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Abstract 

The synovium is the major target tissue of inflammatory arthritides such as rheumatoid 

arthritis (RA). The study of synovial tissue has advanced significantly over a number of 

decades from arthroplasty, blind needle biopsy and more recently facilitated by arthroscopic 

and ultrasonographic technology that allows easier visualisation and improves the reliability 

of obtaining synovial biopsies. The potential for study of pathogenesis, patient stratification, 

discovery of biomarkers and novel targets, as well as validation of therapy, have all been 

progressed rapidly in the last decade, facilitated by increasingly diverse and sophisticated 

analytical and technological approaches. In this review we describe clinical and translational 

developments in the field of synovial tissue research, outlining current and novel investigative 

technologies, and highlight their application to advance our understanding of the aforegoing 

imperatives. 
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Introduction 

 
1.1 General Considerations 
 

Chronic inflammatory arthritides (IA) comprise a heterogeneous group of diseases 

characterised by inflammation of the synovium, often accompanied by destruction of 

adjacent cartilage and bone. Inflammation is characterised by synovial neovascularisation, 

stromal proliferation and leukocyte extravasation.1 For the purpose of this review we will 

focus on rheumatoid arthritis (RA), due to its prevalence, and there being the most extensive 

body of research on this common cause of synovitis. RA is usually persistent and progressive, 

leading to joint damage, disability and deformity if left untreated. RA is associated with a 

reduction in quality of life as well as decreased longevity and constitutes an important burden 

on healthcare spending.2–4  

 

Recent years have seen several dramatic advances in the treatment of IA in general, and 

particularly in RA. The patterns of clinical response are remarkably similar for agents with 

different targets challenging our understanding of disease mechanisms. While it is true that 

the last two decades have witnessed an unprecedented, if qualified, success in treating RA, a 

substantial portion of patients still do not achieve low disease activity or remission.5,6 

 

The main challenges in biomedicine and translational research in RA focus on early diagnosis, 

personalised medicine, and the development of meaningful outcome assessments.7 It is 

logical to hypothesise that each of these aims can be facilitated by the identification and 

development of appropriate biomarkers. However, while peripheral blood biomarkers such 

as rheumatoid factor and anti-citrullinated peptide antibodies (ACPA) have been shown to be 

relatively specific and may predict development of RA in asymptomatic individuals,8,9 they 

may only be found in 70-80% of RA subjects. Indeed, beyond these factors our repertoire of 

blood biomarkers to assist with diagnosis, disease progression and response to therapy is 

currently extremely limited.10,11 

 

Since the synovium is the principal target of inflammation in RA, and the specific resident 

fiblroblast-like synoviocyte (FLS) is implicated in the pathogenesis of synovitis, one promising 

approach in the search for biomarkers may be the detailed analysis of the inflamed synovial 

tissue. Using a combination of established methodologies, together with incorporating new 

high-throughput technologies with the capability of detailed examination of genes and their 

products on a scale never before possible, a new opportunity awaits in the search for these 

biomarkers. 

 

 

1.2 Anatomy and Physiological Regulation of the Synovial Joint 
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The synovial joint comprises opposing bones, with the articular surface covered by cartilage. 

The main protein in bone is type I collagen, while cartilage, which is found on the articulating 

surfaces, comprises mainly type II collagen and proteoglycan molecules. The non-articulating 

surfaces are lined by a thin adventitious layer known as synovium. Normal synovial tissue 

comprises 1 to 3 layers of specialized columnar FLS interspersed with macrophages.12 The 

entire structure is housed by a fibrous capsule, and together with ligaments, muscles and 

tendons, this confers strength and stability to the joint. 

 

Several factors contribute to the maintenance of normal homeostasis in the synovial joint. 

These include normal expression of the protective lubricin13, FLS secretion of matrix 

metalloproteinases (MMPs), immune sentinel roles played by resident macrophages and FLS, 

the regulated entry and exit of leukocytes involved in immune surveillance, and local 

regulation by cytokines and growth factors. 

 

Cytokines and growth factors are important regulators of FLS and chondrocytes.14–16 

Cytokines are categorized either as pro- or anti-inflammatory depending on their immediate 

effect on specific tissue, although there is considerable potential for pleiotropism depending 

on the cells targeted and the microenvironment. These regulators are ubiquitous in the 

synovium and synovial space and make their way either by filtration from plasma, or secretion 

by FLS, chondrocytes and the surrounding tissues.16  

 

The joint is a dynamic environment that is subject to minor trauma continually, through 

movement, and in some joints, compression due to weight bearing, and is therefore subject 

to continued wound healing and repair processes. It is therefore necessary for articular 

cartilage and adjacent bone to be continually remodelled in a cycle of synthesis and 

degradation. This requires a balance of anabolic and catabolic enzyme activity in both 

cartilage and bone. 

