughout the solid walls are recorded in

figures 4.4.3, 4.4.4, 4.4.5, and 4.4.6 (a,c). The corresponding values

of the nonlinear elastic modulus are indicated in figures 4.4.3, 4.4.4,

4.4.5, and 4.4.6 (b,d). These results indicate that the stress and the

nonlinear elastic modulus increase as the number of cells increases.

The increase in stiffness as the number of cells increases was also ob-

served experimentally in similar structures of neo-Hookean silicone

rubber (figure A1 in the Appendix).

To verify how the stiffness of the deformed cell walls affects the

behaviour of the overall structure, we compare the behaviour of the

model structures under a fixed vertical tensile load applied at the top

horizontal boundary, while the conditions at the remaining boundaries
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Figure 4.4.1: Undeformed model structures with stacked (top row), staggered (mid-
dle top row), diamond (middle bottom row), and hexagon (bottom row) cell ge-
ometry, and 3 × 3 (left column), 5 × 5 (middle column), and 9 × 9 (right column)
cells.

Table 4.4.1: Vertical displacement under applied tensile force of 100 N at the top
horizontal boundary for cellular structures of NH material with different number of
cells and fixed material volume.

Cellular Structure Number of Cells Vertical Displacement

Stacked Cells 3× 3 0.4914
5× 5 0.4428
9× 9 0.4061

Staggered Cells 3× 3 0.6707
5× 5 0.5941
9× 9 0.4347
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Figure 4.4.2: FEBio simulations of deformed structures with stacked (top row),
staggered (middle top row), diamond (middle bottom row), and hexagon (bottom
row) cell geometry, and 3 × 3 (left column), 5 × 5 (middle column), and 9 × 9
(right column) cells of NH material subject to 50% stretch in the vertical direction,
showing the non-homogeneous Green-Lagrange strains in the first principal (vertical)
direction.
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Figure 4.4.3: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for stacked cells structures of
(a,b) NH and (c,d) MR material with different number of cells and fixed material
volume.



4.4 Influence of cell density 95

(a)
0 10 20 30 40 50

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
(NH) Stress−strain diagrams for staggered cells structures in tension

effective strain (%)

e
ff

e
c
ti
v
e

 s
tr

e
s
s

3×3 cells

5×5 cells

9×9 cells

(b)
0 10 20 30 40 50

4

4.5

5

5.5

6

6.5

7

7.5
x 10

−4 (NH) Elastic modulus for staggered cells structures in tension

tension (%)

a
v
e

ra
g

e
 e

la
s
ti
c
 m

o
d

u
lu

s

9×9 cells

5×5 cells

3×3 cells

(c)
0 10 20 30 40 50

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
(MR) Stress−strain diagrams for staggered cells structures in tension

effective strain (%)

e
ff

e
c
ti
v
e
 s

tr
e
s
s

3×3 cells

5×5 cells

9×9 cells

(d)
0 10 20 30 40 50

7.5

8

8.5

9

9.5

10
x 10

−4(MR) Elastic modulus for staggered cells structures in tension

tension (%)

a
v
e
ra

g
e
 e

la
s
ti
c
 m

o
d
u
lu

s

3×3 cells

5×5 cells

9×9 cells

Figure 4.4.4: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for staggered cells structures
of (a,b) NH and (c,d) MR material with different number of cells and fixed material
volume.
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Figure 4.4.5: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for diamond cells structures
of (a,b) NH and (c,d) MR material with different number of cells and fixed material
volume.
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Figure 4.4.6: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic
modulus (MPa) vs. mean effective logarithmic strain for hexagon cells structures of
(a,b) NH and (c,d) MR material with different number of cells and fixed material
volume.
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are as before. The corresponding values for the vertical displacements

of each structure are recorded in table 4.4.1, and confirm that, under

the same vertical force, the structures with fewer and larger cells will

deform more than those with smaller and more numerous cells.

The results obtained for the structures with increasing wall thick-

ness and with an increasing number of cells, respectively, imply that,

for cellular structures with similar cell geometries, if the number of

cells increases while the wall thickness is fixed, then the nonlinear

elastic modulus in the walls increases with the number of cells. This

result is consistent with the classical result that the elastic modulus

in a cellular structure increases as the ratio between the thickness and

the length of the cell walls increases (see [48,49]). However, for cellular

structures of nonlinear elastic material, the nonlinear elastic modulus

may also increase if the cell size decreases while both the ratio between

the thickness and the length of the cell walls and the total material

volume remain fixed, as shown by the computed models with stacked

and diamond cells.

