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ABSTRACT 

The exposure to pesticides by non-target soil biota has long been regarded as 

a serious downside of modern agriculture regimes and subject of heated 

debate. Of utmost relevance is the exposure to pesticide mixtures since their 

effects have shown not to necessarily reflect the individual toxicity of its 

components and even the simple addition of effects may lead to 

consequences not clearly anticipated. In this work, a multiple biomarker 

approach was employed to identify the mechanistic and time-effects 

underlying several single and mixture treatments of chlorpyrifos and 
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mancozeb in juveniles and adults of the terrestrial isopod Porcellionides 

pruinosus. The effects of both pesticides and mixture at recommended doses 

were mostly transitory under these controlled conditions and one-pulse 

exposure. While imbalances were identified on detoxification and oxidative 

stress-related enzymes, isopods generally showed the ability to recover until 

the end of the experiment. Juveniles showed, however, higher vulnerability 

than adults. The most notorious differences between life stages occurred in 

energy-related parameters where distinct performances and stress-handling 

behaviours were observed, suggesting higher metabolic costs in juveniles. 

Our results stress that understanding the time-dependence of the underlying 

mechanisms governing the joint-effects of pesticides can help assessing and 

anticipating mixtures’ effects. Moreover, it is also emphasized the importance 

taking life stage-related differences in consideration when evaluating the 

environmental risks of pesticides and pesticide mixtures.  

 

 

KEYWORDS 

pesticide mixtures, soil invertebrates, terrestrial isopods, biomarkers, energy 

reserves, oxidative stress 

 

 

INTRODUCTION 

Nowadays, agriculture is a highly optimized process, that strongly relies on 

the application of multiple agrochemicals, including pesticides (Matson et al. 

1998). These compounds are also known to pose serious problems to non-
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target soil organisms that inhabit agroecosystems, so they must be thoroughly 

evaluated (Carvalho 2006). The traditional approach for assessing the 

environmental risks of using pesticides consists mainly on standard laboratory 

assays, where model species are exposed to a range of concentrations of a 

single test compound, allowing the estimation of acceptable threshold values 

that entail no risk to soil ecosystems (Matson et al. 1998; Aktar et al. 2009). 

Nevertheless, given the requirement of acting on a broad range of 

pests/pathogens, non-target organisms are often simultaneously exposed to 

several pesticides. Since the effects of pesticide mixtures were previously 

shown not to necessarily reflect the individual effects of its components (Lydy 

et al. 2004), a growing awareness has emerged regarding their interaction. 

Moreover, the mere addition of effects of co-occurring pesticides is often 

disregarded by these procedures, which may ultimately lead to 

underestimations of the environmental risk (Pape Lindstrom and Lydy 1997; 

Belden and Lydy 2006). Despite the attention received by mixture toxicity, the 

complexity and specific character of chemical compounds’ interactions still 

constitutes an important constraint to ecotoxicologists and risk assessors. 

Particularly important seems to be the comprehension of mechanisms by 

which toxicity is induced during exposures to mixtures, how they can differ 

from single pesticides, and how they can be accurately predicted in a cost-

effective way. Biomarkers were described by van Gestel and van Brummelen 

(1996) as “any biological response to a xenobiotic at the below-individual 

level, measured inside an organism or in its products”. They have long been 

suggested to provide a good indication of early signs of exposure to 

xenobiotics (Depledge and Fossi 1994; Morgan et al. 1999), and widely used 
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to evaluate sub-lethal exposures to pesticides in an extensive number of 

organisms providing some insight on the mechanistic effects  (Booth and 

O'Halloran 2001; Booth et al. 2003; Santos et al. 2010; Pereira et al. 2013). 

Of highest relevance is also the assessment of bioenergetic parameters such 

as the energy reserves content, energy consumption or the cellular energy 

allocation. The rates at which organisms assimilate, allocate or deplete 

energy constitute an accurate indication of their condition and therefore, play 

a central role in their tolerance to environmental stressors (De Coen and 

Janssen 1997). 