 

Carefully regulated proteolytic enzymes are responsible for the balance between anabolic 

and catabolic processes within the joint and cartilage.17 Matrix degrading enzymes such as 

MMPs are present in normal synovial fluid, but are higher in concentration in RA, psoriatic 

arthritis (PsA) and osteoarthritis (OA).17–19 The collagenases (MMP-1,-3, -8,-13 and -18) are 

the most important of these enzymes as they are the only known enzymes that can directly 

cleave collagen at neutral pH,20 but other MMPs continue this breakdown when the triple 

helix collagen structure has become unravelled.21 

 

Serine and cysteine proteinases are required to activate pro-MMPs (to MMPs) after they are 

secreted. Furthermore, inhibitors of these proteinases (e.g. tissue inhibitors of 

metalloproteinases (TIMPs), and inhibitors of serine proteinases (SERPINs)) are also present 
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in the normal joint. The levels and activity of these enzymes can be monitored indirectly by 

measuring their degradation products in the synovial fluid.22 

 

 

1.3 The Inflamed Joint 
 

The inflamed synovium has been studied at several levels: macroscopic, microscopic and 

molecular. Synovium is the primary target of disturbed immunomodulatory pathways in RA. 

Rheumatoid synovial tissue appears macroscopically hyperplastic and hypervascular (Figure 

1A-B), while microscopically there is intimal lining layer hyperplasia and accumulation of 

inflammatory cells including T and B lymphocytes, plasma cells, macrophages, neutrophils, 

mast cells, natural killer and dendritic cells in the synovial sublining (Figure 1C-D).23 Like the 

target organ in other autoimmune diseases (e.g. Sjogren’s syndrome, autoimmune 

thyroiditis) infiltrating T and B cells have been demonstrated to form aggregates with varying 

degrees of organisation, and the potential to produce disease specific ACPA.24,25 

Angiogenesis accompanies this cell accumulation, but it occurs in an abnormal manner 

resulting in different patterns of blood vessels associated with particular types of 

inflammatory arthropathies.26 Additionally, the new blood vessels appear to be in an 

immature state.27 The new vessels allow for increased leucocyte migration and the synovial 

tissue transforms into an invading ‘pannus’, that may cause cartilage and bone 

destruction.28,29 Despite increased vascular supply, profound hypoxia in inflamed synovial 

membrane in vivo has been demonstrated.30 

Many of the pathological changes manifest in the inflamed synovial tissue are observable in 

the synovial fluid (SF), which has also been studied intensively. Inflammation alters the 

permeability of synovial tissue.31 In relation to RA synovium, the permeability to large 

molecules is increased, but that of small molecules is decreased (e.g urea and glucose). This 

is due to a combination of increased permeability of the vessels, cellular infiltration and 

synovial hyperplasia. The total protein content in SF is higher in inflammation and synovial 

inflammation inhibits the ability of the synovium to selectively filter proteins from entering 

and leaving the joint space.  

The molecular weight distribution of the lubrication macromolecule hyaluronic acid (HA) is 

also altered, with a shift towards lower molecular weight forms in RA.32 There is increased 

loss of HA from the joint and the mean HA concentration is lower in OA and RA synovial 

fluid.33,34  

Pathological SF samples have markedly raised cytokine concentrations.35 The role of cytokines 

in initiating and perpetuating the synovial inflammatory response continues to be studied 

intensively and has already lead to the development of several useful therapeutic agents, and 

the identification of further potential targets.16 Changes in the cellular infiltrate of RA synovial 

tissue were recognised from an early stage to be associated with the clinical course of disease 
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and were used to identify specific responses to conventional and biologic disease modifying 

anti-rheumatic therapy.36–38 

 

Synovial biopsy 

2.2 Retrieving Synovial Tissue Samples 

The utility of synovial biopsy has been demonstrated in increasing our understanding of the 

pathogenesis of RA, in identifying potential therapeutic targets and evaluating current and 

new treatments.36–58It has also been proposed that synovial biopsies may give insight into the 

mechanism of action of a given agent.59  

Synovial tissue may be obtained by needle biopsy, arthroplasty surgery, arthroscopically, or 

using ultrasound to guide the biopsy needle or grasping forceps (Figure 2).59 Arthroscopic 

biopsy allows direct visualisation of the synovium and the operator can select an area of 

synovium to biopsy. Ultrasound depicts synovial thickness in greyscale and synovial 

vascularity with Doppler to assist in selecting a suitable biopsy site. While blind biopsy has 

been validated, arthroscopic and ultrasound guided biopsy are favoured by the majority of 

investigators for proof of concept experiments, as sampling is more specific for synovial tissue 

rather than connective tissue.53 

Arthroscopic and ultrasound guided biopsy are safe and well tolerated. Data from 15,682 

arthroscopies performed by rheumatologists revealed a complication rate for haemarthrosis 

of 0.9%, for deep vein thrombosis of 0.2%, and wound and joint infection both of 0.1%.60 This 

incidence is reproducible at other centres where the overall complication rate was shown to 

be less than 0.3%.Similarly, an overall major complication rate is reported as 0.4% for 

ultrasound guided biopsy procedures.61 

One study of biopsies in RA patients taken from both an inflamed knee joint and a small joint, 

showed similar mean cell numbers for all markers investigated in the synovial sublining in both 

sample sources.62 Of further note, patients with clinically evident disease manifest at small joints have 

been shown to have similar abnormalities in clinically uninvolved knee joints, albeit at lower 

expression levels.62-64 However, intimal lining layer hyperplasia appeared to depend on local 

processes ; there was no correlation of the numbers of intimal macrophages or FLS between the 

different joints. Consistent with these findings, there are differences in DNA methylation and 

transcriptome signatures in FLS from different joints of RA patients as well as differences in FLS 

invasiveness depending on their positional memory. 65, 66 Questions remain about where to biopsy 

within a given joint. In particular there have been concerns that mediators of inflammation 

may be differentially expressed in different parts of the same joint, especially between the 

cartilage pannus junction (CPJ) and non-CPJ sites which are known to behave differently. 

