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Abstract: The Barlett-Lewis (BL) rainfall model is a stochastic model for the rainfall at a single point in
space, constructed using a cluster point process. The cluster process is constructed by taking a primary/parent
process, called the storm arrival process in our context, and then attaching to each storm point a finite sec-
ondary/daughter point process, called a cell arrival process. To each cell arrival point we then attach a rain
cell, with an associated rainfall duration and intensity. The total rainfall at time t is then the sum of the
intensities from all active cells at that time.

Following Rodriguez-Iturbe et al. (1987), we suppose that the storm arrival process is a Poisson process, and
that the cell arrival processes are independent Poisson processes, truncated after an exponentially distributed
time (the storm duration). Rain cells are all i.i.d., with independent exponentially distributed duration and
intensity.

Because it has an intractible likelihood function, in the past the BL model has been fitted using the Generalized
Method of Moments (GMM). The puprose of this paper is to show that Approximate Bayesian Computation
(ABC) can also be used to fit this model, and moreover that it gives a better fit than GMM. GMM fitting
matches theoretical and observed moments of the process, and thus is restricted to moments for which you
have an analytic expression. ABC fitting compares the observed process to simulations, and thus places no
restrictions on the statistics used to compare them. The penalty we pay for this increased flexibility is an
increase in computational time.

The ABC methodology supposes that we have an observation D from some model f(·|θ), depending on
parameters θ, and that we are able to simulate from f . Let π be the prior distribution for θ and S = S(D)
a vector of summary statistics for D, then ABC generates samples from f(θ|ρ(S(D∗), S(D)) < ε), where
D∗ ∼ f(·|θ), θ ∼ π, and ρ is some distance function. If S is a sufficient statistic, then as ε → 0 this will
converge to the posterior f(θ|D).

The choice of good summary statistics is important to the success of ABC fitting. To fit the BL model we used
rainfall aggregated over six-minute and hourly intervals, and then compared the mean, standard deviation,
auto-correlation at lags 1 and 2, probability of no rain, mean length of wet and dry periods, standard deviation
of wet and dry periods, and the total number of wet and dry periods We note that for GMM fitting we can
only use the first five of these statistics, because we do not have analytic expressions for the others. Using a
simulation study we demonstrate that ABC fitting can give less biased and less variable estimates than GMM.
We also give an application to rainfall data from Bass River, Victoria, July 2010. Again we see that the ABC
fit is better than the GMM fit.

An important advantage of ABC fitting over GMM fitting is that we can use summaries of the data that capture
useful information, whether or not we have an expression for their expectation. Moreover, this means that
ABC can be used for models for which GMM fitting is not available. For example, if we used a gamma
distribution for the duration of a rain cell, rather than an exponential distribution, then we would not be able
to calculate the second order statistics of the model, making GMM fitting impossible. However ABC fitting
would proceed as before, with the addition of a single parameter. This opens up the possibility of fitting much
more realistic stochastic rainfall models.

Keywords: Bartlett-Lewis process, rainfall, simulation, Generalized Method of Moments, Approximate
Bayesian Computation, Markov Chain Monte Carlo
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1 INTRODUCTION

The Barlett-Lewis (BL) rainfall model is a stochastic model for the rainfall at a single point in space, con-
structed using a cluster point process. The cluster process is constructed by taking a primary/parent pro-
cess, called the storm arrival process in our context, and then attaching to each storm point a finite sec-
ondary/daughter point process, called a cell arrival process. To each cell arrival point we then attach a rain cell,
with an associated rainfall duration and intensity. The total rainfall at time t is then the sum of the intensities
from all active cells at that time.

Because it has an intractible likelihood function, the BL model has been fitted using the Generalized Method
of Moments (GMM). The puprose of this paper is to show that Approximate Bayesian Computation (ABC)
can also be used to fit this model, and to show using a simulation study that it gives a better fit than GMM.
GMM fitting matches theoretical and observed moments of the process, and thus is restricted to moments for
which you have an analytic expression. ABC fitting compares the observed process to simulations, and thus
places no restrictions on the statistics used to compare them. The penalty we pay for this increased flexibility
is an increase in computational time.

