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      When temperature increases, the volume of an object changes. This property was 

quantified as the coefficient of thermal expansion only a few hundred years ago. Part 

of the reason is that the change of volume due to the variation of temperature is in 

general extremely small and imperceptible. Here we report abnormal giant linear 

thermal expansions in different types of two-ingredient micro-structured hierarchical 

and self-similar cellular materials.  The cellular materials can be two-dimensional or 

three-dimensional, and isotropic or anisotropic, with a positive or negative thermal 

expansion due to the convex or/and concave shape in their representative volume 

elements respectively.  The magnitude of the thermal expansion coefficient could be 

several times larger than the highest value reported in the literature.  This study 

suggests an innovative approach to develop temperature-sensitive functional 

materials and devices.  
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       Most materials have a positive thermal expansion coefficient (PTEC) and they expand 

isotropically when heated.  The thermal expansion coefficient (TEC) of solid materials is 

usually in the order of 
63 10 1K  for ceramics, 

510 1K  for metals, and 
410 1K  for 

polymers[1, 2].  Very few unusual materials[3-7] have a negative thermal expansion coefficient 

(NTEC) and their lattice dimensions shrink with heating.  Large negative thermal expansion is 

usually anisotropic[4-6], or even shrinking in one direction and expanding in another direction. 

Although quite a large isotropic NTEC 
31.2 10    1K  has been found for a solid 

polyacrylamide film[7], the magnitude of isotropic thermal expansion coefficient of solid 

materials without pores is usually very limited[3, 8]. 

       Many researchers[9-14] aim to find materials with a negative thermal expansion coefficient 

because such materials are of great research interest and have important applications, e.g. 

activators or sensors, due to the coupled thermal-mechanical behaviour[15].  It has been 

recognized that the thermal expansion coefficients of one-phase or two-phase solid materials 

that do not contain a pore phase are always very limited in magnitude, and that three-phase 

materials[2, 16-18] containing a pore phase could have a much larger thermal expansion coefficient 

than the one-phase or two-phase solid materials. Thus, people have designed some cellular 

materials with an improved magnitude of NTEC[19-22].  Here we study different new types of 

micro-structured two-ingredient hierarchical and self-similar 2D and 3D cellular materials that 

can be not only isotropic (note that ‘isotropic’ means yx    for 2D cellular materials and 

zyx    for 3D cellular materials) or anisotropic, but also have either a negative or a 

positive linear thermal expansion coefficient with a magnitude significantly larger than any 

reported value in the literature.           
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To enhance the magnitudes of thermal expansion coefficients, the 2D and 3D cellular 

materials in this paper are made of two different solid ingredients A and B (Figures 1 and 2).  

It is assumed that ingredient A is a ceramic with a Young’s modulus of 
112 10AE    

2/N m  

and a thermal expansion coefficient of 
63 10A    1K  , and ingredient B is a polymer with a 

Young’s modulus of 
93 10BE    

2/N m  and a thermal expansion coefficient of 

6200 10B
   1K  .  Figures 1c, 1d and 1e show the geometrical structures of the periodic 

representative volume elements (RVEs) of the first level two-ingredient 2D cellular materials 

with isotropic NTEC, isotropic PTEC and anisotropic TEC, respectively.  The two straight and 

inclined struts are made of ingredient A, perpendicular to each other, and have rigid connection 

in the middle.  All the other struts in the RVEs of the first level (i.e. level-1) 2D cellular 

materials are made of ingredient B.  Figure 2 shows the geometrical structures of the periodic 

representative volume elements (RVEs) of the first level two-ingredient 3D cellular materials 

with isotropic NTEC, isotropic PTEC and anisotropic TEC, respectively.  The four straight and 

inclined struts are made of ingredient A and have rigid connection in the middle.  All the other 

struts in the RVEs of the first level 3D cellular materials are made of ingredient B.  When the 

effect of thermal expansion is absent, the shape of all the non-straight struts in the RVEs of both 

the first level 2D and 3D materials is assumed to be a chevron with a span of 1.0L   and an 

amplitude of a , as shown in Figure 3a.  Moreover, all the dimensions in Figures 1-3, including 

the x, y and z axes, are normalized by L .  In addition, all the chevron struts are assumed to have 

a uniform thickness t  for 2D cellular materials or a uniform square cross-section of side t  for 

3D cellular materials.  The chevron struts (Made of ingredient B) are assumed to be pin-

connected with the straight struts of the cross (made of ingredient A) in the middle.   
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When there is a temperature change T , the change of the amplitude a  of the chevron 

struts can be obtained from Equations (S1-3) and (S1-4) (see the Supporting Information), and 

the magnitude of the isotropic negative (Figures 1c and 2a), or isotropic positive (Figures 1d 

and 2b), or anisotropic (Figures 1e and 2c) linear thermal expansion coefficients of both the 

first level 2D and 3D cellular materials can be obtained as   11 k , where 

4102  BAB   , and the linear thermal expansion magnification factor 1k  is 

defined as   /11k  and given as 

   
T

a
k








667.1
1         (1) 

for the first level 2D cellular materials, and 

   
T

a
k








205.2
1                      (2) 

for the first level 3D cellular materials.  In Equations (1) and (2), T   is the thermal strain 

of the chevron struts relative to the cross in the middle.  The detailed derivation of a , 1  and 

1k  is given in the Supporting Information (S1.1).   

