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Abstract: Variable angle tow (VAT) composite laminates, in which fibre orientation varies 

spatially in-plane in a continuous fashion yet is piecewise constant through-thickness, have 

been made possible by advanced automated fibre placement technology. Such designs have 

shown considerable potential to improve the performance of lightweight composite structures. 

In the present study, an analytical model is developed to study the buckling behaviour of 

VAT composite plates with a through-the-width or an embedded rectangular delamination 

under compression loadings. The proposed model can accurately capture the global, local and 

mixed buckling response of delaminated VAT composite plates. Both free and constrained 

modes are assumed in the delamination buckling analysis. A constrained point approach is 

employed to analyze the buckling response when contact occurs between delaminated layers. 

The accuracy and reliability of this proposed delamination buckling model is validated by 

finite element analysis and with prior results. The influence of delamination size, position and 

varying fibre orientation angles on the buckling response of delaminated VAT composite 

plates is studied by numerical examples. It is shown that the buckling loads decrease with an 

increase of the delamination size. The VAT laminates with an off-midplane delamination may 

lead to the delamination opening up, which further reduces the buckling loads. Finally, the 

mechanism of taking advantages of VAT laminates to improve the buckling performance of 

delaminated composite plates is thoroughly investigated in a parametric study. This study also 

shows that the residual buckling resistance of the delaminated composite plates can be 

significantly improved through using the VAT design concept. 

Keywords: variable angle tow; delamination; buckling; composites 

1 Introduction  

Many previous works [1-7] have shown that the buckling and postbuckling load-carrying 

capacity of composite structures can be significantly increased by using Variable Angle Tow 

(VAT) laminates. This enhanced performance is mainly attributed to the benign load 
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redistribution achieved by the variable stiffness properties of VAT laminates. However, 

composite laminates, due to their relatively weak interlaminar strength, are often prone to 

delamination (separation of adjoining plies), which is one of the most common failure 

mechanisms of composites. The presence of delamination may prematurely lead to the failure 

of composite laminates initiated by buckling, and therefore result in significant reduction in 

load-carrying capacity.  

A considerable amount of research effort has been devoted to the study of structural 

behaviour of composite laminates with delaminations. Chai et al. [8] initially proposed a 

one-dimensional analytical model to assess the buckling strength of composite laminated 

beam-plates with a through-the-width delamination. Afterwards, Simitses et al. [9] employed 

the perturbation method to predict the buckling loads of composite beam-plates with a single 

delamination of various sizes and locations. The effects of delamination position and size on 

the buckling load of delaminated beam-plates were investigated in [9]. Kardomateas and 

Schmueser [10] extended the model proposed by Simitses et al. [9] to account for the 

transverse shear effect and investigated the buckling and postbuckling characteristics of 

beam-plates with a through-the-width delamination. Later, Kutlu and Chang [11] performed an 

analytical and experimental study on the compression behaviour, from initial loading to final 

collapse, of composite laminated beam-plates with multiple through-the-width delaminations. 

Lee et al. [12] developed a finite element model based on the layer-wise plate theory to solve 

the buckling problem of axially loaded composite laminated beam-plates with multiple 

delaminations. Chattopadhyay and Gu [13] developed a higher order plate theory to perform 

buckling analysis of composite beam-plates with through-the-width delamination. Shu [14] 

performed an exact buckling analysis of one-dimensional beam-plates with double 

delaminations based on the classical beam theory. Both free and constrained modes were 

identified in his delamination buckling analysis, which give the lower and upper bounds of 

residual buckling resistance, respectively. Bruno and Greco [15] investigated the delamination 

buckling and growth of beam-plates with a through-the-width delamination using asymptotic 

approach and energy release rate concept. In their work, global buckling of the whole plate 

occurs accompanied by a local instability of the delaminated sublaminate. Most of these 

studies employed one-dimensional analytical models to perform the buckling analysis of 

composite laminated beam-plates with a through-the-width delamination. 

  Two-dimensional modelling and analysis for composite laminates with embedded 

delaminations have also been presented by many researchers. Shivakumar and Whitcomb [16], 

Chai and Babcock [17] and Yin and Jane [18] investigated the compressive stability of an 

elliptically-shaped surface layer that had been debonded from a quasi-isotropic base laminate. 

In their works, the in-plane dimension of the debonded surface layer was assumed to be small 

compared to that of the parent substrate, but large compared to the layer thickness. Moreover, 
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Chai [19] studied the buckling and postbuckling response of the surface layer debonded from a 

parent laminate under uniform axial compression. The debonded surface layer was modelled as a 

unilaterally constrained plate to simulate the near-surface delamination problem and the contact 

problem between the two sublaminates at the delamination interface was considered. Shahwan and 

Waas [20] proposed another analytical study on the contact buckling of a debonded surface layer, 

in which they introduced a nonlinear elastic foundation that exhibits a deformation sign dependent 

force-displacement relationship to model the unilateral constraint problem. These studies on 

two-dimensional buckling analysis were mainly restricted to the near-surface composite layer 

debonded from a parent substrate. Under such circumstances, only local buckling could be 

captured in their delamination buckling analysis. However, a deep understanding on the 

mechanism of interaction between the sublaminate and the substrate during the delamination 

buckling is vitally important to the damage tolerance design of the whole composite plate with 

delaminations. Suemasu et al. [21-23] investigated the compressive buckling behavior of 

composite laminated plates with multiple embedded circular delaminations located at regular 

intervals along the thickness direction, both theoretically and experimentally. Kim and 

Kedward [24] presented an analytical model for the local buckling analysis of the delaminated 

sublaminate and global buckling analysis of composite laminated plates with an embedded 

delamination using Rayleigh-Ritz approximation technique. However, their analytical model 

does not capture the mixed buckling response of delaminated composite plates. Recently, 

Ovesy and co-workers [25, 26] investigated the buckling behaviour of composite laminated 

plates with an embedded rectangular delamination using the CPLT, FSDT and HSDT plate 

theories. However, all of the above research works on delamination buckling focused on 

constant stiffness laminated plates. So far, only a few researchers have attempted to study the 

delamination problems for variable stiffness composite structures. Butler et al. [27] applied the 

finite strip method to study the compression after impact (CAI) performance of delaminated 

VAT composite plates. Yazdani et al. [28] utilized XFEM (Extended Finite Element Method) 

to analyze the delamination propagation of VAT composite laminates. To the best of the 

authors’ knowledge, no research has been reported in which an attempt has been made to 

investigate the buckling behaviour of VAT composite plates with delaminations. This work is 

the first study investigating the effects of rectangular delamination (type, size and position) on 

the residual buckling strength of VAT composite laminates. 

In the present study, an analytical model with a generalized Rayleigh-Ritz approach is 

developed to study the characteristics of the buckling response of VAT composite plates with a 

through-the-width or an embedded rectangular delamination under axial compressive loading. 

The analytical model is derived from the potential energy expression based on classical 

laminated plate theory. The delamination buckling behaviour is modelled by a superposition 

of global and local displacement shape functions in which the kinematic continuity conditions 
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along the delamination edge are satisfied. Both free and constrained modes are assumed in the 

delamination buckling analysis. The potential contact problem is addressed using the 

constrained point approach. The prebuckling analysis is performed first to determine the 

highly non-uniform stress distribution of VAT plates that are subjected to displacement 

controlled loads. The buckling load and its corresponding mode shape under either a free or a 

constrained condition can be directly determined by the proposed analytical model. This model 

is capable of accurately simulating the global, mixed and local buckling behaviour for 

delaminated VAT composite plates. Moreover, the delamination buckling behaviour can also 

be accurately captured under situations where contact occurs. 

The remainder of this work is organized as follows: in the next section, VAT composite 

plates with linear variation of fibre orientation angles are introduced. Section 3 presents the 

theoretical formulation in the modelling procedure of VAT composite plates with a single 

delamination, including the constitutive equation, the boundary conditions and the kinematic 

continuity conditions along the delamination edge. In section 4, the prebuckling and buckling 

problems of VAT composite plates with a through-the-width or an embedded rectangular 

delamination are solved using the Rayleigh-Ritz approach, based on the principle of minimum 

potential energy. The constrained point approach is employed to prevent the potential contact 

problem at the delamination interface. In section 5, numerical results obtained by the present 

model are compared with the FEM (Finite Element Method) simulation results and that given 

in previous works. In addition, the influence of delamination (type, size and position) and the 

potential contact problem on the buckling behaviour of delaminated VAT composite plates is 

investigated by numerical examples. The mechanism of exploiting variable stiffness 

properties to improve the residual buckling strength of composite plates with a rectangular 

delamination is also studied in detail. Finally, some conclusions are drawn in section 6. 

