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Abstract We present new properties for the Fractional Poisson process and the Frac-

tional Poisson field on the plane. A martingale characterization for Fractional Poisson

processes is given. We extend this result to Fractional Poisson fields, obtaining some

other characterizations. The fractional differential equations are studied. We consider

a more general Mixed-Fractional Poisson process and show that this process is the

stochastic solution of a system of fractional differential-difference equations. Finally,

we give some simulations of the Fractional Poisson field on the plane.
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1 Introduction

There are several different approaches to the fundamental concept of Fractional Pois-

son process (FPP) on the real line. The “renewal” definition extends the characteriza-

tion of the Poisson process as a sum of independent non-negative exponential random
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variables. If one changes the law of interarrival times to the Mittag-Leffler distribu-

tion (see [32,33,44]), the FPP arises. A second approach is given in [6], where the

renewal approach to the Fractional Poisson process is developed and it is proved that

its one-dimensional distributions coincide with the solution to fractionalized state

probabilities. In [34] it is shown that a kind of Fractional Poisson process can be

constructed by using an “inverse subordinator”, which leads to a further approach.

In [26], following this last method, the FPP is generalized and defined afresh,

obtaining a Fractional Poisson random field (FPRF) parametrized by points of the

Euclidean space R2
+, in the same spirit it has been done before for Fractional Brow-

nian fields, see, e.g., [17,20,22,30].

The starting point of our extension will be the set-indexed Poisson process which

is a well-known concept, see, e.g., [17,22,37,38,47].

In this paper, we first present a martingale characterization of the Fractional Pois-

son process. We extend this characterization to FPRF using the concept of increasing

path and strong martingales. This characterization permits us to give a definition of a

set-indexed Fractional Poisson process. We study the fractional differential equation

for FPRF. Finally, we study Mixed-Fractional Poisson processes.

The paper is organized as follows. In the next section, we collect some known

results from the theory of subordinators and inverse subordinators, see [8,36,49,

50] among others. In Section 3, we prove a martingale characterization of the FPP,

which is a generalization of the Watanabe Theorem. In Section 4, another generaliza-

tion called “Mixed-Fractional Poisson process” is introduced and some distributional

properties are studied as well as Watanabe characterization is given. Section 5 is de-

voted to FPRF. We begin by computing covariance for this process, then we give

some characterizations using increasing paths and intensities. We present a Gergely-

Yeshow characterization and discuss random time changes. Fractional differential

equations are discussed on Section 6.

Finally, we present some simulations for the FPRF.

2 Inverse Subordinators

This section collects some known resuts from the theory of subordinators and inverse

subordinators [8,36,49,50].

2.1 Subordinators and their inverse

Consider an increasing Lévy process L = {L(t), t ≥ 0}, starting from 0, which is

continuous from the right with left limits (cadlag), continuous in probability, with in-

dependent and stationary increments. Such a process is known as a Lévy subordinator

with Laplace exponent

φ(s) = µs+
∫

(0,∞)
(1− e−sx)Π(dx), s ≥ 0,
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where µ ≥ 0 is the drift and the Lévy measure Π on R+∪{0} satisfies

∫ ∞

0
min(1,x)Π(dx)< ∞.

This means that

Ee−sL(t) = e−tφ(s), s ≥ 0.

Consider the inverse subordinator Y (t), t ≥ 0, which is given by the first-passage

time of L :

Y (t) = inf{u ≥ 0 : L(u)> t} , t ≥ 0.

The process Y (t), t ≥ 0, is non-decreasing and its sample paths are a.s. continuous if

L is strictly increasing.

We have

{(ui, ti) : L(ui)< ti, i = 1, . . . ,n}= {(ui, ti) : Y (ti)> ui, i = 1, . . . ,n} ,

and it is known [39,41,49,50] that for any p > 0,EY p(t)< ∞.

Let U(t) = EY (t) be the renewal function. Since

Ũ(s) =
∫ ∞

0
U(t)e−stdt =

1

sφ(s)
,

then Ũ characterizes the inverse process Y , since φ characterizes L.
We get a covariance formula [49,50]

Cov(Y (t),Y (s)) =
∫ min(t,s)

0
(U(t − τ)+U(s− τ))dU(τ)−U(t)U(s).

The most important example is considered in the next section, but there are some

other examples.

2.2 Inverse stable subordinators

Let Lα = {Lα(t), t ≥ 0}, be an α−stable subordinator with φ(s) = sα ,0 < α < 1.

The density of Lα(1) is of the form [48]

gα(x) =
1

π

∞

∑
k=1

(−1)k+1 Γ (αk+1)

k!

1

xαk+1
sin(πkα) =

1

x
W−α,0(−x−α). (2.1)

Here we use the Wright’ s generalized Bessel function (see, e.g., [16])

Wγ,β (z) =
∞

∑
k=0

zk

Γ (1+ k)Γ (β + γk)
, z ∈ C, (2.2)

where γ > −1, and β ∈ R. The set of jump times of Lα is a.s. dense. The Lévy

subordinator is strictly increasing, since the process Lα admits a density.

Then the inverse stable subordinator
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Yα(t) = inf{u ≥ 0 : Lα(u)> t}
has density [36, p.110] (see also [43])

fα(t,x) =
d

dx
P{Yα(t)≤ x}= t

α
x−1− 1

α gα(tx
− 1

α ), x > 0, t > 0. (2.3)

The Laplace transform of the density fa(t,x) is

∫ ∞

0
e−st fα(t,x)dt = sα−1e−xsα

, s ≥ 0, (2.4)

Its paths are continuous and nondecreasing. For α = 1/2, the inverse stable sub-

ordinator is the running supremum process of Brownian motion, and for α ∈ (0,1/2)
this process is the local time at zero of a strictly stable Lévy process of index α/(1−
α).

Let

Eα(z) =
∞

∑
k=0

zk

Γ (αk+1)
, α > 0, z ∈ C (2.5)

be the Mittag-Leffler function [16], and recall the following:

i) The Laplace transform of function Eα(−λ tα) is of the form

∫ ∞

0
e−stEα(−λ tα)dt =

sα−1

λ + sα
, 0 < α < 1, t ≥ 0,ℜ(s)> |λ |1/α .

(ii) The function Eα(λ tα) is an eigenfunction at the the fractional Caputo-Djrbashian

derivative Dα
t with eigenvalue λ [36, p.36]

Dα
t Eα(λ tα) = λEα(λ tα), 0 < α < 1,λ ∈ R,

where Dα
t is defined as (see [36])

Dα
t u(t) =

1

Γ (1−α)

∫ t

0

du(τ)

dτ

dτ

(t − τ)α
, 0 < α < 1. (2.6)

Note that the classes of functions for which the Caputo-Djrbashian derivative is well

defined are discussed in [36, Sections 2.2. and 2.3] (in particular one can use the class

of absolutely continuous functions).

Proposition 1 The α-stable inverse subordinators satisfy the following properties:

(i)

Ee−sYα (t) =
∞

∑
n=0

(−stα)n

Γ (αn+1)
= Eα(−stα), s > 0.

(ii) Both processes Lα(t), t ≥ 0 and Yα(t) are self-similar

Lα(at)

a1/α

d
= Lα(t),

Yα(at)

aα

d
= Yα(t), a > 0.
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(iii) For 0 < t1 < · · ·< tk,

∂ kE(Yα(t1) · · ·Yα(tk))

∂ t1 · · ·∂ tk
=

1

Γ k(α)

1

[t1(t2 − t1) · · ·(tk − tk−1)]
1−α

.

In particular,

(A)

EYα(t) =
tα

Γ (1+α)
;E[Yα(t)]

ν =
Γ (ν +1)

Γ (αν +1)
tαν , ν > 0;

(B)

Cov(Yα(t),Yα(s))=
1

Γ (1+α)Γ (α)

∫ min(t,s)

0
((t − τ)α +(s− τ)α)τα−1dτ− (st)α

Γ 2(1+α)
.

(2.7)

Proof See [8,49,50]. ⊓⊔

2.3 Mixture of inverse subordinators

This subsection collects some results from the theory of inverse subordinators, see

[49,50,36,5,28].

Different kinds of inverse subordinators can be considered.

Let Lα1
and Lα2

be two independent stable subordinators. The mixture of them

Lα1,α2
= {Lα1,α2

(t), t ≥ 0} is defined by its Laplace transform: for s ≥ 0, C1 +C2 =
1, C1 ≥ 0, C2 ≥ 0, α1 < α2,

Ee−sLα1 ,α2
(t) = exp{−t(C1sα1 +C2sα2)}. (2.8)

It is possible to prove that

Lα1,α2
(t) = (C1)

1
α1 Lα1

(t)+(C2)
1

α2 Lα2
(t), t ≥ 0,

is not self-similar, unless α1 =α2 =α, since Lα1,α2
(at)=d (C1)

1
α1 a

1
α1 Lα1

(t)+(C2)
1

α2 a
1

α2 Lα2
(t).

This expression is equal to a
1
α Lα1,α2

(t) for any t > 0 if and only if α1 = α2 = α, in

which case the process Lα1,α2
can be reduced to the classical stable subordinator (up

to a constant).

The inverse subordinator is defined by

Yα1,α2
(t) = inf{u ≥ 0 : Lα1,α2

(u)> t}, t ≥ 0. (2.9)

We assume that C2 6= 0 without loss of generality (the case C2 = 0 reduces to the

previous case of single inverse subordinator).

It was proved in [28] that

Ũ(t) =
1

(C1sα1 +C2sα2)s
,U(t) =

1

C2
tα2Eα2−α1,α2+1(−C1

C2
tα2−α1 ), (2.10)
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where Eα,β (z) is the two-parametric Generalized Mittag-Leffler function ([14,16])

Eα,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
, α > 0,β > 0, z ∈ C.

Also for the Laplace transform of the density fα1,α2
(t,u)= d

du
P{Yα1,α2

(t)≤ u}, u≥ 0,
of the inverse subordinator Yα1,α2

= {Yα1,α2
(t), t ≥ 0}, we have the following expres-

sion [35]:

f̃α1,α2
(s,u) =

∫ ∞

0
e−st fα1,α2

(t,u)dt =
1

s
[C1sα1 +C2sα2 ]e−u[C1sα1+C2sα2 ], s ≥ 0,

(2.11)

and the Laplace transform of f̃ is given by

∫ ∞

0
e−pu f̃α1,α2

(s,u)du =
φ(s)

s(p+φ(s))
=

C1sα1−1 +C2sα2−1

p+C1sα1 +C2sα2
, p ≥ 0. (2.12)

From [5, Theorem 2.3] we have the following expression for u ≥ 0, t > 0:

fα1,α2
(t,u) =

C1

λ tα1

∞

∑
r=0

1

r!
(−C2 |u|

λ tα2
)rW−α1,1−α2r−α1

(−C1 |u|
λ tα1

)+

+
C2

λ tα2

∞

∑
r=0

1

r!
(−C1 |u|

λ tα1
)rW−α2,1−α1r−α2

(−C2 |u|
λ tα2

). (2.13)

One can also consider the tempered stable inverse subordinator, the inverse sub-

ordinator to the Poisson process, the compound Poisson process with positive jumps,

the Gamma and the inverse Gaussian Lévy processes. For additional details see [28,

49,50].