Figure 4a shows the effects of the dimensionless amplitude /a L  and the aspect ratio 

/t L  on the magnification factor 1k of the positive or negative, isotropic or anisotropic linear 

thermal expansion coefficients of the first level 2D cellular materials with chevron struts which 

are pin-connected to the cross in the middle.   It is noted that the values of 1k  in Figure 4a 

obtained from Equations (1), (2), (S1-3) and (S1-4) remain almost the same when 

100005.0  T  K.  The results presented in Figure 4a are obtained from the small 

deformation theory and a single Timoshenko beam element, and the combined effects of 

thermal expansion, strut bending, transverse shearing and axial compression on the deformation 

1K 
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of the chevron struts have all been considered.  We also found that the transverse shear 

deformation of the chevron struts has negligible effect on the values of 1k .    

   When /a L  is 0.005 and / 0.01t L  , the magnification factor 1k  of the first level 2D 

cellular materials can have a value of 41.75.  Thus, the magnitude of the linear isotropic or 

anisotropic NTEC or PTEC of the first level 2D cellular materials can reach 

34

11 1035.810275.41    k 1K  .  This magnitude is much larger than the values 

of thermal expansion coefficient reported in references[3-8].  Moreover, if ingredient B is chosen 

as a polyacrylamide whose thermal expansion coefficient is 
31.2 10B
   1K   (see 

reference[7]), the magnitude of the linear isotropic or anisotropic NTEC or PTEC of the first 

level 2D cellular materials could reach 
23

11 1001.5102.175.41    k 1K  , 

suggesting that the giant thermal expansion could be further enhanced by a larger thermal 

expansion coefficient of ingredient B.   With the increase of Lt / , the value of 1k  reduces very 

quickly because the ratio of the axial compressive strain   to the relative thermal strain T   

increases rapidly with Lt / .   When /a L  is 0.05 and 025.0/ lt , the thermal expansion 

magnification factor 1k  of the first level 2D cellular materials can achieve a value of 7.943 and 

thus the effective linear thermal expansion coefficient can be 

34

11 105886.1102943.7    k 1K 
over the range of 50  T  K.   

          It is worth mentioning that the derivation of the results in Figure 4a is independent of the 

Young’s modulus of ingredient B if the deformation of the chevron struts is linear elastic, and 

that the axial compression of the chevron struts can significantly reduce the value of 1k .  For 

different types of the first level 3D cellular materials shown in Figure 2, the linear thermal 

expansion magnification factors of the isotropic or anisotropic NTEC or PTEC are 1.322 times 

those of their first level 2D cellular counterparts.  It is also noted that the thermal deformation 
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of the chevron struts is in general a geometrical nonlinearity problem.  To validate the accuracy 

and applicability of the results in Figure 4a, we have performed finite deformation geometrical 

nonlinearity analysis (see Supporting Information S1.2).  The values of 1k  obtained from the 

geometrical nonlinearity analysis are almost the same as those presented in Figure 4a.  This is 

partly because even when 
3102  T  (i.e, 4102   1K   and 10T  K), the strain 

in the solid chevron struts is still smaller than 0.2%.  Moreover, we have also performed finite 

element simulation to validate the theoretical results using the commercial finite element 

software ABAQUS.  Half a chevron strut is partitioned into 800 plane stress CPS4T elements 

and the obtained results are shown in Tables S1 and S2 (in the Supporting Information) to 

validate the theoretical results presented in Figures 4a and 4b.  For the cases when the chevron 

struts are pin-jointed with the cross, the FEM results in Table S1 show quite good agreement 

with the theoretical results presented in Figure 4a although the FEM results indicate that the 

larger the value of , the smaller the magnification factor 1k .    For the cases when the 

chevron struts are replaced by two pin-jointed struts (as shown in Fig. 3b), the FEM results in 

Table S2 are identical to the theoretical results presented in Figure 4b.   When the chevron struts 

are rigidly connected instead of pin-jointed to the cross in the middle of the 2D or 3D cellular 

materials, the values of /a L  remain unchanged, the thermal expansion magnification factors 

presented in Figure 4a are still valid when the value of Lt /2  (instead of Lt / ) are used to find 

the corresponding 1k .     