Chlorpyrifos (CPF) and mancozeb (MCZ) are extensively used pesticides with 

different target pests/diseases and different modes of action, whose 

application is frequently simultaneous or with very short intervals (Cross and 

Berrie 1996). CPF is an organophosphate (OP) insecticide, used to control 

insect pests and has the inhibition of acetylcholinesterase as main mode of 

action (Fukuto 1990). This inhibition leads to the synaptic over-accumulation 

of acetylcholine, a major neurotransmitter in the nervous systems of 

vertebrates and invertebrates, and consequently to an overstimulation of 

cholinergic receptors, ultimately resulting on the disruption of nervous system 

function (Mileson et al. 1998). MCZ is a dithiocarbamate fungicide classified 

as a multi-site action compound (Gullino et al. 2010), that is frequently applied 

against a wide spectrum of fungal diseases (Cycon et al. 2010). MCZ breaks 

down quickly, when exposed to water, to release ethylene bisisothiocyanate 

sulfide, which is further converted into ethylene bisisothiocyanate. These 

metabolites are both active toxicants, thought to interfere with fungi enzymes 

containing sulphydryl groups (Gullino et al. 2010). 
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The synantropic nature and wide distribution of several terrestrial isopod 

species, like Porcellionides pruinosus, make them particularly prone to be 

exposed to human-induced stressors, like chemical contaminants. Alongside 

with its ecological importance (Loureiro et al. 2002), this factor has contributed 

for a considerable attention among the research community, that is frequently 

using isopod species in soil ecotoxicology experiments (Sousa et al. 2000; 

Loureiro et al. 2002; Jänsch et al. 2005; Ferreira et al. 2010; Santos et al. 

2010; Tourinho et al. 2013; Silva et al. 2014). 

Aiming to contribute for further knowledge, here we evaluated the joint effects 

of CPF and MCZ to adults and juveniles of the terrestrial isopod 

Porcellionides pruinosus. In order to have an insight into the mechanism of 

toxicity prompted by this mixture on terrestrial isopods, a battery of 

biomarkers, energy reserves and energy allocation measurements were 

undertaken using both adults and juveniles. 

 

MATERIAL AND METHODS 

 

Test organism 

The terrestrial isopod P. pruinosus was used as test-species. Isopods were 

collected in a horse manure heap and maintained in laboratory cultures at 

22oC (±1oC), 16:8 h (light:dark) photoperiod, garden soil at 40%-60% of its 

water holding capacity (WHC) and fed ad libitum with alder leaves (Alnus 

glutinosa). Life stages were selected according to their weight, with adults 

ranging from 15 to 25 mg and juveniles 5 to 10 mg. Nevertheless, isopods 

whose weight was too close to these limits were avoided. No gender 
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differentiation was considered, but moulting isopods and pregnant females 

were not used in this experiment.  

 

Chemical compounds and soil 

Two commercial formulations were used in this experiment: one formulation 

whose main active principle was the OP insecticide CPF (CICLONE® 48 EC 

with 480 g CPF/L). The second commercial formulation was mainly composed 

by the dithiocarbamate fungicide MCZ (MANCOZEBE SAPEC® with 80% of 

MCZ). 

The certified loamy sand soil LUFA 2.2 (Speyer, Germany) was used as test 

soil. The main properties of this soil include a pH = 5.5 ± 0.2 (0.01 M CaCl2), 

WHC = 41.8 ± 3.0 (g/100g), organic C = 1.77 ± 0.2 (%), nitrogen = 0.17 ± 

0.02, texture = 7.3 ± 1.2 (%) clay; 13.8 ± 2.7 (%) silt and 78.9 ± 3.5 (%) sand. 