2 VAT Laminates  

The orientation of fibre angles of each ply of VAT composite plates are continuously varied 

with respect to the coordinates x and y, that also have the dual purpose of representing variable 

stiffness properties. As such, VAT composite plates provide extended design flexibility to 

potentially enhance structural performance. Generally, the fibre angle variation of a VAT plate 

is represented in a mathematical form using a small number of fibre angle parameters [7]. In 

this work, for simplicity, the VAT plate with a linear fibre angle variation is considered [29] and 

the angle variation along the x direction is given by  

1 0

0

2( )
( )

T T
x x T

a
 


                             (1) 

where 0T   is the fibre orientation angle at the panel center 0x  , 1T   is the fibre 
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orientation angle at the panel ends / 2x a   and   is the angle of rotation of the fibre path. 

3 Theoretical formulation  

3.1 Constitutive relation and strain-displacement relation 

Consider a VAT composite plate of length a, width b and thickness h, with a single 

delamination, as shown in Fig. 1(a). The single delamination is located at the center of the 

plane of the plate, and the distance from the delamination interface to the top surface is h1. 

The VAT composite plate is divided into three portions by the existing delamination interface, 

namely, an undelaminated portion, denoted by 0, and two delaminated portions, denoted by 1 

and 2, as shown in Fig. 1 (a). The constitutive equations for the L
th
 portion of the delaminated 

VAT composite plate are given in the following matrix form [30] 

( 0,1,2)

L L L L

L L L L
L

    
     

    

N A B ε
     

M B D κ
                 (2) 

where { }L L L L
xx yy xyN N N T

N  and { }L L L L
xx yy xyM M M T

M  are the resultant force and 

bending moment vectors of the L
th
 portion, respectively. { }L L L L

xx yy xy   T
ε  and

{ }L L L L
xx yy xy   T

κ are the mid-plane strain and curvature vectors of the L
th
 portion, 

respectively. L
A , L

B and L
D are the in-plane, coupling and bending stiffness matrices of 

the L
th
 portion, respectively, and are expressed as [30] 

     2 2 3 3
1 1 1

1 1 1

1 1
, ,

2 3

L L LK K K
L k L k L k
ij ij k k ij ij k k ij ij k k

k k k

A Q z z B Q z z D Q z z  

  

             (3) 

where , 1,2,6i j   and LK  is the total number of plies of the L
th
 portion. kz  is the location 

of the k
th 

ply with respect to the mid-plane of each portion along the thickness direction. 
k
ijQ  is 

the reduced transformed stiffness terms of the k
th 

ply in each portion, which varies as a function 

of the coordinates x and y. For the case that each portion of delaminated VAT composite plate 

is symmetric with respect to the mid-plane of the corresponding portion, the coupling stiffness 

matrix L
B  in Eq. (2) vanishes. However, the delaminated VAT composite plate, if subjected 

to foreign object impact, may not be symmetric within each delaminated portion. Under such 

circumstances, the bending-extension coupling within each delaminated portion is taken into 

account using the method of reduced bending stiffness (RBS) [31], by which the stress 

resultants are not coupled to the plate curvatures and only related to the curvatures with a 

reduced stiffness matrix, 1] ]L L T L L[D  [B ] [A ] [B . 

Based on classical laminated plate theory, the strain-displacement relation of the L
th 

portion 

in the linear regime can be written as [30], 

 , ,             ( 0,1,2)
L L L LL L L

xx yy xy

u v u v
L

x y y x
  

   
    
   

          (4a) 
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2 2 2

2 2
, , 2       ( 0,1,2)

L L LL L L
xx yy xy

w w w
L

x y x x
  

  
      

   
          (4b) 

where Lu  and Lv  are the in-plane displacements of the L
th 

portion and Lw  the out-of-plane 

displacement of the L
th 

portion.  

3.2 Boundary conditions and continuity conditions 

Although this paper only studies VAT composite plates under compression loading, the 

proposed approach for solving the delamination buckling problem of VAT plates is general in 

terms of boundary conditions and loading cases. In this work, only the delaminated VAT 

beam-plate or plate loaded by uniform axial compression with transverse edges free to deform 

is taken into account. This is a mixed in-plane boundary condition, as shown in Fig. 1 (b) or 

(c), which can be expressed as  

     0, 0  y y y xN N        at / 2y b                   (5a) 

0 / 2u             at / 2x a                   (5b) 

where the terms yyN  and yxN  are the boundary forces on the edges (y=±b/2).   is the 

prescribed uniform end-shortening loading. Two different types of the rectangular 

delamination are considered for VAT plates. The first one is a VAT plate with a 

through-the-width delamination, as shown in Fig. 1 (b). For this case, the boundary conditions 

are simply supported or clamped at edges (x=±a/2) and are free on the edges (y=±b/2), and 

can be expressed as, 

0 0     at / 2w x a               (simply supported)     (6a) 

0

0 0, 0  a / 2t    
w

w x a
x


   


     (clamped)             (6b) 

The other is a VAT plate with an embedded rectangular delamination, as shown in Fig. 1 (c). 

The VAT plate is simply supported or clamped at all four edges, given by  

0 0     at / 2, / 2w x a y b         (simply supported)     (7a) 

0

0

0

0

at  

at

0, 0     / 2

0, 0     / 2  

w
w x a

x

w
w y b

y


   




   



     (clamped)             (7b) 

Moreover, the kinematic continuity conditions at the intersection of the undelaminated 

portion and each delaminated portion also need to be satisfied. In the prebuckling analysis, the 

kinematic continuity conditions of the delaminated VAT beam-plate or plate, without loss of 

generality, are expressed as 
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0 0

0

0 0

0

,  ,  

      ( 1,2)

,  ,  

L L

L

L L

L

u u u u
u u

x x y y
L

v v v v
v v

x x y y

   
  

   


   
  

   

              (8) 

Eq. (8) ensures the continuity of the in-plane displacements and strains at the intersection of the 

undelaminated portion and each delaminated portion. Note that, the in-plane displacements 

Lu  and Lv  of the L
th
 delaminated portion (L=1, 2) along the delamination edge are induced 

by the translational motion of the undelaminated portion. The continuity conditions along the 

edges between the non-delaminated portion and each delaminated portion must be enforced in 

the buckling model. If the delamination buckling problem is solved in a strong form [9, 10], 

both the kinematic continuity conditions and the continuity in moments and forces must be 

ensured. Since this work is applying the energy method in a weak form, only the kinematic 

continuity conditions need to be considered, as expressed by 

0 0

0 ,  ,  
L L

L

w w w w
w w

x x y y

   
  

   
  ( 1,2)L               (9a) 

0 0
   ,  L L L L

w w
u z v z

x y

 
   

 
     ( 1,2)L               (9b) 

where Lz  is the position of the mid-plane of the L
th 

delaminated portion with respect to the 

reference plane along the thickness direction. The terms 0,L xz w  and 0,L yz w  in Eq. (9b) 

represent the in-plane displacements of the L
th 

delaminated portion (L=1, 2) along the 

delamination edge, which are generated by the rotation of transverse normal of the 

undelaminated portion, as illustrated by the right-hand plot in Fig. 2. These in-plane 

displacements result in an additional contribution of stretching energy to the delamination 

buckling analysis. If the kinematic continuity conditions in Eq. (9b) are not satisfied, the 

critical buckling load should be considerably underestimated. 

4 Rayleigh-Ritz solution 

4.1 Non-uniform in-plane stress distribution 

Unlike constant stiffness laminated plates, VAT composite plates inevitably generate 

non-uniform in-plane stress distribution even when subjected to a simple uniform axial 

compression, either displacement-controlled or load-controlled [2, 3, 7]. Accordingly, it is 

necessary to perform a prebuckling analysis to determine the non-uniform in-plane stress 

distribution before buckling analysis. As mentioned earlier, the transverse edges are allowed 

to deform freely such that the edges (y=±b/2) are stress free, that is, 0, 0yy yxN N  . 