        Now, if the chevron strut in Figure 3a is replaced by two pin-jointed struts as shown in 

Figure 3b, the values of the thermal expansion magnification factor 1k  of the first level 2D 

cellular materials are obtained (see S1.3) and presented in Figure 4b.  For the first level 2D 

cellular materials when /a L  is 0.001, the thermal expansion magnification factor 1k  is 375 and 

the linear CTE is 075.0102375 4

11   k 1K   if  005.0T  K ; and 1k  becomes 

T 
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102.3 and 0204.01023.102 4

11   k  if  5.0T  K.  These magnitudes are 

much larger than any reported thermal expansion coefficients in literature, including the results 

in references[2, 20], which is the highest value reported to the best of our knowledge.   It is worth 

pointing out that the magnification factors of pin-jointed struts (Figure 4b) are sensitive to the 

dimensionless amplitude   and the temperature change T . On the other side, they are 

entirely independent of the aspect ratio .   When  is 0.001 and 05.0/ Lt , the single 

level 2D cellular materials still have a reasonable stiffness 
3

1 102.1 E  from Equation 

(S2-5) . However, if  is too small, the 2D cellular materials with pin-jointed struts may not 

have a sufficient stiffness to support their self-weight and to enable the expected thermal 

expansion function.   In general, the larger the range of the relative thermal strain T  (or 

temperature change T ), the smaller is the thermal expansion magnification factor 1k .  The 

values of 1k of the first level 3D cellular materials shown in Figure 2 are 1.322 times those of 

their first level 2D counterparts. Figure 4b shows that when /a L = 0.02 and T 0.5 K, 1k  is 

always larger than 20 for the first level 2D cellular materials and larger than 26.44 for first level 

3D cellular materials.  The upbound value of 1k  depends on the specific stiffness, namely 

stiffness-to-weigth ratio, of the cellular structures. In other words, the giant thermal expansion 

of our proposed cellular material could be further improved by using  materials with higher 

specific stiffness and  CTE as component B. 

      Structural hierarchy can not only enhance the mechanical properties of materials[23-27], but 

may also enhance the magnitude of the linear thermal expansion coefficient of 2D and 3D 

cellular materials.  Both the two-ingredient 2D and 3D hierarchical materials are thus assumed 

to be self-similar, as demonstrated in Figure 1.   To enable the expected thermal expansion 

function, the minimum mechanical stiffness of the cellular materials is assumed to be about 

3100.1 nE   (this is because the relative density of a hierarchical cellular material is 

1K 

/a L

/t L /a L

2/N m

/a L

2/N m
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much lower than a normal solid material).  For a two-level hierarchical 2D cellular material 

with pin-jointed chevron struts (as shown in Figure 3a), if 045.0/ Lt  and =0.01 (or 

0.05), magnification factor of the linear thermal expansion coefficient can be obtained as 

7.4791.6)( 22

12  kk  (or 4.4903.7 2  ) when T 5 K.  In this case, the stiffness of the 

two-level hierarchical 2D cellular materials is about 31058.1 nE .  If the 

dimensionless amplitude 1.0/05.0  La  and 1.0/045.0  Lt , the magnification factor of 

the linear thermal expansion coefficient of a two-level hierarchical and self-similar 2D cellular  

material shown in Figure 1 can easily achieve a value of 25.125.3)( 22

12  kk  when T 5 

K, which is significantly greater than that of its single level counterpart with the same /a L  and  

.  It is noted that for 2D or 3D cellular materials with chevron struts, the magnification 

factor of the linear thermal expansion coefficient strongly depends on the values of both /a L  

and /t L ; in contrast, their  mechanical stiffness is mainly dependent on the aspect ratio /t L

and entirely independent of the amplitude  /a L .   

     We have also studied the case when the chevron struts in the hierarchical and self-similar 

2D and 3D cellular materials are replaced by pin-jointed struts.   Figure 4b and Table S2 (in the 

Supporting Information) show that if 04.004.0  Lt    and 05.005.0  La   for a two-level  

hierarchical and self-similar 2D cellular material, the magnification factor of the linear thermal 

expansion coefficient  can be obtained as 14.70375.8)( 22

12  kk  when 5.0T  K, or  

55.64034.8)( 22

12  kk  when 5T  K.   In this case, the mechanical stiffness of the 

two-level hierarchical 2D cellular materials can be obtained from Equation (S2-6) and given as 

39

32

22

2/322

2

10864.1103
)05.041(

)05.004.08(

)4(

)8(








 Bn

n

n E
aL

ta
E  

2/N m .  If 1.01.0  Lt  and  

06.006.0  La , for a two-level  hierarchical and self-similar 3D cellular material, the 

magnification factor of the linear thermal expansion coefficient  can be obtained as 

/a L

2/N m

/t L
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127.8602.7322.1)322.1( 222

