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Linking immunometabolic adaptation to T-cell function provides insight for the develop-
ment of new therapeutic approaches in multiple disease settings. T-cell activation and 
downstream effector functions of CD4+ and CD8+ T-cells are controlled by the strength 
of interaction between the T-cell receptor (TCR) and peptides presented by human 
leukocyte antigens (pHLA). The role of TCR–pHLA interactions in modulating T-cell 
metabolism is unknown. Here, for the first time, we explore the relative contributions 
of the main metabolic pathways to functional responses in human CD4+ and CD8+ 
T-cells. Increased expression of hexokinase II accompanied by higher basal glycolysis 
is demonstrated in CD4+ T-cells; cytokine production in CD8+ T-cells is more reliant 
on oxidative phosphorylation. Using antigen-specific CD4+ and CD8+ T-cell clones 
and altered peptide ligands, we demonstrate that binding affinity tunes the underlying 
metabolic shift. Overall, this study provides important new insight into how metabolic 
pathways are controlled during antigen-specific activation of human T-cells.
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INTRODUCTION

T-cells can be sub-divided into two main types by their expression of an accessory glycopro-
tein co-receptor, either CD4 or CD8, which facilitates their preferential interaction with MHC 
Class II or Class I molecules (HLA), respectively (1). CD4+ and CD8+ T-cells have divergent yet 
interacting roles related to immune homeostasis and pathogenesis of both communicable and 
non-communicable diseases. Effective functioning of CD4+ and CD8+ T-cells is energy demand-
ing. The universal energy carrier adenosine 5′-triphosphate (ATP) in addition to assimilation and 
generation of biosynthetic precursors are required to initiate and sustain an immune response  
(2, 3). Immunometabolism describes how immune cells obtain ATP via differing rates of the energy-
producing pathways and generate biosynthetic intermediates under quiescence and activation  
(4, 5). T-cell quiescence is associated with energy utilization via high-yield, slow burning meta-
bolic processes dependent on fueling mitochondria for oxidative phosphorylation (6).

There is a burgeoning literature regarding T-cell metabolism, but with the exception of CD8+ 
T-cells (7–10), most data on T-cell metabolism are derived from mouse models and direct compari-
sons of human CD4+ and CD8+ T-cells have not been made. Murine CD4+ and CD8+ T-cells are 
bioenergetically similar when quiescent and are metabolically reprogrammed to a highly glycolytic 
metabolic state upon activation with CD8+ T-cells the more bioenergetic (11). Constitutive glyco-
lytic metabolism results in long-lived effector T-cells in viral specific murine CD8+ T-cells (12). 
Activation is also accompanied by increased expression of GLUT1 and glycolysis pathway enzymes 
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in both murine CD4+ and CD8+ T-cells (11, 13, 14). Surface levels 
of GLUT1 have been shown to identify human CD4+ and CD8+ 
T-cell with distinct characteristics. GLUT1Hi T-cells produced 
elevated levels of IFNγ and had increased effector function (15). 
Naïve T-cell activation is linked to asymmetric division and the 
effector T-cell and memory T-cell that arise upon interaction 
with an antigen-presenting cell have metabolic differences. The 
effector T-cell is largely glycolytic, whereas the memory T-cell 
relies on oxidative metabolism governed by transcription factor 
c-myc (16). Post-infection, murine CD8+ memory T-cells retain 
a high spare respiratory capacity should re-infection occur (17). 
Increased glucose metabolism upon T-cell activation is critical 
for the rapid engagement of cellular proliferation, achieved via 
the generation of biosynthetic intermediate serine and down-
stream nucleotide production (2). Manipulating this pathway 
offers the potential to modulate regulatory T-cell differentiation 
and function (18, 19).

T-cell receptor (TCR) ligation to a peptide presenting  
HLA molecule (pHLA) is critical to the effective activation of 
T-cells (20, 21). The binding affinity between the TCR and core 
region of the peptide coupled with the half-life of peptide-TCR 
interaction collectively govern the downstream effector function 
(22, 23). The TCR-pHLA binding affinity confers underlying 
signaling cascades leading to an increased demand for the extra-
cellular glucose needed to produce biosynthetic intermediates 
for proliferation in addition to cellular ATP (24, 25). Synthesis 
of metabolites, such as polyamines, cholesterol via fatty acids 
synthase, and pentose phosphate intermediates, has been shown 
to enhance T-cell activation (26, 27). To initiate and sustain this 
demand, hematopoietic cells generally exhibit a “Warburg-like” 
switch to glycolysis (28). The reliance of human CD8+ T-cells on 
glycolysis when stimulated with natural ligands (Epstein–Barr 
Viral peptides) has been reported (7); how TCR-pHLA binding 
affinity might control the corresponding metabolic response 
in human T-cells is unknown. Murine CD8+ T-cells show TCR 
binding affinity-dependent induction of IRF4 and downstream 
metabolic control (29).

This is the first study to investigate the metabolic tuning 
that occurs in human T-cells upon activation via the TCR and  
includes consideration of the role of TCR-pHLA binding affi-
nities. Stimulation with native peptide provides a more physi-
ologically relevant mechanism of T-cell activation compared 
to anti-CD3/anti-CD28. Furthermore, cytokine production by 
both CD4+ and CD8+ T-cells is shown to depend on glycolysis 
with differential mitochondrial dependence between these T-cell 
subsets.