In finitely deformed structures, the increase in the nonlinear elastic

modulus is due to the enhanced elasticity of the cell walls when more

material is added or when the same elastic material is distributed

more uniformly throughout the structure, activating the elasticity of

the hyperelastic walls. This type of elastic responses is similar to that

obtained in the case when the cells are filled with a softer elastic core,

where the elasticity of the deforming walls is activated and the walls

stiffen due to the contact with the cell core.
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4.5 Summary

In this chapter, for computational models made from different hyper-

elastic materials, our numerical results show that the nonlinear elastic

modulus of the cell walls in the direction of the applied force is in-

creased by increasing: (i) the thickness of the cell walls when the

number of cells is fixed, (ii) the number of cells when the overall vol-

ume of cell wall material in the structure remains fixed, or (iii) the

elastic modulus of the cell core. This is in agreement with the ana-

lytical results for the exact deformations from the previous chapter,

and may be regarded as an extension of those results to the computer

model structures. In all cases, the increase in the nonlinear elastic

modulus is due to the enhancement of the elastic behaviour of the

deforming cell walls when more material is added or if the same solid

material is distributed more uniformly throughout the structure, and

also when the cells are filled. Due to its monotonic behaviour, the non-

linear elastic modulus investigated here can be taken as indicative for

finding the optimum wall thickness, number of cells, or cell pressure

in similar structures.



Chapter 5

Nonlinear Poisson effects

5.1 Introduction

For an elastic material which is extended in one direction to a strain

E1 and deforms freely in the orthogonal direction to a strain E2, the

Poisson’s ratio can be defined as ν = −E2/E1. However, while for in-

finitesimal strains, the Poisson’s ratio is a constant, for large strains,

this ratio is usually a non-constant function of the deformation, as

shown in [10]. The deformation of cellular bodies under external load-

ing is typically non-homogeneous, due to both the cell wall material

and the individual cell geometry. In [84], for periodic cellular struc-

tures of nonlinear hyperelastic material with square, diamond, and

hexagonal cell geometry, it was demonstrated both analytically and

numerically that, if a structure contains walls which are sheared under

the applied tensile load, then the nonlinear Poisson’s ratio computed

as the negative quotient of the mean value of the logarithmic horizon-

tal strain to that of the logarithmic vertical strain in the solid walls

decreases as the vertical tension increases. The decrease in the non-

linear Poisson’s ratio was also observed in recent experimental test

for similar structures of neo-Hookean silicone rubber (figure A7 in the

100
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Appendix). In this chapter, we show how the nonlinear Poisson’s ra-

tio in the cell walls may change with: (i) the wall thickness and (ii)

the number of cells when the total volume of solid material in the

structure remains fixed.

In Section 5.2, the nonlinear Poisson’s ratio is computed and anal-

ysed locally for a cuboid wall which is sheared under the tensile loading

applied at the outer boundaries of the structure; in Section 5.3, nu-

merical results for the nonlinear Poisson’s ratio obtained when the

thickness of the cell walls increases and when the number of cells in-

creases while the material volume of the cell walls is preserved are

presented and discussed.

5.2 Sheared walls

In this section, following the analysis in [84], where cell walls which

were sheared while a cellular structure is stretched were identified as

causing a decrease in the nonlinear Poisson’s ratio, we consider two

generic large shear deformations of a cuboid cell wall of homogeneous

isotropic nonlinear hyperelastic material.

(a) (b)

Figure 5.2.1: Schematics of cross-section of unit cube (dashed line) deformed by (a)
simple or (b) generalised shear (continuous line).
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Simple shear superposed on axial stretch. The classical prob-

lem of simple shear involves finite plane deformations of a rectangular

section of a material in which straight lines parallel to, say the Y -axis,

are displaced relative to one another in the Y -direction, but remain

straight and parallel in the deformed body (figure 5.2.1 (a)). We

consider a rectangular wall deformed by the following simple shear

super-posed on triaxial stretch

x = aX, y = kaX + bY, z =
Z

ab
, (5.2.1)

where (x, y, z) and (X, Y, Z) are the Cartesian coordinates for the

deformed and the reference configuration, respectively, and a, b and

k are positive constants [86, 108]. For the deformation (5.2.1), the

gradient is equal to

F =




a 0 0

ak b 0

0 0 1/(ab)


 ,

and the right Cauchy-Green tensor takes the form

C = FTF =




a2(1 + k2) abk 0

abk b2 0

0 0 1/(a2b2)


 .

Assuming that the cell wall belongs to a cellular structure which is

stretched in the Y -direction, we can define the nonlinear Poisson’s ra-

tio throughout the structure as the negative quotient of the logarithmic
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strain in the X-direction to the logarithmic strain in the Y -direction

νC = − lnC
1/2
11

lnC
1/2
22

. (5.2.2)

Then, for the cell wall deformed by (5.2.1), the nonlinear Poisson’s

ratio (5.2.2) is equal to

νC = −
ln
[
a2

(
1 + k2

)]

ln b2
= − ln a2

ln b2
−

ln
(
1 + k2

)

ln b2
, (5.2.3)

Assuming that a and b are fixed and 0 < a < 1 < b, this ratio decreases

as the parameter k increases.