Therefore, the total potential energy ΠP of the delaminated VAT plate under axial compression 

loading with transverse edges free to deform can be expressed as follows 
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 P S 0 0

Γ

dxx xyN u N v y                          (10) 

where Г denotes the boundary edges, that is, x=±a/2. ΠS is the elastic strain energy of the 

delaminated VAT plate, which can be expanded into  

2
2

S 11 12 16

0 Ω

2 2

26 22 66

1
2  2

2

      2 d d

L

L L L L L LL L L

L

L L L L L LL L L

u u v u u v
A A A

x x y x y x

v u v v u v
A A A x y

y y x y y x




              
            

              

           
           

            

 

       (11) 

with the integral area L  of the L
th
 portion. The terms xxN  and xyN  are the boundary 

forces on the edges (x=±a/2). In the current work, each portion of the delaminated VAT plate 

is assumed to be balanced such that no extension-shear coupling exists, that is, 

16 260, 0L LA A   [30]. Therefore, only the boundary force xxN  on the edges (x=±a/2) is taken 

into account, even if the delaminated VAT plate is loaded by uniform axial compression [3, 7].  

The Rayleigh-Ritz approach is then employed to solve the prebuckling problem in Eq. (10). 

The in-plane displacement fields of the delaminated VAT composite plate are expressed as 

     0
0

0 0

( , ) ( ) ( )   
 


R S

rs r s

r s

u U L L , 0
0

0 0

( , ) ( ) ( )
R S

rs r s

r s

v V L L   
 

         (12a) 

0

0 0 0 0

0

0 0 0 0

( , ) ( ) ( ) ( , )

( , ) ( ) ( ) ( , )

QR S P
L u

L rs r s pq pq

r s p q

QR S P
L v

L rs r s pq pq

r s p q

u U L L U

v V L L V

      

      

   

   

 

 

 

 

   ( 1 , 2 )L       (12b) 

where 2 / , 2 /x a y b   . ( )rL   and ( )sL   are the r
th
 and s

th
 Legendre polynomials 

with respect to   and  , respectively. The terms 0
rsU  and 0

rsV  are the unknown coefficients 

of global shape functions, whereas the terms L
pqU  and L

pqV  are the unknown coefficients of 

local shape functions. The global shape functions in Eq. (12a) are incorporated into Eq. (12b) 

and the terms ( , )u
pq    and ( , )v

pq    in Eq. (12b) are assumed to be the local shape 

functions with null values outside the delamination region. As such, the kinematic continuity 

conditions in Eq. (8) are fully satisfied. For VAT composite plates with an embedded 

rectangular delamination, the local shape functions can be expressed as  

        
2 2 2 2 2 2

1 2( , ) ( ) ( ) ( ) ( )u
pq p qL L            

        
2 2 2 2 2 2

1 2( , ) ( ) ( ) ( ) ( )v
pq p qL L            

Of special importance, the local shape functions corresponding to the through-the-width 

delamination are given by 

      
2 2 2 2 2

1( , ) ( ) ( 1 ) ( ) ( )         u
p q p qL L  

      
2 2 2 2 2

1( , ) ( ) ( 1 ) ( ) ( )         v
p q p qL L   
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where 1 2/ , /c a c b   . 

Substituting the assumed in-plane displacement fields into Eq. (10), performing the 

necessary calculation of differentiation and integration, and minimize the resulting total 

potential energy ΠP with respect to the unknown coefficients, a set of linear algebraic 

equations in terms of unknown coefficients can be generated and written in the following 

matrix form  

m
K U=F                                 (13) 

where m
K  is the membrane stiffness matrix of the delaminated VAT plate; U  the vector of 

the undetermined coefficients, that is, 0 0 2 2{ } 1 1 T
rs rs pq pq pq pqU U V U V U V . The vector 

F  is associated with prescribed axial compression loading. However, the prebuckling model 

given by Eq. (13) cannot be directly applied to analyze the prebuckling problem of the VAT 

plate under a uniform displacement loading, as denoted in Fig. 1 (b) and (c) and expressed in 

Eq. (5b). The primary reason is that the boundary force xxN  on the edges (x=±a/2) of the 

delaminated VAT plate corresponding to uniform axial compression is unknown and needs to 

be determined. To address this problem, Wu and co-workers [3, 6] proposed that the 

prebuckling problem of the VAT plate under uniform axial compression can be modelled as a 

superposition of the VAT plate under the action of a series of prescribed compression loadings, 

expressed as 

1

( ) ( )
J

xx j j

j

N C L 


                           (14) 

where jC  is the unknown coefficients to be determined. ( )jL  is the j
th
 boundary force on 

the edges (x=±a/2), represented by the j
th 

Legendre polynomial. Therefore, the resulting 

equation governing the prebuckling problem of the delaminated VAT plate loaded by uniform 

axial compression is rewritten as   

K U= F
J

m
j j

j

C                               (15) 

where the vector jF  is associated with the j
th
 axial compression loading, namely, ( )jL . 

The end-shortening value corresponding to the j
th 

boundary force is then determined by the 

following expression [6] 

 0 0( ) (1, ) ( 1, )j u u                            (16) 

Once this procedure is done, the unknown coefficients jC  are determined from a set of 

control points for the function ( )jΞ   with the given uniform end-shortening value Δ [3]. 

With the solution of the in-plane displacement fields given by Eq. (15), the non-uniform 

in-plane stress resultants of the delaminated VAT plate under uniform axial compression can 

be determined from a modified version of Eq. (2). 
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4.2 Buckling analysis  

The buckling model for delaminated VAT plates is also derived from the principle of 

minimum potential energy and the Rayleigh-Ritz approach. The total potential energy Π of the 

delaminated VAT plate in its buckled shape can be expressed as 

U V                                   (17) 

where V  is the external work of the applied load; U  is the total strain energy of the 

delaminated VAT panel, which can be expressed as 

2 2

b in

0 1

L L

L L

U U U
 

                               (18) 

where b
LU  is the bending energy term for the L

th 
portion (L=0,1,2) and in

LU  the in-plane 

strain energy of the L
th 

delaminated portion (L=1, 2). In expanded form, these terms become 

2
2 2 2 2 2

b 11 12 66
2 2 2

2
2 2 2 2 2

22 16 26
2 2 2

1
2 4

2

        4 4 d d

L

L L L L LL L L L

L L L L LL L L

w w w w w
U D D D

x x y x y x y

w w w w w
D D D x y

y x x y y x y



            
          

             

           
          

             



   (19a) 

2

in 11 12 16

2 2

26 22 66

1
2 2

2

          +2 d d

L

L L L L L LL L L L

L L L L L LL L L

u u v u u v
U A A A

x x y x y x

v u v v u v
A A A x y

y y x y y x



              
             

              

           
          

            



     (19b) 

As also illustrated in Fig. 2, the rotation of transverse normal of the undelaminated portion 

along the delamination edges eventually leads to the staggered forms of in-plane motion of 

each delaminated portion. Such in-plane deformations generates additional strain energy in
LU , 

which is stored in the L
th
 delaminated portion (L=1,2). From the energetic point of view, the 

additional in-plane strain energy in
LU  of the L

th
 delaminated portion can be considered as a 

compensation for the partial loss of the original bending energy 0
bU  of the undelaminated 

portion. Therefore, the in-plane strain energy in
LU  stored in the L

th
 delaminated portion is 

essential for the buckling analysis of delaminated VAT plates.  

The external work V  of the in-plane stress resultants obtained in the prebuckling analysis is 

given by  

2

P

0


L

L

V V                                  (20) 

where L
PV  is the external work of the L

th 
portion, expressed as   

22

P

1
2 d d

2




          
         

           


L

L L L LL L L L
xx xx xy

w w w w
V N N N x y

x y x y
       (21) 

The Rayleigh-Ritz approach is then applied to solve the buckling problem of the 
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delaminated VAT composite plates, expressed in Eq. (17). Applying the superposition method, 

the assumed displacement fields are constructed from the global shape functions, which satisfy 

the geometric boundary conditions in Eq. (6) or Eq. (7), and local shape functions, which are 

analogous to clamped boundary conditions along the delamination edges. In doing so, the 

kinematical continuity condition of Eq. (9) can be satisfied. The displacement fields of the 

delaminated VAT composite plate can be expressed as 

0
0

0 0

( ) ( )
M N

w w
mn m n

m n

w W X Y 
 

                           (22a) 

0

0 0 0 0

( ) ( ) ( , )
M N M N

w w L w
L mn m n mn mn

m n m n

w W X Y W    
   

                  (22b) 

0

0 0 0 0

( , ) ( , )
QP M N

L u
L pq pq L mn mn

p q m n

u U z W g    
   

                  (22c) 

0

0 0 0 0

( , ) ( , )
QP M N

L v
L pq pq L mn mn

p q m n

v V z W h    
   

                  (22d) 

where 0
mnW , L

mnW , 
L
pqU and 

L
pqV  are the undetermined coefficients. The term ( ) ( )w w

m nX Y   is 

the global shape function for the out-of-plane displacements. The terms ( , )w
mn   , 