MATERIALS AND METHODS

Human CD4+ and CD8+ T-Cell Isolation
Human peripheral blood was collected between 0830 hours and 
1000 hours from healthy, non-fasted individuals into heparin-
ised Vacuettes™ (Greiner Bio-one, Frickenhausen, Germany) 
and processed within 10  min of collection. All samples were 
collected with informed written consent and ethical approval 
was obtained from Wales Research Ethics Committee 6 (13/
WA/0190).

Mononuclear cells (MNCs) were isolated by layering whole 
blood (1:1) onto Histopaque (Sigma-Aldrich, Poole, UK) prior 
to centrifugation at 805g for 20 min at room temperature. MNCs 
were removed and washed with RPMI 1640 (Life Technologies, 
Paisley, UK) twice by centrifugation at 515g. The MNC pellet  
was resuspended in media specific for the downstream assay 
and cell density determined using the Countess® automated cell 
counter (Life Technologies).

CD4+ or CD8+ T-cells were isolated via a negative selection 
process using magnetic microbeads as described by the manu-
facturer (autoMACS; Miltenyi Biotec, Cologne, Germany). Purity 
of individual populations was monitored using flow cytometry 
and was typically >90%. For non-matched T-cell experiments, 
the mean  ±  SD donor age for CD4+ T-cell preparations was 
39.2 ± 14.68 years (n = 12; 7 females and 5 males) and for CD8+ 
T-cells was 35.1 ± 13.21 years (n = 16; 7 females and 9 males).

T-Cells
T-cell clones, DCD10, and ILA1 were created (30, 31) and pas-
saged as previously described (32). Briefly, clones were expanded 
with irradiated (3,100  Gy) PBMCs from three donors in R10 
[RPMI 1640 supplemented with 10% FBS, 100 U/ml penicillin, 
100  µg/ml streptomycin, 1× MEM non-essential amino acid, 
1 mM sodium pyruvate, 10 mM HEPES buffer (Life Technology)] 
with 20  IU/ml of IL-2 (Aldesluekin, Proleukin, Prometheus,  
San Diego, CA, USA) and 1 µg/ml of phytohaemaglutinin (Alere, 
Cheshire, UK). Additionally, ILA1 was cultured with 25 ng/ml 
of IL-15 (PeproTech, Rocky Hill, NJ, USA) and IL-2 increased to 
200 IU/ml 7 days post expansion. For this purpose of this study, 
clones were used spanning 3–4 passages. Prior to performing 
assays, clones were washed from culture media and rested in 
R5 (as for R10 with 5% FBS) for 24 h. Peptides (Peptide Protein 
Research Limited, Fareham, UK) were synthesized to greater 
than 95% purity, stored as 20 mM stocks at −80°C in DMSO and 
working aliquots made to 1 mM with R0 (as for R10 but with  
no FBS) and stored at −20°C or 4°C.

Metabolic Analysis
Metabolic analysis was carried out using an Extracellular Flux 
Analyzer XFe24 (Seahorse Bioscience). Briefly, 0.25 × 106 cells 
were seeded onto a Cell-Tak (Corning)-coated microplate 
allow ing the adhesion of T-cells. Mitochondrial stress and 
gly colytic parameters were measured via oxygen consumption 
rate (OCR) (pmoles/min) and extracellular acidification rate 
(ECAR) (mpH/min), respectively, with use of real-time injec-
tions. For mitochondrial stress, cells were resuspended in XF 
assay media supplemented with 5.5  mM glucose and 1  mM 
pyruvate and injections oligomycin (0.75  µM), carbonyl cya-
nide-4-(trifluoromethoxy)phenylhydrazone (FCCP; 1 µM) and 
rotenone and antimycin (both 1 µM) were used. For glycolysis, 
cells were resuspended in XF assay media with use of injec-
tions glucose (11.1 mM), oligomycin (0.75 µM) and 2-deoxy-
d-glucose (100  mM). Respira tory parameters were calculated 
as previously described (33). All chemicals were purchased 
from Sigma unless stated otherwise. Calculations for individual 
metabolic parameters can be found as described previously (33) 
or per manufacturer’s instructions (Seahorse Bioscience).
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Activation
To monitor the glycolytic switch upon activation, CD4+ and CD8+ 
T-cells were resuspended in serum-free XF Assay media sup-
plemented with 11.1 mM glucose and 2 mM l-glutamine (Sigma). 
ECAR and OCR were measured simultaneously through out the 
experiment, i.e., 1 h before activation and 4 h after. T-cells were 
activated via the multi-injection port with anti-CD3 (0.2 µg/ml; 
HIT3a, BioLegend) and CD28 (20 µg/ml; CD28.2, BioLegend). 
A final injection of 2-DG (100  mM) was used to imme diately 
arrest glycolysis. Isotype controls, mIgG2a κ (0.2 µg/ml; MOPC-
173, BioLegend) and mIgG1 κ (20 µg/ml; MOPC-21; BioLegend) 
were used. The OCR/ECAR ratio was calculated by dividing the 
eight corresponding OCR and ECAR measurements pre- (dotted 
boxes) or post- (dashed boxes) antibody injection. Fold ECAR 
change was calculated by dividing the single point post antibody 
injection by the single point pre antibody injection. Peptide 
stimulation relied on the cross presentation of specific peptides 
by corresponding T-cell clones.