However for T-cells67,68, plasma cells68, several MMPs68 and granzymes68, there have been 

similar results for biopsies from CPJ and non-CPJ sources. One study did find a difference for 
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macrophages63, but others did not.67,68 Studies examining the number of synovial tissue 

specimens for reproducible research studies suggest at least six biopsy specimens is the 

optimal number.59, 70 

Although synovial tissue analysis plays a minor clinical role in the differential diagnosis of 

arthritis (e.g. infectious, granulomatous, infiltrative diseases or crystal arthropathies), there 

are still profound unmet needs regarding predictors for diagnosis, disease progression and 

response to treatment. Therefore, studies of synovium have recently expanded beyond 

immunohistochemistry to involve methods of tissue digestion, homogenisation and indeed, 

whole tissue culture. The methods of examining synovial tissue at a molecular level include 

detailed ‘omic’ technology discussed in greater detail below. To this end the synovial tissue 
obtained from the joint is placed on saline-dampened gauze, snap-frozen in OCT or placed 

directly into RNAlater. The synovial fluid is centrifuged and a cell pellet may be isolated or 

separated, using Ficoll gradient, will provide synovial fluid mononuclear cells.Synovial fluid 

may reflect the synovial compartment better than blood but still provides only indirect 

information therefore studies of the synovium, the target tissue of RA is essential.71 

Various prognostic biomarkers for RA have been identified in SF and validated in serum.72 

Studies performed using this strategy first identified proteins that may be of interest in the 

synovial fluid, and then searched for antibodies to these proteins in the plasma.73It is possible 

that this methodology may be useful in future experiments of synovial tissue, and the results 

of such research may be more easily translated into clinical practice. 

Since 2002, cohorts of patients with early arthritis have been gathered. Having a cohort of 

early arthritis patients with clinical data, histological data, DNA and mRNA arrays plus 

proteomics is an instrumental resource for investigating differences in synovial tissue, 

comparing several inflammatory joint diseases with persistent self-limiting, persistent active 

disease as well as erosive and non-erosive disease.74 

Most research with synovial biopsies has been performed from RA patients but some results 

suggest that synovial tissue sampling may be used in other inflammatory arthropathies such 

as psoriatic arthritis.71, 75-77 This research aims to gain a fuller understanding of disease 

pathogenesis, mechanisms of action of current treatments, and the identification of novel 

targets and biomarkers. Indeed, the effects of various treatments for RA on the synovium has 

been studied, and the principal results of these data are presented in table 1. 

 

2.2 Pathogenesis of Synovitis 

 
Synovial tissue inflammation is preceded by activation and proliferation of endothelial cells 

that form new blood vessels (angiogenesis) as one of the earliest changes. The newly 

activated vessels are the gateway for leukocyte infiltration into the synovium, actively 

recruiting immune cells into the tissue. This results in an expanding synovial pannus 
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characterised, in RA, by hyperplasia of the intimal lining layer and often invasion of pannus 

cells into the nearby bone producing erosions. Therefore, the synovium is the target tissue in 

RA and if studies are confined to examining cellular and molecular alterations in the 

peripheral blood then important information may be completely ignored. For example, Th17 

cells are expanded in the blood of some RA patients, this lead to clinical trials of anti-IL17 

monoclonal antibodies, however as limited Th17 expansion occurs within the synovium, this 

therapeutic approach achieved little effect78. Indeed, studies have shown enrichment of ex-

TH17 cells at the site of inflammation in SF and ST from patients with RA79. Additionally, the 

primary invasive cells in RA are the FLS but these have not yet been associated with a 

circulating biomarker80. 

 

2.3 Early Arthritis and Early Diagnosis 

 
Some progress has been made in earlier diagnosis of RA , however signs of joint destruction 

may already be present at the time of diagnosis.81 We know today that early, aggressive 

treatment is more successful than delayed treatment.82, 83 Therefore the utility of biomarkers 

in securing a diagnosis as early as possible will allow treatment in the most timely manner, 

securing the best outcomes.84 Those with undifferentiated arthritis may benefit most from 

this. Although ACPA are reasonably specific (96%), the diagnostic sensitivity in early arthritis 

is 57%.82  Up to 30% of RA patients never develop ACPA.85 An association has been defined 

between the presence of circulating ACPA and subsequent development of RA in subjects 

with arthralgia,87 and with bone erosions in early untreated subjects.88 Delay in diagnosis of 