 

Experimental design 

Chemical treatments were selected according to the application rate 

recommended by the manufacturer, ranging from the field dose (FD) to 10 

times the FD, for each commercial formulation. For CPF, the nominal 

concentrations included 8.72 μg a.i./kg soil (FD), 43.64 μg a.i./kg soil (5FD), 

and 87.28 μg a.i./kg soil (10FD). For MCZ, nominal concentrations included 

15.91 mg a.i./kg soil (FD), 79.55 mg a.i./kg soil (5FD), and 159.1 mg a.i./kg 

soil (10FD) (a.i.- active ingredient). An additional group of organisms was also 

kept in clean soil adjusted to 60% WHC with distilled water and used as 

control. Mixture treatments were performed as shown in Figure 1SD, ranging 
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from 1CPF/1MCZ to 10CPF/10MCZ. This experimental design was employed 

for adults and for juveniles.   

 

Experimental set up 

The incorporation of pesticides into the soil was made as aqueous solutions. 

For each treatment, the whole batch of soil was spiked together and 

thoroughly mixed. Soil moisture was then adjusted to 60% WHC by adding 

the necessary amount of distilled water. Soil was, then, transferred to 

rectangular plastic boxes (14.3 cm length x 9.3 cm width x 4.7 cm height) in 

portions of 100 g. Five replicates were used for each treatment, each one 

containing 10 isopods. 

Isopods were selected from the laboratory cultures and randomly distributed 

throughout the test boxes. All the boxes were supplied with a similar amount 

of alder leaves, closed with perforated lids and kept for 7 days in a 

temperature-controlled room at 20 ± 1 ºC and 16:8 h (light:dark) photoperiod. 

Soil moisture was readjusted every two days by adding the necessary amount 

of distilled water. Three isopods per replicate were collected in every sampling 

time: 48h, 96h, and 7 days after the beginning of the exposure. An additional 

set of isopods was also sampled before the exposure, hereafter considered 

as T0. In every sampling time, isopods were individually weighted, freeze-

dried in liquid nitrogen and stored at -80 °C until further analysis. 

 

Measured parameters 

Protocols for analysis of biomarkers and energy parameters followed the 

methods described by Ferreira et al (2015) and are thoroughly detailed in 
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supplementary material. In order to measure lipid peroxidation (LPO), 

glutathione S-transferase (GST) and catalase (CAT), a pool of two isopods’ 

bodies (without the heads) was used per replicate. A pool of the two 

corresponding heads was further used for testing acetylcholinesterase (AChE) 

activity. For determination of energy-related parameters one organism per 

replicate was used. Five replicates per treatment were always used. 

LPO assay was based on the methods described by Bird and Draper (1984) 

and Ohkawa et al (1979) and adapted to microplate by Ferreira et al (2010). 

GST activity was determined using the method described by Habig et al 

(1974). CAT activity was determined using the method described by 

Clairborne (1985) and adapted to microplate by Ferreira et al (2010). AChE 

activity was determined according to the Ellman method (Ellman et al. 1961) 

adapted to microplate (Guilhermino et al. 1996). For all biomarkers, protein 

concentration was determined according to the Bradford method (Bradford 

1976), adapted from BioRad's Bradford micro-assay set up in a 96 well flat 

bottom plate, using bovine γ-globuline as standard. 

Energy-related parameters were assessed as described by de Coen and 

Janssen (1997) and included: energy reserves content (lipids, carbohydrates, 

proteins), total energy available (Ea), consumed energy (Ec) and cellular 

energy allocation (CEA). Ea was calculated by summing the energetic 

equivalents of each energy reserve fraction (mJ/mg org). Ec was calculated 

as oxygen consumption rate in the electron transport system (mJ/mg org/h). 

CEA was calculated as follows: 
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(1) 

 

Where t is the time of the exposure from the measured sample; Eat is the 

energy available at time t; Ea0 is the energy available at time 0 h; Ect is the 

energy consumption at time t and Ec0 is the energy available at time 0h. 

 

Statistical analysis 

A multivariate analysis of variance (MANOVA) with Pillai’s trace statistics was 

performed, using log-transformed (log(x)+1) biomarkers responses and 

energy-related parameters as dependent variables, and “life stage”, “sampling 

time”, “CPF treatment” and “MCZ treatment” as independent variables. Both 

main effects and interactions were assessed. Whenever significant 

differences were found in factorial MANOVA, univariate statistical methods 

were applied to test individual dependent variables. Two-way analysis of 

variance (ANOVA) with “CPF treatment” and “MCZ treatment” as independent 

variables, were used to assess differences in individual biomarkers. When 

significant differences were detected, multiple comparisons were performed 

using Tukey HSD post-hoc test. Both factorial MANOVA and ANOVAs were 

conducted in R version 3.3.0 (R Core Team, 2016, https://www.R-project.org). 