3 Fractional Poisson Processes and Martingales

3.1 Preliminaries

The first definition of FPP Nα = {Nα(t), t ≥ 0} was given in [32] (see also [33]) as a

renewal process with Mittag-Leffler waiting times between the events

Nα(t) = max{n : T1 + ...+Tn ≤ t}=
∞

∑
j=1

✶{T1+...+Tj≤t}, t ≥ 0,

where
{

Tj

}
, j = 1,2, . . . are iid random variables with the strictly monotone Mittag-

Leffler distribution function

Fα(t) = P(Tj ≤ t) = 1−Eα(−λ tα), t ≥ 0,0 < α < 1, j = 1,2, . . .

The following stochastic representation for FPP is found in [34]:

Nα(t) = N(Yα(t)), t ≥ 0, α ∈ (0,1),
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where N = {N(t), t ≥ 0}, is the classical homogeneous Poisson process with pa-

rameter λ > 0, which is independent of the inverse stable subordinator Yα . One can

compute the following expression for the one-dimensional distribution of FPP (see

[46]):

P(Nα(t) = k) = p
(α)
k (t) =

∫ ∞

0

e−λx(λx)k

k!
fα(t,x)dx

=
(λ tα)k

k!

∞

∑
j=1

(k+ j)!

j!

(−λ tα) j

Γ (α( j+ k)+1)
=

(λ tα)k

k!
E
(k)
α (−λ tα)

= (λ tα)kEk+1
α,αk+1(−λ tα), k = 0,1,2..., t ≥ 0, 0 < α < 1,

where fα is given by (2.3), Eα(z) is the Mittag-Leffler function (2.5), E
(k)
α (z) is the

k−th derivative of Eα(z), and E
γ
α,β (z) is the three-parametric Generalized Mittag-

Leffler function defined as follows [16,42]:

E
γ
α,β (z) =

∞

∑
j=0

(γ) jz
j

j!Γ (α j+β )
,α > 0,β > 0, γ > 0, z ∈ C, (3.1)

where

(γ) j =

{
1 if j = 0;

γ(γ +1) · · ·(γ + j−1) if j = 1,2, . . .

is the Pochhammer symbol.

Finally, in [6,7] it is shown that the marginal distribution of FPP satisfies the

following system of fractional differential-difference equations (see [25]):

Dα
t p

(α)
k (t) =−λ (p

(α)
k (t)− p

(α)
k−1(t)), k = 0,1,2, . . .

with initial conditions: p
(α)
0 (0) = 1, p

(α)
k (0) = 0,k ≥ 1, and p

(α)
−1 (t) = 0, where Dα

t is

the fractional Caputo-Djrbashian derivative (2.6). See also [11].

Remark 1 Note that

ENα(t) = E
[
E[N(Yα(t))|Yα(t)]

]
=

∫ ∞

0
[EN(u)] fα(t,u)du = λ tα/Γ (1+α),

where fα(t,u) is given by (2.3), and [28] showed that

Cov(Nα(t),Nα(s)) =
λ (min(t,s))α

Γ (1+α)
+λ 2Cov(Yα(t),Yα(s)), (3.2)

where Cov(Yα(t),Yα(s)) is given in (2.7) while Cov(N(t),N(s)) = λ min(t,s). In par-

ticular,

VarNα(t) = λ 2t2α
[ 2

Γ (1+2α)
− 1

Γ 2(1+α)

]
+

λ tα

Γ (1+α)

=
λ 2t2α

Γ 2(1+α)

(αΓ (α)

Γ (2α)
−1

)
+

λ tα

Γ (1+α)
, t ≥ 0.

(3.3)
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The definition of the Hurst index for renewal processes is discussed in [14]. In the

same spirit, one can define the analogous of the Hurst index for the FPP as

H = inf

{
β : lim sup

T→∞

VarNα(T )

T 2β
< ∞

}
∈ (0,1).

To prove the formula (3.2), one can use the conditional covariance formula [45, Ex-

ercise 7.20.b]:

Cov(Z1,Z2) = E
(
Cov(Z1,Z2|Y )

)
+Cov

(
E(Z1|Y ),E(Z2|Y )

)
,

where Z1,Z2 and Y are random variables, and

Cov(Z1,Z2|Y ) = E
(
(Z1 −E(Z1|Y ))(Z2 −E(Z2|Y ))

)
.

Really, if

Gt,s(u,v) = P{Yα(t)≤ u,Yα(s)≤ v},
then E(N(Yα(t))|Yα(t)) = E(N(1)) ·Yα(t) = λYα(t), and

Cov(Yα(t),Yα(s))=Var
(

N(1)
∫ ∞

0

∫ ∞

0
min(u,v)Gt,s(du,dv)

)
+Cov

(
λYα(t),λYα(s)

)

= λE(Yα(min(t,s)))+λ 2Cov(Yα(t),Yα(s)),

since, for example, if s ≤ t, then v = Yα(s)≤ Yα(t) = u, and
∫ ∞

0

∫ ∞

0
vGt,s(du,dv) =

∫ ∞

0
v

∫ ∞

0
Gt,s(du,dv) =

∫ ∞

0
vdP{Yα(s)≤ v}= E(Yα(s)).

Remark 2 For more than one random variable in the condition, the conditional co-

variance formula becomes more complicated, it can be seen even for the conditional

variance formula:

Var(Z) = E
(
Var(Z|Y1,Y2)

)
+E

(
Var[E(Z|Y1,Y2)]|Y1

)
+Var

(
E(Z|Y1)

)
.

The corresponding formulas can be found in [9]. That is why for random fields we

develop another technique, see Appendix.

3.2 Watanabe characterization

Let (Ω ,F ,P) be a complete probability space. Recall that the Ft−adapted, P-integrable

stochastic process M = {M(t), t ≥ 0} is an Ft−martingale (sub-martingale) if E(M(t)|Fs)=
(≥)M(s), 0 ≤ s ≤ t, a.s., where {Ft} is a non-decreasing family of sub-sigma fields

of F . A point process N is called simple if its jumps are of magnitude +1. It is locally

finite when it does not have infinite jumps in a bounded region. The following theo-

rem is known as the Watanabe characterization for homogeneous Poisson processes

(see, [51] and [10, p. 25]):

Theorem 1 Let N = {N(t), t ≥ 0} be a Ft−adapted, simple locally finite point pro-

cess. Then N is a homogeneous Poisson process iff there is a constant λ > 0, such

that the process M(t) = N(t)−λ t is an Ft−martingale.
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We extend the well-known Watanabe characterization for FPP. The following re-

sult may be seen as a corollary of the Watanabe characterization for Cox processes as

in [10, Chapetr II]. We will make use of the following lemma.

Lemma 1 (Doob’s Optional Sampling Theorem) Let M be a right-continuous mar-

tingale. Then, if T and S are stopping times such that P(T < +∞) = 1 and {M(t ∧
T ), t ≥ 0} is uniformly integrable, then E(M(T )|FS∧T ) = M(S∧T ).

Proof Define N = {N(t) = M(t ∧T ), t ≥ 0}. Then N is a right-continuous uniformly

integrable martingale such that limt→+∞ N(t) = M(T ). Moreover, N(S) = M(T ∧S).
The thesis is hence a consequence of the Doob’s Optional Sampling Theorem (see,

e.g., [23, Theorem 7.29] with X = N, τ ≡+∞ and σ = S). ⊓⊔

Theorem 2 Let X = {X(t), t ≥ 0} be a simple locally finite point process. Then X is a

FPP iff there exist a constant λ > 0, and an α-stable subordinator Lα = {Lα(t), t ≥
0}, 0 < α < 1, such that, denoted by Yα(t) = inf{s : Lα(s) ≥ t} its inverse stable

subordinator, the process

M = {M(t), t ≥ 0}= {X(t)−λYα(t), t ≥ 0}

is a right-continuous martingale with respect to the induced filtration Ft =σ(X(s),s≤
t)∨σ(Yα(s),s ≥ 0) such that, for any T > 0,

{M(τ),τ stopping time s.t. Yα(τ)≤ T} (3.4)

is uniformly integrable.

Proof If X is a FPP, then X(t) = N(Yα(t)), where Yα is the inverse of an α-stable

subordinator and N is a Poisson process with intensity λ > 0.
Note that X ≥ 0 and (Yα ≥ 0 are monotone non-decreasing, and hence the bounde-

nesses in L2 given by (3.3) and Proposition 1 iiiA) imply that {N(Yα(t))−λYα(t),0≤
t ≤ T} is uniformly integrable (see, for example, [23, pag. 67]). Therefore N(Yα(t))−
λYα(t) is still a martingale, by Lemma 1. Notice that Yα(t) is continuous increasing

and adapted; therefore it is the predictable intensity of the sub-martingale X .
Now, let τ be a stopping time s.t. Yα(τ) ≤ T , and hence λYα(τ) ≤ λT . Then,

since N is a Poisson process with intensity λ > 0, M̃(t) = M(τ ∧ t) is a martingale

bounded in L2 and null at 0, and therefore it converges in L2 to M(τ), with variance

bounded by

E(M2(τ)) = lim
t→∞

E(M2(τ ∧ t))≤ Var(N(T ))+Var(Yα(τ))≤ const · (1+T 2).

Then the family (3.4) is uniformly bounded in L2, which implies the thesis.

Conversely, it is enough to prove that X(t) = N(Yα(t)), where N is a Poisson

process, independent of Yα .
Consider the inverse of Yα(t) :

Z(t) = inf{s : Yα(s)≥ t}.

{Z(t), t ≥ 0} can be seen as a family of stopping times. Then, by Lemma 1,

M(Z(t)) = X(Z(t))−λYα(Z(t))
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is still a martingale. The fact that Yα is continuous implies that Yα(Z(t)) = t, and

hence X(Z(t))−λ t is a martingale. Moreover, since Z(t) is increasing, X(Z(t)) is a

simple point process.

Following the classical Watanabe characterization, X(Z(t)) is a classical Pois-

son process with parameter λ > 0. Call this process N(t) = X(Z(t)). Then X(t) =
N(Yα(t)) is a FPP. ⊓⊔

For recent developments and random change time results, see also [31,40]. In

particular, we thank a referee to have outlined that a similar result has been obtained

in [40, Lemma 3.2].