Inhibition
Baseline ECAR of CD4+ and CD8+ T-cells was determined for 
roughly 1  h prior to injection of GLUT1/4 inhibitor ritonavir 
(20 µM; Sigma). A 40-min period of incubation with the inhibitor 
occurred prior to injection of αCD3/28 as above. Corresponding 
ECAR was monitored for 4  h after αCD3/28 injection. A final 
injection of 2-DG (100  mM) arrested glycolysis. Fold ECAR 
change was calculated by dividing the 13 measurements post 
antibody injection (dashed box) by the 13 measurements pre 
antibody injection (dotted box).

Flow Cytometry
Purity of CD4+, or CD8+ T-cells was monitored using flow 
cytometry. Briefly, 2.5 × 105 cells were left unstained or incubated 
with anti-CD4+ AlexaFluor®647 (mIgG2b, clone OKT4, eBiosci-
ence) or anti-CD8+ PE (mIgG1, clone HIT8a, eBioscience) 
using standard techniques. Cells were acquired (FACSAria I, 
BD Biosciences) and downstream analysis was with FlowJo ver-
sion 1.3 (Tree Star, OR, USA). To assess mitochondrial content, 
MNCs were stained with the mitochondrial probe MitoTracker 
Green (Life Technologies). MNCs (5 × 105 cells) were incubated 
with 20 nM MitoTracker Green for 30 min at 37°C then surface 
labeled with lineage markers as above before acquisition and 
analysis. T-cell activation was monitored by expression of CD69 
(mIgG1, FN50, BioLegend), flow cytometry plots are representa-
tive of live cells with dead cell exclusion performed via DRAQ7 
(1 µM; Biostatus, UK).

Effect of Respiratory Inhibitors  
on Cytokine Output
CD4+ and CD8+ T-cells were cultured at 0.5 × 106 cells/500 μl 
of phenol red free RPMI (Sigma)  +  2  mM GlutaMAX 
(ThermoFisher). T-cells were cultured with 2-deoxy-d-glucose 
(25 mM) or oligomycin (1 µM) at 37°C in 5% CO2-in-air for 24 h. 
All chemicals were purchased from Sigma. To prevent impaired 
T-cell activation, after 3 h 5% fetal bovine serum (FBS, HyClone, 
ThermoFisher Scientific) was added. Cells were analyzed via flow 

cytometry for cell death (DRAQ7) and activation (CD69); the 
supernatant was removed and stored at −20°C for downstream 
cytokine analysis. IFNγ and IL-2 were analyzed using ELISA as 
per manufacturer’s instructions (DuoSets; R&D Systems).

Immunoblot
CD4+ and CD8+ T-cell lysate proteins were quantified using 
the DC Assay (Bio-Rad, Hemel Hempstead, UK) and separated 
(10  mg per lane) using 10% (vol/vol) SDS-polyacrylamide gel 
electrophoresis, with molecular weight markers in parallel lanes 
(Bio-Rad). After electrophoresis, proteins were transferred to 
a polyvinylidene difluoride membrane (Bio-Rad); non-specific 
binding was blocked using 5% (wt/vol) bovine serum albumin 
(BSA; Sigma) in Tris-buffered saline (Sigma) for 1  h at room 
temperature. Membranes were probed with rabbit monoclonal 
antibodies targeting glucose transporter 1 (GLUT1; ab115730; 
Abcam), hexokinase I (HKI; 2024), hexokinase II (HKII; 2867), 
phosphofructokinase (PFKP; 8164), glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH; 5174), pyruvate kinase (PKM2; 4053) 
lactate dehydrogenase (LDH; 3582), total S6 ribosomal protein 
(2217), and phospho-S6 ribosomal protein (Ser235-236; 4858). 
Protein loading was evaluated and normalized using mouse 
monoclonal antibody targeting β-actin expression (3700).  
All antibodies were purchased from Cell Signaling unless oth-
erwise stated (Danvers, MA, USA). Primary antibodies were 
used at 1:1,000 dilutions in Tris-buffered saline, 0.1% Tween 
20 (pH 7.6; Sigma) overnight at 4°C. Membranes were washed 
and incubated in either anti-rabbit or anti-mouse horseradish 
peroxidase-conjugated secondary antibody (Cell Signaling) 
in 5% (wt/vol) BSA in Tris-buffered saline for 1.5 h, and then 
washed. Steady-state levels of immunoreactive proteins were 
visualized using enhanced chemiluminescence (Western C, 
Bio-Rad), and densitometry on non-saturated immunoblots was 
measured using ImageJ software (FIJI). Full immunoblots are 
shown in supplementary material.

Data Analysis
Statistical analysis was performed using GraphPad Prism version 
6 (USA). Data are represented as the mean  +  SEM. A non- 
paired t-test was used for the different metabolic data, densi-
tometry immunoblots, and metabolic inhibition comparisons. 
One-way ANOVA was used to compare 24  h activated T-cells 
samples and altered peptide ligand (APL) ECAR and OCR fold 
change. Statistical analysis was performed on the technical repeats 
when considering the clone data. Significant values were taken as 
*p ≤  0.05, **p ≤  0.01, ***p ≤  0.001.