After converting data into percentage of control, a Student’s t-test or Mann-

Whitney rank-sum test (nonparametric equivalent) were performed in 

Sigmaplot statistic pack (SigmaPlot 12.0 statistic pack; Systat Software, Inc., 

San Jose, CA, USA) to compare the responses of different life stages. 

Normality and homoscedasticity assumptions were visually inspected and 

tested using Shapiro–Wilk test and Levene’s equal variance test, respectively. 
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Significant differences were assumed if probability values were equal or 

higher than 95% (α = 0.05).  

 

RESULTS 

The factorial MANOVA revealed highly significant main effects and 

interactions for all independent variables considered in the present study 

(statistical details summarized on table 1SD). Hence, the univariate main 

effects and interactions for each biomarker/energy-related parameter were 

examined (two-way ANOVA, details summarized in table 2SD). 

 

Neurotoxicity 

The responses of AChE activity in adults and juveniles throughout the 

experiment are shown in Figure 1. A significantly higher activity of this 

enzyme in adult isopods was found after 48h for treatments 1MCZ, 5MCZ, 

1CPF/1MCZ, 1CPF/5MCZ and 5CPF/1MCZ when compared with control. No 

differences were found at 96h whereas after 7 days AChE activity was again 

higher than control for 1MCZ and 5MCZ. For juveniles, a significant increase 

of AChE was observed at 48h, for 5CPF/1MCZ and 10CPF/10MCZ when 

compared to control. After 96h a significantly lower activity was found for 

every treatment except 1CPF. At day 7, significant increase in AChE activity 

was observed for 1CPF/5MCZ and 5CPF/1MCZ treatments when compared 

to control. 

 

Detoxification 



 11 

Regarding GST activity (Figure 2), a dose-related increase was found in 

adults after 48h with significant differences to control in all treatments except 

1CPF. After 96h such increasing pattern disappeared and no significant 

differences to control were found. At day 7, the only significant result was the 

decrease registered for the 10MCZ exposure. GST activity in juveniles 

followed a similar pattern to adults in the first sampling time, except for the 

most severe mixture treatments where values were similar to control. Contrary 

to adults, however, no significant differences were found for any treatment in 

this sampling time. After 96h the decreasing trend previously restricted to the 

most severe treatments was registered for almost all the contaminated 

treatments, with significant differences to control for 1MCZ, 1CPF/5MCZ, 

5CPF/1MCZ, and 5CPF/5MCZ. At day 7, significant differences to control only 

consisted on the inhibitions observed for 1MCZ and 10MCZ exposures. 

 

Oxidative stress 

No significant differences were registered for CAT activity in adults at 48h but 

significant decreases were found at 96h for treatments 1CPF/5MCZ, 

5CPF/1MCZ and 5CPF/5MCZ and after 7 days for 10CPF/10MCZ (Figure 3). 

In fact, although at day 7 only 10CPF/10MCZ showed to be different from the 

control, CAT activity appeared to decrease in a dose-related manner.  In 

juveniles, CAT seemed to have increased after 48h in a dose-dependent way, 

but significant differences to control were restricted to 5CPF/5MCZ. No 

differences were found on the remaining sampling times, even though a 

decrease was found in mixture treatments at day 7, reaching 15-30% of 

control. 
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We found no differences within the LPO rates measured during this 

experiment, either for adults or juveniles (Figure 2SD). 

 

Energy-related parameters 

The only significant difference observed in adults’ Ea at 48h was an increase 

in 5CPF/5MCZ (Figure 4). After 96h Ea was significantly higher than control in 

adult isopods exposed to 1MCZ. At day 7, a dose-related increase in total 

energy available could be found in adults with significant results for 1MCZ, 

10MCZ, 1CPF/5MCZ, 5CPF/1MCZ, 5CPF/5MCZ and 10CPF/10MCZ. No 

significant differences to control were found in juveniles for any of the three 

sampling times. However, juveniles’ total energy available seemed to be lower 

than in the control for most of the mixture treatments after 96h of exposure. 