12  kk , thus 0172.0102127.86 4

22   k   

when 5.0T  K, or  17.81815.6322.1)( 222

12  kk   and

0162.010217.81 4

22   k   when 5T  K.    In this case, the strain or deformation 

of the two-level hierarchical and self-similar 3D cellular materials will be 

%86.05.00172.02 T   (or %1.850162.02 T ) although the thermal strain in 

the struts is just 0.02% (or 0.2%).  The mechanical stiffness of the two-level hierarchical and 

self-similar 3D cellular materials can be obtained from Equation (S2-8) and given as

39

32

222

2/322

22

1016.1103
)06.041(

)06.01.064.17(

)4(

)64.17(








 Bn

n

n E
aL

at
E

2/N m . If 15.015.0  Lt

and 08.008.0  La , for a three-level  hierarchical and self-similar 2D cellular materials, the 

magnification factor of the linear thermal expansion coefficient  can be obtained as  

96.143241.5)( 33

13  kk (i.e., 0288.010296.143 4

33   k )  when  5T  K.   

In this case, the stiffness of the three-level hierarchical 2D cellular materials can be obtained 

from Equation (S2-6) and given as 

39

5.42

32

2/322

2

1021.1103
)08.041(

)08.015.08(

)4(

)8(








 Bn

n

n E
aL

ta
E

2/N m .  For three-level 

hierarchical and self-similar 3D cellular materials, if 2.02.0  Lt and 1.01.0  La ,  the 

magnification factor of the linear thermal expansion coefficients is obtained as 

1.18128.4322.1)322.1( 333

13  kk  (i.e., 0362.01021.181 4

33   k ) when  

5T  K, and the stiffness of the three-level hierarchical and self-similar 3D cellular materials 

is given as  39

5.42

322

2/322

22

10883.0103
)1.041(

)1.02.064.17(

)4(

)64.17(








 Bn

n

n E
aL

at
E

2/N m .      

      Lakes[2, 20] has designed isotropic single–level 2D hexagonal honeycomb and 3D 

tetrakaidecahedral open cell foam with curved struts made of two different ingredients.  They 

both could have a very large isotropic positive or negative thermal expansion coefficient given 

1K 

1K 

1K 
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by 





 


 )(]
1

)2/tan(2

1
[)](

1

)2/tan(2

1
[ 12

21

f
t

l

t

l

hh

l
RVE , where l and 

t  are the length and thickness of the curved struts,   is the angle of the curved struts and   

is the difference of the thermal expansion coefficients of the two ingredients[20].  When   , 

the magnification factors of the cellular materials designed by Lakes[2, 20]  are included in Fig. 

4a for comparison.  It is noted that   should be smaller than 018.229  (i.e. 4 radians), otherwise 

the curved struts will overlap, and thus the maximum possible value of )(f  is smaller than 

0.48.  If the aspect ratio 01.0/ lt , the maximum possible magnification factor of the NTEC 

or PNTEC of both the 2D and 3D cellular materials designed by Lakes[2, 20]  can be obtained as 

48)(1 


 



f

t

l
k RVE , thus 0096.010248 4

11   kRVE  , which is 

significantly smaller than some of our above reported results for the single-level 2D or 

hierarchical self-similar 2D and 3D cellular materials in this paper (as can be seen, k can be 

easily much larger than 50 in the materials designed in this paper).    It is also noted that the 

aspect ratio /t l  should be in general larger than 0.01 in the 2D and 3D cellular materials 

designed by Lakes[2, 20].  This is because the Young’s modulus is 

 SE
L

t
E 3

1 )(3.2             (3) 

for hexagonal honeycombs[1, 20], and  

SS E
Lt

Lt
EE

2

42

1
)/(5014.01

)/(1608.0

09.11

76.0










                                                                  (4) 

for tetrakaidecahedral open cell foams[20, 28].  In the cellular materials designed by Lakes[2, 20], 

if the two ingredients are chosen as a metal and a ceramic (with a Young’s modulus 

112 10SE    
2/N m ), the cellular materials may be sufficiently stiff, but   would be in the 

order of 
510 1K   and the resultant thermal expansion coefficient would still be very small 

1K 



    

11 

compared to our results of the 2D or 3D cellular materials in this paper.  If their two-ingredients 

are a ceramic and a polymer and / 0.01t l  , the Young’s modulus of the cellular materials will 

be 
36.9 10  

2/N m  for honeycombs and 4.82  
2/N m  for open-celled foams.  Thus, the aspect 

ratio /t l  can’t be smaller than 0.01 , otherwise the single level cellular materials designed by 

Lakes[2, 20]  do not have a sufficient stiffness to support the self-weight and to enable the 

expected function of thermal expansion.     