( , )u
pq    and ( , )v

pq    denote the local shape functions with null values outside the 

delamination region. With Eqs. (22a) and (22b), the kinematic continuity conditions in Eq. (9a) 

are satisfied during the buckling analysis. Moreover, the terms 
0 ( , )L mn mnz W g    and 

0 ( , )L mn mnz W h    are introduced to satisfy the kinematic continuity conditions in Eq. (9b). The 

additional shape functions ( , )mng    and ( , )mnh    can be constructed approximately in 

many different ways provided that the kinematic continuity conditions in Eq. (9b) are satisfied 

along the delamination edges. In the present work, the linear interpolation method is used. For a 

VAT plate with a through-the-width delamination, both global and local shape functions are 

expressed as 

2( ) ( ) (1 ) ( ) ( )w w
m n m nX Y L L                                                              

2 2 2
1( , ) ( ) ( ) ( )w

m n m nL L                                

2 2 2 2 2
1( , ) ( , ) ( ) (1 ) ( ) ( )u v

pq pq p qL L                            

1 1

, 1 , 1

1 1

( , ) ( ) ( ) ( ) ( )
2 2

w w w w
mn m n m ng X Y X Y 

   
     

 

 
               

1 1

1 , 1 ,

1 1

( , ) ( ) ( ) ( ) ( )
2 2

w w w w
mn m n m nh X Y X Y 

   
     

 

 
                

For a VAT plate with an embedded rectangular delamination, both global and local shape 

functions are given by 

2 2( ) ( ) (1 )(1 ) ( ) ( )w w
m n m nX Y L L                          
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2 2 2 2 2 2
1 2( , ) ( ) ( ) ( ) ( )w

mn m nL L                           

2 2 2 2 2 2
1 2( , ) ( , ) ( ) ( ) ( ) ( )u v

pq pq p qL L                          

1 1

, 1 , 1

1 1

( , ) ( ) ( ) ( ) ( )
2 2

w w w w
mn m n m ng X Y X Y 

   
     

 

 
    

2 2

, 2 , 2

2 2

( , ) ( ) ( ) ( ) ( )  
2 2

w w w w
mn m n m nh X Y X Y 

   
     

 

 
    

Substituting the assumed displacement fields and the in-plane stress resultants into Eq. (17), 

and minimizing the total potential energy Π, a set of algebraic equations is then obtained and 

expressed in the following matrix form,  

 K L A=0                               (23) 

where K  is the bending stiffness matrix of the delaminated VAT plate; L  is the stability 

matrix due to the in-plane stress resultants distribution obtained in the prebuckling analysis;   

is the eigenvalue; A is the vector of unknown coefficients of all the shape functions, that is, 

{ } 1 1 2 2 0 1 2 T
pq pq pq pq mn mn mnA U V U V W W W . The resulting matrices K  and L  can be 

expanded into, 

0

0

2 2 2 2 0

2 2 2 2 2 0

0 0 0 0 2 0 0 0 1 0 2

1 0 1 1

2 0 2 2

 
 
 
 
 

  
 
 
 
 
 

1 1 1 1 1

1 1 1 1 1

2

1 1 2

U U U V U W

V U V V V W

U U U V U W

V U V V V W

W U W V W U W V W W W W W W

W W W W

W W W W

K K 0 0 K 0 0

K K 0 0 K 0 0

0 0 K K K 0 0

K 0 0 K K K 0 0

K K K K K K K

0 0 0 0 K K 0

0 0 0 0 K 0 K

            

0 0 0 1 0 2

1 0 1 1

2 0 2 2

 
 
 
 
 

  
 
 
 
 
 

W W W W W W

W W W W

W W W W

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

L 0 0 0 0 0 0 0

0 0 0 0 L L L

0 0 0 0 L L 0

0 0 0 0 L 0 L

                       

The terms associated with the vector { }1 1 2 2 T
pq pq pq pqU V U V  in the elastic stiffness matrix 

are derived from the second part on the right hand side of Eq. (18). Therefore, it can be 

derived that the vector { }1 1 2 2 T
pq pq pq pqU V U V  can be represented linearly in terms of the 

vector  
T

0
mnW . This consideration further shows that the in-plane deformations of both upper 

and lower delaminated portions are induced by the out-of-plane deformation of the 

undelaminated portion. Therefore, Eq. (23) can be reduced to  
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( ) K+ L =0                             (24) 

where { } 0 1 2 T
mn mn mnW W W , and the matrices K  and L  are rewritten as, 

    

0 0 0 0 0 1 0 2

1 0 1 1

2 0 2 2

ˆ 
 
 
 
 

W W W W W W W W

W W W W

W W W W

K K K K

K= K K 0

K 0 K

, 

0 0 0 1 0 2

1 0 1 1

2 0 2 2

 
 
 
  

W W W W W W

W W W W

W W W W

L L L

L= L L 0

L 0 L

  

    

0

0

0 0 0 0 0 0 2

2 2 2 2 0

2 2 2 2 2 0

1

ˆ



   
   
   
   
   
   

1 1 1 1 1

1 1 1 1 1

1 1 2

2

U U U V U W

V U V V V W

W W W U W V W U W V

U U U V U W

V U V V V W

K K 0 0 K

K K 0 0 K
K K K K K

0 0 K K K

0 0 K K K

      

The lowest eigenvalue cr  obtained from Eq. (24) corresponds to the end-shortening strain 

under the critical buckling state. Combined with Eqs. (22a) and (22b), the buckling mode 

shapes of both upper and lower sublaminates can be obtained using the vector 

{ } 0 1 2 T
mn mn mnW W W . The average critical buckling load of the delaminated VAT plate is 

evaluated by the following expression [2, 3, 7], 

/ 2crcr 0

/2
( / 2, )d

b

x xx
b

N N a y y
b




                         (25) 

4.3 Contact problem  

  In view of Eq. (24), both upper and lower delaminated portions within the delamination 

region deform freely without touching each other, and thus have independent transverse 

deformations. As such, the model described above is referred to as ‘free mode’ model, which 

can readily capture the delamination opening. However, for an off-midplane delamination, in 

particular a near-surface debonded layer, the buckling mode shape obtained by Eq. (24) could 

be physically inadmissible [14, 19, 32]. In this case, the two delaminated portions 

interpenetrate with each other and the contact problem must be considered in the delamination 

buckling analysis. Indeed, under these circumstances, the penetration of the thinner 

delaminated portion is prevented by the thicker delaminated portion, and eventually both of 

delaminated portions buckle in a constrained mode shape. Shu [14] proposed a ‘totally 

constrained mode’ model to avoid this contact problem. In this method, the delaminated 

portions are constrained to undergo identical transverse displacements, that is w1= w2 etc. 

Note, for the cases when contact occurs, the ‘free mode’ model given by Eq. (24) and Shu’s 

‘totally constrained mode’ model provide lower and upper bounds for the critical 

delamination buckling load prediction, respectively [14].  

In most cases, however, the buckled state is partially constrained at the delamination 

interface when contact buckling occurs. A nonlinear elastic foundation was introduced by 

Shahwan and Waas [20] to conduct the contact buckling analysis for the debonded 
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near-surface layer partially constrained by the presence of a rigid surface. However, the 

resulting nonlinear equations need to be solved, which introduce complications that are 

associated with the foundation’s force-displacement relationship. An alternative approach to 

address this contact problem is the constrained point/area method [25, 32, 33]. In the current 

work, the constrained point method [32, 33] is employed and extended to consider the contact 

effects in the delamination buckling analysis. The main advantage of this approach is that if 

the constrained points are selected appropriately, the buckling load and its corresponding 

constrained mode shape can be readily obtained from a normal eigenvalue analysis with an 

improved version of Eq. (24). In this method, the contact area is assumed to be small 

compared with the delaminated area and the delaminated composite plate is rigid in the 

thickness direction. Under these circumstances, the delaminated portions touch each other at 

some appropriate contact points. Subsequently, a virtual spring with translational (K0) and 

rotational (K1 and K2) stiffness is assumed to apply at each potential contact point, where the 

reaction force (P0) and moments (M1 and M2) are given as [32, 33],  

0 0 1 2( )P K w w                             (26a) 

1 1 1, 2,( )x xM K w w                           (26b) 

2 2 1, 2,( )y yM K w w                          (26c) 

The spring stiffness values (K0, K1 and K2 ) can be determined from the elastic properties of 

the plates [32, 33]. When contact buckling occurs, the energy stored in the virtual spring is 

expressed as 

2 2
cons 0 1 2 1 1, 2,

1

2
2 1, 2,

1
{ [ ( , ) ( , )] [ ( , ) ( , )]

2

                     [ ( , ) ( , )] } 

I

i i i i x i i x i i

i

y i i y i i

U K w x y w x y K w x y w x y

K w x y w x y



    




    (27) 

where (xi, yi) represents the i
th 

constrained point. By differentiating Eq. (27) with respect to the 

generalized coordinates ( { } 0 1 2 T
mn mn mnW W W ), an additional stiffness matrix is 

obtained as 

0 0 0 1 0 2

1 0 1 1 1 2

2 0 2 2 2

( ) ( ) ( )

( ) ( ) ( )
cons

1
( ) ( ) ( )

1

i i i

I
i i i

i
i i i



 
 
 
 
 



W W W W W W

W W W W W W

W W W W W W

K K K

K = K K K

K K K

                    (28) 

Eq. (28) is then inserted into the bending stiffness matrix K of Eq. (24). As such, the contact 

effects at the constrained points are included.  

