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SUMMARY 

Extracellular vesicles (EVs) are spherical, submicron particles enclosed in a phospholipid bilayer, 

shown to have pathophysiological roles in a plethora of disease states, including cardiovascular 

disease (CVD). The development of an atherosclerotic plaque can lead to downstream hypoxia, which 

is known to stimulate the production of EVs. Nitric oxide (NO) plays a pivotal role in vascular 

homeostasis, highlighted by the deficiency of NO in CVD states. The inorganic anions nitrate (NO3
-) 

and nitrite (NO2
-) represent bioactive reservoirs of NO, particularly under hypoxic conditions. 

Therefore, the aim of this thesis was to explore the effect of inorganic NO3
-/ NO2

-
 on the production 

and function of EVs in CVD.  

In vitro, hypoxia-inducible factor-1α (HIF-1α) was shown to mediate hypoxic EV release in endothelial 

cells. Furthermore, NO2
-
 derived NO increased HIF-1α degradation, and subsequently reduced EV 

production. This effect was attenuated by inhibition of xanthine oxidoreductase, preventing NO2
- 

conversion to NO.  

Following this, hypoxic endothelial-derived EVs were shown to enhance pro-coagulant and pro-

inflammatory responses in comparison to EVs derived from normoxia. Treatment of hypoxic cells with 

NO2
- reversed the pro-coagulant effects of the EVs produced, but did not alter their effect on 

inflammation.  

In order to determine whether modulation of EV production was also possible in vivo, healthy 

volunteers were given a dietary NO3
-
 supplement daily for 6 days. However, there was no change in 

circulating EVs over the course of this treatment. Finally, a NO3
-
 supplement was given to CVD 

patients, which significantly reduced circulating EVs only in patients on clopidogrel, suggesting the 

formation of a thienopyridine-nitrosothiol derivative.  

In conclusion, the NO metabolites NO3
-
 and NO2

-
 appear capable of reducing the production of 

pathogenic EVs, representing a novel therapeutic approach which may be of interest in the future 

treatment of CVD.  
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1.1 Cardiovascular Disease 

1.1.1 Epidemiology 

Cardiovascular disease (CVD) is an umbrella term encompassing numerous conditions affecting 

the heart and/or blood vessels. The main forms of CVD are coronary artery disease (CAD), 

cerebrovascular disease (stroke), peripheral arterial disease (PAD) and aortic disease, but can also 

include pulmonary embolism, rheumatic heart disease, congenital heart disease and heart failure 

(1). Despite the large range of conditions that the term CVD encompasses, within this thesis the 

focus will be primarily on CVD conditions that are due to endothelial dysfunction, and the 

subsequent development of atherosclerosis.  

CVD is the leading cause of mortality across the globe, responsible for approximately 17.5 million 

deaths each year, an estimated 31% of total deaths worldwide (1). More than 3 million of these 

deaths occurred in individuals < 60 years of age, and were largely preventable (2). Based on 

projections of socioeconomic development, the number of global deaths caused by CVD is 

expected to increase to over 23 million by the year 2030 (3).  

The range in premature deaths from CVDs between economically developed countries is startling, 

ranging from 4% in high-income countries to 42% in low-income countries. Furthermore, over the 

last 20 years, deaths from CVD have been declining in high-income countries, but continue to rise 

alarmingly in low- and middle- income countries (2). These large discrepancies in CVD mortality 

rates between populations are predominately due to both CVD risk factors and available 

healthcare and treatment. Closer to home, CVD has dropped to the second most common cause 

of mortality in the UK, causing 180,000 deaths in 2010 but only 155,000 in 2014 (4). Of these, 

80,000 were from CAD, and around 49,000 from cerebrovascular disease. However, CVD still 

accounts for over a quarter of all deaths within the UK. There are approximately 7 million people 

living with CVD in the UK, and with an ageing and growing population, coupled with improving 

survival rates from cardiovascular events, this number is set to increase (5). CVD is estimated to 

cost the UK economy £15 billion annually, £11 billion of which is attributable to direct costs to the 

National Health Service (5). Thus, CVD represents a major public health issue, both nationally and 

internationally, and research within this field is therefore imperative to allow greater 

understanding of the pathophysiology, and subsequently establish potential interventions to aid 

the treatment and/or prevention.  
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1.1.2 Risk Factors 

There are numerous risk factors associated with CVD – some, such as family history/genetic 

susceptibility, ethnicity, and age, cannot be altered. However, the majority of risk factors are 

behavioural in nature and can be altered to reduce the risk of CVD.  

1.1.2.1 Hypertension 

Hypertension is defined a systolic blood pressure above 140 mmHg and a diastolic blood pressure 

above 90 mmHg (6). Hypertension increases the stress on the vasculature, increasing the 

likelihood of damage to the blood vessel wall. Hypertension represents the single largest risk 

factor for developing cerebrovascular disease, also playing a significant role in myocardial 

infarctions (MIs) (7). In some cases, hypertension may be inherited; however, more commonly 

hypertension develops as a result of other behavioural risk factors listed below.  

1.1.2.2 Tobacco use 

Tobacco use, both smoking and chewing tobacco, raises the risk of CVD. The risk is particularly 

high if individuals began smoking from a young age, smoke heavily, or are female. Cigarette 

smoking introduces a large amount of free radicals to the vasculature, impacting all stages of the 

pathophysiology of atherosclerosis (8). Smoking increases inflammation, thrombosis, and 

oxidation of low-density lipoprotein (LDL) cholesterol (9). Cessation of smoking has the greatest 

effect on CVD risk of any modifiable risk factor, reducing significantly soon after stopping.  

1.1.2.3 Dyslipidaemia 

Elevated LDL cholesterol and high density lipoprotein (HDL) cholesterol can lead to an 

accumulation of fatty material in the artery wall; the hallmark of atherosclerosis. LDL cholesterol 

is atherogenic, whereas HDL cholesterol is anti-atherogenic. Dyslipidaemia is often a result of 

other risk factors such as smoking, physical inactivity, and a poor diet high in saturated fat. 

However, it may also be due to an inherited condition known as familial hypercholesterolemia 

(FH).  

1.1.2.4 Physical inactivity & obesity 

Physical activity has a positive effect on many of the risk factors for CVD, such as reducing the 

weight and blood pressure of an individual. Additionally, exercise can reduce LDL, increase HDL, 

and elevate insulin sensitivity, thus improving glucose regulation (10). Obesity can increase CVD 

risk through other known risk factors such as dyslipidaemia, hypertension, glucose intolerance, in 

addition to other as yet unrecognized mechanisms (11).  
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1.2 Vascular endothelium  

1.2.1 Overview 

The vascular endothelium was once described by Nobel Laureate Lord Adrian Florey as a 

“cellophane wrapper” of the vasculature, acting solely as a selective barrier between the blood 

and the extravascular tissues (12). He did, however, predict that the following decade would yield 

a far greater understanding of the function of these cells. Today, not only is the endothelium well 

established as a semipermeable barrier, regulating the transfer of substances between the blood 

and the tissues, but can also be considered the largest endocrine organ in the human body (13). 

The endothelium plays a central role in the modulation of vascular tone, platelet activation, 

immune modulation, and vascular smooth muscle cell (VSMC) proliferation. Endothelial cells line 

the entire vasculature, forming the single cell layer of a capillary. The integrity of these cells is 

paramount for vascular homeostasis. Structurally, these endothelial cells link together typically via 

one of three junctions; tight, gap, or adherens junctions. Tight junctions serve the main functional 

“barrier”, regulating permeability and cell polarity. Gap junctions are communication structures 

allowing small molecular weight solutes between neighbouring cells. Adherens junctions, formed 

by cadherins, play a central role in contact inhibition of endothelial cell growth (14).  

1.2.2 Structure of the vascular wall 

The vascular wall can be broken down into three concentric layers: the tunica intima, tunica 

media, and tunica adventitia. The tunica adventitia consists of the extracellular matrix; 

predominantly collagen and elastin fibres. It functions to anchor vessels with surrounding tissues. 

Often, this layer is thicker in veins compared to arteries to prevent the collapse of the blood 

vessel, and provide additional protection due to their superficial location.  

The tunica media consists predominantly of VSMCs and the external elastic lamina. This layer is 

far thicker in arteries than veins, allowing the arteries to adjust the volume of blood delivered to 

the tissues that they supply. VSMC layers tend to be highly organised in larger arteries, due to 

their participation in moving large volumes of blood. The VSMCs can respond to factors released 

from the tunica intima to adjust vascular tone, known as vasoconstriction (narrowing of the 

vessel) or vasodilation (widening of the vessel). A layer of elastic connective tissue lies 

immediately outside the VSMC layer of the tunica media, providing structural support (15).  
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The intima consists of a single layer of endothelial cells, mounted on an internal elastic lamina. 

(Figure 1.1). Endothelial cells as previously mentioned, act as a selective barrier but also regulate 

vascular tone through secretion of numerous vasoactive molecules. They can respond to various 

hormones, neurotransmitters, and other vasoactive factors to alter vascular tone. The internal 

elastic lamina separates the endothelial cells from VSMCs, and acts to provide flexibility and 

stability for endothelial cells, accommodating volume fluctuation in the arteries (16). Figure 1.1 

summarises the structure of a blood vessel wall.  

 

 

There are 3 main types of artery: elastic arteries, muscular arteries, and arterioles. Elastic arteries 

receive blood directly from the heart (the aorta and the pulmonary artery). These vessels contain 

a “vasa vasorum” – as these arteries are so large that simple diffusion of oxygen and carbon 

dioxide across the vessel wall is not adequate. Thus, a network of smaller thin-walled vessels 

supply the large vascular wall with nutrients and oxygen (17). Elastic arteries facilitate the 

stretching of the wall to accommodate the blood surge following contraction of the heart. 

Between contractions the walls recoil in order to maintain blood pressure, allowing the 

movement of blood even after the ventricles of the heart have relaxed (18). Muscular arteries 

  

Figure 1.1 The layers of a blood vessel. A. The vessel consists of three layers or “tunics” – the intima, 

media, and adventitia. B. The intima consists of endothelium and an internal elastic lamina. The media 

consists of vascular smooth muscle cells and an external elastic lamina. The adventitia is composed of a 

series of collagen and elastin fibres making up the extracellular matrix.  
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distribute blood to various parts of the body; such as the coronary and femoral arteries. Muscular 

artery walls contain high amounts of smooth muscle, allowing them to alter the amount of blood 

delivered to the target organ as required. Muscular arteries have considerably less elastin that 

elastic arteries, and considerably more layers of VSMCs, as their name indicates (18). Finally, 

arterioles are small arteries that deliver blood to capillaries. They control the blood flow through 

capillary beds, contracting or dilating hence altering the diameter of the lumen.  

1.2.3 Effect on vascular tone 

As previously eluded to, the endothelium is integral in maintaining vascular homeostasis by 

releasing a plethora of vasoactive molecules, both vasodilatory; such as nitric oxide (NO), 

prostacyclin (PGI2), and endothelium derived hyperpolarising factor (EDHF) and vasoconstrictive, 

such as thromboxane (TXA2) and endothelin-1 (ET-1). These substances are released in response 

to both physical stimuli, such as shear stress, or neurohumoural substances, such as bradykinin or 

acetylcholine. These vasoactive substances are discussed in more detail below.   

1.2.3.1 Nitric Oxide 

Furchgott and Zawadzki first identified an endothelium-derived relaxing factor in 1980, 

demonstrating the endothelium-dependent nature of acetylcholine on VSMC relaxation (19). This 

factor was later identified as NO in 1987 (20,21). NO is a colourless gaseous free radical with 

numerous functions involving not only the cardiovascular system, but also the nervous and 

immune system. The production of NO is discussed in detail later in section 1.5.  

Primarily, NO acts as an endogenous vasodilator. NO diffuses across the endothelial cell and into 

the adjacent VSMCs. Here, it binds to soluble guanylyl cyclase (sGC), which can be considered a 

NO receptor. Now activated, sGC increases the conversion of guanosine triphosphate (GTP) to 

cyclic guanosine monophosphate (cGMP). cGMP reduces calcium release within VSMCs via 

activation of protein-dependent kinases, such as protein kinase G (PKG). PKG phosphorylate a 

number of key target proteins, such as potassium channels, IP3R (inositol triphosphate (IP3) 

receptor), the plasma membrane calcium ATPase (PMCA), and the sarcoplasmic reticulum calcium 

ATPase (SERCA). All of these phosphorylations act to increase calcium extrusion and/or 

sequestration, reducing the formation of the calcium-calmodulin-myosin light chain kinase (MLCK) 

complex, thus decreasing phosphorylation of serine residues within the myosin light chain, and 

preventing vasoconstriction (Figure 1.2) (22).  
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Figure 1.2 NO-mediated vascular smooth muscle cell relaxation. cGMP production and the subsequent 

activation of PKG, leading to phosphorylation of multiple proteins inducing relaxation. Many targets of PKG 

lead to a reduction in intracellular calcium, either by increasing calcium efflux from the cell, reducing 

calcium influx into the cell, or increasing calcium return to the sarcoplasmic reticulum. Additionally, PKG can 

phosphorylate ROCK, preventing the phosphorylation of myosin light chains and subsequent contraction of 

muscle fibres. GTP – guanosine triphosphate, cGMP – cyclic guanosine monophosphate, sGC – soluble 

guanylate cyclase, PKG – protein kinase G, ROCK – rho-associated protein kinase, IP3R – Inositol 

triphosphate receptor. 

1.2.3.2 Prostacyclin (PGI2) 

The discovery of prostaglandins (PG) predates NO, first identified in 1976 (23). Prostanoids (PGs 

and TXA2) represent a group of molecules derived from arachidonic acid (AA) that can modulate 

vascular homeostasis under physiological conditions and promote thrombosis and inflammation 

in pathophysiological conditions. AA is a polyunsaturated fatty acid present within the 

phospholipids of cellular membranes. Phospholipase A2 catalyses the hydrolysis of the sn-2 ester 

bond, generating a free fatty acid and a lysophospholipid (24). AA is converted to prostaglandin H2 

via cyclooxygenase (COX), before PGI2 is produced following the action of PGI2 synthase on PGH2. 

PGI2 acts as a paracrine signalling molecule, eliciting its effects via a PGI2 receptor on neighbouring 

endothelial cells and platelets. The PGI2 receptor is a G protein coupled receptor (GPCR) that 

contains the Gs α subunit, which following activation stimulates adenylyl cyclase to increase 

intracellular cyclic adenosine monophosphate (cAMP), subsequently activating protein kinase A 

(PKA) (25). In platelets, PKA increases phosphorylation of vasodilator-stimulated phosphoprotein 

(VASP), inhibiting the calcium-dependent association of glycoprotein IIb and IIIa, forming a 

receptor for both fibrinogen and Von Willebrand factor (vWF). In VSMCs, amongst other 

mechanisms, PKA increases the phosphorylation of myosin light chain kinase (MLCK), which 

inhibits the enzyme, reducing its activity, leading to vasodilation (Figure 1.3). Although primarily a 

platelet inhibitor, PGI2 is also a very effective vasodilator, and has been shown to play a 

compensatory role when NO bioavailability is reduced, as seen in patients with endothelial 

dysfunction (26).  
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1.2.3.3 Endothelium-derived hyperpolarising factor (EDHF) 

Inhibition of both NO and PGI2 synthesis has been shown to only partially attenuate the 

endothelium-dependent relaxation of VSMCs. This relaxation was shown to occur independently 

of increases in intracellular cyclic nucleotides, suggesting an additional pathway that involved 

smooth muscle cell hyperpolarisation, which was subsequently coined endothelium-dependent 

hyperpolarising factor (EDHF) (27). Hyperpolarisation of VSMCs occurs by reducing the open 

probability of voltage-gated calcium channels, and thus reducing the intracellular calcium 

concentration (28). 

EDHF mediated responses are associated with an increase in intracellular calcium within the 

endothelial cell, in response to agonists that stimulate GPCR. Additionally, a reduction in 

extracellular calcium concentration attenuates EDHF responses, suggesting that the increase in 

endothelial [Ca2+] is a pivotal step (28). Subsequently, calcium activated potassium channels 

within the endothelial cell allow the release of potassium ions into the sub-endothelial space. This 

increase in extracellular potassium ions lead to activation of both the sodium/potassium pump, 

and inward rectifying (KIR) potassium channels, resulting in hyperpolarisation of the VSMC (29). 

Figure 1.3 Prostacyclin mediated vasodilation. PGI2, derived from AA, activates GPCR on the surface of 

the VSMC. Increases in intracellular cAMP and subsequent activation of PKA leads to phosphorylation of 

various proteins that act to increase relaxation, primarily via hyperpolarisation of the VSMC and 

inhibition of MLCK. COX – cyclooxygenase, PLA2 – phospholipase A2, AA – arachidonic acid, PGH2 – 

prostaglandin H2, AC – adenylate cyclase, PKA – protein kinase A, MLCK – Myosin light chain kinase. 
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Additionally, endothelial cells and VSMCs are connected via myo-endothelial gap junctions, 

capable of propagating the hyperpolarisation. Indeed, it has been shown previously that blockage 

of these junctions can attenuate EDHF-mediated relaxation in the rabbit mesenteric artery (30). 

However, the term endothelium derived hyperpolarising factor is ambiguous, as both NO and PGI2 

are derived from endothelial cells and can lead to VSMC hyperpolarisation via potassium channel 

activation.  

1.2.3.4 Endothelin-1 

Endothelin-1 (ET-1) is the predominant isoform of endothelin, a 21 amino acid peptide produced 

from endothelial cells. Each isoform is produced from big endothelin-1 (big ET-1), via endothelin 

converting enzyme (ECE) present on the surface of the endothelial cell membrane (31). ET-1 is 

released following endothelial cell stimulation by external stimuli, and binds to GPCRs present on 

VSMC membranes. There are two sub-types of ET-1 receptors; ETA and ETB. Both are coupled to a 

Gq α protein, leading to the formation of IP3 and intracellular calcium accumulation, leading to 

contraction of VSMCs and vasoconstriction (Figure 1.4). 

Interestingly, ETB receptors are also present on the surface of endothelial cells. Activation of these 

receptors leads to the formation of both NO and PGI2 within the endothelial cells. Thus, ETB 

receptors play a crucial role in the control of vascular tone, protecting the vasculature against the 

potent vasoconstrictor effects of endogenous endothelins acting on VSMCs (32).  

 

  

Figure 1.4 Endothelin-1 mediated vasoconstriction. ET-1 produced from endothelial cells binds to Gq 

coupled receptors leading to increases in intracellular calcium, primarily via IP3 and activation of PKC.  

ET-1 - endothelin-1, ECE – Endothelin converting enzyme, IP3 – inositol triphosphate, DAG – diacyl 

glycerol, PIP2 - Phosphatidylinositol bisphosphate, PLC – phospholipase C, PKC – protein kinase C.  



 

  

10 

1.2.3.5 Thromboxane A2 

TXA2 and PGI2 are physiological antagonists, thus the balance between them is critical to 

maintaining vascular tone. In contrast to PGI2, TXA2 is both a potent vasoconstrictor and platelet 

activator. Although predominantly produced in platelets, endothelial cells are also capable of 

producing TXA2 in small amounts (33,34). Similarly to PGI2 it is produced following synthetase 

conversion of the PGH2 intermediate. TXA2 acts via the thromboxane receptor, a GPCR capable of 

coupling to at least four separate G protein families (35). Thus, TXA2 is capable of eliciting a range 

of cellular responses. Its effects on vasoconstriction are thought to be primarily via the Gq protein 

pathway, leading to increases in intracellular calcium in VSMCs, similar to ET-1 (36). 

1.2.4 Effect on haemostasis  

In addition to its effect on vascular tone, the endothelium also plays a pivotal role in maintaining 

haemostatic balance. A healthy, functional endothelium provides a non-thrombogenic lining to 

the vessel, allowing platelets to flow without initiating adhesion and aggregation. In addition to 

their effect on vascular tone, NO and PGI2 also act to reduce platelet aggregation. These 

molecules can prevent accumulation of intracellular calcium, preventing shape change, fibrinogen 

receptor activation and release of granules leading to further platelet activation. 

In addition to these molecules, the endothelium utilises a range of anti-coagulant mechanisms to 

promote haemostasis. Endothelial cells express thrombomodulin, an integral membrane protein 

capable of binding thrombin, preventing its ability to activate platelets and promote fibrin clot 

formation. Furthermore, this thrombin-thrombomodulin complex, together with protein S, 

activates protein C (APC) a serine protease zymogen. APC proteolyses peptide bonds in factor Va 

and factor VIIIa of the coagulation cascade (37). Furthermore, the endothelium produces 

antithrombin, a serine protease inhibitor that targets factors within the contact activation 

pathway; primarily factor Xa and factor IIa (thrombin) (38). Tissue factor pathway inhibitor (TFPI) 

is a single chain polypeptide which can reversibly inhibit factor Xa. This TFPI-Xa complex can then 

consequently further inhibit the FVIIa-TF complex (39). Additionally, the endothelium produces 

tissue plasminogen activator (tPA), which converts plasminogen to plasmin, a key enzyme in the 

degradation of fibrin clots (39). Figure 1.5 highlights these mechanisms within the coagulation 

cascade. 
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Figure 1.5 Regulation of the coagulation cascade by endothelium derived substances. Green arrows 

indicate positive feedback, red arrows indicate inhibition. The endothelium ensures coagulation is tightly 

regulated, producing various molecules that act to reduce thrombin generation and increase fibrinolysis. 

TFPI – tissue factor pathway inhibitor, tPA – tissue plasminogen activator. 

Following injury or damage to the vascular wall, the endothelium can shift to promote a pro-

coagulant state. Damage to the endothelium exposes tissue factor (TF), leading to activation of 

the extrinsic pathway of the coagulation cascade, enhancing factor VII activity. The endothelium 

can release vWF stored in Weibel-Palade bodies. vWF itself has no catalytic activity, and elicits its 

effects by binding to other proteins and molecules, such as factor VIII, allowing stabilisation of the 

protein (40). Additionally, its ability to bind to both collagen (type I and III) and platelet 

glycoprotein Ib ensures that platelets adhere to damaged vascular subendothelium. Upon 

activation, Factor VIII dissociates from vWF, and interacts with factor IXa, eventually leading to 

the production of thrombin from prothrombin (40). Activated endothelial cells release platelet 

activating factor (PAF) which can bind directly to its GPCR receptor on platelets leading to 

increases in intracellular calcium. Finally, plasminogen activator inhibitor-1 (PAI-1) is a serine 

protease inhibitor which inhibits tPA, preventing the breakdown of fibrin clots (41). Table 1.1 

summarises these pro- and anti-thrombotic factors.  
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Molecule Effect Mechanism 

Nitric oxide / 

Prostacyclin 

Anti-thrombotic 
Suppress platelet activation and adhesion 

Thrombomodulin Anti-thrombotic Binds to thrombin, cofactor in thrombin-induced 

activation of Protein C 

Protein S Anti-thrombotic Cofactor in thrombin-induced activation of Protein 

C 

Protein C Anti-thrombotic 
Inactivates factor Va and VIIIa 

Antithrombin Anti-thrombotic Serine protease inhibitor, targeting thrombin, and 

activated factors within the intrinsic pathway (Xa, 

IXa, XIa, XIIa). 

Tissue factor pathway 

inhibitor 

Anti-thrombotic Inhibits factor Xa. Xa-TFPI complex can further 

inhibit FVIIa-TF complex 

Tissue plasminogen 

activator 

Anti-thrombotic Converts plasminogen to plasmin, increasing 

fibrinolytic activity, degrades fibrin clots.  

Urokinase Anti-thrombotic Converts plasminogen to plasmin, increasing 

fibrinolytic activity, degrades fibrin clots. 

Platelet activating 

factor 

Pro-thrombotic Activates PAF receptor on platelets, increasing 

intracellular calcium accumulation leading to 

activation 

von Willebrand factor Pro-thrombotic Binds to and stabilises factor VIII 

Binds to exposed collagen 

Binds to platelet glycoprotein Ib 

Tissue factor Pro-thrombotic Combines with factor VIIa to form a tenase complex 

Table 1.1 Pro-thrombotic and anti-thrombotic factors and their mechanisms. 
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1.2.5 Effect on inflammation 

The endothelium can also control inflammation and the immune response, primarily via 

regulation of leukocyte recruitment from the blood into the sub-endothelial space. Upon 

activation by pro-inflammatory cytokines, such as interleukin-1 (IL-1) or tumour necrosis factor 

(TNF-α), endothelial cells express various cell adhesion molecules (CAMs), which allow for 

interaction with their respective counter-receptors on leukocytes (42).  Selectins, such as P-

selectin and E-selectin mediate the initial stage in leukocyte transmigration, allowing the rolling of 

leukocytes along the endothelium. P-selectin is expressed by both endothelial cells and platelets, 

whereas E-selectin is expressed only by endothelial cells. P-selectin is stored in Weibel-Palade 

bodies and can be rapidly mobilised to the cell surface upon activation of endothelial cells (43). E-

selectin does not exist in a preformed pool, but is reliant entirely on transcriptional regulation and 

requires up to 3 hours to achieve peak expression. L-selectin present on leukocytes acts as a 

homing receptor, binding to both P- and E-selectin, slowing the velocity of leukocyte movement. 

P-selectin glycoprotein ligand-1 (PSGL-1) can bind to L- E- and P-selectin, but has the highest 

affinity for P-selectin (44).  

The expression of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1), vascular 

cell adhesion molecule-1 (VCAM-1) and platelet endothelial cell adhesion molecule (PECAM-1) are 

all increased following endothelial cell activation. They interact with their leukocyte counter-

receptors, mediating firm adhesion of the leukocyte to the endothelium. ICAM-1 is constitutively 

expressed in most vascular beds; however, expression is increased following IL-1 or TNFα 

exposure (45). PECAM-1 is found largely in the intercellular junctions between endothelial cells 

(46).  

Integrins present on the leukocyte surface are glycoprotein complexes consisting of α- and β- 

subunits. Lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18, αLβ2) present on 

leukocytes bind to ICAM-1, playing a particularly important role in the firm adhesion of 

neutrophils. Macrophage-1 antigen (CD11b/CD18, αMβ2) utilises the same β-chain as LFA-1, and 

also binds to ICAM-1 (47). Integrin α4β1 is present on leukocytes but does not interact with 

VCAM-1 until leukocytes are activated, undergoing the necessary conformational change allowing 

for interaction. Upregulation of these integrins, in combination with the shedding of L-selectin on 

leukocytes, allows for the transition between the “rolling” and “adhesion” states of 

transmigration (48).  

Finally, once firmly attached, passage of the leukocytes across the endothelium is primarily 

regulated by PECAM-1. PECAM-1 is present on endothelial cells, platelets, and leukocytes, 

facilitating transmigration predominately via homophilic interactions (49).  
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 Figure 1.6 summarises the process of leukocyte transmigration. Table 1.2 summarises the key 

interactions between endothelial adhesion molecules and leukocyte receptors.  

Adapted from (46). PSGL-1 – P-selectin glycoprotein ligand-1, ICAM – intercellular adhesion molecule, 

VCAM – vascular cell adhesion molecule, PECAM – platelet endothelial cell adhesion molecule-1, LFA – 

Lymphocyte function-associated antigen 1, Mac-1 – macrophage-1 antigen, VLA-4 – Very late antigen-4.  

 

Table 1.2 Summary of the key endothelial adhesion molecules complementary leukocyte receptor(s) and 

their role in leukocyte extravasation.  

Adhesion molecule Leukocyte receptor(s) Function 

P-Selectin PSGL-1, L-Selectin, Sialyl-Lewis X 
Capture 

 

E-Selectin L-Selectin, PSGL-1, Sialyl-Lewis X Rolling 

ICAM-1 LFA-1 (αLβ2), Mac-1 (αMβ2) Firm adhesion, transmigration 

VCAM-1 VLA-4 Firm adhesion 

PECAM PECAM-1 Transmigration 

Figure 1.6 Illustration of leukocyte recruitment and transmigration through the endothelium. Endothelial 

cells are activated, and produce selectins, permitting leukocyte rolling. Firm adhesion is mediated by cell 

adhesion molecules. PECAM-1, situated between endothelial cells, facilitates transendothelial migration. IL-

1 – Interleukin-1, MCP-1 – Monocyte chemoattractant protein-1, PSGL-1 – P-selectin glycoprotein ligand-1, 

ICAM – intercellular adhesion molecule, VCAM – vascular cell adhesion molecule, PECAM – platelet 

endothelial cell adhesion molecule-1. 
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The importance of these interactions is highlighted by mutations within the genes encoding these 

adhesion molecule receptors, leading to leukocyte adhesion deficiency (LAD). LAD-1 is rare and 

often fatal, caused by mutations in the gene encoding CD18, present in the integrins LFA-1 and 

Mac-1. LAD-2 is caused by an absence of Sialyl-Lewis X, a ligand for P- and E-selectin (50).  

1.3 Atherosclerosis 

The development of atherosclerotic plaques is responsible for CAD, cerebrovascular disease and 

peripheral artery disease. Simply, atherosclerosis is characterised by the thickening of an arterial 

wall as a result of cholesterol deposition and subsequent leukocyte invasion and accumulation. 

Atherosclerosis develops over the course of decades, beginning in the early teenage years (51). 

The speed of progression and development can be accelerated by various risk factors mentioned 

in section 1.1.2.  Large to medium size arteries are especially prone to developing atherosclerosis, 

such as the coronary, femoral, and cerebral arteries, whereas smaller coronary arteries are less 

susceptible to plaque formation.  

1.3.1 Endothelial dysfunction 

As previously mentioned, endothelial cells that line the blood vessels represent a dynamic 

interface between the blood stream and the arterial wall. The link between endothelial function 

and development of atherosclerosis was first established approximately 40 years ago (52), and 

has remained a key area of research within the cardiovascular field ever since. The response to 

injury hypothesis suggests that the initial step in atherogenesis is endothelial dysfunction, which 

may be triggered by a number of insults, such as reactive oxygen species (ROS), physical injury as 

a result of hypertension, turbulent blood flow, hyperlipidaemia, or chronically elevated blood 

glucose levels (9). Endothelial dysfunction can be defined as the impaired ability of the 

endothelium to regulate and maintain vascular homeostasis effectively (53). Under physiological 

conditions the endothelium maintains an anti-thrombotic surface, described in section 1.2.4. 

However, under pathophysiological conditions, the endothelium shifts towards a pro-thrombotic 

state, characterised by elevated levels of pro-thrombotic and pro-inflammatory molecules such as 

tissue factor (TF) and monocyte chemoattractant protein-1 (MCP-1) being released, and an 

increase in surface adhesion molecule expression (54). Indeed, a reduction in NO bioavailability is 

considered the hallmark of endothelial dysfunction. It is perhaps more appropriate to refer to this 

process not as endothelial dysfunction, but instead endothelial activation. This represents a 

switch from the quiescent phenotype, to one which involves the host defence response (53). 

Endothelial activation/dysfunction is often observed in the early stages of development of CVD, 

and is key to the initiation of atherosclerosis, often predating clinical symptoms of CVD (55).  
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1.3.2 Fatty streak formation 

As a result of cellular activation, endothelial cells alter their morphology, and the tight junctions 

between them loosen, increasing permeability to lipids and leukocytes. LDL cholesterol enters the 

arterial wall and undergoes modification in the form of oxidation, typically from reactive oxygen 

species (ROS). Endothelial cells, now releasing chemokines (such as MCP-1) and expressing 

surface adhesion molecules (such as VCAM-1), recruit monocytes and T-lymphocytes to adhere 

and migrate through the endothelial cell layer (56).  Once migrated into the intima, monocytes 

differentiate into macrophages, and begin to engulf the oxidised LDL that has deposited beneath 

the endothelial layer via scavenger receptors. Macrophages become lipid-laden, and are referred 

to as “foam cells”, a hallmark of early atherosclerosis. Fatty streaks are the first visible sign of 

atherosclerosis; they consist primarily of foam cells within the tunica intima. Although clinically 

insignificant, they are considered a precursor to more complex plaque formation. 

1.3.3 Intermediate lesion & atheroma formation 

Foam cells eventually undergo apoptosis; however the lipid remains within the intima, forming 

small extracellular lipid pools, characteristic of an intermediate lesion. At this stage, a large, 

confluent well-delineated accumulation of extracellular lipid, known as a lipid core, has not yet 

developed (56). This process of lipid accumulation and foam cell formation perpetuates the 

inflammatory response further.  This inflammatory milieu includes cytokines such as interferon 

(IFN)-γ, platelet derived growth factor (PDGF) and transforming growth factor (TGF)-β, which 

induce a change in the phenotypic state of VSMCs, from a “contractile” state to an active 

“synthetic” state. In a contractile phenotype, VSMCs respond to agents that induce either 

vasoconstriction or vasodilation. Conversely, in a synthetic state, they are capable of expressing 

genes for a number of growth molecules and can synthesise extracellular matrix (ECM) 

components, namely collagen, elastin and proteoglycans (57). VSMCs in this state can migrate and 

proliferate from the tunica media to the tunica intima.   

VSMCs within the tunica intima deposit these ECM components, producing a fibrous cap; a layer 

of fibrous connective tissue thicker and less cellular than the regular tunica intima. VSMCs 

continue to migrate and proliferate, which in combination with lipid accumulation, slowly expand 

the plaque and narrow the arterial lumen (58). A fibrous cap is formed of the ECM components, 

and separates the lipid core from arterial blood flow. These fibrous caps can be prone to rupture 

in response to a variety of triggers. 
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1.3.4 Fibroatheroma 

A fibroatheroma typically consists of multiple lipid cores, with many fibrotic layers of VSMCs. As 

the plaque expands, the central region becomes hypoxic and thus necrotic (51). Over time, the 

plaque continues to occlude the arterial lumen. Typically, approximately 50-75% of the artery 

must be occluded before symptoms become apparent (51). VSMCs in their synthetic phenotype 

begin to deposit calcium, calcifying the plaque and leading to an increase in arterial stiffness.  

1.3.5 Complicated lesion 

Eventually, the fibrous cap may rupture, exposing thrombogenic material such as collagen to 

circulating platelets leading to the formation of a thrombus. Thrombus formation can either 

occlude arteries directly, or detach and occlude smaller downstream branches, causing a 

thromboembolism (59). Alternatively, expanding plaques can eventually completely occlude the 

lumen directly, which is often asymptomatic until stenosis reaches over 70%, leading to 

ischaemia. In severe cases, thrombus formation leads to an infarction; severe reduction or 

complete prevention of blood flow, leading to necrosis of the tissue supplied by this artery in 

approximately 5 minutes (60).  
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Figure 1.7 The progression of atherosclerosis over time. This diagram represents a blood vessel over decades of an individual’s life, leading to occlusion of the 

vessel. 1. Endothelial dysfunction, leading to activation of endothelial cells. 2. LDL cholesterol accumulation, LDL is modified by ROS forming oxidised-LDL. 

Monocytes migrate through the endothelium and mature into macrophages. 3. Macrophages engulf oxidised-LDL, forming foam cells. Apoptosis of foam cells 

leads to extracellular lipid pools. 4. VSMC proliferation and fibrous cap formation to protect the plaque. 5. Plaque rupture and thrombosis, leading to occlusion 

of the vessel. LDL – low density lipoprotein, ROS – reactive oxygen species, VSMC – vascular smooth muscle cell.  
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1.4 Oxygen and hypoxia in cardiovascular disease 

The presence of an atherosclerotic plaque in the wall of a coronary artery reduces the perfusion 

of downstream myocardial tissue. Ischemia is defined as the inability of the vasculature to supply 

adequate O2 and nutrients to tissues. This, in turn, leads to tissue hypoxia (reduced oxygen), or in 

severe cases, anoxia (absence of oxygen).  The physiological response to reduced tissue perfusion 

is that the resulting tissue hypoxia induces hypoxia inducible factor (HIF)-1 activity, leading to the 

transcription of genes involved in cell proliferation, angiogenesis and vascular remodelling.   

1.4.1 Oxygen levels in vitro and in vivo 

Precise measurement of in vivo oxygen concentration is a challenging task. However, available 

data suggests that oxygen concentrations vary between tissues significantly. One study in rats 

demonstrated that the partial pressure of O2 ranges from 60 mmHg (7.5% O2) in the bladder, to 

40 mmHg (5% O2) in muscle, and 20 mmHg (2.5% O2) in the liver (61). Similarly, the pO2 in human 

tissues varies between 2-20% O2 (62). Typically, the pO2 of human blood is between 75-100 

mmHg, equivalent to 10-13% O2 (63).  In vivo, under physiological conditions, most human cells 

experience approximately 40 mmHg (5%) oxygen. Below this partial pressure of oxygen can be 

considered “hypoxic” (64). When the intracellular oxygen concentration in tissues is reduced from 

normoxia to “moderate hypoxia” (8 - 0.8 mmHg (1 - 0.1% O2)), mitochondrial respiration is 

unaffected (65). Oxygen concentrations lower than 0.1% O2 can be considered severe hypoxia, 

and can affect cell viability and survival (66).  Most in vitro studies use 1-2% O2 (8-16 mmHg), as 

an established model of hypoxia (64). HIF-1 is detected in many cell culture systems at a cut off 

around 5% O2 (40 mmHg) and below (67). HIF consists of an oxygen sensitive HIF-α domain, and a 

constitutively expressed HIF-β domain. HIF-α consists of 2 isoforms, HIF-1α and HIF-2α. HIF-1α is 

primarily involved in the acute response to hypoxia, and expression is reduced following 

prolonged hypoxia. HIF-2α levels continue to increase in hypoxia over time, and are important for 

more chronic changes in hypoxia (68). Interestingly, the pO2 in human tissues (3-10% O2 (23-70 

mmHg)) is close to those used in in vitro studies to mimic hypoxia. Thus HIF-2α may be 

responsible for the transcription of genes involved in “physioxia” (62).  
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1.4.2 Consequences of hypoxia on the vasculature 

Oxygen availability is a major determinant of cell metabolism and gene expression. Thus, as 

cellular O2 levels decrease, these parameters are drastically altered. Upon exposure to hypoxia, 

both endothelial and VSMCs respond rapidly, utilising both acute and chronic changes to adapt. 

These changes are summarised in figure 1.8. 

1.4.2.1 Vascular tone 

Within pulmonary arteries, the response to hypoxia in terms of vascular tone can be considered in 

phases. First, an initial contraction phase, followed by a transient relaxation phase, then finally a 

sustained contraction (69). This appears to be mediated by both endothelium-dependent and 

endothelium-independent mechanisms (70). The molecular mechanism responsible for this 

involves hypoxia-sensitive voltage-gated potassium channels in pulmonary artery smooth muscle 

cells, which leads to depolarisation and activation of voltage-dependent calcium channels (71). 

The physiological role of this is to divert blood away from poorly ventilated regions of the lung, 

and towards regions with adequate oxygen supply, thus matching ventilation to perfusion (72). 

This is the opposite of the systemic circulation, where hypoxia leads to vasodilation (73). This 

effect may be direct, via an inadequate oxygen supply to sustain VSMC contraction, or indirect, via 

the production of vasodilator metabolites (74).  

1.4.2.2 Inflammation 

Hypoxia increases the expression of numerous adhesion molecules on the surface of the 

endothelium, including P-selectin, E-selectin, ICAM-1, and VCAM-1, thus augmenting its 

permeability to leukocytes (75). Endothelial cells also increase expression of numerous pro-

inflammatory cytokines including IL-6, IL-1α, IL-8 and MCP-1 under hypoxic conditions (76). These 

adaptations are largely driven by HIFs ability to bind to hypoxia-response promotor elements, 

inducing transcription of numerous genes involved in inflammation, such as nuclear factor-κB (NF-

κB) (77). 

1.4.2.3 Coagulation 

Hypoxia exposure results in reduced production of thrombomodulin, leading to accelerated 

thrombin activity (78). Similarly, hypoxia has been shown to downregulate the expression of the 

TFPI gene, which is reversed following inhibition of HIF-1α (79). Recently, in rat glioma cell lines, 

TF itself has shown to be upregulated following exposure to the hypoxia mimetic CoCl2 (80). PAI-1 

inhibits fibrinolysis, and is upregulated in hypoxia, promoting the stability of fibrin clots (81). 
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These observations are complemented by in vivo studies, which have demonstrated that a 2 hour 

hypoxic challenge in chronic obstructive pulmonary disease (COPD) results in an increase in 

coagulation activity (82).  

1.4.2.4 Oxidative stress 

Hypoxia leads to an increase in oxidative stress via numerous mechanisms. NADPH oxidase, an 

enzyme involved in transferring electrons across membranes, largely underlies this increase. 

Upregulation of NADPH oxidase in hypoxia has been shown to activate HIF-1 via an increase in 

ROS (83). Similarly, complex III in the mitochondrial electron transport chain also produces ROS 

under hypoxic conditions, leading to stabilisation of HIF-α, via an inhibition of prolyl hydroxylases 

(84). Many other oxygen-sensitive enzymes are capable of producing ROS, including xanthine 

oxidoreductase (85), cytochrome p-450 (86), and even nitric oxide synthase (NOS) (87).  

1.4.2.5 eNOS function 

The effect of hypoxia on eNOS function is complex. Firstly, hypoxia is capable of destabilising 

eNOS mRNA, an effect mediated by Rho-kinase (88). Interestingly, once eNOS has been 

transcribed, studies have shown that hypoxia leads to a reduction in eNOS phosphorylation at the 

activatory site Serine 1177, and increased phosphorylation at the inhibitory site Threonine 495 

(89,90). 
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Figure 1.8 The effects of hypoxia on the vasculature. Hypoxia induces changes within cells in order for them to adapt to the reduced availability of oxygen. TFPI – tissue 

factor pathway inhibitor, PAI-1 - plasminogen activator inhibitor-1, eNOS – endothelial nitric oxide synthase, NADPH oxidase - nicotinamide adenine dinucleotide 

phosphate-oxidase. IL-1α – interleukin 1α, IL-6 – interleukin 6, MCP-1 – monocyte chemoattractant protein-1. 
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1.5 Nitric Oxide 

1.5.1 Nitric Oxide Synthase 

NO, or nitrogen monoxide, is a free radical signalling molecule, with a plethora of functions 

involved in regulating aspects of the cardiovascular, nervous and immune systems. NO is 

produced by one of three isoforms of NO synthase (NOS), catalysing the reaction between 

molecular oxygen and L-arginine. Two of these are constitutive forms, which are present under 

physiological conditions in both the endothelium (eNOS) and in neurones (nNOS). The third is an 

inducible form (iNOS), and expressed predominantly in macrophages, neutrophils, VSMCs and 

endothelial cells in response to pathological stimuli such as IL-1, TNF-α and IFN-γ (91).  

The production of NO from all NOS isoforms is dependent on additional cofactors, including 

nicotinamide adenine dinucleotide phosphate (NADPH), and bound prosthetic groups including 

tetrahydrobiopterin (BH4), flavin adenine dinucleotide (FAD), and flavin mononucleotide (FMN) 

(91). These cofactors control the assembly of the enzyme into its active dimer state. L-Arginine is 

typically present in excess within endothelial cell cytoplasm, therefore NO production is 

dependent on enzyme activity and/or O2 availability. Calcium-activated calmodulin regulates 

electron transfer within the molecule. Interestingly, whilst iNOS and nNOS are located in the 

cytosol, eNOS is predominantly membrane-associated, due to post-translational modifications (N-

myristoylation and cysteine palmitoylation) leading to association with caveolin (92). Caveolin is a 

membrane protein present within caveolae (invaginations in the plasma membrane containing 

high levels of cholesterol and sphingolipids). Following receptor-mediated agonist stimulation, the 

binding of calcium-activated calmodulin causes dissociation from caveolin, release of eNOS from 

caveolae and enzyme activation (92).  

eNOS subunits are comprised of two domains; a reductase domain and an oxygen domain, 

connected by a central calcium-calmodulin binding region. Electrons are donated from NADPH, 

sequentially passed through FAD and FMN within the reductase domain, finally passing to an 

oxygenase domain that contains haem, BH4, and the substrate. BH4 stabilises the positively 

charged pterin ring of L-Arginine, thus increasing its binding to the enzyme, in addition to 

stabilising the dimeric form of the enzyme (93). The reduced haem can reduce O2, simultaneously 

oxidising L-arginine, generating L-citrulline and NO. Calmodulin binding to eNOS increases 

electron transfer within the reductase domain (Figure 1.9).  
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Figure 1.9 Structure of eNOS. eNOS consists of a dimer, each monomer comprised of an oxygenase domain 

and a reductase domain. Electrons are transferred through the reductase domain to the haem (Fe) 

containing oxygenase domain, facilitating the conversion of O2 to NO. eNOS – endothelial nitric oxide 

synthase, L-Arg – L-Arginine, L-Cit – L-Citrulline, BH4 – tetrahydrobiopterin, CaM – calmodulin, NADPH - 

nicotinamide adenine dinucleotide phosphate, NO – nitric oxide. 

The production of NO is actually a two-step reaction; firstly, one molecule of NADPH (two 

electrons) is used with one molecule of oxygen to hydroxylate L-arginine to an enzyme bound 

intermediate (Nω-hydroxyl-L-arginine) (91). Secondly, eNOS utilises 0.5 molecules of NADPH (one 

electron) with one molecule of oxygen to oxidise this intermediate to L-citruline and NO. 

Stimulation of eNOS activity begins with agonist stimulation of receptors present on the 

endothelial cell membrane. Examples of such agonists include acetylcholine, substance-P and 

bradykinin. Receptors for these agonists are Gq coupled GPCR, leading to activation of PLC and 

intracellular calcium accumulation. Calcium can then bind to calmodulin facilitating enzyme 

activation. In addition, shear stress can initiate NO synthesis via mechanoreceptors, and 

subsequent signalling via Akt, phosphorylating eNOS (Ser 1177) and increasing eNOS sensitivity to 

calmodulin (94). 
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1.5.1.1 Uncoupling of eNOS 

eNOS uncoupling is a mechanism that can lead to endothelial dysfunction, caused by increased 

monomerization of the enzyme. When the cofactor BH4 is limited, due to oxidation or decreased 

synthesis, eNOS becomes uncoupled, and the damaging superoxide (O2
-) radical is produced (93). 

In this scenario, electron transfer is “uncoupled” to L-arginine oxidation, leading to electrons 

being transferred to molecular oxygen, and the production of superoxide (Figure 1.10). This 

represents a vicious cycle of reduced NO bioavailability, as not only is NO production reduced, but 

superoxide production is increased. This leads to further reductions in NO bioavailability by 

scavenging NO, leading to peroxynitrite formation (ONOO-), a potent inducer of cell death.  

  

Figure 1.10 eNOS uncoupling. The lack of the cofactor BH4 lessens L-Arginine binding to the enzyme, leading 

to electron transfer to oxygen, producing the damaging radical superoxide (O2
-). eNOS – endothelial nitric 

oxide synthase, L-Arg – L-Arginine, CaM – calmodulin, NADPH - nicotinamide adenine dinucleotide 

phosphate. 
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1.5.2 Function of Nitric Oxide 

1.5.2.1 Function in the cardiovascular system 

The role of NO in maintaining vascular tone has already been discussed (section 1.2.3.1). 

However, NO also elicits other beneficial effects within the cardiovascular system. NO has been 

shown to prevent aggregation and adhesion of platelets. Despite the importance of coagulation in 

the prevention of bleeding, over-stimulation of this process can lead to thrombosis. As in smooth 

muscle cells, the anti-platelet effect of NO is mediated via cGMP-dependent PKG, subsequently 

preventing intracellular calcium accumulation. This reduction in intracellular calcium reduces the 

formation of glycoprotein IIb/IIIa, a receptor for fibrinogen and vWF (95,96). 

NO also modulates the adhesion of leukocytes to the endothelium following injury (97). Although 

many other effects of NO are cGMP dependent, the ability of NO to prevent leukocyte attachment 

to the endothelium is not. Several of the genes encoding pro-inflammatory cytokines and 

adhesion molecules, such as IL-8, MCP-1, E-selectin and VCAM-1, all share specific DNA binding 

motifs within their promoters, which interact with the transcription factor NF-κB (98). NO affects 

the ability of NF-κB to bind to these promoter regions, by modification of the conserved redox 

sensitive C62 residue (99). Secondly, NO induces and stabilises the NF-κB inhibitor IκBα (100). 