Generalised shear superposed on axial stretch. In the case of

generalised shear deformation, the straight lines parallel to the Y -

axis remain straight and parallel. For a Mooney-Rivlin material [92,

110], the straight lines parallel to the X-axis deform in the shape of a

quadratic parabola (figure 5.2.1) [51, pp. 127-129]. For compressible

isotropic materials, in the absence of body forces, the generalised shear

reduces to a simple shear deformation [29]. These results can be proven

as follows. We consider the following shear deformation

x = X, y = K(X) + Y, z = Z, (5.2.4)

where K is a general function to be determined. For the deformation

(5.2.4), the gradient is equal to

F =




1 0 0

K ′ 1 0

0 0 1


 ,

where K ′ is the derivative of K with respect to X. By the represen-
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tation (2.2.3), the non-zero components of the corresponding Cauchy

stress tensor take the form

σ11 = −p+ β1 + β−1

[
1 + (K ′)2

]
,

σ22 = −p+ β1
[
1 + (K ′)2

]
+ β−1,

σ12 = (β1 − β−1)K
′,

σ33 = −p+ β1 + β−1.

(5.2.5)

For a cuboid of general non-hyperelastic material, in the absence of

body forces, by the equilibrium equation (2.3.1), the non-zero compo-

nents of the Cauchy stress satisfy

∂σ11
∂x

+
∂σ12
∂y

= 0,

∂σ12
∂x

+
∂σ22
∂y

= 0,

∂σ33
∂z

= 0.

(5.2.6)

In the particular case when the material is described by the Mooney-

Rivlin model (2.2.12), by (2.2.2), β1 and β−1 are constants, and sub-

stitution of (5.2.5) in (5.2.6) yields

− ∂p

∂x
+ 2β−1K

′K ′′ = 0,

− ∂p

∂y
+ (β1 − β−1)K

′′ = 0,

− ∂p

∂z
= 0,

(5.2.7)

where K ′′ denotes the second derivative of K with respect to X. From

the third equation in (5.2.7) we deduce that p is independent of z, i.e.,

p = p(x, y), and differentiating the first equation with respect to y and
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the second equation with respect to x implies

∂2p

∂x∂y
= 0,

∂2p

∂x∂y
= (β1 − β−1)K

′′′,

where K ′′′ denotes the third derivative of K with respect to X. Hence

K ′′′ = 0, i.e., K ′′ is constant. We distinguish the following two cases:

(i) If K ′′ = 0, then K ′ = k1 is constant and K = k1X + k0 is a linear

function of X, where k1 and k0 are arbitrary constants. Assuming

that, during the deformation, the points of coordinates (0, Y, 0)

remain fixed and those of coordinates (1, Y, 0) are deformed into

(1, Y + k, 0) implies K(0) = 0 and K(1) = k, i.e., k0 = 0 and

k1 = k, and the deformation (5.2.4) reduces to a simple shear

with K = kX.

(ii) If K ′′ = 2k2 �= 0, then K ′ = 2k2X + k1 is linear, and K =

k2X
2 + k1X + k0 is a quadratic function of X, where k1 and

k0 are arbitrary constants. Assuming that the points of coordi-

nates (0, Y, 0) remain fixed and those of coordinates (1, Y, 0) are

deformed into (1, Y + k, 0) implies k0 = 0 and k1 + k2 = k.

Next, we analyse the nonlinear Poisson’s ratio under the following

generalised shear super-posed on triaxial stretch, where k1 = 0,

x = aX, y = K(aX) + bY, z =
Z

ab
, (5.2.8)

where K(aX) = ka2X2, and a and k are constants. The gradient of
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the deformation (5.2.8) is equal

F =




a 0 0

2a2kX b 0

0 0 1/(ab)


 ,

and the right Cauchy-Green tensor takes the form

C = FTF =




a2
(
1 + 4k2a2X2

)
2ka2bX 0

2ka2bX b2 0

0 0 1/(a2b2)


 .

In this case, the nonlinear Poisson’s ratio (5.2.2) is defined as follows

νC = −
ln
[
a2

(
1 + 4k2a2X2

)]

ln b2
= − ln a2

ln b2
−

ln
(
1 + 4k2a2X2

)

ln b2
. (5.2.9)

Hence, if a and b are fixed and 0 < a < 1 < b, then νC decreases as

the parameter k > 0 increases, and decreases also as X > 0 increases.