4 Mixed-Fractional Poisson Processes

4.1 Definition

In this section, we consider a more general Mixed-Fractional Poisson process (MFPP)

Nα1,α2 = {Nα1,α2(t), t ≥ 0}= {N(Yα1,α2
(t)), t ≥ 0}, (4.1)

where the homogeneous Poisson process N with intensity λ > 0, and the inverse

subordinator Yα1,α2
given by (2.9) are independent. We will show that Nα1,α2 is the

stochastic solution of the system of fractional differential-difference equations: for

k = 0,1,2, . . .,

C1D
α1
t p

(α1,α2)
k (t)+C2D

α2
t p

(α1,α2)
k (t) =−λ (p

(α1,α2)
k (t)− p

(α1,α2)
k−1 (t)), (4.2)

with initial conditions:

p
(α1,α2)
0 (0) = 1, p

(α1,α2)
k (0) = 0, p

(α1,α2)
−1 (t) = 0, k ≥ 1, (4.3)

where Dα
t is the fractional Caputo-Djrbashian derivative (2.6), and for C1 ≥ 0,C2 >

0,C1 +C2 = 1, α1,α2 ∈ (0,1),

p
(α1,α2)
k (t) = P{Nα1,α2(t) = k}, k = 0,1,2 . . .

4.2 Distribution Properties

Using the formulae for Laplace transform of the fractional Caputo-Djrbashian deriva-

tive (see, [36, p.39]):

∫ ∞

0
e−stDα

t u(t)dt = sα u(0+)− sα−1u(0),0 < α < 1,

one can obtain from (4.2) with k = 0 the following equation

C1sα1 p̃0(s)−C1sα1−1 +C2sα2 p̃0(s)−C2sα2−1 =−λ p̃0(s), p̃0(0) = 1,
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for the Laplace transform

p̃
(α1,α2)
0 (s) = p̃0(s) =

∫ ∞

0
e−st p

(α1,α2)
0 (t)dt, s ≥ 0.

Thus

p̃0(s) =
C1sα1−1 +C2sα2−1

λ +C1sα1 +C2sα2
, s ≥ 0,

and using the formula for an inverse Laplace transform (see, [16]), for ℜα > 0,ℜβ >
0,ℜs > 0,ℜ(α −ρ)> 0,ℜ(α −β )> 0, and |asβ/(sα +b)|< 1:

L
−1
( sρ−1

sα +asβ +b
; t
)
= tα−ρ

∞

∑
r=0

(−a)rt(α−β )rEr+1
α,α+(α−β )r−ρ+1

(−btα), (4.4)

one can find an exact form of the p
(α1,α2)
0 (t) in terms of generalized Mittag-Leffler

functions (3.1):

p
(α1,α2)
0 (t) =

∞

∑
r=0

(
−C1

C2
tα2−α1

)r

Er+1
α2,(α2−α1)r+1

(
− λ

C2
tα2

)
(4.5)

−
∞

∑
r=0

(
−C1

C2
tα2−α1

)r+1

Er+1
α2,(α2−α1)(r+1)+1

(
− λ

C2
tα2

)
.

For k ≥ 1,we obtain from (4.2):

p̃k(s)(λ +C1sα1 +C2sα2) = λ p̃k−1(s),

where

p̃
(α1,α2)
k (s) = p̃k(s) =

∫ ∞

0
e−st p

(α1,α2)
k (t)dt, s ≥ 0.

Thus from (4.2) we obtain the following expression for the Laplace transform of

p
(α1,α2)
k (t), k ≥ 0 :

p̃k(s) =

(
λ

λ +C1sα1 +C2sα2

)
p̃k−1(s) =

(
λ

λ +C1sα1 +C2sα2

)k

p̃0(s) (4.6)

=
λ k(C1sα1−1 +C2sα2−1)

(λ +C1sα1 +C2sα2)k+1
=

λ k(C1sα1 +C2sα2)

s(λ +C1sα1 +C2sα2)k+1
, k = 0,1,2...

On the other hand, one can compute the Laplace transform from the stochastic

representation (4.1). If

p
(α1,α2)
k (t) = P{N(Yα1,α2

(t)) = k}=
∫ ∞

0

e−λx

k!
(λx)k fα1,α2

(t,x)dx, (4.7)

where fα1,α2
(t,x) is given by (2.13), then using (2.11),(2.12) we have for k ≥ 0,s > 0

p̃k(s) =
∫ ∞

0
e−st p

(α1,α2)
k (t)dt =

∫ ∞

0

e−λx

k!
(λx)k

[∫ ∞

0
e−st fα1,α2

(t,x)dt
]
dx
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=
λ k

k!

φ(s)

s

∫ ∞

0
e−λxxke−xφ(s)dx

Note that

∂ k

∂λ k

∫ ∞

0
e−λxe−xφ(s)dx = (−1)k

∫ ∞

0
e−λxxke−xφ(s)dx

=
∂ k

∂λ k

1

λ +φ(s)
= (−1)k k!

(λ +φ(s))k+1
;

thus

p̃k(s) = λ k φ(s)

s(λ +φ(s))k+1
=

λ k(C1sα1 +C2sα2)

s(λ +C1sα1 +C2sα2)k+1
,

the same expression as (4.6). We can formulate the result in the following form:

Theorem 3 The MFPP Nα1,α2 defined in (4.1) is the stochastic solution of the system

of fractional differential-difference equations (4.2) with initial conditions (4.3).

Note that in [5] one can find some other stochastic representations of the MFPP

(4.1). Also, some analytical expression for p
(α1,α2)
0 (t) is given by (4.5), while the

analytical expression for p
(α1,α2)
k (t),for k ≥ 1, are given by (4.7).

Moreover, p
(α1,α2)
k (t),for k ≥ 1, can be obtained by the following recurrent rela-

tion:

p
(α1,α2)
k (t) =

t∫

0

p
(α1,α2)
k−1 (t − z)g(z)dz,

where

g̃(s) =
∫ ∞

0
e−szg(z)dz =

λ

λ +C1sα1 +C2sα2
,

and from (4.4):

g(z) =
λ

C2
zα2−1

∞

∑
r=0

(
− C1

C2
zα2−α1

)r

Er+1
α2,α2+(α2−α1)r

(
− λ

C2
zα2

)
.

4.3 Dependence

From [28, Theorem 2.1] and (2.10), we have the following expressions for moments

in form of the function

U(t) =
1

C2
tα2 Eα2−α1,α2+1(−C1tα2−α1/C2),

ENα1,α2(t) = λU(t),

VarNα1,α2(t) = λ 2 1

C2
2

t2α2 [2Eα2−α1,α1+α2+1(−C1tα2−α1/C2)

− (Eα2−α1,α2+1(−C1tα2−α1/C2))
2]
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+λ
1

C2
tα2Eα2−α1,α2+1(−C1tα2−α1 /C2),

Cov(Nα1,α2(t),Nα1,α2(s)) = λU(min(t,s))+λ 2
{∫ min(t,s)

0

(
U(t − τ)

+U(s− τ)
)

dU(τ)−U(t)U(s)
}
.

We extend the Watanabe characterization for MFPP. Let Λ(t) : R+ → R+ be a

non-negative right-continuous non-decreasing deterministic function such that Λ(0)=
0, Λ(∞) = ∞, and Λ(t)−Λ(t−)≤ 1 for any t. Such a function will be called consis-

tent. The Mixed-Fractional Non-homogeneous Poisson process (MFNPP) is defined

as

N
α1,α2
Λ = {N

α1,α2
Λ (t), t ≥ 0}= {N(Λ(Yα1,α2

(t))), t ≥ 0},
where the homogeneous Poisson process N with intensity λ = 1, and the inverse

subordinator Yα1,α2
given by (2.9) are independent.

Theorem 4 Let X = {X(t), t ≥ 0} be a simple locally finite point process. X is a

MFNPP iff there exist a consistent function Λ(t), and a mixed stable subordinator

{Lα1,α2
(t), t ≥ 0}, 0 < α1 < 1, 0 < α2 < 1, defined in (2.8), such that

M = {M(t), t ≥ 0}= {X(t)−Λ(Yα1,α2
(t)), t ≥ 0}

is a martingale with respect to the induced filtration Ft =σ(X(s),s≤ t)∨σ(Yα1,α2
(s),s≥

0), where Yα1,α2
(t) = inf{s : Lα1,α2

(t) ≥ t} is the inverse mixed stable subordinator.

In addition, for any T > 0,

{M(τ),τ stopping time s.t. Λ(Yα1,α2
(τ))≤ T}

is uniformly integrable.

Proof The proof is analogue to that of Theorem 2. ⊓⊔

5 Two-Parameter Fractional Poisson Processes and Martingales

5.1 Homogeneous Poisson random fields

This section collects some known results from the theory of two-parameter Poisson

processes and homogeneous Poisson random fields (PRF) (see, e.g., [47,37], among

the others).

Let (Ω ,F ,P) be a complete probability space and let
{
Ft1,t2 ;(t1, t2) ∈ R2

+

}
be a

family of sub-σ -fields of F such that

(i) Fs1,s2
⊆ Ft1,t2 for any s1 ≤ t1, s2 ≤ t2;

(ii) F0,0 contains all null sets of F ;

(iii) for each z ∈ R2
+, Fz =

⋂

z≺z′
Fz′ where z = (s1,s2) ≺ z′ = (t1, t2) denotes the

partial order on R2
+, which means that s1 ≤ t1, s2 ≤ t2.
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Given (s1,s2)≺ (t1, t2) we denote by

∆s1,s2
X(t1, t2) = X(t1, t2)−X(t1,s2)−X(s1, t2)+X(s1,s2)

the increments of the random field X(t1, t2),(t1, t2)∈R2
+ over the rectangle ((s1,s2) ,(t1, t2)].

In addition, we denote

F∞,t2 =σ(Ft1,t2 , t1 > 0),Ft1,∞ =σ(Ft1,t2 , t2 > 0), and F
∗
s1,s2

=F∞,s2
∨Fs1,∞ =σ(Fs1,∞,F∞,s2

).

A strong martingale is an integrable two-parameter process X such that

E(∆s1,s2
X(t1, t2)|F∞,s2

∨Fs1,∞) = 0,

for any z = (s1,s2)≺ z′ = (t1, t2) ∈ R2
+.

Let {Ft1,t2} be a family of sub-σ -fields of F satisfying the previous conditions

(i), (ii), (iii) for all (t1, t2) ∈ R2
+. A Ft1,t2− PRF is an adapted, cadlag field N ={

N(t1, t2),(t1, t2) ∈ R2
+

}
, such that,

(1) N(t1,0) = N(0, t2) = 0 a.s.