Thus, NO can reduce the expression of these molecules, and hence modulate leukocyte 

recruitment and adhesion via two distinct NF-κB mechanisms.  

NO can also reduce VSMC proliferation, through both cGMP dependent and independent 

mechanisms. NO can increase levels of PKA via cGMP. PKA can subsequently reduce intracellular 

calcium levels, counteracting the high calcium levels required for proliferation (101,102). 

Independently of cGMP, NO can inhibit the production of polyamines required for DNA synthesis, 

by inhibition of the enzymes arginase and ornithine decarboxylase (103).  

1.5.2.2 Function in the nervous system 

NO also acts as a neurotransmitter between neuronal cells in both the central and peripheral 

nervous system. It is a non-conventional neurotransmitter as it is a gas, and thus not stored in 

synaptic vesicles. Instead, it is synthesised on demand by neurones (104). In the central nervous 

system (CNS), NO is associated with cognitive function, synaptic plasticity, and control of sleep, 

appetite, and body temperature (104). Within the peripheral nervous system, NO regulates the 

non-adrenergic, non-cholinergic relaxation of smooth muscle cells. This can affect a number of 

tissues; it allows the stomach to accommodate large volumes of food without any significant 
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increases in intraluminal pressure. It also regulates muscle tone of internal sphincters and 

regulates peristalsis within the gastrointestinal tract (105).  

1.5.2.3 Function in the immune system 

The generation of NO is a key feature of many phagocytic cells of the immune system. NO can be 

produced via iNOS following pro-inflammatory stimuli. Prior to stimulation, the transcription 

factor NF-κB is present within the cytosol in an inactive form, as a complex with IκB (inhibitor of 

κB). Once stimulated, by lipopolysaccharide (LPS) for example, the IκB-NF-κB complex is 

phosphorylated, allowing translocation of the transcription factor to the nucleus and induction of 

iNOS gene expression (106). This leads to production of micromolar levels of NO, far greater than 

the nanomolar levels produced by constitutively expressed eNOS and nNOS (93). The high level of 

NO is cytotoxic to pathogens such as viruses, bacteria, fungi and parasites. The NO produced 

reacts with superoxide generated from NADPH oxidase, producing peroxynitrite. This leads to 

peroxidation of proteins and lipids, including enzymes involved in cellular respiration, leading to 

destruction of the pathogen (107).  

 

 

Figure 1.11 The varying functions of NO. NO has many functions throughout the human body, including 

roles in the nervous and immune systems. It is most studied in relation to its effects within the 

cardiovascular system, however, where it acts as a potent vasodilator, in addition to reducing platelet 

aggregation, inflammation, and smooth muscle cell proliferation.  
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1.5.3 NO metabolism 

1.5.3.1 Within the blood 

Once NO has been produced by eNOS within the endothelium, a proportion of it moves into the 

blood. NO acts mainly in an autocrine or paracrine fashion, as signalling is limited due to its rapid 

auto-oxidation, resulting in the formation of nitrite (NO2
-) (equation 1.1) (108).  

Following this, NO2
- can undergo further reaction with NO to nitrous anhydride (N2O3) (equation 

1.2) or it can dimerise, forming dinitrogen tetroxide (N2O4) (equation 1.3) (109).  

These products can be hydrolysed to yield NO2
- and nitrate (NO3

-) respectively, as shown in 

equations 1.4 and 1.5 (109).  

Both NO and its derivatives are capable of interacting with nucleophilic centres, such as thiol 

groups (R-S) on plasma proteins to generate a number of species. Thiol groups are readily 

nitrosylated, generating nitrosothiols (RSNOs). Often, RSNO formation first requires the formation 

of the nitrosonium ion (NO+), formed via metals (such as iron) found in haem proteins (equation 

1.6/1.7) (110). In areas of low pH, NO2
- is also capable of generating NO+ and thus RSNO (equation 

1.8) (111).  

  

Equation 1.1    𝟐𝑵𝑶. + 𝑶𝟐  → 𝟐𝑵𝑶𝟐
− 

Equation 1.2   𝑵𝑶𝟐
− + 𝑵𝑶. ↔ 𝑵𝟐𝑶𝟑 

Equation 1.3   𝟐𝑵𝑶𝟐
−  ↔  𝑵𝟐𝑶𝟒 

Equation 1.4   𝑵𝟐𝑶𝟑 +  𝑯𝟐𝑶 → 𝟐𝑯𝑵𝑶𝟐  → 𝟐𝑵𝑶𝟐
− + 𝟐𝑯+  

Equation 1.5   𝑵𝟐𝑶𝟒 + 𝑯𝟐𝑶 → 𝑵𝑶𝟑
− +  𝑵𝑶𝟐

− + 𝟐𝑯+ 

Equation 1.6   𝑵𝑶. + 𝑭𝒆𝟑+  → 𝑭𝒆𝟐+ + 𝑵𝑶+ 

Equation 1.7   𝑵𝑶+ + 𝑹𝑺.  →  𝑹𝑺𝑵𝑶 

Equation 1.8   𝑵𝑶𝟐
− + 𝑯+ + 𝑹𝑺𝑯 → 𝑵𝑶+ + 𝑹𝑺∙ + 𝑯𝟐𝑶 →  𝑹𝑺𝑵𝑶 + 𝑯𝟐𝑶  
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In addition, RSNO can also be formed via N2O3 and a thiol group reacting, also producing NO2
-and 

a hydrogen ion (equation 1.9) (110).  

NO can also react with oxygen derived free radicals, such as superoxide (O2
-), hydrogen peroxide 

(H2O2), and the hydroxyl radical (OH.). Superoxide is produced from various oxidase enzymes, 

including nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase), xanthine 

oxidase, as well as uncoupled eNOS. Notably, superoxide reacts with NO to yield peroxynitrite. 

Peroxynitrite can subsequently be protonated, leading to its decomposition to NO3
- (equation 

1.10) (112). Peroxynitrite is capable of eliciting a range of harmful effects, including modification 

of lipids, proteins and nucleic acids.  

ROS play a central role in modulating endothelial function. Oxidative stress can be defined as an 

imbalance between the production of ROS and their removal by antioxidant defence systems, 

such as superoxide dismutase (SOD), which converts superoxide to hydrogen peroxide. 

Subsequently, hydrogen peroxide is converted to water (H2O) and oxygen (O2). Other antioxidants 

include glutathione, vitamin E and ascorbate (113). The damaging effects of ROS are well 

documented. Indeed, cardiovascular risk factors, such as smoking, have been shown to increase 

ROS levels within the vasculature (114). ROS can lead to DNA damage, lipid peroxidation and 

protein oxidation, often leading to apoptosis (115). ROS are implicated within the 

pathophysiology of CVD, as outlined in section 1.3. 

1.5.3.2 Within erythrocytes 

Haem has an affinity for NO approximately 10,000 times greater than for oxygen. Thus, NO can 

react with oxygenated haemoglobin, producing met-haemoglobin and NO3
- (equation 1.11) (116). 

In this reaction, the oxidation state of the iron within haem is in the ferric state (Fe3+), not the 

ferrous state (Fe2+) present in regular haemoglobin. Met-haemoglobin cannot bind oxygen in this 

state.  

  

Equation 1.9   𝑵𝟐𝑶𝟑 + 𝑹𝑺𝑯 →  𝑹𝑺𝑵𝑶 +  𝑯+ +  𝑵𝑶𝟐
− 

Equation 1.10   𝑶𝑵𝑶𝑶− + 𝑯+ → 𝑶𝑵𝑶𝑶𝑯 → 𝑶𝑯. +  𝑵𝑶𝟐
− → 𝑯+ +  𝑵𝑶𝟑

−
 

Equation 1.11   𝑯𝒃(𝑭𝒆𝟐+)𝑶𝟐 + 𝑵𝑶.  → 𝒎𝒆𝒕𝑯𝒃(𝑭𝒆𝟑+) + 𝑵𝑶𝟑
− 
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Met-haemoglobin levels in healthy individuals are typically between 1-3% (117). They are kept at 

this low level by cytochrome b5 reductase (an NADH-dependent enzyme), and cytochrome b5 (a 

soluble electron carrier), which are capable of converting met-haemoglobin back to 

deoxyhaemoglobin (116).  

NO utilises the same binding pocket of haemoglobin as oxygen, and can also bind to 

deoxygenated haemoglobin, forming nitrosylated haemoglobin (HbNO) (equation 1.12) (117).  

HbNO can release NO following oxygenation, due to haemoglobin conformational changes 

allowing NO to bind to cysteine residues within the β-chain of haemoglobin, forming S-

nitrosylated Hb (HbSNO) (equation 1.13) (118).  

NO can thus be transported by red blood cells to microvascular sites of action in a protected S-

nitrosothiol form. HbSNO can dispense NO bioactivity following the release of oxygen from this 

molecule, physiologically coupling oxygen delivery with vasodilation (119).  

1.5.4 NO metabolites 

Previously, NO metabolites NO2
- and NO3

- were considered physiologically inert, inactive oxidative 

end products of NO metabolism. Today, they are widely accepted as bioactive “storage pools” for 

NO bioactivity, capable of being recycled in blood and tissues to form NO and other bioactive 

nitrogen oxides under certain conditions. Indeed, their concentration is reduced following eNOS 

knockout in mice (120), and increased following exercise, which stimulates NO generation via 

eNOS due to circulatory shear stress (121). This pathway has been dubbed the “Nitrate-nitrite-

nitric oxide pathway”, complementing the “traditional” L-arginine-eNOS pathway of NO 

formation.  

NO3
- is typically the dominant final oxidation product of NO, with concentrations at least 2 orders 

of magnitude higher than NO2
- (micromolar vs nanomolar) (22). The half-lives of NO3

- and NO2
- are 

approximately 5-6 hours and 20 minutes, respectively (122). Indeed, lower levels of plasma NO3
- 

and NO2
- are detected in CVD patients in comparison to healthy controls, reflecting the degree of 

endothelial dysfunction and thus reduced NO bioavailability in this cohort (123). In healthy 

individuals, typical NO3
- and NO2

- levels are between 20-40 µM and 150-300 nM, respectively 

(124).  

Equation 1.12   𝑯𝒃(𝑭𝒆𝟐+) + 𝑵𝑶.  →  𝑯𝒃(𝑭𝒆𝟐+)𝑵𝑶 

Equation 1.13   𝑯𝒃𝑵𝑶 +  𝑶𝟐 → 𝒐𝒙𝒚𝑯𝒃𝑺𝑵𝑶 + 𝟏𝒆− + 𝟏𝑯+ 
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In addition to oxidation of NO, the second major source of NO3
-, and to a lesser degree NO2

-, is 

dietary intake. Vegetables such as beetroot, spinach, and rocket represent the most dominant 

dietary source of NO3
- (125). Ingestion has been shown to increase plasma concentrations of NO3

- 

and NO2
- significantly. Per 80g serving, spinach contains approximately 2.76 mmol of NO3

-, with 

beetroot containing approximately 1.88 mmol (125). Interestingly, diets traditionally high in these 

vegetables, such as the Mediterranean and Japanese diets, are associated with a low incidence of 

CVD (126–129).  

1.5.5 Nitrate-nitrite-nitric oxide pathway 

Dietary NO3
- is absorbed in the upper gastrointestinal tract, and despite large amounts of 

circulating NO3
- being excreted in the urine, approximately 25% is actively extracted by the 

salivary glands via entero-salivary circulation (130). This is subsequently concentrated in saliva, 

reaching millimolar concentrations (131). In the oral mucosa, commensal, facultative anaerobic 

bacteria are located within the deep crypts of the posterior and middle parts of the tongue (132). 

The most common anaerobes are thought to be of the Veillonella and Actinomyces species 

(132,133). These bacteria are capable of reducing NO3
- to NO2

- by NO3
- reductase enzymes. They 

utilise NO3
- as a final electron acceptor during respiration, gaining adenosine triphosphate (ATP) in 

the absence of oxygen (134). Humans are reliant on these bacteria for NO2
- production, as human 

cells do not possess NO3
- reductase activity. The importance of this bacteria is highlighted in 

studies demonstrating the use of antibacterial mouthwash preventing NO2
- accumulation 

following dietary NO3
- intake (135).  A small amount of salivary NO2

- meets the acidic gastric 

milieu, where it is protonated, forming nitrous acid. Here, it can subsequently decompose to NO 

and other nitrogen oxides, such as nitrous anhydride (N2O3), a potent nitrosating species capable 

of forming RSNO (equation 1.9) (136). This reaction is enhanced by the low pH and reducing 

compounds such as ascorbic acid (137). The high concentrations of NO produced in the gastric 

lumen may be of physiological relevance. NO is known to be bactericidal, and therefore may offer 

a first line of defence against ingested pathogens (138). In fact, it has been shown that gastric 

juice in combination with NO2
- demonstrates significantly higher antimicrobial effects on known 

enteropathogens, compared to gastric juice alone (134,139).   

Salivary NO2
- that has escaped gastric conversion can enter the general circulation, along with 

newly formed RSNO molecules (140). There are multiple enzymes that possess NO2
- reductase 

activity. Haemoglobin, myoglobin, xanthine oxidoreductase, aldehyde oxidase, mitochondrial 

enzymes and NOS have all been reported to elicit NO2
- reductase activity (141). The contribution 

of NO2
- reduction from each of these is dependent on pH, oxygen tension, and redox status.  

Figure 1.12 summarises the nitrate-nitrite-nitric oxide pathway. 
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Figure 1.12. The nitrate-nitrite-nitric oxide pathway. Ingested dietary NO3
- can be rapidly absorbed via the small intestine. Although a large 

amount of NO3
- is excreted in the urine, up to 25% can be extracted by the salivary glands, and subsequently concentrated within the saliva. 

Commensal facultative anaerobic bacteria can reduce this NO3
- to NO2

-. Within the acidic gastric milieu, NO2
- can then subsequently be 

reduced to NO, or other nitrogen oxides. NO3
- and remaining NO2

- are absorbed into the circulation and can be converted to bioactive NO 

within the blood. Adapted from (130).  
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1.5.5.1 Haem proteins 

In addition to the reactions outlined in section 1.5.3.2, NO2
- is capable of reacting with ferrous 

deoxyhaemoglobin (HbFe2+), producing NO and methaemoglobin (metHbFe3+) (equation 1.14) 

(142). This NO produced can then bind to a second deoxyhaemoglobin, as shown in equation 

1.12.  

Equation 1.14   𝑵𝑶𝟐− + 𝑯𝒃(𝑭𝒆𝟐+) +  𝑯+ → 𝑵𝑶 + 𝒎𝒆𝒕𝑯𝒃(𝑭𝒆𝟑+) + 𝑶𝑯− 

This reaction allows NO delivery to be mediated by both pH and oxygen, as it requires 

deoxygenation of haemoglobin and proton availability. The haemoglobin conformation and 

oxygen binding status affects the ability of haemoglobin to reduce NO2
-, with reduction most 

prevalent at approximately 50% oxygen bound haemoglobin (143). Thus, this allosteric regulation 

allows for targeted NO delivery to areas of poor oxygenation, and may partially explain hypoxic 

vasodilation (144). Myoglobin is capable of reducing NO2
- in a similar way to haemoglobin (145).  

When it becomes deoxygenated, such as in exercising skeletal muscle, it will rapidly convert NO2
- 

to NO.  

1.5.5.2 Molybdopterin containing enzymes 

Xanthine oxidoreductase (XOR) also possesses NO2
- reductase activity in hypoxic conditions. 

Under physiological conditions, XOR is involved in purine catabolism, and reduces O2 to 

superoxide (O2
.). XOR consists of a FAD binding site, iron-sulfur centres and a molybdenum centre.  

Typically, under physiological conditions, electrons flow from the molybdenum site, through the 

iron-sulfur centres to the FAD binding site, where oxygen rapidly removes electrons, leaving the 

molybdenum site in an oxidised state. As oxygen decreases, additional factors such as an acidic pH 

and elevated NADH levels allow for molybdenum to assume a reduced state. NADH occupies the 

FAD site, preventing oxygen binding. Following this, sequential reduction of FAD, iron-sulphur 

clusters and eventually the molybdenum site, allows for the reduction of NO2
- to NO. NO2

- can 

thus competitively reduce superoxide formation, preventing the reduction of molecular oxygen 

(142). This indirectly increases NO bioavailability further, preventing the formation of 

peroxynitrite from superoxide and NO. Figure 1.13 summarises xanthine oxidoreductase 

mediated NO2
- reduction. Aldehyde oxidase also possesses NO2

- reductase activity, through a 

mechanism similar to that of XOR, utilising the molybdenum-site of the enzyme (146).  
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1.5.5.3 Other mechanisms of NO2
- reduction 

Cytochrome c oxidase has been proposed to reduce NO2
- utilising a similar mechanism to Hb, as 

the enzyme contains two haem groups (147). eNOS can also reduce NO2
- to NO. It has been 

demonstrated that eNOS is the only isoform of NOS capable of this reduction, and thought to 

involve an additional active site aside from haem (148).  

These pathways are all greatly enhanced under hypoxic conditions, offering an alternative 

electron acceptor to molecular oxygen. Thus, this pathway provides vasodilation in areas of 

ischaemia. 

  

Figure 1.13. Xanthine oxidoreductase (XOR) mediated NO2- reduction. Typically, O2 rapidly 

removes electrons from XOR, and thus the molybdenum site, resulting in its oxidation state of 

VI. These circumstances favour the formation of uric acid and superoxide (O2
-). As O2 and pH 

decrease, the molybdenum site assumes a more reduced state (IV), with electrons now flowing 

from the FAD site, via the iron-sulphur (Fe/S) clusters to the molybdenum site. Under these 

conditions, the production of NO is favoured.  
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1.5.6 Nitrate and nitrite in therapeutics 

1.5.6.1 History 

Nitrates have been used as a pharmacological treatment for many years. Nitroglycerine was first 

discovered in 1847 by the Italian chemist Ascanio Sobrero, noting the “violent headache” 

produced by minute quantities of nitroglycerine on the tongue, which he quickly attributed to 

cerebral vasodilation. In 1867, British pharmacologists and physicians Brunton and Murrell used 

nitroglycerine and related compounds to treat patients with angina, with the use of these drugs 

becoming widespread. It was not until over a century later, in 1977, that Ferid Murad discovered 

that these nitrate compounds were in fact pro-drugs, and the biologically active molecule 

released was capable of acting on vascular smooth muscle. (149). Furchgott and Zawadski then 

recognised the importance of the endothelium in acetylcholine-mediated vasorelaxation in 1980. 

Furchgott observed that the endothelium produced an unknown substance that induced 

relaxation of the underlying smooth muscle, which he termed EDRF (19). Ignarro and Moncada 

eventually identified EDRF as NO in 1987 (20). Today, glycerol trinitrate remains a treatment of 

choice for relieving angina pectoris, myocardial infarction, and heart failure, along with other 

nitrates such as isosorbide dinitrate, and isosorbide-5-mononitrate (150). There is a wealth of 

evidence demonstrating that nitrates are effective at increasing coronary blood flow via a variety 

of mechanisms, including vasodilation and improvement of endothelial dysfunction(151). 

Tolerance to organic nitrates often occurs following frequent dosing, decreasing their efficacy. 

This may occur through a number of mechanisms, including increases in oxidative stress, impaired 

nitroglycerin bioconversion, desensitisation of soluble guanylate cyclase, increased sensitivity to 

vasoconstrictors and epigenetic mechanisms (152).  

More recently, both our research group and others have shown that low-dose sodium nitrite 

(NaNO2) can induce vasodilation in humans, an effect which is greatly enhanced in hypoxia 

(153,154). The potency of this inorganic NO2
- is far lower than the organic nitrates used in the 

clinical settings described (155). This selective vasodilation in areas of hypoxia and/or acidosis 

could be of significant benefit in a clinical setting, and explain the benefits of NO2
-  observed in 

ischaemia reperfusion studies (156).  
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1.5.6.2 Physiological effects of NO3
- and NO2

- 

The nitrate, nitrite, nitric oxide pathway can be further boosted by dietary intake of NO3
-. As 

previously mentioned, a diet rich in fruit and vegetables, such as the Mediterranean diet, contains 

high levels of NO3
- and is protective against CVD (157–160). Typically, an 80 gram serving of 

vegetables such as rocket, spinach, radish or beetroot contains approximately 2-4 mmol of NO3
- 

(125). As NO3
- and NO2

- represent bioactive storage pools for NO, many of the effects of this 

compound have been shown to be mirrored following exogenous administration of NO3
- and/or 

NO2
-. The most established physiological effect of dietary NO3

- ingestion is a reduction in blood 

pressure. This was first demonstrated in 2006 by Larsen et al, who showed that a sodium nitrate 

(NaNO3) salt solution, at a dose similar to that of a NO3
- rich meal, significantly reduced diastolic 

blood pressure by 3.5 mm Hg (161). In 2008, a reduction in both systolic (10 mm Hg) and diastolic 

(8 mm Hg) blood pressure was observed following ingestion of NO3
-
 rich beetroot juice in healthy 

volunteers (162). Following these observations, numerous other studies have reported this effect 

using a range of dietary NO3
- sources (163,164).  

Dietary supplementation with NO2
- has been shown to inhibit platelet activity, and subsequently 

increase bleeding time (165). Similarly, dietary NO3
- administration, in the form of both beetroot 

juice, and potassium nitrate capsules, was capable of reducing ex vivo platelet aggregation, in 

response to ADP and collagen in male, but not female volunteers. (166). This group had also 

shown that the effects of NO3
- on both blood pressure and platelet aggregation were abolished 

following interruption of the enterosalivary conversion of NO3
- to NO2

-, confirming the role of the 

nitrate, nitrite, nitric oxide pathway (162). Both NO2
- and NO3

- supplementation were reliant on 

erythrocyte-mediated reduction of NO2
- to NO to elicit an effect.  

Endothelial dysfunction and subsequent decreased NO bioavailability is central to the 

pathogenesis of CVD. Dietary NO3
- supplementation has been shown to improve endothelial 

function in hypercholesterolemia patients, as measured by flow mediated dilation (FMD) (167). 

Indeed, FMD has been shown to improve following ingestion of 200 g spinach (≈6.9 mmol NO3
-), 

in addition to augmenting NO status (168). There is also evidence that dietary NO3
- intake can 

alleviate arterial stiffness in healthy volunteers, due to the influence of NO on vascular tone 

(169,170).  

Ischemia reperfusion injury is defined as tissue damage that occurs as a result of restoration of 

the circulation after a period of lack of oxygen, or ischemia. Within the heart and brain, ischemia 

reperfusion injury is a major cause of death and morbidity (171). Dietary NO3
- and NO2

- are well 

documented to protect against ischemia reperfusion injury in both animal and human models. 

Generation of NO from NO2
- by XOR protects the myocardium from ischemia reperfusion injury in 
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rat hearts (156,172). NaNO2 can protect against ischemia reperfusion injury in patients with 

myocardial ischemia, but only when given before the onset of ischemia (173).  

Aside from a disease setting, dietary NO3
- has generated a large amount of interest from the 

sports and exercise field, due to its vasodilatory capacity, and consequent potential to increase 

delivery of oxygen and nutrients to exercising skeletal muscle. Administration of beetroot juice for 

four to six days reduced the oxygen cost of low and moderate intensity exercise, whilst also 

significantly increasing the time to exhaustion during high intensity exercise (174). It has also been 

shown to enhance time-trial performance in cycling (175). Whilst beetroot juice is high in NO3
-, it 

also contains other bioactive compounds such as betaine and polyphenols, which may be 

responsible for the beneficial cardiovascular effects observed. Studies by Lansley et al using a NO3
- 

depleted placebo version of beetroot juice failed to produce the same effects as the NO3
- rich 

beetroot juice however, allowing the effects observed to be attributed to NO3
- (175,176).  

Table 1.3 summarises several key studies investigating the effect of NO3
- supplementation in a 

range of cohorts.
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 Table 1.3 Current NO3
- supplementation studies and their findings  

A plethora of studies have investigated the effect of NO3- supplementation in the cardiovascular system, both in a disease setting and in terms of exercise performance. This table 

highlights some of the effects observed thus far within the field.  

 

Nitrate source Dose Cohort Effect Reference 

Sodium nitrate 0.1 mmol kg−1 day−1 (3 days) Healthy volunteers  Reduction in blood pressure Larsen et al. 2006 (161) 

Beetroot juice 
500 mL (1 day) 

≈ 11.2 mmol 
Healthy volunteers 

 Reduction in blood pressure 

 Prevention of endothelial dysfunction 

 Reduced platelet activation 

Webb et al. 2008 (162) 

Beetroot juice 
250 mL day-1 (6 weeks) 

≈ 5.6 mmol 
Hypercholesterolemia patients  Improved vascular function 

Velmurugan et al. 2016 

(177) 

High nitrate soup 13.6 mmol day-1 (7 days) Healthy volunteers  Reduced arterial stiffness Jovanovski et al. 2015 (178) 

Sodium nitrate 0.15 mmol  kg−1 day−1 (4 weeks) Elderly volunteers  Reversed vascular dysfunction Rammos et al. 2014 (179) 

Beetroot juice 
250 mL (1 day) 

≈ 5.6 mmol 
Hypertensive patients  Reduction in blood pressure Kapil et al. 2015 (180) 

Beetroot juice 
500 mL (1 day) 

≈ 9.1 mmol 

Peripheral artery disease 

patients 
 Enhances exercise performance Kenjale et al. 2011. (181) 

Sodium nitrate 0.1 mmol kg−1 day−1 (3 days) Healthy young well-trained men  Reduced oxygen cost of exercise Larsen et al. 2007. (182) 

Beetroot juice 
500 mL (1 day) 

≈ 6.2 mmol 
Male cyclists  Improved cycling time trial performance Lansley et al. 2011 (175) 
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1.5.7 Detrimental effects of NO3
- 

It is noteworthy that there has been great concern over the potential detrimental effects of NO3
- 

and NO2
- in the past, specifically, their effects on cancer and methaemoglobinemia. 

Both NO3
- and NO2

- are commonly used to cure and preserve meat, preventing bacterial growth. 

Concerns first arose when it was demonstrated that these NO metabolites were capable of 

producing carcinogenic N-nitrosamine compounds (183), which are capable of disrupting nucleic 

acids (184). However, ascorbic acid (vitamin C), also present in high amounts in green leafy 

vegetables, has been shown to be a potent inhibitor of nitrosamine formation (185). Indeed, the 

majority of the literature focusses on cured meat as the dietary source of NO3
- and its potential 

carcinogenic effects, rather than vegetables. A meta-analysis performed in 2015 suggested high 

NO3
- intake was associated with a statistically significant reduced risk of gastric cancer (186). 

Conversely, other studies have identified a link between dietary NO3
- and both ovarian (187) and 

thyroid cancer (188). However, these associations are small, and further, larger cohort studies are 

required before causation can be concluded. Current data should thus be interpreted with 

caution.  

Methaemoglobinemia, also referred to as blue baby syndrome, is caused by a high level of 

methaemoglobin, the production of which is highlighted in section 1.5.3.2. Levels greater than 

10% can lead to asphyxia, which is fatal (189). Concerns about the effect of NO3
- intake on 

methaemoglobinemia first arose in the 1940s, when it was noted that methaemoglobinemia and 

cyanosis were observed in infants ingesting well water with a high NO3
- content (190). Since then, 

it has been shown that NO3
- was not necessarily the cause of methaemoglobinemia, but rather 

faecal bacteria that was also present within the well water (191). Thus, NO3
- may act as a marker 

of water contamination, rather than being toxic itself. Indeed, a review of NO3
- in drinking water 

concluded that there is not sufficient evidence for a causal relationship between exposure to NO3
- 

and methaemoglobinemia (192). It is important not to detract from the positives of a diet high in 

green leafy vegetables, having a various beneficial effects against CVD, in addition to protective 

anti-cancer effects (193).  
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1.6 Extracellular vesicles 

1.6.1 History 

Extracellular vesicles (EVs) are submicron, spherical particles enclosed in a phospholipid bilayer, 

typically between 30 nm to 1 µm in diameter. EVs were initially regarded as inert, cellular debris, 

with no real biological function. The first suggestion that EVs were present in the blood was in 

1946, following a study by Chargaff and West (194). They showed that plasma clotting time was 

increased if plasma underwent high speed centrifugation, which was subsequently shortened if 

the centrifugation pellet was added back to the plasma. However, it was not until 1967 when EVs 

were first visually identified by Peter Wolf (195). Wolf and his team identified a subcellular 

fraction using electron microscopy, visualising small spherical vesicles approximately 30-500 nm in 

diameter, describing his finding as “platelet dust”. Years later, in 1970, work by Webber and 

Johnson illustrated using electron microscopy that particles could “bleb” from activated platelets 

and be released into the circulation (196).  

Simultaneously, work by the Nobel Prize winner Christian de Duve formed the basis for a new 

field of cell biology research, now known as membrane trafficking (197). Together with George 

Palade and Albert Claude, they were able to identify nearly every organelle in the eukaryotic cell, 

and their respective functions. This formed the basis for further understanding of the role of 

vesicles in endocytosis and intracellular protein transport (198,199). Two papers published in 

quick succession in 1983 first described exosomes and exosome secretion, detailing that shedding 

of the transferrin receptor was mediated by vesicles (200,201). In 1987, Rose Johnstone proposed 

the term “exosome” to refer to secreted membrane vesicles derived from multivesicular bodies 

(MVBs), a term which seems to have stood the test of time. This new field of research grew slowly 

following this work. A small number of papers were published over the next decade from a select 

few research groups. It was not until 1996 that a breakthrough paper was published that brought 

the EV field to the forefront of scientific research, where B-lymphocytes were shown to secrete 

antigen-presenting vesicles (202). This initiated the discussion that EVs could have a functional 

role in information transfer. In 2005, the first meeting that gathered scientists interested in 

exosomes was held in Montreal. A large increase in interest, and subsequently publications, 

occurred between 2006 – 2007, and in the last decade a sharp increase in EV research has been 

observed. In 2011, a large EV international workshop was held at the Institut Curie in Paris, and 

later that year the International Society for Extracellular Vesicles (ISEV) was formed. A year later, 

in 2012, ISEV launched the Journal of Extracellular Vesicles (JEV), specifically for EV related 

research (203).  
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1.6.2 Nomenclature 

As research in EVs increased, with scientists from a variety of disciplines all interested in the role 

of EVs in their respective fields, it has been accompanied by a varied use of terminology. 

Frustratingly, this is often a source of much confusion within the literature as to the exact 

classification of the EVs being studied. Many of the terms used reflect the function of these 

secreted vesicles, such as “calcifying matrix vesicles” that initiate bone formation (204), and 

“tolerosomes” that induce immunological tolerance to antigens (205). Alternatively, vesicles 

cellular origin is often used when naming vesicles,  such as “prostasomes” (206) and “oncosomes” 

(207).   Although these terms are useful within a specific sub-speciality of EV research, broader 

terms are more helpful to the wider scientific community. “Exosomes”, “microvesicles”, 

“microparticles” and apoptotic bodies” were each used to describe differing sub-sets of EVs, 

however each with imperfect definitions and often substantial overlap. Indeed, these terms were 

often used interchangeably, or indeed incorrectly within the field. In the midst of these conflicting 

definitions, it was suggested that all EV research state their use of such terms explicitly, clearly 

state their methods of vesicle collection and isolation, and were encouraged to use the term 

“extracellular vesicle” as a generic term for all secreted vesicles (208). In 2014, ISEV produced a 

position paper to clarify terminology. Today, it is generally accepted that “extracellular vesicles” is 

an umbrella term encompassing exosomes, microvesicles and apoptotic bodies. Figure 1.14 

summarises this nomenclature and differences between sub-types. It is important to note that as 

the name suggests, apoptotic bodies are released from cells undergoing apoptosis, and as such do 

not represent EVs from viable cells. The term EV henceforth in this thesis will refer to both 

exosomes and microvesicles, but not apoptotic bodies.   
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1.6.3 The mechanism of EV biogenesis 

The generation of EVs can be attributed to one of two main pathways; the classical pathway for 

exosome secretion, and the direct pathway for microvesicle budding. However, “exosome-like 

vesicles”, within the defined size range and expressing exosome markers, have been shown to be 

released via the direct pathway (209).  

1.6.3.1 The classical “exosome” pathway 

Principally, exosomes are derived from endosomal origin. Their formation utilises the endocytic 

pathway, which is involved in regulating the composition of the plasma membrane and expression 

of cell surface receptors, which can be internalised and subsequently either degraded, or recycled 

back to the cell surface, depending on cellular requirements (210).  

The first stage in exosome formation is invagination of the plasma membrane. Specifically, 

membrane proteins and surrounding material are endocytosed, and transported via small 

transport vesicles into early endosomes, which then matures into a late endosome (211). These 

transport vesicles are produced as a result of both clathrin- and non-clathrin (caveolae) mediated 

pathways of endocytosis (211,212). During the formation of late endosomes, intraluminal vesicles 

(ILVs) are formed within the lumen via an inward budding of the membrane of the endosome. At 

Figure 1.14. Classification of EV sub-types. The term “EV” encompasses all cell-derived secretory vesicles. 

These differ primarily by their size and mechanism of formation. TSG 101 – Tumour susceptability gene 101. 

PS – Phosphatidylserine.  
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this stage, they are referred to as either multivesicular bodies (MVBs) or multivesicular 

endosomes. ILVs contain proteins, lipids and other biogenic cargo that requires sorting.  

Typically, MVBs experience one of two fates, either they fuse with lysosomes for subsequent 

degradation, or they fuse with the plasma membrane, releasing their content into the 

extracellular milieu as exosomes (213).  

The best described mechanism for the formation of MVBs and ILVs from endosomes involves the 

endosomal sorting complex required for transport (ESCRT). This complex is composed of 

approximately 30 proteins, which assemble into 4 main complexes; ESCRT-0, -I, -II, and –III, which 

associate with VPS4, VTA1 and Alix (214). ESCRT-0 contains proteins that recognise and sequester 

ubiquitinated transmembrane proteins within the endosomal membrane,  ESCRT-I and –II are 

responsible for membrane deformation into buds with sequestered cargo (215), and the ESCRT-III 

complex, drives the inward budding and scission to form ILVs within a MVB (216). Silencing of 

various components of the ESCRT-0 and -I all reduced the secretion of exosomes, highlighting 

their importance in this pathway (217). However, exosome formation is still apparent even in the 

absence of ESCRTs, suggesting that there may be ESCRT-dependent and ESCRT-independent 

mechanisms of MVBs (218).  

One pathway possibly responsible for ESCRT-independent exosome formation involves the lipid 

metabolism enzyme sphingomyelinase, which is capable of hydrolysing sphingomyelin to 

ceramide. Blockade of sphingomyelinase using the inhibitor GW4869 has been shown to decrease 

exosome release (219). Furthermore, addition of exogenous sphingomyelinase to cells led to 

inward budding of endosomes, producing ILVs (220). However, this mechanism may not apply to 

all cell types, as depletion of the sphingomyelinase enzyme in melanoma cells did not impair 

either MVB biogenesis or exosome secretion (221). Instead, a CD63-dependent mechanism is 

required. Indeed, the tetraspanin proteins, in particular CD63 are also thought to be ESCRT-

independent stimulators of exosome secretion (218). CD63 accumulates in ILVs even in the 

absence of ESCRT function, and is essential in the formation of ILVs within MVBs in HeLa cells 

(222). Tetraspanin enriched microdomains have been proposed to function as sorting machinery, 

facilitating exosome formation and release (223). Additionally, the enzyme phospholipase D2 

which hydrolyses phosphatidylcholine within the plasma membrane into phosphatidic acid is 

highly enriched in exosomes, and has been shown to be required for the formation of CD63-

containing ILVs (224). 

Despite the vast amount of research undertaken regarding the classical pathway of exosome 

formation, the exact mechanism is still not fully elucidated. Advances within this area have shown 

that formation appears to be mediated by an array of different proteins, some of which may be 
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shared between differing cell types, whilst some may be cell-specific. Research in this area is 

ongoing in order to clarify the mechanisms in play, and how different mechanisms of ILV and MVB 

formation may alter exosome fate.  Interestingly, ILVs were shown to differ in size dependent on 

whether their formation was ESCRT-dependent or –independent, potentially representing a 

simple approach to distinguish between differing ILV sub-populations (222).  

Once a MVB has been formed, they fuse with the plasma membrane to secrete their exosomes to 

the extracellular space. The intracellular trafficking required for this process is mediated by small 

GTPases of the Rab family. Numerous members of this family have been implicated in exosome 

secretion: Rab11 has been shown to be implicated in Ca2+ induced exosome secretion in 

erythroleukemia cell lines (225,226) and Rab35 inhibition impairs exosome secretion in 

oligodendrocytes (227). Furthermore, Rab27a and Rab27b have been shown to play a pivotal role 

in directing MVBs to the plasma membrane and assisting their docking for fusion and subsequent 

exocytosis (228). It is noteworthy that inhibition of Rab27a in cancer cells prevented exosome 

secretion in vitro (229), and reduced tumour metastasis in vivo (230). Interestingly, hypoxia has 

been shown to increase Rab22a expression, and thus microvesicle generation in breast cancer 

cells in a HIF-dependent manner, an effect which was eliminated following knockdown of Rab22a 

(231).  

The final stage of exosome release involves fusion of MVBs with the plasma membrane, and 

exocytosis of exosomes. This process is thought to involve the SNARE (soluble NSF (N-

ethylmaleimide-sensitive fusion) attachment protein receptor) proteins. The SNARE hypothesis 

states that a complex is formed between syntaxin and SNAP, between the cytosolic plasma 

membrane and the vesicle-associated membrane protein (VAMP) within the membrane of the 

MVB (232). The folding of these SNARE proteins facilitates the fusion of the membrane, providing 

the thermodynamic energy required to pull apart the membrane and create an opening for 

exosome secretion (233). The exact SNAREs involved in the fusion of MVBs with the PM to release 

exosomes have been poorly studied to date (234). Future research within this field will likely 

uncover further details regarding the exact proteins involved in exosome generation and 

secretion.   
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1.6.3.2 The direct pathway 

The plasma membrane consists of a plethora of proteins embedded in a phospholipid bilayer. 

Under physiological conditions, these phospholipids are arranged in an asymmetric manner; 

where the outer leaflet is enriched in phosphatidylcholine (PC) and sphingomyelin, and the inner 

leaflet predominantly consists of phosphatidylserine (PS) and phosphatidylethanolamine (PE) 

(235). The distribution of these phospholipids is not fixed, but rather tightly regulated by three 

phospholipid translocase enzymes embedded within the plasma membrane itself. Floppase is an 

adenosine triphosphate (ATP)-dependent protein, and a member of the ATP-binding cassette 

(ABC) transporter family. It mediates the movement of phospholipids to the outer membrane 

leaflet. Flippase is also an ATPase, which causes rapid translocation of phospholipids from the 

Figure 1.15. The classical pathway of exosome biogenesis. Clathrin and caveolae mediate the 

endocytosis of plasma membrane components, which are transported to endosomes via small 

transport vesicles. ILV formation may arise as a result of a number of molecules, including ESCRT 

complexes, tetraspanins, PLD2 or ceramide. Rab GTPases then assist the translocation of MVBs toward 

the plasma membrane, where the SNARE complex assists the docking and fusion of the MVB with the 

plasma membrane, and subsequent exosome release. AP2 – adapter protein 2, ESCRT – endosomal 

sorting complex required for transport, PLD2 – phospholipase D2  ILV – intraluminal vesicle, MVB – 

multivesicular body, VAMP – vesicle-associated membrane protein. 
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outer membrane to the inner membrane leaflet, with a particularly high affinity for PS (236). 

Finally, scramblase is an ATP-independent enzyme, and causes random, bidirectional transport of 

phospholipids between membrane leaflets. Under resting conditions, flippase works at a far 

greater rate than floppase, thus making phospholipid arrangement asymmetric (235).  

Typically, activation of a cell leads to an increase in the cytosolic calcium concentration. This leads 

to activation of the floppase and scramblase enzymes, and inhibition of flippase (236). The result 

of this is a profound increase in the level of externalised PS on the outer membrane leaflet.  

Furthermore, the increased cytosolic calcium levels lead to disruption within the actin 

cytoskeleton. The cytoskeleton modulates the cell stability via protein-protein and protein-lipid 

interactions (237). The translocation of membrane phospholipids disturb the covalent links 

between the membrane and the cytoskeleton, facilitating membrane budding. This subsequently 

triggers the activation of several calcium-dependent enzymes, including the protease calpain, 

which is capable of cleaving cytoskeletal proteins and thus remodelling the cytoskeleton. Indeed, 

there is evidence to suggest that activation of calpain leads to microvesicle release from 

aggregating platelets (238). Similarly, Rho kinase II has been shown to be essential in endothelial 

microvesicle formation, with both pharmacologic inhibition and specific silencing preventing their 

release (239). Furthermore, caspases have also been shown to modulate the actions of calpain, 

leading to cytoskeletal reorganisation and microvesicle blebbing in neutrophils (240). Additionally, 

there is some evidence that enhanced permeability to potassium, along with the associated 

osmotic effects, facilitate microvesicle formation, although this research is dated (241,242). A 

reduction in cell volume is required to compensate for the loss of plasma membrane surface area 

as microvesicles are released. This change in cell volume would promote membrane budding due 

to the stress imposed by a surface area mismatch. Indeed, more recent research has 

demonstrated that in S49 lymphoma cells, potassium ion efflux, loss of membrane phospholipid 

asymmetry, and cytoskeletal disruption are all required for microvesicle release (243). Regardless, 

the exposure of PS and cleavage of the actin cytoskeleton leads to membrane budding, and 

subsequent shedding in the form of microvesicles, typically between 100-1000 nm in diameter. 

Although the exact mechanism that governs microvesicle release is not fully elucidated, several 

key proteins have been identified that play a pivotal role in their release.  
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Figure 1.16. Microvesicle biogenesis. Microvesicles are formed via the outward blebbing of the plasma membrane. Biogenesis is mediated by 

increases in intracellular calcium, and subsequent loss of membrane asymmetry and cytoskeletal rearrangements. This facilitates the budding of 

the plasma membrane, incorporating both membrane and cytosolic components into the microvesicle.  
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1.6.4 Composition 

Broadly, the content of an EV consists predominately of lipid, protein, and nucleic acids. However, 

the exact composition varies greatly, and reflects both the content of the parent cell and cellular 

stimuli leading to their formation (213). During their biogenesis, EVs are capable of engulfing an 

array of bioactive cargo from their parental cell, including nucleic acids (messenger RNA and 

micro RNA), bioactive free fatty acids, and protein, both cytosolic and membrane bound.  

In vitro studies have shown that the protein and RNA profile of exosomes secreted by endothelial 

cells cultured under hypoxic conditions, or in the presence of TNF-α, were drastically altered 

(213). Exosomes derived from TNF-α treated cells contained higher amounts of ICAM-1 and TNF-α 

protein, and increased NF-κB and IL-8 mRNA. Exosomes from cells grown under hypoxia contained 

increase levels of proteins, such as lysyl oxidase 2 (LOXL2), and mRNA encoding N-myc 

downstream-regulated gene 1 (NDRG1), both of which are involved in the stress response (213). 

Upregulation of these proteins reflect changes that would also be seen in activated endothelial 

cells, clearly reflecting the stress condition of their parent cell. Alterations in the protein content 

of these EVs may dictate their biological function.  

EVs derived from specific cell types often constitutively express certain antigens, and can thus be 

used as a marker to determine the parent cell. Indeed, VE-Cadherin (CD144) is routinely used to 

determine EVs of endothelial origin (244,245), Integrin αM (CD11b) as a monocyte marker (246), 

Integrin αIIb (CD41) as a platelet marker (247,248), and glycophorin A (CD235a) as an erythrocyte 

marker (249,250).  

Similarly, there are numerous markers of EVs associated with their biogenesis that are used within 

the EV field to confirm the presence of EVs within a sample. These can be broadly split into two 

main categories: intravesicular markers, present within the lumen of an EV, and membrane-

associated markers. Transmembrane or lipid-bound extracellular proteins include various 

tetraspanins (CD9, CD63, CD81) (251), lysosome-associated membrane glycoprotein (LAMPs), and 

major histocompatibility complex (MHC) I and II (234,252).  Intravesicular markers include tumour 

susceptibility gene 101 (TSG101), Alix, ESCRT complexes and endosomal trafficking proteins, such 

as Rab GTPases (251,253).  

As previously alluded to, research in the EV field is progressing rapidly. Markers once thought of 

as “exosome specific”, such as the tetraspanin CD9, have since been shown to also be present on 

microvesicles (254). Furthermore, inhibition of Rab27a modulated exosome secretion, reducing 

conventional markers CD63, TSG101 and Alix, but had no effect on CD9. CD9 was subsequently 

confirmed to be present on vesicles of various sizes by electron microscopy (255). As 
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developments in both proteomic analysis and isolation of EV sub-sets continuously improves, 

researchers hope that more specific markers will be identified in the near future. Interestingly, EV 

researchers have created “vesiclepedia”, a regularly updated compendium of proteins identified 

within differing EV populations (256). 

A major breakthrough in the EV field came little over a decade ago, when it was first 

demonstrated that the cargo of EVs included both mRNA and miRNA, which could subsequently 

be translated into proteins by target cells (257,258). Since then, the nucleic acid content of EVs 

has been the subject of much interest. Many RNAs isolated from EVs have been found to be 

enriched in comparison to the RNA profiles of their parent cells, suggesting that RNA molecules 

are selectively incorporated into EVs (257–260). It is noteworthy that numerous studies have 

failed to conclude whether identified extracellular RNAs are present within EVs, or rather RNA-

protein complexes are co-isolated with EVs.  

Finally, lipids are known to play important roles in not only the stability and rigidity, but also the 

function of EVs. Sphingomyelin, PC, PE, PS, and phosphatidylinositol are all components of EVs, 

although the ratios of these lipids will differ according to the originating cell (261). Sphingomyelin 

and cholesterol are generally enriched in EVs, allowing the tight packing of lipid bilayers and 

hence increased stability in comparison to cells (262). Aside from a structural role, interest in 

other functional roles of lipids within EVs is gaining popularity. The lipid content of adipocyte-

derived EVs has been shown to reflect the stage of differentiation in the parent cell (263). 

Additionally, differential lipid compositions within different sub-sets of platelet-derived EVs has 

been documented recently (264). Prostaglandins bound to EVs have been shown to activate 

signalling pathways in leukaemia cells (265). Exosomal lipids have been shown to increase Notch 

signalling, and induce death in pancreatic tumour cells (266). Finally, sphingomyelin present on 

EVs has been shown to promote endothelial cell migration, tube formation and 

neovascularisation, which may play a role in tumour growth and metastasis by promoting 

angiogenesis and tumour invasion (267).  

1.6.5 EV internalisation 

The biological cargo that EVs carry, outlined above, can drastically alter the function of the 

recipient cell. However, in order for this alteration to occur, the EV in question must enter the 

target cell. There is a vast amount of evidence for EV uptake by target cells. A plethora of studies 

have utilised fluorescent lipid membrane dyes, or membrane permeable compounds to stain EVs, 

thus allowing the entry of EVs into recipient cells to be visualised (268–272). However, the specific 

mechanism regarding uptake was not studied. Other groups have loaded EVs with a luciferin 

substrate, added them to luciferase expressing cells and measured the resulting bioluminescence 
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(273). It is noteworthy that in some cases, the phenotypic effects of EVs does not require 

internalisation of the vesicle. 

Conversely, the mechanism or mechanisms involved in EV internalisation are poorly understood. 

The uptake mechanism utilised by an EV is likely to be dependent on surface proteins and 

glycoproteins found on the surface of both the EV and target cell.  Understanding the mechanisms 

involved in EV trafficking and uptake is of great importance, as utilising the capability of EVs to 

“deliver” nucleic acids and proteins to target cells offers the potential of using EVs as delivery 

vectors for therapeutic proteins, nucleic acids and/or drugs.  

