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Abstract 

Purpose: Dysregulation of hedgehog pathway is observed in numerous cancers. Relevance of hedgehog 

pathway genes in cancer cohort and inhibition of its downstream effector (GLI1) towards metastasis in 

cell lines are explored in the study. 

Method: 150 fresh tumours of breast cancer patients were collected for the study. Based on differential 

expression, panel of 6 key regulators of the pathway (SHH, DHH, IHH, PTCH1, SMO and GLI1) in 

microarray datasets were identified. Expressional profiles of aforementioned genes were later correlated 

with clinico-pathological parameters in Pakistani breast cancer cohort at transcript and protein levels. In 

addition, GLI1 over expressing breast cancer cell lines (MDA-MB-231 and MCF-7) were treated with 

GANT61 to explore its probable effects on metastasis.   

Result: SHH, DHH, PTCH1 and GLI1 were significantly over-expressed in tumours as compared with 

respective normal mammary tissues. A significant correlation of SHH, DHH and GLI1 expression with 

advanced tumour size, stages, grades, nodal involvement and distant metastasis was observed (p<0.05). 

Over-expression of SHH, DHH and GLI1 was significantly related with patients having early onset and 

pre-menopausal status. Of note, hedgehog pathway was frequently up regulated in luminal B and triple 

breast cancer negative subtypes affected women. In addition, positive correlations were observed among 

aforementioned members of pathway and Ki67 emphasizing their role towards disease progression. 

Exposure of GANT61 (inhibitor for GLI1) significantly restricted cell proliferation, reduced cell motility 

and invasion. 

Conclusion: Role of activated hedgehog pathway in breast cancer metastasis provides a novel target for 

cancer therapy against aggressive cancer subtypes. 
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Introduction 

Breast cancer is among the most common malignancies accounting for 25% of total cancer burden and 

15% of cancer related deaths [1]. Recently, reactivation of early developmental pathways in promoting 

solid tumour growth has been observed [2]. Pivotal role of hedgehog pathway in embryonic patterning 

and later mammary gland development has been reported [3]. Briefly, binding of three ligands Sonic 

hedgehog (SHH), Indian hedgehog (IHH) and Desert hedgehog (DHH) with Patched1 (PTCH1) results in 

release of Smoothened (SMO). Once relieved SMO activates GLI ((glioma-associated oncogene homolog 

1, transcription factor) responsible for activation of several downstream growth effectors [3].  

Numerous studies suggested dysregulation of hedgehog pathway has an important impact on 

carcinogenesis [4–6]. Exploring any probable correlation of hedgehog pathway with clinico-pathological 

parameters is a step forward towards development of prognostic and predictive markers for future 

therapeutics. Earlier, SHH and GLI1 over-expression have been associated with poor prognosis in 

different types of cancers including breast [6,7], colon [8], glioma [9] and prostate [10]. However, 

prognostic significance of hedgehog pathway with early disease onset and different molecular subtypes of 

breast cancer remain contradictory. Furthermore, its contribution towards metastasis by using cancer cell 

lines is yet to be established. Aim of the study was initially to observe hedgehog pathway activation both 

at mRNA and protein levels in the cohort. Based on these findings, significance of hedgehog pathway in 

breast cancer metastasis was explored using GANT61 (GLI antagonist). Blockade of GLI1 via GANT61 

will be helpful to provide novel insight for involvement of hedgehog pathway in disease progression. 

Results 

Clinical and molecular characterization of cohort 

In Oncomine, 2 datasets TCGA Breast and Finak Breast were assessed for expression variation of 

hedgehog pathway molecules in deposited data. SHH was significantly over-expressed in TCGA 
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(F.C=1.5, p<0.05) and Finak dataset (F.C=1.2, p<0.0001) as compared to normal tissues. Expression of 

PTCH1 (F.C=2.3, p<0.0001) and GLI1 (F.C=2.2, p<0.0001) was also significantly elevated in Finak 

dataset (Suppl. Fig.1). Elevated expression of DHH, PTCH1, and GLI1 in the data deposited for TCGA 

provisional dataset in cBioPortal was also observed. 

Demographic data of present study cohort comprised of 52% of patients having early disease onset and 

were ≤45 yrs of age at the time of diagnosis. Around 60% of cohort represented moderately differentiated 

tumours. Two third of total cases were in advance stages of breast carcinogenesis. Distribution of these 

details along with clinical findings and assessment of hedgehog pathway are presented in the table 1. For 

transcriptional analysis, fold change was evaluated relative to normal control tissues whose mean was 

calculated as 1. 