Influence of wall thickness. To compare the Poisson’s ratio of a

thin wall with that of a thick wall under the same shear deformation

(5.2.4), we assume that the thin wall occupies the reference domain

[X1, X2]× [−Y0, Y0]× [−Z0, Z0] and the thick wall occupies the refer-

ence domain [X ′
1, X2]× [−Y0, Y0]× [−Z0, Z0], such that X ′

1 < X1. By

calculations similar to those for the mean elastic modulus in Chapter
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3, it follows that

1

X2 −X1

∫ X2

X1

νCdX − 1

X2 −X ′
1

∫ X2

X ′
1

νCdX

=
1

X2 −X1

∫ X2

X1

νCdX − 1

X2 −X ′
1

∫ X2

X1

νCdX − 1

X2 −X ′
1

∫ X1

X ′
1

νCdX

=
X1 −X ′

1

(X2 −X1)(X2 −X ′
1)

∫ X2

X1

νCdX − 1

X2 −X ′
1

∫ X1

X ′
1

νCdX

=
X1 −X ′

1

X2 −X ′
1

(
1

X2 −X1

∫ X2

X1

νCdX − 1

X1 −X ′
1

∫ X1

X ′
1

νCdX

)

<
X1 −X ′

1

X2 −X ′
1

[
1

X2 −X1

∫ X2

X1

νC(X1)dX − 1

X1 −X ′
1

∫ X1

X ′
1

νC(X1)dX

]

= 0.

The above inequality holds since νC defined by (5.2.9) is a decreasing

function of X, and therefore νC(X) < νC(X1) for all X ∈ (X1, X2]

and νC(X) > νC(X1) for all X ∈ [X ′
1, X1).

Influence of number of walls when the total material volume

is fixed. Under the same generalised shear deformation (5.2.4), we

further compare the Poisson’s ratio of two thin walls deforming sepa-

rately with that of a single thick wall, such that the total volume of

the two thin walls is equal to that in the thick wall. In this case, we as-

sume that the thin walls are equal in size and that a thin wall occupies

the reference domain [X1, X2]× [−Y0, Y0]× [−Z0, Z0], while the thick

wall occupies the reference domain [X1, X
′
2] × [−Y0, Y0] × [−Z0, Z0],

such that X ′
2 −X1 = 2(X2 −X1). By calculations similar to those for
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the mean elastic modulus in Chapter 3, we obtain

1

X2 −X1

∫ X2

X1

νCdX − 1

X ′
2 −X1

∫ X ′
2

X1

νCdX

=
1

X2 −X1

∫ X2

X1

νCdX − 1

X ′
2 −X1

∫ X2

X1

νCdX − 1

X ′
2 −X1

∫ X ′
2

X2

νCdX

=
1

2(X2 −X1)

∫ X2

X1

2νCdX − 1

2(X2 −X1)

∫ X2

X1

νCdX

− 1

2(X2 −X1)

∫ X ′
2

X2

νCdX

=
1

2(X2 −X1)

∫ X2

X1

[νC(X)− νC(X +X2 −X1)] dX

> 0.

The above inequality holds since νC defined by (5.2.9) is a decreasing

function of X, and therefore νC(X) > νC(X +X2 −X1).

The analysis extends to the case with n > 2 cell walls. For exam-

ple, we compare the Poisson’s ratio of three thin walls with reference

domain [X1, X2]× [−Y0, Y0]× [−Z0, Z0] with the Poisson’s ratio of two

thicker walls with reference domain [X1, X
′
2] × [−Y0, Y0] × [−Z0, Z0],

such that 2(X ′
2 −X1) = 3(X2 −X1). Then

1

X2 −X1

∫ X2

X1

νCdX − 1

X ′
2 −X1

∫ X ′
2

X1

ν ′CdX

=
1

X2 −X1

∫ X2

X1

νCdX − 1

X ′
2 −X1

∫ X2

X1

ν ′CdX − 1

X ′
2 −X1

∫ X ′
2

X2

ν ′CdX

=
1

3(X2 −X1)

∫ X2

X1

3νCdX − 1

3(X2 −X1)

∫ X2

X1

2νCdX

− 1

3(X2 −X1)

∫ X ′
2

X2

2ν ′CdX

=
1

3(X2 −X1)

∫ X2

X1

[νC(X)− νC(X2 + (X −X1)/2)] dX

> 0.
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Hence the mean Poisson’s ratio increases as the number of thin walls

increases if the total material volume remains unchanged.