RESULTS

CD4+ T-Cells Have a Greater Glycolytic 
Potential than CD8+ T-Cells
To investigate the glycolytic potential of human T-cells, we 
undertook bioenergetics analysis of total, non-matched CD4+ 
versus CD8+ T cells. ECAR was measured and showed that all 
glucose starved T-cells responded to glucose injection with 
increased ECAR but failed to show a further increase after 
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FIGURE 1 | CD4+ T-cells are more glycolytic than CD8+ T-cells. (A) Glycolysis by CD4+ and CD8+ T-cells isolated from non-matched donors was measured  
using extracellular acidification rate (ECAR) with injections glucose (11.1 mM), oligomycin (0.75 µM), and 2-DG (100 mM); including parameter (B) basal glycolysis 
calculated by subtracting the three averaged measurements after glucose injection from the non-glycolytic acidification. (C) Oxidative phosphorylation profiles of 
CD4+ and CD8+ T-cells measured by the oxygen consumption rate (OCR) with injections oligomycin (0.75 µM), FCCP (1 µM) and antimycin A/rotenone (both 1 µM); 
including OXPHOS parameters (D) basal respiration, (E) ATP-linked respiration, (F) maximal respiration and (G) spare respiratory capacity. (H) OCR/ECAR ratio of 
CD4+ and CD8+ T-cells (pmoles/mpH) as determined via the division of basal respiration and basal glycolysis parameters. Mitochondrial content of CD4+ and CD8+ 
T-cells was assessed by flow cytometry with MitoTracker Green and (I) a representative example is shown and (J) summary data for n = 6. Data are from five  
(A–H) non-matched donors, and six (J) matched independent experiments. Data expressed as mean ± SEM; *p ≤  0.05, ***p ≤  0.001.
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injection of the ATP synthase inhibitor, oligomycin (Figure 1A). 
There was no significant difference in the non-glycolytic 
acidification between CD4+ and CD8+ T-cells (Figure S1A in 
Supplementary Material). Most notably, CD4+ T-cells exhibited 
significantly higher levels of basal glycolysis compared to CD8+ 
T-cells (Figure 1B). Oxidative phosphorylation profiles of CD4+ 
and CD8+ T-cells were also determined using extracellular flux 
analysis for oxygen consumption rate (OCR; Figure 1C). CD4+ 
and CD8+ T-cells did not differ in rates of basal, maximal or ATP-
linked respiration, spare respiratory capacity (Figures  1D–G)  
or non-mitochondrial respiration and proton leak (Figures 
S1B,C in Supplementary Material). The combined changes in 
OCR (basal respiration) and ECAR (basal glycolysis) give CD4+ 
T-cells a significantly lower OCR/ECAR ratio than CD8+ T-cells 
(Figure  1H). Analysis of mitochondrial content using flow 
cytometry with the mitochondrial stain MitoTracker Green, 
revealed that donor-matched CD4+ T-cells have a significantly 
higher mitochondrial content than CD8+ T-cells (Figures 1I,J) 
in agreement with findings in murine models (11).

CD4+ T-Cells Express High Levels  
of Hexokinase Isoforms
To investigate the underlying cause for increased glycolytic 
metabolism by quiescent CD4+ T-cells, key transporters and 
enzymes within the glycolysis pathway were analyzed (Figure 2A): 

GLUT1 as the predominant glucose transporter in human and 
murine CD4+ T-cells (13); hexokinase (HK) I and II that catalyze 
the transfer of phosphate from ATP to glucose thereby consum-
ing one molecule of ATP and ‘trapping” glucose in the cell (34); 
phosphofructokinase (PFKP) which catalyzes a rate-limiting 
reaction that consumes a second ATP molecule; GAPDH which 
is critical to the production of two ATP molecules and two nico-
tinamide adenine dinucleotide molecules (NADH  +  H+) (35); 
pyruvate kinase (PKM2) that catalyzes the final rate-limiting 
step of glycolysis to produce two ATP molecules per glucose; and 
lactate dehydrogenase (LDH) that converts pyruvate into lactate 
yielding the protons measured as ECAR.

Immunoblotting of CD4+ and CD8+ T-cells from non-
matched donors revealed that GLUT1 levels were consistent 
between CD4+ and CD8+ T-cells (Figure 2B). A double band 
observed in one of the CD4+ T-cell donors could be due to 
altered glycosylation status of the GLUT1 protein as observed in 
other human glucose transporters (36, 37). HKII (Figure 2D), 
PKM2 (Figure 2G), and LDH (Figure 2H) were all increased 
in CD4+ T-cells and likely underpin the increased glycolytic 
capacity of this population compared to CD8+ T-cells. There 
were no differences in HKI (Figure 2C), PFKP (Figure 2E), or 
GAPDH (Figure 2F). However, we cannot rule out differential 
kinetics of any of these glycolytic enzymes between the two 
T-cell populations and this should be considered in future 
experiments.
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FIGURE 2 | Elevated expression of key glycolytic enzymes enhances basal glycolysis of CD4+ T-cells. (A) Protein immunoblot and respective densitometry showing 
(B) GLUT1, (C) hexokinase I (HK), (D) hexokinase II, (E) phosphofructokinase (PFKP), (F) glyceraldehyde-3-phosphate dehydrogenase (GAPDH), (G) pyruvate 
kinase (PKM2), and (H) lactate dehydrogenase (LDH) expression levels between basal CD4+ and CD8+ T-cells. Full scan blots are shown in Figure S9 in 
Supplementary Material. Data are from four independent experiments. Data expressed as mean + SEM; *p ≤  0.05, **p ≤  0.01.
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CD4+ and CD8+ T-Cells Increase Glycolytic 
Flux upon Stimulation
Having established that human CD4+ T-cells are more glycolytic 
than CD8+ T-cells during quiescence, we then investigated the 
metabolic plasticity of both subsets in response to stimulation. 
Donor-matched CD4+ and CD8+ T-cells were activated with anti-
human CD3 and anti-human CD28 antibodies and both ECAR 
and OCR monitored for a period of 30 cycles using extracellular 
flux analysis (4.13 h; Figures 3A,B).