     In this report, it has been demonstrated that although structural hierarchy can enhance the 

magnitude of the linear thermal expansion coefficient for cellular materials, it is impossible to 

achieve an ‘unbounded’ value due to the limit of a required minimum mechanical stiffness.  The 

magnitude of the linear thermal expansion coefficient of an nth level hierarchical and self-

similar cellular materials is obtained as n

AB

n

n kk ))(()( 11    for 2D and 

n

ABn kk )322.1()()322.1( 1

2

1    for 3D if the shape of the RVE is convex, and 

n

AB

n

n kk ))(()( 11     for 2D and n

ABn kk )322.1()()322.1( 1

2

1    

for 3D if the shape of the RVE is concave.   The magnitude of the isotropic NTEC, isotropic 

PTEC and anisotropic TEC of the cellular materials in this paper could achieve a value much 

larger than 0.012 1K  and significantly larger than the maximum possible value of CTE reported 

in literature, e.g. the maximum possible result of the 2D and 3D cellular materials designed by 

Lakes[2, 20].   The Young’s modulus of ingredient B has no effect on the results of nk  and n , 

but strongly affects the stiffness of the cellular materials.  The normal-auxeticity mechanical 

phase transition has recently been found in graphene, an atomic-thick two-dimensional 

hexagonal carbon[29]. The results in this paper could apply to multiscale metamaterials design[30] 

spanning from macro- down to micro and nano scales and our study opens a new avenue to 

developing more sensitive functional materials or devices. Although there might be some 
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technical challenges to manufacture the designed pin-jointed structures at the microscale, their 

broad applications could be foreseen. 
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Figures 

 

 

 

Figure 1.   Geometrical structures of two-ingredient hierarchical 2D cellular materials. a) 

overview of the second level 2D cellular material consisting of 5 5 RVEs with non-straight 

struts made of the level-1 material shown in b.  b) overview of the first level 2D cellular material 

consisting of 5 5 identical RVEs shown in c (or d or e).  c) RVE of isotropic negative thermal 

expansion coefficient. d) REV of isotropic positive thermal expansion coefficient. e) REV of 

anisotropic thermal expansion coefficients.  
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Figure 2. Geometrical structures of two-ingredient 3D cellular materials.  a) RVE of isotropic 

negative thermal expansion coefficient. b) RVE of isotropic positive thermal expansion 

coefficient. c) RVE of anisotropic thermal expansion coefficients. 
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                                                    (a) 

 

 

                                                    (b) 

 

Figure 3.  (a) The configuration of the chevron struts made of ingredient B before and after 

thermal deformation;  (b) The configuration of the pin-jointed struts made of ingredient B 

before and after thermal deformation 
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                                                       (b) 

Figure 4 . Magnification factor 1k of the positive or negative, isotropic or anisotropic linear 

thermal expansion coefficients of the first level 2D cellular materials: (a) with chevron struts 

which are pin-connected to the cross; (b) with pin-jointed struts.   
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S1. Thermal Expansion in the first level cellular materials 

   All types of the 2D and 3D cellular materials shown in Figures 1 and 2 are assumed to be 

made of two different solid ingredients A and B.  Ingredient A is chosen as a ceramic with a 

Young’s modulus of   and a thermal expansion coefficient of  

, and ingredient B is chosen as a polymer with a Young’s modulus of   

and a thermal expansion coefficient of  .  All the non-straight struts are 

assumed to have the same chevron shape with a span of  and an amplitude of , and to 

be pin-connected with the straight struts of the cross in the middle of the RVEs.  In addition, all 

the chevron struts are assumed to have the same uniform thickness   for 2D cellular materials 

or the same uniform square cross-section of side  for 3D cellular materials.  Moreover, all the 

dimensions in Figures 1-3, including the x, y and z axes, are normalized by .  It is noted that 

the geometrical structure of ingredient B in Fig. 1c is similar to the 4-star auxetic honeycomb[31]. 
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S1.1.  Small linear deformation analysis of chevron struts 

      A temperature increase  can result in a compressive force P at the two ends of the 

chevron struts due to the thermal mismatch between the chevron struts and the cross in the 

middle of the RVEs, as illustrated in Figure 3a.  Small deformation analysis is based on the 

initial configuration of the structure, the axial compressive strain in the longitudinal direction 

of the chevron struts can thus be obtained as 

                (S1-1)  

Where  is the Young’s modulus of ingredient B and A is the cross-sectional area of the 

chevron struts.  Obviously, the magnitude of the axial compressive strain  can’t be larger than 

the relative thermal strain of the chevron struts .  If , the thermal 

expansion coefficients of all different types of the first level 2D and 3D cellular materials shown 

in Figures 1 and 2 would be the same as .  It is noted that all the straight struts of the cross 

in the middle of the 2D and 3D RVEs undergo uniaxial tension (or compression) due to the 

structural symmetry.  Thus, the effects of their tensile deformation on the thermal expansion 

are negligible because EA>>EB.   

     Taking account the combined effects of thermal expansion and bending, axial compression 

and transverse shear of the chevron struts, according to the symmetry, the following 

deformation compatibility condition in the longitudinal direction of half a chevron strut in Fig. 