Many EV surface proteins have been shown to interact with membrane receptors on target cells. 

Tetraspanins have been implicated in the uptake of EVs by cells; indeed, blockade of CD81 and 

CD9 can reduce the uptake of EVs by dendritic cells (271). EVs expressing the tetraspanin Tspan8 

have been shown to form a complex with integrin α4 (CD49D), which subsequently facilitated 

internalisation by endothelial cells (274). Indeed, integrins themselves are also thought to play a 

role in EV internalisation. Blockade of the integrin αL (CD11a) binding site, or its ligand ICAM-1, 

can reduce dendritic cell uptake of EVs (271). Additionally, the presence of α4β1 integrin on EVs 

derived from endothelial progenitor cells was essential for their uptake by endothelial cells (275). 

These interactions may be especially important in facilitating the function of EVs within the 

immune system. Research has also implicated proteoglycans (276) and lectins (277) with EV 

uptake. Overall, there are an array of interactions between surface molecules of the EV and target 

cell that facilitate subsequent internalisation, which appear to be specific to both the target cell 

type and the composition of the EV. 

Following recognition of an EV by the target cell, internalisation ensues. Current knowledge 

suggests that cells appear to take up EVs by a variety of endocytic pathways, including clathrin-

dependent and clathrin-independent (caveolin-mediated) endocytosis, phagocytosis, and 

pinocytosis (278). It is thought that uptake can be extremely rapid, with EVs being identified 

inside cells as early as 15 minutes after first exposure (279).  

Evidence for the involvement of the endocytic pathway stems from the observation that EV 

internalisation is an active, energy-dependent process. Uptake has been shown to be drastically 

reduced in lower temperatures (270,271,276), and significantly lowered following 

depolymerisation of the actin cytoskeleton by Cytochalasin D, preventing endocytic pathways 

operating (273,279). As previously mentioned, endocytosis can be mediated by multiple 

pathways, the most studied being clathrin-mediated endocytosis, which involves assembly of 

clathrin-coated vesicles within the cell, which can deform the membrane and promote its collapse 

into a vesicular bud whilst incorporating the EV (280). Inhibition of clathrin-coated pit formation 



 

  

51 

has been shown to drastically reduce EV uptake in ovarian cancer cells (281). Similarly, inhibition 

of dynamin2, a GTPase required for clathrin-mediated endocytosis prevents EV internalisation in 

phagocytic cells (279,282). Endocytosis can also be mediated by clathrin-independent 

mechanisms, such as caveolin-dependent endocytosis. A key component of caveolae is the 

protein caveolin-1, which has been shown to suppress EV uptake when knocked-down (283). Lipid 

rafts are rich in sphingolipids such as sphingomyelin, and can affect membrane fluidity and 

trafficking (284). Lipid rafts are another example of clathrin-independent endocytosis thought to 

play a role in EV uptake. Indeed, inhibition of sphingolipids synthesis reduced EV uptake in 

dendritic cells (285).  

Phagocytosis has also been implicated in EV uptake. This receptor-mediated event typically 

internalises larger particles, however it has been shown that particles as small as 85 nm in 

diameter can be internalised by phagocytosis, thus it is plausible that EVs may be internalised via 

this route (286). Inhibition of phosphoinositide 3 kinases (PI3K), which play an integral role in 

phagocytosis, has been shown to inhibit EV uptake in a dose-dependent manner (279). PS is best 

known for its role as a signal for the phagocytosis of apoptotic cells. However, the high level of PS 

on the outer surface of EVs, specifically microvesicles, may facilitate their entry into phagocytic 

cells. Certainly, blockade of the PS receptor Tim-4 reduced the uptake of EVs in macrophages 

(279). Treatment of dendritic cells with a soluble PS analogue also reduced EV uptake (271). 

Treatment of EVs with the PS binding protein annexin-V also reduces the uptake of EVs into 

macrophages (287).   

Finally, macropinocytosis is also thought to play a role in EV internalisation. This process is similar 

to phagocytosis, but direct contact with any internalised material is not required. Membrane 

ruffles that protrude from the cell surface encapsulate an area of extracellular fluid, which is 

subsequently internalised via fusion of the protrusions with themselves. Alternatively, EVs can be 

macropinocytosed after becoming caught within membrane ruffles. (288).  Inhibition of 

macropinocytosis prevented EV uptake in microglial cells (282). An inhibitor of rac1, a GTPase 

with a major role in macropinocytosis, also inhibited EV uptake in these cells (282).  

The majority of evidence suggests that EV are internalised as intact vesicles. Conversely, Diehl et 

al demonstrated that EVs are capable of direct membrane fusion with target cells, and 

subsequent delivery of miRNA into the cell (289). The mechanism of membrane fusion is thought 

to involve similar families of proteins to the exocytosis of MVBs during exosome formation, 

including SNAREs and Rab GTPases (290).  
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Whilst the mechanisms of EV uptake remain to be fully elucidated, the majority of research points 

towards the endocytic pathway as the primary mediator of this event. Cell-specific EV uptake may 

be mediated by specific surface molecules on both the EV and the target cell membrane. These 

interactions have been characterised well in some cases; for example, milk-derived EVs can be 

internalised by dendritic cells due to the interaction between dendritic cell-specific intercellular 

adhesion molecule-3 grabbing non-integrin (DC-SIGN) and Mucin 1 (MUC1). EVs lacking MUC1 

were unable to enter these cells (272). Broadly, it appears that initial interaction between the EV 

and the target cell is mediated by specific surface ligands, which is followed by endocytosis. 

Perhaps, the numerous mechanisms of EV internalisation reflect the heterogeneity of EV 

populations. It is plausible that EVs may utilise a number of different entry routes into a cell, 

dependent on both the target cell type and molecules expressed on the EV. This would also offer 

an explanation as to why inhibition of one pathway does not completely abrogate EV entry. Figure 

1.17 illustrates the various mechanisms of EV internalisation.  

  

Figure 1.17 EV internalisation by target cells. EVs have been shown to be internalised through a variety of 

mechanisms, including endocytosis (clathrin and non-clathrin mediated), macropinocytosis, and 

phagocytosis. Additionally, direct fusion of EV and target cell membranes has been shown to occur, allowing 

direct delivery of their biogenic cargo, circumventing fusion of intraluminal EVs with the endosome.  
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1.6.6 EV Processing  

Despite the large increase in EV research over the last decade, there is still a fundamental lack of 

consistency across the field in terms of the isolation, characterisation, and quantification of EVs 

derived from any extracellular fluid, with no consensus or “gold standard” consistently agreed 

upon. Thus, comparisons between studies is complex. In an attempt to combat this issue, ISEV 

released a position statement in 2014 detailing a set of minimal requirements to confirm a true, 

pure EV population (251), however the field is still in its infancy and it is likely that new 

requirements and suggestions for EV processing will surface in the future.  

1.6.6.1 Sample collection 

EVs have been isolated from nearly every biological fluid available, including plasma, sweat, saliva, 

urine, semen and breast milk (291,292), in addition to cell culture conditioned media. Isolation of 

EV from whole blood offers numerous challenges, primarily involving preventing activation and 

subsequent release of EVs from platelets, with the type of needle, vacutainer, and time between 

collection and processing all having potential effects on the EV concentration and characteristics 

(293). There is little literature available to suggest which conditions minimise in vitro platelet 

aggregation, although the use of 21-gauge needle for venepuncture has been recommended to 

minimise shear forces (294). Additionally, following venepuncture it is suggested that the 

tourniquet should be removed and the first few millilitres of blood discarded, due to the 

activating effects of pressure, and possible fibroblast contamination (295). The Scientific 

Standardisation Committee of the International Society on Thrombosis and Haemostasis 

recommends the use of citrate vacutainers for EV studies (296). Following collection, it is 

recommended that vacutainers are gently inverted and processed as soon as possible (297). 

Haematological parameters, such as platelet activation, leukocyte trafficking and cytokine 

production have been shown to fluctuate throughout the day and follow a circadian rhythm 

(298,299). In addition, there is some evidence to suggest that EV concentration can vary over the 

course of 24 hours (300).Further research to facilitate standardisation is essential to allow study 

to study comparability. 
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1.6.6.2 EV isolation 

The most widely used technique for EV isolation is differential ultracentrifugation; which utilises 

centrifugal force (g) to sediment or “pellet” matter based on their size and density. The general 

protocol involves a series of sequential centrifugation speeds at increasing centrifugal force, 

removing unwanted components from the sample, eventually yielding an EV pellet. Typically, 

centrifugal accelerations are 200 - 1500 g to remove cells, followed by 10,000 – 20,000 g to pellet 

any cellular debris, before a final ultracentrifugation of 100,000 – 200,000 g to pellet EVs. 

Conveniently, this protocol can be altered to selectively isolate an exosome population. However, 

there is a large amount of variation between the speeds and duration of centrifugation used in 

different studies and research groups. The popularity of differential ultracentrifugation within the 

EV field is largely due to both its relative simplicity and short preparation time. However there are 

several limitations of this technique; the most important being that ultracentrifugation of 

supernatants derived from blood may co-pellet lipoproteins and soluble protein aggregates, in 

addition to EVs (301,302).  Other concerns include inducing EV fusion, aggregation with protein 

complexes and increasing PS exposure (303–305).  

Recently, size exclusion chromatography (SEC) columns have emerged as a potential solution, 

removing non-vesicular protein and enriching an EV sample. SEC has risen in popularity in recent 

years, with evidence that it provides good isolation of EV from lipoprotein and other 

contaminating protein aggregates (301). However, other studies, in addition to our own 

unpublished observations, have not been able to replicate these findings, with a high level of 

lipoprotein markers seen in the “purified” EV sample (302). Additionally, this method is 

considered labour intensive, with the sample often being heavily diluted, requiring re-

concentrating after isolation by ultracentrifugation. Despite this, the potential and increased use 

of SEC columns for EV isolation has led to commercial SEC columns becoming available, 

specifically for EV isolation; the Exo-Spin™ Midi Columns (Cell Guidance Systems, United Kingdom) 

and the qEV™ (IZON Science, New Zealand). Further optimisation and improvement in lipoprotein 

separation is required before SEC can be considered a “gold-standard” technique.  

 Density gradient ultracentrifugation has recently emerged as another method of EV isolation. 

This uses a sucrose gradient to isolate EVs based on their expected density (1.13-1.19 g/mL) from 

potential protein contaminants, which are denser (306). However, similarly to SEC, there are 

concerns that the use of a density gradient does not purify EVs from lipoproteins. A study by 

Yuana et al published in the Journal of Extracellular Vesicles demonstrated how high-density 

lipoproteins (HDL) co-isolated with EVs using this method (306).  
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Finally, immunoaffinity isolation utilises antibodies targeting specific surface proteins on EVs to 

isolate a select population of EVs. Antibodies are associated with magnetic beads, or beads that 

pellet at low centrifugal forces (307). Following incubation with a sample, EVs bind to the 

antibody-bead complex which can thus be physically separated from the rest of the sample either 

by a magnet or low speed centrifugation. This technique holds promise, especially in positively 

selecting specific subsets of an EV population. Although, as with other isolation techniques, 

further validation is required to ensure capture is fully optimised.   

In summary, despite advances, there remains a large set of advantages and disadvantages 

associated with the various isolation techniques currently employed, and further work needs to 

be carried out before a universal “gold standard” isolation procedure is identified.  

1.6.6.3 Measurement of EVs 

A range of qualitative and quantitative methods have been utilised for EV research. As the field is 

rapidly evolving, techniques often become outdated or improvement in a short time frame. 

Electron microscopy, dynamic light scattering, flow cytometry, and tuneable resistive pulse 

sensing (TRPS) have all been utilised to quantify EV populations. Within the field, the most 

commonly used technique for EV size and concentration analysis is nanoparticle tracking analysis. 

However, the range of methods used throughout the EV field will not be discussed in this thesis, 

but comprehensive reviews are available within the literature (292). Specific methods used within 

this thesis are described in detail in chapter 2.  

1.6.6.4 Storage of EVs 

Ideally, samples should be analysed fresh wherever possible. In many scenarios, however, it is 

impractical to undertake a comprehensive assessment of EV samples, for example a clinical cohort 

with multiple time points and/or a large number of participants. Thus, storage and preservation of 

EVs is of great importance in these studies. The majority of studies store EV samples at -80°C in 

filtered phosphate-buffered saline (PBS) (292). Some studies have shown that EV size and 

concentration remain unchanged following storage at this temperature and repeated freeze-thaw 

cycles (308,309). Conversely, other studies have highlighted that storage at -80°C caused a 

decrease in EV size. Work from our own laboratory has highlighted how different freezing 

protocols can affect the measured EV size and concentration (310), suggesting freezing may cause 

gradual disintegration of EVs over time, regardless of method used. Storage of EVs at 4°C 7 days 

or less appears to preserve EV number and stability (297).  
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Overall, despite the huge boom in EV research, there remains a large number of problems in 

terms of processing, with a limited number of tangible resolutions. Hopefully, the EV field will 

eventually reach a consensus on a “gold standard” protocol for EV processing from a variety of 

biological fluids. Until then, caution must be taken when comparing studies utilising differing 

protocols. 

1.6.7 Function of EVs 

EVs are today recognised as important signalling molecules capable of mediating cell-cell 

communication, via transfer of a range of biogenic cargo outlined previously. The specific 

message delivered to the target cell is dependent on the composition of the EV, which in turn is 

dependent on the cell of origin. EVs have been implicated in a range of physiological and 

pathophysiological conditions, thus been the subject to increasing research interest in recent 

years. Figure 1.18 summarises the variety of roles EVs play within such conditions.  

1.6.7.1 EVs in angiogenesis 

Endothelial-derived EVs have been demonstrated to both promote and inhibit angiogenesis. 

Various molecules have been identified as potential mediators, including miRNAs (miR-214, miR-

126) which induce proangiogenic signalling (266). Conversely, EVs with high levels of PS exposure 

leads to interaction with CD36 and subsequent Fyn kinase signalling, leading to increases in 

oxidative stress and inhibition of angiogenesis (311). Platelet-derived EVs containing pro-

angiogenic molecules, such as VEGF and PDGF, have also been shown to induce endothelial cell 

proliferation and capillary sprouting (312). Mesenchymal stem cells (MSCs) incubated in hypoxia 

produced EVs capable of stimulating tube formation in vitro and promoting angiogenesis in vivo 

(313).  

1.6.7.2 EVs in the immune system 

As EVs reflect the topology of the cell of origin, antigen-presenting cell (APC)-derived EVs can 

carry surface MHC molecules and directly stimulate CD8 and CD4 T-cells (314,315). Antigen 

presentation can also occur indirectly, through the transfer of antigenic peptides present within 

EVs to APCs (316,317). Dendritic cell-derived exosomes have been shown to contain miRNA, 

allowing propagation of post-transcriptional regulation between APCs (273). EVs can mediate the 

immune response independently of antigen transfer or transcriptional regulation however. EVs 

can stimulate the immune response due to their contents, including microbial antigens, pathogen 

associated molecular patterns (PAMPs), or pro-inflammatory cytokines such as IL-1β (318,319). 

Contrariwise, EVs can also have immunosuppressive effects.  Following immunisation, CD11b+ EVs 
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were shown to suppress the immune response in a Fas/Fas ligand-dependent manner (320). MSC-

derived EVs also harbour immunosuppressive properties, mimicking their parent cell enhancing 

regulatory T-cell production (321). Additionally, a recent study by Lo Sicco et al demonstrated that 

MSC derived EVs promote macrophage polarisation towards an anti-inflammatory (M2) 

phenotype (322).  

1.6.7.3 EVs in cancer 

Tumour cell derived EVs can act in a paracrine manner and promote tumour cell proliferation, 

migration and invasion. For example, the transfer of EVs between glioma cells led to proliferation 

of the recipient cells. These EVs were shown to contain epidermal growth factor receptor (EGFR) 

mRNA, which is overexpressed in a variety of epithelial tumours, and drives tumour progression 

(259,323). Tumour cell derived EVs can modulate the immune system, both promoting host 

protection against cancer (324–326), and also facilitating tumour evasion (327–329). Tumour cells 

have been shown to selectively package the transmembrane protein natural killer group 2D 

(NKG2D) into EVs, thereby reducing the recognition of the parent cells by T cells (330). Tumour 

cells can also secrete EVs that modulate the phenotype of cells surrounding the tumour. For 

example, EVs derived from tumour cells can convert fibroblasts into myofibroblasts; which 

produce growth factors and extracellular matrix to support tumour development (331). Taking 

into account the pleiotropic roles of tumour derived EVs, perhaps it is no wonder that this area 

continues to attract a significant amount of attention from researchers, in the hope they may 

facilitate diagnosis and/or treatment of cancer in the future.  

Figure 1.18 The varying roles of EVs in disease. A summary of the differing roles EVs play in angiogenesis, 

the immune system, and cancer. EGFR – epidermal growth factor receptor. PS – phosphatidylserine, TGF-β – 

Transforming growth factor-β, APC – antigen presenting cell, MSC – mesenchymal stem cell. 
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1.6.8 EVs in the cardiovascular system 

1.6.8.1 Coagulation 

EVs can regulate and actively participate in a variety of processes related to the cardiovascular 

system, including coagulation, inflammation, and endothelial dysfunction. Perhaps of most clinical 

interest is the role of EVs in coagulation. In vivo, one of the main functions of a platelet is to 

provide a negatively charged membrane surface that can facilitate acceleration of the coagulation 

cascade, leading to formation of a fibrin clot. This negative charge facilitates an electrostatic 

interaction between positively charged γ-carboxyglutamic acid (GLA) domains in the clotting 

proteins (such as factor VII, IX, X, and II) and PS on the membrane of the platelet (332). It has been 

claimed that platelet-derived EVs are between 50 to 100-fold more procoagulant than the surface 

of activated platelets themselves (333). This is thought to be primarily due to the enhanced level 

of negatively charged PS present on the outer leaflet of EV membranes (334). Indeed, platelet-

derived EVs have been shown to enhance thrombin generation in vitro (335,336). Furthermore, a 

recent study by Weisel et al demonstrated the ability of circulating EVs to alter the structure and 

stability of fibrin clots; both indirectly through acceleration of thrombin generation, and directly, 

through physical incorporation of CD61+ EVs into the fibrin network (337).  

However, it is not only platelet-derived EVs that have been implicated in mediating coagulation. 

There is evidence to suggest that erythrocyte (338), monocyte (339), and endothelial (340) 

derived EVs can also contribute to coagulation. Aside from PS exposure, EVs have also been 

shown to influence coagulation via TF (341). Indeed, TF+ EVs derived from endothelial cells and 

monocytes were shown to accelerate coagulation in vitro (342). Interestingly, platelet-derived EVs 

have been shown to contain small amounts of TF, suggesting that EVs derived from other cell 

types are the main mediators of this pathway (343). Human monocytes exposed to tobacco 

smoke have been shown to release TF exposing EVs, and exhibited significantly higher levels of 

procoagulant activity compared to control EVs, highlighting an additional mechanism by which 

smoking may affect the progression of CVD (344). Clinically, there are a plethora of publications 

demonstrating the role of EVs in vivo. Circulating EVs have been shown to contribute to 

coagulation after traumatic brain injury (345). The OASIS-CANCER study found that cancer cell-

derived EVs mediate coagulation, potentially contributing to risk of ischemic stroke (346). Leroyer 

et al demonstrated that atherosclerotic plaques had 200-fold higher levels of EVs (derived from 

leukocyte, erythrocyte, and endothelial cell) in comparison to the blood of the patients, which 

were highly thrombogenic in nature (347). A study by Huisse et al prospectively recruited patients 

with acute MI, and found that TF-mediated EV activity was increased in patients with persistent 
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occlusion in comparison to healthy controls (348).  Following this, they found that patients who 

did not achieve thrombolysis had significantly higher TF-mediated EV activity (349). 

Intriguingly, it is not only blood-derived EVs that have been shown to play a role in coagulation. 

Salivary EVs have been shown to expose TF, and initiate coagulation in plasma. It was postulated 

that this may offer an explanation as to why humans, and many other animals lick their wounds; 

enhancing coagulation and preventing pathogen entry (350). The role of EVs in coagulation is 

elegantly demonstrated in individuals with Scott syndrome; a rare autosomal recessive bleeding 

disorder. It is thought to be caused by a defect in the scramblase enzyme, responsible for 

externalisation of PS. The result of this defect is an inability to express a functional scramblase 

enzyme, thus reduced externalisation of PS and EV production (351,352).  

1.6.8.2 Endothelial dysfunction 

Aside from coagulation, EVs have also been proposed as potential mediators of endothelial 

dysfunction. It is now widely accepted that endothelial dysfunction or “activation” leads to their 

release, thus, a multitude of studies have suggested EVs as markers of endothelial dysfunction. 

Circulating levels of endothelial-derived EVs have been shown to correlate with the degree of 

impaired vasodilation in a variety of subjects, including patients with type 2 diabetes (353), CAD 

(354), and end-stage renal failure (355).  Additionally, recent studies have indicated that EVs are 

not only markers of endothelial dysfunction, but are in fact significant mediators of endothelial 

dysfunction themselves. EVs isolated from myocardial infarction patients have been shown to 

impair the endothelium-dependent vasodilation ex vivo, therefore contributing to endothelial 

dysfunction (356). Endothelium-derived EVs have been shown to reduce NO generation from 

eNOS and enhance oxidative stress (357,358). The reduction in NO generation was shown to be 

mediated by an increase in phosphorylation of eNOS at the inhibitory Threonine-495 site. 

Contrariwise, there is some evidence to suggest that EVs can promote endothelial function. 

Human lymphoid T-cell line-derived EVs were shown to contain the morphogen sonic hedgehog 

on their surface. These EVs preserve NO production by endothelial cells both in vitro and in vivo, 

via an interaction of this protein with its complementary receptor, Patched, on the surface of 

endothelial cells, leading to PI3K signalling (359,360).  
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1.6.8.3 Inflammation 

EVs from various cell types have been shown to modulate inflammation both in vitro and in vivo. 

Firstly, bacteria themselves have been shown to release EVs and provoke an inflammatory 

response. In vitro, EVs secreted by Helicobacter pylori, Pseudomonas aeruginosa and Neisseria 

gonorrhoeae were shown to deliver peptidoglycan to the bacterial recognition protein nucleotide-

binding oligomerisation domain-containing protein 1 (NOD1) in epithelial cells, leading to an 

upregulation of NF-κB, and NOD1 dependent responses in infected host cells (361). Secondly, 

studies have demonstrated that EVs derived from atherosclerotic plaques transferred ICAM-1 to 

endothelial cells, which led to an increase in monocyte adhesion and transendothelial migration 

(362). Leukocyte-derived EVs have been postulated to stimulate cytokine release in endothelial 

cells, leading to increased pro-inflammatory activity in these cells. These EVs stimulated an 

increase in tyrosine phosphorylation of c-Jun N-terminal kinase (JNK1) in endothelial cells 

(363,364). In addition to their role in coagulation, platelet-derived EVs have been shown to 

promote leukocyte adhesion to endothelial cells, as well as chemotaxis of monocytes (365). These 

EVs contain arachidonic acid, which could be transformed to the pro-inflammatory TxA2 (366). 

However, these platelet EVs can also induce cyclooxygenase-2 (COX-2) expression and subsequent 

production of the vasodilatory PGI2. The increase in leukocyte adhesion has been mirrored in 

patient studies, whereby hypertensive patients have higher levels of PECAM-1 positive EVs 

compared to controls (367). Platelet EVs have also been shown to promote leukocyte aggregation, 

due to interactions between P-selectin on the surface of the EV, and its ligand, P-selectin 

glycoprotein ligand-1 (PSGL-1) on leukocytes (368).  A separate study also found that platelet-

derived EVs carried significant levels of RANTES (Regulated on Activation, Normal T-cell Expressed 

and Secreted), a proinflammatory chemokine that triggered monocyte adhesion in endothelial 

cells (369). EVs can also mediate inflammation by carrying proinflammatory cytokines. THP-1 

monocyte-derived EVs were shown to contain bioactive IL-1β (319). Conversely, there is some 

evidence that EVs can reduce inflammation: endothelial-derived EVs have been shown to contain 

miR-222, which is capable of reducing ICAM-1 expression. However, following hyperglycaemic 

conditions, these EVs contained significantly lower amounts of miR-222, and showed reduced 

anti-inflammatory capacity both in vitro and in vivo (370). This protective miR was completely 

diminished in patients with CAD. Taken together, this suggests that alterations in endothelial EV 

composition may reflect CVD status.  
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1.6.8.4 Arterial stiffness 

Arterial stiffness occurs as a result of both biological aging, and atherosclerosis progression. 

Vascular calcification plays a pivotal role in this process, and is connected with VSMCs 

transitioning to a synthetic phenotype, associated with bone formation (371). Indeed, under 

physiological conditions VSMCs release EVs enriched in osteogenic inhibitors, such as matrix Gla 

protein (372) and fetuin-A (373). In endothelial dysfunction, VSMC-derived EVs contain low levels 

of these inhibitors (374,375). Additionally, macrophage-derived EVs have been shown to release 

EVs that promote local microcalcification in atherosclerotic plaques (376). Such microcalcification 

plays a major role in destabilising atherosclerotic plaques, thereby promoting rupture and 

consequent MI or stroke (377).  In vivo, exosomes have been shown to co-localise with 

calcification in chronic kidney disease patients. A recent publication reviewed the role of EVs in 

cardiovascular calcification, suggesting that EVs were caught within the extracellular matrix and 

prevented from reaching their target cells (378). They hypothesise that this leads to dysregulated 

gene expression and enhanced osteogenic differentiation. Indeed, a number of studies have 

found that VSMC-derived EVs are enriched in a number of miRs involved in osteogenic 

differentiation. For example, miR 125-b regulates the expression of the osteogenic transcription 

factor osterix, involved in osteoblast differentiation (379,380). This, in addition to their role in 

forming microcalcifications, suggest a duel mechanism of propagating vascular calcification.   
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1.6.9 Emerging therapeutic opportunities 

1.6.9.1 Biomarkers  

Given the mass of evidence suggesting that EVs are reflective of the environment in which they 

were produced, their potential to detect a pathological disease state has provoked more and 

more interest in their potential as biomarkers for various diseases. Specific molecules may be 

present either on or within the EV, serving as an inexpensive and non-invasive method of 

screening risk patients for a disease prior to the appearance of symptoms (381). Indeed, 

myeloma-derived EVs express CD44, an antigen shown to be prognostic for the progression of 

disease (382). Annexin V+ endothelial-derived EVs have been shown to correlate with endothelial 

dysfunction, and have potential as a marker of this (383,384). Similarly, PECAM-1/annexin V+ 

circulating EVs have been shown to correlate with cardiovascular outcomes in CAD patients, 

suggesting their possible usefulness in risk stratification (385). Standardisation of EV processing is 

required however before they can feasibly be used in clinical diagnostics.  

Figure 1.19 Summary of the effects of EVs within the cardiovascular system. Several studies have 

investigated the role of EVs numerous aspects of cardiovascular disease, including coagulation, endothelial 

function, inflammation, and arterial stiffness. EVs typically reflect the physiology of their parent cell, hence 

why EVs derived from differing cells and/or stimuli often have conflicting actions. eNOS – endothelial nitric 

oxide synthase, VSMC – vascular smooth muscle cell, PS – phosphatidylserine, MI – myocardial infarction, 

ICAM-1 – intercellular adhesion molecule-1, RANTES - regulated on activation, normal T cell expressed and 

secreted.  
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1.6.9.2 Delivery vectors 

Currently, liposomes are routinely used as drug delivery vectors. Liposomes are synthetic vesicles 

with a phospholipid membrane, and have been utilised to deliver drugs to target cells in vivo. 

However, the ability of a liposome to evade the host immune system and maintain a long half-life 

remains difficult (386). Thus, the ability of EVs to target specific cells and transfer a message in the 

form of biogenic cargo has drawn the attention of researchers. EVs possess many of the desirable 

features of an ideal drug vector; a long circulating half-life, an intrinsic ability to target tissues, and 

biocompatibility with no toxicity issues (387).  

Mesenchymal stem cells transfected with the miR-143 produced EVs containing this miR, which 

were then able to transfer this to osteocarcinoma cells and inhibit their migration (388). In 

addition to modulating gene expression via miR delivery, EVs have also been used to deliver 

proteins directly. Recently, it was shown that exosomes loaded with the antioxidant protein 

catalase was capable of delivering this across the blood brain barrier, providing significant 

neuroprotective effects in a mouse model of Parkinson’s disease (389). This area of research is 

still only in its infancy, but is expected to grow rapidly in the coming years. EVs provide huge 

promise and a novel approach toward the delivery of both synthetic and biological molecules to 

target cells.  

1.6.9.3 Vaccination 

A fascinating area of ongoing research is the use of EVs in vaccination. There is some evidence to 

suggest that vaccinations utilising EVs provoke a more effective immune response than that 

induced by protein subunit-based vaccines (390). EVs derived from macrophages that had been 

treated with Mycobacterium tuberculosis culture filtrate proteins (CFP) were shown to prime a 

protective immune response, in addition to boosting prior BCG immunisation. The authors 

concluded that this EV vaccination conferred decreased growth of M. tuberculosis in mouse lungs 

compared to antigen-based vaccines (391). EV based vaccines offer hope for cases where no 

effective antigen-based vaccine exists. For example, EVs differed from Eimeria tenella antigen-

pulsed chicken dendritic cells promoted stronger antibody responses, and led to increased 

survival rates compared to antigen-vaccinated chickens following an E. tenella challenge 10 days 

post-immunisation (392). Finally, EVs hold promise in vaccination in pregnancy; the vaccination of 

pregnant mice with EVs from dendritic cells pulsed with Toxoplasma gondii-derived antigens 

increased survival in newborns subsequently challenged with T. gondii (393).  
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EV-based cancer vaccines have recently been investigated in clinical trials. A phase I trial isolated 

dendritic cells from patients with advanced metastatic melanoma, and incubated them with 

melanoma peptide antigens, inducing the presentation of the antigen on the cell surface. EVs 

were collected from the cell culture medium, and reintroduced into patients, promoting an 

immune response against the melanoma. This trial concluded that patients tolerated 

administration of EVs for up to 21 months (394). Although the primary purpose of Phase I trials is 

to assess safety, studies have observed that disease progression halted following EV vaccination 

(395). A Phase II trial has confirmed the capacity of dendritic cell-derived exosomes to boost the 

natural killer (NK) cell arm of anti-tumour immunity, in patients with advanced non-small cell lung 

cancer (396). 

Ultimately, the future of EV research holds promise in offering a novel approach to treating 

pathology. Not only via directed delivery of biogenic molecules or synthetic drugs, but also by 

controlling their release, and/or function, we may be able to modulate their role in acceleration of 

disease progression.  
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1.7 Thesis hypothesis and aims 

1.7.1 Hypothesis 

Evidence suggests that EVs appear to play a pivotal role in the development of CVD, with roles in 

coagulation, inflammation, and endothelial dysfunction. Given the mechanism of EV biogenesis, 

coupled with the protective role of NO in CVD, I hypothesised that increasing NO bioavailability in the 

form of inorganic NO2
-/NO3

- would reduce the production of EVs, both in vitro and in vivo, and 

possibly alter their biological function. 

1.7.2 Aims 

In order to test this hypothesis, work was split into several themes, presented within this thesis as 

individual results chapters. Each chapter contains its own specific aims, however, broadly, the 

overarching aims of this thesis were as follows: 

1. To investigate the effect and mechanism of hypoxia on EV production and size in endothelial 

cells. 

2. Following this, to evaluate the effect of NO2
- derived NO on endothelial cells exposed to 

hypoxia, and examine whether this changes the number and/or size of EVs produced.  

3. To assess whether hypoxia and/or NO2
- exposure can alter the function of endothelial-derived 

EVs in terms of their potential to influence coagulation, inflammation, or cell 

function/viability using in vitro models 

4. To examine the influence of a dietary NO3
- supplement on both NO bioavailability, and EV 

concentration in healthy volunteers.  

5. Finally, to investigate the effect of dietary NO3
- supplementation on platelet activity, NO 

bioavailability and circulating EV concentration in CAD patients. 
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2 GENERAL METHODS  
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2.1 Cell Culture 

2.1.1 Human Vascular Endothelial Cell (HECV) Culture 

The human vascular endothelial cell (HECV) line (originally derived from human umbilical vein 

endothelial cells) was kindly provided by Dr Gareth Willis, previously purchased from Interlab 

(Milan, Italy) (Figure 2.1). Cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) 

(PAA Laboratories, UK) containing 10% foetal calf serum (FCS) (PAA Laboratories, UK) and 1% 

streptomycin/penicillin (Invitrogen, UK). Cells were kept in an incubator at 37°C in 5% CO2. Cells 

were sub-cultured at ≈ 90% confluence using Trypsin-EDTA (Invitrogen, UK).   

2.1.2 Human Umbilical Vein Endothelial Cell (HUVEC) Isolation & 

Culture 

Isolation of HUVECs was performed as previously described, with minor modifications (397). 

Human umbilical cords were obtained from the Delivery Suite at the University Hospital of Wales. 

Ethical approval was obtained from the Research Ethics Committee (REC reference: 

14/NW/1459). Umbilical cords were cut to around 6 inches, avoiding any damage from clamps 

used during birth. Umbilical cords were washed with 0.9% saline to remove excess blood and 

clots. The vein was located and washed through with saline until the solution ran clear. One end 

of the cord was clamped, and collagenase (diluted 1 mg/ml with complete M199 medium (Table 

2.1)) was inserted into the umbilical vein, before incubation at room temperature for 30 minutes 

Figure 2.1 Culture of human vascular endothelial cells (HECVs). Cells were grown in DMEM, 

supplemented with 10% FCS and 1% streptomycin/penicillin. Cell medium was changed regularly 

(approximately every 48 hours) during cell growth. Image was captured at ≈ 60% confluence and 10x 

magnification.   



 

  

68 
 

(Figure 2.2). The collagenase solution was removed and placed into a centrifuge tube, gently 

squeezing the cord to ensure complete cell detachment. The vein was flushed through with sterile 

PBS three times to ensure maximal yield of HUVECs. The resulting solution was then centrifuged 

at 300 x g for 5 minutes to pellet HUVECs. HUVECs were then resuspended in complete M199 

medium, before being plated onto cell culture plates or flasks pre-coated with 1% gelatin. 

Medium was changed 2 hours after seeding the cells, and again after ≈ 24 hours, in order to 

remove erythrocyte contamination (Figure 2.3).   

Reagent Supplier Diluent Final Concentration 

M199 Medium Invitrogen - - 

Gentamicin Sigma ddH2O 35 µg/mL 

Amphotericin B Sigma ddH2O 250 ng/mL 

10% FCS Invitrogen - - 

hEGF Invitrogen Filtered PBS 1 ng/mL 

Hydrocortisone Sigma EtOH 1 ng/mL 

Figure 2.2 Isolation of human umbilical vein endothelial cells (HUVECs). Approximately 5 mL of 1 mg/mL 

collagenase solution was inserted into the umbilical vein, and left for 30 minutes. The umbilical cord and 

vein was thoroughly washed through with saline before collagenase incubation. 

Table 2.1. Constituents of complete M199 Medium. 
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2.1.3  Cellular treatments 

Both HECV and HUVEC cultures were exposed to a variety of cellular treatments. Upon cells reaching 

approximately 80% confluence, cell culture medium was removed. Cells were washed with sterile PBS, and 

incubated with EV-free serum free medium (SFM) for 24 hours (37°C and 5% CO2). All cellular treatments 

were diluted in SFM before addition to cells. The various cellular treatments, stock concentrations, and 

resuspension diluent are outlined in table 2.2.  

In some experiments, a combination of treatments were given. The supplier, diluent, stock concentration 

and final concentration are shown. Chemical were made to the stock concentration using the diluent 

shown, then further diluted to the final concentration in SFM. 

Reagent Supplier Diluent Stock 

Concentration 

Final 

Concentration 

Sodium Nitrite (NaNO2) Sigma H2O 10 mM 3-300 µM 

Sodium Nitrate (NaNO3) Sigma H2O 10 mM 3-300 µM 

Allopurinol Sigma H2O 100 mM 100 µM 

S-Nitrosoglutathione 

(GSNO) 

SantaCruz 

Biotechnology 

H2O 10 mM 100 µM 

Desferrioxamine (DFO) Sigma H2O 10 mM 100 µM 

Calpain Inhibitor I (ALLN) Sigma EtOH 100 mM 100 µM 

TNF-α ThermoFisher 

Scientific 

SFM 1 µg/mL 0.1 µg/mL 

Table 2.2 Treatments for HECVs and HUVECs.  

Figure 2.3 Culture of human umbilical vein endothelial cells (HUVECs). Cells were grown in M199 medium, 

supplemented with gentamicin (35 µg/mL), amphotericin B (250 ng/mL), 10% FCS, hEGF (1 ng/mL) and 

hydrocortisone (1 ng/mL). Cell medium was changed regularly (approximately every 48 hours) during cell 

growth. Image was captured at approximately 60% confluency at 10x magnification.  
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2.1.4 Hypoxia exposure 

Cells were transferred from the incubator to an Invivo2 hypoxic workstation 400 (Baker Ruskinn, 

UK), and maintained under a range of oxygen concentrations (1-20% O2) for 24 hours. The oxygen 

concentration was monitored using an i-CO2N2 gas mixing system (Baker Ruskinn, UK). 

2.1.5 Cell Counting & Viability 

2.1.5.1 Trypan blue exclusion 

Cells were detached from flasks by adding trypsin-EDTA and incubating at 37°C for ≈ 5 minutes. 

Cell medium was added to neutralise the trypsin, before centrifugation at 300 x g for 5 minutes. 

The resultant cell pellet was resuspended in cell medium, and mixed with trypan blue solution 

(final concentration 0.2%, Sigma Aldrich, UK) (1:1 v/v) before being counted using a Cellometer 

Auto T4 (Nexcelom Biosciences, USA) (Figure 2.4). Trypan blue utilises the fact that live cells 

possess intact cell membranes, and thus will not take up the dye. Dead cells have compromised 

cell membranes, and thus will take up the dye, allowing them to be excluded from the viable cell 

count.  

  

Figure 2.4. Trypan Blue Exclusion. Cells in suspension were mixed (1:1 v/v) with trypan blue solution. 

This suspension was then added to a Cellometer® counting chamber for automated cell counting.  
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2.1.5.2 Haemocytometer 

Cells were also counted manually using a haemocytometer. The haemocytometer was first 

prepared by cleaning with alcohol. The coverslip was moistened with water and affixed to the 

haemocytometer. Cell suspension was diluted 1:1 (vol/vol) with trypan blue solution (final 

concentration 0.2%). Next, 100 µL of this trypan blue treated cell suspension was added to the 

haemocytometer. Using a microscope, the grid lines of the haemocytometer were focussed on 

with a 10x objective. Using a hand tally counter, the cells were counted in one set of 16 squares. 

This was repeated until all 4 sets of 16 squares were counted. The number was then multiplied by 

104 and adjusted for dilution, giving a final viable cells / mL of the original cell suspension.  

2.1.5.3 MTS assay 

In order to comprehensively assess the effect of hypoxia on cell viability, a MTS assay was 

undertaken (CellTiter 96® AQueous one solution cell proliferation assay; Promega, Southampton, 

UK), following the manufacturers protocol. This colorimetric method utilises the tetrazolium 

compound 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) and the electron coupling reagent phenazine ethosulfate (PES). The enhanced 

chemical stability of PES allows it to be combined with MTS to form the stable “one solution” 

reagent. In the presence of PES, the tetrazolium compound is reduced by dehydrogenase 

enzymes, such as NADH or NADPH in metabolically active cells, into a formazan product (398). 

Approximately 1x104 cells were seeded in a 96 well plate. 24 hours later, cell culture medium was 

replaced with the CellTiter 96® AQueous One Solution Reagent, diluted in cell culture medium (20 

µL:80 µL), and incubated for 2 hours.  The formazan product produced is purple in colour, and 

soluble in cell culture medium, allowing the quantity to be measured by absorbance at 490 nm, 

which is directly proportional to the number of living cells in culture (399). Absorbance was 

measured using a BMG CLARIOstar OPTIMA (BMG Labtech, USA).  

2.1.5.4 Caspase-Glo® 3/7 assay 

In order to assess the effect of hypoxia on apoptosis, a Caspase-Glo® 3/7 assay (Promega, 

Southampton, UK) was used. This luminescent assay measures caspase-3 and -7 activity, which are 

activated during the early stages of apoptosis. This assay utilises a luminogenic caspase-3/7 

substrate containing the tetrapeptide DEVD. This substrate was diluted 1:1 (v/v) in a buffer 

optimised for caspase activity, luciferase activity, and cell lysis provided by the company. 1x104 cells 

were seeded in a 96 well plate. 24 hours later, 100 µL of this reagent was added to wells and 

incubated for 3 hours at 37°C. Following caspase-3/7 cleavage of the lumogenic substrate, the DEVD 

peptide is cleaved, and a luciferase substrate (aminoluciferin) is released, resulting in the luciferase 
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reaction, and production of a stable luminescent signal. Luminescence was measured using a BMG 

CLARIOstar OPTIMA (BMG Labtech, USA).  

2.1.6 Silencing RNA 

In order to investigate the effect of hypoxia-inducible factor (HIF)-1α and -2α in endothelial cells, 

silencing RNA was utilised. 

For HIF-1α, 5x105 HECVs were seeded in a T25 flask and grown to approximately 50% confluency. 

HIF-1α siRNA (Dharmacon SMARTpool, UK) was mixed with a siRNA transfection reagent 

(Dharmacon RNAi Technologies, UK) at a ratio of 20:1, and incubated at room temperature for 20 

minutes. This mix was added to 4 mL of antibiotic free medium (DMEM, 10% FCS), and added to 

the cells, yielding a final siRNA concentration of 100 nM. Control experiments consisted of 

transfection with the ON-TARGETplus non-targeting siRNA control (100 nM; Dharmacon RNAi 

Technologies). Cells were incubated in medium containing either HIF-1α siRNA or control siRNA for 

48-72 hours prior to hypoxia exposure for 24 hours. 

For HIF-2α silencing, 2x105 HECVs were seeded in a 6 well plate in 2 mL antibiotic-free medium 

(DMEM, 10% FCS). Cells were incubated until they were approximately 50% confluent. Prior to 

transfection, HECVs were incubated in 2x DMEM (2% P/S, 20% FCS), as per the manufacturer’s 

instructions. The HIF-2α siRNA duplex was mixed with the siRNA transfection reagent (Santa Cruz 

Biotechnology, USA) (1:1 ratio) in transfection medium (antibiotic and FCS free) (Santa Cruz 

Biotechnology, USA), yielding a final siRNA concentration of 10 µM, and incubated at room 

temperature for 30 minutes before being added to cells. Cells were incubated in the transfection 

medium containing the siRNA for 24 hours before replacing the medium with fresh 1 x DMEM. Cells 

were incubated for an additional 48-72 hours prior to hypoxia exposure. Control experiments were 

performed using a non-targeting siRNA (final concentration 10 µM).   

Successful silencing of both HIF-1α and HIF-2α was confirmed via Western blotting, as described in 

section 2.15. 
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2.2 Electron Microscopy 

Electron microscopy (EM) of HECVs was undertaken in collaboration with Dr Christopher Von 

Ruhland (Central Biotechnology Services - Cardiff University). Scanning electron microscopy was 

used to visualise HECVS at normoxia (21% O2) and hypoxia (1% O2). Transmission electron 

microscopy was used to confirm a true EV population after isolation, and assess EV morphology and 

purity. Scanning electron microscopy was also used to visualise fibrin clots, which was kindly 

performed by Vanessa Evans of Swansea University. 

2.2.1 Scanning electron microscopy 

HECVs were grown on a 35 mm glass bottom dish (Cellvis, USA), maintained in DMEM 

supplemented with 10% FCS and 1% penicillin/streptomycin at 37°C and 5% CO2. Cells were 

washed three times in sterile PBS, before being fixed in 1% glutaraldehyde in PBS (v/v) for 1 hour 

at room temperature. Once fixed, cells were kept in PBS at 4°C until imaging. Cell samples were 

subjected to dehydration through graded isopropanol (IPA) at 50%, 70%, 90% and 100% for 10 

minutes at each grade, followed by three exchanges in hexamethyldisilazane (HMDS) for 5 

minutes per exchange. Excess HMDS was then removed and any remaining residue was allowed 

to evaporate by air drying for 1 hour. Samples were then splutter coated with gold, and imaged at 

5 kV using a JEOL 840 scanning electron microscope (JEOL, USA). SEM images of fibrin clots were 

obtained using a similar protocol, with minor modifications. Fibrin clots were formed at 37°C for 2 

hours by adding calcium chloride (CaCl2, 20 mM). Clots were washed three times with sodium 

cacodylate buffer (0.2M), before being fixed in 2% glutaraldehyde in PBS (v/v) for 1 hour at room 

temperature. Clots were subjected to dehydration through graded ethanol (30-100%), and then 

fixed using HMDS. Finally, the fibrin clot was splutter coated with gold, and imaged using a Hitachi 

Ultra-high resolution FE-SEM S-4800.  

2.2.2 Transmission electron microscopy 

EVs were isolated from HECVs incubated at normoxia (21% O2) and hypoxia (1% O2) as described 

in section 2.4.1. EVs were resuspended in 1x sterile PBS and stored at 4°C until analysis. 50 µL of 

EV droplets were adsorbed onto carbon-coated grid for 30 minutes before fixation with 1% 

glutaraldehyde (v/v) for 1 hour at room temperature. These grids were then washed in PBS 3 

times for 1 minute, and 6 times for 10 minutes in water. EVs were negatively stained with 2% 

(w/v) uranyl acetate for 20 minutes. Surplus stain was shaken off and allowed to air dry at room 

temperature. EVs were then visualised in a Philips CM12 TEM (FEI Ltd, UK) at 80 kV.  
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2.3 Nanoparticle tracking analysis 

2.3.1 Background 

Nanoparticle tracking analysis (NTA) is currently the most widely used and accepted method in 

the EV field to determine EV size and concentration. Past EV research has been hindered by 

limitations of previous methods, such as flow cytometry, or electron microscopy. Although these 

methods confirm the presence of EVs, electron microscopy is non-quantitative and requires 

significant sample preparation, and flow cytometry has a limit of detection of approximately > 300 

nm, an obvious stumbling block considering given a large portion of microvesicles are < 300 nm, 

and all exosomes are < 100 nm (400).  

NTA allows for direct and real-time visualization of nanoparticles, utilising a finely focussed laser 

beam to illuminate a diluted sample of particles in a suspension. The beam refracts at a low angle 

through a glass prism (or “optical flat”) resulting in a thin beam of laser light at the interface of 

the glass-liquid layer, allowing the illumination of particles within the sample. Illumination of the 

sample results in the particles scattering light, which is collected by an objective lens, and then 

focussed by a second lens onto a sensitive electron multiplying charge coupled device (EMCCD) 

camera (Figure 2.5). This camera captures video of the movement of particles at 30 frames per 

second with a field of view of 100 µm x 80 µm (401) .  

 

Figure 2.5. Nanoparticle Tracking Analysis. A. NanoSight laser illumination module. B. EVs in a suspension 

are illuminated by a laser refracted into the fluid via a glass prism, causing the EVs to scatter light. This 

light scattering is then visualised by a microscope with a video camera attached, allowing the tracking of 

illuminated EVs to determine the particle size. Image (A) ©Malvern Instruments Ltd. 
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This camera records the EVs moving under Brownian motion, which allows the velocity and 

distance travelled of individual EVs to be tracked in order to calculate their size and concentration 

using NTA software. The lower limit of particle size measureable is dependent on the refractive 

index (Ri) of the sample. For colloidal gold, which has a high Ri, accurate determination of size is 

possible down to ≈15 nm. For particles of biological origin with a lower Ri, such as EVs, this limit is 

≈ 30 nm (401). Software is optimised to track EVs on a frame by frame basis (Figure 2.6), allowing 

the calculation of the hydrodynamic diameter using a modified Stokes-Einstein equation. Particles 

move under Brownian motion in three dimensions, however the Brownian motion is only tracked 

in two dimensions (x and y) by NTA software. Thus, a modified Stokes-Einstein equation is used 

(equation 2.1) (402). The average distance moved of each particle in two dimensions is 

determined from NTA software. This, along with the particle diffusion coefficient Dt, the sample 

temperature T, and solvent viscosity η, allows the hydrodynamic diameter (particle size) to be 

calculated.   