5.2.1 Optimisation problem

Since the nonlinear Poisson’s ratio defined by (5.2.2) increases with

the wall thickness and with the number of walls increases while the

total volume of elastic material is fixed, we can employ this ratio to

find the minimum wall thickness or the minimum number of walls

under the generalised shear superposed on axial stretch (5.2.8), where

0 < a < 1 < b and k > 0. We formulate the following optimisation

problem [41]

find X2 = inf V, V = {X > X1 | νC(X) ≤ C } ,

where C > 0 is the given threshold. Since

νC(X) = −
ln
[
a2

(
1 + 4a2k2X2

)]

ln b2
≤ C,

for all X satisfying

a2
(
1 + 4a2k2X2

)
≥ b−2C ,

or equivalently, for all X, such that

X2 ≥ 1− a2b2C

4a4k2b2C
,

it follows that V is bounded and non-empty, hence the optimisation

problem has a solution.
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5.3 Numerical results

The finite element models analysed here are the same honeycomb-

like structures with square, diamond-shape, and hexagonal cells de-

scribed in the previous chapter. Each structure is deformed by im-

posing the following boundary conditions: the lower external horizon-

tal face is fixed in the second/vertical/Y -direction and free to slide

in the first/horizontal/X-direction and in the third/out-of-plane/Z-

direction; the upper external horizontal face is subject to a prescribed

vertical displacement and is free to slide horizontally and out-of-plane;

and the remaining external and internal cell faces deform freely. The

numerical simulations represented in figures 4.3.2 and 4.4.2 show that,

for every structure, the deformation is always symmetric with respect

to the vertical axis, and that the initially horizontal walls of the stag-

gered cells bend and the inclined walls of the diamond and hexagon

cells are sheared. While the approximation of individual walls deform-

ing within such structures is not unique, it is appropriate to examine

theoretically the sheared walls by a generalised shear deformation as

discussed in the previous section. For the model structures, the non-

linear Poisson’s ratio was computed as the negative quotient of the

average value of the horizontal to the vertical component of the loga-

rithmic strain lnC1/2, where C is the right Cauchy-Green tensor and

the logarithmic function is applied component-wise. The average value

was calculated as the sum of the values on all the finite elements di-

vided by the number of elements. Again we remark that, in the finite

element simulations, the resulting nonlinear elastic deformations of

the cell walls are generally more complex than the exact deformations

studied analytically.
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5.3.1 Influence of cell wall thickness

For the structures of NH or MR material shown in the undeformed

state in figure 4.3.1 and subject to uniaxial extension as illustrated

in figure 4.3.2, the mean values of the nonlinear Poisson’s ratio are

represented in figures 5.3.1, 5.3.2, 5.3.3, and 5.3.4, respectively.

The numerical results indicate that the Poisson’s ratio decreases as

the deformation increases and increases as the thickness of cell walls

increases. In particular, for the structures with diamond and hexagon

cells, we can approximate theoretically the shearing of thin and thick

walls by the generalised shear deformation analysed in the previous

section. Analytically, we assumed that thin wall occupied initially a

reference domain [X1, X2] × [−Y0, Y0] × [−Z0, Z0] and the thick wall

occupied the reference domain [X ′
1, X2] × [−Y0, Y0] × [−Z0, Z0], such

that X ′
1 < X1. Applying the same general shear deformation to both

walls, we found that the mean Poisson’s ratio was greater for the thick

wall than for the thin wall. This is in agreement with the numerical

results plotted in figures 5.3.3 and 5.3.4, respectively.

5.3.2 Influence of cell density

For the structures of NH or MR material with an increasing number

of cells shown in the undeformed state in figure 4.4.1 and subject

to uniaxial extension as indicated in figure 4.4.2, the corresponding

values of the mean Poisson’s ratio are plotted in figures 5.3.5, 5.3.6,

5.3.7, and 5.3.8. In this case, the computed results suggest that the

Poisson’s ratio decreases as the deformation increases and increases as

the number of cells increases. In particular, for the model structures

with diamond and hexagon cells, we can approximate theoretically the
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Figure 5.3.1: Nonlinear Poisson’s ratio vs. vertical displacement for stacked cells
structures of (a) NH and (b) MR material with different cell wall thickness.
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Figure 5.3.2: Nonlinear Poisson’s ratio vs. vertical displacement for staggered cells
structures of (a) NH and (b) MR material with different cell wall thickness.



5.3 Numerical results 113

(a)
0 0.1 0.2 0.3 0.4 0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
(NH) Poisson’s ratio diagrams for diamond cells structures in tension

vertical displacement

P
o

is
s
o

n
’s

 r
a

ti
o

thin walls

medium walls

thick walls

(b)
0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
(MR) Poisson’s ratio diagrams for diamond cells structures in tension