Immediately upon injection of anti-CD3/CD28, both CD4+ 
and CD8+ T-cells increase ECAR indicating heightened glyco-
lysis (Figure 3A). This was accompanied by a slight increase in 
OCR (Figure 3B). Isotype controls had no effect on either glyco-
lysis or oxygen consumption (Figures S2A,B in Supplementary 
Material). Elevated ECAR levels were maintained by CD4+ and 
CD8+ T-cells for the duration of the experiment. Calculation of 
the OCR/ECAR ratio revealed a significant immediate increase 
in glycolytic flux in both CD4+ and CD8+ T-cells upon activation 
(Figure  3C). The early engagement of glycolysis, represented 
as a fold ECAR change, was homologous in CD4+ and CD8+ 
T-cells (Figure 3D). There was a temporal decline in glycolysis 
by CD8+ T-cells, whereas this response was sustained in CD4+ 
T-cells (Figure 3D). To determine the role of glucose transport-
ers in the activation-dependent glycolytic switch, ritonavir, an 
inhibitor of both GLUT1 and GLUT4 (38), was used. Ritonavir 
significantly dampened activation-induced glycolysis in both 
CD4+ and CD8+ T-cells (Figures 3E–G).

The potential contribution of key enzymes to an activation-
dependent metabolic switch was then determined by comparing 
expression at 24 h with or without exposure to anti-CD3/CD28 
(Figures S3A–G in Supplementary Material). Activation did not 
affect levels of HKI in donor-matched CD4+ or CD8+ T-cells 

(Figure S3B in Supplementary Material), whereas HKII was 
markedly increased in both CD4+ and CD8+ T-cells (Figure S3C 
in Supplementary Material). PFKP and GAPDH expression also 
increased upon activation of both cell types (Figures S3D,E in 
Supplementary Material). PKM2 levels were increased in CD4+ 
T-cells upon activation but remained constant in CD8+ T-cells 
(Figure S3F in Supplementary Material). Levels of LDH were 
increased in both subsets upon activation with the response by 
CD8+ T-cells significant (Figure S3G in Supplementary Material). 
These experiments indicate that the immediate metabolic switch 
upon activation is probably dependent on glucose transport via 
GLUT1. Subtle differences in the expression and probable activity 
of GLUT1 and different glycolytic enzymes contribute to altered 
kinetics of response by CD4+ versus CD8+ T-cells.

Increased GLUT1 Expression Facilitates 
CD4+ and CD8+ T-Cell Activation
To further explore the contribution of glucose transporters to 
enhanced glycolysis upon activation, GLUT1 expression before 
and after activation was analyzed by immunoblotting (Figure 4A). 
GLUT1 expression was significantly increased upon activation 
in donor-matched CD4+ and CD8+ T-cells (Figure  4B). The  
de novo synthesis of proteins such as cytokines requiring 
trans cription and translation is a key feature of T-cell effector 
respon ses. Therefore, we next assessed the levels of down-
stream mTORC1 target, ribosomal S6, a protein involved 
in the translation of 5′TOP mRNAs (39, 40) (Figure  4A). 
There was an increase in phosphorylated ribosomal protein 
S6 (pS6Ser235/236), with ratio of pS6/S6 significantly different 
between unactivated and activated T-cell subsets (Figure  4C). 
A marked increase in translation via increased phosphoryl-
ated S6 would support the production of cytokines to mount 
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FIGURE 3 | Upon stimulation, both CD4+ and CD8+ T-cells switch to glycolytic metabolism. (A) Extracellular acidification rate (ECAR) and (B) oxygen consumption 
rate (OCR) of donor-matched CD4+ and CD8+ T-cells upon stimulation with antibodies, anti-CD3 (0.2 µg/ml), and anti-CD28 (20 µg/ml). 2-deoxy-D-glucose 
(100 mM) was added at the end of the experiment to immediately arrest glycolysis. (C) OCR/ECAR ratio pre- and post- activation calculated by dividing OCR by 
ECAR (dotted box; pre, dashed box; post). (D) ECAR fold change of early and late glycolytic changes comparing CD4+ and CD8+ T-cells. ECAR of (E) CD4+  
T-cells and (F) CD8+ T-cells ± ritonavir (20 µM) prior to injection of activating antibodies as above with a final injection of 2-DG (100 mM). C, control; R, ritonavir.  
(G) Fold change calculated via division of the dotted boxes of CD4+ and CD8+ T-cells ± ritonavir. Data are from four donor-matched (A–D) or five donor-matched 
independent experiments (E–G). Graphed points represent averaged data from the four/five independent experiments. Data expressed as mean + SEM; *p ≤  0.05, 
**p ≤  0.01, ns, not significant.
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a successful immune response. This is feasible as a marked 
decrease in pS6 and mTORC1 activity upon triple therapy 
strategies reduces murine T-cell effector function thus decreas-
ing allograft rejection (41, 42).