A constrained-point-searching procedure is required to ensure that all of the constrained 

moments are zero and no interpenetration occurs at the actual constrained points. Firstly, the 

buckling analysis is performed on the ‘free mode’ model described by Eq. (24). The critical 

buckling mode shape is then examined to whether it is physically admissible or not. If the 

initially obtained mode shape is not admissible, a constrained point is applied at the centre of 
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an interpenetrated area. Subsequently, Eq. (24) is augmented to take into account the contact 

effects at constrained points and solved again. The contact point is moved by Δx and Δy as 

given by [32],  

1 1 0/x s M P                           (29a) 

2 2 0/y s M P                           (29b) 

where s1 and s2 are constants that are determined according to the state of the convergence 

[32]. The procedure is repeated until the movements Δx and Δy become sufficiently small (i.e. 

tolerance less than 10
-4

 is used in this work). Finally, the buckling load and its corresponding 

constrained mode shape are determined after the location of the contact point is decided.  

5 Results and Discussion 

  This section presents a detailed study on the buckling behaviour of VAT composite plates 

with a single rectangular delamination under uniform axial compression. The VAT composite 

plates considered are square in shape, that is, a=b=0.81408m. The lamina properties for the 

graphite-epoxy composite are E11=181GPa, E22=10.3GPa, G12=7.17GPa and v12=0.28 with ply 

thickness equal to be 0.127mm. To validate the present analytical method, the finite-element 

model using the commercial package Abaqus is also implemented for the delamination 

buckling analysis of VAT laminates. A subroutine is developed to generate the composite 

element with independent fibre orientations. The SC8R shell element is chosen for both 

prebuckling and buckling analysis of the delaminated VAT plate and very fine meshes are used 

to achieve the desired accuracy. In the FEM model, the VAT plate is split into two parts, 

representing the upper and lower sublaminates. Then, the nodal displacements of two adjacent 

surfaces of the two sublaminates over the undelaminated region are tied using multi-point 

constraints (MPCs). In addition, to facilitate the comparison of the numerical results on 

delamination buckling, the delamination position (h1), length (c) and area (c
2
) are normalized 

with respect to the plate thickness (h0), plate length (a) and plate area (a×b), respectively. The 

following three parameters are used in the following analysis: the normalized delamination 

position h1/h; the normalized delamination length c/a and the normalized delamination area 

c
2
/ab. 

5.1 Convergence study and model validation 

To perform the convergence study, a constant stiffness plate with the layup [0]20 and a 

through-the-width delamination under in-plane axial compression is considered in this section. 

The loading edges of this plate are clamped and the other two edges are free (CFCF), which is 

analogous to the beam-plate analyzed in Simitses et al. [9]. In this study, the through-the-width 

delamination parameters of h1/h and c/a are taken to be 0.5 and 0.6, respectively. The present 

analytical modelling is applied to determine the critical buckling load of the delaminated plate 
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[0]20 using different number of terms (3 ~ 9) for the global and local shape functions. The 

critical buckling load of the delaminated plate is normalized with respect to that of an intact 

plate. Table 1 presents the normalized critical buckling loads of the delaminated plate [0]20 

obtained using different number of shape-function terms. The results obtained using FEM and 

those in the previous works by Simitses et al. [9] and Lee et al. [12] are included for 

comparison purposes. As shown in Table 1, the results predicted by the present analytical 

model match closely with results given by FEM and previous works. It was found that five 

terms for the global and local shape functions are sufficient to yield accurate results. However, 

the FEM requires very fine meshes, 60×60×20, to reach the desired accuracy of results.  

To further validate the present delamination buckling model, buckling analysis is also 

performed on a delaminated composite plate [0]20 with two opposite edges simply-supported 

and the other two edges free (SFSF). In this case study, the normalized delamination position 

h1/h and length c/a of the through-the-width delamination are chosen to be 0.4 and five 

different values (0.0, 0.2, 0.4, 0.6, and 0.8), respectively. The normalized critical buckling 

loads obtained by the present method for this case study are shown in Table 2 and compared 

with the results previously published by Simitses et al. [9] and Shu [14]. Table 2 shows a good 

agreement for the normalized critical buckling loads between the present method, the FEM and 

the previous published results.  

More numerical results on the normalized critical buckling load of the delaminated 

composite plate [0]20 with SFSF and CFCF boundary conditions are obtained and shown in 

Table 3. Three different delamination positions (h1/h=0.1, 0.3 and 0.5) are considered, and the 

normalized length c/a of the delamination vary from 0 to 0.9 with 0.1 increment. The 

numerical results obtained using the analytical model in Table 3 have shown a good 

agreement with the results given by Simitses et al. [9], which further approves the proposed 

analytical method for the delamination buckling analysis.  

5.2 Residual buckling load of delaminated plates 

This section presents the numerical study on the buckling behaviour of the angle-ply 

laminated plates and the VAT composite plates with a through-the-width delamination or an 

embedded rectangular delamination. In the through-the-width delamination study, the 

laminate layups [±45]4s and [±〈0,30〉]4s with two different delamination positions of h1/h=0.25 

and 0.5 are considered. The normalized delamination length c/a varies from 0.0 to 0.9 with an 

incremental step of 0.1. Both [±45]4s and [±〈0,30〉]4s layups exhibit a certain amount of 

bending-twisting coupling effects, and the in-plane stress fields of the VAT plate [±〈0,30〉]4s are 

highly non-uniform with the uniform axial compression loading. It was found that six 

Legendre polynomial terms in the expressions given by Eqs. (12) and (14) were used to 

ensure numerical precision in the prebuckling analysis. Tables 4 and 5 show the numerical 
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results on the normalized critical buckling loads for the angle-ply plate [±45]4s and the VAT 

plate [±〈0,30〉]4s with a through-the-width delamination for a series of different combinations 

of h1/h and c/a values. Tables 4 and 5 present the numerical results of the normalized 

delamination buckling load of the layups [±45]4s and [±〈0,30〉]4s, respectively, which are 

obtained by the analytical model with and without considering the in-plane strain energy 

terms in Eq. (18). It is noted that excellent agreement between the analytical and FEM results 

has been reached when the in-plane strain energy terms are included into the delamination 

buckling analysis. However, considerable errors are incurred to the prediction of critical 

delamination buckling loads if the in-plane energy terms are not taken into account. Therefore, 

considering the in-plane deformations of the delaminated portions within the delamination 

region that are generated by the rotation of transverse normal of the undelaminated portion 

along the delamination edge, is essential for the accurate computation of critical buckling 

loads of delaminated composite plates.  

The buckling behaviour of composite laminated plates with an embedded rectangular 

delamination is also studied using the present analytical model. Herein, two different laminate 

layups [±45]4s and [±〈0,90〉]4s are studied, and the composite plates are assumed to be simply 

supported at all four edges and is subjected to a uniform axial compression. In this case, two 

different delamination positions (h1/h=0.25 or 0.5) are considered and the delamination size is 

characterized by the normalized delamination area c
2
/ab ranging from 0.0 to 0.81. The 

in-plane stress fields of the VAT plate [±〈0,90〉]4s are also highly non-uniform with the uniform 

axial compression loading. Tables 6 and 7 present the numerical results of the normalized 

critical buckling loads of composite plates [±45]4s and [±〈0,90〉]4s containing an embedded 

rectangular delamination with respect to a series of different combinations of h1/h and c
2
/ab 

values. The analytical results shown in Tables 6 and 7 closely match with FEM simulation 

results. Therefore, these observations further demonstrate the accuracy of this proposed 

analytical model for the delamination buckling analysis of both straight-fibre composite plates 

and VAT plates. 