(2) for all (s1,s2)≺ (t1, t2) the increments ∆s1,s2
N(t1, t2) are independent of F∞,s2

∨Fs1,∞,
and has a Poisson law with parameter λ (t1 − s1)(t2 − s2), that is,

P{∆s1,s2
N(t1, t2) = k}= e−λ |S| (λ |S|)k

k!
, λ > 0, k = 0,1, . . . ,

where S = ((s1,s2) ,(t1, t2)], λ > 0, and |S| is the Lebesgue measure of S.

If we do not specify the filtration, {Ft1,t2} will be the filtration generated by the

field itself, completed with the nulls sets of F N = σ
{

N(t1, t2),(t1, t2) ∈ R2
+

}
.

It is known that then there is a simple locally finite point random measure N(·),
such that for any finite n = 1,2, . . . , and for any disjoint bounded Borel sets A1, ...,An

P(N(A1) = k1, ...,N(An) = kn)

=
λ k1+...+kn

k1! · .. · kn!
(|A1|)k1 · · · (|An|)kn exp

{
−

n

∑
j=1

λ
∣∣A j

∣∣
}
, k j = 0,1,2, ...,

while

EN(A) = λ |A| , Cov(N(A1),N(A2)) = λ |A1 ∩A2| .

Theorem 5 (Two Parameter Watanabe Theorem [19]) A random simple locally

finite counting measure N is a two-parameter PRF iff N(t1, t2)− λ t1t2 is a strong

martingale.
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5.2 Fractional Poisson random fields

Let Y
(1)
α1

(t), t ≥ 0 and Y
(2)
α2

(t), t ≥ 0 be two independent inverse stable subordinators

with indices α1 ∈ (0,1) and α2 ∈ (0,1), which are independent of the Poisson field

N(t1, t2),(t1, t2) ∈ R2
+. In [26], the Fractional Poisson field (FPRF) is defined as fol-

lows

Nα1,α2
(t1, t2) = N(Y

(1)
α1

(t1),Y
(2)
α2

(t2)), (t1, t2) ∈ R2
+. (5.1)

We obtain the marginal distribution of FPRF: for k = 0,1,2, . . .,

p
α1,α2
k (t1, t2) = P(Nα1,α2

(t1, t2) = k)

=
∫ ∞

0

∫ ∞

0

e−λx1x2(λx1x2)
k

k!
fα1

(t1,x1) fα2
(t2,x2)dx1dx2, (5.2)

where fa(t,x) is given by (2.3). In other words, for (t1, t2) ∈ R2
+, k = 0,1, . . .

P(Nα1,α2
(t1, t2) = k) =

t1t2λ k

α1α2k!

∫ ∞

0

∫ ∞

0
e−λx1x2x

k−1− 1
α1

1 x
k−1− 1

α2
2 gα1

(t1x
− 1

α1
1 )gα2

(t2x
− 1

α2
2 )dx1dx2,

=
λ k

k!t1t2

∫ ∞

0

∫ ∞

0
e−λx1x2 x

k+ 1
α1

1 x
k+ 1

α2
2 W−α1,0(−

x1

t
α1
1

)W−α2,0(−
x2

t
α2
2

)dx1dx2,

(5.3)

where the Wright generalized Bessel function is defined by (2.2), and gα(x) is defined

by (2.1).

Using the Laplace transform given by (2.4) one can obtain an exact expression

for the double Laplace transform of (5.2): for k = 0,1,2, . . .,

L {pk(t1, t2);s1,s2}=
∫ ∞

0

∫ ∞

0
e−s1t1−s2t2 pk(t1, t2)dt1dt2

=
∫ ∞

0

∫ ∞

0

e−λx1x2(λx1x2)
k

k!
s

α1−1
1 s

α2−1
2 exp{−x1s

α1
1 − x2s

α2
2 }dx1dx2. (5.4)

Note that

ENα1,α2
(t1, t2) = E

[
E[N(Yα1

(t1),Yα2
(t2))|Yα1

(t1),Yα2
(t2)]

]

=
∫ ∞

0

∫ ∞

0
EN(u1,u2) fα1

(t1,u1) fα2
(t2,u2)du1du2

= λ t
α1
1 t

α2
2 /[Γ (1+α1)Γ (1+α2)] (5.5)

and, for (t1, t2),(s1,s2) ∈ R2
+,

Cov(Nα1,α2
(t1, t2),Nα1,α2

(s1,s2))



16 G. Aletti, N. Leonenko, E. Merzbach

= λ 2
{[ 1

Γ (1+α1)Γ (α1)

∫ min(t1 ,s1)

0
(t1 − τ1)

α1 +(s1 − τ1)
α1 )τ

α1−1
1 dτ1 −

(s1t1)
α1

Γ 2(1+α1)

]

×
[ 1

Γ (1+α2)Γ (α2)

∫ min(t2 ,s2)

0
(t2 − τ2)

α2 +(s2 − τ2)
α2 )τ

α2−1
2 dτ2 −

(s2t2)
α2

Γ 2(1+α2)

]

+
(t1s1)

α1

Γ 2(1+α1)

[ 1

Γ (1+α2)Γ (α2)

∫ min(t2 ,s2)

0
((t2 − τ2)

α2 +(s2 − τ2)
α2 )τ

α2−1
2 dτ2 −

(s2t2)
α2

Γ 2(1+α2)

]

+
(t2s2)

α1

Γ 2(1+α2)

[ 1

Γ (1+α1)Γ (α1)

∫ min(t1 ,s1)

0
((t1 − τ1)

α1 +(s1 − τ1)
α1 )τ

α1−1
1 dτ1 −

(s1t1)
α1

Γ 2(1+α1)

]}

+λ
(min(t1,s1))

α1 (min(t2,s2))
α2

Γ (1+α1)Γ (1+α2)
;

(5.6)

in particular, for (t1, t2),(s1,s2) ∈ R2
+,

VarNα1,α2
(t1, t2) = λ 2t1

2α1t2
2α2C1(α1,α2)+λ t1

α1t2
α2C2(α1,α2)}, (5.7)

where

C1(α1,α2) =
1

α1α2Γ (2α1)Γ (2α2)
− 1

(α1α2)2Γ 2(α1)Γ 2(α2)
;

C2(α1,α2) =
1

Γ (1+α1)Γ (1+α2)
.

We can summarize our results in the following

Proposition 2 Let Nα1,α2
(t1, t2),(t1, t2) ∈ R2

+, be a FPRF defined by (5.1). Then

i) P(Nα1,α2
(t1, t2) = k) , k = 0,1,2... is given by (5.3);

ii) ENα1,α2
(t1, t2),VarNα1,α2

(t1, t2) and Cov(Nα1,α2
(t1, t2),Nα1,α2

(s1,s2)) are given

by (5.5), (5.7), (5.6), respectively.

The proof is given in [30], see also Appendix for more details and more general

results hold for any Lévy random fields.

Remark 3 Following the ideas of this paper, the Hurst index of the Fractional Poisson

random field in d = 2 can be defined as follows:

H = inf

{
β : lim sup

T→∞

VarNα1,α2
(T,T )

T 2dβ
< ∞

}
=

α1 +α2

2
∈ (0,1).

Remark 4 Any random field

Z(t1, t2) = N(Y1(t1),Y2(t2)), (t1, t2) ∈ R2
+

defined on the positive quadrant R2
+ can be extended in the whole space R2 in the

following way: let Z j(t1, t2),(t1, t2) ∈ R2
+, j = 1,2,3,4 be independent copies of the

random field Z(t1, t2),(t1, t2) ∈ R2
+.

Then one can define

Z̄(t1, t2) =





Z1(t1, t2), t1 ≥ 0, t2 ≥ 0

−Z2(−t−1 , t2), t1 < 0, t2 ≥ 0

−Z3(t1,−t−2 ), t1 ≥ 0, t2 < 0

Z4(−t−1 ,−t−2 ), t1 < 0, t2 < 0
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Therefore, modifying the cadlag property we obtain a Poisson like random field

Z̄(t1, t2),(t1, t2) ∈ R2 which has a similar covariance structure (replacing t1, t2,s1,s2

by |t1|, |t2|, |s1|, |s2|).

5.3 Characterization on increasing paths

Let Lα = {Lα(t), t ≥ 0}, be an α-stable subordinator, and Yα = {Yα(t), t ≥ 0} be its

inverse (α ∈ (0,1)). Recall that Lα(t) is a cadlag strictly increasing process, while Yα

(t) is nondecreasing and continuous. As a consequence, the latter defines a random

nonnegative measure µα on (R+,BR+) such that µα([0, t]) = Yα(t). The σ -algebra

G contains all the information given by µα :

G := σ(Lα(t), t ≥ 0) = σ(Yα(t), t ≥ 0) = σ(µα(B),B ∈ BR+).

Now, let X(t) = N(Yα(t)) be a FPP, where N has intensity λ . We denote by {F X
t , t ∈

R+} its natural filtration. We note that each µα([0, t]) is G -measurable, while N(w)−
N(µα([0,s])) is independent of σ(F X

s ,G ) for any w ≥ µα([0,s]). Hence, for any

bounded F X
s -measurable random variable Y (s), we have

E
(∫ ∞

0
Y (s)✶(s,t](v)dXv

)
= E

(
Y (s)E

(∫ ∞

0
✶(s,t](v)N(µα(dv))

∣∣∣σ(F X
s ,G )

))

= E
(

Y (s)
∫ ∞

0
✶(µα ([0,s]),µα ([0,t])](w)E(dNw|σ(F X

s ,G ))
)

= E
(

Y (s)λ µα((s, t])
)

= E
(∫ ∞

0
Y (s)✶(s,t](v)λ µα(dv)

)
.

In other words, by [10, Theorem T4], the FPP X is a doubly stochastic Poisson pro-

cess with respect to the filtration {σ(F X
t ,G ), t ∈R+}. Therefore a first characteriza-

tion of a FPP may be written in the following way.

Corollary 1 A process Nα is a FPP iff it is a doubly stochastic Poisson process with

intensity λYα , with respect to the filtration {σ(F X
t ,G ), t ∈ R+}. In other words,

whenever B1, . . . ,Bn are disjoint bounded Borel sets and x1, . . . ,xn are non-negative

integers, then

P
( n⋂

i=1

{Nα(Bi) = xi}
∣∣∣G

)
=

n

∏
i=1

exp(−λ µα(Bi))(λ µα(Bi))
xi

xi!
.

An analogous result may be found for FPRF. In fact, let Y
(1)
α1

(t), t ≥ 0 and Y
(2)
α2

(t), t ≥
0 be two independent inverse stable subordinators with indices α1 ∈ (0,1) and α2 ∈
(0,1). Let µα1

and µα2
, G1 and G2 their respective σ -algebras (this notation will be

used in the following results).