vertical displacement

P
o

is
s
o

n
’s

 r
a

ti
o

thin walls

medium walls

thick walls

Figure 5.3.3: Nonlinear Poisson’s ratio vs. vertical displacement for diamond cells
structures of (a) NH and (b) MR material with different cell wall thickness.
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Figure 5.3.4: Nonlinear Poisson’s ratio vs. vertical displacement for hexagon cells
structures of (a) NH and (b) MR material with different cell wall thickness.
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Figure 5.3.5: Nonlinear Poisson’s ratio vs. vertical displacement for stacked cells
structures of (a) NH and (b) MR material with different number of cells and fixed
material volume.
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Figure 5.3.6: Nonlinear Poisson’s ratio vs. vertical displacement for staggered cells
structures of (a) NH and (b) MR material with different number of cells and fixed
material volume.
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Figure 5.3.7: Nonlinear Poisson’s ratio vs. vertical displacement for diamond cells
structures of (a) NH and (b) MR material with different number of cells and fixed
material volume.
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Figure 5.3.8: Nonlinear Poisson’s ratio vs. vertical displacement for hexagon cells
structures of (a) NH and (b) MR material with different number of cells and fixed
material volume.
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shearing of small and large walls by the generalised shear deformation

analysed in the previous section. Analytically, we assumed that the

small wall occupied initially a reference domain [X1, X2]× [−Y0, Y0]×

[−Z0, Z0] and the large wall occupied the reference domain [X1, X
′
2]×

[−Y0, Y0]× [−Z0, Z0], such that X ′
2 −X1 = 2(X2 −X1). Applying the

same general shear deformation to both walls, we found that the mean

Poisson’s ratio was greater for the small walls than for the large wall.

This is in agreement with the numerical results plotted in figures 5.3.7

and 5.3.8, respectively.

5.4 Summary

In this chapter, we investigated the Poisson effects in cellular struc-

tures of nonlinear hyperelastic material subject to large strain defor-

mations, and analysed the physical properties generating them. The-

oretically, we approximated the deformation of single cell walls which

are sheared in the direction in which the structures are stretched with

a simple or a generalised shear deformation, and obtained that the

negative quotient of the logarithmic strain in the direction orthogonal

to the shear direction to the logarithmic strain in the shear direc-

tion decreases as shearing increases: (i) decreases as the deformation

decreases; (ii) is smaller for a single thick wall than for multiple thin

walls made from the same volume of material; and (iii) increases as the

number of thin walls increases while the volume of material remains

unchanged. For finite element models of periodic cellular structures

with rectangular, diamond, and hexagonal cell geometry, we found

that, when a structure is subject to vertical extension, by computing

the nonlinear Poisson’s ratio as the negative quotient of the horizontal
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to the vertical components of the logarithmic strain generated in the

elastic walls, this ratio increases: (i) decreases as the deformation in-

creases, and increases with (ii) the cell wall thickness and (iii) with the

number of cells when the material volume is fixed. These results imply

that, for cellular structures with similar cell geometries, if the number

of cells increases while the wall thickness is fixed, then the apparet

Poisson’s ratio in the walls increases with the number of cells. Due to

this monotonic behaviour, the nonlinear Poisson’s ratio analysed here

can be employed to find the optimum wall thickness or number of cells

in similar structures.



Chapter 6

Conclusion and perspectives

6.1 Overview

Cellular bodies are strong, flexible structures made from seemingly

fragile materials. Among the best known mechanical qualities of cel-

lular structures are their high strength-to-weight ratio and energy ab-

sorption capacity, which arise from the inextricable relation between

the geometric architecture and the nonlinear elastic responses of their

constituents. In many cellular structures, during functional deforma-

tions, plastic damage or fracture rarely occurs, and the material recov-

ers completely after large deformations. Such deformations can be rea-

sonably treated within the theoretical framework of large strain elas-

ticity, which provides a complete description of the elastic responses

of a solid material under loading.

In this thesis, we showed how, for hyperelastic cellular bodies, sev-

eral main factors determine the magnitude of the stress level in the

cellular material, including the cell geometry, the cell wall thickness,

and the presence of cell inclusions, and addressed the important ques-

tion whether the same volume of material has the same effect when

arranged as many cells or as fewer cells while the material volume

118
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remains fixed. To achieve this, we identified two nonlinear constitu-

tive parameters, namely a nonlinear elastic modulus and a nonlinear

Poisson’s ratio defined in terms of the large stresses and strains in the

elastic cell walls, and investigated their utility in estimating how differ-

ent competing factors contribute to the complex mechanical behaviour

of these structures. For the numerical investigation of these nonlinear

parameters, finite element models of representative structures with a

small number of square, diamond, or hexagonal cells made from a

nonlinear hyperelastic material were constructed.

Analytically, for a single cell wall of homogeneous, isotropic, incom-

pressible, elastic material, subject to generic finite deformations, such

as bending, straightening, or torsion, under certain restrictions, the

nonlinear elastic modulus calculated as the ratio between the stress

and the strain in the direction associated with the largest change of

curvature is determined by: (i) the wall thickness, (ii) the number of

cells, and (iii) the internal cell pressure, which when increased will

cause the elastic modulus to increase. For a cellular structure which is

extended in the vertical direction and contains walls that are inclined

with respect to that direction, experimental and computational tests

showed that the nonlinear Poisson’s ratio defined as the negative quo-

tient of the horizontal to the vertical strain decreases as the vertical

extension increases. Theoretically, we further identified the inclina-

tion of the cell walls which are sheared while the cellular structure is

stretched as contributing to the observed Poisson effect.