Subsequently, the numerical results for the VAT composite plate [±〈0,30〉]4s in Table 5 and 

the VAT plate [±〈0,90〉]4s in Table 7 are used to study the effects of delamination size and 

position on the residual buckling loads of delaminated VAT composite plates. To compare the 

results with respect to different composite layups, a buckling coefficient defined in previous 

works [2, 3, 7], as given by Eq. (30), is used to normalize the buckling load of the 

delaminated VAT plates.  

cr 2

cr
3

11


xN a

K
E h

                               (30) 

The buckling coefficients of two delaminated composite plates [±〈0,30〉]4s and [±〈0,90〉]4s are 

then, respectively, plotted in Fig. 3 (a) and (b) with respect to the variation of the rectangular 
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delamination size (c/a for the through-the-width delamination and c
2
/ab for the embedded 

delamination). In Fig. 3 (a) and (b), each curve represents a particular delamination position, 

namely, h1/h=0.25 or 0.5. At the initial stage when the delamination is small, the buckling 

coefficients remain almost unchanged for all the cases in Fig 3. Afterwards, the buckling loads 

of the VAT plates reduce when the delamination size gradually increases. It is also interesting to 

note that, for both delaminated VAT plates, the reduction of buckling loads with h1/h=0.25 is 

much more prominent than that with h1/h=0.5. This behaviour is expected because the 

delamination position h1/h has a significant effect on the buckling behaviour of delaminated 

composite plates.  

h1/h=0.5 denotes a mid-plane delamination, and also indicates that the upper and lower 

sublaminates are identical. These two delaminated portions have the same amount of 

deformations when the critical buckling occurs, thus the plates do not open up at the 

delamination interface. In this case, the buckling load reduction of the delaminated composite 

plates is mainly attributed to the loss of bending stiffness within the delamination region. It 

becomes an off-midplane delamination when the delamination position h1/h=0.25. For 

composite plates with an off-midplane delamination, the bending stiffness of the thinner 

delaminated portion within the delamination region is much less than that of the thicker one. 

As a result, the out-of-plane deformation of the thinner sublaminate is larger than that of the 

thicker sublaminate. With an increasing c/a value, the two sublaminates can separate 

physically and an opening mode is generated for the delaminated plates when buckling occurs. 

In some extreme cases, only the thinner sublaminate buckles, which forms a completely local 

buckling behaviour [16, 18]. Consequently, an off-midplane type of delamination can further 

aggravate the reduction of the critical buckling load of the delaminated composite plates. 

5.3 Buckling mode shapes of delaminated VAT plates 

The effects of the delamination size and position on the buckling mode shapes of the 

delaminated composite plates are studied in this section. The composite plate [0]20 with a 

through-the-width delamination is considered first. The loading edges of this plate are simply 

supported and the other two edges are free (SFSF). Fig. 4 shows nine different cross sections 

of the buckling mode shapes of the delaminated plate [0]20 along the x-axis (y=0) with respect 

to a series of different combinations of h1/h and c/a values. When the delamination is 

relatively small (c/a=0.1) or the delamination interface is close to the mid-plane (h1/h=0.5), 

the upper and lower sublaminates deform to the same shape, and result in a global buckling 

mode shape. This effect is clearly denoted by the three plots in the first column (for a small 

delamination size c/a=0.1) and the remaining three plots in the last row (for a mid-plane 

delamination h1/h=0.5) of Fig. 4.  

When the delamination is away the midplane and is also relatively large, the delaminated 
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portions do not deform to the same shape, and leads to the delamination opening up in the 

buckling mode shapes. Under such circumstances, the local buckling shapes or mixed 

buckling shapes appear to the delaminated composite plates when critical buckling occurs. 

The last two plots in the second row of Fig. 4 (with h1/h=0.3, c/a=0.5 and 0.9) illustrate the 

case of combined buckling mode shapes, in which both the upper and lower sublaminates 

have a certain amount of deformations, but do not have the same shape. When one of the 

delaminated portions is thin (h1/h=0.1) and the delamination size is relatively large, the local 

buckling mode shape of the thin sublaminate appears at relatively low buckling load (see 

Table 3). This local buckling behaviour of the delaminated composite plate is demonstrated in 

the last two plots (h1/h=0.1, c/a=0.5 and 0.9) in the first row of Fig. 4.  

Subsequently, the buckling mode shapes of the VAT plate [±〈0,30〉]4s in Table 5 and the 

VAT plate [±〈0,90〉]4s in Table 7 are studied. The buckling mode shapes of the delaminated 

VAT plates [±〈0,30〉]4s and [±〈0,90〉]4s with respect to different normalized delamination 

position/length and position/area combinations are shown in Figs. 5 and 6, respectively. The 

good agreement between the analytical and FEM results in Figs. 5 and 6, shows that the 

proposed analytical method is capable of accurately capturing the buckling mode shapes of 

the delaminated VAT plates. Compared with the above analysis with respect to the 

straight-fibre laminates [0]20, similar conclusions are drawn from the buckling mode shapes of 

the delaminated VAT plate shown in Figs. 5 and 6. 

When the delamination is at the mid-plane, that is, h1/h=0.5, both upper and lower 

delaminated portions have the same bending stiffness within the delamination region, leading 

to the same tendency to deform without opening modes when critical buckling occurs. It 

therefore produces the global buckling mode shapes, as shown in the plots (with h1/h=0.5) of 

Figs. 5 and 6. In this case, the buckling load reduction of the delaminated composite plates is 

mainly attributed to the loss of bending stiffness within the delamination region, as mentioned 

above. When the delamination is not located on the mid-plane (h1/h=0.25) and the 

delamination is relatively large (c/a=0.5 or 0.9 in Fig. 5 and c
2
/ab=0.36 or 0.81 in Fig. 6), the 

thinner delaminated portion of the VAT plate within the delamination region undergoes much 

larger deformation than the thicker one at the critical buckling point. As a consequence, the 

delamination opens up and the delaminated plate exhibits a mixed or local buckling mode 

shape, as denoted by the last two plots with h1/h=0.25 in Figs. 5 and 6. The delamination 

opening leads to further reduction of the critical buckling load (as illustrated in Fig. 3 (a) and 

(b)). 

For composite plates with a considerably large and off-midplane delamination, as shown in 

Figs. 4-6, most buckling mode shapes of the thinner delaminated portions are in the form of  

single half-waves. For these cases, no contact between the delaminated portions occurs and we 

can apply the ‘free mode’ model to predict the delamination buckling load. However, when the 
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buckling mode shape of the thinner delaminated portion is in the form of multiple half-waves, 

as shown in Figs. 7(a) and 8(a), the buckling mode shapes obtained using the ‘free mode’ 

model become physically inadmissible. Under such cases, the thinner delaminated portion 

rests on the thicker delamination portion, and thus contact buckling may occur [19, 20, 32, 

33]. Therefore, we need to apply the ‘constrained mode’ model to take into account the 

contact effects at the delamination interface. 

Figs. 7 and 8 show that the buckling mode shapes obtained using the proposed free and 

constrained mode models for the delaminated VAT plates [90±〈0,75〉]4s and [±90]4s, 

respectively. Herein, the delamination position h1/h and the delamination size c
2
/ab are set to 

be 0.25 and 0.36, respectively. The boundary conditions and loading cases are the same as the 

case study presented in Table 7. The upper bounds of the residual buckling load are also 

predicted by the ‘totally constrained mode’ model [14], and are presented in Figs. 7(b) and 

8(b). The buckling loads and mode shapes with constrained point effects are obtained using 

the ‘partially constrained mode’ model, and presented in Figs. 7(c) and 8(c). It was found that 

the contact buckling loads predicted by the ‘partially constrained mode’ model converge with 

an increasing translational stiffness K0. The contact buckling loads obtained are much lower 

than the values given by ‘totally constrained mode’ model. This result is expected because the 

delamination opening mode is not considered in the latter case, even for an off-midplane 

delamination. However, in the former case, the delamination opening modes remain, which 

leads to a significant reduction in the delamination buckling load. Meanwhile, the contact 

buckling loads predicted by the ‘partially constrained mode’ model are slightly higher than 

the values given by the ‘free mode’ model. This result is mainly due to the contact point 

constraints at the delamination interface. The results shown in Figs. 7 and 8 indicate that the 

contact constraint at the delamination interface does not increase the buckling load 

significantly, which has also been reported by Shahwan and Waas [20] and Suemasu et al. 