Significant over expression of SHH (R.E=4.4±3.32), DHH (R.E=4.7±3.46), PTCH1 (R.E=3.4±3.08) and 

GLI1 (R.E=3.8±2.49) were detected in the breast tumour biopsies as compared with controls. In contrast, 

IHH (R.E=0.04±0.16) expression was significantly reduced in cancerous tissues. Lack of any significant 

association of SMO expression among tumour and controls were observed. PTCH1, SHH, DHH, and 

GLI1 over-expression were observed in 74%, 95%, 92% and 98% tumour specimens of the cohort. 

Expression patterns of these genes at mRNA and protein levels along with heatmap of qPCR data are 

shown in figure 1.  

Correlation of Hedgehog Pathway with patients having early disease onset and pre-menopausal 

status 

In both datasets of Oncomine (TCGA breast and Finak breast) expression of SHH, DHH and GLI1 was 

higher in patients having early disease onset. Expression of SHH and GLI1 was also elevated in patients 

having pre-menopausal status while DHH was higher in post-menopausal cases. In the current study, 

cohort elevated expression of SHH (R.E=5.6±3.9, p<0.05), DHH (R.E=5.5±4.1, p<0.05), SMO 
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(R.E=1.9±2.2, p<0.05) and GLI1 (R.E=6.3±4.5, p<0.05) correlated significantly with patients having 

early disease onset. Similarly, expression of SHH (R.E=6.8±4.8, p<0.05), DHH (R.E=5.5±3.9, 

p<0.05)and GLI1(R.E=7.9±4.4, p<0.01)was significantly elevated in pre-menopausal patients while 

PTCH1(R.E=3.9±3.3, p<0.01)was higher in post-menopausal (Fig. 2). 

Correlation of Hedgehog Pathway with markers of poor prognosis 

Over expression of SHH, DHH and GLI1 were associated with cell grades in Finak dataset and also 

related with poorly differentiated tumours. Similarly, transcript copy numbers of SHH and DHH were 

also found related with advanced stages (III, IV). Elevated transcriptional profiles of SHH, DHH and 

GLI1 were associated with almost all indicators of poor prognosis in this cohort. Expression of SHH 

(p<0.05) was 9 folds higher and GLI1 (p<0.05) was 4 folds higher in patients presented with poorly 

differentiated histological grade. Mean mRNA values of SHH, DHH and GLI1 showed gradual increase 

with tumour size, nodal spread and distant metastasis. Significant correlation was observed between SHH 

(R.E=12.76±5.12, p<0.0001), DHH (R.E=9.8±5.1, p<0.05) and GLI1 (R.E=12.3±3.9, p<0.0001) and 

invasive tumour size (Fig. 2).Expression variation of hedgehog pathway and its association with clinico-

pathological parameters is illustrated in table 1. SHH, DHH and GLI1 were also evaluated at protein level 

using IHC. Microscopic features demonstrated cytoplasmic pattern of ligands and nuclear localization of 

GLI1. Tumour sections showed 54%, 65% and 75% positive staining against DHH, SHH, and GLI1 also 

mentioned in the figure1. High intensity of protein expression was observed in patients with advanced 

pTNM stages and poorly differentiated nuclear grade. Hence a consistency of transcriptional profiling 

with protein profiling of SHH, DHH and GLI1 were also established. High expression of all pathway 

components especially GLI1 (HR=1.79 (1.25-2.56), p<0.05) demonstrated significant association with 

shorter DMFS (distant metastasis free survival) in grade III patients (suppl. Fig. 2). This information was 

coherent with expression profile of our dataset rendering hedgehog pathway as a marker of poor 

prognosis. 
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Correlation of Hedgehog Pathway with metastasis and nodal involvement 

Elevated expression of SHH and DHH correlated with N1+ nodal involvement in both datasets. Increase 

in mean copy numbers of SHH and DHH were associated with shorter overall survival in TCGA dataset. 

Similarly increase in mean copy number of SHH (R.E=8.2±3.7, p<0.0001), DHH (R.E=6.5±4.4, p<0.05) 

and GLI1 (R.E=6.6±3.9, p<0.05) were associated with presence of lymph node involvement in Pakistani 

cohort. Similarly, patients having distant metastasis significantly demonstrated enhanced SHH, DHH and 

GLI1 expression with highest levels of DHH (R.E=17.1±2.2, p<0.01) shown in the figure 2. 

Association of hedgehog pathway with ER, PR, Ki67 and HER2 

In Pakistani cohort, all hedgehog molecules were strongly related to hormonal receptors (ER and PR) (r-

value ranging from 0.71 to 0.87, p<0.05). However, majority of hedgehog molecules did not show any 

significant correlation with HER2 as shown in supplementary table 2. A strong positive correlation was 

established between Ki-67 proliferation index and SHH, DHH, PTCH1 and GLI1 (r-value ranging from 

0.60 to 0.78, p<0.05) indicating their putative role in cell proliferation. 