Because our primary goal is to compare GMM and ABC fitting, we will restrict ourselves to a simple BL
model, namely the rectangular pulse model introduced by Rodriguez-Iturbe et al. (1987). See Cowpertwait
et al. (2007) for some more recent refinements.

We use a (homogeneous) Poisson process with rate λ for the storm arrival process. The cell arrival processes
are independent processes, each one a Poisson process of rate β, truncated after an exponential(γ) ammount
of time, which we call the storm duration. Assuming that we are working in a finite time window, denote the
storm arrival times T1, T2, . . . Tn and the storm durations D1, D2, . . . , Dn. Let the arrival times for the i-th
cell arrival process be Si1, S

i
2, . . . , S

i
k(i) ∈ [0, Di], where k(i) (possibly zero) is the number of cells in storm i.

The cell arrival times are thus {Ti + Sij : i = 1, . . . , n, j = 1, . . . , k(i)}.
Rain cells are independent with duration and intensity having independent exponential(η) and
exponential(1/µx) distributions. The intensity is constant during a cell’s lifetime. Suppose the j-th cell in
storm i has duration Lij and intensity Xi

j , then the overall intensity of rainfall at time t is

Y (t) =
∑
i

∑
j

I{Ti+Si
j<t≤Ti+Si

j+L
i
j} X

i
j .

An illustration of the components of a BL process is given in Figure 1.

Rain gauges record accumulated rather than instantaneous rainfall. Accordingly we define the rainfall for i-th
time period of length h to be Y hi =

∫ ih
(i−1)h Y (t) dt. Rodriguez-Iturbe et al. (1987) derive expressions for

the mean, variance, and covariances of the Y hi , as well as P(Y hi = 0). GMM fitting requires moments with
analytical expressions, and we used mean, standard deviation, auto-correlation at lags 1 and 2, and probability
of no rain, for both six-minute and hourly aggregated data, giving a total of nine summary statistics. (Note that
given the mean at six-minute intervals, the mean at hourly intervals contains no additional information, and so
is not included.)

Suppose that V = (V1, . . . , Vk)
′ is a vector of statistics computed from our observed data, with expectations

τ(θ) = (τ1(θ), . . . , τk(θ))
′, depending on some unkown parameter vector θ. The GMM estimate of θ is then

θ̂ = argminθ (V − τ(θ))′W (V − τ(θ)),

where W is a positive definite weighting matrix, usually assumed to be diagonal. It can be shown that the
optimal weights are inversely proportional to Var (Vi), and can be estimated iteratively. For specific details of
GMM fitting for BL models, we refer the reader to Wheater et al. (2005) and Kaczmarska (2011), for example.

2 APPROXIMATE BAYESIAN COMPUTATION

ABC was introduced by Pritchard etl. (1999), and was later extended to incorporate Markov Chain Monte
Carlo (MCMC) Marjoram et al. (2003), or alternatively Sequential Monte Carlo (SMC) Sisson et al. (2007,
2009); Beaumont et al. (2009). We will use the ABC-MCMC methodology of Marjoram et al. (2003).

We suppose that we have an observation D from some model f(·|θ), depending on parameters θ, and that
we are able to simulate from f . Let π be the prior distribution for θ and S = S(D) a vector of summary
statistics for D, then ABC generates samples from f(θ|ρ(S(D∗), S(D)) < ε), where D∗ ∼ f(·|θ), θ ∼ π,
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Figure 1. Constituent parts of a Bartlett-Lewis process: a) Storm process and cell processes b) Storm durations, cell 
durations, and cell intensities

and ρ is some distance function. If S is a sufficient statistic, then as ε → 0 this will converge to the posterior 
f(θ|D). ABC-MCMC adds a proposal chain with density q and a rejection step, to generate a sample {θi}. 
The algorithm is as follows:

Algorithm 1 ABC-MCMC
for i=1 to N do

1. Given current state θi propose a new state θ∗ using q(·|θi)
2. Put α = min

(
1, π(θ

∗)q(θi|θ∗)
π(θi)q(θ∗|θi)

)
3. Go to step 4 with probability α, otherwise set θi+1 = θi and return to step 1
4. Simulate data D∗ ∼ f(·|θ∗)
5. If ρ(S(D∗), S(D)) ≤ ε then set θi+1 = θ∗, otherwise set θi+1 = θi

end for

Note that the MCMC rejection at step 3 comes before the ABC comparison in step 5. This is to avoid unnec-
essarily running the simulation in step 4.