[32]. However, a significant difference exists between the buckling mode shapes obtained 

using free and partially constrained mode models. Especially for the VAT layup [90±〈0,75〉]4s, 

where an asymmetric bulge can be observed in the mode shapes predicted by the ‘partially 

constrained mode’ model. Furthermore, it was observed from Figs. 7(c) and 8(c) that the 

residual interpenetrated area within the buckling mode shapes is fairly small, which indicates 

that penetration has been suppressed to a large extent. The virtual spring is applied at one or 

several contact points rather than the contact area, inevitably leading to the emergence of 

residual interpenetrated areas. However, the buckled state with sufficiently small residual 

interpenetrated area when contact buckling occurs can be approximated as a contact state [32, 

33].  
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5.4 Effect of varying fibre orientation angles 

This section studies the mechanism of applying tow-steered laminates to improve the 

buckling performance of composite plates with a single delamination. The delaminated VAT 

plate is clamped at all four edges and is subjected to a uniform axial compression. Herein, only 

an embedded delamination is considered and the normalized delamination position h1/h is 

taken to be 0.5. As such, this is a mid-plane delamination, which indicates that the delamination 

opening and contact problem are not taken into account in the buckling analysis [23]. Four 

different composite layups are chosen to study: [90±〈10,80〉]4s, [90±〈20,90〉]4s, [0]16 and [±45]4s. 

Fig. 9 shows the buckling coefficients and the buckling load reduction percentages of these four 

delaminated composite laminates with respect to the delamination size, which is characterized 

by the normalized delamination area c
2
/ab. As shown in Fig. 9(a), for each layup, the buckling 

coefficient remains unchanged at the initial stage, and then gradually decreases with an increase 

in delamination size (c
2
/ab). The decrease in bending stiffness induced by delamination is the 

main reason for the reduction in buckling load, as also explained previously. Fig. 9(b) shows 

the buckling load reduction percentage for each delaminated composite, in which the [0]16 

layup gives higher buckling resistance against the existence of delamination than the [±45]4s 

laminate. This behaviour occurs because the bend-twist coupling effect of [±45]4s layup is 

more pronounced [26], and bend-twist coupling lowers the residual buckling resistance of 

delaminated composite plates. Further, it is clearly seen from Fig. 9(a) that the VAT layups 

[90±〈10,80〉]4s and [90±〈20,90〉]4s exhibit better performance for delamination buckling 

resistance than the [0]16 layup. For these two types of VAT laminates, as has been shown in 

many previous works [1-3, 7], the majority of compressive loading is redistributed remote from 

the central delamination region towards the supported edges. Such benign load redistribution 

enables the VAT layups to reach higher buckling resistance, even if there exists delamination. 

However, it is found that the VAT layup [90±〈10,80〉]4s initially exhibits higher buckling load 

due to better load redistribution, but gives less buckling resistance against delamination than 

the VAT layup [90±〈20,90〉]4s (Fig. 9(b)). This result indicates that in addition to the load 

redistribution induced by the non-uniform extensional stiffness distribution, the buckling 

behaviour of the delaminated VAT composite plate is also affected by the non-uniform 

bending stiffness distribution. The variable angle tow fibre angle distribution given by the VAT 

layup [90±〈20,90〉]4s exhibits more favourable bending stiffness distribution over the 

delamination region, and thus helps to resist delamination buckling. 

A parametric study is now performed on the buckling analysis of VAT plate configurations 

[90±〈T0,T1〉]4s with an embedded rectangular delamination. Both T0 and T1 increase from 0° to 

90° with a step of 10°. Herein, four different delamination sizes are examined, for which the 

normalized delamination area c
2
/ab are 0.0, 0.25, 0.49 and 0.81, in the parametric study. In 
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each case, the delamination buckling loads are plotted in Fig. 10 as functions of the 

prebuckling stiffness. Each curve in Fig. 10 represents a series of VAT plates that is generated 

by varying T1 from 0° at the left-end to 90° at the right-end, with a same value of T0. For 

comparison purposes, the buckling load and prebuckling stiffness of the delaminated VAT 

plates are normalized with respect to those of an intact quasi-isotropic laminate, respectively. 

The prebuckling stiffness Evat of the VAT plate is defined as [2, 3, 7],  

/ 2 0
vat

2 /2
( / 2, )d

b

xx
b

a
E N a y y

hb 



                      (31) 

The evaluation of buckling load of the intact quasi-isotropic laminate based on an equivalent 

bending stiffness is given by [7, 34].  

From Fig. 10, it is noted that the overall curves that represent normalized delamination 

buckling loads of VAT plates are nearly the same in each subfigure, albeit the buckling loads are 

substantially reduced with the presence of the rectangular delamination. This behaviour 

indicates that the mechanism (load redistribution) by which the variable stiffness properties 

improve the buckling load of composite plates remains in effect when delamination occurs. At 

different normalized delamination areas c
2
/ab of 0.0, 0.25, 0.49 and 0.81, VAT layups achieve 

52.3%, 59.7%, 88.9% and 76.1% improvement on the maximum buckling load over the 

straight-fibre laminates, respectively. Further, it is found from Fig. 10 that when the 

normalized value of prebuckling stiffness is between 0.4 and 1.6, the VAT configurations 

show more additional freedom in stiffness tailoring to achieve higher delamination buckling 

resistance. In addition, the VAT layups that give the maximum buckling load for each case are 

slightly different. It thus further implies that the buckling improvement for the delaminated 

VAT plates not only depends on the load redistribution, but also is affected by the local 

distribution of variable angle tows over the delamination region. In summary, the results shown 

in Fig. 10 clearly demonstrate the advantages and the potentials of applying VAT laminates to 

improve the buckling performance of composite laminated plates with a single delamination. 

6 Conclusion  

An analytical model has been developed to study the buckling behaviour of VAT composite 

plates with a through-the-width or an embedded rectangular delamination. The superposition 

method given by global and local shape functions was applied to model the displacement 

fields of VAT composite plates. Both free and constrained mode models were constructed to 

simulate delamination buckling processes. It was shown that this proposed analytical model is 

able to accurately capture the global, mixed and local buckling response of delaminated VAT 

composite plates. For the case when contact between delaminated portions occurs, a 

constrained point approach was employed to study the contact effect in the delamination 

buckling analysis. Numerical results of VAT composite plates with a single delamination were 
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obtained with respect to various delamination sizes and positions. Compared with the previous 

published works and FEM simulation results, the accuracy and efficiency of this proposed 

method to predict the delamination buckling loads was demonstrated. It was also found that 

the in-plane deformation of delaminated portions within the delamination region is vitally 

important for the delamination buckling analysis.  

The effects of delamination size and position on the buckling response of delaminated VAT 

composite plates were examined through various numerical case studies. Results have shown 

that buckling loads decrease with an increase in delamination size. An off mid-plane 

delamination may further reduce the buckling load due to the occurrence of delamination 

opening. The residual delamination buckling load was found to be slightly increased when 

contact buckling occurs, and the corresponding buckling mode shape was significantly altered 

by the potential contact at the delamination interface. The influence of varying fibre 

orientation angles on the residual buckling strength of VAT composite plates with an 

embedded rectangular delamination was then studied. It was found that the buckling strength 

of composite plates with a delamination can be significantly improved by particular VAT 

configurations. Finally, a parametric study of VAT laminates with linearly varying fibre angles 

was performed. The mechanism and advantages of applying the variable stiffness concept to 

improve the buckling performance of delaminated composite laminates were drawn from the 

numerical results. The postbuckling and delamination growth problems of VAT composite 

plates with delaminations will be studied and presented in our future works. 
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 Figure caption  

 

 

Fig.1 The geometry and in-plane boundary conditions of a VAT composite plate with a single 

delamination: (a) Division of the delaminated VAT plate into three portions; (b) VAT plate 

with a through-the-width delamination; (c) VAT plate with an embedded rectangular 

delamination. 

 

Fig. 2 In-plane deformation of delaminated portion on the delamination edge. 
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Fig. 3 The buckling coefficients of two VAT plates vary with respect to normalized 

delamination size or area (c/b or c
2
/ab) for two different delamination positions (h1/h=0.5 or 

0.25): (a) VAT plate [±〈0,30〉]4s with a through-the-width delamination; (b) VAT plate 

[±〈0,90〉]4s with an embedded rectangular delamination. 