Numerically, we investigated periodic cellular structures with a

small number of cells and different cell geometries, implemented within

the Finite Elements for Biomechanics (FEBio) software (see supple-
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mentary material for original source files). For the finite element mod-

els with neo-Hookean or Mooney-Rivlin cell wall material, we found

that both the nonlinear elastic modulus calculated as the ratio be-

tween the mean effective stress and the mean effective logarithmic

strain, and the nonlinear Poisson’s ratio defined as the negative quo-

tient of the mean value of the logarithmic horizontal strain to that of

the logarithmic vertical strain in the solid walls while the structure is

stretched vertically increase: (i) with the cell wall thickness and (ii)

with the number of cells if the material volume in the structure is

fixed. In addition, (iii) the nonlinear elastic modulus also increases as

the modulus of the cell core increases. In all cases, the increase in the

nonlinear elastic modulus is due to the enhancement of the elastic be-

haviour of the deforming cell walls when more material is added or if

the same solid material is distributed more uniformly throughout the

structure, and also when the cells are filled. Therefore the nonlinear

elastic modulus and Poisson’s ratio provide viable criteria for finding

the optimum cell wall thickness, number of cells, and cell pressure in

similar structures.

In the finite element simulations, the size of the cell and the size

of the structure are comparable, and the nonlinear elastic effects are

visible at the cell level and at the structural level simultaneously. We

note that, at this scale, the resulting nonlinear elastic deformations of

the cell walls in the model structures are generally more complex that

the idealised deformations studied analytically for individual walls.

Nevertheless, for the periodic structures with standard cell geometry

and subject to uniaxial tension treated here, the deformation of the cell

walls may be reasonably approximated as triaxial stretching (e.g., the
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initially vertical walls of square or hexagonal cells), or bending (e.g.,

the initially horizontal walls of square cells in staggered distribution),

or shearing (e.g., the inclined walls of diamond or hexagonal cells). In

this case, our numerical results may be regarded as an extension of

the analytical results.

In practice, the large deformations of many elastic solids are typi-

cally more complex, but the structures analysed here have the advan-

tage that they can be studied systematically under large strains. In

particular, our study offers important insight into the fundamental be-

haviour of cellular structures of nonlinear elastic material under large

strains, and contributes to illuminate key mechanical effects that are

not visible under small strains.

6.2 Future directions

The cell walls of plants and other biogenic cellular bodies represent a

dynamic matrix whose composition, structure and function is required

for all aspects of growth and development and for a variety of biotic

and abiotic interactions through which they respond to their environ-

ment [17, 20, 26, 33, 46, 70, 71, 129, 145]. While new physical criteria

associated with different stages of development or healing in natural

structures are still to be identified, there is also a need for appropriate

theoretical approaches to be developed that take into account the large

stress and strain fields during physiological or pathological changes.

From the mathematical modelling perspective, cellular materials

are hierarchical structures for which multi-scale models could capture

the relation between the mechanical behaviour at the micro-scale, cell

level, and the responses to loading at the macro-scale, structural level
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[88, 89]. This could then be employed to show how the elasticity of

the entire cellular structures is modified when the cells are filled with

a compliant liquid or solid core, or when the cell walls become thicker

or the number of cells increases.

Mathematical models that account for the attachment between

cells, which in some structures are sufficiently weak so that cells sep-

arate (e.g., apples, pears) [18, 39, 55, 56, 63, 143], are also required for

improved predictions of large distortions and failure in cellular struc-

tures [87].

Cellular materials are the subject of intensive research efforts in

tissue engineering and regenerative applications, and the advent of

3D printing has led to increased interest in the optimal design of tis-

sue scaffolds with well-defined, reproducible geometry. Engineered

tissue scaffolds provide an environment for biological cells to grow

and regenerate tissue, and their composition, micro-structure and

mechanical properties play a critical role in the response of biologi-

cal cells that migrate within them. In highly oriented tissues, such

as nerve, ligament, muscle, and tendon, where tensile strength and

stiffness are controlled by collagen fibers, geometrically controlled,

honeycomb-like scaffolds also provide guidance cues for fiber orien-

tation [16, 34, 35, 66, 104, 113, 126]. For these type of structures, the

cell density and wall stiffness are key factors with implications for cell

mechanotransduction [32,36,118,140,142,144], which can be indepen-

dently optimized to improve biological response [14, 45, 138].