Correlation of Hedgehog Pathway with Molecular Subtypes of Breast Cancer 

In TCGA dataset, triple negative subtype of patients showed significant over expression of DHH, PTCH1 

and SMO. Following St. Gallen International Expert Consensus System, Pakistani cohort retains highest 

proportion of luminal-B (53%), followed by triple negative (18%), luminal-A(15%) and HER2 (14%) 

individuals. Both luminal B and triple negative subtypes representing patients showed significantly 

increase of SHH, DHH, PTCH1and GLI1 as shown in the fig 3.Furthermore,prognostic role of hedgehog 

pathway was assessed using the online available Kaplan Meier Plotter dataset (n=626 patients, follow-up 

threshold=15yrs) [17]. Elevated expression of hedgehog pathway members was also associated with 

shorter distance metastasis free survival in patients diagnosed with luminal-B breast cancer patients as 

shown in the supplementary figure 3. 
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High expression of SHH, DHH and GLI1 is poor predictor of overall survival 

Due to prospective nature of study design, follow-up data for overall survival was collected for 36 to 40 

months. Kaplan-Meier plots were generated using high and low expression of SHH, DHH and GLI1(Fig. 

3). Log-rank test was used to assess the effect of expression of SHH (HR=2.97 (1.6-5.6), p=0.0007), 

DHH (HR=2.25 (1.2-4.4), p=0.02) and GLI1 (HR= 4.06(2.2-7.5), p< 0.0001) which were all associated 

with poor predicted mortality. Based on univariate and multivariate Cox’s proportional regression 

analyses, elevated expression of SHH (HR=3.94 (1.7-9.4), p=0.002), DHH (HR=2.72 (1.2-6.5), p=0.02) 

and GLI1 (HR=4.5 (2.2-9.4), p<0.0001) were found to be independent predictor of overall survival. 

Furthermore patients having ER positive tumours (HR=3.05 (1.36-6.89), p=0.007) and distant metastasis 

(HR=3.47 (1.2-9.7), p=0.02) were found to be associated with shorter overall survival. Age (HR=0.18 

(0.07-0.44), p=0.0003) was also found to be a significant predictor of mortality having association of 

older age with less hazard ratio and good prognosis (table 2). Overall high expression of SHH, DHH and 

GLI1 was found to be an independent predictor of poor mortality in the present cohort. 

GANT61 mediated metastasis restriction by decreasing cell proliferation 

Earlier, effect of GANT61 in suppressing hedgehog pathway was assessed by measuring SHH, PTCH1 

and GLI1 expressions using qPCR and western blot. GANT61 effectively inhibited GLI1 (R.E=0.2±0.1 in 

MDA-MB-231 and R.E=0.2±0.17 in MCF-7, p<0.05). Being targets of GLI1,expression of SHH 

(R.E=0.18±0.2 in MDA-MB-231 and R.E=0.3±0.4 in MCF-7, p<0.05) and PTCH1 (R.E=0.09±0.14 in 

MDA-MB-231 and R.E=0.3±0.4 in MCF-7, p<0.05) were also repressed after treatment with GANT61 as 

shown in the figure 4.GANT61 significantly inhibited proliferation of MDA-MB-231 and MCF-7 cells in 

a dose and time-dependent manner from their respective control groups (p<0.0001) as mentioned in figure 

5. IC50 calculated for GANT61 (10µM) was used for migration and invasion assays.  

GANT61 reduced metastatic potential by decreasing cell migration and invasion 
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Furthermore, effect of hedgehog signaling on motility of breast cancer cells using an in vitro wound-

healing assay. MDA-MB-231 and MCF-7 cells were treated with pre-conditional medium containing 

GANT61 (10 µM) and control medium containing DMSO. GANT61 inhibited cell migration in both cell 

lines in contrast to their respective control cell lines (p<0.0001) as shown in the fig.5. Moreover, the 

effect of hedgehog signaling on the invasive ability of breast cancer cells was also evaluated using 

matrigel invasion assay. The ability of breast cancer cells to invade matrigel was markedly reduced in 

cells that were treated with GANT61 (p<0.0001), suggesting that hedgehog signaling has an essential role 

in the migration and invasiveness of breast cancer cells. 

Discussion 

Expression pattern of all aforementioned genes of hedgehog pathway are in line with earlier studies in 

different cancers [18–21]. Interestingly, lack of IHH association with clinical parameters is also observed 

in breast and prostate cancers [22,23] in line with the given cohort. However, up regulation of IHH 

observed among Chinese breast cancer cohort is contradictory to our findings [24]. This may be attributed 

to population specific genotypic variations, multiple hedgehog ligands targeting PTCH1 and sensitivity of 

detection technique. 