If µα = µα1
⊗µα2

is the product measure and G = σ(G1,G2), we can follow the

same reasoning as above once we have noted that ∆µα1
([0,s1]),µα2

([0,s2])N(w1,w2) and

σ(F X
∞,s2

∨F X
s1,∞

) are conditionally independent, given G . In fact
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E
(

∆s1,s2
X(t1, t2)

∣∣∣σ(F X
∞,s2

∨F
X
s1,∞

,G )
)

= E
(

∆µα1
([0,s1]),µα2

([0,s2])N(µα1
([0, t1]),µα2

([0, t2]))
∣∣∣σ(F X

∞,s2
∨F

X
s1,∞

,G )
)

= E
(

∆µα1
([0,s1]),µα2

([0,s2])N(µα1
([0, t1]),µα2

([0, t2]))
∣∣∣G

)

= λ µα(((s1,s2),(t1, t2)]).

(5.8)

In other words, the FPRF X is a F ∗-doubly stochastic Poisson process (see [37] for

the definition of F ∗-doubly stochastic Poisson process) with respect to the filtration

{σ(F X
t1,t2

,G )),(t1, t2) ∈ R2
+} by [37, Theorem 1]. Again, we may summarize this

result in the following statement.

Proposition 3 A process Nα1,α2
is a FPRF iff it is a F ∗-doubly stochastic Poisson

process with intensity λYα1
·Yα2

, with respect to the filtration {σ(F X
t1,t2

,G )), t1, t2 ∈
R+}. In other words, whenever B1, . . . ,Bn are disjoint bounded Borel sets in R+×R+

and x1, . . . ,xn are non-negative integers, then

P
( n⋂

i=1

{Nα1,α2
(Bi) = xi}

∣∣∣G
)
=

n

∏
i=1

exp(−λ µα(Bi))(λ µα(Bi))
xi

xi!
. (5.9)

Now, let t1 > 0 be fixed. The process t 7→ Nα1,α2
(t1, t) is the trace of the FPRF along

the increasing t-indexed family of sets t 7→ [(0,0),(t1, t)]. As a consequence of the

previous results, we obtain:

Theorem 6 A random simple locally finite counting measure Nα1,α2
is a FPRF iff

G1,G2 are independent, and fixed t1, t2 ≥ 0, the process Nα1,α2
(t1, t), conditioned on

G1, is a FPP Nα2
(t), the process Nα1,α2

(t, t2), conditioned on G2, is a FPP Nα1
(t),

and the two processes Nα1
(t1 + t)−Nα1

(t1),Nα2
(t2 + t)−Nα2

(t2) are conditionally

independent given σ(G ,σ(Nα1,α2
(s1,s2),(s1,s2)≺ (t1, t2))).

Proof Assume that Nα1,α2
is a FPRF and t1 > 0 fixed. Denote by Xt = Nα1,α2

(t1, t)
and note that σ({Yα2

(t), t ≥ 0}) = G2. Let B1, . . . ,Bn be disjoint bounded Borel sets

and x1, . . . ,xn non-negative integers. We have

P
( n⋂

i=1

{Nα1,α2
([0, t1]×Bi) = xi}

∣∣∣σ(G1,σ({Yα2
(t), t ≥ 0}))

)

= P
( n⋂

i=1

{Nα1,α2
([0, t1]×Bi) = xi}

∣∣∣G
)

=
n

∏
i=1

exp(−λ µα([0, t1]×Bi))(λ µα([0, t1]×Bi))
xi

xi!

=
n

∏
i=1

exp(−λYα1
(t1) ·µα2

(Bi))(λYα1
(t1) ·µα2

(Bi))
xi

xi!
,

and hence Xt = M(Yα2
(t)), where, conditioned on G1, M is a Poisson process with

intensity λYα1
(t1). The conditional independence follows by similar arguments, and

hence the first implication is proved.
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Conversely, by [37], to prove Proposition 3 it is sufficient to prove (5.8). Denote

by

H
1

s1,s2
= σ(Nα1,α2

(s1 + t,s)−Nα1,α2
(s1,s), t ≥ 0,s ≤ s2)

H
2

s1,s2
= σ(Nα1,α2

(s,s2 + t)−Nα1,α2
(s,s2), t ≥ 0,s ≤ s1),

so that F
Nα1 ,α2
∞,s2

= σ(F
Nα1 ,α2
s1,s2

,H 1
s1,s2

) and F
Nα1 ,α2
s1,∞ = σ(F

Nα1 ,α2
s1,s2

,H 2
s1,s2

). Then, de-

noting by X ⊥⊥ Y |W the conditional independence of X and Y , given W , we have by

hypothesis that

H
1

s1,s2
⊥⊥H

2
s1,s2

|σ(G ,F
Nα1 ,α2
s1,s2

), H
1

s1,s2
⊥⊥F

Nα1 ,α2
s1,s2

|G , H
2

s1,s2
⊥⊥F

Nα1 ,α2
s1,s2

|G ,

for any (s1,s2). Thus,

– H 2
t1,t2

⊥⊥F
Nα1 ,α2
t1,t2 ,H 1

t1,t2
|G ,, F

Nα1 ,α2
t1,t2 ⊥⊥H 1

t1,t2
|G ,, H 1

t1,s2
⊆H 1

t1,t2
, H 2

s1,t2
⊆H 2

t1,t2
,

then

E
(

Nα1,α2
(t1, t2)

∣∣∣σ(F
Nα1 ,α2
∞,s2

∨F
Nα1 ,α2
s1,∞ ,G )

)
=E

(
Nα1,α2

(t1, t2)
∣∣∣σ(F

Nα1 ,α2
t1,s2

∨F
Nα1 ,α2
s1,t2 ,G )

)
,

and hence

E
(

∆s1,s2
Nα1,α2

(t1, t2)
∣∣∣σ(F

Nα1 ,α2
∞,s2

∨F
Nα1 ,α2
s1,∞ ,G )

)
=E

(
∆s1,s2

Nα1,α2
(t1, t2)

∣∣∣σ(F
Nα1 ,α2
t1,s2

∨F
Nα1 ,α2
s1,t2 ,G )

)
;

(5.10)

– note that F
Nα1 ,α2
t1,s2

= σ(F
Nα1 ,α2
s1,s2

,H ), where H = σ(∆s1,s2
Nα1,α2

(u,v),s1 ≤ u ≤
t1,v ≤ s2). In addition, H 1

s1,t2
⊥⊥ F

Nα1 ,α2
s1,t2 |G , and σ(∆s1,s2

Nα1,α2
(t1, t2),H ) ⊆

H 1
s1,t2

. Hence

E
(

∆s1,s2
Nα1,α2

(t1, t2)
∣∣∣σ(F

Nα1 ,α2
t1,s2

∨F
Nα1 ,α2
s1,t2 ,G )

)
=E

(
∆s1,s2

Nα1,α2
(t1, t2)

∣∣∣σ(H ,G )
)

;

(5.11)

– now, note that both Nα1,α2
(t1, t2)−Nα1,α2

(t1,s2) and Nα1,α2
(s1, t2)−Nα1,α2

(s1,s2)

belong to H 2
t1,s2

, while H ⊆ F
Nα1 ,α2
t1,s2

. Hence

E
(

∆s1,s2
Nα1,α2

(t1, t2)
∣∣∣σ(H ,G )

)
= E(∆s1,s2

Nα1,α2
(t1, t2)|G ). (5.12)

Combining (5.10), (5.11) and (5.12) we finally get (5.8):

E
(

∆s1,s2
Nα1,α2

(t1, t2)
∣∣∣σ(F

Nα1 ,α2
∞,s2

∨F
Nα1 ,α2
s1,∞ ,G )

)
= E(∆s1,s2

Nα1,α2
(t1, t2)|G )

= λ (Yα1
(t1)−Yα1

(s1))(Yα2
(t2)−Yα2

(s2)).

⊓⊔

Let A be the collection of the closed rectangles {At1,t2 : t ∈ R2
+}, where At1,t2 =

{(s1,s2) ∈ R2
+ : 0 ≤ si ≤ ti, i = 1,2}. The family A generates a topology of closed

sets Ã (u), which is closed under finite unions and arbitrary intersections, called a
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lower set family (see, e.g., [1,22]). In other words, when a point (t1, t2) belongs to a

set A ∈ Ã (u), all the rectangle At1,t2 is contained in A:

A ∈ Ã (u) ⇐⇒ At1,t2 ⊆ A,∀(t1, t2) ∈ A.

A function Γ : R+ → Ã (u) is called an increasing set if Γ (0) = {(0,0)}, it is

continuous, it is non-decreasing (s ≤ t =⇒ Γ (s) ⊆ Γ (t)), and the area it underlies

is finite for any t and goes to infinity when t increases (limt→+∞ |Γ (t)| = ∞). Note

that, for a nonnegative measure µ on BR+×R+ , it is well-defined the non-decreasing

right-continuous function:

(µ ◦Γ )(t) = µ(Γ (t)).

Accordingly, given an increasing path Γ and a random nonnegative measure N (in

[22], it is an increasing and additive process), we may define the one-parameter pro-

cess N ◦Γ as the trace of N along Γ :

(N ◦Γ )(t) = N({Γ (t)}), t ≥ 0.

Theorem 6 shows an example of characterizations of FPRF. In [18], the authors

proved a characterization of the inhomogeneous Poisson processes on the plane thor-

ough its realizations on increasing families of points (called increasing path) and

increasing families of sets, called increasing set (see also [2,21]).

We are going to characterize an FPRF in the same spirit.

Theorem 7 A random simple locally finite counting measure Nα1,α2
is a FPRF iff,

conditioned on G , N ◦Γ is a one-parameter inhomogeneous Poisson process with

intensity λ (µα ◦Γ ), for any increasing set Γ , independent of G .

Proof Assume that Nα1,α2
is a FPRF. Then, for any 0 ≤ s1 < t1 ≤ s2 < t2 ≤ ·· · ≤ sn <

tn, the sets Bi = Γ (ti)\Γ (si) are disjoint. By (5.9),

P
( n⋂

i=1

{(N ◦Γ )(si, ti] = xi}
∣∣∣G

)
= P

( n⋂

i=1

{Nα1,α2
(Bi) = xi}

∣∣∣G
)

=
n

∏
i=1

exp(−λ µα(Bi))(λ µα(Bi))
xi

xi!

=
n

∏
i=1

exp
(
−λ · (µα ◦Γ )(si, ti]

)(
λ · (µα ◦Γ )(si, ti]

)xi

xi!
.