RA may arise from either a lack of a definitive biomarker, or a failure to meet current 

diagnostic criteria, and these criteria have a significant reliance on biomarkers. Therefore, 

despite the advent of ACPA, there remains a need to identify further and specific susceptibility 

biomarkers. Recently, biomarkers for RA in those without detectable circulating ACPA have 

been identified, and this RA subset represent an important group to study, and may 

contribute greatly to our understanding of the disease pathogenesis.89, 90  

The so-called ‘at-risk of arthritis’ cohorts have been the subject of much research in recent 

years. One potential corollary of this is the promise of cure and prevention of RA, where the 

initial break in self-tolerance is identified and targeted therapeutically.91  

A positive ACPA status in those with arthralgia is associated with the subsequent development 

of arthritis in only about 20-30% of these people after 30 months of follow up.92, 93 The 

synovial tissue of patients who are at risk of arthritis has also been examined in two relatively 

small studies Little evidence of synovitis was found in the first and subtle T-cell infiltration 

was noted in the second.94 Data on alternative tissues such as lung and lymph node that may 

be important in the very early stages of arthritis as sites of first antigen presentation.94, 95  

It is suggested that a ‘window of opportunity’ may exist during which RA can be most 

successfully treated. In initial studies few molecular differences had been observed in the 
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synovium comparing early and late disease.23, 96  Recently, a highly expanded, specific T-cell 

clone has been identified in early RA, which underlines the importance of T-cells in early stage 

disease.97 Epigenetic changes in FLS over time may define the different stages of RA after 

clinical onset of the disease.   

In recent preliminary reports of ultrasound guided biopsies in unselected treatment-naïve, 

early arthritis patients compared to established RA, there was increased tissue expression of 

macrophage derived chemokines - CXCL4 and CXCL7 in RA only during the first 3 month 

window of symptom duration, and not later in disease.98 

Synovial biopsy may be useful, as a diagnostic and prognostic tool, for the differential 

diagnosis in early inflammatory arthritis in whom synovial CD22 and CD38 expression may 

distinguish between RA and non-RA disease.99 The value of synovial biopsy markers as 

selected diagnostic and prognostic markers to establish an early diagnosis is clearly still 

evolving. 

A recent study included 50 patients with early arthritis, who had undergone synovial biopsy 

at inclusion and were followed for two years.100 The focus was on the angiogenic processes 

in the initiation and perpetuation of synovial inflammation, in particular vascular endothelial 

growth factor (VEGF) and angiopoietins 1 and 2 (Ang-1 and Ang-2) and their tyrosine kinase 

receptors VEGFR and TIE-2. Expression of TIE-2 was significantly increased in the group with 

erosive disease as compared to the group with a self-limiting disease, and plasma–TIE-2 was 

significantly increased in the groups with persistent non-erosive disease and persistent 

erosive disease as compared to the group with self-limiting disease. Similarly, JNK activation 

is elevated in RA patients compared to undifferentiated arthritis, before classification criteria 

are met.101 

Although more research is needed, these studies suggest that a synovial biopsy at disease 

presentation could be a useful tool for both patients and physicians, for early disease 

stratification into short self-limiting course versus severe persistent inflammatory course, and 

in the former between erosive versus non erosive disease, thereby informing the most 

appropriate treatment strategy.  

 

2.4 ‘Personalised Medicine’ and Disease Stratification 
 

In addition to diagnostic problems, predicting disease course is imprecise. Identification of a 

subgroup of early arthritis patients who will develop destructive disease may present a 

significant advance in selecting the most effective treatment for an individual patient.102, 103 

This is the so-called ‘tailor-made’ treatment, informed by biomarkers, used to assess what 

has been referred to as ‘disease signatures’.98 A more accurate description of this process is 

disease ‘stratification’.104,105This concept proposes that a disease can be stratified into distinct 
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subsets that exhibit differential outcomes and responses, each subset labelled by a biomarker 

or combination thereof.  

This is important as therapies are commonly selected on a trial and error basis, but less than 

50% of RA patients experience a 50% improvement in their arthritis in response to any single 

biological therapy.106–108 In the time that an ineffective treatment is administered, the disease 

may progress and patients may be potentially exposed to unnecessary adverse events. 

Therefore biomarkers that predict response to a given treatment will be of great clinical 

utility. Synovial biomarkers are likely to be of the greatest clinical utility and a great deal of 

work has concentrated on studying features of inflamed synovium in RA patients with 

samples taken after clinical improvement following treatment. More recently, a number of 

studies have analysed the predictive capabilities of synovial tissue biomarkers for disease 

course and response to therapy. 

 

2.5 Recent advances 

Synovial tissue biopsy procedures and analysis are more widely available throughout the 

world.53 This will inevitably enable a targeted approach to identifying biomarkers in synovial 

tissue. 

With respect to disease stratification, sensitivity and specificity can be theoretically improved 

by combined use of biomarkers. For example a positive clinical response of RA to anti-tumour 

necrosis factor treatment with etanercept has been demonstrated using a biomarker 

signature generated by 13 autoantibodies and 11 cytokines. This study included three 

ethnically distinct populations, and for North Americans it demonstrated a positive predictive 

value of 71%, although independent validation is required.11 

The advent of new proteomic, transcriptomic and genomic technologies, and the ability to 

combine clinical and radiological markers with these technologies, should make stratifying 

disease the norm in the future. It is possible that disease stratification will become so sub-

categorised such that it is truly approaching personalised medicine. The ‘omics’ approach has 

been usefully applied to identify key players and protein interactions in several diseases. 