Over-expression of SHH, DHH and GLI1 was frequently observed in triple negative and luminal-B 

subtypes of the given cohort. In triple negative patients, activated hedgehog pathway was significantly 

related with advanced tumour stages and poor prognosis as has already been reported [25,26]. Hence 

suppression of hedgehog pathway may provide a novel therapeutic strategy for treating TNBC. On the 

other hand, association of hedgehog pathway with luminal subtypes can also be explained based on 

positive correlation of different hedgehog molecules with ER in the cohort. Co-expression of ER and 

SHH was present among 60% of the cohort patient’s, indicating molecular crosstalk as mentioned 

previously [27]. Similarly, strong positive correlation between hedgehog members (DHH, SHH, GLI1) 

and high Ki-67indexwith values 75, 80 and 85% respectively was observed. These findings corroborate 
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interplay of hedgehog pathway in tumour growth of luminal B subtype patients. Earlier it has been shown 

that inhibition of GLI1 expression via RNAi mediated depletion restricted cell growth in ER positive 

tamoxifen resistant cells [28]. Furthermore, role of hedgehog pathway towards tumourigenesis in 

endocrine therapy resistant patients has also been established [29].Based on these findings, inclusion of 

hedgehog pathway as novel therapeutic target in treating patients belonging to both TNBC and luminal-B 

subtypes is strongly recommended. 

Generally, aggressive molecular subtypes noted among young women are associated with worse outcome 

[30]. Hence, identification of alternate predictive and therapeutic biomarker is a necessity for these young 

patients. In the given study, alteration of hedgehog pathway was frequently observed among young 

Pakistani patients. Keeping in view increasing incidence of breast cancer in Pakistani women, devising 

novel therapeutic strategies are an absolute requirement. In the given cohort, patients<45yrs showed 

frequent over expression of SHH, DHH and GLI1 contributing towards aggressive tumourigenesis. 

Interestingly earlier findings also indicate that pre-menopausal patients showed more aggressive tumour 

progression in comparison to post menopausal population [31]. Hence elevated expression of SHH, DHH 

and GLI1 was also observed in pre-menopausal patients signifying their association with poor prognosis. 

Thus it is necessary to adapt a molecular screening driven approach to refine treatment for younger breast 

cancer patients including hedgehog inhibitors in adjuvant therapy regimen.  

Over-expression of SHH, DHH and GLI1 was significantly correlated with advanced stages and tumour 

grades of the cohort. Activation of hedgehog pathway in advance cancer stages has been reported 

previously in breast [25,32], ovarian [18], renal [19] and prostate cancer [10].Concomitantly, 

dysregulation of SHH, DHH and GLI-1 in the cohort has also been related with nodal involvement and 

metastasis. In another study, significant relevance of hedgehog ligands with metastasis and breast cancer 

specific death has been reported [33]. Similar results were obtained at both mRNA and protein levels in 
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Taiwanese and German populations [6,34].These findings strongly suggest role of hedgehog pathway in 

breast cancer progression and metastatic spread. 

High expression of SHH, DHH and GLI1 was also found to be an independent predictor of overall 

survival in this cohort along with age, distant metastasis and ER expression. However, SMO has a limited 

clinical relevance as observed in this cohort. No significant association of SMO with patient’s age, 

metastasis or other relevant parameters has been established in this study. Although, numerous SMO 

inhibitors like GDC-0449 (Vismodegib) have entered clinical trials for triple negative breast cancer 

patients but their efficacy still remains uncertain. Benvenuto et al. have recently proven that targeting 

hedgehog pathway using antagonists like GANT61 that act downstream of SMO is a more efficient 

strategy than using antagonists against SMO in breast cancer [35]. Furthermore non-canonical 

transcriptional activation of hedgehog pathway has also been extensively documented [36]. Hence, role of 

GANT61 as potential inhibitor of GLI1 against metastatic cascade has been deciphered. In this study, 

IC50 determined for both MCF-7 (ER+ve) and MDA-MB-231 (ER-ve) cell lines, was 10µM. It showed 

maximum reduction of cell proliferation after 48hrs. This concentration of GANT61 was enough to 

suppress expression of GLI1 and transcriptional activation of PTCH1 and SHH as mentioned earlier [35]. 

Furthermore, GANT61 significantly reduced both motility and invasion thus efficiently demonstrating its 

potential to restrict cancer metastasis. 

Expression analysis of hedgehog pathway at early stage is highly recommended especially for young 

patients. Furthermore, this is the first ever report regarding evaluation of GANT61 potential role on 

metastasis suppression. Clinical and in-vitro functional assays findings strongly emphasize on hedgehog 

pathway’s putative role as potential cancer therapeutic target in breast cancer patients. 

Materials and Methods 

Publicly available expression data assessment 

http://pubmedcentralcanada.ca/pmcc/solr?term=author:(Monica%20Benvenuto)
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Pre-evaluation of hedgehog pathway in breast cancer datasets of two publicly available repositories 

namely, Oncomine and cBioportal were performed. Oncomine (Compendia Bioscience, Ann Arbor, 

MI; www.onocomine.org) is an online database consisting of earlier published 715 microarray datasets. 