Conversely, note that that (5.9) may be checked only on disjoint rectangles B1,B2, . . . ,Bn

(see also [22]). After ordering partially the rectangles with respect to ≺, one can build

an increasing sets Γ such that Bi = Γ (ti)\Γ (si), where 0 ≤ s1 < t1 ≤ s2 < t2 ≤ ·· · ≤
sn < tn. By hypothesis, N ◦Γ is an inhomogeneous Poisson process with intensity

µα ◦Γ . Then,

P
( n⋂

i=1

{Nα1,α2
(Bi) = xi}

∣∣∣G
)
= P

( n⋂

i=1

{(N ◦Γ )(si, ti] = xi}
∣∣∣G

)
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=
n

∏
i=1

exp
(
−λ · (µα ◦Γ )(si, ti]

)(
λ · (µα ◦Γ )(si, ti]

)xi

xi!

=
n

∏
i=1

exp(−λ µα(Bi))(λ µα(Bi))
xi

xi!
.

⊓⊔

Now, a function Γ : R+ → R2
+ is called an increasing path if Γ (0) = (0,0), it is

continuous, it is non-decreasing (s ≤ t =⇒ Γ1(s)≤ Γ1(t),Γ2(s)≤ Γ2(t)), and the area

it underlies goes to infinity (limt→+∞ Γ1(t)Γ2(t) = ∞). In other words, an increasing

path is an increasing set where, for each t, Γ (t) is a rectangle. Given an increasing

path Γ and a process N(t1, t2), the one-parameter process N ◦Γ is the trace of N along

Γ :

(N ◦Γ )(t) = ∆0,0N(Γ1(t),Γ2(t)) = N(Γ1(t),Γ2(t)), t ≥ 0.

When dealing with the laws of the traces of a process along increasing paths, one

cannot hope to prove, for instance, the conditional independence of two filtrations

as H 1
s1,s2

and H 2
s1,s2

, since the event that belong to those filtrations are generated by

the increments of the process on regions that are not comparable with respect to the

partial order ≺.

As an example, there is no increasing path that separates the three rectangles

B1 = {(1,0)≺ z ≺ (2,1)}, B2 = {(0,1)≺ z ≺ (1,2)} and B3 = {(1,1)≺ z ≺ (2,2)}
and hence we cannot give the joint law of ∆(1,0)N(2,1) and ∆(0,1)N(1,2). On the

other hand, Proposition 3 suggests that, if we assume the independence of N(B1) and

N(B2) conditioned on F1,1, the equation (5.9) may be proved for B1, B2 and B3 via

increasing paths (as in [2,3,18,21]). This consideration has suggested the following

definition.

We say that the filtration satisfies the conditional independence condition or the

Cairoli-Walsh condition ((F4) in [13], see also [24]) if for any F -measurable inte-

grable random variable Z, and for any (t1, t2) :

E(E(Z|Ft1,∞)|F∞,t2) = E(E(Z|F∞,t2)|Ft1,∞) = E(Z|Ft1,t2).

Thus, following the same ideas as in [2,3,18,21], one can prove the following result.

Theorem 8 A random simple locally finite counting measure Nα1,α2
is a FPRF iff,

conditioned on G , the Cairoli-Walsh condition holds and N ◦Γ is an inhomogeneous

Poisson process with intensity Yα1
(Γ1(t)) ·Yα2

(Γ2(t)), for any increasing path Γ .

A remark on Set-Indexed Fractional Poisson Process

Let T be a metric space equipped with a Radon measure on its Borel sets. We assume

existence of an indexing collection A on T , as it is defined in [22]. We are interested

to considering processes indexed by a class of closed sets from T . In this new frame-

work, Γ : R+ → A is called an increasing path if it is continuous and increasing:

s < t =⇒ Γ (s)⊆ Γ (t) (called a flow in [17])

We can now define Set-Indexed Fractional Poisson process.
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A set-indexed process X = {XU ,U ∈A } is called a Set-Indexed Fractional Pois-

son process(SIFPP), if for any increasing path Γ the process XΓ = {XΓ (t), t ≥ 0} is

an FPP.

Remark 5 Following results of [22], we can state that any SIFPP is a set-indexed

Lévy process.

Details and martingale characterizations will be presented elsewhere.

5.4 Gergely-Yezhow characterization

Let (Un,n ≥ 1) be a sequence of i.i.d. (0,1)-uniform distributed random variables,

independent of the processes Yαi
, i = 1,2. The random indexes associated to the

‘records’ (νn,n ≥ 1) are inductively defined by

ν1(ω) = 1, νn+1(ω) = inf{k > νn(ω) : Uk(ω)>Uνn(ω)(ω)}.

It is well known (see, e.g., [4, p.63-78]) that P(∩n{νn < ∞}) = 1, and hence the k-th

record Vk of the sequence is well defined: V0 := 0, Vk =Uνk
. Since Vn ≥max(U1, . . . ,Un),

then P(Vn → 1) = 1. Moreover, the number of Un’s that realize the maximum by time

n is almost surely asymptotic to log(n) as n → ∞. In other words, the sequence (νn)n

growths exponentially fast.

Now, given a increasing set Γ , we define

YΓ
t = ∑

n

n✶[Vn,Vn+1)(1− exp(−µα ◦Γ (t))) = sup{n : Vn ≤ 1− exp(−µα ◦Γ (t))}.

Theorem 9 A random simple locally finite counting measure Nα1,α2
is a FPRF iff

N ◦Γ is distributed as YΓ , for any increasing set Γ .

Proof In the proof we assume that limt µα ◦Γ (t) = ∞ almost surely. When this is not

the case, the proof should be changed as in [15], where generalized random variables

are introduced exactly when 1− exp(−“intensity at ∞”)< 1.

By Theorem 7, we must prove that, conditioned on G , YΓ is an inhomogeneous

Poisson process with intensity µα ◦Γ . Conditioned on G , let F(t) := 1− exp(−µα ◦
Γ (t)) be the continuous deterministic cumulative distribution function. Let F− be its

pseudo-inverse F−(x) = inf{y : F(y)> x}, and define ξn = F−(Un), for each n. Then

(ξn,n ≥ 1) is a sequence of i.i.d. random variables with cumulative function F . As in

[15], put ζ ′
n = max(ξ1, . . . ,ξn), (n = 1,2, . . .) omitting in the increasing sequence

ζ ′
1,ζ

′
2, . . . ,ζ

′
n, . . .

all the repeating elements except one, we come to the strictly increasing sequence

[15, Eq. (3)]

ζ1,ζ2, . . . ,ζn, . . .

Now, since F− is monotone, it is obvious by definition that ζn = F−(Vn). Again, F−

is monotone, and hence

YΓ
t = ∑

n

n✶[F−(Vn),F−(Vn+1))(F
−(1− exp(−µα ◦Γ (t))))
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= ∑
n

n✶[ζn,ζn+1)(t),

that is the process v(t) defined in [15, Eq. (7’)]. The thesis is now an application of

[15, Theorem 1] and Theorem 7. ⊓⊔

5.5 Random time change

The process µα may be used to reparametrize the time of the increasing paths and

sets. In fact, for any increasing path Γ = (Γ1(t),Γ2(t)), let

T (s,ω)=

{
inf{t : Yα1

(Γ1(t)) ·Yα2
(Γ2(t))(ω)> s} if {t : Yα1

(Γ1(t)) ·Yα2
(Γ2(t))(ω)> s} 6=∅;

∞ otherwise;

be the first time that the intensity is seen to be bigger than s on the increasing path,

and define

Γµα (s,ω) = Γ (T (s,ω)) (5.13)

the reparametrization of Γ made by µα . Analogously, for any increasing set Γ , let

Γµα (s,ω) = Γ (inf{t : (µα(ω)◦Γ )(t)> s}).

We note that, for any fixed s and A ∈ Ã (u)

{ω : A * Γµα (s)}= ∪t∈Q
(
{A * Γ (t)}∩{µα(Γ (t)∩A)≥ s}

)
∈ GA, (5.14)

where GA = σ(µα(A
′),A′ ⊆ A). We recall that a random measurable set Z : Ω →

Ã (u) is called a GA-stopping set if {A ⊆ Z} ∈ GA for any A. As a consequence, the

reparametrization given in (5.13) transforms Γ (·) into Γµα (·), a family of continuous

increasing stopping set by (5.14). Such a family is called an optional increasing set.

The random time change theorem (which can be made an easy consequence of the

characterization of the Poisson process given in [51]) together with Theorem 7 and

Theorem 8 give the following corollaries, that can be seen as extensions of some

results in [2,3].

Corollary 2 A random simple locally finite counting measure Nα1,α2
is a FPRF iff,

conditioned on G , N ◦Γµα is a standard Poisson process, for any increasing set Γ .

Corollary 3 A random simple locally finite counting measure Nα1,α2
is a FPRF iff,

conditioned on G , the Cairoli-Walsh condition holds [13,24] and N ◦Γµα is a stan-

dard Poisson process, for any increasing path Γ .
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6 Fractional Differential Equations

A direct calculation may be applied to show that the marginal distribution of the

classical Poisson random field N(t1, t2), (t1, t2) ∈ R2
+

pc
k(t1, t2) = P(N(t1, t2) = k) =

e−λ t1t2(λ t1t2)
k

k!
,k = 0,1,2 . . .

satisfy the following differential-difference equations:

∂ 2 pc
0 (t1, t2)

∂ t1 ∂ t2
=
(
−λ +λ 2t1t2

)
pc

0 (t1, t2) ; (6.1)

∂ 2 pc
1 (t1, t2)

∂ t1 ∂ t2
=
(
−3λ +λ 2t1t2

)
pc

1 (t1, t2)+λ pc
0 (t1, t2) ; (6.2)

∂ 2 pc
k (t1, t2)

∂ t1 ∂ t2
=
(
−λ +λ 2t1t2

)
pc

k (t1, t2)+
(
λ −2λ 2t1t2

)
pc

k−1 (t1, t2)+λ 2 pc
k−2 (t1, t2) ; k ≥ 2;

(6.3)

and the initial conditions:

pc
0 (0,0) = 1, pc

k (0,0) = pc
k (t1,0) = pc

k (0, t2) = 0, k ≥ 1.

We are now ready to derive the governing equations of the marginal distributions

of FPRF Nα1,α2
(t1, t2), (t1, t2) ∈ R2

+ :

p
α1,α2
k (t1, t2) = P(Nα1,α2

(t1, t2) = k) , k = 0,1,2, . . . (6.4)

given by (5.2) or (5.3). These equations have something in common with the govern-

ing equations for the non-homogeneous Fractional Poisson processes [27].