Studying the genome, the RNA or the protein will each have different sets of bias and 

variance, and it has been argued that combined approaches may lead to a more accurate 

assessment of important protagonists.104 

Proteomics offers the advantage that the functional units of the cell are being studied directly, 

likely most accurately representing what is actually happening in the synovium. The 

development of technologies such as SomaLogics that have the power to measure thousands 

of proteins in small tissue volumes has the potential to allow a more complete 

characterisation of the disease network of RA. In RA the proteomics approach has so far 

focussed on peripheral blood mononuclear cells, serum and synovial fluid72,73,109,; the 
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possibility that the synovial tissue itself may hold the key to unlocking the disease network 

has yet to be fully exploited. Furthermore, new technologies in protein separation, processing 

and identification are expected to increase proteome coverage. 

In relation to transcriptomic analysis, microarray technology has been, to date, the most 

frequently employed strategy in the field of biomarker research. This facilitates the 

identification of candidate genes in pathophysiological processes. However, gene expression 

levels do not always predict protein levels, due to transcriptional and translational regulatory 

mechanisms and the activity of protein degradation processes.17 A good example of the use 

of transcriptomic data was demonstrated while determining a rule-based classification that 

allows differentiation between RA and osteoarthritis.110 

Microarrays contain probes for thousands of different genes that makes them suitable for 

screening large cohorts. The high throughput techniques used in transcriptomics, however, 

also allow detection of significant gene expression differences with modestly sized cohorts.111 

Transcriptomic analysis is already being used to examine the gene signature of synovial tissue, 

augmented by the newer sequencing technologies that permit deeper transcriptional 

coverage than microarrays, including spliced variants. 

There have been a number of studies where DNA array technology used to study gene 

expression in RA has been shown to be a useful and practical methodology. Different subtypes 

of RA patient synovia have also been characterised by gene expression analysis.112,113 Gene-

expression variance among RA patients has been described impacting several pathways 

involved in cell proliferation, cell survival, angiogenesis and regulation of inflammation.114  

 

Biomarkers 
 

3.1 General Considerations 
 

 

3.2 Cellular Composition 
 

Simple cell count densities (or cellular infiltration) were appreciated as synovial tissue 

biomarkers associated with RA, more than 20 years ago. In a study published in 1989, a group 

showed that there was a decrease in T cell numbers after at least 6 months of gold treatment. 

They also reported a reduction in the ratio of T-helper cells to T-suppressor/cytotoxic cells in 

those who were treated successfully. Macrophages were not reported in this study. 

Furthermore, the number of biopsy samples where B cells could be identified decreased from 

36% before successful treatment to 7% after treatment.36 
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The most convincing evidence for a cellular biomarker of treatment response points to the 

use of CD68 macrophages.  Patients taking prednisolone had a reduction in synovial 

macrophages, expressing cell surface CD68, after two weeks of treatment compared with 

controls. The reduction in CD68 staining cells was mostly attributable to a decrease in the 

number of macrophages localising to the synovial sublining. There was also a decrease in the 

CD4 and CD5 (T and B cells) and CD38 (plasma cells) and CD55 (fibroblast-like synoviocyte 

(FLS)) cells.42 

In an earlier study a reduction in synovial macrophages was observed 12 weeks after gold 

therapy. CD68 cells were most commonly identified in all layers independently of the site of 

synovial biopsy. No significant change in lymphocyte numbers was noted following 

treatment.115  

A significant reduction in macrophages in the synovial sublining region following treatment 

with disease-modifying antirheumatic drugs (DMARDs), mostly methotrexate and gold, was 

demonstrated in another study.116 This was particularly pronounced in those who were 

responding clinically by ACR criteria. Although a significant reduction in memory T cells was 

observed, (and this was interestingly associated with CRP reduction), memory T-cells could 

still be found in the synovium of patients who attained remission.  

Synovial macrophages were also significantly reduced in the sublining after 16 weeks of 

treatment with leflunomide, and in the intimal lining layer after 16 weeks of methotrexate 

monotherapy. Synovial T cell numbers were decreased with both treatments but did not 

reach statistical significance in this study.41 Whilein a similar study, after 16 weeks of 

methotrexate, a decrease in synovial CD3, CD8, CD38, CD68 and Ki67 were demonstrated to 

be statistically significant. Notably CD4 infiltration was not reduced in this study.117 

Treatment with infliximab has been shown to reduce CD3 (T cell) in repeat synovial biopsies 

taken 4 weeks after treatment, and this finding was associated with clinical response.39  In ten 

patients with longstanding RA who received infliximab, reduced numbers of synovial CD3 (T 

cells), CD22 (B cells) and CD68 macrophages, 2 weeks after treatment were demonstrated in 

a separate study.45 In a study of infliximab versus placebo in which 24 patients with active RA 

underwent arthroscopy and biopsy before, and 48 hours after infliximab, revealed a 

significant reduction in CD68 intimal macrophages, as well as a non-statistically significant 

reduction in CD68 macrophages, T cells and plasma cells in the sublining. In a large 

prospective study in 143 RA patients the clinical response to infliximab was predicted by the 

number of TNF producing cells, CD68 macrophage subsets and synovial expression of TNF.118 