RNA expression status of SHH, DHH, IHH, PTCH1, SMO and GLI1 genes were evaluated in 593 TCGA 

breast cancer samples and 59 Finak breast cancer samples available in Oncomine database. In order to 

score gene as positive (high expression) or negative (low expression), the Log2 Median-Centered ratio, as 

reported in the Oncomine database, was used to evaluate differential expression of these genes in different 

clinical groups.  

Similarly, cBioportal for Cancer Genomics (www.cbioportal.org)an online publicly available database, 

was screened in extended TCGA dataset of 1105 breast cancer patients[11]. RNAseq data of TCGA 

cohort was explored to validate expression pattern of SHH, DHH, IHH, PTCH1, SMO and GLI1. 

Clinical characteristics of the cohort  

The study proceeded with prior approvals from biosafety and ethical committees of both COMSATS 

Institute of Information Technology and Holy Family Hospital Rawalpindi, Pakistan. Informed consents 

from the participants were collected after a thorough briefing of the proposed research. Tumour biopsies 

(n=150) along with adjacent normal mammary tissues (n=150) were collected immediately after surgery 

and snap frozen till further usage. Data regarding clinical and pathological findings were obtained in 

subsequent follow-up from respective laboratory reports and consultation.  

RNA isolation and cDNA synthesis 

RNA isolation was performed with TRIzol® (15596-018, Invitrogen, USA) from the respective biological 

specimens following manufacturer’s instructions. Briefly, 1cm3 tissue section was homogenized using a 

hand held homogenizer in ice-cold RNA extraction buffer. Concentration of RNA was determined using 

nanodrop (Nanophotometer®Pearl, Implen, Germany). cDNA was synthesized using Revert Aid First 

http://www.onocomine.org/
http://www.cbioportal.org/
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Strand cDNA Synthesis Kit (K1622, Thermo Scientific, USA).  

Quantitative Real-time PCR 

Primers for hedgehog pathway genes (SHH, DHH, IHH, PTCH1, SMO and GLI-1) were designed and 

synthesized from Integrated DNA Technology. β-actin was used to normalize the data. Sequences along 

with their amplicon sizes are provided in the supplementary table 1. Furthermore, primers for biomarkers 

ER (Estrogen receptor), PR (Progesterone receptor), HER-2 (Human Epidermal growth factor Receptor 2) 

and Ki-67 (Proliferative marker) used for molecular subtyping of breast cancer were also synthesized 

from IDT. VeriQuest SYBR Green qPCR Master Mix (75600200RXN, Thermo Scientific, USA) was 

used for qPCR in Step One plus (Applied Biosystem, USA). Reaction conditions included an initial 

denaturation at 95°C for 15min, followed by 40 cycles of denaturation at 95°C for 15 sec and annealing at 

55°C for 1min in each cycle. Relative mRNA expression was calculated using the 2−ΔΔCt method. 

QCanvas was used for the hierarchical clustering and visualizing heatmap of SHH, DHH, IHH, PTCH 

and SMO based on relative expression values [12]. 

Immunohistochemistry 

Immunohistochemical staining was done using both tumour and normal frozen sections of 4μm thickness 

of given cohort bio-specimens. Initially, these slices were mounted on Super Frost Plus microscopic 

slides and air-dried for 30min.These fixed tissue sections were treated with 50% methanol and 50% 

acetone for 15 min. Sections were then air dried for10 min and stored at -20˚C (wrapped in foil) till 

further usage. Briefly, these slides were placed in PBS for 5 min to rehydrate, followed by blocking with 

10% horse serum. These sections were later exposed with primary antibodies for SHH, DHH and 

GLI1.Antibodies used were rabbit anti-SHH polyclonal antibody (H-160; sc-9024, dilution 1:200; Santa 

Cruz Biotechnology, USA), mouse monoclonal anti-DHH (sc-271168, dilution 1:200; Santa Cruz 

Biotechnology, USA) and mouse anti-GLI1 monoclonal antibody (D1; sc-271075, diluted 1:200; Santa 
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Cruz Biotechnology, USA). Exclusion of primary antibody acted as a negative control. Immunostaining 

was performed as previously described [13]. Immuno-Reactive-Scores (IRS) were evaluated as the 

product of  % of cells positively stained for each molecule categorized from 1 to 4 (1=<25%, 2=25-

50%,3>50%). Final IRS scores were ranked as high or low based on mean of IRS. Expression of pathway 

molecules was correlated with demographic and clinico-pathological findings of the cohort.  

Breast cancer cell lines maintenance and culture condition 

Breast cancer cell lines (MCF-7 and MDA-MB-231) were generously provided by Dr Yi Li (Breast centre 

Li, Baylor College of Medicine, USA). These lines were cultured and maintained as recommended by 

ATCC. Role of hedgehog pathway towards metastasis was assessed in these cell lines by inhibiting 

downstream effector GLI via GANT61 (G9048-5MG, Sigma, Germany). 