CD8+ T-Cells Are Dependent on 
Mitochondrial Metabolism for  
Cytokine Production
Currently, little is known about the metabolic pathways utilized 
by human CD4+ and CD8+ T-cells and whether they differ upon  

effector function. In mice, NK cells require both glycolysis and oxi-
dative phosphorylation for IFNγ production (43). Understanding 
the metabolic pathways that contribute to downstream cytokine 
production might offer potential therapeutic targets. Therefore, 
the role of glycolysis and oxidative phosphorylation were con-
sidered by activating cells with anti-CD3/CD28 in the presence 
of the metabolic inhibitors: 2-DG which inhibits glycolysis, and 
oligomycin which inhibits oxidative phosphorylation. Cell death 
was monitored using DRAQ7 by flow cytometry with neither 
inhibitor having an effect on non-matched CD4+ or CD8+ T-cell 
viability (Figure 5A). Activation was monitored through CD69 
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FIGURE 4 | Activation is associated with increased GLUT1 expression in CD4+ and CD8+ T-cells. (A) Protein immunoblot representative of one matched donor,  
and respective densitometry of all donors showing, (B) GLUT1, (C) ribosomal proteins; phospho-S6 and total S6 expression levels between unstimulated (−) and 
activated (+) (anti-CD3; 2 µg/ml and anti-CD28; 20 µg/ml) CD4+ and CD8+ T-cells for 24 h. Full scan blots are shown in Figure S10 in Supplementary Material. Data  
are from five independent experiments with donor-matched CD4+ and CD8+ T-cells (A–C). Data expressed as mean + SEM; *p ≤  0.05, ***p ≤  0.001.

FIGURE 5 | CD8+ T-cells are dependent on their mitochondria for cytokine production. (A) Viability was determined by DRAQ7 (1 µM) flow cytometry of CD4+ and 
CD8+ T-cells stimulated with anti-CD3 (2 µg/ml) and anti-CD28 (20 µg/ml) for 24 h in the presence of 2-deoxy-D-glucose (2-DG; 25 mM), or oligomycin (1 µM). 
Viability expressed as a percentage of the 24 h activated control (B) Percentage CD69 of CD4+ and CD8+ T-cells (DRAQ7-negative) relative to control. The effects of 
metabolic inhibitors 2-DG and oligomycin were considered on percentage cytokine production of (C) IFNγ and (D) IL-2 comparison of CD4+ and CD8+ T-cells. Data 
are representative of three to five independent experiments. Data expressed as mean + SEM; *p ≤  0.05, **p ≤  0.01, ***p ≤  0.001.
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expression for both subsets, whereby inhibition of glycolysis 
but not oxidative phosphorylation was associated with reduced 
expression of CD69 indicating decreased activation of both 
CD4+ and CD8+ T-cells if glycolysis is abrogated (Figure 5B). 

Inhibition of oxidative phosphorylation, however, only reduced 
CD69 expression in CD8+ T-cells, indicating a greater contri-
bution of mitochondrial-dependent mechanisms to activation of 
these cells (Figure 5B).
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In agreement with other studies, we have shown that limit-
ing glycolysis with 2-DG inhibited production of IFNγ and 
IL-2 in CD4+ and CD8+ T-cells (Figures 5C,D) (7). IFNγ and 
IL-2 were not detectable in the unstimulated samples (data 
not shown). The contribution of oxidative phosphorylation to 
the expression of CD69 and the production of both IFNγ and 
IL-2 production was significantly greater in CD8+ than CD4+ 
T-cells. To our knowledge, this is the first time that different 
metabolic requirements of human CD4+ and CD8+ T-cells have 
been demonstrated.

We also found that this difference in metabolic requirement 
was evident for wider cytokine production. The production 
of IL-13, IL-17, and IL-10 by CD4+ T-cells (Figures S4A–D in 
Supplementary Material) was reduced significantly after incuba-
tion with 2-DG; the decrease in IL-4 was not significant. Only 
the Th2 cytokines, IL-4 and IL-13, and to a lesser extent IL-10, 
were decreased by inhibition of oxidative phosphorylation. For 
CD8+ T-cells, granzyme B and MIP-1β, like IL-2 and IFNγ, 
were reduced upon treatment with either 2-DG or oligomycin, 
confirming a greater contribution of mitochondrial metabolism 
to CD8+ T-cell cytokine and granzyme B production (Figures 
S5A,B in Supplementary Material). Similar to our findings, 
murine CD8+ T-cells are more resistant than CD4+ T-cells to 
knockout of GLUT1 (11). These data further support differential 
metabolic kinetics of both T-cell subsets that could be important 
in nutrient competitive and restricted environments.

TCR Peptide HLA Induced T-Cell 
Activation Stimulates Greater Glycolytic 
Flux Compared to Non-Natural CD3/CD28 
Stimulation
Most studies of T-cell metabolism use anti-CD3/CD28 stimula-
tion to activate T-cells rather than natural ligands although there 
are a few notable exceptions (7, 29). To address these shortcomings 
here, for the first time, antigen-specific human T-cell clones were 
used to investigate T-cell metabolism after stimulation directly 
through the antigen-specific TCR-pHLA interaction. Two 
T-cell clones were used: DCD10, a HLA-DRB*0101 restricted,  
influenza hemagglutinin (HA306–318: PKYVKQNTLKLAT) speci-
fic CD4+ T-cell clone; and ILA1, a HLA-A*0201-restricted, tumor- 
asso  ciated antigen human telomerase reverse transcriptase 
(hTERT540–548: ILAKFLHWL) specific CD8+ T-cell clone. Extra-
cellular flux analysis relied on the presentation of peptide within 
T-cell populations, whereby the peptide initially binds to the HLA 
complex. Initial experiments were performed to optimize peptide 
concentrations for both clones (Figures S6A–D in Supplementary 
Material). We confirmed the expression of HLA-DR and MHC 
class I of DCD10 by flow cytometry (Figure S7A in Supplementary 
Material). In addition the ability of DCD10 to cross-present 
peptide was monitored via ELISA, whereby overnight cultures 
with native peptide PKY induced production of IFNγ and 
MIP-1β in comparison to negative peptide (5T4; Figure S7B in 
Supplementary Material). The response of the CD4+ DCD10 
clone to the PKYVKQNTLKLAT peptide (PKY) was monitored 
by extracellular flux analysis in comparison with activating 
antibodies, anti-CD3, and anti-CD28. Both PKY and anti-CD3/