2.1 Applying ABC-MCMC to the BL model

Firstly we reparameterise the model, to reduce the dependence between the parameters. In addition we use a
log transformation to map them from R+ to R, which simplifies the choice of the proposal chain.

The total intensity at time t has mean IT = λγ−1βη−1µx. Our new parameters are

θ(1) = log(IT )

θ(2) = log(λγ−1)

θ(3) = log(λγ)

θ(4) = log(βη−1)

θ(5) = log(βη)

These parameters are still dependent, for example a low storm arrival rate and long storm duration can give
the same total intensity as a high storm arrival rate and short storm duration. None-the-less we found that this
reparameterisation improved estimation; in particular IT is much easier to estimate than µx.
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Figure 2. From top to bottom, plots are errors in the estimates of parameters λ, γ, β, η and µx, for 25 separate 
simulations. Left figures are GMM estimation errors and right figures are ABC-MCMC estimation errors. The 

blue dotted lines give the average bias.
.

Vague normal priors were used for all the θ(i); that is π(θ) ∼ N(0, σ2I) for σ2 large. For the proposal chain 
we just used a random walk. Note that as the proposal distribution is symmetric, α will depend only on the 
prior.

The choice of good summary statistics is important to the success of ABC fitting. In addition to the statistics 
used for GMM (mean, standard deviation, auto-correlation at lags 1 and 2, probability of no rain), we also 
used mean length of wet and dry periods, standard deviation of wet and dry periods, and the total number of 
wet and dry periods, again for six-minute and hourly aggregated data. This gave us a vector of 19 summary 
statistics for ABC-MCMC fitting.

Note that while it is important that our summary statistics are sufficient, including unnessesary statistics will 
reduce the performance of the ABC estimator, essentially by introducing noise that makes it harder to dis-
tinguish between good and bad simulations. This can be mitigated somewhat using the post-hoc analysis of 
Beaumont et al. (2002), which reweights the component statistics to give more importance to those that can 
better predict the quality of a simulation. However we also determined experimentally that using a smaller set 
of summary statistics gave poorer estimates.

For the distance measure ρ we use a weighted Euclidean metric,

ρ(S(D∗), S(D)) =
∑
i

wi(S
∗(i)− S(i))2,

where S∗(i) and S(i) are respectively the i-th component of S(D∗) and S(D). Just as the choice of sum-
mary S is important, so to is the choice of weights. Various authors have found that choosing wi inversely
propotional to the variance of S∗(i) works well, formally giving equal importance to each component of S. In
practice we estimate Var (S∗(i)) using a sample generated from f(·|θ̂), where θ̂ is a preliminary estimate of
θ.

3 SIMULATION STUDY

In this section we use a simulated data set to compare GMM and ABC-MCMC parameter estimation for the
BL model. Using λ = 0.04, γ = 0.20, β = 0.50, η = 2.00 and µx = 1.50, we simulated rainfall for a two
week period and then used GMM and ABC-MCMC to estimate the parameters. This was repeated 25 times to
guage the bias and variability of each estimator.

ABC-MCMC requires tuning to perform well. We need to choose ε small enough that we get a good approxi-
mation to the posterior, but large enough that the chain has a reasonable acceptance rate. Also, for very small
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Figure 3. Rainfall measurements from Bass River, Victoria, July 2010. The x-axis is measured 
in days and the y-axis in mm. Data obtained from the Australian Bureau of Meteorology.