 

 

 

 

  

Figure 2.6. Example of NTA tracking individual particles. EVs are illuminated by a fine laser beam. The 

velocity and distance travelled of each individual EV is tracked frame-by-frame allowing EV size and 

concentration to be determined by a modified Stokes-Einstein equation. 
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𝐀     𝐷𝑡 =  
𝑇𝑡𝐾𝐵

3𝜋𝜂𝑑
 

𝐁      
(𝑥, 𝑦)2

4
= 𝐷𝑡 =  

𝑇𝑡𝐾𝐵

3𝜋𝜂𝑑
 

Equation 2.1 Stokes-Einstein equation. The original equation (A) only accounts for movement in 

two dimensions, therefore a modified equation (B) is used. (x,y) is the mean displacement moved 

in two dimensions, Dt is the diffusion coefficient, KB is Boltzmann’s constant, T is the temperature 

of the sample in Kelvin, t is the sampling time, η is the viscosity of the sample, and d is the 

hydrodynamic diameter, or particle size.  

2.3.2 Experimental methodology 

NTA analyses were undertaken using a NanoSight LM10 microscope (Malvern Instruments, UK), 

with a 488 nm (blue) laser installed. 100 nm polystyrene beads were measured prior to sample 

analysis in order to ensure correct functioning of the microscope, and accurate size determination 

by the NTA software (v3.0). The system was washed through between samples with sterile water 

until no particles were detectable. EV samples were diluted in sterile water to the range 107 - 109
 

per mL, in order to allow NTA software to accurately track each individual particle and thus 

accurately determine size and concentration. EV size is represented as the mean of the population 

(nm). Pre- and post- analytical settings were kept consistent between experiments, summarised in 

table 2.3.  

 Setting Value 

Pre-analytical 

 

 

 

Post-analytical 

Camera shutter 

Camera level 

Camera gain 

Syringe Pump Speed 

Temperature 

Screen gain 

Detection threshold 

 

 

450 

12-16 

200-300 

20 

21-25 °C 

10-15 

5-8 

 

 

Table 2.3 Pre- and post- analytical settings used for EV sample analysis by NTA.  
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2.4 EV Isolation & Storage 

2.4.1 Isolation of cell-derived EVs 

Our research group (263) and others (403) have previously shown that isolation of EVs from cells 

grown in media supplemented with FCS overestimates EV concentration when analysed by NTA, 

due to the calf serum also containing EVs which are co-pelleted upon ultracentrifugation. Thus, 

cells were incubated in serum-free media for 24 hours prior to EV isolation. Cell-conditioned 

culture medium was then removed directly from the culture flask/well, and subjected to a 

differential ultracentrifugation method, as described previously (404). First, cell media was 

centrifuged at 1000 x g for 5 minutes to remove any detached cells in suspension. This 

supernatant was taken and subjected to a second centrifugation at 15,000 x g for 15 minutes at 

4°C in order to pellet any cellular debris or apoptotic bodies. This supernatant was isolated and 

subjected to a third and final ultracentrifugation at 100,000 x g for 60 minutes at 4°C in order to 

pellet EVs. This pellet was then resuspended in 1x PBS, which had been filtered with a 0.22 µm 

filter (Millex®, Merck Millipore, Ireland) (Figure 2.7A). EVs were suspended in a 10-fold 

concentrate, for example, EVs were resuspended in 100 µL of filtered PBS for every 1 mL of cell-

conditioned media ultracentrifuged.  

2.4.2 Isolation of plasma-derived EVs 

Blood samples were drawn gently from an antecubital vein using a 21G butterfly needle (Hospira, 

UK) into citrate vacutainers® (BD, UK). Blood was immediately centrifuged at 2,500 x g for 15 

minutes at 4°C to isolate platelet-poor plasma (PPP) from whole blood. This PPP was subjected to 

a second identical centrifugation in order to pellet any remaining platelets, rendering the 

supernatant platelet-free plasma (PFP). This PFP was then ultracentrifuged at 100,000 x g and 

resuspended in a 10-fold concentrate (Figure 2.7B). 

2.4.3 Storage of EVs 

Once isolated, EV suspensions were stored at 4°C for up to 5 days. Where possible, EV 

suspensions were utilised immediately. For long term storage (>5 days) of EVs, EVs were slow 

frozen at 1°C per minute to -80°C using a Cryogenic “Mr. Frosty™” Freezing Container 

(ThermoScientific, UK). 
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Figure 2.7. Isolation of EVs. A. Isolation of cell culture derived EVs. B. Isolation of plasma derived 

EVs. 
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2.5 Time resolved fluorescence 

2.5.1 Background 

A time-resolved fluorescence assay developed in the laboratory of Professor Aled Clayton (405) was 

used to measure the protein expression of EVs isolated from both plasma and cell culture, with 

minor modifications. Time-resolved fluorescence utilises “long-life” fluorophores, called 

lanthanides, such as europium. Lanthanides emit light over a much longer period of time after 

excitation (microseconds) compared to traditional fluorophores (nanoseconds). This allows a 

minimum amount of background noise by delaying the beginning of the measurement window until 

after background signal has decayed (Figure 2.8).  

 

  

Figure 2.8 Time resolved fluorescence. Fluorescence is measured 400 µs after the last excitation flash, and 

measured for a 400 µs window, minimising background fluorescence. Diagram adapted from (406).  
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2.5.2 Experimental method 

EVs were first isolated as outlined in section 2.4, before their size and concentration was 

determined as outlined in section 2.3. 5e9 (plasma) or 5e8 (cell culture) EVs per well were loaded 

onto a high-protein binding 96-well plate (Greiner Bio-One) and allowed to settle overnight at 

4C. Wells were blocked with 1% BSA in PBS (w/v) for 2 hours at room temperature. In order to 

analyse intravesicular protein content, a lysis buffer (RIPA buffer, Santa Cruz, CA) was added for 1 

hour at room temperature, in order to permeabilise EVs. EVs were then probed with primary 

antibodies overnight at 4C on a plate shaker. Details of primary antibodies are given in table 2.4. 

Next, a biotin-labelled anti-rabbit IgG (Goat) secondary antibody (Perkin Elmer, UK) was added 

and incubated for 1 hour at room temperature on a plate shaker. Finally, a streptavidin-europium 

conjugate (Perkin Elmer, UK) was added and incubated for 1 hour at room temperature. Three 

washes were performed between each stage in the assay (6 washes after addition of europium) 

using DELFIA wash buffer (Perkin Elmer, UK). Plates were read using a BMG FLUOstar OPTIMA or 

a BMG CLARIOstar (BMG Labtech, UK). Each well received 400 flashes, with the measurement 

beginning 400 µs after the last flash, and was recorded for 400 µs. A set of europium standards 

were ran in order to set the gain adjustment, allowing for comparison between multiple plate 

reads. Data were analysed using MARS software (BMG Labtech, UK) and presented in relative 

fluorescence units (RFU). All data was adjusted to account for background fluorescence using a 

negative control (EVs with IgG control antibody added).  
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Table 2.4 Primary antibodies used for TRF. 

 

 

 

 

  

Antibody Type Source Product Code 

CD9 Rabbit Cell Signaling 13174 

Alix Rabbit Abcam Ab88388 

TSG101 Rabbit Abcam Ab30871 

HIF-1α Rabbit Abcam Ab51608 

CD144 Rabbit Abcam Ab33168 

CD41 Rabbit Abcam Ab63983 

CD11b Rabbit Abcam Ab133357 

CD235a Rabbit Abcam Ab129024 

vWF Rabbit Abcam Ab6994 

Tissue factor Rabbit Abcam Ab48647 

Thrombomodulin Rabbit Abcam Ab109189 

TFPI Rabbit Abcam Ab180619 

TNF-α Rabbit Abcam Ab6671 

IL-1α Rabbit Abcam Ab9614 

IL-6 Rabbit Abcam Ab6672 

IL-8 Rabbit Abcam Ab18672 

NF-κB (p65) Rabbit Abcam Ab16502 

VCAM-1 Rabbit Abcam Ab134047 

ICAM1 Rabbit Cell Signaling 4915 

E-Selectin Rabbit Abcam 
Ab18981 

P-Selectin Rabbit Abcam Ab6632 

PECAM Rabbit Abcam Ab28364 

Antibody type, source and product code are given. All antibodies were diluted to 3 µg/mL and incubated 

overnight at 4°C on a plate shaker. All antibodies were detected using a biotin-labelled anti-rabbit IgG 

(goat) secondary antibody, followed by a streptavidin-europium conjugate.  
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2.6 Plasma NO metabolites: Ozone Based 

Chemiluminescence 

2.6.1 Background 

Given the highly reactive nature of free NO, direct measurement is extremely difficult. Therefore, 

metabolites of NO are determined to obtain information about the in vivo production, 

consumption, and bioavailability of NO. NO3
-, NO2

- and RSNO were determined using well 

established ozone based chemiluminescence (OBC) techniques, which were developed and have 

been described in detail previously by our laboratory (173). In order to measure these 

metabolites, they must first be reduced back to NO. This is performed using chemical cleavage 

agents specific to the metabolite of interest. The NO produced is carried in a flow of inert gas (O2-

free N2) at a constant flow rate (≈150-200 cm3/min), passed through a 1M sodium hydroxide 

(NaOH) trap, and fed into a nitric oxide analyser (NOA) (Sievers NOA 280i, Analytix, UK).   

The NOA uses O2 to generate ozone (O3) in a reaction cell, which subsequently reacts with the NO 

entering the NOA, to form an excitable form of nitrogen dioxide (NO2
*). The electrons in this state 

are unstable, and release excess energy as a photon in the process of returning to their original 

ground state. These photons are focused via a low-pass filter lens (< 900 nm wavelength) into a 

photomultiplier tube, which amplifies the signal to allow an accurate, recordable electrical signal 

(mV) where the potential difference is recorded in real time (Sievers, Liquid NO analysis software). 

Upon injection of a sample, a peak is produced and the area-under-the-curve (AUC) is calculated, 

from which the NO metabolite concentration can be determined by comparing to a set of relevant 

reference standards. A standard curve was performed daily to account for fluctuations in 

temperature and other performance variations.  The reactions of the NOA are summarised in 

equation 2.2. 

NO + O3 → O2 + NO2
* 

NO2
* → NO2 + hv 

 

  

Equation 2.2 
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Despite the ability to utilise this technique to investigate a range of NO metabolite 

concentrations, there have been discrepancies in the NO concentrations in whole blood reported. 

It is likely that this variation is due to disparity in the set-up of nitric oxide analysis equipment, or 

the level of NO2
- contamination due to inadequate cleaning and/or washing of equipment, in 

particular the Hamilton syringes used for sample injection. This contamination was minimised 

throughout the experiments described in this thesis by implementing specific protocols to ensure 

the accuracy of readings. HPLC grade water is used for washing all equipment and diluting 

reagents and chemicals, which has been shown to reduce standard error by approximately 5% 

(407). The timing of measuring samples is also important, especially when dealing with blood; 

therefore consistency is key. Blood samples are immediately centrifuged allowing isolation of the 

plasma, which is subsequently snap frozen in liquid nitrogen before being stored at -80°C until 

analysis. Our own findings have shown the baseline levels of NO2
- and RSNO in plasma of healthy 

individuals range from 150-300 nM and 20-40 nM, respectively. In comparison, the baseline levels 

of NO3
- seen in the blood are typically 20-40 µM(124).  

2.6.2 Plasma NO2
- 

Tri-iodide was used as a cleavage reagent to reduce NO2
- to NO. The solution was made by dissolving 

650 mg of iodine crystals in 70 mL of 13.5 M glacial acetic acid in a fume hood. 1g of potassium 

iodide (KI) dissolved in 20 mL HPLC grade water was then added to this solution. This solution was 

left to mix for approximately 30 minutes. 5 mL was added into the purge vessel with 30 µL of 

antifoam, to prevent foaming of plasma proteins. The tri-iodide solution was changed after 

approximately 500 µL of plasma had been injected to prevent foaming. The purge vessel was heated 

to 50°C in a water bath that was heated by a thermostatically controlled hot plate with a magnetic 

stirrer. The purge vessel was connected to the N2 gas inlet and NaOH trap, using Nalgene® clear 

plastic PVC tubing. Typically, 200 µL of a sample was injected directly into the purge vessel through 

a rubber septum injection inlet (Figure 2.9). Results were compared to a NaNO2 standard curve, 

performed daily, to account for fluctuations in room temperature and equipment performance. The 

reduction power of tri-iodide reduces both RSNO and NO2
- to NO. Therefore, it is necessary to 

measure RSNO levels (see section 2.6.3) and subtract this from the total measurement to give a 

true NO2
- concentration. The limit of sensitivity of this assay is < 10nM and the intra-assay 

coefficient of variation was < 5%. The reaction catalysed by the tri-iodide cleavage reagent can be 

seen below. 

HNO2 + 2I- + 2H
+ 

→ 2NO
 
+ I2 + 2H20 
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Figure 2.9 Schematic representation of the tri-iodide set up for plasma NO2
- detection. 200 µL of sample 

or standard is injected through the rubber septum directly into the purge vessel containing 5 mL tri-

iodide solution. The chemical cleavage reagent was heated to 50°C in a water bath thermostatically 

regulated by a hot plate. The subsequent NO produced from the reduction of NO2
- was then carried via 

the inert N2 stream into a NaOH trap (15 mL, 1M) to prevent any acid vapour entering the NOA.  
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2.6.2.1  NO2
- standard curve 

Prior to measurement of plasma samples, a NaNO2 standard was made by adding 69 mg of NaNO2 

to 100 mL HPLC grade water. A serial dilution was then performed to produce standards of varying 

concentrations; 1000 nM, 500 nM, 250 nM, 125 nM and 62.5 nM. 200 μL of each standard were 

injected into the purge vessel to produce an AUC (Figure 2.10A). A sample of HPLC grade water was 

also injected to allow the standards to be “blank-adjusted”. The standard curve was then generated 

by plotting the NaNO2 concentration against AUC (Figure 2.10B). 

 

 

2.6.3  Plasma RSNO 

In order to determine the concentration of RSNO present in the samples, 540 µL plasma was 

incubated with 60 µL 5% acidified sulphanilamide (9:1 ratio) for 15 minutes in the dark prior to 

injection into the tri-iodide reagent. 5% acidified sulphanilamide was made by mixing 500 mg 

sulphanilamide with 10 mL 1 M hydrochloric acid (HCl), and kept in the dark at room temperature. 

In an acidic environment, NO2
- forms the nitrosonium cation (NO+)(A), which can react with 

sulphanilamide to form a diazonium salt(B/C). These reactions can be seen below in equation 2.3. 

This diazonium salt is undetectable by OBC when injected into the tri-iodide solution (Figure 2.11) 

(407,408). 400 µL of the plasma/acidified sulphanilamide solution was injected directly into the 

purge vessel, and the resultant peak was measured and AUC calculated. Increased accuracy of RSNO 

measurement was obtained by a 50-point adjacent averaging algorithm, improving the signal to 

noise ratio, using Origin 7.0 (OriginLab, Massachusetts, USA).   

Figure 2.10 NO2
- Standard Curve. A. A Typical millivolt signal obtained from running a series of standards. 

1000 nM, 500 nM, 250 nM, 125 nM and 62.5 nM standards were diluted in HPLC grade H2O. AUC was 

determined using Liquid analysis software. B. The AUC was then plotted against concentration to generate a 

standard curve.  

B A 
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(A) NO2
- + H+ ↔ NO+ + OH- ↔ HONO 

(B) NO+ + Ar-NH2 → Ar-N2 + H2O 

(C) Ar’ + Ar-N2
+ → Ar-N≡N-Ar’ 

 

2.6.4 Plasma NO3
- 

In order to reduce NO3
- to NO, a stronger reductive agent than tri-iodide is required. Vanadium III 

chloride (VCl3) is capable of measuring all of the NO metabolites that tri-iodide can detect, with 

the additional ability to reduce NO3
- to NO to allow measurement by the NOA. Thus, values 

obtained from vanadium chloride represent the total NOx in the plasma sample. In order to 

determine the true NO3
- value, the AUC obtained from tri-iodide must be subtracted from the 

AUC obtained from vanadium chloride. The vanadium chloride solution was made by dissolving 

0.785 g of VCl3 in 100 mL of 0.8 M hydrochloric acid, final concentration 49.9 mM. This solution is 

left to mix for approximately 30 minutes before being filtered through a 0.22 µm Millex-GP 

syringe filter (Merck Millipore, Germany), giving a final solution that is turquoise in colour. 30 mL 

of this solution was added to the purge vessel and heated in a water bath to 90°C via a 

Equation 2.3. Sulphanilamide reactions when added to plasma. A. Formation of the nitrosonium 

cation NO+. B/C. This nitrosonium cation can react with sulphanilamide to form a diazonium salt.  

Figure 2.11. Typical NO2
- and RSNO Signal from the NOA. Exemplar chemiluminescence trace from an 

injection of plasma (peak A) into tri-iodide, followed by an injection of a parallel plasma sample 

incubated with acidified sulphanilamide for 15 minutes (peak B). Peak A is largely composed of NO2
- 

which is rendered undetectable after incubation with acidified sulphanilamide, and thus the remaining 

signal (Peak B) can be attributed to RSNO. 
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thermostatically controlled hot plate. Maintaining acid at these high temperatures has required a 

specific custom glassware set-up; using a Liebig condenser prevents the loss of reagent and 

damage from acid vapour (Figure 2.12). Additionally, the glassware allows for a larger volume of 

vanadium chloride to be added in comparison to tri-iodide, therefore multiple plasma injections 

can be performed before the reagent must be changed due to foaming. The Liebig condenser is 

attached to the NaOH trap using Nalgene® clear plastic PVC tubing, which subsequently fed into 

the NOA. 20 µL of a plasma sample was injected through a rubber septum injection inlet. Results 

were compared to a NaNO3 standard curve, performed daily to account for variation in room 

temperature and machine performance. Typically, room temperature was 18±2°C. The limit of 

sensitivity for NO3
- measurement is > 500nM, and the intra-assay coefficient of variation was < 

8%. The reaction catalysed by vanadium chloride cleavage reagent can be seen below. 

2VCl3 + 4HCl- + NO3
-
 → 2VCl5 + 2H2O + NO 

 

 

Figure 2.12 Schematic representation of the vanadium chloride set up for plasma NO3
- detection. 20 µL 

of sample, or standard, is injected through the rubber septum into the round bottom flask containing 30 

mL vanadium chloride. The vanadium chloride was heated to 90°C in a water bath controlled by a hot 

plate. The NO produced from the reduction of NOx was carried through the Liebig condenser via the N2 

stream into the NaOH trap (15 mL, 1M), then into the NOA. 
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2.6.4.1 NO3
- standard curve 

A NaNO3 standard curve was produced by adding 85 mg of NaNO3 to 100 mL HPLC grade water. 

Known NaNO3 concentrations were then added to the vanadium chloride solution (100 µM, 50 µM, 

25 µM, 12.5 µM, and 6.25 µM). 20 µL of each standard was injected to produce an AUC (Figure 

2.13A). The standards were then “blank-adjusted” by subtracting the AUC of a HPLC grade water 

injection (0 µM). The standard curve was generated by plotting the known NO3
- concentration 

against AUC (Figure 2.13B) 

 

 

  

Figure 2.13. NO3
- standard curve. (A) Typical millivolt signal obtained from running a series of NaNO3 

standards (100 µM, 50 µM, 25 µM, 12.5 µM, 6.25 µM) diluted in HPLC grade H2O. AUC was determined 

using Liquid analysis software. (B) The AUC was then plotted against concentration to generate a standard 

curve.  

 A B 
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2.7 Ex vivo platelet EV production 

In order to evaluate the effect of RSNO on platelet-derived EV ex vivo, platelet-rich plasma (PRP) 

was isolated from the blood of healthy volunteers via sodium citrate vacutainers® (300 x g, 15 

minutes). Platelet poor plasma was also isolated (300 x g, 15 minutes, followed by 2 2500 x g 

spins, both for 15 minutes) for use as a control. Platelets (in platelet-rich plasma) were stimulated 

with ADP (6.5µM final concentration) and incubated for 5 minutes before NaNO2, clopidogrel, 

GSNO or clopidogrel-SNO (all 10 µM) were added and left to incubate for 1 hour at 37°C. This 

concentration was chosen to compare directly with ex vivo platelet aggregation studies 

performed by our research group, showing the IC50 for GSNO/clopidogrel-SNO was ≈7.5 µM (409). 

Clopidogrel-SNO was produced as described in detail previously (409). Briefly, crushed clopidogrel 

tablets were dissolved in HPLC grade water, to yield a 10 mM suspension. 10 mM NaNO2
 was then 

added to this (1:1 v/v), and was then neutralised by NaOH (0.1 M) addition. The RSNO produced 

from this was then quantified by 2C’s ozone based chemiluminescence (section 2.7.1.1) and 

diluted appropriately. EVs were then isolated as described previously (section 2.4.2), and the 

resultant pellet was resuspended in filtered PBS, stored at 4°C overnight and analysed using NTA 

(section 2.3) and time-resolved fluorescence (TRF) (section 2.5) within 24-48 hours of isolation. 

2.7.1.1 RSNO measurement 

To determine the concentration of clopidogrel-SNO produced, a specialist cleavage reagent; 

Cuprous (I) chloride (CuCl) and cysteine (CSH), also known as the 2C’s reagent, was used. This was 

produced by dissolving 47.25 mg of cysteine in 390 mL of HPLC grade water. Next, a 40 mM 

solution of CuCl was produced by adding 39.59 mg of CuCl in 10 mL HPLC grade water. A 1:10 

dilution of this solution was made, producing a 4 mM solution, 10 mL of which was then added to 

the 390 mL cysteine solution. This solution was then neutralised to pH 7 using 1 M NaOH. This 

solution was left to mix for approximately 30 minutes. The 2C’s reagent is specific for RSNO 

measurement due to its neutrality. This prevents the reduction of both NO3
- and NO2

- which 

require acidic conditions (pH < 6) to be reduced. Upon injection of a sample, the excess of 

cysteine in this solution generates CSNO due to transnitrosation from RSNO compounds present 

in the sample. The copper ions then homolytically cleave the NO moiety from CSNO (410). 5 mL of 

the CuCl/CSH solution was added into the purge vessel with 30 µL of antifoam, with the glassware 

set-up identical to that of the tri-iodide reagent. 400 µL of sample was injected directly into the 

purge vessel. The reaction catalysed by the 2C’s cleavage reagent is shown below.  
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CSNO + Cu2+ + H+
 

 
→ CSH + NO + Cu2+ 

2CSH + 2Cu2+ → CSSC + 2Cu+ + 2H+ 

Results were compared to a RSNO standard curve, performed daily to account for fluctuations in 

room temperature. The limit of sensitivity of this measurement was < 200 nM, and the intra-assay 

variation was < 10%. 

2.7.1.1.1 RSNO standard curve 

RSNO concentrations using the 2Cs reagent were determined using a set of Acetyl-cysteine-SNO 

(NACSNO) standards. NACSNO was prepared by dissolving 1.63 g of N-acetyl cysteine (NAC) in 10 

mL of 1 M HCl, forming a 1 M solution. Separately, 759 mg of NaNO2 was dissolved in 10 mL HPLC 

grade water, forming a 1.1 M solution. 500 µL of the NAC solution was then added to a small 

brown glass bottle, with an injection port covered with a rubber septum. 500 µL of the 1.1 M 

NaNO2 solution was then injected through this septum, allowing the production of NACSNO and 

turning the mixture red. As NACSNO is subject to both thermal and photochemical 

decomposition, the solution is kept on ice, in the dark.  

In order to determine the concentration of NACSNO produced, the solution was diluted 1:200 in 

HPLC grade water, and the absorbance at 335 nm was measured using a spectrophotometer. 

Typically, absorbance was ≈ 1.5-2. The concentration was then determined according to the Beer-

Lambert law, using the formula below. 

[NACSNO] = (Light absorbance 335 nm / Absorption coefficient (ε = 727)) x 200 
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2.8 Leukocyte Adhesion Assay 

2.8.1 Leukocyte Isolation 

The leukocyte isolation protocol was based on that of Pettit and Hallett, 1998 (411). Whole blood 

was drawn (approximately 10 mL) gently from an antecubital vein of healthy volunteers using a 

21G butterfly needle (Hospira, UK) into a sterile syringe. Blood was gently added directly into a 

universal container containing 100 µL of heparin at 5000 I.U/mL (Wockhardt, UK). Next, 2.5 mL of 

dextran (or ¼ the volume of blood) was added and the container was gently inverted once. Whole 

blood was transferred to a clean UC using a Pasteur pipette, taking care not to smear any blood 

on the side of the UC, or introduce any air bubbles. Blood was then left for 30-45 minutes at room 

temperature, until blood had separated into its constituent parts; plasma, the buffy coat, and 

erythrocyte layers. The buffy coat layer (approximately 1 – 1.5 mL) was carefully isolated using a 

Pasteur pipette and placed into a new UC. This was then centrifuged at 1000 RPM for 1 minute at 

brake speed 3, pelleting leukocytes and erythrocytes. The supernatant was discarded and the 

resultant pellet suspended in deionised water for 10 seconds, in order to lyse any contaminating 

erythrocytes. The UC was then “flooded” with balanced salt solution (BSS) and centrifuged again 

at 1000 RPM for 2 minutes. The supernatant was again discarded and the resultant leukocyte 

pellet was resuspended in 1 mL Krebs-BSA. Leukocytes were isolated the same day as 

experiments were performed, and were thus used “fresh” and not stored.  
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2.8.2 Leukocyte Adhesion Assay 

HUVECs were isolated and grown in a 96-well plate, as outlined in section 2.1.2. Once HUVECs 

were approximately 90% confluent, cell medium was removed. HUVEC-derived EVs from various 

conditions were diluted in 100 µL SFM and added to HUVECs (final concentration 2x108 EVs/mL) 

for 6 hours at 37°C, 5% CO2. TNFα was added to HUVECs (diluted in SFM) as a positive control at a 

final concentration of 0.1 µg/mL, for 1 hour. The negative control consisted of SFM only, with no 

EVs present. Whilst HUVECs were incubating with EVs, leukocytes were isolated as described in 

section 2.8.1. 

1 µL of CellTrace™ Calcein Red-Orange (ThermoFisher Scientific, UK) was added to leukocytes and 

incubated in the dark for 10 minutes at room temperature. Leukocytes were centrifuged at 1000 

RPM for 2 minutes, and the supernatant discarded, in order to minimise background fluorescence 

from excess dye not taken up by the cells. Leukocytes were once again resuspended in 1 mL of 

Krebs-BSA, before being diluted in SFM to a total volume of 10 mL. EVs that were incubating with 

HUVECs were washed off with SFM, before leukocytes in SFM were added and incubated for 1 

hour at 37°C. HUVECs were then washed three times with Krebs-BSA, before leaving cells in the 

buffer to be visualised.  

The extent of leukocyte adhesion to HUVECs was visualised by fluorescence microscopy. 

AxioVision software was used to take 5 high resolution images of each well. For each experiment, 

5 wells were used per condition, allowing a total of 25 images. Images were analysed using ImageJ 

(version 1.50i). First, images were converted to “8 bit” and “binary”, before setting contrast to 

maximum, in order to fully distinguish between leukocytes and HUVECs. This allowed the 

proportion of the image the leukocytes covered to be measured and expressed as a percentage of 

the total field of view (Figure 2.14). 
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Figure 2.14 Leukocyte Adhesion Assay Analysis. (A) Images are obtained using AxioVision Imaging 

System. (B) Images are converted to 8 bit. (C) Contrast is set to maximum. (D) Images are converted to 

binary and assessed for percentage coverage.  
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2.9 Platelet Function 

2.9.1 Background 

Multiple electrode aggregometry (Multiplate®, Roche Diagnostics Ltd, Switzerland) measures the 

ability of platelets to adhere to an artificial surface. The assay is based on Cardinal and Flower’s 

1979 impedance aggregometry method (412). Impedance aggregometry is based on the principle 

that in their resting state, platelets are non-thrombogenic, but once activated expose receptors 

on their surface, which allow them to attach to both vascular injuries and artificial surfaces (413). 

Multiple electrode aggregometry (MEA) analysis occurs in a single use test cell, which contains 

two pairs of silver coated electrode sensors. The assay measures the impedance of a current 

which is applied across a pair of these electrodes. When platelets adhere to the electrode wires, 

they increase the electrical impedance between them, which is continuously recorded. 

Automated quality control is achieved by comparison of the two simultaneously recorded 

impedance readings between the two electrode pairs. The magnitude of adhesion from platelets 

to the artificial electrode is determined by a change in impedance over a set time (Figure 2.15).   

2.9.2 Experimental methodology 

Whole blood (300 µL) collected into a hirudin BD Vacutainer ® was diluted 1:1 with 0.9% NaCl 

preheated to 37°C in a single use test cell for 3 minutes. Samples were continuously homogenised 

using a Teflon coated stirring bar. Platelet activation was then initiated by the addition of either 

ADP (20 µL, final concentration 6.5 µM) or TRAP (Thrombin receptor activating peptide, 20 µL, 

final concentration 32 µM) (Roche Diagnostics Ltd, Switzerland). An increase in electrical 

impedance was recorded for 6 minutes, and expressed as arbitrary aggregation units (AU*min).  
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2.10 Rheology 

2.10.1 Background 

Rheology was performed by Dr Matthew Lawrence on site at Morriston Hospital, Swansea 

University. The haemorheological gel point (GP) technique has been described in detail previously 

(414,415). Briefly, blood is placed within a controlled stress rheometer where it is confined 

between two surfaces (Figure 2.16A). Oscillatory stress is applied to one plate and the resultant 

strain experienced by the second plate is measured. The difference between the applied stress 

and measured strain waveforms is calculated, termed phase angle (δ) (Figure 2.16B). δ can range 

between 0 (a perfect solid response) and 90° (a perfect liquid response) with all values in between 

indicating the material is visco-elastic. The δ alters as the blood transitions from a viscoelastic 

liquid to a viscoelastic solid, which is used to identify the gel point (GP). The GP marks the 

formation of the incipient blood clot; the first point at which a sample spanning haemostatic 

structure can be identified. The value of δ at the GP is related to the organisation of the fibrin clot, 

and can be quantified using fractal analysis to give a fractal dimension (df), where a low df 

represents a less branched, weaker clot, and a high df represent a dense, branched, stronger clot 

(414–416).  

  

Figure 2.15 Multiple electrode aggregometry. Blood is added to a single use test cuvette and stimulated 

with an agonist (ADP/TRAP). Platelets then adhere to the artificial electrodes, increasing the impedance 

between them. The extent of platelet aggregation is quantified by the increase in impedance.  



 

  

96 
 

 

 

2.10.2 Experimental methodology 

In this study, blood from healthy volunteers was taken into sodium citrate vacutainers®, aliquoted 

into 7 mL vials and incubated at 37°C with EVs (final concentration 2x108/mL) for 15 minutes. 

Citrated blood samples were then re-calcified by adding 333 µL 0.2 M CaCl2, before being 

immediately loaded into the rheometer. The process from re-calcifying the blood to initialization 

of the measurement was performed in less than 60 seconds. Samples were allowed to run for 

sufficient time to reach the GP, never exceeding more than 10 minutes. 

2.11 Thrombin activity assay 

A thrombin activity assay (Abcam, Cambridge, UK) was utilised to assess the effect of EVs derived 

from hypoxia and/or NaNO2 on thrombin activity in plasma. This assay utilises thrombin present in 

the sample to proteolytically cleave a synthetic substrate, releasing the fluorophore AMC, which 

can subsequently be quantified using a fluorescence reader. The assay was undertaken as per the 

manufacturer’s instructions. Firstly, a set of thrombin standards were prepared, before plasma 

(isolated from the blood of healthy volunteers) was diluted and added to the microplate. EVs 

were added to plasma samples (final concentration 2x108/mL) and incubated for 1 hour at 37°C, 

before a reaction mix (containing a fluorogenic thrombin substrate and buffer) was added to both 

plasma and standard wells. Fluorescence was measured at Ex/Em = 350/450 nm every minute for 

60 minutes at 37°C. Following completion of this incubation period, two time points were chosen 

within the linear portion of the time course in order to calculate the change in fluorescence and 

Figure 2.16 Rheology experimental set up. A. Blood is confined between two surfaces. B. The phase angle 

is a measure of the difference between the stress applied to one plate and the strain experienced by the 

other. Image courtesy of Dr Matthew Lawrence.  

A B 
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thus thrombin activity. This change in fluorescence was then used to calculate ng of thrombin, 

allowing thrombin activity to be expressed as ng/mL.  

2.12 ROS detection 

In order to assess the effect of EVs on oxidative stress in target endothelial cells, a cellular reactive 

oxygen species detection assay was utilised (Abcam, Cambridge, United Kingdom). This used 2’7’-

dichlorofluorescin diacetate (DCFDA), a fluorogenic dye that can measure hydroxyl, peroxyl and 

other ROS. Once diffused into the cell, DCFDA is deacetylated by cellular esterases into a non-

fluorescent compound, which is subsequently oxidised by ROS into 2’7’-dichlorofluorescein (DCF), 

a highly fluorescent compound.  

This assay was performed following manufacturer’s instructions. Firstly, approximately 25,000 

cells/well were seeded in a 96-well plate, and allowed to adhere overnight. Cells were then 

stained with a DCFDA solution and incubated for 45 minutes at 37°C in the dark. The DCFDA 

solution was removed and cells were washed three times with buffer. EVs were then added to 

cells (final concentration 2x108/mL) and incubated for 3 hours at 37°C in the dark. Fluorescence 

was then measured at Ex/Em = 485/535 nm in end point mode.  

2.13 Calpain activity assay 

A calpain activity assay (Abcam, Cambridge, UK) was used to further elucidate the role of the 

calcium-dependent cysteine protease in EV biogenesis. HECVs were incubated with their 

treatments for 24 hours in a T75 flask, before being washed with ice cold filtered PBS. 100 µL 

extraction buffer was added and cells were gently removed using a cell scraper, before being 

centrifuged at top speed (approximately 13,000 x g) for 5 minutes to remove any insoluble 

material. The cell supernatants were isolated and placed on ice, before their protein 

concentration was determined using Nanodrop (as described in section 2.14.2).  

Cell lysates were diluted to 100 µg using the extraction buffer, to a final volume of 85 µL in a 

black, clear bottom 96 well plate. Positive control wells consisted of active calpain diluted in 

extraction buffer at a range of concentrations. Negative controls consisted of an untreated cell 

lysate with the calpain inhibitor (2mM, Z-LLY-FMK) added. 10 µL of reaction buffer, followed by 5 

µL of calpain substrate (1mM) was added to each well. The 96 well plate was incubated at 37°C in 

the dark for 1 hour, before measuring the fluorescence (Ex/Em = 400/505 nm) on a BMG 

CLARIOstar.  
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2.14 Protein Assay 

2.14.1 Bicinchoninic acid (BCA) assay 

2.14.1.1 Background 

The Bicinchoninic acid assay, or BCA assay, is used to determine the total concentration of protein 

in a sample, by comparison to a set of known standards. This assay utilises the reduction of cupric 

ions (Cu2+) to cuprous (Cu1+) ions by protein in an alkaline medium. The first step involves 

chelation of Cu2+ ions with protein, known as the biuret reaction. The BCA present in the solution 

then reacts with the reduced cuprous (Ca1+) cations formed in the previous step. Two molecules 

of BCA chelate with one Cu1+ cation, forming a deep purple solution. This solution can be 

measured using colorimetry (absorbance at 562 nm). The BCA assay was used to determine the 

protein concentration cell derived samples for Western blotting.  

2.14.1.2  Procedure 

The Pierce BCA Protein Assay Kit was used following manufacturer’s instructions. Briefly, a set of 

bovine serum albumin (BSA) standards were produced by diluting in PBS. 25 µL of each standard, 

or sample was added into a well of a 96 well plate, containing 200 µL of working reagent (Grenier, 

Germany) in quintuplicate. A range of sample dilutions were performed if necessary. The plate 

was gently shaken for 1 minute before being wrapped in foil and left to incubate at 37°C for 30 

minutes. The absorbance of samples at 562 nm was then measured using a microplate reader 

(ClarioSTAR, BMG Labtech, UK) and compared to the standard curve (figure 2.17).  

 

Figure 2.17 Exemplar BCA assay standard curve. A 6 point standard curve was produced using samples of 

known concentration (250, 125, 50, 25, 5 and 0 µg/mL, R2 = 0.9994). Samples with unknown protein 

concentration were then determined by utilising the equation; y = 0.0014x.  
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2.14.2  NanoDrop Spectrophotometer 

NanoDrop technology utilises the natural surface tension properties of liquids to hold microvolume 

samples in place during measurement without the need for any containment device, such as a 

cuvette or plate. With the arm open, 1 µL of sample is directly pipetted onto the pedestal. After the 

arm is closed, a sample column is formed. The arm automatically adjusts to an optimal path length, 

typically between 0.05 – 1 mm) (Figure 2.18). Proteins in solution absorb ultraviolet light at 280 nm, 

and using the Beer-Lambert law (below), the protein concentration can be determined. 

A = έ x B x C 

Where A is absorbance, έ is the extinction coefficient, b in path length in centimetres, and c is the 

analyte concentration.  

 

  

Figure 2.18 NanoDrop Spectrophotometer. The sample is added to the pedestal and the arm is closed. A 

magnet on the pedestal draws the arm down to generate the 0.2 mm liquid column, and absorbance 

through the sample column is measured using a xenon flash lamp and a charge coupled device (CCD) 

detector.  
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2.15 Western Blotting 

2.15.1 Background 

Western blotting is an analytical technique used to detect specific proteins in a sample. It uses gel 

electrophoresis to separate the denatured proteins by their size, before the proteins are 

transferred to a nitrocellulose membrane. The membrane is then probed using antibodies specific 

for the protein of interest, before detection using chemiluminescence.  

2.15.2 Cell Lysis 

Cells were grown to ≈ 90% confluency in T25 flasks. Cell culture medium was removed and cells 

were washed with ice cold 1X sterile PBS (Fischer-Scientific) three times on ice. 10 µL of ice cold 

lysis buffer (table 2.5) per 1 cm2 was added to the cells. Cells were carefully removed from the 

flask using a cell scraper. Samples were transferred to a sterile Eppendorf and promptly 

centrifuged at 13,300 x g for 20 minutes at 4°C in order to pellet any insoluble material. The 

supernatant was taken and stored in sterile Eppendorf tubes at -20°C until further analysis.  

Constituents (pH 7.5) 

Tris buffer 50 mM Phenylmethylsulfonylflouride 1 mM 

EGTA 5 mM Sodium flurodioxide 50 mM 

NaCl 150 mM Phenylarsine oxide 20 µM 

Triton 1% Sodium molybdate 10 mM 

Sodium orthovanadate 2 mM Leupeptin 10 µg/ml 

Aprotinin 10 µg/ml  

  

Table 2.5 Constituents and concentrations of the lysis buffer. 
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2.15.3  Sodium Dodecyl Sulfate-Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) 

The polyacrylamide gels, both stacking gel (4%) and resolving gel (7.5%), were assembled in a 

glass plate sandwich held in place with a casting frame and stand. Constituents of the gels are 

detailed in table 2.6.  

Constituent Resolving gel Stacking gel 

Deionised H2O 4.8 ml 6.1 ml 

Tris Buffer  2.5 ml 2.5 ml 

30 % Acrylamide solution  2.5 ml 1.3 ml 

10 % (w/v) SDS  0.1 ml 0.1 ml 

10% (w/v) ammonium persulphate 

(APS) 
0.1 ml 0.1 ml 

TEMED 6 µl 10 µl 

The components and volumes of both the resolving (7.5%) and stacking (4%) gels. SDS - sodium dodecyl 

sulphate. APS - ammonium persulphate. TEMED - tetramethylethylenediamine. 

Reagents were added in order from largest to smallest volume. APS and TEMED were added last 

to trigger the polymerisation process of the acrylamide. The solution was gently inverted to mix 

and left to set between the glass plates. Once the resolving gel had set, the stacking gel was 

added, the gel comb put in place and left to set (approximately 30 minutes).  

Once the gels had set, the glass plates were slotted into the electrode assembly unit, fixed in 

place with a clamp and added into the tank. The reservoir between the 2 sets of glass plates was 

filled with running buffer. 20-80 µg of protein sample was mixed with loading buffer and reducing 

agent (ThermoFisher Scientific, UK) before being denatured by heating at 95°C for 10 minutes.  

  

Table 2.6 Polyacrylamide gels 
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Protein samples were loaded onto the polyacrylamide gel and separated by electrophoresis. A 

pre-stained protein standard ladder (3.5–260 kDa, ThermoFisher Scientific, UK) was also added for 

reference. Proteins were resolved at 180 V for approximately 1 hour in 1X running buffer (Table 

2.7). 

Constituent Weight (g) 

Tris 

Glycine 

SDS 

30 

144 

10 

The constituents of the running buffer were made up in 1 L of HPLC grade water and diluted 1:10 before 

running the gels.  

2.15.4  Electroblotting 

After SDS-PAGE, wet electroblotting was used to transfer proteins from the gel to a 0.45 µm 

nitrocellulose membrane (Bio-Rad, UK). The nitrocellulose membrane was soaked in methanol for 

1 minute prior to transfer. Both the gel and the nitrocellulose membrane were “sandwiched” 

between blotting paper and foam pads, encased within a blotting cassette (Figure 2.18). Proteins 

were transferred for 1 hour at 100 V in ice cold 1X transfer buffer (Table 2.8) with a magnetic 

stirrer and ice pack.  

Constituent Weight (g) 

Tris 

Glycine 

 

3.025 

13.66 

 

The constituents were diluted in 1 L of water and stored on ice before use. 

 

 

Table 2.7. 10X Running Buffer.  

Table 2.8 Transfer buffer.  
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Figure 2.19 Transfer of proteins via electroblotting. Schematic showing the arrangement of 

components for transfer in Western blotting. 
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2.15.5  Incubation of antibodies 

Following transfer, the gel was discarded and the nitrocellulose membrane was soaked in 

Ponceau S solution to assess equal loading of protein and the presence of any air bubbles. The 

membrane was then washed in tris-buffered saline-tween (TBS/T) 3 times for 5 minutes on a plate 

shaker. The 1X TBS/T solution was produced by diluting a 10X TBS stock (table 2.9) and adding 500 

µL of tween. 

 

 

 

 

A 10X stock of TBS was made by diluting both the tris base and NaCl in 900 mL of HPLC grade water. This 

solution was then adjusted to pH 7.6 with 12 M HCl, before adding HPLC grade water to a final volume of 1 

L. 

 

Blocking of non-specific sites on the nitrocellulose membrane was achieved by incubating the 

membrane in 5% (w/v) skimmed milk powder (Marvel, UK) in TBS/T for 1 hour. The membrane 

was then incubated with the primary antibody in 1% milk- TBS/T (table 2.8), overnight at room 

temperature. The membrane was then washed 3 times for 5 minutes before adding an ECL 

peroxidase labelled secondary antibody; either 1:2000 goat anti-mouse (Sigma Aldrich, UK), or 

1:4000 donkey anti-rabbit (GE healthcare) diluted in 1% milk-TBS/T for 1 hour at room 

temperature.  

  

Constituent Amount 

Tris base 

NaCl 

HPLC grade water 

60.6 g 

87.6 g  

1 L 

Table 2.7 10X TBS buffer.  
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The details of primary antibodies used for the detection of specific proteins are listed above, including the 

dilution. Following incubation in secondary antibodies, the membrane was thoroughly washed; at least 5 

times for 5 minutes in TBS/T prior to developing.  

Table 2.8 Antibodies used for Western blotting.  

Antibody Dilution Type Source Product Code 

HIF-1α 1:1000 Mouse BD Biosciences 610958 

HIF-2α 

(EPAS-1) 

 

1:500 

 
Rabbit SantaCruz Biotech 

sc-46691 

VCAM-1 1:1000 Rabbit Abcam ab134047 

ICAM1 1:500 Mouse ThermoScientific 
MA5407 

E-Selectin 1:1000 Rabbit Abcam ab18981 

P-Selectin 1:1000 Rabbit Abcam ab6632 

PECAM 1:2500 Rabbit Abcam ab28364 

Rab22a 1:2000 Rabbit Abcam ab137093 

eNOS 

(total) 
1:1000 Mouse Abcam 

ab5589 

eNOS 

(Ser1177) 
1:500 Rabbit SantaCruz Biotech 

sc-81510 

eNOS 

(Thr495) 
1:500 Rabbit SantaCruz Biotech 

sc-136519 

β-Actin 1:5000 Rabbit 
Cell Signalling 

Technology 

sc-47778 
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2.15.6 Developing 

In order to detect protein bands, equal volumes of Western blot detection reagents (SuperSignal™ 

West Pico/Femto Chemiluminescent Substrate (ThermoFisher Scientific, UK)) were mixed in an 

Eppendorf before 250 µL was added to the membrane. The membrane was then exposed to 

photographic film (Amersham™ Hyperfilm ECL, GE Healthcare) in a dark room (exposure time 

varied between antibodies). The film was then soaked in developer (Kodak, UK) until bands began 

to appear, before being soaked in water, and then finally soaked in fixer (Kodak, UK). Films were 

washed thoroughly with water and left to air dry. 

 

2.15.7  Densitometry 

Densitometry of the Western blots was performed in order to semi-quantitatively analyse the 

amount of protein present in the samples. Densitometry was performed using Image-J version 

1.50i (National Institutes of Health, USA). Densitometry values were normalised to an appropriate 

control, and expressed as arbitrary densitometry units (ADU). 

2.16 Statistical analysis 

Data were analysed using Graphpad Prism (version 5.0, GraphPad Software Inc., San Diego, USA). 

The Kolmogorov-Smirnov test or D’Agostino’s K-squared test were used to check data for normality. 

A one-way ANOVA followed by a Dunnett’s post-test was used to compare all groups to the relevant 

control. A one-way ANOVA followed by a Tukey’s test was used to compare all groups with each 

other. A student’s unpaired t-test was used to compare means from two groups. For clinical studies, 

data was analysed according to “Practical Statistics for Medical Research” by Altman et al (417). All 

data were assessed for both a period effect and a treatment-period interaction. The change in 

measurement before and after NO3
-
 supplementation/placebo was calculated and compared 

directly using a paired t-test. Results are expressed as mean ± SEM. A p value of < 0.05 was regarded 

as statistically significant. Further details of the statistical tests applied can be found in each 

individual results chapter. 
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3 RESULTS I: PRODUCTION OF EXTRACELLULAR 

VESICLES BY ENDOTHELIAL CELLS: THE EFFECT OF 

HYPOXIA AND NITRITE  
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3. 1Perspective 

The work detailed within this chapter was conducted at the beginning of my PhD, and enabled me 

to learn the techniques required for research within the EV field. This chapter aimed to delineate 

the effect of hypoxia on EV production by endothelial cells, and, furthermore, whether inorganic 

nitrite (NaNO2) could provide a source of NO under these hypoxic conditions and reduce the 

production of EVs. The link between hypoxia and EV production was investigated, including the 

roles of HIF-1α and -2α. 
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3.2 Introduction 

As discussed in Chapter 1, EVs are secreted by numerous cell types into their extracellular space. 