anti-CD28 induced an immediate increase in ECAR (albeit to 
a lesser extent in anti-CD3/anti-CD28 stimulated cells), with 
2-DG injection confirming the role of glycolysis (Figure  6A). 
Stimulation of DCD10 to its natural ligand PKY induced a 
significantly greater ECAR fold change in comparison to anti-
CD3/anti-CD28 (Figure 6B). The corresponding OCR revealed 
a substantial increase in oxygen consumption upon injection of 
PKY, less so with anti-CD3/anti-CD28 (Figure 6C). PKY induced 
a twofold increase in oxygen consumption upon peptide stimula-
tion, whereas anti-CD3/anti-CD28 induced roughly a 1.5-fold 
change in oxygen consumption (Figure 6D). Dual increases in 
both glycolysis and oxidative phosphorylation (represented as 
increased ECAR and OCR) via use of PKY proved that the use  
of antigen specificity is a viable option for extracellular flux 
analysis. We also altered the DCD10 native peptide (PKY) at 
residue number 11 from threonine to arginine and determined 
the metabolic response (Figure S8 in Supplementary Material). 
Here, we found that the residue alteration at position 11 had no 
effect on peptide recognition for the DCD10 clone using extracel-
lular flux analysis, with ECAR and OCR remaining unchanged 
(Figure S8A–E in Supplementary Material).

We also compared the ILAKFLHWL index peptide and its 
metabolic effect on T-cell clone, ILA1. Following index peptide 
injection, ILA1 also exhibited significantly enhanced glycolysis 
(Figure  6E), in comparison to anti-CD3/anti-CD28 stimula-
tion. This observation was reflected in the ECAR fold change 
(Figure 6F). The oxygen consumption was also monitored through-
out the experiment (Figure  6G), which revealed a significant  
1.5-fold increase after ILA1 peptide interaction, whereas there 
was no notable OCR increase in anti-CD3/anti-CD28-treated 
ILA1 clones (Figure  6H). Collectively, these data show that  
naturally recognized peptides produce a different metabolic 
signature compared to anti-CD3/anti-CD28 stimulation.

TCR Binding Affinity Governs Differential 
Glycolytic Thresholds in Antigen- 
Specific T-Cells
In order to investigate whether TCR affinity could tune T-cell 
metabolism, we used a panel of previously defined APLs that 
are recognized by the ILA1 TCR with a range of binding affini-
ties (Figure 7A) (20). This is the first time T-cell metabolism 
has been investigated through natural ligands with altered 
affinity.

The hierarchy of ECAR fold change corresponded to the 
affinity of the ILA1 TCR for each APL, with the strongest affinity 
ligand (3G) generating the highest ECAR, and the lowest affinity 
ligand (8E) generating no ECAR increase (Figures 7B,C). This 
peptide stimulation initiated an increase in ECAR followed by a 
gradual decrease presumably as glucose in the original seeding 
media was utilized.

Analysis of OCR revealed that the rate of oxygen consumption 
was also dependent on the affinity of TCR–pHLA interaction 
(Figure 7D). This was reflected in the OCR fold change where 
index peptide and 8T APL had similar OCR fold changes and 
3G APL had the largest OCR fold change (Figure 7E). Thus, we 
demonstrate, for the first time that TCR binding affinity governs 
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FIGURE 6 | Metabolic response of CD4+ DCD10 and CD8+ ILA T-cell clones to native peptides. Metabolic analysis of CD4+ T-cell clone, DCD10 in response to 
native Flu1 HA306–318, peptide, with sequence; PKYVKQNTLKLAT (PKY). (A) Comparative extracellular acidification rate (ECAR) stimulation of DCD10 CD4+ T-cell 
clone with PKY (10 µM) and anti-CD3 (0.2 µg/ml) and anti-CD28 (20 µg/ml). Final injection of 2-deoxy-D-glucose (100 mM). (B) Fold ECAR change calculated with 
use of single measurement prior to peptide injection and single measurement after peptide injection. (C) Corresponding oxygen consumption rate (OCR) and (D) 
OCR fold change after stimulation with PKY or anti-CD3 anti-CD28. (E) Metabolic analysis via ECAR of CD8+ T-cell clone, ILA1 with ubiquitous tumor-associated 
antigen human telomerase reverse transcriptase (hTERT540–548) peptide ILA1 (ILAKFLHWL; 10 µM) with final injection of 2-DG (100 mM). (F) ECAR fold change as 
calculated previously. (G) Corresponding OCR and (H) OCR fold change after stimulation with ILA1 or anti-CD3 anti-CD28. Data are representative of four to twelve 
technical repeats comprising of two to three independent experiments. Data expressed as mean + SEM; *p ≤  0.05.
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the metabolic response to antigen, likely a critical step in deter-
mining T-cell effector functions.