In a follow-up study, the number of lymphocyte aggregates was also predictive of the clinical 

response.119 Positivity for lymphocyte aggregates increased the power to predict the clinical 

response, when analyzed in a prediction model that included baseline disease activity 

evaluated by the Disease Activity Score in 28 joints, ACPA positivity, and synovial TNF 

expression. 
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Anakinra, a specific Il-1 antagonist, has also been shown to significantly reduce the synovial 

intimal macrophage population.43 A significant decrease of intimal lining CD68 macrophages 

was observed following rituximab infusion in responders.54  

Synovial response to rituximab has also been assessed by serial biopsy. A series of 6 patients 

with seropositive RA who had synovial biopsy before treatment with rituximab, and then 4 

were re-biopsied after 8 weeks has been reported. The authors assert that although it is 

known that rituximab depletes circulating B cells, as well as B cells in salivary glands, little is 

known of its effect on synovial tissue. 4/6 agreed to follow up biopsy. 2 had complete 

depletion of CD20, 1 had no change and 1 biopsy was insufficient to analyse.120 

In other studies rituximab induced a similar variable depletion in synovial B cells with an 

indirect decrease in macrophages, T cells and plasma cells at the time of the clinical 

response.121,122 Of interest, the change in plasma cells was associated with the clinical 

response.  

The utility of CD68+ macrophages in the sublining layer as a candidate biomarker was systematically 

tested across different interventions and kinetics.123  It was shown that changes in numbers of synovial 

sublining CD68+ macrophages correlate with clinical improvement independently of the therapeutic 

strategy. A study designed to determine if the correlation between the change in number of synovial 

sublining CD68 cells and change in DAS28 was confirmed in a multicentre study with excellent  inter-

centre agreement.124 The number of CD68 macrophages decreases with a reduction in disease 

activity as measured by the DAS, thus demonstrating that CD68 numbers could be used as a 

biomarker of therapeutic response.123 

Furthermore, synovial CD68 expression is superior to clinical evaluation as it is less susceptible 

to both the placebo effect and expectation bias (59% of delegates at OMERACT agreed)123, 125. 

It could therefore be used to assess the therapeutic efficacy of novel treatments.124 In 

conclusion, synovial macrophage CD68 expression as a synovial biomarker demonstrates 

validity, reliability and feasibility is as a biomarker of disease activity and response to 

treatment both in early and established RA. 

A number of studies addressed whether markers of synovitis are associated with clinical 

phenotype or development of a persistent, erosive disease course. In two large studies in 

established RA, large lymphocyte aggregates were found in around 30% of patients but did 

not associate with a clinical phenotype.126,127 In early arthritis, the presence of lymphocyte 

aggregates did not predict an aggressive disease course and aggregates were rapidly 

diminished by several anti-rheumatic treatments.119,128 Taken together, these studies suggest 

that lymphocyte aggregates are a pro-inflammatory phenomenon and not a persistent 

primary driver of synovitis. In contrast, as described above, biomarkers of angiogenesis, 

namely the activation of the tyrosine kinase receptor TIE-2, as well as increased JNK 

expression predicted an aggressive disease course in early arthritis patients.101 
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3.3 Cytokines 

The increased expression of several cytokines in the inflamed synovial tissue is well 

established, and for TNF and IL-6 concentrations correlation with disease activity, 

independent of disease duration, has been demonstrated.27 The levels of CCL2/MCP-1 were 

also found to be increased in RA serum and synovial tissue.50 

With regards to treatment effect, the expression of IL-1ß and TNF was 40% (95% CI 18–56%) 

and 52% (95% CI 10–74%) respectively lower following prednisolone therapy compared with 

placebo. Notably, this effect was mainly attributable to changes in the synovial sublining, and 

appeared to correlate with clinical improvement.42 Significant cytokine expression changes 

after 12 weeks of gold treatment, in three areas of synovium; lining, perivascular and 

connective tissue, have also been reported. In the intimal lining layer, IL-1α, IL-1ß and IL-6 

levels were statistically significantly reduced after treatment, and this seemed to correlate 

with clinical response. TNF was also reduced in all three areas, but did not reach statistical 

significance in the lining.  

TNF was only slightly reduced in synovial samples after 16 weeks treatment with either 

methotrexate or leflunomide. IL-1ß was only moderately reduced in the leflunomide-treated 

patients while reductions in the methotrexate patients were significant, which highlights 

potential different mechanism of action between DMARDs.41 In a separate study IL-1ß, but 

not IL-1α was shown to have a statistically significant reduction in expression after 16 weeks 
of treatment with methotrexate, and this again seemed to correlate with clinical response.117 

In biopsy samples of ten active RA patients taken 2 weeks after infliximab, IL-8 and MCP-1 

were shown to be reduced in both the lining and sublining, and, despite a downward trend in 

synovial expression of Gro α, RANTES, and MIP-1b this was not significant.45 

Acute serum amyloid A (A-SAA) expression and production has been demonstrated in RA 

synovial tissue and A-SAA induces angiogenesis, cell matrix interactions,  chemokine and 

MMP expression in RA.130 A–SAA has a significant role in the inflamed joint increasing 

expression of MMP-1, MMP-3, MMP-13, and MMP/TIMP expression in RA FLS and synovial 

explants. Furthermore, blockade of its receptor (scavenger receptor class B type 1 (SR-B1)) 

and TLR2 inhibited migration and invasive mechanisms. Importantly, A-SAA has the ability to 

induce TNF expression in RA synovial explant cultures, while baseline serum A-SAA levels 

correlated with the 28-joint swollen joint count and 1-year radiographic progression 

independently. Therefore, A-SAA is a promising biomarker of disease activity both in the 

synovium and in the serum.131  

 