3a must be satisfied[32]. 
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Where   is the relative thermal strain of the chevron strut and  given by (S1-1) is the 

axial compressive strain in the longitudinal direction of the chevron struts,  is the second 

moment of the cross-sectional area of the chevron struts, the Poisson ratio  of ingredient B 

(i.e. polymer) is taken as 0.5 and the transverse shear coefficient of the square cross-section of 

the chevron struts is 1.2.  In Eq. (S1-2), the first and second terms on the left hand side are 

associated to beam bending and transverse shear deformation[32], respectively,  and the term on 

the right hand side is the elongation of half a chevron strut in its longitudinal direction due to 

thermal expansion and axial compression.  Substituting Eq. (S1-1) into Eq. (S1-2) leads to 

            (S1-3) 

Where  and .   Equation (S1-3) indicates that the magnitude of 

the axial compressive strain  in the longitudinal direction of the chevron struts is a nonlinear 

function of ,  and .   

     For given values of ,  and ,  can be solved from Eq. (S1-3) using the Newton-

Raphson method, and the change of the amplitude of the chevron struts can be obtained as 

            (S1-4) 

     For the first level 2D cellular materials with pin-connections between the chevron struts and 

the cross in the middle, as shown in Figure 1c, the total change of the dimensionless size of the 

RVE due to the combined effects of temperature change  and the resultant internal force P 

can be obtained as 

                                               (S1-5) 
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     From the dimensionless dimensions given in Figure 1c, the isotropic negative linear thermal 

expansion coefficient (NTEC) of the first level 2D cellular material can be derived as 

   
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Where the dimensionless value of  is chosen as 0.1, and  is given by Equation 

(S1-4).  Thus 
T

a
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667.1
1  is the approximate magnification factor of the NTEC.  The first 

term in Equation (S1-6) can be neglected because its magnitude is much smaller than the second 

term.   For given values of ,  and , the magnification factor of the linear 

negative thermal expansion coefficient, 1k , can be obtained from Equations (S1-3), S1-4) and 

(S1-6). 

   For the first level 2D cellular materials with the geometrical structure shown in Figure 1d, the 

isotropic positive linear thermal expansion coefficient (PTEC) can be obtained in the similar 

manner and given as 
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Where the dimensionless  is again chosen as 0.1.  Similarly, the first level 2D cellular 

materials with the geometrical structure shown in Figure 1e have anisotropic linear thermal 

expansion coefficients of 1k  in one direction and  1k  in the orthogonal direction.  

     For the first level 3D cellular materials with the geometrical structure of the representative 

volume element (i.e. RVE) shown in Figure 2a, the isotropic negative linear thermal expansion 

coefficient can be obtained as  
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where  is given by Equation (S1-4). 

    Similarly, the isotropic positive linear thermal expansion coefficient of the first level 3D 

cellular materials with the geometrical structure given in Figure 2b and the anisotropic linear 

thermal expansion coefficient of the first level 3D cellular materials with the geometrical 

structure shown in Figure 2c can be derived as 

 
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    In Equations (S1-8) and (S1-9), the dimensionless dimension  is also chosen as .   

Thus, the magnification factor of the positive, or negative, isotropic or anisotropic linear 

thermal expansion coefficient of the first level 3D cellular materials is 
T

a
k








205.2
1 , which is 

1.322 times that of the first level 2D cellular materials.  Here, isotropic thermal expansion 

means that  for 2D cellular materials and  for 3D 

cellular materials. 

Figure 4a shows the effects of the dimensionless amplitude  and the aspect ratio 

 of the chevron struts on the magnification factor 1k  of the positive or negative, isotropic 

or anisotropic linear thermal expansion coefficients of the first level 2D cellular materials with 

chevron struts which are pin-connected to the cross in the middle of the RVEs.  It is noted that 

the magnitude of 1k  obtained from the above theoretical analysis is almost independent of the 

value of the relative thermal strain  when .  In addition, when 

 is smaller than 0.005, the magnitude of 1k  becomes smaller. This is because the ratio of 

 becomes larger with the reduction of .  We also found that the transverse shear 

deformation of the chevron struts has negligible effect on the magnitude of the magnification 

factor 1k .    
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Figure 4a shows that when  is 0.005 and , the magnification factor 1k  of the 

first level 2D cellular materials is 41.75.  The magnitudes of the linear isotropic or anisotropic 

NTEC or PTEC of the first level 2D cellular materials can thus reach 

34

11 1035.810275.41    k .  This value is significantly larger than the 

positive or negative thermal expansion coefficients reported in references3-8.  Moreover, if the 

ingredient B is chosen as a polyacrylamide material whose thermal expansion coefficient is 

 (see reference7), the magnitude of the linear isotropic or anisotropic NTEC 

or PTEC of the first level 2D cellular materials could reach 

23

11 1001.5102.175.41    k , suggesting that the giant thermal expansion 

could be further improved by the thermal expansion coefficient of ingredient B.  