Western blot analysis 

Cells were homogenized in lysis buffer containing protease inhibitor. Concentration of the harvested 

proteins was determined using the Pierce BCA (Bicinchoninic Acid) protein assay kit (23225, Thermo 

Scientific, USA). Western blotting was performed following protocol described previously [14]. Both 

primary and secondary antibodies used for this study were purchased from Santa Cruz Biotechnology 

(USA) unless stated otherwise. Human SHH (H-160; sc-9024, dilution 1:1000), human PTCH-1 (H-267; 

sc-9016, dilution1:500), human GLI-1 (H-300; sc-20867, dilution 1:1000) were used. Rabbit polyclonal 

antibody was used as secondary antibody for these blots. Mouse monoclonal antibody targeting against 

human Actin (C-4; sc-47778, dilution 1:3000) was used as control. The experiments were repeated three 

times independently. 

Cell proliferation assay 

The cell proliferation assay was assessed with CCK-8 (CK04-05, Dojindo, Japan) as reported [15]. 

Briefly, triplicate sets of 96 well plates retaining 5x10
3
cells from both MDA-MB-231 and MCF-7 cell 
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lines were prepared. After exposure with variable concentration (0, 5µM, 10 µM, 15 µM and 20µM) of 

GANT61, these plates were incubated at 37°C retaining 5% CO2 for 48hrs. Assay was repeated at least 

three times to validate IC50 value for GANT61. Furthermore, time dependent effect of GANT61 was 

evaluated at different time points (0, 24, 48, 72 and 96hrs). 

Cell invasion assay 

Using inserts of 8μm size placed in 24’ well plate, invasion assays were performed. Briefly, each insert 

was initially coated with Matrigel (356234, BD MatrigelTM Basement Membrane Matrix, BD Biosciences, 

UK). After rehydration, 5x104 cells of respective cell lines were seeded separately in the insert. Two set of 

inserts were used for each cell line. Cells in one insert were exposed to DMSO (Dimethyl sulfoxide) as 

control while in other insert GANT61 (10µM) was added. After 24hrs of incubation, inserts were fixed 

with formalin and stained in crystal violet [14].Cells were counted under microscope to observe any 

possible invasion as mentioned (14). 

Cell migration assay 

A wound of ~300µm was artificially introduced into monolayer of breast cancer cell line and cells 

movement towards the wound was measured over span of 48hrs. Effect of GANT61 exposure towards 

cells motility was also calculated in these cell lines. Images were taken through a phase-contrast 

microscope (10× objective lens) at 0, 12, 24, 36 and 48hrs. The wound area was quantified with the 

Image J software [16]. Data was expressed as the mean of three independent experiments ± standard 

deviation. 

Statistical analysis 

Wilcoxon signed rank test was used to evaluate difference between tumours and adjacent controls. Mann 

Whitney and Kruskal-Wallis Anova were applied to assess the association of molecules with different 

clinico–pathological parameters. Spearman correlation was also used to evaluate relationship between all 
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molecules in tumourigenesis. Unpaired t-test was applied to assess statistical differences in cell 

proliferation, migration and invasion assays. Kaplan-Meier plots were generated and survival was 

compared using log rank test. Cox's proportional hazard regression analyses were performed to evaluate 

hazard ratio of covariates for overall survival of patients. Statistical analyses were performed using 

Graphpad Prism 5 (GraphPad Software, Inc. CA, USA) and StatsDirect (http://www.statsdirect.com. 

StatsDirect Ltd. 2013, England).The value for p<0.05 was considered significant. 
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List of Figure Legends 

Figure 1: Expression Profiling of Hedgehog Pathway Members in Pakistani Cohort. 

a). Scatter plots showing mean relative mRNA expression of SHH, DHH, IHH, PTCH1, SMO 

and GLI1 in tumor samples as compared to normal tissues. b). Heatmap showing differential 

expression of analyzed molecules in tumors on left side and adjacent normal mammary tissues 

on right side. c). Immunostaining of SHH (A, B), DHH (C, D) and GLI1 (E, F) in normal tissues 

(A, C, E) and tumor tissues (B, D, F). (Wilcoxon Signed Rank Test, p<0.0001).  

Figure 2: Transcript Profiling of Hedgehog Pathway using Box Whisker Plots.  

Association of relative expression of hedgehog pathway components with a). Nuclear grades, b). 

Tumor size, c). Nodal involvement, d). Metastasis, e). Age at disease onset, f). Menopausal 

status. (Kruskal-Wallis Anova (a, b and c) and Mann-Whitney U test (d, e and f), * p<0.05, ** 

p<0.001, ***p<0.0001).  