The endothelium is a highly metabolically active organ, occupying a unique interface between 

circulating blood and the extravascular tissues, where it plays a pivotal role in the regulation of 

haemostasis. The endothelium modulates many pathophysiological processes, such as barrier 

function, the control of vasomotor tone, leukocyte adhesion, and inflammation (418). In 

physiological circumstances endothelial cells carefully prevent thrombosis by numerous 

anticoagulant and antiplatelet mechanisms (39). In contrast, under pathological stresses, the 

endothelium undergoes modifications which allow it to participate in the inflammatory response; 

a state known as endothelial cell activation (419).  

Endothelial cell activation can be characterised by four core changes: Loss of vascular integrity; 

expression of adhesion molecules; change in phenotype from anti-thrombotic to pro-thrombotic 

and increased cytokine production (419).  The loss of vascular integrity can expose the 

subendothelium, promoting adhesion and aggregation of platelets. Upregulation of adhesion 

molecules such as ICAM-1 and VCAM-1 allows leukocyte extravasation into the surrounding 

tissues (420). The shift in phenotype from anti- to pro-thrombotic is highlighted by the 

downregulation of the anti-coagulant molecules thrombomodulin and heparin sulphate on the 

surface of endothelial cells, and a concomitant elevation in pro-coagulant components such as TF 

(421,422). Finally, the synthesis of cytokines such as IL-6, IL-8 and MCP-1 by endothelial cells 

regulate the acute phase response and promote movement of leukocytes to the area via 

chemotaxis.  

Endothelial cell activation and dysfunction precedes the development of atherosclerosis and can 

lead to further acceleration and development of CVD. It is important to note, however, that 

endothelial cells may be activated without being dysfunctional (423). The endothelium is 

constantly sensing and responding to alterations in the extracellular environment (424,425). 

Interestingly, it has previously been shown that activation of endothelial cells leads to augmented 

release of EVs (426,427).  

Hypoxia is known to be a strong activator of endothelial cells (428), and it has previously been 

demonstrated that in healthy volunteers, temporary hypoxia exposure enhances EV secretion by 

endothelial cells (429). Additionally, hypoxia exposure has been shown to enhance EV secretion in 

breast cancer cells (231,430). It is generally well accepted that the bioactive cargo of EV reflects 

the stimulus which triggered their formation, with hypoxia-derived EVs displaying a markedly 

altered RNA and protein composition (213). The adaptation of cellular physiology in response to 
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hypoxia is largely mediated by the transcription factor HIF-1, which promotes the transcription of 

genes involved in cell proliferation, metastasis, angiogenesis and vascular remodelling (431,432). 

HIF is comprised of an oxygen regulated HIF-α subunit (HIF-1α or HIF-2α) and the constitutively 

expressed HIF-β. The HIF-α subunit is targeted for degradation under normoxic conditions by the 

O2-dependent HIF-α prolyl hydroxylase enzymes [26]. Inhibition of these enzymes in hypoxia 

prevents the degradation of HIF-α, allowing it to regulate its target genes (433). HIF has been 

shown to increase expression of several proteins involved in cytoskeletal changes (434), a 

mechanism shown to be implicated in augmented EV release (243). Thus, selective targeting of 

HIF-α could modulate endothelial cell EV release.  

Endothelial-derived NO plays a pivotal role in vascular homeostasis, highlighted by the deficiency 

of NO prevalent in CVD states (435). NO can modulate the cellular response to hypoxia by 

preventing the stabilisation of HIF-α via an increase in prolyl hydroxylase-mediated degradation 

(436,437). Previously, impaired endogenous NO production in HUVECs has been shown to 

increase EV formation (438). The inorganic anions NO3
- and NO2

- can be considered reservoirs for 

NO bioactivity, particularly during hypoxia (124,439). In vivo, NO3
- is reduced to NO2

- via 

commensal bacteria present in the oral cavity. NO2
- can subsequently be reduced to NO on 

exposure to acidic conditions, or through reaction with various proteins that possess NO2
- 

reductase activity, including xanthine oxidoreductase (XOR) (440,441), heme globins (144,442), 

and components of the mitochondrial electron transport chain (147,443). 

Here, I hypothesised that endothelial EV release in vitro was enhanced by HIF-1α and/or HIF-2α in 

hypoxia. Furthermore, the addition of NaNO2 may be able to modulate this enhancement via 

selectively targeting the expression of these transcription factors.  
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3.3 Aims 

The aims of this chapter were as follows: 

1. Investigate the effect of hypoxia on EV production by endothelial cells in vitro. 

2. Characterise differences in EVs produced under hypoxic or normoxic conditions.  

3. Investigate the role of HIF-1α and HIF-2α in hypoxic EV production.  

4. Assess the role of NO2
- derived NO on hypoxic EV production 

5. Evaluate the role of the calcium-dependent protease calpain in EV production.  
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3.4 Methods 

3.4.1 Cell culture 

HECVs were cultured as described in section 2.1.1. Primary HUVECs were isolated and cultured as 

detailed in section 2.1.2. Cells were counted as outlined in section 2.1.5.1 

3.4.2 Hypoxia exposure 

HECVs were subjected to a range of oxygen concentrations (1% O2 – 20% O2) using an Invivo2 

hypoxic workstation 400, as outlined in section 2.1.4 

3.4.3 Cell viability and apoptosis 

To assess the effect of various pathological insults on cell viability and apoptosis, numerous assays 

were undertaken. Both trypan blue exclusion and an MTS assay were used to assess cell viability, 

and a Caspase-Glo© 3/7 assay was used to assess apoptosis, as outlined in sections 2.1.5.1, 2.1.5.3 

and 2.1.5.4, respectively. 

3.4.4 Cellular treatments 

Both HECV and HUVEC cultures were treated with a variety of conditions, detailed in section 

2.1.3. All stressors were diluted in SFM and incubated for 24 hours, unless stated otherwise. 

Control cells were treated with SFM alone.  

3.4.5 EV Isolation 

EVs were isolated using differential ultracentrifugation as detailed in section 2.4.1. EV samples 

were stored at 4°C and used within 48-72 hours of isolation. 

3.4.6 EV size, concentration and distribution 

EV size and concentration were determined using nanoparticle tracking analysis, as outlined in 

section 2.3. 5 x 60 second videos were recorded and analysed, and the mean was subsequently 

used in further analysis. Size distribution graphs were generated by totalling the number of 

EVs/cell in each 50 nm range (bin width).  
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3.4.7  Electron microscopy 

Scanning electron microscopy was used to visualise HECVs in both normoxia and hypoxia, as 

outlined in section 2.2.1. Transmission electron microscopy was also used to visualise HECV-

derived EV to confirm a true EV sample and assess purity and morphology, as detailed in section 

2.2.2. 

3.4.8 Time resolved fluorescence 

Time resolved fluorescence was used to measure differences in protein expression between 

endothelial cells that had been exposed to hypoxia (1% O2) and normoxia (21% O2), as outlined in 

section 2.5.  

3.4.9 siRNA transfection 

In order to deduce the role of both HIF-1α and HIF-2α in hypoxia-mediated EV production, siRNA 

targeting both of these sub-types was undertaken, as described in section 2.1.6. 

3.4.10 Calpain activity assay 

A fluorometric calpain activity assay was performed to quantify calpain activity following a range 

of cellular treatments, and is described in detail in section 2.13.  

3.4.11 Western blotting 

Western blotting was performed to assess the expression of various proteins in endothelial cells 

following a variety of treatments, as outlined in section 2.15.  
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3.4.12 Statistics 

Data were analysed using GraphPad Prism (version 5.0: GraphPad Software Inc., San Diego, USA). 

The Kolmogorov-Smirnov test was used to determine if the data were normally distributed. A 

two-way ANOVA with Bonferroni correction was used to compare size distribution differences 

between hypoxia and normoxia. A one-way ANOVA was used followed by either a Dunnett’s post-

test to compare all groups to the relevant control, or a Tukey’s test to compare all pairs of 

columns with each other. A Kruskal-Wallis test with a Dunn’s multiple comparisons post-hoc test 

was used for non-normally distributed data. A student’s unpaired t-test was used to compare 

means from two groups. Results are expressed as mean ± SEM unless stated. A p value of < 0.05 

was regarded as statistically significant. 
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3.5 Results 

3.5.1 Electron microscopy 

Scanning electron microscopy visualised HECVs under normoxic (21% O2) and hypoxic (1% O2) 

conditions. Cells were approximately 10-15 µm in diameter. Figure 3.1A shows HECVs incubated 

in normoxic conditions. Figure 3.1B shows HECVs incubated in hypoxia for 24 hours. Transmission 

electron microscopy confirmed successful isolation of EVs from cell culture medium. The diameter 

of EVs appears to be between 200-500 nm for both normoxia-derived EVs (Figure 3.1C) and 

hypoxia-derived EVs (Figure 3.1D). 

Figure 3.1 Morphology of HECVs and HECV-derived EVs. Scanning electron microscopy images: 

HECVs maintained in normoxia (A) vs HECVs exposed to hypoxic conditions (1% O2) (B) for 24 hrs. 

Transmission electron microscopy images: submicron heterogeneous population of spherical EVs 

derived from HECVs maintained in normoxia (C) and hypoxia (1% O2) (D). Scale bars: (A, B) 25 µm; (C, 

D) 2 µm. Results represent [n=3].  
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3.5.2 The effect of hypoxia on EV size, concentration and 

distribution 

Hypoxia exposure (1%, 2% and 5% O2) enhanced EV production in comparison to HECVs 

maintained in normoxia (1% O2: 1766 ± 63 EVs/cell, 2% O2: 1179 ± 59 EVs/cell, 5% O2: 659 ± 48 

EVs/cell vs 21% O2: 133 ± 15 EVs/cell, p < 0.001). However, 10% and 20% O2 did not change EV 

production (10% O2: 190.2 ± 40 EVs/cell, 20% O2: 218 ± 57 EVs/cell, p > 0.05) compared to 

normoxia (Figure 3.2A). Hypoxic conditions did not affect EV size (21% O2: 134 ± 8 nm; 1% O2: 131 

± 27 nm; 2% O2: 133 ± 33 nm; 5% O2: 143 ± 38 nm; 10% O2: 133 ± 38 nm, 20% O2: 132 ± 30 nm, p > 

0.05 for all comparisons) (Figure 3.2B). 

On assessment of EV size distribution (split by 50 nm bin size for analysis), no differences were 

observed for EVs exposed to both 10% and 20% O2 compared to the 21% O2 control. HECVs 

exposed to 1%-5% O2 produced an altered EV size distribution compared to control EVs however, 

displaying an elevated EV concentration within a diameter range of 51-400 nm, 51-350 nm and 

101-250 nm for 1% O2, 2% O2 and 5% O2, respectively, as outlined in Table 3.1. Figure 3.3 

summarises these results.  
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Figure 3.2 The effect of hypoxia on EV production and size in HECVs. (A) EV production per cell after 24 

hours exposure to varying O2 concentrations (1%-21% O2). (B) The mean size (particle diameter) of EVs 

following hypoxia exposure. Results represent [n=5]. Data are expressed as mean ± SEM. *** reflects p < 

0.001.  
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NTA was used to assess the size distribution of EVs, split into 50 nm bin sizes for analysis and normalised to cell count. Samples were measured in quintuplicate and the mean 

was used in further analysis. Data are expressed as the group mean ± SEM. Results represent [n=5]. **, and *** reflects p < 0.01 and 0.001 respectively, compared to the 1% 

O2 

  

Table 3.1 The effect of hypoxia (1% - 20% O2) on HECV-derived EV size distribution. 

EV Size Control (21% O2) 1% O2 2% O2 5% O2 10% O2 20% O2 

0-50 1 ± 0 11 ± 3 8 ± 2 3 ± 1 2 ± 1 2 ± 1 

51-100 16 ± 5 195 ± 42 *** 147 ± 23 *** 67 ± 13 24 ± 7 27 ± 8 

101-150 33 ± 8 419 ± 61 *** 362 ± 43 *** 185 ± 26 *** 49 ± 11 55 ± 13 

151-200 29 ± 5 380 ± 24 *** 260 ± 11 *** 152 ± 3 *** 42 ± 7 48 ± 8 

201-250 22 ± 4 285 ± 18 *** 162 ± 12 *** 99 ± 12 ** 31 ± 5 36 ± 6 

251-300 14 ± 3 199 ± 28 *** 98 ± 14 *** 68 ± 15  21 ± 4 24 ± 5 

301-350 7 ± 2 125 ± 21 *** 66 ± 16 * 40 ± 11 11 ± 2 12 ± 3 

351-400 4 ± 1 69 ± 14 * 38 ± 11 21 ± 6 6 ± 1 6 ± 1 

401-450 4 ± 1 55 ± 13 30 ± 8 16 ± 4 5 ± 1 6 ± 2 

451-500 1 ± 0 15 ± 4 7 ± 2 4 ± 1 1 ± 0 2 ± 1 

501-550 1 ±0 7 ± 1 4 ± 1 2 ± 1 1 ± 0 1 ± 0 

551-600 1 ± 0 4 ± 1 2 ± 1 1 ± 0 0 ± 0 0 ± 0 
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Figure 3.3 The effect of hypoxia (1%-20% O2) on HECV-derived EV size distribution. Assessed in 50 nm bin sizes, results represent [n=5]. Each sample was analysed in 

quintuplicate and the mean was used in further analysis. Data are expressed mean ± SEM. *, ** and *** reflect p < 0.05, 0.01 and 0.001, respectively, compared to the 21% 

O2 normoxia control. 
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3.5.3 Viability and apoptosis 

As EV production has been linked to apoptosis, cell viability and apoptosis assays were undertaken on 

HECVs. Hypoxic conditions had no effect on cell viability compared to the normoxic control (21% O2: 

1.73 ± 0.24 vs 1% O2: 1.99 ± 0.04, 2% O2: 1.85 ± 0.43, 5% O2: 1.79 ± 0.21, 10% O2: 1.80 ± 0.32, 20% O2: 

1.84 ± 0.18, p > 0.05) (Figure 3.4A). Hypoxia exposure also had no effect on apoptosis compared to 

normoxia (21% O2: 688 ± 7 RLU vs 1% O2: 612 ± 73 RLU, 2% O2: 658 ± 58 RLU, 5% O2: 691 ± 14 RLU, 

10% O2: 714 ± 26 RLU, 20% O2: 751 ± 23 RLU, p > 0.05 for all comparisons) (Figure 3.4B). 

 

  

Figure 3.4 The effect of hypoxia exposure on cell viability (A) and apoptosis (B). No significant differences were 

seen between cells grown in hypoxia and normoxia for both cell viability (A) and caspase 3/7 activity (B). RLU – 

Relative luminescence units. Absorbance – arbitrary units. P > 0.05 for all comparisons, [n=5].  
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3.5.4 Characterisation of EV 

TRF revealed no difference between the level of the exosomal markers CD9, TSG101 or Alix and the 

endothelial marker VE-Cadherin (CD144) in EVs isolated from normoxia and hypoxia (CD9: 21% O2; 

37651 ± 1724 RFU vs 1% O2; 39528 ± 2507 RFU. TSG101: 21% O2; 14495 ± 549 RFU vs 1% O2; 15979 ± 

1953 RFU. Alix: 21% O2; 8683 ± 818 RFU vs 1% O2; 10310 ± 510 RFU. CD144: 21% O2; 2182 ± 178 RFU 

vs 1% O2; 2601 ± 234 RFU, p > 0.05) (Figure 3.5). HIF-1α was present in EVs isolated from hypoxic 

HECVs and absent in those isolated from normoxia (21% O2; 115 ± 25 RFU vs 1% O2; 10310 ± 520 RFU, 

p < 0.001). 

  

Figure 3.5 The effect of hypoxia on EV protein content. The content of vesicular (CD9, Alix, TSG101), 

endothelial (CD144), and HIF-1α proteins in HECVs incubated in normoxia (21% O2) and hypoxia (1% O2). 

Proteins were detected using a streptavidin-europium conjugate and measured using time-resolved 

fluorescence. RFU – Relative fluorescence units. Data are expressed as mean ± SEM. *** reflects p < 0.001. 

Results represent [n=4]. 
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3.5.5 HIF-1α expression 

Following an increase in EV production upon hypoxia exposure, HECV lysates were subsequently 

analysed for HIF-1α expression. Western blotting revealed the presence of HIF-1α in cells exposed to 

1-5% O2 for 24 hours. HIF-1α was not detected in cells exposed to 10% or 20% O2 (Figure 3.6A). 

Densitometry showed no significant difference in the levels of HIF-1α observed in cell lysates from 

1%, 2% and 5% O2 (Figure 3.6B).  

 

 

3.5.6 Silencing RNA 

To confirm the role of HIF-1α and/or HIF-2α in the hypoxic enhancement of EV release, HECVs were 

transfected with a siRNA targeting either HIF-1α or HIF-2α. Cells transfected with HIF-1α siRNA failed 

to show an enhancement in EV release following hypoxia, compared to cells transfected with control 

siRNA or cells exposed to hypoxia alone  (HIF-1α siRNA in 1% O2: 243 ± 20 EVs/cell, control siRNA in 

1% O2: 1680 ± 473 EVs/cell, 1% O2:1680 ± 250 EVs/cell, p < 0.001) (Figure 3.7A). EV production in cells 

transfected with HIF-1α siRNA in hypoxia was similar to that of the normoxia control (158 ± 38 

EVs/cell, p > 0.05). HECVs were also transfected with HIF-2α siRNA. Unlike HIF-1α siRNA transfection, 

HIF-2α silencing had no effect on EV production compared to cells transfected with control siRNA or 

Figure 3.6 The expression of HIF-1α at varying O2 concentrations in HECVs. (A) Western blotting confirming 

the presence of absence of HIF-1α. Lane 1: 21% O2. Lane 2: 1% O2. Lane 3: 2% O2. Lane 4: 5% O2. Lane 5: 10% 

O2. Lane 6: 20% O2. (B) Densitometry quantifying levels of expression of HIF-1α. Values were compared to the 

loading control β-Actin and normalised to 1% O2. ADU - arbitrary densitometry units. Results represent [n = 

3].  
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exposed to hypoxia alone (HIF-2α siRNA in 1% O2: 1549 ± 46 EVs/cell, control siRNA in 1% O2: 1608 ± 

69 EVs/cell, 1% O2: 1774 ± 132 EVs/cell, p > 0.05) (Figure 3.7B). Western blotting confirmed that cells 

transfected with HIF-1α and HIF-2α siRNA successfully inhibited protein expression, whilst the control 

siRNA had no impact on HIF-1α/-2α expression (Figure 3.7C, 3.7D).  

 

  

Figure 3.7 The role of HIF-1α and HIF-2α on EV production in HECVs. (A) The effect of HIF-1α siRNA on EVs 

produced. (B) The effect of HIF-2α siRNA on EVs produced. (C) Western blot confirming successful silencing of 

HIF-1α. Lane 1: 21% O2. Lane 2: 1% O2. Lane 3: 1% O2 & HIF-1α siRNA. Lane 4: 1% O2 & control siRNA. (D) 

Western blot confirming successful silencing of HIF-2α. Lane 1: 21% O2. Lane 2: 1% O2. Lane 3: 1% O2 & HIF-2α 

siRNA. Lane 4: 1% O2 & control siRNA. Results represent [n = 5]. Each sample was analysed in quintuplicate and 

the mean was used in further analysis. Data are expressed as mean ± SEM. *** reflects p < 0.001. 
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3.5.7 Desferrioxamine mesylate (DFO) addition 

The hypoxia mimetic agent desferrioxamine mesylate (DFO) was added to HECVs incubated in 

normoxia to confirm the role of hypoxia in EV production. Cells incubated in normoxia exposed to 

DFO produced a significantly higher number of EVs compared to cells exposed to normoxia alone 

(1212 ± 109 EVs/cell vs 133 ± 15 EVs/cell, p < 0.001), respectively. The addition of DFO to cells already 

exposed to hypoxia (1% O2) had no influence on EV production compared to hypoxia exposure alone 

(1% O2 & DFO: 1733 ± 87 EVs/cell vs 1% O2: 1673 ± 60 EVs/cell, p > 0.05) (Figure 3.8A). Chemically 

induced hypoxia by DFO was confirmed by Western blot detection of HIF-1α in cells incubated in 

normoxia. (Figure 3.8B). Densitometry revealed the relative levels of HIF-1α expression between 

conditions (Figure 3.8C).  
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Figure 3.8 The effect of the hypoxia mimetic agent DFO on EV production and HIF-1α expression. (A) EVs 

produced per cell. (B) Western blot confirming successful stabilisation of HIF-1α in normoxia. Lane 1: 1% O2. 

Lane 2: 1% O2 & DFO. Lane 3: 21% O2. Lane 4: 21% O2 & DFO. (C) Densitometry quantifying levels of expression 

of HIF-1α, normalised to 1% O2. Results represent [n=4]. Each sample was analysed in quintuplicate and the 

mean was used in further analysis. ADU – Arbitrary densitometry units. Data are expressed as mean ± SEM. *** 

reflects p < 0.001. 
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3.5.8 Rab22a expression in hypoxia 

Rab22a expression was assessed under a range of oxygen concentrations, as a possible downstream 

mechanism and link between hypoxia and EV production. It has previously been shown that hypoxia 

induces HIF-dependent Rab22a expression in cancer cell lines (231). Western blotting and subsequent 

densitometry revealed that Rab22a expression was incrementally higher in lower oxygen 

concentrations, with cells exposed to 1%, 2%, 5% and 10% O2 being significantly higher than the 21% 

O2 control (21% O2: 1.0 ± 0.0 ADU, 1% O2: 2.20 ± 0.15 ADU, 2% O2: 2.01 ± 0.11 ADU, 5% O2: 1.6 ± 0.05 

ADU, 10% O2: 1.52 ± 0.15 ADU) (Figure 3.9). 

Figure 3.9 Rab22a expression in hypoxic conditions. (A) Western blot representing higher levels of Rab22a 

expression in hypoxic cell lysates. (B) Densitometry quantifying expression levels of Rab22a, normalised to 21% 

O2. Data are expressed as mean ± SEM. Results represent [n=3]. *** and * reflect p < 0.001 and p < 0.05, 

respectively. Lane 1: 21% O2. Lane 2: 1% O2. Lane 3: 2% O2. Lane 4: 5% O2. Lane 5: 10% O2.  
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3.5.9 Sodium nitrate (NaNO3) and sodium nitrite (NaNO2) addition 

3.5.9.1 NaNO3 

HECVs exposed to hypoxia (1% O2) received varying concentrations of NaNO3 (0.3-300 µM) for 24 

hours. At all concentrations, NaNO3 administration had no effect on EV production compared to 

control (1% O2: 1530 ± 64 EVs/cell, 0.3 µM NaNO3: 1509 ± 21 EVs/cell, 3 µM NaNO3: 1480 ± 111 

EVs/cell, 30 µM NaNO3: 1530 ± 64 EVs/cell, 300 µM NaNO3: 1467 ± 128 EVs/cell, p > 0.05) (Figure 

3.10A). NaNO3 administration, at a range of concentrations, did not alter the size of EVs produced 

under hypoxic conditions (1% O2: 121 ± 5 nm, 0.3 µM NaNO3: 112 ± 8 nm, 3 µM NaNO3: 113 ± 10 nm, 

30 µM NaNO3: 117 ± 14 nm, 300 µM NaNO3: 110 ± 12 nm, p > 0.05) (Figure 3.10B). Finally, NaNO3 

administration had no effect on HECV viability (1% O2: 86.9 ± 2.8% viable, 0.3 µM NaNO3: 89.5 ± 2.5% 

viable, 3 µM NaNO3: 87.2 ± 4.2% viable, 30 µM NaNO3: 80.4 ± 2.2% viable, 300 µM NaNO3: 83.9 ± 

1.9% viable, p > 0.05) (Figure 3.10C). 

3.5.9.2 NaNO2 

HECVs exposed to hypoxia (1% O2) were also exposed to varying concentrations of NaNO2. 

Administration of NaNO2 at 0.3 µM and 3 µM had no effect on EV production (1% O2: 1569 ± 63 

EVs/cell, 0.3 µM NaNO2: 1430 ± 47 EVs/cell, 3 µM NaNO2: 1344 ± 69 EVs/cell, p > 0.05). However, 

NaNO2 administered at higher doses (30-300 µM) significantly reduced EV production in hypoxia (1% 

O2: 1569 ± 63 EVs/cell, 30 µM NaNO2: 1015 ± 67 EVs/cell, 300 µM NaNO2: 974.8 ± 49 EVs/cell, p < 

0.001) (Figure 3.10D). NaNO2 administration did not alter the size of EVs produced under hypoxic 

conditions at any of the concentrations used (1% O2: 131 ± 5 nm, 0.3 µM NaNO2: 116 ± 4 nm, 3 µM 

NaNO2: 128 ± 3 nm, 30 µM NaNO2: 118 ± 7 nm, 300 µM NaNO2: 132 ± 3.7 nm, p > 0.05) (Figure 3.10E). 

Finally, NaNO2 had no effect on cell viability at concentrations between 0.3-30 µM (1% O2: 84.2 ± 

2.9% viable, 0.3 µM NaNO3: 84.2 ± 2% viable, 3 µM NaNO3: 86.7 ± 1.6% viable, 30 µM NaNO3: 79.4 ± 

1.5% viable, p > 0.05). However, at 300 µM, NaNO2 significantly reduced cell viability (1% O2: 84.2 ± 

2.9% viable vs 300 µM NaNO3: 74.17 ± 0.8% viable, p < 0.05) (Figure 3.10F).
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Figure 3.10 The effect of NaNO3 and NaNO2 on EV production, size, and cell viability.  (A,D) EVs produced per cell. (B,E) Mean size of vesicles produced. 

(C,F) Effect of NaNO3/NaNO2 treatment on cell viability, measured by trypan blue exclusion. Data are expressed as mean ± SEM. Results represent [n=4].  

*** and * reflect p < 0.001 and p < 0.05, respectively. 
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3.5.10 Sodium nitrite & xanthine oxidoreductase inhibition 

Following the identification of the optimal NaNO2 concentration (30 µM), HECVs incubated in both 

normoxia and hypoxia were exposed to NaNO2 for 24 hours. Additionally, the xanthine 

oxidoreductase inhibitor allopurinol was added (100 µM), to prevent the conversion of NO2
- to NO 

under hypoxic conditions. NaNO2 had no effect on EV production in HECVs incubated in normoxic 

conditions (21% O2: 133 ± 15 EVs/cell vs 21% O2 + NaNO2: 125 ± 19 EVs/cell, p > 0.05). However, 

NaNO2 significantly reduced the hypoxic enhancement of EV production (1% O2: 1859 ± 67 EVs/cell vs. 

1% O2 + NaNO2: 905 ± 78 EVs/cell, p < 0.001). Interestingly, treatment of HECVs in hypoxia with 

allopurinol in addition to NaNO2 significantly attenuated the reduction of EV production seen with 

NaNO2 alone (1% O2 + NaNO2; 905 ± 78 EVs/cell vs 1% O2, NaNO2 + allopurinol; 1414 ± 141 EVs/cell, p 

<0.001). Allopurinol alone had no effect on EV production in hypoxia (1% O2: 1859 ± 67 EVs/cell vs 1% 

O2 + allopurinol: 1824 ± 69 EVs/cell, p > 0.05) (Figure 3.11A). Western blots showed that the presence 

of NaNO2 in hypoxia reduced the expression of HIF-1α. The addition of allopurinol in the presence of 

NaNO2 appeared to restore HIF-1α expression in HECVs (Figure 3.11B, 3.11C).  
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Figure 3.11 The effect of NaNO2 on EV production. (A) EVs produced from HECVs following exposure to 

various conditions. (B) Western blot showing the expression of HIF-1α under various conditions. Lane 1: 

21% O2. Lane 2: 21% O2 + NaNO2 (30 µm). Lane 3: 1% O2. Lane 4: 1% O2 + NaNO2. Lane 5: 1% O2, NaNO2 

and allopurinol (100 µM). (C) Densitometry quantifying levels of expression of HIF-1α, normalised to 1% 

O2. Results represent [n = 5]. Data are expressed as mean ± SEM. ** and *** reflect p < 0.01, and p < 

0.001 respectively.  
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Treatment with NaNO2 in both hypoxia (1% O2: 127 ± 31 nm vs. 1% O2 + NaNO2: 133 ± 18 nm, p > 

0.05) and normoxia (21% O2: 128 ± 15 nm vs. 21% O2 + NaNO2: 123 ± 17 nm, p > 0.05) had no effect 

on the size of EV produced. Similarly, allopurinol had no effect on the size of EV compared to hypoxia 

alone (1% O2, NaNO2 + allopurinol: 119 ± 19 nm, 1% O2 + allopurinol: 127 ± 9 nm, p > 0.05) (Figure 

3.12A). 

There was no change in overall cell viability following all cellular treatments (21% O2: 88.0 ± 2.4 % 

viable, 21% O2 + NaNO2: 84.9 ± 2.5 % viable, 1% O2: 83.9 ± 2.2 % viable, 1% O2 + NaNO2: 88.1 ± 2.8 % 

viable, 1% O2, NaNO2 + allopurinol: 89.4 ± 1.8 % viable, 1% O2 + allopurinol: 87.7 ± 2.8 % viable, p > 

0.05) (Figure 3.12B). 

 

 

  

Figure 3.12 The effect of NaNO2 on EV size and cell viability. (A) The effect of hypoxia, NaNO2, and allopurinol on 

the mean size of EV produced. (B) The effect of hypoxia, NaNO2, and allopurinol on cell viability, measured by 

trypan blue exclusion. Data are expressed as mean ± SEM. Results represent [n = 5].  
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On assessment of EV size distribution (split by 50 nm bin size for analysis), the addition of NaNO2 to 

HECVs in normoxia had no effect on the size distribution profile compared to normoxia alone. 

However, the addition of NaNO2 in hypoxia significantly reduced the EVs between 101-300 nm in 

diameter compared to hypoxia alone (101 – 150 nm: 1% O2; 441 ± 65 EVs/cell vs 1% O2 + NaNO2; 233 

± 51 EVs/cell.  151 – 200 nm: 1% O2; 401 ± 26 EVs/cell vs 1% O2 + NaNO2; 202 ± 38 EVs/ cell. 201 – 250 

nm: 1% O2; 300 ± 18 EVs/cell vs 1% O2 + NaNO2; 133 ± 18 EVs/ cell. 251-300 nm: 1% O2; 210 ± 30 

EVs/cell vs 1% O2 + NaNO2; 54 ± 10 EVs/ cell) (Figure 3.13). This reduction was prevented when 

allopurinol was added in combination with NaNO2. The full size distribution profile for all conditions 

can be seen in table 3.2 and figure 3.13.  
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Table 3.2 The effect of hypoxia, NaNO2 and allopurinol on EV size distribution.  

EV Size 21% O2 21% O2: NaNO2 1% O2 1% O2: NaNO2 1% O2: NaNO2 + 

Allopurinol 

1% O2: Allopurinol 

0-50 1 ± 0 1 ± 0 12 ± 3 11 ± 5  11 ± 2 34 ± 24 

51-100 16 ± 5*** 21 ± 1*** 205 ± 44 114 ± 32 148 ± 20 182 ± 64 

101-150 33 ± 8*** 44 ± 3*** 441 ± 65 233 ± 51*** 372 ± 34 563 ± 104** 

151-200 29 ± 5*** 32 ± 2*** 401 ±26 202 ± 38*** 329 ± 8 428 ± 34 

201-250 22 ± 4*** 14 ± 1*** 300 ± 18 133 ± 18** 218 ± 28 259 ± 21 

251-300 14 ± 3*** 7 ± 0*** 210 ± 30 91 ± 14* 152 ± 32 158 ± 21 

301-350 7 ± 2** 3 ± 0** 132 ± 22 54 ± 10 86 ± 26 88 ± 19 

351-400 4 ± 1 2 ± 0 72 ± 15 27 ± 6 46 ± 15 47 ± 13 

401-450 4 ± 1  1 ± 0  58 ± 14 20 ± 5 35 ± 10 

 

34 ± 8 

451-500 1 ± 0 1 ± 0  15 ± 4 5 ± 1 9 ± 3 9 ± 2 

501-550 1 ± 0 1± 0  8 ± 1 2 ± 1 4 ± 1 4 ± 1 

551-600 1 ± 0 1 ± 0  4  ± 1 2 ± 1 2 ± 1 2 ± 1 

NTA was used to assess the size distribution of EVs, split into 50 nm bin sizes for analysis and normalised to cell count. Samples were measured in quintuplicate and the 

mean was used in further analysis. Data are expressed as the group mean ± SEM. Results represent [n=5]. **, and *** reflects p < 0.01 and 0.001 respectively, compared 

to the 1% O2  



 

  

134 
 

 

Figure 3.13 The effect of hypoxia, NaNO2 and allopurinol on EV size distribution. NTA was used to assess the size distribution of EVs, split into 50 nm bin sizes for 

analysis and normalised to cell count. Samples were measured in quintuplicate and the mean was used in further analysis. Data are expressed as the group mean ± SEM. 

Results represent [n=5]. **, and *** reflects p < 0.01 and 0.001 respectively, compared to the 1% O2 
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3.5.11 S-Nitrosoglutathione addition 

S-Nitrosoglutathione (GSNO) (100 µM) was also added to HECVs as an NO donor. GSNO addition in 

normoxia had no effect on EV production (21% O2: 150 ± 25 EVs/cell vs 21% O2 + GSNO: 119 ± 18, p > 

0.05). GSNO addition in hypoxia however significantly reduced EV production (1% O2: 1797 ± 48 

EVs/cell vs 1% O2 + GSNO: 896 ± 27, p < 0.001) (Figure 3.14A). GSNO addition had no effect on EV size 

when added in both normoxia (21% O2: 108 ± 14 nm vs 21% O2 + GSNO: 105 ± 21 nm, p > 0.05) and 

hypoxia (1% O2: 130 ± 24 nm vs 1% O2 + GSNO: 123 ± 14 nm, p > 0.05) (Figure 3.14B). HECV viability 

was not altered following GSNO addition (21% O2: 88.9 ± 5.2 % viable, 21% O2 + GSNO: 89.1 ± 4.8 % 

viable, 1% O2: 91.5 ± 7.8 % viable, 1% O2 + GSNO: 88.2 ± 17, p > 0.05) (Figure 3.14C). 

 

  

Figure 3.14 The effect of GSNO on EV production. (A) EVs produced per cell. (B) Mean size of EVs produced. (C) 

Cell viability, as measured by trypan blue exclusion. Data are expressed as mean ± SEM. Results represent [n=5].  

*** reflects p < 0.001. GSNO concentration – 100 µM. 



 

  

136 
 

3.5.12 Hypoxia exposure and NaNO2 addition in HUVECs  

HUVECs were obtained in order to validate the findings in the HECVs, and compare the effect of 

hypoxia and NaNO2 in a primary cell compared to a cell line. Hypoxia exposure greatly enhanced EV 

production compared to normoxia (21% O2: 43 ± 6 EVs/cell vs 1% O2: 292 ± 23 EVs/cell, p < 0.001). 

NaNO2 had no effect on EV production in normoxia (21% O2: 43 ± 6 EVs/cell vs 21% O2 + NaNO2: 41 ± 4 

EVs/cell, p > 0.05). However, the addition of NaNO2 significantly reduced EV production in hypoxia 

(1% O2: 291 ± 23 EVs/cell vs 1% O2 + NaNO2: 153 ± 11 EVs/cell, p < 0.001) (Figure 3.15A). Western 

blots confirmed that NaNO2 addition in hypoxia reduced the expression of HIF-1α in HUVECs (Figure 

3.15B and C), as seen in HECVs. 

NaNO2 addition had no effect on EV size (21% O2: 108 ± 14 nm vs 21% O2 + NaNO2: 97 ± 16 nm, p > 

0.05) and hypoxia (1% O2: 107 ± 22 nm vs 1% O2 + NaNO2: 129 ± 18 nm, p > 0.05) (Figure 3.16A). HECV 

viability was not altered following GSNO addition (21% O2: 80.5 ± 7.6 % viable, 21% O2 + NaNO2: 84.6 

± 13.6 % viable, 1% O2: 87.9 ± 9.1 % viable, 1% O2 + NaNO2: 79.8 ± 8.0, p > 0.05) in both hypoxia and 

normoxia (Figure 3.16B). 
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Figure 3.15 The effect of hypoxia and NaNO2 on EV production in HUVECs. (A) EVs produced by HUVECs 

following exposure to hypoxia and/or NaNO2. (B) Western blotting showing the expression of HIF-1α following 

exposure to hypoxia and/or NaNO2. Lane 1: 1% O2. Lane 2: 1% O2 + NaNO2. Lane 3: 21% O2. Lane 4: 21% O2 + 

NaNO2. Results represent [n=5]. Each sample was analysed in quintuplicate and the mean was used in further 

analysis. Data are expressed as mean ± SEM. *** reflects p < 0.001. 
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Figure 3.16. Effect of hypoxia exposure and NaNO2 addition on HUVEC-derived EV size and viability. 

(A) Mean size of EVs produced from HUVECs. (B) Cell viability of HUVECs, as measured by trypan blue 

exclusion. Data are expressed as mean ± SEM. Results represent [n=5].  
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3.5.13 TNF-α addition 

TNF-α was added to HECVs as an alternative stimulus to hypoxia in order to activate endothelial cells. 

TNF-α addition significantly increased EV production (control: 240 ± 57 EVs/cell vs TNF-α: 833 ± 100 

EVs/cell, p < 0.001). NaNO2 failed to reduce this TNF-α mediated enhancement in EV production (TNF-

α: 833 ± 100 EVs/cell vs TNF-α + NaNO2: 947 ± 81 EVs/cell). The addition of GSNO however did 

significantly reduce EV production following TNF-α addition (TNF-α: 833 ± 100 EVs/cell vs TNF-α + 

GSNO: 508 ± 75 EVs/cell, p < 0.05) (Figure 3.17A). 

TNF-α addition did not affect EV size (control: 121 ± 21 nm vs TNF-α: 108 ± 18 nm, p < 0.05). The 

addition of both NaNO2 and GSNO also had no effect on the mean EV size compared to TNF-α alone 

(TNF-α + NaNO2: 121 ± 34 nm, TNF-α + GSNO: 139 ± 31 nm, p > 0.05) (Figure 3.17B). The viability of 

HECVs was not altered following TNF-α treatment (control: 92.5 ± 9.0 % viable. TNF-α: 82.3 ± 14 % 

viable. TNF-α + NaNO2: 95.6 ± 10.0 % viable, TNF-α + GSNO: 88.4 ± 13.0 % viable, p > 0.05) (Figure 

3.17C). 

 

  

Figure 3.17 The effect of TNF-α on EV production. (A) EVs produced per cell. (B) Mean size of vesicles produced 

in nm. (C) Cell viability, as measured by trypan blue exclusion. Data are expressed as mean ± SEM. Results 

represent [n=5].  *** and * reflect p < 0.001 and p < 0.05, respectively. 
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3.5.14 Calpain inhibition 

To assess the role of the calcium-dependent cysteine protease calpain in EV biogenesis, Calpain 

Inhibitor I (ALLN) was added to HECVs in both normoxia and hypoxia. The addition of ALLN in 

normoxia had no effect compared to the vehicle control (21% O2 vehicle control: 214 ± 27 EVs/cell vs 

21% O2 + ALLN: 126 ± 20 EVs/cell, p > 0.05). However, calpain inhibition did reduce EV production in 

hypoxic conditions (1% O2 vehicle control: 1552 ± 184 EVs/cell vs 1% O2 + ALLN: 883 ± 138 EVs/cell, p 

< 0.01) (Figure 3.18A). Calpain inhibition did not alter the size of EV produced in either normoxia (21% 

O2 vehicle control: 165 ± 23 nm vs 21% O2 + ALLN: 149 ± 14 nm, p > 0.05) or hypoxia (1% O2 vehicle 

control: 158 ± 19 nm vs 1% O2 + ALLN: 126 ± 14 nm, p > 0.05) (Figure 3.18B). Cell viability was not 

affected by any cellular treatment (21% O2 vehicle control: 93.1 ± 1.2 % viable, 21% O2 + ALLN: 88.9 ± 

2.0 % viable, 1% O2 vehicle control: 89.2 ± 2.3 % viable vs 1% O2 + ALLN: 90.4 ± 1.2 % viable, p > 0.05) 

(Figure 3.18C). 

 

Figure 3.18 The effect of calpain inhibition on EV production in HECVs. (A) EVs produced per cell. (B) Mean size 

of vesicles produced. (C) Cell viability, as measured by trypan blue exclusion. Data are expressed as mean ± 

SEM. Results represent [n=5].  ** reflects p < 0.01. 
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On assessment of EV size distribution (split by 50 nm bin size for analysis), no differences were 

observed for EVs produced from HECVs exposed to the calpain inhibitor ALLN compared to the 

normoxic (21% O2) control. HECVs incubated in hypoxia exposed to ALLN showed a reduction in EV 

produced specifically within the diameter range of 50-199 nm, compared to the hypoxic control (50 – 

99 nm: 1% O2 control; 252 ± 77 EVs/cell vs 1% O2 + ALLN; 63 ± 7 EVs/cell. 100 – 149 nm: 1% O2 

control; 631 ± 28 EVs/cell vs 1% O2 + ALLN; 248 ± 29 EVs/cell. 150 – 199 nm: 1% O2 control; 333 ± 57 

EVs/cell vs 1% O2 + ALLN; 223 ± 26 EVs/cell, p < 0.001) (Figure 3.19). The full size distribution profile 

for all cellular treatments is outlined in table 3.3.  
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EV Size 
21% O2 vehicle 

control 
21% O2 + ALLN 

1% O2 vehicle 

control 
1% O2 + ALLN 

0-50 1 ± 0 0 ± 0 1 ± 1 0 ± 0 

51-100 52 ± 7 10 ± 1 252 ± 77 63 ± 7*** 

101-150 87 ± 8 27 ± 2 631 ± 29 248 ± 29*** 

151-200 39 ± 2 32 ± 3 332 ± 57 223 ± 26*** 

201-250 21 ± 3 18 ± 1 142 ± 11 129 ± 16 

251-300 8 ± 1 10 ± 2 86 ± 17 60 ± 7 

301-350 3 ± 1 8 ± 1 38 ± 8 42 ± 6 

351-400 1 ± 0 6 ± 1 20 ± 5 37 ± 5 

401-450 2 ± 1 9 ± 1 33 ± 9 47 ± 6 

451-500 1 ± 0 3 ± 0 8 ± 2 15 ± 2 

501-550 0 ± 0 2 ± 0 5 ± 2 10 ± 1 

551-600 0 ± 0 1 ± 0 2 ± 1 5 ± 2 

NTA was used to assess the size distribution of EVs, split into 50 nm bin sizes for analysis and normalised to cell 

count. Samples were measured in quintuplicate and the mean used in further analysis. Data are expressed as 

the group mean ± SEM. Results represent [n=5]. *** reflects p < 0.001 respectively, compared to the relative 

oxygen concentration control.

Table 3.3. The effect of calpain inhibition on EV size distribution.  
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Figure 3.19 The effect of calpain inhibition on EV size distribution. NTA was used to assess the size distribution of EVs, split into 50 nm bin sizes for analysis and 

normalised to cell count. Samples were measured in quintuplicate and the mean used in further analysis. Data are expressed as the group mean ± SEM. Results 

represent [n=5]. *** reflect p < 0.001 respectively, compared to the relative O2 control. 
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3.5.15 Calpain activity  

Calpain activity was assessed to further elucidate the role of the calcium-dependent cysteine 

protease in EV biogenesis. HECVs exposed to hypoxia had significantly higher levels of calpain 

activity compared to those incubated in normoxia (1% O2: 841 ± 47 RFU vs 21% O2: 363 ± 16 RFU, 

p < 0.001). Following NaNO2 or GSNO addition, calpain activity significantly reduced in hypoxia 

(1% O2: 841 ± 47 RFU vs 1% O2 + NaNO2: 518 ± 41 RFU, 1% O2 + GSNO: 545 ± 25 RFU, p < 0.001). In 

contrast, the addition of NaNO2 or GSNO had no effect on calpain activity in normoxia (21% O2: 

363 ± 16 RFU vs 21% O2 + NaNO2: 432 ± 25 RFU, 21% O2 + GSNO: 357 ± 53 RFU, p > 0.05) (Figure 

3.20A). Varying amounts of positive control (Calpain I) treated with and without 1 µL of inhibitor 

(Z-LLY-FMK) were also measured for calpain activity (Figure 3.20B). 

 

  

Figure 3.20 Calpain activity in hypoxia and normoxia. (A) Calpain activity was assessed following the 

addition of both NaNO2 and GSNO in both normoxia (21% O2) and hypoxia (1% O2). (B) Active Calpain I 

treated with or without inhibitor were assayed for calpain activity. Samples were analysed in triplicate and 

the mean used in further analysis. Results represent [n = 4]. Data are expressed as mean ± SEM. *** reflects 

p < 0.001. 
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3.6 Discussion 

3.6.1 Key findings 

 Hypoxia increases EV production in endothelial cells (both primary cells and a cell line). 

 This increase is mediated by HIF-1α, but not HIF-2α 

 NO2
- derived NO increases HIF-1α degradation, and consequently reduces EV production. 

 This effect is attenuated by inhibition of xanthine oxidoreductase, preventing the 

conversion of NO2
-
 to NO.  

 Calpain activity is increased in hypoxia and corresponds with an increase in EV release. 

3.6.2 Main discussion 

During pathological conditions, cellular O2 levels are often insufficient to meet physiological 

demands. The resulting hypoxia is a key feature in various disease states including CVD and 

cancer, and is associated with poor patient outcomes (67,444). HECVs that were exposed to 

hypoxia for 24 hours had markedly enhanced EV production at 5% O2 or lower. This is in 

agreement with previous studies which have demonstrated that hypoxia is associated with 

increased endothelial-derived EV production in vivo (429,445). Arterial blood pO2 is normally 

within the range 10-14% O2 (75-100 mmHg), with venous levels approximately 4-5.5% O2 (30-40 

mmHg). At an arterial O2 of 8% (60 mmHg) there is a steep decline in oxygen saturation, and a 

human would require supplemental breathing, whereas < 4% O2 (26 mmHg) can be considered 

extreme hypoxia (446). Given these reference ranges, we rationalised 5% O2 in our studies 

represents an accurate model of a hypoxic condition for cells in culture, whereas less than 1% O2 

reflects severe hypoxia. Indeed, the expression of HIF-1α in HECVs incubated at 5% O2 confirms 

this can be considered a hypoxic environment, in contrast to previous considerations from the 

group (447). 

Endothelial-derived EV have previously been shown to enhance platelet activation and adhesion, 

promoting the formation of a thrombus (448). It has also been shown that in patients with a 

history of stroke, activated endothelial cells increased EV release, which were associated with an 

increased frequency of cardiovascular events. This suggests that widespread endothelial cell 

activation may increase the risk of cardiovascular morbidity (449). Elevated EV levels have been 

observed in many conditions associated with both coagulation and inflammation (340). EVs have 

been shown to contain TF and vWF (450,451), which may partially explain their procoagulant 

properties. Additionally, the high level of PS exposure on endothelial-derived EVs allows 
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acceleration of the coagulation cascade via activation of factors Xa and Va (452,453). 

Interestingly, we detected HIF-1α present within our EV samples isolated from endothelial cells 

exposed to hypoxia, potentially allowing paracrine signalling to nearby cells. Nuclear translocation 

is not essential for the stabilisation of HIF-1α following translation within the cytoplasm (454), and 

therefore could possibly be packaged into EV during their formation.  