It is noted that the derivation of the results in Figure 4a is independent of the Young’s 

modulus of ingredient B as long as the deformation is linear elastic, as can be seen that  is 

absent in Equations (S1-3) and (S1-4).  Although the transverse shear deformation of the 

chevron struts has negligible effect on the magnitude of 1k , the axial compression can 

significantly reduce the value of 1k .  If without the effect of axial compression (i.e. if  is zero 

in Equation (S1-4)), the magnification factor of the linear isotropic or anisotropic NTEC or 

PTEC of the first level 2D cellular materials would become )
4

(667.1
667.1 2

1
a

L
a

T

a
k 




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
, 

which is independent of the aspect ratio .  In this case, 35.831 k  if ; and 

68.411 k  if , being much larger than those presented in Figure 4a.   

S1.2.  Nonlinear finite deformation analysis of chevron struts 

The analysis in S1.1 and the results shown in Figure 4a are based on the initial undeformed 

configuration and obtained from the small deformation theory using a single Timoshenko beam 

element[32].  However, the thermal deformation of the chevron struts is in general a geometrical 
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nonlinearity problem.  The deformed configuration of half a chevron strut under thermal 

expansion and the restraint force P acted at the pin-jointed end is shown in Figure S1.  The 

relationship between the bending curvature and the bending moment is given as [33, 34] 

             ds
AE

P
TPPy

ds

d
IE

S

B

b
B ]sin)cos1[(

0



                                     (S1-10) 

Where the left hand side is the bending stiffness times the bending curvature and the right 

hand side is the bending moment. When ,   (see Figures 

3a and S1), thus the angle  of the chevron strut due to the combined effects of strut 

bending, thermal expansion and axial compression can be determined as  

  

                                                (S1-11) 

In the above equation, the strut is assumed to have a square cross-section of side t and 

.   

The angle due to transverse shear deformation of the strut is given as 

                                                  (S1-12) 

Where the Poisson ratio of the chevron material (i.e. a polymer) is chosen as 0.5. 

The total angle of the deformed half chevron strut can thus be obtained as 

                                                                                                  (S1-13) 
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For a given value of the relative thermal strain , the function can be determined 

using the iterative method [33, 34] and the deformation compatibility condition: 

                                                        (S1-14) 

To solve the nonlinear function , the length of half the chevron strut  

was divided into 100000  elements, the value of  was initially chosen as  and 

as  .  Using the iterative method, the convergent solution of  was very quickly obtained 

from the following solution scheme [33, 34].  The first step is to obtain new values of  

using Equations (S1-11), (S1-12) and (S1-13), and the initially given or the already obtained 

values of  and .  The second step is to check with the deformation compatibility 

condition (S1-14).  In step 3, if the left hand side of Eq. (S1-14) is larger than the right hand 

side, it suggests that the value of  is too small, then increase the value of ;  if the left hand 

side of Eq. (S1-14) is smaller than the right hand side, it suggests that the value of  is too 

large, then reduce the value of .  Step 4 is to check the new values of  with the previous 

values, if the largest difference is smaller than 610 , convergent solution of  has been 

obtained; otherwise repeat steps 1-4 using the updated values of   and .   Thus very 

accurate solution of  can be very quickly obtained for any given value of the relative 

thermal strain , and the change of the amplitude of the chevron strut, , can be 

obtained as 

                                                                  (S1-15) 
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struts are all considered.  The thermal expansion magnification factor of the 2D and 3D cellular 

materials can be obtained using the relevant equations given in section S1.1. 

 

S1.3.  Deformation analysis of pin-jointed struts 

    If the chevron strut in Figure 3a is replaced by two pin-jointed struts as shown in Figure 3b, 

for a given value of the relative thermal expansion , the change of the amplitude in 

Figure 3b can be obtained as 

                                                           (S1-16) 

and the values of the thermal expansion magnification factor 1k  of the 2D cellular materials can 

be obtained using the relevant equations given in section S1.1, and presented in Figure 4b for 

2D cellular materials.  For the first level 3D cellular materials with pin-jointed struts, the values 

of the thermal expansion magnification factor are 1.322 times those of their 2D counterparts. 

 

S1.4. Validation by finite element simulation 

To verify the theoretical results given in Figures 4a and 4b for the first level 2D cellular 

materials, we have performed finite element simulation using the commercial software 

ABAQUS.  Half a chevron strut is partitioned into 800 plane stress CPS4T elements and the 

obtained results are shown in Tables S1 and S2 to validate the theoretical results of Figures 4a 

and 4b.  For the cases when the chevron struts are pin-jointed with the cross, the FEM results 

in Table S1 show quite good agreement with theoretical results although the FEM results 

indicate that the larger the value of , the smaller the magnification factor 1k .    For the 

cases when the chevron struts are replaced by two pin-jointed struts, the FEM results in Table 

S2 are identical to the theoretical results.    