For a function u(t1, t2), (t1, t2) ∈ R2
+, the Caputo-Djrbashian mixed fractional

derivative of order α1,α2 ∈ (0,1)× (0,1) is defined by

D
α1,α2
t1,t2 u(t1, t2) =

1

Γ (1−α1)Γ (1−α2)

∫ t1

0

∫ t2

0

∂ 2u(τ1,τ2)

∂τ1 ∂τ2

dτ1 dτ2

(t1 − τ1)
α1 (t2 − τ2)

α2

=
1

Γ (1−α1)Γ (1−α2)

∫ t1

0

∫ t2

0

∂ 2u(t1 −υ1, t2 −υ2)

∂υ1 ∂υ2

dυ1 dυ2

υα1
1 υα2

2

.

Assuming that

e−s1t1−s2t2
∂ 2u(t1 −υ1, t2 −υ2)

∂υ1 ∂υ2
υ−α1

1 υ−α2
2

is integrable as function of four variables t1, t2,υ1,υ2, the double Laplace transform

of the the Caputo-Djrbashian mixed fractional derivative

L
{

D
α1,α2
t1,t2 u(t1, t2);s1,s2

}
=

∫ ∞

0

∫ ∞

0
e−s1t1−s2t2 D

α1,α2
t1,t2 u(t1, t2)dt1 dt2

= s
α1
1 s

α2
2 ũ(s1,s2)− s

α1−1
1 s

α2
2 ũ(s1,0)− s

α1
1 s

α2−1
2 ũ(0,s2)− s

α1−1
1 s

α2−1
2 ũ(0,0), (6.5)

where ũ(s1,s2) = L {u(t1, t2);s1,s2} is the double Laplace transform of the function

u(t1, t2).
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Remark 6 Note that the Laplace transform of fα(t,x) given by (2.4) as α = 1 is of

the form e−sx and its inverse is the delta distribution δ (t −x). Accordingly, as α → 1,

fα(t,x) converges weakly to δ (t − x), and we denote it by fα(t,x)→ δ (t − x).

The proof of (6.5) is standard and we omit it (see [35, p. 37] for the one-dimensional

case).

Theorem 10 Let N(t1, t2), (t1, t2)∈R2
+,α1,α2 ∈ (0,1)×(0,1) , be the FPRF defined

by (5.1).

1) Then its marginal distribution given in (6.4) satisfy the following fractional

differential-integral recurrent equations:

D
α1,α2
t1,t2 p

α1,α2
0 (t1, t2) =

∫ ∞

0

∫ ∞

0

(
−λ +λ 2x1x2

)
p

α1,α2
0 (x1,x2) fα1

(t1,x1) fα2
(t2,x2)dx1dx2;

(6.6)

D
α1,α2
t1,t2 p

α1,α2
1 (t1, t2) =

∫ ∞

0

∫ ∞

0

[(
−3λ +λ 2x1x2

)
p

α1,α2
1 (x1,x2)

+λ p
α1,α2
0 (x1,x2)

]
fα1

(t1,x1) fα2
(t2,x2)dx1dx2; (6.7)

D
α1,α2
t1,t2 p

α1,α2
k (t1, t2) =

∫ ∞

0

∫ ∞

0

[(
−λ +λ 2x1x2

)
p

α1,α2
k (x1,x2)

+
(
λ −2λ 2x1x2

)
p

α1,α2
k−1 (x1,x2)+λ 2x1xp

α1,α2
k−2 (x1,x2)

]

× fα1
(t1,x1) fα2

(t2,x2)dx1dx2, k ≥ 2;

(6.8)

with the initial conditions:

p
α1,α2
0 (0,0) = 1, p

α1,α2
k (0,0) = p

α1,α2
k (t1,0) = p

α1,α2
k (0, t2) = 0, k ≥ 1.

2) For α1 → 1,α2 → 1, fα1
(t1,x1)→ δ (t1 − x1), fα2

(t2,x2)→ δ (t2 − x2), hence

(6.6), (6.7) and (6.8) become (6.1), (6.2) and (6.3) correspondingly.

Proof 1) The initial conditions are easily checked using the fact that Yα1
(0)=Yα2

(0)=
0 a.s.

Let p
α1,α2
k (t1, t2) ,k = 0,1,2, . . ., be defined as in equations (5.2) or (5.3). Then

the characteristic function of the FPRF, for z ∈ R:

p̂(t1, t2;z)=Eexp{izNα1,α2
(t1, t2)}=

∫ ∞

0

∫ ∞

0
eλx1x2(e

iz−1) fα1
(t1,x1) fα2

(t2,x2)dx1dx2.

(6.9)

Taking the double Laplace transform of (6.9) and using (2.4) and (5.4) yields

p̄(s1,s2;z) = ˜̂p(t1, t2;z) =
∫ ∞

0

∫ ∞

0
e−s1t1−s2t2 p̂(t1, t2;z)dt1dt2 (6.10)

= s
α1−1
1 s

α2−1
2

∫ ∞

0

∫ ∞

0
eλx1x2(e

iz−1)e−x1s
α1
1 −x2s

α2
2 dx1dx2,

and

p̄(0,0,z) = p̄(0,s2,z) = p̄(s1,0,z) = 0.
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Using an integration by parts for a double integral [29]:

∫ ∞

0

∫ ∞

0
F(x1,x2)H (dx1,dx2) =

∫ ∞

0

∫ ∞

0
H ([x1,∞)× [x2,∞))F (dx1,dx2)

+
∫ ∞

0
H ([x1,∞)× [0,∞))F (dx1,0)

+
∫ ∞

0
H ([0,∞)× [x2,∞))F (0,dx2)+F(0,0)H ([0,∞)× [0,∞)) ,

we get from (6.5), (6.10) and (6.10) with

F(x1,x2) = exp
{

λx1x2(e
iz −1)

}
, H (dx1,dx2) = exp

{
−s

α1
1 x1 − s

α2
2 x2

}
dx1dx2,

p̄(s1,s2;z) = s
α1−1
1 s

α2−1
2

[∫ ∞

0

∫ ∞

0

∂ 2 exp
{

ix1x2(e
iz −1)

}

∂x1 ∂x2

× exp
{
−s

α1
1 x1 − s

α2
2 x2

}

s
α1
1 s

α2
2

dx1,dx2 +
p̂(0,0,z)

s
α1
1 s

α2
2

]
.

Thus

s
α1
1 s

α2
2 p̄(s1,s2;z)− p̂(0,0,z)

= s
α1−1
1 s

α2−1
2

∫ ∞

0

∫ ∞

0

∂ 2 exp
{

ix1x2(e
iz −1)

}

∂x1 ∂x2
exp

{
−s

α1
1 x1 − s

α2
2 x2

}
dx1,dx2

Using (6.5), (2.4) we can invert the double Laplace transform as follows:

D
α1,α2
t1,t2 p̂(t1, t2,z) =

∫ ∞

0

∫ ∞

0

∂ 2 exp
{

ix1x2(e
iz −1)

}

∂x1 ∂x2
fα1

(t1,x1) fα2
(t2,x2)dx1dx2.

And finally, by inverting the characteristic function (6.9), we obtain

D
α1,α2
t1,t2 p̂(t1, t2,z) p

α1,α2
k (t1, t2)=

∫ ∞

0

∫ ∞

0

[
∂ 2

∂x1 ∂x2
pc

k(x1,x2)

]
fα1

(t1,x1) fα2
(t2,x2)dx1dx2.

Using (6.1), (6.2) and (6.3) we arrive to (6.6), (6.7) and (6.8) correspondingly.

2) Finally, as α j → 1, j = 1,2 we have e
−s

α j
j x j → e−s jx j , j = 1,2, and their Laplace

inversions are delta function: δ (t j − x j), j = 1,2. Thus, 2) is proven. ⊓⊔

7 Simulations

In this section we show some simulations of FPRF made with Matlab based on the α-

stable random number generator function stblrnd. For a relevant work on statistical

parameter estimation of FPP in connection with simulations, see also [12].

The subordinators Lα are simulated exactly at times tn = n∆ , where ∆ = 0.0005

till they reach a defined value Send. More precisely,

Lα(0) = 0; Lα(tn) = Lα(tn−1)+X , n = 1,2, . . . ,N
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(a) α1 = 0.95, α2 = 0.5, λ = 100
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(b) α1 = α2 = 0.75, λ = 100
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(c) α1 = 0.9, α2 = 0.75, λ = 100
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(d) α1 = α2 ∼ 1, λ = 10000

Fig. 1 Simulations of the inverse stable subordinators Y
(1)
α1

(t) and Y
(2)
α2

(t) and the corresponding FPRF

Nα1 ,α2
for different values of α1 and α2. Top-left: simulation of Y

(1)
α1

(t), top-right: simulation of Y
(2)
α2

(t),
bottom-(left-right): simulation of Nα1 ,α2

, the rotation shows the connection with marginal intensity

where X is independently simulated with stblrnd(α , 1,
α
√

∆ , 0). Accordingly,

Ee−sX = exp{−(s
α
√

∆)α}= exp{−∆sα}, s ≥ 0,

and hence

Ee−sLα (tn) = exp{−tnsα}, s ≥ 0,n = 0,1, . . . ,N.

The simulation of the inverse stable subordinators Yα(s),s ∈ [0,Tend] are thus made at

times sn = Lα(tn),n = 1, . . . ,N with values Yα(sn) = n∆ .

To simulate a FPRF Nα1,α2
(s1,s2) on the window (0,Send)× (0,Send), we first

simulate two independent inverse stable subordinators Y
(1)
α1

(s1
n),n = 1, . . . ,N1 and

Y
(2)
α2

(s2
n),n = 1, . . . ,N2.

By Proposition 3, the value of Nα1,α2
on each rectangle (s1

n,s
1
n+1)× (s1

n,s
1
n+1) is

a Poisson random variable with mean ∆ 2. As ∆ 2 ≪ 1, we approximate it with a

Bernoulli random variable Y of parameter ∆ 2. When Y = 1, we add a point at random

inside the rectangle.

In Figure 1 the simulations of the inverse stable subordinators Y
(1)
α1

(t) and Y
(2)
α2

(t)
and the corresponding FPRF Nα1,α2

for different values of α1 and α2 are shown. The
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simulations of Nα1,α2
are plotted twice: we have rotated each figure in order to under-

line the spatial dependence of the spread of the points of the process Nα1,α2
in con-

nection with the marginal intensities Y
(1)
α1

(t) and Y
(2)
α2

(t). For example, in Figure 1(c)

two different marginal distribution are expected since α1 = 0.9 and α2 = 0.75. While

Y
(1)
0.9 (t) produces a quite uniform distribution of points, Y

(2)
0.75(t) generates clusters in

correspondence of its steeper slopes.