Results within this chapter suggest that HIF-1α is pivotal in the hypoxic enhancement of EV 

production in endothelial cells. The hypoxia mimetic agent desferrioxamine (DFO) stabilised HIF-

1α expression in normoxia and subsequently significantly increased EV production. Silencing of 

HIF-1α further confirmed its role within EV formation. In contrast, silencing of HIF-2α had no 

effect on EV production in endothelial cells, suggesting the enhancement seen in hypoxia is solely 

HIF-1α mediated. This result is in agreement with a previous study by King et al, showing that a 

hypoxic enhancement of EV release in breast cancer cell lines was HIF-1α mediated (430). This 

suggests that regardless of cell type, hypoxia-mediated EV production may share common cellular 

pathways. These results are consistent with the previous suggestion that HIF-1α is thought to be 

involved in acute hypoxia (2-24 hours), whereas HIF-2α is thought to have a role in cellular 

adaptation to chronic hypoxia (> 24 hours) (455,456). A third, poorly defined HIF isoform, HIF-3α, 

also regulates the cellular response to hypoxia, but was not investigated within this chapter. HIF-

3α differs from the other two isoforms in both structure and regulation of gene expression (457). 

HIF-3α lacks the transactivation domain found in both HIF-1α and HIF-2α, and is thought of as a 

negative regulator of HIF-regulated genes by competing with HIF-1α and HIF-2α in binding to 

transcriptional elements in target genes (458). 

Following hypoxia exposure (1%- 20% O2), we saw no change in the size of EVs produced. 

However, on analysis of the size distribution profile, EVs were increased specifically within the 

range 50-400 nm. This diameter spans the definition of both exosomes (30-100 nm), and 

microvesicles (100-1000 nm), suggesting hypoxia does not selectively enhance only 1 subtype of 

EV, but instead increases EV release regardless of their mechanism of formation. 

Additionally, we saw no change in both cell viability and apoptosis. Indeed, acute hypoxia 

increases cytosolic calcium concentration in endothelial cells to a similar level to those observed 

following agonist stimulation (428,459). This level is considered too low however to induce 

apoptosis or a reduction in viability (460). The formation of EV appears to be initiated by an 

increase in cytosolic concentrations of calcium, and subsequent activation of scramblase (allowing 

translocation of PS) (243,461), calpain (allowing for remodelling of the cytoskeleton) (462–464) 

and an enhanced permeability to potassium, with associated osmotic effects (241,465). Indeed, 

HIF-1α activation has been shown to permit cytoskeleton reorganisation in endothelial cells (466). 
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Results in this chapter complement this, showing an increase in calpain activity under hypoxic 

conditions. Inhibition of calpain by ALLN significantly reduced EV production in hypoxia, but not in 

normoxia in endothelial cells. This is consistent with previous reports showing an alternative 

calpain inhibitor, calpeptin, reduced EV formation in platelets (462). ALLN specifically reduced EVs 

50-200 nm in size, suggesting it plays a role in both exosome and microvesicle production. 

Moreover, the small GTPase Rab22a has previously been shown to be a mediator of HIF-1α 

induced EV release in breast cancer cells (231). This study demonstrated knockdown of Rab22a 

completely eliminated EV generation in hypoxia, but had only a modest effect on EV generation in 

normoxia. Results within this chapter agree with this, as Western blotting confirmed Rab22a 

expression was higher in hypoxic endothelial cells compared to normoxia. This may offer some 

explanation as to the link between hypoxia and EV release. 

 NO3
- and NO2

- were once thought of as inactive end products of NO metabolism, but are now 

seen as a bioactive storage pool of NO, that under certain conditions – such as hypoxia - may be 

reduced back to the bioactive NO molecule. The utilisation of NO3
- from dietary/endogenous 

sources first requires reduction to NO2
-, which is predominantly carried out by commensal 

bacteria within the gastrointestinal tract, as mammals do not possess specific NO3
- reductase 

enzymes (134,140). This clarifies why a reduction in EV production was seen only following the 

addition of NaNO2, and not NaNO3, as endothelial cells do not possess NO3
- reductase capability. 

Treatment of endothelial cells with allopurinol, in the presence of NaNO2, largely inhibited the 

NO2
- attributed suppression of EV production. This complements the hypothesis that under 

hypoxic conditions, xanthine oxidoreductase plays an important role in the reduction of NO2
- to 

NO (467). However, the addition of allopurinol failed to completely restore EV production seen in 

hypoxia alone, and therefore likely that multiple mechanisms are responsible for NO2
-
 reduction, 

including aldehyde dehydrogenase and mitochondrial reduction (468,469). The importance of 

hypoxia in NO2
-  reduction is further emphasised by the absence of a decrease in EV production 

seen following a non-hypoxic, inflammatory stimulus (TNF-α). This pathway has been dubbed the 

“nitrate, nitrite, nitric oxide pathway”, and is said to complement the traditional L-arginine eNOS 

pathway perfectly, ensuring an alternative source of NO production in hypoxia, during conditions 

where the oxygen dependent eNOS is compromised. Both our group and others have shown that 

NO2
- administration can improve functional responses in ischemic myocardium, preventing 

ischemia-reperfusion injury (156,470).  

This chapter has shown that NO can reduce the hypoxic augmentation of EV release in endothelial 

cells (both primary endothelial cells and an endothelial cell line), via the hypoxia-selective 

reduction of NO2
- to NO. This is complemented by previous studies which showed that impaired 
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NO production in HUVECs leads to enhanced endothelial EV release (438). The oxygen-regulated 

subunit of HIF, HIF-1α, is stabilised only in cells exposed to hypoxic conditions, in contrast to the 

constitutively active β-subunit of HIF. Under normoxic conditions, the HIF-1α subunit is promptly 

and continuously degraded by the ubiquitin-proteasome system. Hydroxylation of proline 

residues (Pro402 and Pro564) within an oxygen-dependent degradation domain of HIF-1α allows the 

von Hippel-Lindau protein to bind, ubiquitinating the protein for degradation. However, the 

hydroxylation of these key proline residues is oxygen-dependent, hence under hypoxic conditions 

hydroxylation is impaired, leading to increased HIF-1α stability (454,471).  

Modulation of HIF-1a by NO is well documented (437,472–474). The mechanism of modulation is 

thought to involve the mitochondrial cytochrome c oxidase (CcO). NO can readily modulate the 

activity of CcO, and therefore the cells oxygen consumption. Competitive binding of NO under 

hypoxia inhibits CcO, allowing the redistribution of cellular oxygen. This leads to an increased 

availability for the oxygen dependent prolyl hydroxylase, and consequent degradation of HIF-1α 

(436,437). This effect has been mimicked by all inhibitors of mitochondrial respiration, indicating 

it is indeed dependent on an action within the respiratory chain (475). Interestingly, our data 

suggest that although HIF-1 is the master hypoxic regulator which governs hypoxia-induced EV 

release, under hypoxic conditions NO2
- is metabolised to NO, promoting the degradation of HIF-

1α and subsequent suppression of EV release. 

Conversely, there have also been some reports that NO can increase HIF-1α stability in normoxia 

(476–478). This accumulation of HIF-1α occurs rapidly (≈ 30 minutes), and occurs in a 

mitochondria-independent manner (475). The exact mechanism of this is poorly understood, 

although hypotheses include that stabilisation is a result of S-nitrosylation of thiol groups in HIF-

1α (479), or a result of free-radical formation (480); however, these remain controversial.  

3.6.3 Limitations 

There are several limitations associated with this chapter. Firstly, the endothelial cell line HECVs 

were used throughout the majority of this work. Although HECVs are an established cell line, their 

cellular physiology can alter over time, and may not be truly reflective of an in vivo scenario. 

Importantly, our main findings that hypoxia enhances EV release, which can subsequently be 

attenuated by NaNO2 addition, were also validated in primary HUVECs isolated directly from 

umbilical cord. Interestingly, HUVECs produced significantly less EVs per cell compared to the cell 

line. These differences may be simply due to physiological differences between cell lines and 

primary cells, or due to differences in cell culture medium (DMEM vs M199).  
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This chapter assessed EV production after 24 hours’ exposure to hypoxia. HIF-1α is said to be 

involved in acute adaptations to hypoxia (up to 24 hours). We did not assess increases in EV 

production at various timepoints in this study. Thus, future studies should assess EV production in 

hypoxia at several timepoints over a 24-hour period to elucidate the kinetics of EV release 

following hypoxia in endothelial cells.  Certain proteins, such as TNF-α, have rapid responses to 

hypoxia (approximately 2 hours), which may have returned to baseline after 24 hours. However, 

24-hour exposure was required to generate enough EVs for subsequent analysis.  

Finally, “normoxic” conditions within this chapter refer to a standard cell incubator conditions of 

95% air (approximately 21% O2) and 5% CO2. Arterial pO2 is typically between the range 10-14%, 

and thus, “normoxic” conditions used in this chapter may actually represent a marginally 

hyperoxic environment.  

3.6.4 Conclusions 

In summary, this chapter highlights the effect of hypoxia on EV production in endothelial cells. 

This increase is mediated selectively by HIF-1α, but not HIF-2α, confirmed by siRNA. The hypoxic 

enhancement in EV production can be attenuated via NO2
- derived NO. This attenuation is blocked 

by the addition of the xanthine oxidoreductase inhibitor allopurinol, preventing the reduction of 

NO2
-
 to NO. GSNO also reduced EV production in hypoxia, confirming the inhibition was NO-

mediated. Hypoxia exposure had no effect on the size of EVs produced, but reduced EVs within 

both the exosome and microvesicle range.  Finally, the activity of the calcium-dependent protease 

calpain, involved in cytoskeletal rearrangements, is upregulated in hypoxia.   
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4 RESULTS II: THE INFLUENCE OF HYPOXIA AND NITRITE 

ON THE FUNCTION OF ENDOTHELIAL-DERIVED 

EXTRACELLULAR VESICLES 
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4.1 Perspective 

Following the detailed investigation into the effect of hypoxia and NaNO2 on EV production by 

endothelial cells in Chapter 3 (Results I), the next question was whether NaNO2 treatment could also 

alter the biological function of EVs, or simply reduce the number produced.  Thus, this chapter utilises 

a series of functional experiments relating to coagulation, inflammation, and cell viability, in order to 

assess whether NO2
- may be able to modulate the pathogenic potential of EVs in vitro.   
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4.2 Introduction 

A reduction in oxygen availability leads to physiological adaptations by numerous cell types, resulting 

in differential expression of specific genes, often mediated by HIF. Hypoxia affects endothelial cellular 

physiology in a variety of ways, resulting in alterations in their role in coagulation, inflammation, and 

other pathophysiological processes, as outlined in section 1.4.2. Previous work from our own 

research group, and others, have established that hypoxia is a potent stimulator of EV production 

from various cell types (430,481,482). Despite changes in cellular adaptations to hypoxia being well 

documented, it remains unclear whether hypoxia alters the function of EVs produced under such 

conditions.  

Given that the bioactive cargo EVs harbour is typically reflective of the stimuli which triggered their 

release from the parent cell, it seems reasonable to assume that hypoxia-derived EVs may have 

altered in function in comparison to those derived from “normoxia” (305). Excitingly, evidence is 

beginning to emerge that this is indeed the case. A recent study by Gohner et al. assessed the 

coagulation capacity of EVs derived from syncytiotrophoblasts incubated under normoxic and hypoxic 

conditions (483). They found hypoxia-derived EVs led to elevated thrombin generation, and increased 

the rate of fibrinogenesis. They concluded that these effects were likely due to alterations in 

phenotype, but did not investigate this further. Additionally, a separate study concluded that hypoxia 

led to enhanced secretion of ovarian cancer cell-derived EVs with pro-coagulant TF-fVIIa activity, 

leading to accelerated activation of the extrinsic pathway of the coagulation cascade (484).  

Aside from coagulation, there is also evidence that hypoxia-derived EVs can mediate inflammatory 

responses. In vitro, a more intense and rapid inflammatory response was observed by peripheral 

blood mononuclear cells following incubation with hypoxic trophoblast-derived EVs, in comparison to 

normoxic controls. There is also in vivo evidence supporting this claim; healthy volunteers breathing 

hypoxic air for 80 minutes had significantly elevated levels of VCAM-1+ endothelial-derived EVs (445). 

Finally, there is accumulating evidence that hypoxic-EVs can also influence endothelial structure and 

function. Hypoxic exosomes from breast cancer cells have a significantly higher level of miR-210 than 

normoxic exosomes (430), which promotes endothelial cell tubulogenesis, and could thus represent a 

mechanism of tumour progression in response to hypoxia. Indeed, exosomes derived from hypoxic 

leukaemia cells have been shown to enhance tube formation in endothelial cells (485). Furthermore, 

EVs derived from rats exposed to hypoxia induced endothelial dysfunction, via a reduction in NO 

production and an increase in oxidative stress (486).  
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NO2
- is capable of eliciting vasoprotective effects via its reduction to NO, which is greatly accelerated 

in hypoxia. In murine models, NO2
- protects against hypoxic pulmonary arterial hypertension and 

ischemia-reperfusion damage, via its conversion to NO (487,488). Our research group has previously 

shown that low-dose NaNO2 can protect against ischemia-reperfusion injury in humans, only when 

given before the onset of ischemia (470). NO2
- can modulate platelet activation via its erythrocyte-

mediated reduction to NO, which is promoted by hypoxia (165). Endogenous NO2
- also regulates 

hypoxic vasodilation, via its reduction to NO, enhancing blood flow and matching O2 supply to the 

increased metabolic demands under hypoxic conditions. 

Taken together, I hypothesised that NaNO2, via an NO-based mechanism, may influence the function 

of HUVEC-derived EV isolated from hypoxic conditions.  
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4.3 Aims 

The aims of this chapter were to: 

1. Investigate the influence of NaNO2 on the coagulation capacity of hypoxic HUVEC-derived 

EVs.  

2. Assess the effect of these EVs on leukocyte adhesion to the endothelium 

3. Identify potential changes in expression of cellular adhesion molecules by the endothelium 

following incubation with EVs derived from hypoxia/normoxia, with and without NaNO2.  

4. Determine whether EVs can influence eNOS expression or post-translational eNOS 

modification (Serine-1177 and Threonine-495 phosphorylation) in HUVECs 

5. Evaluate whether these EVs are pro-apoptotic, and assess their ability to induce oxidative 

stress in HUVECs. 

6. Finally, examine the biogenic cargo of the EVs that may be upregulated in hypoxia and could 

explain any changes in function.  
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4.4 Methods 

4.4.1 Cell culture 

Primary HUVECs were isolated and cultured as detailed in section 2.1.2. Cells were counted as 

outlined in section 2.1.5.2.  

4.4.2 Cellular treatments 

HUVECs were treated with EVs derived from HUVECs that had been incubated under the following 

conditions: 21% O2, 21% O2 & NaNO2, 1% O2, and 1% O2 & NaNO2. Controls consisted of EV-free 

filtered PBS. NaNO2 was added to HUVECs as outlined in section 2.1.3. HUVECs were subjected to 

hypoxic conditions (1% O2, 24 hours) using an Invivo2 hypoxic workstation 400, as outlined in section 

2.1.4.  

4.4.3 EV Isolation 

EVs were isolated from HUVECs using differential ultracentrifugation as detailed in section 2.4.1. EV 

samples were stored at 4°C and used within 48-72 hours of isolation. 

4.4.4 EV concentration 

EV concentration was determined using NTA, as outlined in section 2.3. 5 x 60 second videos were 

recorded analysed and the mean was subsequently used in further analysis. Size distribution graphs 

were generated by totalling the number of EVs/cell in each 50 nm range (bin width).  

4.4.5 Cell viability and apoptosis 

Two assays were undertaken to assess the effect of EVs on HUVEC viability and apoptosis. EVs were 

added to HUVECs (final concentration of 2x108/mL) for 24 hours. A MTS assay was used to assess cell 

viability, and the Caspase-Glo© 3/7 assay was used to assess apoptosis, as outlined in sections 2.1.5.3 

and 2.1.5.4, respectively. 
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4.4.6 Electron microscopy 

Scanning electron microscopy was used to visualise the effect of HUVEC-derived EV on fibrin clot 

formation, as outlined in section 2.2.1. SEM was kindly performed by Miss Vanessa Evans of Swansea 

University.  

4.4.7 Reactive oxygen species detection 

The ability of EVs to induce oxidative stress within HUVECs was assessed using a DFCDA detection 

assay kit, as outlined in section 2.12. 

4.4.8 Leukocyte adhesion assay 

Leukcytes were isolated from whole blood of healthy volunteers, as outlined in section 2.8.1. The 

effect of EVs on the adhesion of leukocytes to the endothelium was assessed using an adhesion assay 

outlined in section 2.8.2. 

4.4.9 Western blot 

Western blotting was utilised to assess the effect of EVs on expression of total eNOS, and eNOS 

phosphorylation. Additionally, the expression of adhesion molecules on HUVECs was investigated. 

HUVECs were incubated with EVs (final concentration 2x108/mL) for 24 hours, before cells were lysed 

with ice-cold lysis buffer and frozen at -20°C. Western blotting was performed as outlined in section 

2.15. Details of antibody conditions and dilutions are given in Table 2.8.  

4.4.10 Rheology 

Rheology was used to quantify the organisation of fibrin clot formation and measure the time taken 

for the clot to form, as outlined in section 2.10. 
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4.4.11 Platelet aggregation 

Platelet activity was assessed using multiple electrode aggregometry, as outlined in section 2.9, with 

minor modifications. Whole blood was diluted 1:1 with EVs in PBS (final concentration 2x108/mL) and 

incubated at 37°C for 3 minutes. Samples were then stimulated with ADP/TRAP and the increase in 

electrical impedance recorded for 6 minutes.  

4.4.12 Thrombin activity 

The effect of EVs on thrombin activity was assessed using a thrombin activity assay kit, as outlined in 

section 2.11.  

4.4.13 Time resolved fluorescence 

Time resolved fluorescence was used to measure differences in protein expression between HUVEC-

derived EVs derived from hypoxia (1% O2) or normoxia (21% O2), with or without NaNO2 treatment, as 

outlined in section 2.5.  

4.4.14 Statistics 

Data were analysed using GraphPad Prism (version 5.0; GraphPad Software Inc., San Diego, USA). 

D'Agostino's K-squared test was used to check data for normality. For normally disturbed data, a 1-

way ANOVA was used followed by a Tukey’s test to compare all pairs of columns with each other. For 

non-normally distributed data, a Kruskal-Wallis test was used followed by a Dunns post-test. Results 

are expressed as mean ± SEM unless stated. A p-value of < 0.05 was regarded as statistically 

significant. 
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4.5 Results 

4.5.1 Platelet aggregation 

Platelet aggregation stimulated via the ADP receptor was significantly increased following whole 

blood incubation with 1% O2 EVs (888.0 ± 32.2 AU*min vs 647.2 ± 38.1 AU*min, p < 0.01) compared 

to control. 1% O2 EVs also increased platelet activity following stimulation by ADP in comparison to 

21% O2 EVs (671.5 ± 28.3 AU*min, p < 0.01) and 21% O2 & NaNO2 EVs (616.0 ± 44.9 AU*min, p < 

0.001). 1% O2 & NaNO2 EVs significantly reduced platelet aggregation stimulated via ADP in 

comparison to 1% O2 EVs (716.5 ± 44.3 AU*min vs 888.0 ± 32.2 AU*min, p < 0.001), respectively. 21% 

O2 EVs and 21% O2 & NaNO2
 EVs had no effect on platelet activity stimulated via ADP in comparison to 

control (21% O2 EVs: 671.5 ± 28.3 AU*min, 21% O2 & NaNO2
 EVs: 616.0 ± 44.9 AU*min, control: 647.2 

± 38.1 AU*min, p > 0.05) (Figure 4.1A). 

Following stimulation via the thrombin receptor, 1% O2 EVs were elevated in comparison to 21% O2 

derived EVs (922.2 ± 30.1 AU*min vs 641.2 ± 25.2 AU*min, p < 0.05), respectively. 1% O2 & NaNO2 EVs 

significantly reduced platelet aggregation in comparison to 1% O2 EVs (650.3 ± 45.4 AU*min vs 922.2 

± 30.1 AU*min, p < 0.05). EVs derived from normoxia had no effect platelet aggregation stimulated by 

TRAP compared to control (21% O2 EVs: 641.2 ± 25.2 AU*min, 21% O2 & NaNO2
 EVs: 612.3 ± 115.2 

AU*min, control: 616.8 ± 45.1 AU*min, p > 0.05) (Figure 4.1B).  
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Figure 4.1 The effect of HUVEC derived EVs on ADP- and TRAP- mediated platelet aggregation. HUVEC 

derived EVs were incubated with whole blood for 3 minutes, before platelets were stimulated with either 

ADP (A) or TRAP (B). Aggregation units calculated as area under the curve after 6 minutes (impedance:time). 

Control – EV-free filtered PBS. Group A – 21% O2 EVs, Group B – 21% O2 & NaNO2 EVs, Group C – 1% O2 EVs, 

Group D – 1% O2 & NaNO2 EVs. Results represent [n=6]. ***, ** and * reflect p < 0.001, 0.01 and 0.05, 

respectively. 
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4.5.2 Thrombin activity 

Thrombin activity in the plasma of healthy volunteers was not affected by 21% O2 EVs or 21% O2 & 

NaNO2
 EVs in comparison to control (21% O2 EVs: 128.9 ± 4.2 ng/mL, 21% O2 & NaNO2

 EVs: 131.6 ± 9.5 

ng/mL, control: 114.6 ± 15.6 ng/mL, p > 0.05). 1% O2 EVs significantly increased thrombin activity in 

comparison to both 21% O2 EVs and 21% O2 & NaNO2
 EVs (1% O2 EVs: 187.1 ± 14.8 ng/mL, 21% O2 EVs: 

128.9 ± 4.2 ng/mL, 21% O2 & NaNO2
 EVs: 131.6 ± 9.5 ng/mL, p < 0.05). 1% O2 & NaNO2 EVs did not 

significantly reduce thrombin activity in comparison to 1% O2 EVs alone (190.7 ± 18.1 ng/mL vs 187.1 

± 14.8 ng/mL, p > 0.05). 1% O2 & NaNO2
 EVs significantly increased thrombin activity in comparison to 

21% O2 EVs and 21% O2 & NaNO2 EVs (1% O2 & NaNO2
 EVs: 190.7 ± 18.1 ng/mL, 21% O2 EVs: 128.9 ± 

4.2 ng/mL, 21% O2 & NaNO2
 EVs: 131.6 ± 9.5 ng/mL, p < 0.05). Figure 4.2A shows differences in 

thrombin activity. Figure 4.2B shows increases in thrombin activity measures over 60 minutes. Figure 

4.2C shows a representative standard curve used to calculate thrombin activity.  

Figure 4.2 The effect of HUVEC-derived EVs on thrombin activity. A. Thrombin activity in plasma of healthy 

volunteers following a 60 minute incubation with HUVEC-derived EVs. B. Fluorescence was measured every 3 

minutes for 60 minutes, generating a thrombin activity curve. C. Thrombin activity was calculated using a standard 

curve generated by wells with a known thrombin concentration. Date are expressed as mean ± SEM. Control – EV-

free filtered PBS. Group A – 21% O2 EVs. Group B – 21% O2 & NaNO2 EVs. Group C – 1% O2 EVs. Group D – 1% O2 & 

NaNO2 EVs. Results reflect [n=8], ** and * reflect p < 0.01 and 0.05, respectively.  
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4.5.3 Fractal dimension (df) and clot formation time (TGP)  

Fractal dimension (df) was significantly elevated following the addition of 1% O2 EVs to whole blood, 

in comparison to control (df = 1.030 ± 0.0067 vs 1.00 ± 0.00, p < 0.001). These 1% O2 EVs also 

significantly increased df in whole blood in comparison to incubation with 21% O2 EVs, and 21% O2 & 

NaNO2 EVs (df = 1% O2 EVs: 1.030 ± 0.0067, 21% O2 EVs: 1.012 ± 0.0029, 21% O2 & NaNO2 EVs: 1.007 ± 

0.0027, p < 0.05 and p < 0.01, respectively). Interestingly, 1% O2 & NaNO2 EVs significantly reduced df 

in comparison to 1% O2 EVs alone (df = 1.005 ± 0.0017 vs 1.030 ± 0.0067, p < 0.001), respectively. Df 

was not significantly different between 21% O2 EVs and control (df = 1.012 ± 0.0030 vs 1.00 ± 0.00, p > 

0.05). NaNO2 treatment of HUVECs had no effect on the function of the EVs produced in 21% O2, with 

similar df measurements being observed (df = 21% O2 EVs: 1.012 ± 0.0030 vs 21% O2 & NaNO2 EVs: 

1.007 ± 0.0026, p > 0.05) (Figure 4.3A).                                    

Clot formation time (TGP) was significantly reduced by 21% O2 EVs in comparison to control (TGP = 

221.4 ± 19.71 seconds vs 273.4 ± 12.31 seconds, p < 0.05), respectively. 21% O2 & NaNO2
 EVs had no 

effect on TGP in comparison to the control, but was significantly increased in comparison to 21% O2 

EVs (TGP = 278.6 ± 7.78 secs vs 221.4 ± 18.71 secs, p < 0.05). 1% O2 EVs significantly reduced TGP in 

comparison to control (TGP = 181.6 ± 8.98 seconds vs 273.4 ± 12.31 seconds, p < 0.05), respectively. 

Interestingly, 1% O2 EVs did not significantly alter TGP in comparison to 21% O2 EVs (TGP = 181.6 ± 8.98 

seconds vs 221.4 ± 19.71 seconds, p > 0.05), respectively. 1% O2 & NaNO2  EVs appeared to reverse 

the effect of 1% O2 EVs on TGP, with 1% O2 & NaNO2 EVs restoring TGP to a similar level as the control 

(TGP = control: 273.4 ± 12.31 seconds, 1% O2 & NaNO2 EVs: 250.8 ± 4.2 seconds vs 1% O2 EVs: 181.6 ± 

8.99 seconds, p < 0.01) (Figure 4.3B).  

  



 

  

162 
 

 

4.5.4 Electron microscopy 

Scanning electron microscopy (Figure 4.4) highlighted structural differences in fibrin clots produced 

following whole blood incubation with HUVEC-derived EV isolated from various conditions. The 

addition of EV appeared to lead to their incorporation into the fibrin clot in all treatments, with 

multiple sub-micron particles visibly attached to the fibres. Clots formed in the presence of 1% O2 EVs 

and 1% O2 & NaNO2 EVs appear denser, with thicker fibrin strands. 21% O2 & NaNO2 EVs appear to 

reduce the density of the clot in comparison to normoxic EVs.

Figure 4.3 The effect of hypoxia and NaNO2 treated HUVEC-derived EVs on df and TGP. A. EVs were added to 

whole blood and incubated for 15 minutes before blood was tested to obtain the df. Results are normalised to 

an EV-free PBS control. B. TGP represents the time taken for a blood clot to form, in seconds. Results represent 

mean ± SEM. Control – EV-free filtered PBS. Group A – 21% O2 EVs. Group B – 21% O2 & NaNO2 EVs. Group C – 

1% O2 EVs. Group D – 1% O2 & NaNO2 EVs. Results represent [n=5]. ***, ** and * reflect p < 0.001, 0.01 and 

0.05, respectively.  
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Figure 4.4 Typical scanning electron micrographs of fibrin clots. HUVEC derived EVs appear to be incorporated within the fibrin network. Control – Filtered 

PBS. Group A – 21% O2 EVs. Group B – 21% O2 & NaNO2 EVs. Group C – 1% O2 EVs. Group D – 1% O2 & NaNO2 EVs. The magnification bar is 5 µm for all 

images, shown in 500 nm increments. Images represent [n=3]. 
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4.5.5 Leukocyte Adhesion 

HUVEC incubation with TNF-α significantly elevated leukocyte adhesion in comparison to all other 

treatments (6.76 ± 0.54 %, p < 0.001). Leukocyte adhesion was significantly elevated following HUVEC 

incubation with 1% O2 EVs in comparison to control (3.65 ± 0.79% vs 0.64 ± 0.13 %, p < 0.001). These 

1% O2 EVs also significantly increased leukocyte adhesion in comparison to 21% O2 EVs (3.65 ± 0.79 % 

vs 0.84 ± 0.20 %, p < 0.01) and 21% O2 & NaNO2
 EVs (0.82 ± 0.20 %, p < 0.001). 1% O2 & NaNO2 EVs 

were not significantly different to 1% O2 EVs (3.65 ± 0.79 % vs 2.94 ± 0.29 %, p > 0.05), respectively 

(Figure 4.5). Figure 4.6 displays typical images captured following incubation with EVs. 

Figure 4.5 The effect of hypoxia and/or nitrite treated HUVEC-derived EVs on leukocyte adhesion. HUVECs were 

pre-incubated with EVs for 6 hours (TNF-α for 1 hour). Fluorescence microscopy was used to visualise leukocyte 

adhesion to endothelial cells. Control – Filtered PBS. Group A – 21% O2 EVs. Group B – 21% O2 & NaNO2 EVs. Group 

C – 1% O2 EVs. Group D – 1% O2 & NaNO2 EVs. Results represent [n=6]. Data are expressed as mean ± SEM. ***, ** 

and * reflect p < 0.001, 0.01 and 0.05, respectively.  
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Figure 4.6 The effect of HUVEC-derived EV on leukocyte adhesion to the endothelium. Typical images obtained using fluorescence microscopy. Fresh 

leukocytes were isolated from whole blood and stained with Calcein red-orange. Leukocytes were incubated with HUVECs for 1 hour before HUVECs 

were washed with Krebs-BSA. Axiovision software was used to take high resolution images of each condition. A – 21% O2 EV treated HUVECs. B - 21% 

O2 & NaNO2 EV treated HUVECs. C - 1% O2 EV treated HUVECs. D - 1% O2 & NaNO2 EV treated HUVECs. Control HUVECs were incubated with filtered 

PBS.  
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4.5.5.1 Adhesion molecule expression 

Having demonstrated an increase in leukocyte adhesion, the effect of EVs on HUVEC adhesion 

molecule expression was investigated.  Western blot analysis revealed that ICAM-1 was significantly 

elevated in HUVECs incubated with 1% O2 EVs in comparison to both 21% EVs, and 21% O2 & NaNO2 

EVs (1% O2 EVs: 0.36 ± 0.90 ADU vs 21% O2 EVs: 0.04 ± 0.01 ADU, 21% O2 & NaNO2 EVs: 0.01 ± 0.02 

ADU, p < 0.05). No differences in ICAM-1 expression were observed between HUVECs incubated with 

1% O2 EVs and 1% O2 & NaNO2 EVs (0.36 ± 0.90 ADU vs 0.22 ± 0.10 ADU, p > 0.05). Minimal amounts 

of ICAM-1 expression were observed in HUVEC lysates treated with normoxic EVs, in addition to 

control (filtered PBS) treatment (Figure 4.7A, 4.7B).  

VCAM-1 expression was elevated following exposure to 1% O2 EVs in comparison to HUVEC incubated 

with 21% O2 EVs (0.76 ± 0.05 ADU vs 0.32 ± 0.07 ADU, p < 0.01), 21% O2 & NaNO2 EVs (0.26 ± 0.04 

ADU, p < 0.01) and control (0.34 ± 0.11, p < 0.05). VCAM-1 expression was not significantly altered 

following incubation with 1% O2 & NaNO2 EVs in comparison to 1% O2 EVs alone (0.76 ± 0.05 ADU vs 

0.62 ± 0.09 ADU, p > 0.05), respectively (Figure 4.7C, 4.7D). 

Similarly, E-selectin expression was elevated in HUVECs exposed to 1% O2 EVs compared to 21% O2 

EVs (0.70 ± 0.01 ADU vs 0.32 ± 0.02 ADU, p < 0.01), 21% O2 & NaNO2 EVs (0.30 ± 0.03 ADU, p < 0.01) 

and control (0.30 ± 0.10 ADU, p < 0.05), respectively. E-selectin levels were similar between HUVECs 

incubated with 1% O2 EVs and 1% O2 & NaNO2 EVs (0.70 ± 0.01 ADU vs 0.54 ± 0.03 ADU, p > 0.05) 

(Figure 4.7E, 4.7F).  

P-selectin expression was elevated in HUVECs incubated with 1% O2 EVs compared to 21% O2 EVs 

(0.65 ± 0.08 ADU vs 21% O2 EVs: 0.27 ± 0.01 ADU, p < 0.05), 21% O2 & NaNO2 EVs (0.19 ± 0.04 ADU, p 

< 0.05) and control (0.22 ± 0.08 ADU, p < 0.05). P-selectin levels did not differ between HUVECs 

incubated with 1% O2 EVs and 1% O2 & NaNO2 EVs (0.65 ± 0.08 ADU vs 0.59 ± 0.14, p > 0.05), 

respectively (Figure 4.7G, 4.7H).   

Finally, PECAM-1 expression remained unaltered following HUVEC incubation with hypoxic EVs, with 

no significant differences being observed (1% O2 EVs: 0.87 ± 0.01 ADU, 1% O2 & NaNO2 EVs: 0.67 ± 

0.24 ADU, 21% O2 EVs: 0.79 ± 0.06 ADU, 21% O2 & NaNO2 EVs: 0.74 ± 0.04 ADU, control: 0.76 ± 0.04, p 

> 0.05 for all comparisons) (Figure 4.7I, 4.7J).   
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Figure 4.7 Adhesion molecule expression. Representative Western blots and densitometry for HUVECs 

incubated with various EV treatments. Values were normalised to TNFα treated HUVECs. Key: 1 – TNFα treated 

HUVECs, 2 – 1% O2 EV treated HUVECs, 3 - 1% O2 & NaNO2 EV treated HUVECs, 4 - 21% O2 EV treated HUVECs, 5 

- 21% O2 & NaNO2 EV treated HUVECs, 6 – control (filtered PBS) treated HUVECs. Results represent [n=4]. Data 

are represented as mean ± SEM. ** and * represent p < 0.01 and 0.05, respectively. 
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4.5.6 Viability and apoptosis 

EVs derived from HUVECs incubated in both hypoxia and normoxia, with or without NaNO2 

treatment, had no effect on cell viability in comparison to control (control: 1.56 ± 0.03, 21% O2 EVs: 

1.49 ± 0.03, 21% O2 & NaNO2 EVs: 1.55 ± 0.17, 1% O2 EVs: 1.53 ± 0.14 ADU, 21% O2 & NaNO2 EVs: 1.40 

± 0.19, p > 0.05 for all comparisons). Hydrogen peroxide (as a positive control) significantly reduced 

cell viability compared to EV treatments (0.56 ± 0.03, p < 0.001 for all comparisons) (Figure 4.8A).  

Similarly, EVs did not significantly alter apoptosis in HUVECs, with similar levels of caspase 3/7 activity 

being observed between treatment groups (control: 984.3 ± 117.4 RLU, 21% O2 EVs: 1011.0 ± 86.9 

RLU, 21% O2 & NaNO2 EVs: 965.0 ± 47.0 RLU, 1% O2 EVs: 920.3 ± 42.6 RLU, 21% O2 & NaNO2 EVs: 

981.5 ± 112.6 RLU, p > 0.05 for all comparisons). Hydrogen peroxide significantly increased caspase 

3/7 activity compared to EV treatments (5553.0 ± 94.1 RLU, p < 0.001 for all comparisons) (Figure 

4.8B).  

Figure 4.8 The effect of EVs on endothelial cell viability (A) and apoptosis (B). EV treatment had no effect on both 

cell viability and apoptosis (caspase 3/7 activity), regardless of their origin. Results represent [n=5]. *** reflects p < 

0.001. Control – Filtered PBS. Group A – 21% O2 EVs. Group B – 21% O2 & NaNO2 EVs. Group C – 1% O2 EVs. Group 

D – 1% O2 & NaNO2 EVs.  
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4.5.7 Oxidative stress 

Incubation of HUVECs with EVs did not significantly alter oxidative stress within cells in comparison to 

the control (control: 1617 ± 166 RFU, 21% O2 EVs: 1695 ± 165 RFU, 21% O2 & NaNO2 EVs: 1557 ± 221 

RFU, 1% O2 EVs: 1915 ± 147 RFU, 1% O2 & NaNO2 EVs: 1950 ± 90, p > 0.05 for all comparisons). 

Incubation of HUVECs with tert-Butyl hydroperoxide (TBHP) as a positive control did significantly 

induce oxidative stress in HUVECs in comparison to the control (6314 ± 404 RFU vs. 1617 ± 166 RFU, p 

< 0.001) (Figure 4.9).  

  

Figure 4.9 The effect of EVs on oxidative stress in endothelial cells. EVs derived from HUVECs incubated under 

hypoxia/normoxia, with or without NaNO2 treatment, had no effect on inducing oxidative stress in endothelial 

cells. Control – Filtered PBS. Group A – 21% O2 EVs. Group B – 21% O2 & NaNO2 EVs. Group C – 1% O2 EVs. Group D 

– 1% O2 & NaNO2 EVs. TBHP - tert-Butyl hydroperoxide. Results represent [n=6]. Data are expressed as mean ± 

SEM. *** reflects p < 0.001.  
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4.5.8 eNOS function 

Western blotting revealed that incubation of HUVECs with EVs had no effect on total eNOS expression 

in comparison to control treatment (1% O2 EVs: 1.12 ± 0.22 ADU, 1% O2 & NaNO2 EVs: 1.15 ± 0.25 

ADU, 21% O2 EVs: 1.07 ± 0.15 ADU, 21% O2 & NaNO2 EVs: 1.1 ± 0.07 ADU, control: 1.0 ± 0.0, p > 0.05 

for all comparisons) (Figure 4.10A, 4.10B).  

Similarly, no changes in the Serine-1177 phosphorylation of eNOS were observed following 

incubation with EVs in comparison to control (1% O2 EVs: 1.02 ± 0.17 ADU, 1% O2 & NaNO2 EVs: 1.04 ± 

0.11 ADU, 21% O2 EVs: 0.97 ± 0.23 ADU, 21% O2 & NaNO2 EVs: 1.08 ± 0.19 ADU, control: 1.0 ± 0.0, p > 

0.05 for all comparisons) (Figure 4.10C, 4.10D). 

Additionally, no changes in Threonine-495 phosphorylation of eNOS were seen following incubation 

with EVs (1% O2 EVs: 1.07 ± 0.22 ADU, 1% O2 & NaNO2 EVs: 1.22 ± 0.06 ADU, 21% O2 EVs: 1.23 ± 0.25 

ADU, 21% O2 & NaNO2 EVs: 1.02 ± 0.09 ADU, control: 1.0 ± 0.0, p > 0.05 for all comparisons) (Figure 

4.10E, 4.10F). 
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Figure 4.10 The effect of EVs on eNOS expression and phosphorylation in HUVECs. Representative 

Western blots and corresponding densitometry for HUVECs incubated with various EV treatments. Values 

were normalised to control treated HUVECs. (A,B) Total eNOS. (C,D) S1177 P-eNOS. (E,F) T495 P-eNOS. 

Key: 1 – 1% O2 EV treated HUVECs, 2 - 1% O2 & NaNO2 EV treated HUVECs, 3 - 21% O2 EV treated HUVECs, 

4 - 21% O2 & NaNO2 EV treated HUVECs, 5 – control (filtered PBS) treated HUVECs. Results represent 

[n=3]. Data are represented as mean ± SEM.  
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4.5.9 Characterisation of EV 

No significant differences in the levels of vWF or TF were observed between EV samples. 

Thrombomodulin and TFPI levels were both significantly reduced in 1% O2 EVs in comparison to 21% 

O2 EVs. NaNO2 treated HUVECs had no effect on thrombomodulin and TFPI expression in both 

normoxic EVs and hypoxic EVs (Figure 4.11A). Appendix 1.1A summarises these results. 

1% O2 EVs had significantly elevated levels of TNF-α in comparison to 21% O2 EVs. 1% O2 & NaNO2 EVs 

had significantly lower TNF-α levels compared to 1% O2 EVs. IL-6 levels were also elevated in 1% O2 

EVs compared to 21% O2 EVs. NaNO2 had no effect on these levels in both normoxia and hypoxia. The 

transcription factor NF-κB was also elevated in 1% O2 EVs compared to 21% O2 EVs (Figure 4.11B). 

Appendix 1.1B summarises these results. 

Analysis of adhesion molecule expression in HUVEC-derived EVs revealed no significant differences in 

VCAM-1, ICAM-1, PECAM-1, P-selectin and E-selectin levels between EVs isolated from hypoxia, 

normoxia, with or without NaNO2 treatment (Figure 4.11C). Appendix 1.1C summarises these results. 

Finally, levels of exosomal markers (CD9, Alix and TSG101) and the endothelial marker (CD144) were 

similar within all EV groups. HIF-1α was significantly higher in 1% O2 EVs in comparison 21% O2 EVs 

(Figure 4.11D). Appendix 1.1D summarises these results.  
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Figure 4.11 The effect of hypoxia and NaNO2 on the protein content of HUVEC-derived EV. A. The 

relative levels of coagulation proteins. B. Inflammatory cytokines and transcription factors. C. Levels of 

adhesion molecule expression. D. Levels of exosomal, endothelial and hypoxia markers. Proteins were 

detected using a streptavidin-europium conjugate and measured using time-resolved fluorescence. 

Control – Filtered PBS. Group A – 21% O2 EVs. Group B – 21% O2 & NaNO2 EVs. Group C – 1% O2 EVs. 

Group D – 1% O2 & NaNO2 EVs. Data are expressed as mean ± SEM. Results reflect n=5. ***, ** and * 

reflect p < 0.001, 0.01 and 0.05, respectively.  
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4.6 Discussion 

4.6.1 Key Findings 

 EVs derived from hypoxic HUVECs significantly augment ADP- and TRAP- mediated platelet 

aggregation, an effect which is not observed in EVs derived from hypoxic HUVECs treated 

with NaNO2. 

 EVs derived from hypoxic HUVECs increase thrombin generation in comparison to normoxia-

derived EVs.  

 Hypoxic EVs increase the clot microstructure (as measured by df), and the speed of formation 

of the clot. This effect was not seen in EVs derived from hypoxia and NaNO2 treated HUVECs. 

 Leukocyte adhesion is enhanced following incubation of endothelial cells with hypoxic EVs. 

These EVs increase the expression of various adhesion molecules (ICAM-1, VCAM-1, E-

Selectin, P-Selectin) in comparison to normoxic EVs.  

 Finally, analysis of the biogenic cargo of the EVs revealed hypoxia increases the expression of 

numerous inflammatory markers (TNF-α, IL-1α, IL-6, and NF-κB) and decreases 

thrombomodulin and TFPI, proteins involved in modulation of the coagulation cascade. 

4.6.2 Main discussion 

This chapter revealed that EVs derived from hypoxic conditions exhibit enhanced pathological 

potential in comparison to EVs derived from normoxic conditions. In vivo, the presence of an 

atherosclerotic plaque in the wall of an artery reduces the perfusion of downstream tissues. Ischemia 

is defined as the inability of the vasculature to supply adequate O2 and nutrients to tissues. This, in 

turn, leads to tissue hypoxia (reduced oxygen), or in severe cases, anoxia (absence of oxygen).  

Indeed, EVs produced by cells under these challenging conditions appear to have a differential 

function in a variety of pathological scenarios, in comparison to EVs released under “healthy” 

normoxic conditions.  

EVs derived from hypoxic conditions exhibited potent pro-coagulant activity, with increases in clot 

microstructure being observed. Furthermore, the time taken for the formation of a blood clot was 

reduced following hypoxic EV incubation. The mechanical properties of blood clots are essential for 

the prevention of blood loss. It is thought that clots composed of compact fibrin strands are more 

resistant to lysis, and can predispose individuals to thrombotic events (489–493). Indeed, alterations 
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in clot structure have been implicated in various thrombotic diseases, including ischemic stroke 

(489,492), heart failure (494) and CAD (495,496). The structural composition of the clot defines its 

fibrinolytic properties, with a compact, tight fibrin network suppressing fibrinolytic components from 

penetrating the clot. Conversely, a loose structure is more susceptible to lysis due to high plasmin 

penetration (497,498). Thus, hypoxic EVs promote the formation of a clot which could increase the 

risk of future thrombotic events. These results are in agreement with other findings in this chapter, 

including the observations that hypoxic EVs can enhance both platelet aggregation to an artificial 

electrode, and thrombin generation, in comparison to EVs derived from normoxia. 

Scanning electron microscopy revealed small particles between 200-500 nm in diameter are 

incorporated into fibrin clots. These spherical particles are attached to fibrin strands, but are not 

visible in the fibrin clot formed in the presence of the PBS control, suggesting they may be HUVEC-

derived EVs. The fibrin clot formed in the presence of hypoxic EVs appears denser, and thus may be 

more resistant to fibrinolysis. Previous work by Weisel et al has shown that platelet-derived EVs 

attach to fibrin and incorporate themselves within the clot network, altering the clot microstructure 

(337).  

Hypoxia has previously been shown to modulate the expression of various proteins involved in 

coagulation in cells. TF is upregulated in rat glioma cell lines following hypoxia exposure (80). 

Similarly, PAI-1, which inhibits the degradation of fibrin clots, is also upregulated in hypoxia, 

promoting the stability of fibrin clots (81). In endothelial cells, hypoxia exposure has been shown to 

enhance the expression of TF (76), and decrease the expression of thrombomodulin (78) and TFPI 

(499). Characterisation of the EVs in this chapter suggests that EVs reflect the conditions and 

character of their parent cells, as suggested by Van der pol et al (305). We observed significant 

reductions in both TFPI and thrombomodulin levels in hypoxic EVs in comparison to those derived 

from normoxia. We also observed small increases in TF in hypoxic EVs, although this was not 

statistically significant. Such modulation of gene expression in hypoxia is largely mediated by HIF. 

Indeed, HIF has been shown to repress TFPI expression by directly binding to the hormone response 

element (HRE) (499,500). The effect of hypoxia on TF expression remains to be fully elucidated, 

however there is evidence to suggest that HIF may regulate TF expression in some capacity (501,502). 

It is possible that changes in the levels of these molecules are responsible for the increases in pro-

coagulant activity observed in hypoxic EVs. 
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Interestingly EVs derived from hypoxic HUVECs incubated with NaNO2 did not exhibit the same pro-

coagulant activity as EVs derived from hypoxic HUVECs alone, suggesting a protective role for NO2
-.  

However, the biogenic cargo did not alter between EVs derived from hypoxic HUVECs with or without 

NaNO2 pre-treatment. No differences in levels of vWF, TF, thrombomodulin or TFPI were observed in 

this chapter. This is in contrast to other studies which have shown that increases in NO bioavailability 

can reduce the expression of TF in endothelial cells, and therefore the pro-thrombotic phenotype of 

the cell (503). It is possible that reductions in the cellular expression of TF in HUVECs were not 

translated into the EVs produced, however the mechanism underpinning the protective effect of NO2
-
 

against the production of pro-coagulant EVs in hypoxia remains elusive. The high level of PS exposure 

on the surface of EVs is thought to be highly pro-coagulant, providing a negatively charged surface for 

formation of the prothrombinase complex (453). PS exposure is in turn mediated by the calcium- 

dependent floppase and scramblase membrane bound enzymes (236). NO elicits many of its effects, 

including modulation of platelet activation and vasodilation, via a reduction in intracellular calcium 

(504). Thus NO2
- derived NO may have elicited its protective effects via a reduction in PS exposure on 

the surface of EVs produced. The anti-platelet effects of NO2
-
 are already well documented (162,505), 

however this chapter extends these observations to an additional protective role of NO2
-
 in the 

prevention of the production of pro-coagulant EVs under hypoxic conditions.  

Aside from their influence on coagulation, hypoxic EVs also enhanced leukocyte adhesion to the 

endothelium. Extravasation is a pivotal stage in the formation of atherosclerotic plaques, allowing 

leukocytes to move through the endothelium and engulf the deposited LDL, leading to foam cell 

formation, the hallmark of the “fatty streak” (506). This study observed increases in the expression of 

numerous adhesion molecules (VCAM-1, ICAM-1, E-selectin and P-selectin) following incubation of 

HUVEC with hypoxic EVs. EVs derived from atherosclerotic plaques are capable of transferring ICAM-1 

to endothelial cells (362). Adhesion molecules were present on EVs, but did not differ depending on 

the conditions of their parental cell. Interestingly, exosome-bound ICAM-1 has been shown to bind 

leukocytes and exhibit anti-leukocyte adhesion activity, suggesting EVs may be capable of both 

positively and negatively regulating leukocyte adhesion (507).  