3.4 Chemokines 
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Leucocytes are attracted to the target tissue by soluble chemotactic cytokines termed 

chemokines, released from activated cells in the tissue to stimulate leucocyte migration 

through the endothelial barrier.132 The chemokines IL8/CXCL8 and MCP-1/CCL2, among 

others, are expressed abundantly in RA synovial tissue. Previous work has shown that the 

development of clinical signs of RA synovial inflammation is specifically associated with 

increased synthesis of the CXCL8133 and expression in synovial tissue reflects response to 

therapy in RA patients. In addition, a proof of concept study of an oral CCR1 antagonist in RA 

patients showed significant reduction in synovial macrophages and chemokine expression.134 

 

 

3.5 Growth Factors/Adhesion Molecules 

 

ICAM-1 expression was significantly reduced in patients treated with both leflunomide and 

methotrexate. Notably, a decrease in ICAM-1 was seen in those that responded to 

leflunomide and to methotrexate, while non-responders did not experience a statistically 

significant decrease. VCAM-1 was reduced in both groups, but this difference was significant 

only in the leflunomide-treated patients.41 

Another study demonstrated that VCAM-1 and E-selectin were both statistically significantly 

reduced in expression after 16 weeks of treatment with methotrexate, but in this study ICAM-

1 did not reach statistical significance.117 Treatment with infliximab has been shown to reduce 

VCAM-1 and E-selectin in repeat biopsies taken 4 weeks after treatment.39 

In relation to treatment with anakinra, a patient taking the dose of 150mg/day, was shown to 

have a 74% reduction in synovial membrane E-selectin, but the 5 patients taking the lower 

dose (30mg/day) did not demonstrate this. No change was seen in P-selectin. A significant 

decrease in ICAM-1 and VCAM-1 was seen in the high dose patients, and a small decrease in 

2 of the 5 on the lower dose of anakinara.43 

 

3.5 Mediators and Products of Bone, Cartilage and Tissue 

Degradation 
 

Type II collagen is the main collagen of articular cartilage, and is excessively degraded in RA. 

It is known that collagen biomarker and MMP levels predict radiographic progression of RA, 

and therefore may act as a prognostic biomarker.135, 136 A study with the primary objective of 

attempting to understand more about the mechanism of action of methotrexate (19 subjects) 

and leflunomide (16 subjects) demonstrated that MMP-1 was significantly reduced by both. 

The level of TIMP-1 was significantly reduced in the leflunomide-treated patients, but not the 

methotrexate-treated patients. Furthermore, both drugs reduced the overall expression of 

MMP-1 and the MMP-1: TIMP-1 ratio after 4 months of treatment. The changes were more 

pronounced in patients who fulfilled the ACR 20% response criteria.41 
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A number of studies analyzed the effect of immunomodulatory treatment on synovial 

mediators of bone destruction. Treatment with both infliximab and etanercept increased the 

expression of osteoprotegerin (OPG) in synovial tissue and had no effect on RANKL, resulting 

in an increased OPG:RANKL ratio.49 In contrast, rituximab induced a 99% decrease in receptor 

activator of nuclear factor κB (RANK)-positive osteoclast precursors and a decrease of 37% in 

RANKL and a trend towards reduced synovial OPG expression. In serum, both OPG and RANKL 

levels were significantly reduced, but the OPG/RANKL ratio increased (157%).137 Finally, 

abatacept did not exert a significant effect on synovial OPG, RANK or RANKL mRNA expression 

in a study in 16 patients.138 

The family of S100 proteins are a closely related group of low-molecular weight (9–14 kDa) 

acidic calcium-binding proteins. Originally described in oesophageal epithelium, as well as 

neutrophils and macrophages, they are involved in calcium dependent cell activities such as 

cytoskeleton regulation and cell migration and adhesion. The extracellular role of these 

proteins is of interest as they have been found to be overexpressed in inflammatory 

compartments. They are in effect pro-inflammatory cytokines. S100A12 has important 

activities in relation to innate and acquired immune responses.139 One study using 

quantitative proteomics demonstrated an association  between the severity of joint erosion 

in RA and the S100 proteins A8, A9 and A12 levels.109 The S100 proteins myeloid-related 

protein (MRP)-8 and MRP-14 regulate myeloid cell function and control inflammation. Before 

initiation of treatment, responders to targeted treatments showed significantly higher 

MRP8/14 protein complex levels compared with non-responders. Moreover, in responders to 

adalimumab, infliximab or rituximab treatment, MRP8/14 levels decreased after 4 weeks of 

treatment, but not non-responders.140 

 

3.6 Antigens and Antibodies 

Expression of antigenic proteins has been described in RA synovial tissue. The presence of 

deiminated proteins, such as the α- and β-chains of fibrin, in RA synovium appeared to be 

major antigenic targets of ACPAs.141 In addition, anti-Sa antibodies that recognize deiminated 

vimentin appear to be specific for RA and have been isolated from RA synovium.142 Finally, 

intracellular citrullinated proteins colocalizing with ACPA reactivity have been demonstrated 

in RA synovium.143 but the presence of citrullinated antigens is not specific for RA synovial 

tissue.144 It has also been shown that anti-fillagrin antibodies are produced by local plasma 

cells resident in the RA pannus.145  

 

3.7 Genes and Transcripts 
 

In a study in 18 RA patients treated with infliximab several biological processes, related to 

inflammation, were up-regulated in pre-treatment synovial tissue biopsies in patients who 
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responded to therapy.146 In a larger follow-up study, Lindberg et al reported the results of 

RNA analysis of synovial biopsies of 62 patients with RA before treatment with infliximab. 