DISCUSSION

Elucidating metabolic differences of leukocyte subsets and their 
changes over the life course of a cell is critical to our under-
standing of both basic immunology and perturbations with 
disease. Initially, the bioenergetics profile of quiescent, glucose 
starved CD4+ and CD8+ T-cells were compared to show that 
upon exposure to glucose T-cells exhibit no glycolytic reserve, 
although this was in a finite glucose scenario. While both popula-
tions were quickly at maximum glycolysis the CD4+ subset had 
significantly higher basal levels of glycolysis, which could be 
attributed to elevated glycolytic enzymes, specifically hexokinase 
isozyme II. These enzymes are important early in glycolysis for 
phosphorylating glucose to trap it inside the cell (34). Quiescent 
CD4+ T-cells also had higher oxygen consumption. Significantly 
higher levels of mitochondria, measured using MitoTracker, in 
CD4+ than CD8+ T-cells in all likelihood support this which is 
comparable to what has been reported previously in mice (11). 
Within the CD8+ T-cell population there was a MitoTrackerHi and 
a MitoTrackerLo subpopulation that could reflect mitochondrial 
biogenesis within the CD8+ T-cell population (44).

Like most other hematopoietic cell populations studied to 
date, human CD4+ and CD8+ T-cells undergo a “Warburg-like” 
switch to increased glycolytic metabolism upon activation; 
while accompanied by an increase in oxygen consumption, 
over all the balance shifts to favor glycolysis immediately upon 
cell stimulation. This would support ATP and biosynthetic 

intermediate production to fuel effector functions and we 
confirm a role for glucose consumption in cytokine produc-
tion by both CD4+ and CD8+ T-cells. There were, however, 
some notable differences in the two T cell populations. CD8+ 
T-cellsexhibited a gradual decrease in glycolysis post-activation 
and showed greater depen dency on mitochondrial metabolism 
for cytokine production. This gradual decrease in glycolysis by 
CD8+ T-cells only could reflect metabolites being directed to 
the mitochondria to support cytokine production and other 
effector functions. Differential expression of various glycolysis 
enzymes supports these differences in CD4+ and CD8+ T-cells 
and could allow CD4+ T-cells to maintain an elevated level of 
glycolysis. Here, we did not consider whether an alternative 
fuel switch, such as glutamine utilization as reported in murine 
CD4+ and CD8+ T-cells, occurs (11, 45). These differential 
effects of metabolic inhibition on cytokine production could 
provide targets for the control of inflammatory disease.

Immediate glycolytic switching was also shown using human 
CD4+ and CD8+ T-cell clones when activated with either  
the non-specific stimulus anti-CD3/CD28 or in an antigen-
specific manner. ECAR and OCR were increased with natural 
peptide stimulation in comparison to anti-CD3/CD28. Further 
to this, we studied the ILA1 TCR, which binds with a range of 
affinities to altered peptides in order to determine whether TCR 
binding affinity could tune T-cell metabolism. These experiments 
demonstrated a clear relationship between TCR affinity and 
metabolic response, with the strongest ILA1 TCR affinity inter-
action for the 3G peptide inducing the greatest glycolytic change 
and the weakest, 8E, inducing the smallest glycolytic change. 
These findings were also consistent when oxygen consumption 
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FIGURE 7 | Peptide binding affinity affects underlying metabolic changes in 
ILA1 CD8+ T-cell clones. (A) Sequence details and binding affinities of native 
index peptide ILAKFLHWL of ubiquitous tumor-associated antigen human 
telomerase reverse transcriptase (hTERT540–548) with peptide variants 
ILGKFLHWL (3G), ILAKFLHTL (8T) and ILAKFLHEL (8E). Negative control 
peptide ELAGIGILTV (ELA). (B) Extracellular acidification rate (ECAR) analysis 
of ILA1 CD8+ T-cell clones stimulated with native index peptide, 3G, 8E, 8T 
and negative control ELA (all 10 µM). Final injection of 2-DG (100 mM).  
(C) Fold change of index peptide, 3G, 8T, 8E, and ELA. Fold ECAR change 
calculated with use of single measurement prior to peptide injection and 
single measurement after peptide injection. (D) Oxygen consumption rate 
(OCR) analysis of ILA1 stimulated with index peptide, 3G, 8E, 8T, and 
negative control ELA (all 10 µM) including (E) fold OCR change as calculated 
above. Data are representative of 6–10 technical repeats comprised of three 
independent experiments. Data expressed as mean + SEM; *p ≤  0.05, 
***p ≤  0.001.
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was investigated. This observation supports previous studies 
where strength of interaction between TCR and specific pHLA 
controls murine T-cell responses (46). Fine-tuning the ability of 
the HLA/peptide to promote post-TCR metabolic changes has 
implications for therapeutic manipulation of T-cells in cancer 
and for vaccination (47, 48).

The clinical importance and therapeutic potential of immu-
nometabolism is emerging with modulation of glycolysis and 
mitochondrial respiration used increasingly to alter cell and 
disease phenotypes. This includes systemic lupus erythematosus 
where dual treatment of 2-DG and metformin normalizes CD4+ 
T-cell metabolism, and cancer where microRNA is being used 
to target glycolysis (49–51). There has also been considerable 
attention to the use of metformin alongside 2-DG and 6-diazo-5- 
oxo-l-norleucine (inhibitor of glutaminolysis) in a triple therapy 
strategy to prolong allograft survival by suppressing autologous 
T-cell rejection (42). Collectively, our findings illustrate differ-
ences in the metabolic activity of CD4+ and CD8+ T-cells and 
that TCR-pHLA affinity governs the underlying glycolytic switch  
and thus T-cell activation status. These findings aid our under-
standing of metabolically linked T-cell activation thresholds and 
could potentially improve vaccination strategies via the under-
standing of metabolic profiles during immune cell activation.
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