ε it can be difficult to get the chain started, particularly if your starting point is in a region of low posterior
probability. The practical solution to this problem is to run a short initial ABC estimate (using i.i.d. samples
from the prior π, instead of using the proposal density q). This allows us to roughly estimate the distribution
of ρ(S(D∗), S(D)) and thus choose ε. It also allows us to choose a starting point for the MCMC chain that
has high posterior probability (removing the need for a burn-in period), and to refine the weights wi used in ρ.

For priors we used the N(0, 3.02) distribution for each θ(i). As for any MCMC procedure, the proposal chain
needs to be chosen so that it mixes well and explores the whole parameter space. We used a random walk with
N(0, 0.22I) increments. Combined with a threshold of ε = 2.5, this gave an acceptance rate of around 3%.

We used the posterior mean of the ABC-MCMC sample to get a point estimate that we could compare directly
to the GMM estimate. We used local linear regression to calculate the posterior mean, as suggested by Beau-
mont et al. (2002). The results are given in Figure 2. This graphs clearly show that ABC-MCMC gives less
biased and less variable estimates than GMM.

4 APPLICATION TO REAL DATA

Figure 3 gives rainfall for Bass River, Victoria, July 2010. Rainfall is measured in increments of 0.2 mm every
6 minutes using a tipping bucket. Rainfall of less than 0.2 mm is considered as no-rainfall. In this section we
fit a Bartlett-Lewis model to these data.

We used independent N(0, 3.02) priors for the θ(i). For the proposal chain we used a random walk with
N(0, 0.22I) increments. Trace plots were used to verify that the chain was mixing nicely. Figure 4 gives the
estimated posterior densities for the original (untransformed) parameters. The diagonals are marginal densities
and the off-diagonals pairwise densities.

In Table 1 we give the posterior mean, median and 95% credible intervals for each parameter, together with a
GMM estimate. Note that the GMM estimate sits within the credible interval in each case.

To judge the models fitted using GMM and ABC-MCMC, we used simulation to generate 95% confidence
intervals for a variety of statistics (at different levels of temporal aggregation), and compared these to their
observed values. The results are given in Figure 5. We see that the GMM fitted model only gives a good
correspondence between the fitted model and the data for those statistics used in the GMM fit, but the ABC-
MCMC fitted model gives a good correspondence for all the statistics considered.

5 CONCLUSIONS

Using both a simulation study and real data, we have seen that ABC-MCMC gives better fits than GMM, for
fitting a Bartlett-Lewis rainfall model. An important advantage of ABC fitting over GMM fitting is that we
can use summaries of the data that capture useful information, whether or not we have an expression for their
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Figure 4. Posterior distributions (marginals and pairs) for λ, γ−1, β, η−1 and µx. 
From the BL model fitted to the Bass River data.

Parameter GMM ABC-MCMC ABC-MCMC ABC-MCMC
Posterior mean 95% credible interval Posterior median

λ 0.0950 0.0707 (0.0461, 0.0981) 0.0701
γ 0.3709 0.2819 (0.1585 , 0.4858) 0.2978
β 0.1911 0.9697 (0.5526, 1.5360) 0.9369
η 0.7091 0.4456 (0.1987, 2.1642) 0.4830
µx 1.3957 2.3999 (0.8642, 6.7225) 1.9149

i

expectation. Moreover, this means that ABC can be used for models for which GMM fitting is not available. 
For example, if we used a gamma distribution for the duration of a rain cell, rather than an exponential distri-
bution, then we would not be able to calculate the second order statistics of the {Y h}, making GMM fitting

impossible. However ABC fitting would proceed as before, with the addition of a single parameter. This opens
up the possibility of fitting much more realistic stochastic rainfall models.

Finally we note that unlike GMM, ABC fitting provides credible intervals and not just point estimates.
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Table 1. Parameter estimates for the BL model fitted to the Bass River data. All estimated parameter values are per 
hour except µx, which is mm per hour.
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Figure 5. 95% confidence intervals for various statistics; the left two columns use GMM estimates and the 
right two columns use ABC-MCMC estimates. For each figure, the statistics were calculated using rainfall 
aggregated over intervals of 0.1, 1, 2, 3, 4, 5, 6 hours, and were calculated from 3000 independent simulations. 

The solid blue lines give the observed statistics.
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