They found that the presence of lymphocyte aggregates dominated the expression profiles 

and that there was a significant overrepresentation of lymphocyte aggregates in patients who 

had a good response, which confounded the analysis. Nonetheless, in those that were 

lymphocyte aggregate positive, 38 transcripts were associated with differences between 

good and non-responders.147  

In a study of paired synovial biopsies of RA patients, before and 12 weeks after adalimumab, 

genes were differentially expressed between biopsies of responders and non-responders. 

These genes could be split into two distinct families: genes involved in the regulation of 

immune responses and genes involved in the regulation of cell division. To confirm the 

microarray findings, synovial expression of selected molecules was assessed using specific 

antibodies. Synovial expression of IL-7R, CXCL11, IL-18, IL-18rap, and MKI67  was significantly 

higher in poor as compared with moderate and good responders, thereby serving as a 

potential biomarker of response to adalimumab.148 

In another study of paired synovial biopsies of RA patients before and after rituximab 

treatment clinical responders demonstrated higher expression of macrophage and T cell 

genes, while clinical poor responders showed higher expression of interferon-α and 
remodelling genes.149  

 

3.8 Other 
 

The properties of the cells in the inflamed synovium differ markedly from normal cells 

Profound hypoxia in the inflamed synovial membrane has been described in vivo.30 Low tissue 

partial oxygen pressure (tPO2) levels in the inflamed synovial joint tissue are significantly 

associated with increased markers of macroscopic and microscopic inflammation. There is an 

association of tPO2 with macroscopic synovitis as well as CD68 and CD3 cell infiltrate in the 

sublining, and various pro-inflammatory cytokines (TNFα, IL1β, IFNγ and the chemokine 
MIP3α). When primary synovial fluid cells were exposed in vitro to pO2 levels, similar to those 

in the inflamed joint, there was a significant increase in cell migration.150 

 

 

 

Conclusion and Current Limitations 
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Much of the work on serial synovial biopsies has been performed on patients with known 

diagnoses, and has been performed to investigate responses to treatment. There remains a 

critical need for identifying biomarkers for diagnosis which can be applied in clinical practice.  

Biomarkers may reduce the time taken and the number of patients required to screen for the 

potential efficacy of new drugs.52,151 The number of patients with active disease eligible to 

participate in studies is limited. As with all trials, the number of patients who are to be put at 

risk by exposure to drugs at an early stage of development, as well as to be placed on placebo, 

are restricted by ethical considerations.152  

 

Although finding biomarkers in peripheral blood is attractive because it is more feasible and 

less invasive than synovial biopsy, since inflamed synovium is the ultimate target of 

inflammation, it should be a potentially rich source of potential biomarkers. Furthermore, 

many confounding factors might interfere with peripheral blood profiles. Some authorities 

have suggested that a more targeted approach to searching for serum markers should be to 

first identify potential biomarkers in the inflamed synovial joint, and later studying the plasma 

for the presence of the same biomarker.140 Such an approach in RA patients has demonstrated 

clinical utility when candidate peripheral biomarkers of synovial pathotype predicted 

response to biologic therapy.153  

Although new technology has enabled faster and more complete analyses of proteins, 

because of the high complexity in protein and protein isoforms in the synovial joint, 

interpreting the results of ‘shotgun’ proteomics is a challenging endeavour.  

New technologies are experiencing difficulties. Expression levels from three widely used 

microarray platforms demonstrated poor reproducibility.154 In addition, as there are high 

levels of background signals in array datasets, there is a decreased sensitivity to transcripts 

present in low numbers.155 

The development of high quality immunoanalytical assays can be slow and expensive. This 

makes the verification of candidate biomarkers a challenging process, and at the moment, 

despite the increase in availability of means to biopsy synovial tissue, there remains a lack of 

diagnostic makers.  

While there are a great many genomic biomarkers that can predict response to treatment, or 

those at most risk of adverse events in many areas of medicine, rheumatology appears to 

have experienced only limited benefit from this emerging field. Many studies have attempted 

to identify biomarkers to predict response to anti-TNF treatment, but to our knowledge, only 

those reported above have used synovial tissue to search for these.119,147,148 

In addition, where data from control synovial tissue specimens is available, osteoarthritis is 

often used as a disease control, although it is increasingly recognised that osteoarthritis has 
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an underlying inflammatory response, albeit significantly limited and less associated with 

specific autoimmunity than RA.   

It is likely that in the near future a reasonable goal will be to stratify disease before the 

phenotype is established, and this represents an early step toward eventual ‘personalised 
medicine’. Identifying surrogate markers is therefore an aim for which synovial tissue is an 

indispensable research tool. 
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