One possible explanation for the effect of hypoxic EVs on leukocyte adhesion is the increased levels of 

pro-inflammatory cytokines TNF-α, IL-1α and IL-6. These cytokines are capable of activating NF-κB 

(508–510), which itself was also upregulated in hypoxic EVs. NF-κB is a well-known ubiquitous 

transcription factor involved in the regulation of many inflammatory genes. Indeed, activation of the 

NF-κB pathway has been shown to increase the expression of ICAM-1 (511), VCAM-1 (512), E-selectin 
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(513) and P-selectin (514), by binding to specific binding motifs within their promoters. Interestingly, 

endothelial EVs have previously been shown to bind to and activate monocytes directly, increasing 

ICAM-1 expression and drastically increasing transendothelial migration (515). However, in this 

chapter, EVs were incubated with endothelial cells which were washed thoroughly prior to the 

addition of leukocytes, so this mechanism is unlikely to explain the effects observed.  

NaNO2 treatment of HUVECs did not affect the cargo of the EVs produced, with similar levels of pro-

inflammatory cytokines present on EVs derived from hypoxia alone. This is perhaps mirrored in the 

similar level of leukocyte adhesion to endothelial cells following incubation with both 1% O2 EVs and 

1% O2 & NaNO2 EVs. Indeed, the expression of adhesion molecules was similar between HUVECs 

incubated with these EVs. NO has previously been shown to modulate the effects of NF-κB, by post-

translational modification. Specifically, NO can modify a conserved C62 residue by S-nitrosylation, 

inhibiting the ability of NF-κB to bind to promoters (99). Furthermore, NO can induce and stabilize the 

NF-κB inhibitor IκBα (100). It is well documented that NO can modulate leukocyte recruitment via this 

mechanism in endothelial cells (97,516,517). However, this was not mirrored in the effects of EVs on 

leukocyte adhesion, with EVs derived from NaNO2 treated HUVECs not altering the extent of 

leukocyte adhesion in comparison to EVs derived from cells without NaNO2 treatment.  

EVs derived from all conditions had no effect on viability and apoptosis in comparison to the control. 

When cells are exposed directly to hypoxia, the severity and length of exposure determines whether 

cells become apoptotic, or adapt and survive (518). Acute hypoxia (≤24 hours) raises intracellular 

calcium to a level considered too low to induce apoptosis (519). However, the PS exposure that 

occurs as a result of this is commonly used as a signal for macrophages to engulf the cell (520). EVs 

derived from hypoxia did not influence apoptosis or viability in endothelial cells, suggesting the 

absence of any apoptotic signals within the vesicles. In contrast to this, monocyte-derived EVs have 

previously been shown to induce apoptosis in HUVECs via caspases 3, 6 and 7 (521). Additionally, EVs 

did not alter oxidative stress within endothelial cells. Other studies have shown that endothelial-

derived EVs are capable of affecting angiogenesis in vitro, via an increase in superoxide production 

(522). Furthermore, these EVs have been shown to express NADPH oxidative subunit p22phox, and are 

capable of producing superoxide directly (523). EVs derived from hypoxia/reoxygenation-treated 

HUVECs have also been shown to be pro-apoptotic, pro-oxidative and directly pathogenic to 

cardiomyocytes in vitro (524). These effects were mediated by the ability of EVs to phosphorylate p38 

and JNK1/2. Despite this, there is no evidence within this chapter that EVs, regardless of pre-

treatment, have any effect on cell viability, apoptosis, or oxidative stress.  
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Endothelial EVs have also been shown to impair endothelial function, diminishing acetylcholine-

induced vasorelaxation and NO production by rat aortic rings (522). Hypoxia has previously been 

shown to modulate eNOS expression, via destabilising eNOS mRNA and subsequently decreasing 

transcription of the gene (88). However, post-translational modifications have also been reported, 

including a reduction in the phosphorylation site Serine-1177, and an increase in phosphorylation at 

the inhibitory site Threonine-495 (89,90). However, any cellular adaptations of eNOS activity in 

hypoxia were not transferred via the EVs produced, as EVs had no effect on eNOS expression when 

incubated with HUVECs.  

4.6.3 Limitations 

Firstly, this chapter used the blood of healthy volunteers when analysing the effects of EVs on 

coagulation. This sample may not be truly reflective of a diseased individual, which may have altered 

properties which in turn may have influenced coagulation measures. Secondly, the level of PS 

exposure on EVs was not measured, which may have mediated some of the effects on coagulation 

observed in this study. Previous colleagues have observed no differences in Annexin V+ between 

normoxia and hypoxia-derived EVs (525), however the effect of NO2
-  was not investigated here.  

Additionally, no mRNA or miRNA analysis was undertaken on the content of the EVs used in this 

chapter. This is a rapidly expanding area of research within the EV field which may be responsible, at 

least in part, for the alterations in expression of adhesion molecules observed in this chapter. Future 

studies should investigate how hypoxia and NaNO2 treatment of HUVECs may alter the genetic 

content of the EVs released.  
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4.6.4 Conclusions 

In summary, this chapter highlights the pro-coagulant and pro-inflammatory effects of hypoxia-

derived endothelial EVs. Furthermore, the addition of NaNO2 to hypoxic HUVECs appears to partially 

alleviate some of the pro-coagulant effects of the EVs produced, although this had no effect on the 

ability of EVs to influence leukocyte adhesion. EVs derived from HUVECs incubated under normoxia 

have no effect on coagulation or inflammation. Additionally, HUVEC-derived EVs have no effect on 

endothelial cell function; with no influence on eNOS expression, oxidative stress, or overall viability. 

Taking these results, future studies should assess the effect of NO3
- supplementation in CVD patients 

on the function of circulating EVs.  
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5 RESULTS III: THE EFFECT OF CHRONIC DIETARY 

NITRATE SUPPLEMENTATION ON EXTRACELLULAR 

VESICLES IN HEALTHY VOLUNTEERS 
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5.1 Perspective 

At the time of investigation, there was limited data on the effect of chronic dietary NO3
- 

supplementation on plasma NO metabolites (NO3
-, NO2

- and RSNO). Thus, in collaboration with 

the Norwegian University of Science and Technology, I investigated the effect of NO3
- 

supplementation (in the form of beetroot juice (BR juice)) on NO metabolites and EV 

concentration in healthy volunteers, over a 6 day period. This would allow us to investigate 

whether the results seen in the in vitro model used in previous chapters could be mirrored in an in 

vivo scenario. This study also investigated differences between acute and chronic plasma NO 

metabolite changes, and parallel changes in circulating EV number, which would be important for 

future use in CAD patients.  
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5.2 Introduction 

The vascular endothelium was once considered the inactive packaging of the vascular network, 

with no particular functions other than selective permeability to water and electrolytes. Today, 

the endothelium is thought of as a large, endocrine organ with a wide range of homeostatic 

functions, capable of responding to environmental changes (418). Exposure to cardiovascular risk 

factors, or mechanical injury, can compromise endothelial cells leading to their dysfunction. 

Endothelial dysfunction has been linked with an increase in endothelial-derived EVs (353). 

Endothelial-derived EVs have previously been shown to independently predict cardiovascular 

events in CAD patients (526).  

Given the growing body of evidence for EVs playing a functional role in the pathogenesis of 

various disease types, they represent an attractive target for therapeutic intervention. Thus far, 

the majority of research within the EV field has sought to characterise and fully elucidate the roles 

of EVs from various cellular origins within a range of disease states (527,528). However, there 

have been a small number of studies exploring the effect of several different interventions 

targeting EV production, both in vitro and in vivo. 

A study by Tramonano et al. in 2004 assessed the effect of statins on EV concentration. In vitro, 

fluvastatin was shown to suppress TNF-α induced endothelial EV release (529). In this study, the 

Rho kinase inhibitor Y-27632 reproduced the effects seen by fluvastatin, suggesting a possible role 

for this pathway. Inactivation of the Rho/Rho kinase pathway indeed leads to impaired actin 

cytoskeletal organisation, which in turn leads to suppression of EV release (243). NO elicits many 

of its effects through cGMP/PKG signalling, with PKG phosphorylating Rho kinase, thus regulating 

Rho-mediated effects on the cytoskeleton (530,531). However, a separate group have since 

investigated the effect of cholesterol-lowering drugs on EV generation in vivo in CAD patients, 

where no significant changes were observed in the amount of circulating endothelial or platelet-

derived EVs following simvastatin or ezetimibe treatment (532). 

A second intervention that has been investigated involved the administration of dietary flavanols 

to CAD patients over a 30 day period (533). They found endothelial-derived EVs significantly 

decreased following ingestion of a “high flavanol” drink but remained unchanged following a “low 

flavanol” drink. The mechanism of this reduction was not described; however, it is possible that 

the reduction may be mediated by an enhancement in NO bioavailability, thus improving 

endothelial function. The modulation of NO bioavailability by flavanoids has been well 

documented previously, thought to be due to an increase in eNOS activity (534–536).  
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Interestingly, various lifestyle alterations have been investigated as to their effect on EV 

concentration. A 6 month aerobic-exercise training intervention successfully reduced both 

endothelial-derived EVs and the inflammatory mediator IL-6 in African Americans (537). The 

positive changes in inflammatory markers in this study were coupled with an increase in flow-

mediated dilation (FMD). FMD is, at least in part, mediated by NO (538). Aerobic exercise is well 

documented to increase NO bioavailability (539–542), and thus may offer some mechanistic 

explanation as to the results seen in this study.  

Finally, ingestion of a Mediterranean diet for 4 weeks has been shown to reduce total circulating 

EVs in elderly subjects. This diet was also shown to reduce endothelial damage and improve the 

regenerative capacity of the endothelium (543). Typically, a Mediterranean diet consists of NO3
- 

rich vegetables (125). Indeed, the diet used in this study included significant amounts of swiss 

chard, a vegetable known for its high NO3
- content, as demonstrated by its inclusion as a key 

ingredient in many dietary NO3
- supplements widely used in sports and exercise medicine.  

The unifying link between these interventions appears to be increases in NO bioavailability. 

Despite this, there are currently no studies assessing the effect of NO3
- supplementation on EV 

production. Indeed, impaired NO production in HUVECs has previously been shown to enhance EV 

generation (438). NO3
- supplementation offers a direct route of greatly increasing NO 

bioavailability via conversion to NO2
-, and other bioactive NO metabolites (124,544). Additionally, 

no study has assessed the effect of long-term NO3
- supplementation on RSNO formation in 

humans, with only acute increases being observed following a one-off dose of KNO3 (545). 

However, 7 days of NO3
- administration in mice has been shown to lead to significant increases in 

RSNO (546).  

Here, I hypothesised that dietary NO3
- supplementation would increase plasma NO metabolites 

and subsequently reduce circulating EVs in healthy volunteers.   
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5.3 Aims 

The aims of this chapter were to 

1. Investigate the effect of 6 days NO3
- supplementation on NO metabolites (NO3

-, NO2
- and 

RSNO) in healthy volunteers 

2. Assess the effect of this supplementation on the concentration and size of circulating 

plasma EVs 

3. Analyse the protein content of the EVs before and after supplementation for markers of 

cellular origin 
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5.4 Methods 

5.4.1 Subjects and protocol 

This study was performed in collaboration with the Norwegian University of Science and 

Technology (NTNU), in Trondheim, Norway. A total of 8 healthy volunteers were recruited for this 

randomised, single-blind placebo controlled cross-over study. Subjects were included if they were 

healthy, recreationally active males, over the age of 18 with no prior history of pulmonary or CVD. 

Subjects were excluded if they were tobacco users, or took any dietary supplements. Subjects 

were instructed to refrain from alcohol and caffeine intake over the duration of the study, and 

were also instructed to avoid NO3
- rich food and anti-bacterial mouthwash. Participants were 

instructed to arrive at the laboratory (NTNU) in a rested and hydrated state, at least 3 hours 

postprandial. Subjects were randomly allocated either 2 x 70 mL BEET IT Organic beetroot juice 

(BR juice, 12.88 mmol), or a NO3
- depleted placebo of identical appearance, to be ingested once 

daily, for a total of 6 days. The subjects then had a wash-out period of 8 days prior to receiving 

the alternate treatment. Blood samples were obtained from the antecubital vein through an 18g 

IV cannula into EDTA and citrate vacutainers®. Blood samples were taken immediately prior to 

ingestion of the BR juice, and two hours post-ingestion, on day 1 and day 6 of supplementation. 

Ethical approval was given by the Regional Committees for medical and health research ethics 

(REK) (Reference: 2014/2095/REK-midt). The study conformed to the ethical principles contained 

in the Declaration of Helsinki. 

5.4.2 Plasma NO metabolites 

NO metabolites were measured as described in section 2.6. Briefly, blood samples were collected 

into EDTA vacutainers and immediately centrifuged at 2,500g for 15 min. Plasma was 

subsequently isolated and snap frozen in liquid nitrogen, and stored at -80°C until analysis.  

5.4.3 EV isolation 

EVs were isolated from platelet-poor plasma using differential ultracentrifugation, as outlined in 

section 2.4.2, with minor amendments. Plasma was rendered acellular following 2 x 15 min. 

2,500g centrifugations and slow-frozen at a rate of 1°C a minute to -80°C in NTNU. Following 

material transfer of acellular plasma from NTNU to Cardiff, plasma was thawed and 

ultracentrifuged at 100,000g for 1 hour. The resultant pellet was resuspended in filtered PBS, 

stored at 4°C and used within 48-72 hours of isolation. 
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5.4.4 EV size and concentration 

EV size and concentration were determined using nanoparticle tracking analysis, as described in 

section 2.3. 5 x 60 second videos were recorded and analysed for each sample, with the mean 

values being used in subsequent analysis. EV concentration was expressed as EVs/mL.  

5.4.5 Time resolved fluorescence 

The surface protein expression of EVs was analysed using an immunophenotyping assay as 

outlined in section 2.5. Markers of the main producers of circulating EVs (platelet, leukocyte, 

erythrocyte, endothelial) were used as an indication of the cell-of-origin of the EVs. 

Measurements were made using a BMG CLARIOstar (BMG Labtech, UK).  

5.4.6 Statistics 

Data were analysed according to “Practical Statistics for Medical Research” by Altman et al (417). 

All data were assessed for both a period effect and a treatment-period interaction, and checked 

for normality using the Kolmogorov-Smirnov test. The change in measurement between time 

points was calculated and compared directly to placebo using a 2-way ANOVA. Data were 

analysed using GraphPad Prism version 5.0 (GraphPad Software, San Diego, USA). Data are 

expressed as mean ± standard error of the mean (SEM) unless stated.   
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5.5 Results 

5.5.1 Patient Characteristics 

A total of 8 males participated in the study with an average age of 33.5 ± 3.0 years, an average 

height of 182.5 ± 3.0 cm, an average weight of 83.9 ± 4.5 kg and an average body mass index 

(BMI) of 25.1 ± 1.0 kg/m2. No period effects or treatment-period interactions were observed for 

any of the parameters determined in this study.  

5.5.2 Plasma NO metabolites 

5.5.2.1 Plasma NO3
-  

There was no difference in baseline plasma NO3
- levels between placebo and BR juice (23.5 ± 1.2 

µM vs 24.0 ± 1.5 µM, p > 0.05) (Figure 5.1A). As anticipated, following BR juice, plasma NO3
- levels 

significantly increased compared to placebo 2 hours after ingestion of the supplement (ΔNO3
-: 

489.6 ± 41.9 µM vs 0.4 ± 1.4 µM, p < 0.001). However, there was no significant increase in plasma 

NO3
- after 5 days of BR juice supplementation (24 hours after last ingestion) compared to placebo 

(ΔNO3
-: 68.3 ± 11.6 µM vs 18.4 ± 7.5 µM, p > 0.05). 2 hours after BR juice ingestion on day 6, 

plasma NO3
- levels again increased significantly compared to placebo (ΔNO3

-: 354.5 ± 81.8 µM vs -

1.1 ± 1.1 µM, p < 0.001) (Figure 5.1B) to a similar level observed on day 1 of supplementation 

(510.1 ± 58.4 µM vs 493.1 ± 42.1 µM, p > 0.05) (Figure 5.1A).  
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5.5.2.2 Plasma NO2
-  

Baseline levels of plasma NO2
- were similar between placebo and BR juice treatments (161.1 ± 

22.8 nM vs 145.5 ± 17.0 nM, p > 0.05) (Figure 5.1C). 2 hours following ingestion of BR juice, 

plasma NO2
- levels rose significantly in comparison to placebo (ΔNO2

-: 339.2 ± 54.3 nM vs -7.7 ± 

18.6 nM, p < 0.001). After 5 days of BR juice, basal plasma NO2
- did not significantly increase 

compared to placebo (ΔNO2
-: 65.7 ± 42.5 nM vs 31.6 ± 31.5 nM, p > 0.05). On day 6 of BR juice 

supplementation, plasma NO2
- increased significantly compared to placebo (ΔNO2

-: 259.9 ± 68.0 

nM vs -30.1 ± 36.1 nM, p < 0.001) (Figure 5.1D). Peak plasma NO2
- measured 2 hours post-BR juice 

was similar on both day 1 and day 6 of supplementation (484.7 ± 8.2 nM vs 471.1 ± 90.0 nM, p > 

0.05) (Figure 5.1C). 

5.5.2.3 Plasma Nitrosothiol (RSNO) 

Plasma RSNO levels were similar at baseline in both treatment groups (placebo: 24.1 ± 3.8 nM vs 

BR juice: 16.2 ± 2.0 nM, p > 0.05) (Figure 5.1E). Plasma RSNO levels increased significantly 2 hours 

after BR juice, compared to placebo (ΔRSNO: 125.9 ± 16.8 nM vs 0.6 ± 2.5 nM, p < 0.001). Basal 

levels of RSNO did not increase significantly between day 1 and day 6 compared to placebo 

(ΔRSNO: 7.2 ± 4.0 nM vs -2.9 ± 3.0 nM, p > 0.05). 2 hours following BR juice on day 6, plasma 

RSNO again significantly increased compared to placebo (ΔRSNO: 128.45 ± 32.0 nM vs -2.1 ± 2.5 

nM, p < 0.001) (Figure 5.1E) to a similar level observed on day 1 of supplementation (151.9 ± 32.6 

nM vs 142.1 ± 17.0 nM, p > 0.05) (Figure 5.1F). 
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Figure 5.1 Plasma NO metabolites following 6 days BR juice supplementation. Plasma NO3
- (µM) (A) NO2

- (nM) (C) and RSNO (nM) (E) values 

following both placebo and BR Juice. (B) Comparison of the change in plasma NO3
- (B) NO2

- (D) and RSNO (F) following BR Juice or placebo. Data are 

represented as mean ± SEM [n=8]. *** reflects p < 0.001 
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5.5.3 EV size and concentration 

Baseline plasma EV levels did not differ significantly between BR juice and placebo (BR Juice: 

3.21e11 ± 2.69e10 EVs/mL plasma vs placebo: 2.72e11 ± 3.41e10 EVs/mL plasma, p > 0.05) (Figure 

5.2A). 2 hours following supplementation, plasma EV concentrations did not alter significantly 

compared to placebo (ΔEVs: -2.5e9 ± 2.58e10 EVs/mL vs 4.375e9 ± 2.64e10 EVs/mL, p > 0.05), 

respectively. After 6 days of BR juice, there was no significant change in EV concentration 

compared to placebo (ΔEVs: 1.88e10 ± 5.02e10 EVs/mL vs -4.82e10 ± 4.83e10 EVs/mL, p > 0.05), 

respectively. Finally, on day 6, 2 hours following the final BR juice supplementation, plasma EV 

levels did not alter significantly in comparison to the placebo (ΔEVs: -4.00e10 ± 4.12e10 EVs/mL vs -

3.38e10 ± 3.93e10 EVs/mL, p > 0.05), respectively (Figure 5.2B). 

  

Figure 5.2 Plasma EV concentrations following 6 days BR juice / placebo. (A) EV concentrations 

at baseline for both placebo and BR juice. (B) Changes in circulating EV concentration following 

BR juice or placebo between various time points. Data are represented as mean ± SEM [n=8].  
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Similarly, no differences in EV size were observed prior to treatment (BR Juice: 117.3 ± 7.6 nm vs 

placebo 136.5 ± 9.4 nm, p > 0.05), nor indeed over the entire course of the study, in either 

placebo or BR juice groups (Figure 5.3A). No change in mean EV size was observed following 

either BR juice or placebo over the course of the study (p > 0.05 for all comparisons) (Figure 5.3B). 

Furthermore, no changes in the size distribution profile of EVs were observed between BR juice 

and placebo at the acute change (day 1) (Figure 5.4A), chronic change (day 1-6) (Figure 5.4B) or 

acute change (day 6) (Figure 5.4C) time points. Appendix 1.2A-C details the changes in size 

distribution profile following BR juice or placebo.  

 

Figure 5.3 Plasma EV size following 6 days BR juice or placebo.  (A) Mean EV size at all baseline for placebo 

and BR juice. (B) Changes in mean EV size following BR juice or placebo between various time points. Data 

are represented as mean ± SEM [n=8].  
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Figure 5.4 The effect of BR juice on size distribution profile of EVs. (A) Acute change 

(Day 1). (B) Chronic change (Day 1-6). (C) Acute change (Day 6). Data are represented as 

mean ± SEM [n=8]. 
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5.5.4 EV immunophenotyping  

Comparison between BR juice and placebo groups revealed that there was no significant 

difference between any of the markers at baseline (Appendix 1.3). Comparing the change in 

expression of markers observed between BR juice and placebo treatment revealed no significant 

changes across all time points for CD9 (Figure 5.5A), CD41 (Figure 5.5B), CD11b (Figure 5.5C), 

CD235a (Figure 5.5D) and CD144 (Figure 5.5E) (p > 0.05 for all comparisons). 

 

Figure 5.5 Changes in EV surface proteins following BR juice or placebo. (A) CD9, (B) CD41, (C) CD11b, (D) 

CD235a, (E) CD144. Proteins were detected using a streptavidin-europium conjugate and measured using 

time resolved fluorescence (relative fluorescence units). Data are represented as mean ± SEM [n=8]. 
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5.6 Discussion 

5.6.1 Key Findings 

 BR juice significantly elevated plasma NO3
-, NO2

- and RSNO 2 hours following 

supplementation. 

 After 5 days of BR juice, 24 hours following the last supplement, plasma NO metabolites 

reverted back to near-baseline levels, suggesting an inability to elicit an “accumulative” 

effect. 

 Daily BR juice supplementation had no effect on total circulating EVs in healthy volunteers 

over 6 days.   

 Within the EV sample, no change in parental cell markers were observed following BR 

juice supplementation.  

5.6.2 Main discussion 

Diets rich in fruit and vegetables have long been associated with a reduced risk of developing CVD 

(157). Determining how these foods provide protection against CVD could potentially allow for 

therapeutic gain. Previously, this has been attributed to the anti-oxidant vitamin content of 

vegetables. However, a large scale meta-analysis of randomised trials did not support this 

hypothesis (547). More recently, evidence is accumulating suggesting that the NO3
-
 content in 

vegetables, such as beetroot, are responsible for beneficial cardiovascular outcomes, such as a 

reduction in blood pressure, a reduction in platelet aggregation, and an improvement in 

revascularisation following chronic ischemia (162,163,548,549).  

Dietary NO3
- supplementation results in subsequent increases in plasma NO2

-, as our group and 

others have previously established (156,163,550,551). In this study, a total NO3
-
 load of 12.88 

mmol from BR juice resulted in a peak plasma NO3
- concentration of approximately 480 µM (an 

increase of approximately 460 µM) 2 hours post-supplementation. This is in agreement with 

previous studies which have shown a 350 µM increase (25-375 µM) following a 11.2 mmol NO3
-
 

load (162), and a 570 µM increase (30-600 µM) following a 16.8 mmol NO3
-
 load (552). As shown 

by James et al, the relationship between NO3
-
 dose given and peak plasma NO3

- appears to be 

linear (124). Furthermore, the resulting increase in plasma NO2
- following BR juice was 

approximately 340 nM (145-485 nM). Again, this is within the range expected given the NO3
-
 dose 

in comparison to other studies (124).  
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In contrast to NO3
-
 and NO2

-, only a few studies have assessed the effect of NO3
-
 supplementation 

on RSNO formation. Hendgen-Cotta et al have shown in mice that dietary NO3
- over 7 days (150 

µmol per day) can significantly increase plasma RSNO levels (in addition to NO3
- and NO2

-), 

reaching 349 nM (546). Interestingly, NO2
-
 and RSNO concentrations were markedly lower in mice 

that underwent an antibacterial mouthwash, supporting the hypothesis that RSNO is produced 

from NO2
- rather than NO3

-. Furthermore, this study showed that NO3
- supplementation 

attenuated apoptosis of regenerative myoblasts in ischemic tissue, an effect which was abolished 

by preventing the conversion of NO3
- to NO2

- via antibacterial mouthwash (549). Pinheiro et al 

have shown similar increases in RSNO in a rat model of renovascular hypertension. Treatment 

with a thiol-depleting agent buthionine sulfoximine attenuated the increase in plasma RSNO, and 

also blunted the antihypertensive effects of NO2
-
 previously observed (553). Despite differences 

between humans and rodents in their metabolism (554), these studies, in combination with my 

results, suggest that the beneficial effects of NO3
-
 supplementation in humans may be, in part, due 

to formation of RSNO. Specifically, under conditions whereby the optimal conditions for NO2
- 

reduction to NO are not met, RSNO may offer an alternative route, or an additional step, within 

the nitrate, nitrite, nitric oxide pathway.  

To my knowledge, the only previous study assessing the effect of dietary NO3
- supplementation 

on plasma RSNO levels in humans is by Richardson et al (545).  They showed that KNO3 (2mmol) in 

healthy volunteers increased gastric RSNO and inhibited platelet function in humans over 2 hours. 

Baseline plasma RSNO levels were similar to those seen in this chapter (≈25 nM), and did not alter 

following KNO3 ingestion. RSNO molecules have been shown to have potent anti-platelet effects 

in numerous studies (555–557), via both a cGMP dependent (558) and independent mechanism 

(559). Unfortunately, platelet function was not measured in this study, however no reduction in 

the platelet marker CD41 was observed in the EV population of this healthy cohort.   

No significant change in the circulating EV concentration was observed following BR juice over a 6 

day period. This is in contrast to previous studies which have observed a reduction in plasma EVs 

following an increase in NO bioavailability, albeit indirectly (537,543). Interestingly, basal levels of 

plasma EVs in these healthy volunteers were notably lower than those observed in a disease 

cohort (hypercholesterolaemia) measured previously by our research group (≈3e11 vs ≈2e12) (560). 

This is in agreement with the literature which states that EVs are greatly elevated in various CVD 

states (561,562). Specifically, EVs derived from platelets and endothelial cells appear to be most 

commonly elevated (385,562–564). This elevation can be explained by continuous platelet and 

endothelial cell activation in CVD states, as EV release is synonymous with cell activation (243). 

The EV concentrations observed in this study likely reflect healthy individuals with a low level of 

disease, and hence reduced inflammatory cellular activation. It is possible that this represents a 



 

  

196 
 

“basal” level of EV release which is elevated in disease, and only following this can NO3
- 

supplementation alleviate the enhancement. Additionally, no changes within both the mean size 

of EVs, and the size distribution profile of the EVs, were observed. This confirms that BR juice did 

not selectively reduce either the exosome or microvesicle portion of the EV sample, which may 

have been masked looking at the overall EV concentration. Furthermore, no reductions in any of 

the parental cell markers were observed following beetroot juice. The lack of change of these 

markers suggests that the BR juice had no effect on EV production, regardless of cellular origin.  

These results, in combination with other studies, are supportive of a hypothesis that NO3
-

supplementation can increase circulating RSNO levels, which may subsequently be able to elicit 

advantageous effects in CVD.  

5.6.3 Limitations 

A major limitation of this study is the small sample size (n=8). This study was performed in 

collaboration with the Norwegian University of Science and Technology (NTNU), with NTNU 

providing the samples. Recruitment of suitable volunteers proved challenging. Additionally, two 

volunteers had to be discounted and removed from the final results due to receiving an incorrect 

combination of BR juice / placebo. Secondly, the process of EV isolation was slightly 

compromised. Typically, platelet-free plasma (PFP) is isolated from whole blood and immediately 

centrifuged at 100,000 x g for 1 hour. However, this was not possible at NTNU, therefore PFP was 

frozen at -80°C upon isolation and transferred to Cardiff upon completion of the study. Thus, 

some plasma samples had been frozen for > 3 months prior to EV isolation. Although this was not 

an issue for NO metabolite analysis, our research group have shown that long term storage of EVs 

in the freezer can alter their concentration (565). Additionally, there are concerns within the field 

that ultracentrifugation may co-pellet soluble proteins and lipoproteins, which can be detected by 

NTA. However, there is currently a lack of a standardised protocol within the EV field and 

methods are continuously being updated, each with its own advantages and disadvantages. 

Finally, no assessment of platelet function was performed in this study. Previous studies have 

shown a potent anti-platelet effect of RSNO. Despite a lack of reduction in circulating EVs, it is 

possible that RSNO may have had an effect on platelet activity.    
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5.6.4 Conclusions 

In summary, this chapter has shown that dietary NO3
- supplementation can significantly increase 

NO metabolites in the plasma of healthy volunteers, notably RSNO. Furthermore, after 5 days of 

BR juice, NO3
-, NO2

-, and RSNO values appear to return to near-baseline levels 24 hours following 

the last supplementation, suggesting that a build-up of an “NO-reservoir” is not possible. 

However, future studies should assess the effect of longer term NO3
- supplementation on NO 

metabolites. No effect on EV concentration, size, or size distribution was observed following BR 

juice over a 6 day period. These results suggest that increasing NO bioavailability has no effect on 

circulating EVs in healthy volunteers.  
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6 RESULTS IV: THE EFFECT OF ACUTE DIETARY 

NITRATE SUPPLEMENTATION ON EXTRACELLULAR 

VESICLES IN CORONARY ARTERY DISEASE PATIENTS 
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6.1 Perspective 

Following the lack of a reduction in circulating EV in healthy volunteers, a randomised, double-

blind, placebo controlled study was designed to assess the effect of dietary NO3
- supplementation 

on EV concentration in CAD patients. As per chapter 5, NO metabolites (NO3
-
, NO2

-
, RSNO) were 

assessed, in addition to plasma EV concentration, platelet activity and EV surface content. CAD 

patients were split into 2 groups based on whether they were currently prescribed clopidogrel. 

Our research group has shown previously that clopidogrel, with NO2
-, can produce an RSNO 

derivative (clopidogrel-SNO). This study allowed comparison of the effects of NO3
- 

supplementation in CAD patients on and off clopidogrel.  
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6.2 Introduction 

EVs have been implicated as a biomarker in many disease states, including CVD, as discussed in 

Chapter 1. EVs have been shown to play a role in promotion of coagulation, inflammation, and cell 

survival (340,566–568).  Elevated levels of EVs have been reported in a number of CVD states, 

such as CAD and ischemic stroke (354,569,570). Furthermore, elevated levels of EVs in CAD 

patients have been shown to correlate with cardiovascular outcomes. Sinning et al showed that 

EVs were significantly higher in patients with major adverse cardiovascular and cerebral events 

(MACCE) compared to patients without an event (385). Therefore, EVs within a CVD setting 

represent an attractive target for pharmacological or dietary intervention.  

Arguably, within the EV field, platelet-derived EVs have received the most attention, primarily due 

to their relative abundance and reactivity (247). Elevated platelet EV levels have been associated 

with numerous disease states, including heparin-induced thrombocytopenia, arterial thrombosis, 

sickle cell disease and rheumatoid arthritis (571–574). Furthermore, platelet-derived EVs have 

been implicated in the pathogenesis of atherosclerosis, playing an important role in the 

thrombotic process, in addition to eliciting pro-inflammatory effects (575). Thus, the central role 

of platelets in the development of atherosclerosis is further accelerated by the EVs they produce. 

It is said that the surface of platelet-derived EVs is between 50- to 100-fold more pro-coagulant 

than the surface of an activated platelet, primarily due to high level of PS exposure, as well as 

other surface markers that stimulate fibrin clot formation (333). 

Anti-platelet therapy plays a fundamental role in the management of CVD. Thienopyridines 

(clopidogrel, prasugrel, ticlopidine) act primarily via irreversible inhibition of the P2Y12 receptor, a 

subtype of the ADP receptor, preventing the activation of platelets. Interestingly, in addition to 

their anti-platelet actions, pleiotropic effects of thienopyridines have been reported, independent 

of the P2Y12 receptor, especially for clopidogrel (576). These include increases in NO bioavailability, 

anti-inflammatory effects and reductions in endothelial dysfunction (577–579). A study by Behan 

et al showed that clopidogrel treatment reduced EV formation in parallel with a reduction in 

platelet activation and pro-coagulant activity (580).  

NO plays a pivotal role in maintaining both platelet and endothelial cell homeostasis. However, 

NO bioavailability is compromised in CVD, leading to the progression of atherosclerosis and 

vascular dysfunction (581). NO can inhibit platelet activation via the cGMP pathway, offering an 

alternative route of inhibition to thienopyridines. When both pathways are activated, ex vivo 

studies have highlighted a synergistic antiplatelet effect is achieved, culminating in a reduction in 

intracellular calcium (582,583). 
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The effect of dietary NO3
- supplementation is well documented in exercise physiology, and more 

recently in CVD, where it has been shown to reduce blood pressure, improve vascular function 

and reduce platelet aggregation (162,167,584). Moreover, previous studies have shown that 

sustained release (organic) nitrates can act synergistically with clopidogrel, augmenting platelet 

inhibition in patients undergoing PCI (585). 

RSNOs are formed by the nitrosation of reduced sulphydryl groups, and appear to play a role in 

many aspects of cardiac function, including inflammation and platelet function (555,557,586,587). 

RSNOs represent a means for the storage and transport of NO within the circulation (588,589). 

Our group have previously demonstrated that thienopyridines are capable of forming RSNO 

molecules, dependent on both NO2
- availability and a low pH, both of which are present in the 

stomach (409,590). These “thienopyridine-SNO” (Th-SNO) molecules are able to donate NO in 

vivo, hence increasing NO availability.  

In light of these collective observations, I hypothesised that dietary NO3
- supplementation, in 

combination with clopidogrel therapy, would increase circulating RSNO levels, and subsequently 

reduce circulating EVs in individuals with CAD. 
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6.3 Aims 

The aims of this chapter were to 

1. Investigate the effect of acute dietary NO3
- supplementation on NO bioavailability, by 

measuring plasma NO3
-, NO2

-, and RSNO levels compared to placebo. 

2. Assess the effect of acute dietary NO3
- supplementation, both alone and in combination 

with clopidogrel, on platelet function. 

3. Investigate the effect of acute dietary NO3
- supplementation on circulating EV levels in 

CAD patients compared to placebo. 

4. Assess the cellular origin of the EVs before and after NO3
- supplementation. 

5. Investigate the role of “clopidogrel-SNO” on platelet-derived EV ex vivo. 
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6.4 Methods 

6.4.1  Subjects and protocol 

20 CAD patients consented to participate in this randomised, double-blind, placebo-controlled, 

cross-over study of dietary NO3
- vs placebo, in two groups of patients:  Those receiving 75 mg 

clopidogrel daily (n=10), and those receiving no thienopyridine treatment, referred to henceforth 

as “naïve” (n=10). Patients attended the Cardiology Day Case Unit at the University Hospital of 

Wales (UHW). All patients were randomly allocated either 2 x 60 mL (8.1 mmol total) of dietary NO3
- 

supplement (Science in Sport Go+ Nitrates gel), followed by a placebo of identical appearance, or 

placebo followed by NO3
- supplementation. We adopted a wash-out period of at least 7 days, in 

agreement with several other groups (591,592). Our group have shown previously that 24 hours 

following ingestion of this dose of NO3
-, plasma NO3

- and NO2
- values have returned to baseline 

(124). Figure 6.1 summarises the study design. Blood samples were obtained from the antecubital 

vein through an 18g IV cannula into EDTA, citrate, and hirudin vacutainers®. Samples were taken 

both before ingestion of the supplement and two hours post-supplementation. The 

pharmacokinetics of blood NO metabolite both before and for 24 hrs following ingestion of NO3
- 

have been well characterised (124). Patients were fasted for at least 12 hours prior to attendance 

and took their prescribed medication at least 1 hour prior to the study. Patients were included if 

they were male, over the age of 18 with stable CAD, were attending the cardiology day case unit 

and had been fasted for > 12 hours. Patients in the clopidogrel group must have been receiving 

clopidogrel for > 1 month prior to commencement of the study. Patients were excluded if they had 

a clopidogrel intolerance or contraindication, were on other long-term oral anticoagulant drugs, or 

receiving intravenous or subcutaneous antithrombin therapy. Patients were also excluded if they 

had any ischemic event (ACS, stroke or TIA) or revascularisation procedure (PCI or CABG) within the 

preceding 3 months, chronic renal or liver disease, or an inability to give informed consent. Ethical 

approval was provided by the South East Wales Research Ethics Committee (IRAS Project ID 

102427). 
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Figure 6.1 Study design. Patients were split into those receiving clopidogrel 75 mg daily (n=10) and those receiving no thienopyridine treatment (naïve, n=10). 

Patients were randomly assigned to either NO3
- supplementation (Science in Sport Go+ Nitrates gel), followed by a placebo of identical appearance, or vice-versa. A 

washout interval of a minimum of seven days separated the two treatment periods. Blood samples were taken immediately before ingestion of the supplement and 

two hours post-supplementation, as indicated by red arrows.
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6.4.2 Biochemical measurements 

A full blood count was measured on an ABX-Pentra X120 haematology blood analyser (Horiba, 

Northampton, UK). Serum cholesterol and triglycerides were assessed using an Aeroset automated 

analyser (Abbott Diagnostics, Berkshire, UK). LDL-cholesterol was calculated using Friedewald’s 

formula. C-reactive protein was assayed by nephelometry (BN-II system, Dade Behring, Milton 

Keynes, UK). The intra- and inter-assay coefficients of variation were all less than 9%. All 

biochemical measurements were carried out by the Department of Medical Biochemistry, UHW.  

6.4.3 Plasma NO metabolites 

Plasma NO metabolites (NO3
-, NO2

-, and RSNO) were measured as outlined in section 2.6. Blood 

samples were collected into EDTA vacutainers and immediately centrifuged at 2,500 g for 15 

minutes. The plasma was then isolated and subsequently snap frozen in liquid nitrogen, and 

stored at -80°C until analysis.  

6.4.4 Platelet aggregation 

Whole blood aggregation was assessed by multiple electrode aggregometry, as described in 

section 2.9. Whole blood was collected into hirudin vacutainers® and analysed within 30 minutes 

of blood drawing.   

6.4.5 EV isolation 

EVs were isolated from platelet-poor plasma using differential ultracentrifugation as detailed in 

section 2.4.2. EV samples were stored at 4°C and used within 48-72 hours of isolation. 

6.4.6 EV size and concentration 

EV size and concentration were determined using nanoparticle tracking analysis, as outlined in 

section 2.3. 5 x 60 second videos were recorded and analysed, with the mean subsequently used 

in further analysis.  EV concentration was expressed as EVs/mL. 

6.4.7 Time-resolved fluorescence 

The surface protein expression of EVs was assessed using an immunophenotyping assay, as 

outlined in section 2.5. Markers of the main producers of circulating EVs (platelet, leukocyte, 

erythrocyte, endothelial) were used as an indication of the cell-of-origin of the EVs. 

Measurements were made using a BMG FLUOstar OPTIMA (BMG Labtech, UK). 
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6.4.8 Ex vivo platelet EV production 

The effect of RSNO on platelet EV production was investigated ex vivo, as outlined in section 2.7. 

Briefly, platelets (in platelet-rich plasma) were stimulated with ADP (6.5µM) and incubated with 

NaNO2, clopidogrel, GSNO or clopidogrel-SNO (all 10 µM) for 1 hour at 37°C. EVs were then 

isolated as described in section 2.4.2, and analysed using NTA and TRF, as described in sections 

2.3 and 2.5, respectively.  

6.4.9 Statistics 

A power calculation based on unpublished prior results from CAD patients from our laboratory 

showed that 9 subjects would provide 90% power for detecting a 20% difference in circulating EVs 

between placebo and NO3
- supplementation, assuming 10% variation, with α=0.05. Data were 

analysed using GraphPad Prism version 5.0 (GraphPad Software, San Diego, USA). Data are 

expressed as mean ± standard error of the mean (SEM) unless stated. Data were analysed and 

assessed for both a period effect and treatment-period interaction according to “Practical 

Statistics for Medical Research” by Altman et al (417). Data were assessed for normality using the 

Kolmogorov-Smirnov test. Baseline values were compared using a repeated measures ANOVA. 

The change in measurement before and after NO3
- supplementation or placebo was calculated 

and compared directly using a paired t test. For ex vivo experiments, a 1-way ANOVA was 

performed to determine differences within groups, with Bonferroni’s multiple comparison post-

hoc test.   
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6.5 Results 

6.5.1 Patient characteristics 

Of the 20 males that participated in the study, 10 were taking clopidogrel (>1 month) and 10 were 

not receiving anti-platelet therapy (naive group).  The average ages of the groups were 63.2 ± 3.6 

years and 62.7 ± 3.2 years, respectively. Biochemical measurements are summarized in table 6.1. 

Importantly, no differences were observed in platelet count at baseline or at the follow up visit. No 

differences were seen in age, BMI, and biochemical parameters between groups. Notably, patients 

on clopidogrel had a higher prevalence of cardiovascular risk factors (diabetes mellitus, smoking, 

hypertension), previous acute ischaemic events (MI, stroke/TIA) and revascularisation procedures 

(PCI/CABG) compared to the naïve group (Table 1). No significant period effects and treatment-

period interaction were observed for any of the parameters determined in this study, performed 

following Altman et al (417). 
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Table 6.1  Patient characteristics. 

Summary of patient characteristics including age, BMI, cardiovascular risk factors, medications, biochemical 

and haematological measurements.  Haematological measures were taken at the beginning of both patient 

visits, prior to any treatment. 

Participant Characteristics Naïve group (n=10) Clopidogrel group (n=10) P-value 

Age 62.7 ± 3.19 63.2 ± 3.66  > 0.05 

BMI (kg/m2) 29.9 ± 1.49 28.2 ±1.18  > 0.05 

Cardiovascular Risk Factors 

Diabetes Mellitus 

Past/Current Smoking 

Hypertension 

Dyslipidaemia 

Family History of Premature Heart 

Disease (<65 years) 

Stroke/TIA 

Peripheral Vascular Disease 

 

1 (10%) 

3 (30%) 

7 (70%) 

10 (100%) 

 

4 (40%) 

1 (10%) 

1 (10%) 

 

2 (20%) 

6 (60%) 

8 (80%) 

8 (80%) 

 

2 (20%) 

2 (20%) 

1 (10%) 

 

 

History of MI 4 (40%) 7 (70%)  

Previous Revascularisation 

PCI 

CABG 

 

4 (40%) 

2 (20%) 

 

7 (70%) 

4 (40%) 

 

Respiratory Disease (Asthma/COPD) 0 (0%) 3 (30%)  

Medications 

Aspirin 

Clopidogrel 

Proton Pump Inhibitor 

Beta Blockers 

ACEi/ARB 

Statins 

GTN 

Thyroxin 

NSAIDs 

Oral Anti-Coagulants 

Calcium Channel Blockers 

Diuretics 

 

7 (70%) 

0 (0%) 

5 (50%) 

4 (40%) 

6 (60%) 

10 (100%) 

1 (10%) 

1 (10%) 

0 (0%) 

1 (10%) 

2 (20%) 

2 (20%) 

 

 

4 (40%) 

10 (100%) 

7 (70%) 

6 (60%) 

8 (80%) 

8 (80%) 

1 (10%) 

0 (0%) 

2 (20%) 

0 (0%) 

1 (10%) 

2 (20%) 

 

 

Biochemical Measures 

CRP (mg/L) 

Total Cholesterol (mmol/L) 

Triglycerides (mmol/L) 

HDL (mmol/L) 

LDL (mmol/L) 

Total Cholesterol:HDL Ratio 

 

5.3 ± 4.27 

4.58 ± 0.77 

2.1 ± 1.80 

1.11 ± 0.26 

2.61 ± 0.54 

4.13 ± 1.69 

 

4.90 ± 4.63 

4.30 ± 0.82 

1.47 ± 0.90 

1.07 ± 0.13 

2.57 ± 0.68 

4.02 ± 0.57 

 

> 0.05 

> 0.05 

> 0.05 

> 0.05 

> 0.05 

> 0.05 

 

Haematological Measures 

White Cell Count (x109/L) 

Haemoglobin (g/L) 

Platelet Count (x109/L) 

 

Visit 1 

6.0 ± 0.50  

149.1 ± 3.1 

232.8 ± 25.0 

 

Visit 2 

6.3 ± 0.6 

151.5 ± 3.6 

219.4 ± 16.1 

 

Visit 1 

6.7 ± 0.6 

147.5 ± 3.4 

234.7 ± 13.4 

 

Visit 2 

6.4 ± 0.3 

144.9 ± 3.4 

237.8 ± 18.2 

 

  

> 0.05 

> 0.05 

> 0.05 
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6.5.2 Plasma NO metabolites 

There was no significant difference between plasma NO3
- , NO2

- and RSNO levels between the 

naïve and clopidogrel groups at baseline (NO3
-: 31.14 ± 2.5 µM vs 31.34 ± 5.1 µM. NO2

-: 92.3 ± 9.0 

nM vs 118.9 ± 15.7 nM. RSNO: 6.4 ± 0.5 nM vs 11.9 ± 3.4 nM, all p > 0.05) (Figure 6.2). Following 

NO3
- supplementation, plasma NO3

- levels were significantly elevated in both the naïve (ΔNO3
-: 

252.1 ± 17.4 µM vs 3.7 ± 1.9 µM, p < 0.001) (Figure 6.3A) and clopidogrel (ΔNO3
-: 252.1 ± 17.4 µM 

vs 3.7 ± 1.9 µM, p < 0.001) (Figure 6.3B) groups compared to placebo. Plasma NO2
- also 

significantly increased in both the naïve (ΔNO2
-: 167.8 ± 40.1 nM vs 18.5 ± 22.6 nM, p < 0.05) 

(Figure 6.3C) and clopidogrel (ΔNO2
-: 164.8 ± 68.5 nM vs -5.2 ± 12.2 nM, p < 0.05) groups following 

NO3
- supplementation, compared to placebo (Figure 6.3D). Interestingly, increases in plasma 

RSNO levels were not significantly different following NO3
- supplementation compared to placebo 

(ΔRSNO: 0.9 ± 1.3 nM vs -1.3 ± 0.6 nM, p > 0.05) (Figure 6.3E). However, in the clopidogrel group, 

plasma RSNO was significantly increased following NO3
- supplementation compared to placebo 

(ΔRSNO: 4.7 ± 0.8 nM vs 0.2 ± 0.5 nM, p < 0.001) (Figure 6.3F). 

  

 

Figure 6.2 Baseline plasma NO metabolites. The difference in NO metabolites between the naïve and 

clopidogrel group. (A) Plasma NO3
- levels, µM. (B) Plasma NO2

- levels, nM. (C) Plasma RSNO levels, nM. 

Baseline refers to an average value for each patient calculated from blood samples taken from both visits 

prior to ingestion of either the NO3
- supplement or placebo [n=10].  
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Figure 6.3. NO metabolite measurements. The change in plasma NO metabolites two hours post NO3
-

supplementation or placebo. (A) Naïve group plasma NO3
-, µM. (B) Clopidogrel group plasma NO3

-, µM (C) 

Naïve group NO2
-, nM. (D) Clopidogrel group plasma NO2

-, nM. (E) Naive group plasma RSNO, nM. (F) 

Clopidogrel group plasma RSNO, nM. Data are expressed as mean ± SEM [n=10]. * and *** represent p < 

0.05 and p < 0.001 respectively. 
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6.5.3 Platelet Aggregation 

Platelet aggregation stimulated via the thrombin receptor (TRAP) was not significantly different 

between the naïve and clopidogrel groups at baseline (1081 ± 71 AU*min vs 1037 ± 66 AU*min, p 

> 0.05), respectively (Figure 6.4A). However, platelet activation stimulated via the ADP receptor 

was markedly lower in the clopidogrel group in comparison to the naïve group (395 ± 43 AU*min 

vs 636 ± 55 AU*min, p < 0.001) (Figure 6.4B).  