T 

2 2 2 2( / 4 )(1 ) / 4a L a T L a      

T 
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S1.5. Thermal expansion coefficient of hierarchical and self-similar cellular materials 

     For the nth level hierarchical and self-similar 2D cellular materials shown in Figure 1, the 

thermal expansion coefficient can be obtained as 

 n

AB

n

n kk ))(()( 11                                                                          (S1-17) 

if the shape of the RVE is convex, and  

n

AB

n

n kk ))(()( 11                                                                      (S1-18) 

if the shape of the RVE is concave. 

     For the nth level hierarchical and self-similar 3D cellular materials, the thermal expansion 

coefficient can be obtained as n

ABn kk )322.1()()322.1( 1

2

1    if the shape of the 

RVE is convex, and n

ABn kk )322.1()()322.1( 1

2

1    if the shape of the RVE is 

concave. 

 

S2. The stiffness of 2D and 3D cellular materials 

         When a uniaxial tensile stress  is applied to the RVEs of the first level 2D cellular 

materials with chevron struts, as shown in Figures 1c, 1d and 1e, the concentrated force applied 

at the vertex of the chevron strut on the left hand side or right hand side  is 

xx LbLF  2.1)2(  , where .  The chevron struts can be treated as pin-supported 

beams with a span of L and the horizontal deformation of the RVEs can thus be approximated 

as 
3

43 6.0

48

2

tE

L

IE

FL

B

x

B

x


  where 

12

3t
I  .  This is because bending of the chevron struts is the 

dominant deformation mechanism.  The horizontal strain can be derived as 

.  Thus the Young’s modulus of the first level 

2D cellular materials is obtained as  

x

0.1b L

3 3/ ( 2 ) / (1.2 ) / (2 )x x x x BL b L L E t      
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                                                                                  (S2-1) 

      For the nth level hierarchical and self-similar 2D cellular materials, the Young’s modulus 

can be obtained in the similar manner, and given as 

                                          (S2-2) 

     Similarly, the Young’s modulus of the first level 3D cellular materials with pin-jointed 

chevron struts can be obtained as  

                                             (S2-3) 

     For the nth level hierarchical and self-similar 3D cellular materials, the Young’s modulus 

is obtained as 

                                                         (S2-4) 

     If the chevron strut in Figure 3a is replaced by two pin-jointed struts with a uniform thickness 

t for 2D cellular materials, as shown in Figure 3b, when a uniaxial tensile stress  is applied 

to the RVEs of the first level 2D cellular materials, as shown in Figures 1c, 1d and 1e, the axial 

tensile force in each of the two pin-jointed struts is 




sin2

)2( bL
N x 
  and the elongation of the 

struts is 




 cossin4

)2(

cos2 B

x

B tE

bLL

tE

NL 
 .  Thus the tensile strain of the 2D RVE in the x 

direction is 







cossin2sin)2(

2
2tE

L

bL
B

x
x 




 , and the Young’s modulus of the first level 

2D cellular materials is obtained as  

              B
B

x

x E
aL

ta

L

tE
E

2/322

22

1
)4(

8cossin2









                                      (S2-5) 

      For the nth level hierarchical and self-similar 2D cellular materials, the Young’s modulus 

can be obtained in the similar manner, and given as 

   Bn

n

nn E
aL

ta
E

aL

ta
E

2/322

2

12/322

2

)4(

)8(

)4(

8





                                             (S2-6) 
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     Similarly, the Young’s modulus of the first level 3D cellular materials is obtained as  

                         (S2-7) 

where . 

     For the nth level hierarchical and self-similar 3D cellular materials, the Young’s modulus 

can be obtained as 

                                                                               (S2-8) 
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Figure 

 

Figure S1.  The deformed half chevron strut under thermal expansion and 

restraint force P. 

 

 

  

Table S1.   FEM validation for results presented in Figure 4a. 

Lt /  La /  T  (K) 
1k  (theoretical result) 1k  (FEM result) 

01.0  005.0  1 41.763 40.225 

01.0  005.0  1.5 41.763 37.512 

025.0  05.0  5 7.943 7.578 

025.0  05.0  25 7.943 6.594 

045.0  05.0  0.5 7.028 6.9015 

045.0  05.0  5 7.028 6.7612 
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Table S2.   FEM validation for results presented in Figure 4b. 

 

   La /  T  (K) 
1k  (Theoretical result) 1k  (FEM result) 

001.0  0.005 374.58 374.658 

001.0  0.5 102.36 102.38 

001.0  5 35.648 35.662 

0.05 0.5 8.375 8.376 

0.05 5 8.034 8.035 

0.08 5 5.2431 5.243 

0.1 5 4.2805 4.2806 

 

 

 