Figure 3: Correlation of Hedgehog molecules with Intrinsic Molecular Subtypes and Overall 

Survival of patients.   

a). Expression variation of hedgehog pathway in molecular subtypes (Luminal A, Luminal B, 

HER2 and Triple negative) of breast cancer patients evaluated using qPCR. (Kruskal-Wallis 

Anova, * p<0.05, ***p<0.0001). b). Kaplan Meier plots showing association of SHH, DHH and 
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GLI1 with Overall survival in Pakistani population (red = high expression, blue = low 

expression, significant p<0.05). 

Figure 4: Effect of GANT61 exposure on SHH, PTCH1 and GLI1 using qPCR and 

Western blot. 

Inhibition of expression of hedgehog pathway after treatment with GANT61 (10µM) for 48hrs. 

Relative mRNA expression of SHH, PTCH1 and GLI1 using qPCR in a). MDA-MB-231, b). 

MCF-7 (Mann Whitney U test, * p<0.05, ** p<0.001, ***p<0.0001). c). Protein expression of 

SHH, PTCH1 and GLI1 using western blot having β-actin as internal control in both cell lines. 

All experiments were conducted in triplicates and were performed thrice. 

Figure 5: Effect of GANT61 on proliferation, motility and invasion of breast cancer cells.  

Inhibitory effect of GANT61 on proliferation, motility and invasion of breast cancer cells was 

tested using in vitro models. Cell viability assays were conducted using CCK-8, to observe the 

effect of GANT61 on cell proliferation in MDA-MB-231 and MCF-7 in a). Dose dependent (5, 

10, 15, 20µM) and b). Time dependent manner (24, 48, 72, 96hrs). IC50 of GANT61 was 

determined to be 10 µM.  MDA-MB-231 and MCF-7 were treated with the conditional medium 

containing 10uM GANT61 and the control medium. c). Migration was assessed using scratch 

assay and readings were taken after every twelve hour for 48hrs, upper panel of both cell lines 

represent 0hr and the lower panel represents 48hr. d). Graph showing difference of distance 

migrated between untreated and treated cells at each time point of scratch assay. e). Invasion was 

assessed using Boyden chamber transwell assays and difference between treated and untreated 

cells was evaluated after 24hrs. d). Graphical representation of number of cells invaded as mean 
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± S.D. between untreated and treated cells in both cell lines. (Unpaired t test, ***, ### 

p<0.0001). All experiments were conducted in triplicates and were performed thrice. 

 

 

 

 

 

 

 

 

 

 

 

Tables 

Table 1: Clinical correlation of hedgehog pathway with demographic and pathological variables in 

Pakistani breast cancer cohort. 

Variable Total Mean±SD 

SHH p-value DHH p-value IHH p-value PTCH p-value SMO p-value GLI-1 p-value 

Tumour 150 4.4±3.3 < 0.0001 4.7±3.5 < 0.0001 0.04±0.2 < 0.0001 3.4±3.1 < 0.0001 1.4±2.1 0.61 3.8±2.5 < 0.0001 

Control 150 1.0±0.9 1.0±1.4 1.0±1.1 1.0±1.0 1.0±1.3 1.0±0.8 

Disease onset age 

Age ≤ 45 years 76 5.6±3.9 0.03 5.5±4.2 0.04 0.2±0.8 0.65 3.2±3.1 0.26 

 

1.9±2.2 0.03 6.3±4.5 0.03 

Age  ≥ 45 years 74 4.2±3.3 3.9±2.9 0.04±0.2 3.6±3.0 1.2±1.8 4.2±2.7 

Menopausal status 

Pre-Menopausal 80 6.8±4.8 0.0065 5.6±3.9 0.01 0.23±0.8 0.45 0.2±0.8 < 0.0001 2.8±3.6 0.12 7.9±4.3 < 0.0001 

Post-Menopausal 70 4.5±3.5 3.9±3.0 0.05±0.2 3.9±3.3 2.1±3.1 3.9±2.5 

Laterality 

Right 75 4.2±2.8 0.01 5.8±4.0 0.001 0.2±0.8 0.13 3.4±2.9 0.97 2.5±2.9 0.26 4.5±2.9 0.02 

Left 75 6.1±4.1 3.8±3.0 0.1±0.4 3.4±3.2 2.1±3.1 6.4±4.5 
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Table 2: Univariate and multivariate Cox's proportional hazard regression analyses of Pakistani 

breast cancer cohort for potential predictors of overall survival 

Characteristics Univariate analysis Multivariate analysis 

HR(95%CI) p value HR(95%CI) p value 

SHH  3.14(1.3-7.7) 0.01 

Age 0.18(0.06-0.45) 0.0003 0.2(0.08-0.56) 0.002 

SHH 3.89(1.6-9.2) 0.002 

ER 2.67(1.2-6.0) 0.02 2.26(0.97-5.25) 0.05 

SHH 3.53(1.5-8.4) 0.004 

PR 1.76(0.9-3.5) 0.09 - - 

SHH 3.58(1.5-8.6) 0.004 

HER-2 1.16(0.6-2.1) 0.6 - - 

SHH 3.93(1.7-9.3) 0.002 

Metastasis 2.96(1.1-8.3) 0.03 2.62(1.3-5.3) 0.007 

SHH 3.79(1.6-9.0) 0.002 

DHH  2.83(1.2-6.8) 0.02 

Grade-wise distribution 

Grade I 14 3.5±2.7 0.0001 3.4±2.4 0.48 0.2±0.9 0.2 2.9±2.9 0.68 2.4±3.5 0.11 2.8±1.9 0.01 