We also compute the quantity

P(N(Y1(t1),Y2(t2)) = k) =
∫ ∞

0

∫ ∞

0

e−λx1x2(λx1x2)
k

k!
fα1

(t1,x1) fα2
(t2,x2)dx1dx2,

given in (5.2), for different values of t1, t2,α1 and α2. In fact, with a Monte Carlo

procedure, we approximate the above quantity with

1

N2

N

∑
n1=1

N

∑
n2=1

e−λx1x2(λx1x2)
k

k!
✶Xn1

(x1)✶Yn2
(x2)

where (Xn,n = 1, . . . ,N) and (Yn,n = 1, . . . ,N) are independent sequences of i.i.d.

distributed as Y
(1)
α1

(t1) and Y
(2)
α2

(t2), respectively. Summing up, the integral in (5.2) is

computed numerically, and the simulations with N = 1500 are presented in Figure 2.

We underline the variety of the shape of distributions that can be generated with this

two-parameter model in addition to its flexibility to include, for example, different

cluster phenomena.
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A Covariance Structure of Parameter-Changed Poisson random fields

In this Appendix, we prove a general result that can be used to compute the covariance structure of the

parameter-changed Poisson random field:

Z (t1, t2) = N(Y1(t1),Y2(t2)), (t1, t2) ∈ R2
+,

where Y1 = {Y1(t1), t1 ≥ 0} and Y2 = {Y2(t2), t2 ≥ 0} are independent non-negative non-decreasing stochas-

tic processes, in general non-Markovian with non-stationary and non-independent increments, and N =
{N(t1, t2),(t1, t2) ∈ R2

+} is a PRF with intensity λ > 0. We also assume that Y1 and Y2 are independent of

N.
For example, Y1 and Y2 might be inverse subordinators.

Theorem 11 Suppose that N is a PRF, Y1 and Y2 are two non-decreasing non-negative independent

stochastic processes which are also independent of N. Then

1) if EY1(t1) =U1(t1) and EY2(t2) =U2(t2) exist, then EZ(t1, t2) exists and

EZ(t1, t2) = EN(1,1)EY1(t1)EY2(t2);

2) if Y1 and Y2 have second moments, so does Z and

VarZ(t1, t2) = [EN(1,1)]2
{

EY 2
1 (t1)EY 2

2 (t2)− (EY1(t1))
2 (EY2(t2))

2
}
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(c) t1 = t2 = 5, α1 = α2 = 0.75
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(d) t1 = 3, t2 = 7, α1 = α2 = 0.75

Fig. 2 Simulations of the distribution of Y
(1)
α1

(t1), Y
(2)
α2

(t2) and the corresponding pk(t1, t2) =
P(N(Y1(t1),Y2(t2)) = k) for λ = 10 and different values of t1, t2,α1 and α2.

+VarN(1,1)EY1(t1)EY2(t2)

and its covariance function

Cov(Z(t1, t2),Z(s1,s2)) = Cov(N(Y1(t1),Y2(t2)),N(Y1(s1),Y2(s2)))

for s1 < t1,s2 < t2 is given by:

(EN(1,1))2
{

Cov(Y1(t1),Y1(s1))Cov(Y2(t2),Y2(s2))

+EY2(t2)EY2(s2)Cov(Y1(t1),Y1(s1))+EY1(t1)EY1(s1)Cov(Y2(t2),Y2(s2))
}

+VarN(1,1)EY1(s1)EY2(s2) (A.1)

and for any (s1,s2), and (t1, t2) from R2
+

(EN(1,1))2
{

Cov(Y1(t1),Y1(s1))Cov(Y2(t2),Y2(s2))

+EY2(t2)EY2(s2)Cov(Y1(t1),Y1(s1))+EY1(t1)EY1(s1)Cov(Y2(t2),Y2(s2))
}

+VarN(1,1)EY1(min(s1, t1))EY2(min(s2, t2)) (A.2)

Remark 7 These formulae are valid for any Lévy random field N = {N(t1, t2),(t1, t2) ∈ R2
+}, with finite

expectation EN(1,1) and finite variance VarN(1,1), for PRF EN(1,1) = λ ; VarN(1,1) = λ and to apply

these formulae one needs to know

U1(t1) = EY1(t), U2(t2) = EY2(t), U
(2)
1 (t1) = EY 2

1 (t), U
(2)
2 (t1) = EY 2

2 (t),
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and Cov(Y1(t1),Y1(s1)) , Cov(Y2(t2),Y2(s2)) which are available for many non-negative processes Y1(t)
and Y2(t) induction inverse subordinators.

Remark 8 One can compute the following expression for the one-dimensional distribution of the parameter-

changed PRF:

P(N(Y1(t1),Y2(t2)) = k) = pk(t1, t2)

=
∫ ∞

0

∫ ∞

0

e−λx1x2 (λx1x2)
k

k!
f1(t1,x1) f2(t2,x2)dx1dx2, k = 0,1,2, . . .

where

fi(ti,xi) =
d

dxi
P{Yi(ti)≤ xi}=

d

dxi
G
(i)
ti
(xi), i = 1,2.

and its Laplace transform:

L {pk(t1, t2);s1,s2}=
∫ ∞

0

∫ ∞

0

e−λx1x2 (λx1x2)
k

k!
L { f1(t1,x1);s1}L { f2(t2,x2);s2}dx1dx2,

where

L { fi(ti,xi);si}=
∫ ∞

0
e−siti fi(ti,xi)dti, i = 1,2.

Proof (Proof of Theorem 11) We denote

G
(1)
t1

(u1) = P{Y1(t1)≤ u1} , G
(2)
t2

(u2) = P{Y2(t2)≤ u2} .

We know that for a PRF

E∆s1 ,s2
N(t1, t2) = EN(1,1)(t1 − s1)(t2 − s2) = Var∆s1 ,s2

N(t1, t2);

E
(
∆s1 ,s2

N(t1, t2)
)2

= EN(1,1)(t1 − s1)(t2 − s2)+ [EN(1,1)(t1 − s1)(t2 − s2)]
2 .

To prove 1) we use simple conditioning arguments:

EZ(t1, t2) =
∫ ∞

0

∫ ∞

0
u v EN(1,1)G

(1)
t1

(du)G
(2)
t2

(dv) = EN(1,1)EY1(t1)EY2(t2).

Let us prove 2).

For the variance, we have

VarZ(t1, t2) = E(N(Y1(t1),Y2(t2))
2 − (EN(Y1(t1),Y2(t2))

2

=
∫ ∞

0

∫ ∞

0

(
(EN(u1,u2))

2 +VarN(u1,u2)
)

G
(1)
t1

(du1)G
(2)
t2

(du2)

−(EN(1,1)EY1(t1)EY2(t2))
2

=
∫ ∞

0

∫ ∞

0

[
(EN(1,1))2

u2
1u2

2 +VarN(1,1)u1u2

]
G
(1)
t1

(du1)G
(2)
t2

(du2)

−(EN(1,1)EY1(t1)EY2(t2))
2

= (EN(1,1))2
EY 2

1 (t1)EY 2
2 (t2)+VarN(1,1)EY1(t1)EY2(t2)

−(EN(1,1)EY1(t1)EY2(t2))
2

= (EN(1,1))2
{

EY 2
1 (t1)EY 2

2 (t2)− (EY1(t1))
2(EY2(t2))

2
}

+VarN(1,1)EY1(t1)EY2(t2).

To compute the covariance structure, first we consider the case when s1 < t1, s2 < t2. Then

EN(s1,s2)N(t1, t2)

= E
(

N(s1,s2)
{

N(t1, t2)−N(t1,s2)−N(s1, t2)+N(s1,s2)
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+N(t1,s2)+N(s1, t2)−N(s1,s2)
})

= E∆s1 ,s2
N(t1, t2)EN(s1,s2)+EN(t1,s2)N(s1,s2)+EN(s1, t2)N(s1,s2)−EN2(s1,s2).

Using the facts that

E∆s1 ,s2
N(t1, t2)EN(s1,s2) = (t1 − s1)(t2 − s2) [EN(1,1)]2 s1s2,

EN(t1,s2)N(s1,s2) = E{N(t1,s2)−N(s1,s2)+N(s1,s2)}N(s1,s2)

= E∆s1 ,0N(t1,s2)EN(s1,s2)+EN2(s1,s2)

= [EN(1,1)]2 (t1 − s1)s1s2
2 +EN2(s1,s2),

it is easy to obtain

EN(s1,s2)N(t1, t2) = [EN(1,1)]2 t1t2s1s2 + s1s2VarN(1,1).

Since the processes N,Y1,Y2 are independent, a conditioning argument yields (A.1) and (A.2). In a similar

way, one can consider the case s1 > t1,s2 < t2. ⊓⊔

Proof (Proof of Proposition 2) It follows from Theorem 11 and Proposition 1. ⊓⊔
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changed Lévy processes. Commun. Appl. Ind. Math. 6(1), e–483, 22 pp. (2014). DOI

10.1685/journal.caim.483

29. Leonenko, N.N., Meerschaert, M.M., Sikorskii, A.: Fractional Pearson diffusions. J. Math. Anal.

Appl. 403(2), 532–546 (2013). DOI 10.1016/j.jmaa.2013.02.046

30. Leonenko, N.N., Ruiz-Medina, M.D., Taqqu, M.S.: Fractional elliptic, hyperbolic and parabolic ran-

dom fields. Electron. J. Probab. 16(40), 1134–1172 (2011). DOI 10.1214/EJP.v16-891

31. Magdziarz, M.: Path properties of subdiffusion—a martingale approach. Stoch. Models 26(2), 256–

271 (2010). DOI 10.1080/15326341003756379

32. Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam

J. Math. 32(Special Issue), 53–64 (2004)

33. Mainardi, F., Gorenflo, R., Vivoli, A.: Renewal processes of Mittag-Leffler and Wright type. Fract.

Calc. Appl. Anal. 8(1), 7–38 (2005)

34. Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable

subordinator. Electron. J. Probab. 16(59), 1600–1620 (2011). DOI 10.1214/EJP.v16-920

35. Meerschaert, M.M., Scheffler, H.P.: Triangular array limits for continuous time random walks.

Stochastic Process. Appl. 118(9), 1606–1633 (2008). DOI 10.1016/j.spa.2007.10.005

36. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus, de Gruyter Studies in

Mathematics, vol. 43. Walter de Gruyter & Co., Berlin (2012)

37. Merzbach, E., Nualart, D.: A characterization of the spatial Poisson process and changing time. Ann.

Probab. 14(4), 1380–1390 (1986). DOI 10.1214/aop/1176992378

38. Merzbach, E., Shaki, Y.Y.: Characterizations of multiparameter Cox and Poisson processes by the

renewal property. Statist. Probab. Lett. 78(6), 637–642 (2008). DOI 10.1016/j.spl.2007.09.026

39. Mijena, J.B.: Correlation structure of time-changed fractional Brownian motion. arxiv:1408.4502

(2014)

40. Nane, E., Ni, Y.: Stability of the solution of stochastic differential equation driven by time-changed
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