 

Fig. 4 The cross-sections of the buckling mode shapes along the x-axis direction (y=0.0) 

obtained by the present method for the delaminated composite plate [0]20 with different 

combinations of normalized delamination position/length. The red dash curve denotes results 

of buckling mode shapes of the upper sublaminate. 
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Fig. 5 Comparison of buckling mode shapes of a simply supported VAT beam-plates 

[±〈0,30〉]4s with a through-the-width delamination obtained using present analyticalmodel and 

FEM for different combinations of normalized delamination position/length  
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Fig. 6 Comparison of buckling mode shapes of a simply supported VAT plates [±〈0,90〉]4s with 

an embedded delamination obtained using the proposed model and FEM for different 

combinations of normalized delamination position/area. 
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Fig. 7 Buckling mode shapes obtained using free and constrained mode models for a VAT 

layup [90±〈0,75〉]4s: (a) free mode model; (b) totally constrained mode model; (c) partially 

constrained mode model 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 8 Buckling mode shapes obtained using free and constrained mode models for a VAT 

layup [±90]4s: (a) free mode model; (b) totally constrained mode model; (c) partially 

constrained mode model 

 

 

Fig. 9 Variations in buckling coefficient and buckling load reduction with the normalized 

delamination area (c
2
/ab) for different layup configurations: (a) buckling coefficient versus 

normalized delamination area; (b) buckling load reduction versus normalized delamination 

area 
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Fig. 10 Normalized buckling load versus normalized prebuckling stiffness of all the VAT 

configurations [90±〈T0,T1〉]4s with a midplane embedded delamination at different values of 

normalized delamination area (c
2
/ab). 

 

 

Table  

Table 1 The normalized critical buckling load of a two edges clamped and two edges free 

(CFCF) composite plate [0]20 obtained using different number of terms for the global and local 

shape functions 

( ) 3M N   ( ) 5M N   ( ) 7M N   ( ) 9M N   
Simitses et al.[9] Lee et al. [12] FEM 

( ) 3M N   ( ) 5M N   ( ) 7M N   ( ) 9M N   

0.5422 0.5412 0.5409 0.5408 0.5411 0.5413 0.5412 

Table 2 The normalized critical buckling loads of a two edges simply-supported and two edges 

free (SFSF) composite plates [0]20 with a through-the-width delamination 

h1/h c/a Present solution FEM Simitses et al.[9] Shu [14] 

0.4 

0.0 1.0000 1.0000 1.0000 1.0000 

0.2 0.9996 0.9993 0.9997 0.9997 
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0.4 0.9901 0.9895 0.9902 0.9902 

0.6 0.9196 0.9161 0.9198 0.9198 

0.8 0.7263 0.7238 0.7264 0.7264 

Table 3 The normalized critical buckling loads of a composite beam-plates [0]20 with a 

through-the-width delamination under different boundary conditions  

B.C. h1/h c/a 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

SFSF 

0.1 
Simitses et al.[9] 1.0000 1.0000 0.9723 0.4432 0.2494 0.1596 0.1109 0.0815 0.0624 0.0493 

R-R 1.0000 0.9999 0.9728 0.4434 0.2496 0.1597 0.1109 0.0815 0.0624 0.0493 

0.3 
Simitses et al.[9] 1.0000 1.0000 0.9997 0.9971 0.9827 0.9402 0.8149 0.6486 0.5118 0.4106 

R-R 1.0000 0.9999 0.9996 0.9969 0.9850 0.9401 0.8151 0.6487 0.5120 0.4108 

0.5 
Simitses et al.[9] 1.0000 0.9999 0.9997 0.9980 0.9912 0.9729 0.9343 0.8703 0.7867 0.6966 

R-R 1.0000 0.9999 0.9997 0.9979 0.9912 0.9726 0.9345 0.8706 0.7870 0.6970 

CFCF 

0.1 
Simitses et al.[9] 1.0000 0.9799 0.2495 0.1109 0.0624 0.0400 0.0278 0.0204 0.0156 0.0123 

R-R 1.0000 0.9801 0.2493 0.1109 0.0624 0.0399 0.0278 0.0204 0.0156 0.0123 

0.3 
Simitses et al.[9] 1.0000 0.9998 0.9924 0.8582 0.5314 0.3469 0.2435 0.1804 0.1390 0.1105 

R-R 1.0000 0.9996 0.9922 0.8587 0.5315 0.3469 0.2435 0.1804 0.1390 0.1105 

0.5 
Simitses et al.[9] 1.0000 0.9999 0.9956 0.9638 0.8481 0.6896 0.5411 0.4310 0.3514 0.2923 

R-R 1.0000 0.9998 0.9955 0.9639 0.8484 0.6897 0.5412 0.4309 0.3522 0.2934 

 

 

 

 

 

 

 

 

 

 

 

Table 4 The normalized critical buckling loads of an angle-ply composite plate [±45]4s with a 

through-the-width delamination for different combinations of normalized delamination 

position/length. 

h1/h c/a 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.25 R-R (without in-plane motion) 1.0000 0.8849 0.7493 0.6350 0.5500 0.5057 0.4579 0.4006 0.3322 0.2702 
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R-R (with in-plane motion) 1.0000 0.9995 0.9978 0.9906 0.9562 0.8741 0.6710 0.4969 0.3764 0.2927 

FEM 1.0000 0.9992 0.9981 0.9900 0.9577 0.8716 0.6699 0.4861 0.3732 0.2930 

0.5 

R-R (without in-plane motion) 1.0000 0.8364 0.6260 0.4564 0.3638 0.3175 0.2916 0.2760 0.2648 0.2598 

R-R (with in-plane motion) 1.0000 0.9994 0.9974 0.9896 0.9712 0.9383 0.8876 0.8188 0.7375 0.6551 

FEM 1.0000 0.9986 0.9970 0.9884 0.9748 0.9318 0.8839 0.8107 0.7332 0.6534 

Table 5 The normalized critical buckling loads of a VAT composite plate [±〈0,30〉]4s with a 

through-the-width delamination for different combinations of normalized delamination 

position/length. 

h1/h c/a 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.25 

R-R (without in-plane motion) 1.0000 0.8871 0.7582 0.6402 0.5525 0.4918 0.4415 0.3819 0.3115 0.2476 

R-R (with in-plane motion) 1.0000 0.9999 0.9997 0.9968 0.9794 0.8441 0.6355 0.4636 0.3469 0.2654 

FEM 1.0000 0.9999 0.9991 0.9954 0.9801 0.8516 0.6423 0.4676 0.3493 0.2668 

0.5 

R-R (without in-plane motion) 1.0000 0.8428 0.6536 0.4835 0.3708 0.2982 0.2784 0.2625 0.2546 0.2512 

R-R (with in-plane motion) 1.0000 1.0000 0.9999 0.9983 0.9924 0.9764 0.9384 0.8705 0.7763 0.6711 

FEM 1.0000 0.9999 0.9999 0.9987 0.9893 0.9675 0.9389 0.8714 0.7771 0.6715 

Table 6 The normalized critical buckling loads of an angle-ply composite plate [±45]4s with an 

embedded rectangular delamination for different combinations of normalized delamination 

position/area. 

h1/h c
2
/ab 0.0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 

0.25 
R-R 1.0000 0.9999 0.9993 0.9785 0.5782 0.3701 0.2573 0.1894 0.1453 0.1151 

FEM 1.0000 1.0000 0.9992 0.9595 0.5640 0.3673 0.2551 0.1890 0.1440 0.1147 

0.5 
R-R 1.0000 0.9999 0.9993 0.9974 0.9906 0.8983 0.7112 0.6335 0.5486 0.4674 

FEM 1.0000 0.9999 0.9995 0.9977 0.9857 0.8923 0.7146 0.6385 0.5428 0.4629 

Table 7 The normalized critical buckling loads of a VAT composite plate [±〈0,90〉]4s with an 

embedded rectangular delamination for different combinations of normalized delamination 

position/area. 

h1/h c
2
/ab 0.0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 

0.25 
R-R 1.0000 0.9989 0.9978 0.9936 0.9909 0.6993 0.4444 0.3017 0.2180 0.1659 

FEM 1.0000 0.9991 0.9981 0.9963 0.9821 0.6859 0.4360 0.2972 0.2180 0.1655 

0.5 
R-R 1.0000 1.0000 0.9997 0.9975 0.9950 0.9915 0.8580 0.7150 0.6337 0.5392 

FEM 1.0000 0.9999 0.9999 0.9997 0.9983 0.9883 0.8635 0.7229 0.6398 0.5453 

 

 