 Grade II 90 5.0±3.8 4.9±3.7 0.2±0.6 3.4±3.2 2.6±3.2 3.2±1.8 

Grade III 46 9.4±6.5 4.9±3.6 0.09±0.3 3.6±3.2 2.1±3.6 5.6±4.3 

Stage-wise distribution 

Stage I 34 4.2±3.3 < 0.0001 6.2±3.6 < 0.0001 0.1±0.5 0.03 3±2.8 0.35 2.6±3.3 0.09 6.7±3.9 0.005 

 Stage II 68 7.1±4.1 8.3±3.7 0.2±0.7 3.3±3.2 2.3±2.7 7.2±3.6 

Stage III 43 8.7±3.9 8.6±3.8 0.1±0.2 3.6±2.9 1.3±1.7 7.9±3.8 

Stage IV 5 14.6±2.9 17±2.2 0.06±0.1 4.9±2.8 2.3±1.9 14.5±3 

Nodal Involvement 

N0 (none) 48 4.3±3.2 < 0.0001 3.3±2.8 0.01 0.2±0.5 0.02 2.9±3 0.34 2.6±3.2 0.92 4.1±2.7 0.003 

N1(lymph node<4) 78 6.1±4.1 5.8±4.2 0.2±0.7 3.6±3.2 2.3±3.3 5.9±3.6 

N2(lymph node>4) 24 8.2±3.7 6.5±4.4 0.006±0 3.6±2.8 2.7±3.9 6.6±3.9 

Distant Metastasis 

M0 145 4.4±3.4 0.0003 4.5±3.4 0.0002 0.14±0.6 0.09 3.3±3.0 0.12 2.4±3.4 0.34 3.8±2.5 0.0002 

 M1 5 14.6±2.9 17±2.2 0.06±0.1 4.9±2.8 2.3±1.8 14.5±3 

Molecular subtypes 

HER-2  21 2.7±2.4 < 0.0001 2.2±1.1 < 0.0001 0.03±0.1 0.73 4.3±4.5 0.04 2.5±3 0.63 3.7±2.1 0.0007 

 

 

Luminal A 23 5.3±2.8 1.9±1.6 0.06±0.2 2.1±1.9 1.9±2.7 2.7±1.6 

Luminal B 79 6.7±2.7 4.9±3.5 0.1±0.4 3.7±3 2.6±3.4 5.2±2.9 

Triple Negative 27 5.9±3.2 2.9±2.6 0.3±0.8 4.1±3.8 1.8±2.8 3.8±2.5 



25 

 

Age 0.16(0.07-0.43) 0.0002 0.17(0.1-0.5) 0.0003 

DHH 2.94(1.2-6.9) 0.01 

ER 2.78(1.2-6.3) 0.01 2.00(0.8-4.9) 0.13 

DHH 2.42(1.0-5.8) 0.04 

PR 1.97(1.0-3.85) 0.05 2.04(0.97-4.3) 0.06 

DHH 2.56(1.1-6.1) 0.03 

HER-2 1.16(0.6-2.1) 0.62 - - 

DHH 2.72(1.2-6.5) 0.02 

Metastasis 3.97(1.9-7.9) 0.0001 2.9(1.4-5.9) 0.003 

DHH 3.16(1.3-7.5) 0.009 

GLI1  3.67(1.7-7.9) 0.0008 

Age 0.17(0.07-0.43) 0.0002 0.18(0.1-0.5) 0.0004 

GLI1 4.67(2.2-9.8) <0.0001 

ER 2.43(1.1-5.5) 0.03 2.45(1.1-5.6) 0.03 

GLI1 3.98(1.9-8.4) 0.0003 

PR 1.26(0.6-2.6) 0.52 - - 

GLI1 4.15(1.9-9.1) 0.0004 

HER-2 1.01(0.5-1.9) 0.98 - - 

GLI1 4.51(2.2-9.5) <0.0001 

Metastasis 2.54(1.3-5.1) 0.009 1.85(1.9-3.8) 0.009 

GLI1 4.01(1.9-8.5) 0.0003 
Bold values show significance at p<0.05, covariates significant in univariate analyses were considered for multivariate analyses.  
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