Appendix A

Recent experimental evidence

This appendix contains some experimental evidence of nonlinear elas-

tic responses for cellular structures with hyperelastic cell walls, cour-

tesy of Dr Hayley Wyatt and Professor Sam Evans, who recently car-

ried out physical tests at the School of Engineering, Cardiff University,

inspired by the theoretical results of this thesis. Since the material and

geometric properties of the tested structures are different from those

in our finite element simulations, no attempt has been made to com-

pare quantitatively the experimental results presented here with the

computational results of this thesis. For meaningful comparisons, fur-

ther computational modelling will be carried out, where the material

and geometric parameters of the tested structures will be taken into

account by the finite element simulations.

The physical structures tested experimentally were made from sil-

icone rubber moulded with moulds manufactured by 3D printing at

Cardiff School of Engineering. The silicone used was a neo-Hookean

material with defined properties of 0.74 MPa for Youngs modulus and

0.48 for Poissons ratio, also manufactured at Cardiff School of Engi-

neering. A combination of finite element modelling (FEM) and exper-

imental work was conducted to investigate the effect of the number
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of cells for a fixed volume of nonlinear hyperelastic material subject

to large uniaxial tension (figure A1). Experimentally, digital image

correlation (DIC) [38] was employed to investigate the behaviour of

silicone structures of neo-Hookean material under tensile loading (see

figure A2). The results from the DIC data showed similar displace-

ment and strain maps when compared to the FEM data, as shown

in figures A3, A4, A5. The nonlinear stiffening exhibited by the

deformed structures are indicated in figure A6. The apparent Pois-

son’s ratios exhibited by the deformed structures were also captured

experimentally and indicated in figure A7.

Figure A1: Sample cellular structure of neo-Hookean material in tensile testing.
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Figure A2: Sample cellular structure of neo-Hookean material used for tensile testing
(left). The DIC set-up, with a two camera system used to capture 3D images and a
light source providing homogeneous light to the specimen (right).

Figure A3: Example of DIC (left) and FEM data (right) for sample structure with
staggered cells, with images showing results at 18% elongation in the vertical direc-
tion.
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Figure A4: Comparison between DIC and FEM results for sample structure with
stacked cells subject to vertical tensile force at the top horizontal boundary, showing
the local displacements at cell and point levels.

Figure A5: Comparison between DIC and FEM results for sample structure with
staggered cells subject to vertical tensile force at the top horizontal boundary, show-
ing the local displacements at cell and point levels.
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Figure A6: Experimental results for model structures with stacked cells under axial
tension showing increase in nonlinear stiffening when the material volume and the
ratio between the width and the length of the cell walls are fixed and the number of
cells increases.

Figure A7: Experimental results for model structures under axial tension showing
the decreases in the nonlinear Poisson’s ratios for model structures with stacked,
staggered, and diamond cells.
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Elsässer L, Famini D, Forstenpointner G. 2006. The structure of

the cushions in the feet of African elephants (Loxodonta africana),

Journal of Anatomy 206, 781-792.

[137] Wells PNT, Liang H-D. 2011. Medical ultrasound: imaging of

soft tissue strain and elasticity, Journal of the Royal Society Inter-

face, 20110054.

[138] Wieding J, Wolf A, Bader R. 2014. Numerical optimization of

open-porous bone scaffold structures to match the elastic proper-

ties of human cortical bone, Journal of the Mechanical Behavior of

Biomedical Materials 37, 56-68.

[139] Wilkes EW. 1955. On the stability of a circular tube under end

trust, The Quarterly Journal of Mechanics and Applied Mathe-

matics 9, 88-100.

[140] Winer JP, Oake S, Janmey PA. 2009. Non-linear elasticity of ex-

tracellular matrices enables contractile cells to communicate local

position and orientation, PloS ONE 4, e6382.

[141] Woo TC, Shield RT. 1962. Fundamental solutions for small de-

formations superposed on finite biaxial extension of an elastic body,

Archive for Rational Mechanics and Analysis 9, 196-224.

[142] Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki

M, Zahir N, Ming W, Weaver V, Janmey PA. 2005. Effects of



BIBLIOGRAPHY 145

substrate stiffness on cell morphology, cytoskeletal structure, and

adhesion, Cell Motility and the Cytoskeleton 60, 2434.

[143] Zdunek A, Koziol A, Cybulska J, Lekka M, Pieczywek PM. 2016.

The stiffening of the cell walls observed during physiological soft-

ening of pears, Planta 243, 519-529.

[144] Zhang H, Landmann F, Zahreddine H, Rodriguez D, Koch M,

Labouesse M. 2011. A tension-induced mechanotransduction path-

way promotes epithelial morphogenesis, Nature 471, 99-103.

[145] Zhu HX, Melrose JR. 2003. A mechanics model for the compres-

sion of plant and vegetative tissues, Journal of Theoretical Biology

221, 89-101.