 

 

Within the naïve group, NO3
- supplementation did not significantly reduce ADP-mediated platelet 

aggregation compared to placebo (ΔADP: -78.2 ± 57.5 AU*min vs 20.6 ± 48.7 AU*min, p > 0.05), 

respectively (Figure 6.5A). Similarly, TRAP-mediated platelet aggregation was also unaltered 

following NO3
- supplementation within the naïve group compared to placebo (ΔTRAP: -214.7 ± 

83.9 AU*min vs -37.6 ± 92.4 AU*min, p > 0.05), respectively (Figure 6.5B). In the clopidogrel 

group, NO3
- supplementation also failed to significantly reduce ADP-mediated platelet 

aggregation in comparison to placebo (ΔADP: -21.7 ± 22.4 AU*min vs 1.3 ± 18.0 AU*min, p > 0.05) 

(Figure 6.5C). However, NO3
- supplementation did significantly reduce TRAP-mediated platelet 

aggregation within the clopidogrel group compared to placebo (ΔTRAP: -198.9 ± 63.2 AU vs -39.5 

± 63.5 AU, p < 0.05) (Figure 6.5D)   

Figure 6.4 Baseline platelet aggregation. The difference in TRAP (A) and ADP (B) mediated platelet 

aggregation between the naïve and clopidogrel group. Baseline refers to an average value for each patient 

obtained from both visits prior to ingestion of either the NO3
- supplement or placebo [n=10]. ** represents 

p < 0.01. 
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Figure 6.5 Changes in platelet aggregation following NO3
- supplementation. (A) ADP-stimulated platelet 

aggregation in the naïve group. (B) TRAP-stimulated platelet aggregation in the naïve group. (C) ADP-

stimulated platelet aggregation in the clopidogrel group. (D) TRAP-stimulated platelet aggregation in the 

clopidogrel group. Aggregation units calculated as area under the curve after 6 minutes. Data are expressed 

as mean ± SEM [n=10]. * represents p < 0.05. 
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6.5.4 EV size and concentration 

The basal circulating plasma EV concentration was not significantly different between the naïve 

and clopidogrel groups (5.03e11 ± 4.17e10 EVs/mL vs 4.67e11 ± 3.67e10 EVs/mL, p > 0.05) (Figure 

6.6A). Similarly, no difference in EV size was observed between patient groups (Naïve: 138 ± 19.5 

nm vs clopidogrel: 132 ± 26.5 nm, p > 0.05) (Figure 6.6B). Within the naïve group, NO3
- 

supplementation did not significantly reduce circulating EV concentration compared to placebo 

(ΔEVs: -2.78e10 ± 4.22e10 EVs/mL vs 1.76e10 ± 1.23e10 EVs/mL) (Figure 6.7A). However, NO3
- 

supplementation did significantly reduce circulating EVs compared to placebo within the 

clopidogrel group (ΔEVs: -1.18e11 ± 3.15e10 EVs/mL vs -9.93e9 ± 1.84e10 EVs/mL, p < 0.05) (Figure 

6.7B). EV size did not alter between ingestion of the NO3
- supplement or placebo in both the naïve 

(before placebo: 135 ± 21 nm, after placebo: 158 ± 33 nm, before NO3
-: 140 ± 18 nm, after NO3

-: 

132 ± 11 nm, p > 0.05) (Figure 6.7C) nor the clopidogrel (before placebo: 118 ± 30 nm, after 

placebo: 129 ±  12 nm, before NO3
-: 145 ±  23, after NO3

-: 124 ±  26, p > 0.05) (Figure 6.7D) groups.

 

Figure 6.6 Baseline circulating plasma EV measures. (A) Baseline EV concentration per mL of plasma in the 

naïve and clopidogrel group. (B) Mean EV size within the naïve and clopidogrel group at baseline. Baseline 

refers to an average value for each patient obtained from both visits prior to ingestion of either the NO3
- 

supplement or placebo [n=10]. 
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6.5.5 EV size distribution profile 

On assessment of the change in size distribution profile of EVs, no significant reductions were 

observed following NO3
- supplementation within a specific size range in the naïve patient group, 

when compared to placebo (Figure 6.8A).  NO3
- supplementation within the clopidogrel group 

significantly reduced EVs within the size range 50-149 nm compared to placebo (50-99 nm: -3.7e10 

± 3.0e10 vs 1.0e9 ± 4.0e9; 100-149 nm: -3.7e10 ± 3.2e10 vs 2.7e10 ± 8.5e9, p < 0.05 and p < 0.001, 

respectively) (Figure 6.8B). Table 6.2 outlines the changes seen within the size distribution profile 

of both the naïve and clopidogrel groups.  

 

Figure 6.7 Changes in EV size and concentration following NO3
-supplementation. (A) Change in EV 

concentration in the naïve group following both placebo and nitrate supplementation. (B) Changes in EV 

concentration in the clopidogrel group following both placebo and nitrate supplementation. (C) Mean EV 

size at all timepoints for the naïve group. (D) Mean EV size at all timepoints for the clopidogrel group. Data 

are expressed as mean ± SEM [n=10]. * represents p < 0.05. 
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EV Size Naïve 

 

Clopidogrel 

 

Placebo Nitrate Placebo Nitrate 

0-50 1.45e9 ± 2.11e9 -3.32e9 ± 3.89e9 -5.14e9 ± 8.91e8 -6.96e9 ± 4.27e9 

51-100 8.31e8 ± 8.93e9 -3.24e9 ± 1.18e10 1.02e9 ± 4.06e9 -3.71e10 ± 2.95e10 * 

101-150 3.09e9 ± 6.19e9 -1.30e9 ± 1.26e9 2.65e9 ± 4.06e9 -3.69e10 ± 3.21e10 *** 

151-200 4.54e9 ± 6.02e9 -7.50e9 ± 4.02e9 -3.63e10 ± 1.34e10 -1.65e10 ± 1.14e10 

201-250 2.28e9 ± 4.77e9 -5.10e9 ± 4.02e9 2.68e9 ± 9.93e8 -8.89e9 ± 5.59e9 

251-300 1.39e9 ± 2.35e9 -3.03e9 ± 2.06e9 1.029e9 ± 4.70e8 -5.16e9 ± 3.50e9 

301-350 1.19e9 ± 1.20e9 -2.60e9 ± 1.21e9 3.09e9 ± 1.98e8 -2.60e9 ± 2.34e9 

351-400 1.35e9 ± 9.61e8 -1.52e9 ± 6.17e8 4.53e7 ± 1.29e8 -1.34e9 ± 1.48e9 

401-450 1.15e9 ± 9.73e8 -4.15e8 ± 4.10e8 1.72e8 ± 1.13e8 -1.32e9 ± 1.14e9 

451-500 3.86e8 ± 3.15e8 -3.98e7 ± 1.67e8 1.53e7 ± 2.74e7 -3.61e8 ± 2.96e8 

501-550 3.06e8 ± 1.94e8 4.95e7 ± 1.28e8 -5.06e6 ± 2.11e7 -3.00e8 ± 3.34e8 

551-600 3.15e8 ± 1.62e8 1.16e8 ± 1.36e8 -5.97e6 ± 8.81e6 -2.76e8 ± 2.77e8 

Table 6.2 Changes in the size distribution profile of EVs following placebo or NO3
- supplementation 

 

 

 

 

 

 

 

 

 

 

NTA was used to assess the size distribution of EVs, split into 50 nm bin sizes for analysis and normalised per mL of plasma. Samples were measured in quintuplicate and the mean used in 

further analysis. Data are expressed as the group mean ± SEM. Results represent [n=10]. * and *** reflects p < 0.05, and 0.001 respectively, compared to the relevant placebo 
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Figure 6.8 The effect of NO3
- supplementation on size distribution profile of EVs. (A) Changes in the size 

distribution profile within the naïve group. (B) Changes in the size distribution profile within the clopidogrel 

group. Assessed in 50 nm bin sizes, results represent [n=10]. Each sample was analysed in quintuplicate and 

the mean was used in further analysis. Data are expressed as mean ± SEM. * and *** reflect p < 0.05 and 

0.001, respectively.   
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6.5.6 EV immunophenotyping 

Comparison between the naïve and clopidogrel groups revealed that the clopidogrel group had 

significantly higher levels of the exosomal (CD9), platelet (CD41) and leukocyte (CD11b) marker 

compared to the naïve group (CD9: 32899 ± 1303 RFU vs 23812 ± 1891 RFU, p < 0.001. CD41: 

15753 ± 1372 RFU vs 10064 ± 705 RFU, p < 0.01. CD11b: 14245 ± 1512 RFU vs 9578 ± 1250 RFU, p 

< 0.05). No differences were seen in baseline values for the erythrocyte (CD235a) and endothelial 

(CD144) markers between clopidogrel and naive groups (CD235a: 2414 ± 379 RFU vs 1786 ± 307 

RFU, p > 0.05. CD144: 617 ± 280 RFU vs 685 ± 247 RFU, p > 0.05), respectively (Figure 6.9A).  

Within the naïve group, no significant differences were seen in surface protein markers for 

exosomes, platelets, leukocytes, erythrocytes and endothelial cells following NO3
- 

supplementation compared to placebo, respectively (ΔCD9: -471 ± 625 RFU vs 207 ± 674 RFU. 

ΔCD41: -498 ± 423 RFU vs -292 ± 348 RFU. ΔCD11b: -1053 ± 934 RFU vs -1074 ± 459 RFU. 

ΔCD235a: -259 ± 230 RFU vs -94 ± 202 RFU. ΔCD144: -364 ± 354 RFU vs 142 ± 635. p > 0.05 for all 

comparisons) (Figure 6.9B).  

Within the clopidogrel group, there was a significant reduction in the platelet marker CD41 

following NO3
- supplementation compared to placebo (ΔCD41: -2120 ± 728 RFU vs 235 ± 436 RFU, 

p < 0.05), respectively. No other differences were observed between NO3
- supplementation and 

placebo within the clopidogrel group (ΔCD9: -1079 ± 744 RFU vs -172 ± 718 RFU; ΔCD11b: -877 ± 

441 RFU vs -544 ± 395 RFU; CD235a: -678 ± 351 RFU vs 85 ± 422 RFU; CD144: -106 ± 336 RFU vs -

185 ± 372 RFU, p > 0.05 for all comparisons) (Figure 6.9C).  
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Figure 6.9 Effect of NO3
- supplementation on EV surface proteins. (A) Difference in baseline levels of 

protein markers between naïve and clopidogrel groups. (B) Change in protein expression after NO3
- 

supplementation/placebo in the naïve group. (C) Change in protein content after NO3
- 

supplementation/placebo in the clopidogrel group. Proteins were detected using a streptavidin-europium 

conjugate and measured using time resolved fluorescence. Data are expressed as mean ± SEM [n=10]. ***, 

** and * reflect p < 0.001, p < 0.01 and p < 0.05, respectively. 
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6.5.7 Ex vivo platelet EV generation 

Ex vivo experiments on platelet-rich plasma (PRP) isolated from whole blood of healthy volunteers 

were performed to elucidate the direct effect of NaNO2, clopidogrel, and RSNO (GSNO and 

clopidogrel-SNO) (all 10 µM) on platelet-derived EV production. EV production was significantly 

increased following stimulation by ADP (unstimulated: 1.63e11 ± 8.8e9 vs ADP: 3.94e11 ± 1.91e10 

EVs/mL, p < 0.001). This increase was mirrored by an increase in the platelet marker CD41 within 

the EV sample (unstimulated: 5826 ± 1279 RFU vs ADP: 19703 ± 1375 RFU, p < 0.01).  The addition 

of clopidogrel or NaNO2 to stimulated PRP had no effect on EV production (NaNO2: 3.83e11 ± 

1.707e10 EVs/mL, clopidogrel: 3.91e11 ± 1.805e10 EVs/mL, vs ADP alone 3.94e11 ± 1.91e10 EVs/mL p 

> 0.05). Similarly, no change in the platelet marker CD41 was observed following NaNO2 or 

clopidogrel addition (NaNO2: 20093 ± 1244 RFU, clopidogrel: 18238 ± 2824 RFU, vs ADP control: 

19703 ± 1375 RFU p > 0.05). The addition of clopidogrel-SNO significantly reduced the EV 

concentration compared to the ADP & clopidogrel (6.209e10 ± 4.074e9 EVs/mL vs 3.91e11 ± 1.80e10 

EVs/mL, p < 0.001). An alternative nitrosothiol, GSNO, had a similar effect to clopidogrel-SNO 

compared to the ADP & clopidogrel (8.67e10 ± 8.63e9 EVs/mL vs 3.91e11 ± 1.80e10 EVs/mL, p < 

0.001) (Figure 6.10A). These reductions were mirrored in levels of CD41 expression within the EV 

sample (GSNO: 9946 ± 1125 RFU, clopidogrel-SNO: 12213 ± 1924 RFU, vs ADP control: 18238 ± 

2824 RFU, p < 0.01 and 0.05, respectively) (Figure 6.10B).  
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Figure 6.10 Ex vivo platelet EV production. (A) The effect of various agents on EV concentration isolated 

from platelet rich plasma. (B) The reduction in EV concentration was mirrored by a reduction in CD41 

expression, measured by TRF. n=6, ***, ** and * reflect p < 0.001, p < 0.01 and p < 0.05, respectively.  
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6.6 Discussion 

6.6.1 Key Findings 

 Acute dietary NO3
- supplementation significantly increases both plasma NO3

- and NO2
- 

levels in CAD patients (NO3
-: ≈280 µM; NO2

-:  ≈265 nM) irrespective of clopidogrel 

treatment, compared to placebo. 

 NO3
- supplementation significantly elevated RSNO levels only in patients on clopidogrel 

therapy. 

 Platelet aggregation stimulated via the thrombin receptor was significantly reduced in the 

clopidogrel group following NO3
- supplementation compared to placebo.  

 NO3
- supplementation in the clopidogrel group also significantly reduced the circulating 

EV concentration, compared to placebo.  

 Following NO3
- supplementation, EVs in the clopidogrel group had significantly reduced 

amounts of the platelet marker CD41 compared to placebo.  

 Ex vivo studies confirmed the effect of clopidogrel-SNO on platelet-derived EV formation. 

 

6.6.2 Main discussion 

NO3
- and NO2

- were once thought of as inert, end products of NO metabolism. It is now widely 

accepted that both NO3
- and NO2

- represent a bioactive “storage pool” of NO; and can be 

metabolised in blood and tissues to be reduced back to NO and other bioactive NO metabolites. 

This represents an alternative to the “classical” NO formation pathway involving L-arginine and 

eNOS (142,593–595). NO3
- is first reduced to NO2

- in the body by commensal bacteria present 

within the oral cavity and the gastrointestinal tract, and to a far smaller degree, xanthine 

oxidoreductase within the liver (596). Once formed, NO2
- is further reduced via interaction with 

various proteins possessing NO2
- reductase activity (130), a reaction which is optimised in 

conditions of hypoxia or acidosis. The benefits of dietary NO3
- supplementation is well 

documented in exercise physiology (592,597). More recently, numerous reports have shown 

dietary NO3
- to have a host of beneficial effects in a CVD setting, including decreasing blood 

pressure (180,598), attenuating oxidative stress (551), reversing vascular dysfunction (179), and 

decreasing platelet aggregation (162,584).  
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NO bioavailability in CVD patients is known to be compromised (599), likely reflecting the 

endothelial dysfunction seen in these patient cohorts (123). Within this study, following NO3
- 

supplementation, plasma NO3
- and NO2

- levels increased in both patient groups to a level similar 

to that which both we and others have seen previously in subjects receiving a similar dose of 

dietary NO3
- (124,550,552). Interestingly, significant elevations in plasma RSNO levels following 

NO3
- supplementation were only seen within the patient group receiving clopidogrel. Our group 

have previously shown that an acidic pH (such as that present in the stomach) can modify 

thienopyridines to form thienopyridine-SNO (Th-SNO) molecules in vitro (590). Acidification 

exposes the free thiol group present within this class of drugs before biotransformation by 

cytochrome P450 enzymes into active metabolites. Once the thiol group is exposed, and in the 

presence of NO2
-, the drug is able to form nitrosothiol derivatives (Th-SNO). RSNO molecules 

possess the ability to act as NO donors (588,600), thus providing an alternative, or at least an 

extra step, in the nitrate-nitrite-nitric oxide pathway, and the effects seen following both NO3
- and 

NO2
- administration (173,548). Ex vivo investigation of platelet-derived EV generation confirmed 

the effect of RSNO (both GSNO and Th-SNO) on EV production. Incubation of PRP with both 

RSNOs significantly reduced EV production following ADP stimulation of platelets. This reduction 

was mirrored by a decrease in the platelet marker CD41, suggesting that the reduction was 

primarily due to platelet-derived EV. Consistent with these findings, our group have previously 

shown that clopidogrel-SNO can inhibit platelet activation in response to ADP at a level similar to 

that of GSNO, with similar IC50 values observed (clopidogrel-SNO: 10.56 ± 1.43 µM vs GSNO: 9.80 

± 2.28 µM) (601).  

Previous studies have shown that treatment with proton-pump inhibitors (PPIs), such as 

omeprazole, significantly attenuates clopidogrels’ inhibitory effect on platelets (602). However, a 

systematic review concluded that platelet function did not demonstrate a clear or consistent 

interaction between clopidogrel and PPIs (603). Recently, Pinheiro et al. have shown that oral 

nitrite administration in rats was associated with an increase in RSNO formation, and a decrease 

in blood pressure. Moreover, treatment with the PPI omeprazole and the thiol-depleting agent 

buthionine sulfoximine attenuated the increase in plasma RSNO, and blunted the 

antihypertensive effects of nitrite (553). These findings, in combination with the results within this 

chapter, are supportive of the hypothesis that the reduction in EVs and effect on platelet 

reactivity may, in part, be due to the formation of circulating RSNO molecules seen only in the 

clopidogrel group. Patients taking PPIs were not excluded from this study, and thus the increased 

pH of the gastric medium may have interfered with Th-SNO formation. However, it is noteworthy 

that PPIs raise stomach pH from ≈2-3 to ≈4-6 (604–606). Our group have previously shown that 

RSNO formation at this pH is only marginally reduced (409).  
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Measurement of surface protein expression revealed that the platelet marker CD41 decreased 

significantly in the clopidogrel group following NO3
- supplementation, in keeping with the 

hypothesis that the reduction was seen within platelet-derived EVs. Platelet activation plays a 

pivotal role in the development of atherosclerosis, and as a result, anti-platelet therapy is well 

established in the treatment of CVD (607,608). In healthy individuals, activation and adhesion of 

platelets to the endothelium is inhibited by endogenous production of NO, highlighted by the 

reduced NO bioavailability in CVD cohorts (435). Previously, NO3
- supplementation has been 

shown to augment platelet inhibition ex vivo (584). Interestingly, prevention of the entero-salivary 

bioconversion of NO3
- to NO2

- diminished both the decrease in blood pressure and the inhibitory 

effects on platelet activation (609).   

This study is the first of its kind to show that dietary NO3
- supplementation can reduce circulating 

EV levels when administered in combination with clopidogrel. This is in agreement with a recent 

study by Lee et al., who showed that sustained release nitrates in combination with clopidogrel 

significantly enhanced platelet inhibition compared to clopidogrel alone (585). The lack of RSNO 

produced within the naïve group in this chapter, and also the absence of a significant reduction in 

both platelet activation and EV production, suggests these effects are mediated, at least in part, 

by Th-SNO molecules produced in the stomach. This hypothesis is further strengthened by the 

results from ex vivo experiments.  

Clopidogrel, once converted to its active metabolite, acts via irreversible inhibition of the P2Y12 

receptor, preventing the inhibition of adenylate cyclase, allowing an increase in intracellular 

cAMP. This, in turn, allows for cAMP-mediated phosphorylation of vasodilator-stimulated 

phosphoprotein (VASP-P), which modulates glycoprotein IIb/IIIa activation (610). Interestingly, 

activation of the P2Y12 receptor has been shown to potentiate dense granule secretion in platelets 

(611). Granule and EV release share common cellular machinery including SNARE proteins, 

intracellular calcium levels and cytoskeletal reorganisation (612). It is plausible that inhibition of 

this pathway by clopidogrel, in combination with the inhibitory effects of NO2
- derived NO, may be 

responsible for the reduction in platelet activation and EV production seen in this study. These 

two independent pathways could, together, have a synergistic effect, culminating in diminished 

platelet activation. Blockade of the P2Y12 receptor has indeed been shown to greatly increase the 

platelet inhibitory actions of NO previously (582). However, ex vivo experiments suggest, at least 

in part, that the formation of RSNO molecules are responsible for the reduction in EV 

concentration. In situ, the mechanism of NO2
- reduction to NO is likely to be multifactorial and 

RSNO formation may represent one of a number of pathways NO2
- can elicit its effects.  
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6.6.3 Limitations 

The recommendations for the isolation of EVs from plasma are continuously being updated within 

the EV field. Although differential ultracentrifugation remains a popular isolation technique, there 

are some concerns that this may also pellet some soluble material, such as albumin and 

lipoproteins, which may then be detected by NTA. At the time this research was performed, 

ultracentrifugation was the isolation technique of choice within our research team, and widely 

used throughout the field. Secondly, despite the robust design of a placebo-controlled, 

randomised, double-blind crossover study, the sample size of individual groups (n=10) is small. 

This size was chosen based on power calculations to detect a significant decrease in the 

circulating EV concentration. However, this limits the overall power of the study in terms of 

determining significance between other factors. For example, smaller decreases in both platelet 

activation and circulating EV concentration were seen in the naïve group, but were judged to be 

non-statistically significant. These changes may have become significant in a large sample 

population. Secondly, there are differences in both cardiovascular risk factors and medications 

between the clopidogrel and naïve groups; rendering it difficult to conclude that the difference in 

outcomes seen in this study are due to clopidogrel treatment, or other possible confounding 

factors. Many patients within both groups had been prescribed PPIs, which may have interfered 

with Th-SNO formation in the stomach by increasing stomach pH (≈4-6). As mentioned previously, 

RSNO formation is still possible at higher pH. It is possible however that if patients taking PPIs had 

been excluded, I may have seen a greater rise in plasma RSNO. Comparisons between naïve and 

clopidogrel groups showed a similar reduction in platelet aggregation, EV concentration and EV 

surface markers following nitrate supplementation. Thus, due to the lack of RSNO produced by 

the naïve group, it is unlikely that the formation of RSNO is the sole mechanism responsible for 

the beneficial effects of NO3
-. Finally, this study has investigated the effect of a “one-off” acute 

dose of dietary NO3
- on EV populations. Future studies should assess the effect of longer term 

dietary NO3
- on RSNO formation, circulating EV levels and platelet activity in CAD patients.   
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6.6.4 Conclusions 

In summary, this chapter has shown that dietary NO3
- supplementation in the acute setting can 

reduce the total circulating plasma EVs in CAD patients on clopidogrel. This increase appears to be 

mediated, at least in part, by an increase in RSNO formation. The decrease in EVs was mirrored by 

a reduction in both platelet activation and the platelet marker CD41 within the EV sample, 

suggesting the decrease in EVs was predominantly platelet-derived. These results suggest that 

dietary NO3
- supplementation could provide an additional adjunct to platelet inhibition with 

clopidogrel in CAD patients. 
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7 GENERAL DISCUSSION 
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7.1 Overview and conclusions 

The primary aim of this thesis was to comprehensively assess the effect of NO metabolites (inorganic 

NO3
-/NO2

-) on EV production and function. Initially, the focus sought to establish the role of these 

metabolites within a hypoxic environment, exploring in detail the relationship between HIF, NO, and 

EV release. The EVs produced from endothelial cells incubated under hypoxia/normoxia with or 

without NaNO2 treatment were then assessed for their pathological potential utilising a series of 

functional experiments. This in vitro work was then extended to a placebo-controlled trial in healthy 

volunteers, assessing their circulating EV concentrations over a 6 day dietary NO3
- supplementation 

treatment plan. In addition, the effect of NO3
- supplementation on plasma NO metabolites was 

measured. Finally, the effect of acute NO3
- supplementation on EV concentration was tested in a CAD 

cohort, in a placebo-controlled study.  

CVD remains the leading cause of mortality globally, accounting for an estimated 17.7 million deaths 

in 2015, 31% of all global deaths (1). Atherosclerosis, the major precursor to CVD, can be delayed via 

the control of modifiable risk factors and medication. The role of EVs within the progression of CVD 

has only emerged in the last 10-15 years (291,613). Specifically, their roles in coagulation and 

inflammation make them attractive targets for therapeutic modulation.  

The investigation into the effect of hypoxia on EV production led to the discovery of the fascinating 

triad of HIF, NO and EV release. Hypoxia exposure strongly activates endothelial cells, thereby 

initiating a cascade of reactions. The initial event is a decrease in oxidative phosphorylation of the 

mitochondria, caused by the reduction in oxygen availability, leading to decreases in ATP (614). 

Glycolysis is activated to compensate for this decrease, which produces lactic acid and a large number 

of protons, decreasing the intracellular pH. The decrease in pH subsequently can stimulate the Na+/H+ 

exchanger, leading to an influx of Na+
. The influx of extracellular Ca2+

 could then be caused by the 

extrusion of Na+
 ions through the Na+/Ca2+

 exchanger, a common pathway for intracellular Ca2+ 

increases (615). Indeed, this mechanism has been demonstrated previously in endothelial cells (428). 

However, results within this thesis found EV release to be HIF-1α mediated, in agreement with other 

studies on breast cancer cells (430). HIF-1α can lead to adaptations in cellular physiology necessary 

for EV release, such as cytoskeleton reorganisation. It is likely that hypoxia increases both [Ca2+]i and 

HIF-1α, which together facilitate the enhanced EV release observed. The adaptation of cellular 

physiology following hypoxia exposure was mirrored in the EVs released, with significant differences 

in the content of these EVs, including decreased thrombomodulin and TFPI levels, and increased TNF-
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α, IL-6, and NF-κB levels. Indeed, the transcription factor HIF can modulate expression of these genes 

(79,82,616), as discussed in Chapter 4. Furthermore, NO2
- derived NO is capable of reducing [Ca2+]i  

(617) and HIF-1α expression (618), which evidently led to the reduction in EV production observed. 

NaNO2 treatment of endothelial cells incubated in hypoxia produced EVs with reduced pro-coagulant 

potential, although this had no effect on their influence over leukocyte adhesion. Thus, NO2
- not only 

reduces the production of EVs, but in some respects, reduces their potentially pathogenic function.  

The multifaceted roles of NO within the cardiovascular system are well documented (435,619), 

however, work outlined in this thesis offers another potential beneficial effect of NO within the 

vasculature, specifically under pathological or disease settings.  The nitrate-nitrite-nitric oxide 

pathway is a fascinating premise, which has received large amount of attention in recent years (155), 

with multiple research groups utilising the ability to increase NO bioavailability via a dietary 

supplement. It is important to note that multiple mechanisms of NO2
- reduction to NO exist. Indeed, 

this reduction is greatly enhanced under hypoxic conditions, as demonstrated in Chapter 3 of this 

thesis, and well documented within the literature (468,620). However, due to the complexities of 

measuring oxygen concentration in vivo, it remains difficult to establish whether the hypoxia present 

in disease cohorts is severe enough to facilitate the reduction (468). That being said, there is evidence 

that NO can be produced from NO2
- at physiological concentrations in ischaemic conditions in tissue 

of the cardiovascular system (621). A second possible mechanism of increasing NO bioavailability is 

via RSNO formation. Indeed, I observed significant increases in RSNO levels within the plasma 

following NO3
- supplementation in chapter 5 and 6 of this thesis. Research from our own group 

(590,601) and others (553) have demonstrated the formation of RSNO when NO2
- is exposed to an 

acidic environment, such as the stomach. This RSNO molecule can then diffuse into the plasma and 

donate both NO directly (600). Indeed, the involvement of RSNOs as active intermediates in the 

effects of NO3
- and NO2

- was demonstrated as early as 1981 by the Nobel Prize winner Louis Ignarro 

(622). In reality, these mechanisms are not mutually exclusive and likely exist in parallel, offering 

multiple methods of increasing NO bioavailability in pathological conditions.  

Intriguingly, we observed large differences in NO metabolite formation between healthy volunteers 

(Chapter 5) and CAD patients on clopidogrel (Chapter 6). Admittedly, the source of NO3
- between 

these studies differed, with BEET IT Organic beetroot juice used in chapter 5, and a Science in Sport 

Go+ Nitrate gel used in chapter 6. As a result, the total level of NO3
- given to participants differed, with 

a total of 12.88 mmol given in Chapter 5 and 8.06 mmol given in Chapter 6. This is reflected in plasma 

NO3
- levels 2 hours post-supplement, where, despite similar baseline NO3

- levels (≈20-30 µM), peaks of 
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≈500 µM were observed following the higher dose in healthy volunteers, whereas peaks of ≈250 µM 

were recorded in CAD patients administered 8.064 mmol of NO3
-. Similarly, plasma NO2

- levels 

reached ≈500 nM 2 hours post-supplementation in healthy volunteers, in comparison to peaks of only 

≈250 nM seen in CAD patients. These differences in plasma NO metabolites following varying doses of 

NO3
- are to be expected, and are in agreement with numerous other studies using similar dosing, 

which have been extensively reviewed previously (124).  

There is significantly less research investigating the effect of dietary NO3
- supplementation on plasma 

RSNO formation. Within Chapters 5 and 6, baseline levels were similar between both cohorts (≈15 

nM). However, plasma RSNO levels reached approximately 140 nM in healthy volunteers, with only a 

modest increase to around 20 nM observed in CAD patients. Whilst it is possible that this is simply 

due to the level of NO3
- participants received, there are also several other potential reasons for this 

difference. Firstly, the cohorts themselves are entirely dissimilar; one group were healthy, 

recreationally active males, with an average age of 33. The other group were significantly older 

(average age of 63) males with established CAD. It is already known that CAD patients exhibit reduced 

NO bioavailability (9,581). It is plausible that these subjects may also exhibit reduced capability of 

RSNO formation. In order for RSNO to be formed, three things are required: an abundance of NO2
-, a 

protein with a free thiol (R-SH) group, and an acidic environment (an abundance of H+ ions). This is 

summarised in the equation below. 

𝑅-𝑆𝐻 + 𝐻+ +  𝑁𝑂2− ↔ 𝑅-𝑆𝑁𝑂 +  𝐻2𝑂 

Healthy volunteers were instructed to fast at least 3 hours prior to the study commencing, in 

comparison to an overnight 12 hour fast that was employed in CAD patients. Thus, this may have 

influenced the amount of protein, and thus free thiol availability within the stomach. Furthermore, 

participant recruitment for Chapter 5 was performed in Norway, where a major constituent of their 

diet is meat and fish (623). It is possible that these high protein food groups may have facilitated the 

large amount of RSNO produced in comparison to the CAD patient cohort. Subjects were instructed to 

avoid foods high in NO3
- content for the duration of the study, so it is unlikely that unconscious NO3

- 

dosing was a factor. Another potential influence of the discrepancy is that a proportion of CAD 

patients were also taking PPIs, increasing the pH of the stomach. Despite evidence suggesting RSNO 

formation is still possible at higher pH levels (601), it is conceivable that this may have attenuated the 

rise in plasma RSNO observed in the CAD cohort. 

This thesis is in agreement with the wealth of literature that suggests circulating EVs are elevated in 

CVD compared to healthy individuals (624). CAD patients had approximately 66% more circulating EVs 
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in comparison to the healthy volunteers in chapter 5 (5e11 EVs/mL plasma vs 3e11 EVs/mL plasma). In 

CAD patients on clopidogrel, following NO3
- supplementation circulating EV levels were reduced to a 

similar level seen in healthy volunteers (3.5e11 EVs/mL plasma).  However, NO3
- supplementation had 

no effect on EV levels in healthy volunteers. Thus, this may represent a healthy “baseline” level of EVs 

in individuals, with NO3
- only taking effect when a pathological increase in EVs is present, following 

stimulation of cells leading to their activation, as seen in chapter 6 of this thesis.  

The pleiotropic effects of thienopyridines, including clopidogrel, have been the subject of intense 

study within our research group. Indeed, the thesis of my colleague Dr Lawrence Thornhill extensively 

investigated the ability of these drugs to form RSNO compounds (625). The results within chapter 6 of 

this thesis compliment this work, offering a potential additional benefit of thienopyridine treatment, 

increasing NO bioavailability in CAD patients.  The reduction in NO bioavailability is a hallmark of 

endothelial dysfunction, which precedes the development of CVD. Thus, the ability of a treatment to 

increase NO bioavailability is highly favourable. The beneficial effects of NO within the vasculature are 

well-known, including vasodilation, platelet inhibition, inhibition of leukocyte adhesion, and inhibition 

of smooth muscle cell proliferation to name but a few. This thesis offers insight into another potential 

beneficial effect of NO within the vasculature, demonstrating its capability to reduce circulating pro-

coagulant EVs.  

Investigation into the effects of boosting NO bioavailability via dietary NO3
- supplementation has 

grown in the last decade. Indeed, reductions in blood pressure (162,548), platelet reactivity (162,166) 

and improvements in vascular function (167,626) have all already been shown. Again, this thesis 

offers another benefit to this list: a reduction in circulating EVs in CVD patients. In combination with 

the other beneficial effects reported, dietary NO3
- supplementation represents an exciting possible 

therapeutic adjunct for the treatment of CVD patients.  

A potential concern with sustained nitrate therapy is the development of tolerance. Primarily 

associated with organic nitrate (eg glyceryl trinitrate (GTN)) administration, the exact mechanism is 

not fully understood, but there is evidence to suggest that the mitochondrial aldehyde 

dehydrogenase-2 (ALDH-2) plays a role (625). It is thought that ALDH-2 is required for the activation 

of GTN, and the subsequent production of ROS leads to oxidation of thiol groups within the active 

sites of the enzyme, leading to irreversible inhibition and decreased bioactivation of GTN (627,628). 

Inorganic NO3
- administration does not appear to lead to tolerance (629). Despite this, one study 

recently demonstrated prolonged inorganic NO3
- supplementation in mice led to initial increases in 
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plasma NO3
- and NO2

- (2 weeks), followed by decreases over time (6, 10 and 14 weeks), suggesting 

either reduced NO2
- formation, or enhanced NO3

-/NO2
- clearance (630). 

7.2 Future directions 

Future research should aim to build on the themes presented in this thesis, and further explore the 

relationship between inorganic NO3
- supplementation and EV production. Despite the function of 

endothelial-derived EVs being reviewed extensively within this thesis, platelet-derived EVs represent 

the greatest proportion of circulating plasma EVs (631). In addition, platelet-derived EVs are thought 

to be integral mediators of coagulation. Thus, the impact of NO3
- supplementation on platelet EV 

production and/or function should be assessed. Ongoing work within our research group is currently 

optimising a method of selecting specific EV populations within a plasma-derived EV sample, utilising 

a magnetic-bead based assay and specific EV markers (CD41). This method would facilitate the 

isolation of EVs derived from a specific cell-type, such as platelets, which would further assist in the 

understanding of the roles different subsets of EVs play in vivo.  

An interesting future study, potentially utilising this method, would be to assess the function of CAD 

patient-derived EVs following inorganic NO3
- supplementation. This would reveal whether increasing 

NO bioavailability can alter the function of EVs produced in vivo, as demonstrated in vitro in Chapter 

4. This thesis has already established that NO3
- supplementation can lower the circulating 

concentration of EVs in CAD patients. NO3
- supplementation has been demonstrated to alter cellular 

function, in both endothelial cells and platelets (162,632). The next stage in this research would be to 

investigate if these cellular adaptations are mirrored in the EVs they produce in an in vivo scenario. 

Although the EV research field is rapidly accelerating, there remains discrepancies within isolation 

and measurement procedures within research groups, which must be addressed in order to provide 

clinically approved, standardised protocols that can facilitate their potential as therapeutic targets of 

disease. This has been recently addressed, in part, by ISEV and the establishment of standard 

procedures and characteristic markers (251). 
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Additionally, the effect of a long-term NO3
- supplementation intervention should be assessed in a CVD 

patient cohort. In this thesis, a “one-off” dose of NO3
- was given. Future studies should investigate 

whether the effects observed following this are sustainable when given NO3
- treatment daily over a 

longer period of time. Indeed, patient recruitment is currently ongoing for a clinical trial investigating 

the effect of 6 months of daily dietary NO3
- on vascular function, platelet reactivity and restenosis in 

patients with stable angina due to have elective PCI (633). It would be interesting to measure 

circulating EV levels within a similar cohort, and investigate whether EV levels correspond with 

patient outcomes, which has been previously reported (385). 

Finally, the focus on this thesis has been modulating EVs within CVD. However, EVs are elevated in a 

number of disease states, including cancer. Research is ongoing in this field as to how to possibly 

target aspects of EV biogenesis, which may prevent tumour progression (634). Indeed, hypoxia is an 

integral feature of the tumour microenvironment. This thesis has demonstrated that NO2
- derived NO 

is capable of modulating hypoxia-mediated EV release in vitro. Thus, NO3
- supplementation may be 

able to offer a novel dietary intervention capable of modulating the release of these EVs.  
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Appendix 1.1 

Appendix 1.1A Levels of coagulation proteins in EVs.  

 

 

 

 

 

Values are relative fluorescence units (RFU). * reflects p < 0.05 compared to 21% O2 EVs. † reflects p < 0.05 

compared to 21% O2 & NaNO2 EVs. Results represent [n=5].  

 

 

Appendix 1.1B Levels of pro-inflammatory cytokines and transcription factors in EVs. 

Values are relative fluorescence units (RFU). ** and *** reflect p < 0.01 and p < 0.001 respectively, 

compared to 1% O2 EVs. †† and ††† reflect p < 0.01 and p < 0.001 respectively, compared to 1% O2 & NaNO2 

EVs. Results represent [n=5].  

  

Marker 21% O2 EVs 21% O2 & 

NaNO2 EVs 

1% O2 EVs 1% O2 & 

NaNO2 EVs 

vWF 11389 ± 1765 12534 ± 3688 12385 ± 2186 10111 ± 1103 

Tissue factor 5958 ± 1644 4239 ± 605 7666 ± 1698 9505 ± 1260 

Thrombomodulin 17230 ± 2319 15967 ± 1559 9465 ± 819* 9522 ± 909* 

TFPI 19723 ± 2698 19323 ± 2053 9799 ± 2353* 8524 ± 1084* † 

Marker 21% O2 EVs 21% O2 & NaNO2 

EVs 

1% O2 EVs 1% O2 & NaNO2 

EVs 

TNF-α 11073 ± 452** 9816 ± 552*** 16476 ± 882 11240 ± 785** 

IL-1α 7063 ± 315 7349 ± 629 7306 ± 1533 10545 ± 2005 

IL-6 9800 ± 384***†† 8461 ± 967***††† 20916 ± 659 17763 ± 1574 

IL-8 12327 ± 983 16194 ± 600 14148 ± 371 12160 ± 1229 

NF-κB 6547 ± 553**†† 4273 ± 543**††† 13647 ± 475 14518 ± 1976 
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Appendix 1.1C Levels of adhesion molecules in EVs 

Values are relative fluorescence units. Results represent [n=5].  

 

Appendix 1.1D Levels of exosomal, endothelial and hypoxia markers in EVs. 

Values are relative fluorescence units. *** reflects p < 0.001 compared to 1% O2 EVs. ††† reflects p < 0.001 

compared to 1% O2 & NaNO2 EVs. Results represent [n=5].  

 

Marker 21% O2 EVs 21% O2 & 

NaNO2 EVs 

1% O2 EVs 1% O2 & NaNO2 

EVs 

VCAM-1 18295 ± 373 16148 ± 682 21247 ± 1306 16383 ± 3415 

ICAM-1 17968 ± 795 13403 ± 1208 19764 ± 3790 12739 ± 2414 

PECAM-1 16029 ± 2260 13092 ± 2306 15286 ± 2795 12891 ± 3815 

P-Selectin 17263 ± 1643 11072 ± 1211 17058 ± 1098 17587 ± 1291 

E-Selectin 15592 ± 1324 13208 ± 1551 19711 ± 1968 16086 ± 2333 

Marker 21% O2 EVs 21% O2 & NaNO2 

EVs 

1% O2 EVs 1% O2 & NaNO2 

EVs 

CD9 42044 ± 2450 45510 ± 1540 45091 ± 514 43424 ± 2946 

ALIX 16228 ± 1965 16369 ± 1913 18151 ± 834 17410 ± 954 

TSG101 23584 ± 2251 18002 ± 1273 23338 ± 2040 18317 ± 1885 

HIF-1α 367 ± 367***††† 610 ± 610***††† 13618 ± 1642 16648 ± 1339 

CD144 20315 ± 1172 20244 ± 1317 21965 ± 485 22835 ± 1547 
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Appendix 1.2  

Appendix 1.2A Acute change (Day 1) in the size distribution profile of EVs following BR juice or placebo.  

 

 

 

 

  

 

 

 

 

 

NTA was used to assess changes in the size distribution of EVs, split into 50 nm bin sizes for analysis and 

normalised per mL of plasma. Samples were measured in quintuplicate and the mean used in further 

analysis. Results represent [n=8]. Data are expressed mean ± SEM. 

 

EV Size Placebo BR Juice 

0-50 2.00e8 ± 1.50e8 -2.54e7 ± 1.80e8 

51-100 -8.28e9 ± 2.4e10
 -1.04e9 ± 9.36e9

 

101-150 -3.12e10 ± 1.8e10 4.06e10 ± 2.56e10 

151-200 7.18e9 ± 7.985e9 1.92e10 ± 1.58e10 

201-250 7.99e9 ± 1.03e10
 1.38e10 ± 8.17e9

 

251-300 1.51e10 ± 1.02e10 8.93e9 ± 6.13e9 

301-350 9.70e9 ± 6.20e9 1.46e9 ± 8.40e8 

351-400 3.87e9 ± 2.62e9 4.69e8 ± 1.91e8 

401-450 9.01e8 ± 7.63e8 2.38e8 ± 2.13e8 

451-500 1.72e8
 ± 1.20e8

 2.01e8
 ± 1.06e8

 

501-550 1.49e8
 ± 1.06e8

 1.50e8
 ± 8.77e7

 

551-600 0 ± 0  0 ± 0  

EV Size Placebo BR Juice 

0-50 2.00e8 ± 1.50e8 -2.54e7 ± 1.80e8 

51-100 -8.28e9 ± 2.4e10
 -1.04e9 ± 9.36e9

 

101-150 -3.12e10 ± 1.80e10 4.06e10 ± 2.56e10 

151-200 7.18e9 ± 7.985e9 1.92e10 ± 1.58e10 

201-250 7.99e9 ± 1.03e10
 1.38e10 ± 8.17e9

 

251-300 1.51e10 ± 1.02e10 8.93e9 ± 6.13e9 

301-350 9.70e9 ± 6.20e9 1.46e9 ± 8.40e8 

351-400 3.87e9 ± 2.62e9 4.69e8 ± 1.91e8 

401-450 9.01e8 ± 7.63e8 2.38e8 ± 2.13e8 

451-500 1.72e8
 ± 1.20e8

 2.01e8
 ± 1.06e8

 

501-550 1.49e8
 ± 1.06e8

 1.50e8
 ± 8.77e7

 

551-600 0 ± 0  0 ± 0  
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Appendix 1.2B Chronic change (Day 1-6) in the size distribution profile of EVs following BR juice or 

placebo.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NTA was used to assess changes in the size distribution of EVs, split into 50 nm bin sizes for analysis and 

normalised per mL of plasma. Samples were measured in quintuplicate and the mean used in further 

analysis. Results represent [n=8]. Data are expressed mean ± SEM. 

  

EV Size Placebo BR Juice 

0-50 1.84e8 ± 9.89e7 7.15e8 ± 7.15e7 

51-100 -8.32e8 ± 2.26e10
 -3.6e10 ± 2.23e10

 

101-150 -2.77e10 ± 1.91e10 -1.30e10 ± 1.70e10 

151-200 2.18e10 ± 2.57e10 9.22e9 ± 8.952e9 

201-250 1.09e10 ± 1.25e10
 1.10e10 ± 6.83e9

 

251-300 6.32e9 ± 4.85e9 4.04e9 ± 3.73e9 

301-350 1.77e9 ± 3.97e8 2.20e9 ± 1.42e9 

351-400 2.44e8 ± 1.36e8 9.78e8 ± 4.64e8 

401-450 2.44e8 ± 1.58e8 4.46e8 ± 3.10e8 

451-500 -3.99e6
 ± 4.20e6

 2.32e8
 ± 1.19e8

 

501-550 0 ± 0 2.53e7 ± 9.97e6 

551-600 0 ± 0  0 ± 0  
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Appendix 1.2C Acute change (Day 6) in the size distribution profile of EVs following BR juice or placebo.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NTA was used to assess changes in the size distribution of EVs, split into 50 nm bin sizes for analysis and 

normalised per mL of plasma. Samples were measured in quintuplicate and the mean used in further 

analysis. Results represent [n=8]. Data are expressed mean ± SEM. 

EV Size Placebo BR Juice 

0-50 3.80e8 ± 1.63e8 1.83e8 ± 1.63e8 

51-100 2.02e9 ± 1.33e10
 5.869 ± 5.85e9

 

101-150 1.48e10 ± 1.92e10 3.24e10 ± 8.44e9 

151-200 1.77e9 ± 1.24e10 -1.18e10 ± 7.36e9 

201-250 -1.68e10 ± 1.22e10
 -4.36e9 ± 6.53e9

 

251-300 -7.45e9 ± 4.39e9 -2.87e9 ± 4.00e9 

301-350 -1.88e9 ± 4.34e8 -8.22e8 ± 1.60e9 

351-400 -2.53e8 ± 1.38e8 -5.12e8 ± 5.00e8 

401-450 -2.27e8 ± 1.48e8 -2.34e8 ± 3.52e8 

451-500 -3.21e6
 ± 2.10e6

 -1.92e8
 ± 1.20e8

 

501-550 0 ± 0 2.14e7 ± 4.71e7 

551-600 0 ± 0  0 ± 0  
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Appendix 1.3 

Appendix 1.3 Effect of BR juice on EV surface protein.  

 

 

 

 

 

 

 

 

 

Fluorescence values for both BR Juice and placebo at all time points for the exosome marker (CD9), platelet marker (CD41), leukocyte marker (CD11b), erythrocyte marker (CD235a) 

and endothelial marker (CD144). Data represent mean ± SEM [n=8].    

 

 

 

Day 1: Pre-treatment Day 1: Post-treatment Day 6: Pre-treatment Day 6: Post-treatment 

Marker BR Juice Placebo BR Juice Placebo BR Juice Placebo BR Juice Placebo 

CD9 54761 ± 2810 

 

56521 ± 2831 53528 ± 2438 54803 ± 1661 53308 ± 2495 55338 ± 2042 48175 ± 3517 51443 ± 3263 

CD41 20835 ± 1381 20008 ± 1179 18698 ± 864 17316 ± 989 18563 ± 1467 18639 ± 839 18754 ± 1372 18360 ± 1235 

CD11b 25663 ± 1939 21920 ± 1022 26992 ± 3038 23852 ± 1710 26522 ± 2104 24096 ± 1775 26381 ± 2322 22542 ± 847 

CD235a 7505 ± 612 7304 ± 460 7593 ± 730 7386 ± 495 6637 ± 534 6446 ± 783 6469 ± 807 6264 ± 564 

CD144 3455 ± 403 3893 ± 197 3166 ± 428 3768 ± 282 2945 ± 470 4085 ± 224 2894 ± 562 3607 ± 386 