When analysing each one of the energetic components (see supplementary 

material) we found the largest contribution for the total energy available to be 

provided by lipids (Figure 3SD). No significant differences to control were 

found in the first 48h; after 96h isopods exposed to 1MCZ showed 

significantly more lipid contents than those kept in control. Furthermore, after 

7 days of exposure, adults exposed to 1MCZ, 1CPF/5MCZ, 5CPF/1MCZ and 

10CPF/10MCZ showed a similar dose-related increase in lipids statistically 

higher than the control. No significant differences were found between control 

and pesticide-exposed juveniles except at 96 h for the 5MCZ treatment. 

Regarding carbohydrates, significant differences were only found for adult 

isopods exposed to 1MCZ at 48h and for isopods exposed to 5CPF/1MCZ 

and 5CPF/5MCZ for 7 days (Figure 4SD). Adults’ carbohydrates content was 

generally higher than control in the mixture treatments, particularly at 48h and 
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after 7 days. Regarding juveniles, no significant differences to control were 

observed except for isopods that had been exposed to 1CPF/1MCZ for 96h. 

As for the previous energetic components, proteins also seemed to increase 

in adult isopods, particularly after 48h and 7 days (Figure 5SD). However, 

significant increases to control were only found for adult isopods exposed to 

5CPF/5MCZ for 48h and those exposed to 10MCZ, 5CPF/1MCZ and 

5CPF/5MCZ for 7 days. There was no clear response to pesticides by 

juveniles regarding the protein content. Significant differences to control in 

juveniles consisted on the lower protein content observed when exposed to 

5CPF after 48h. There were no significant differences to control, or any visible 

pattern of effects at 96h and day 7 in juveniles. 

Regarding Ec (Figure 5), the only significant difference to control registered in 

adults was found at day 7 in individuals exposed to 10CPF/10/MCZ where an 

increase was observed. In juveniles, a statistically significant decrease in Ec 

was found for several mixture treatments after 48h. After 96h, these 

differences had already disappeared but a prominent increase in Ec seemed 

to occur after 7 days in mixture treatments, with significant differences to 

control at 1CPF/1MCZ, 1CPF/5MCZ and 5CPF/5MCZ. 

Regarding CEA (Figure 6), no differences were found in juveniles throughout 

the study period whereas in adults differences were mainly registered at day 

7, with a higher allocation of energy in 1MCZ, 10MCZ, 1CPF/1MCZ, 

1CPF/5MCZ, 5CPF/1MCZ, 5CPF/5MCZ and 10CPF/10MCZ.  

 

Comparison of life-stage responses 
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The significant differences registered when comparing the responses of adults 

and juveniles to the several single and mixture treatments are summarized in 

table 1. AChE and GST activities, along with the energy reserves, Ec and 

CEA were the parameters at which adults’ and juveniles’ responses differed 

the most. There was not a clear pattern for life stage-related differences in 

AChE activity, which seemed to be mainly found at 96h. Regarding GST 

activity, differences in response generally denoted a comparatively higher 

increase found in adults at 48h and an activity decrease only observed in 

juveniles at 96h. Differences regarding life stages’ responses to pesticides 

measured in the energy reserves content were generally associated to the 

lower energy accumulation or even the decrease found in juveniles when 

compared to adults, particularly in the most severe treatments. One of the few 

exceptions to this pattern was the higher accumulation of carbohydrates in 

juveniles exposed to single CPF treatments for 96h. In Ec, most differences 

were registered at 48h where a decrease in consumption seemed to occur in 

juveniles but not in adults. Differences in CEA generally highlighted a higher 

allocation of energy in pesticide-exposed adults, when compared to juveniles. 

Few differences were detected on the response of CAT and LPO between life 

stages. 

  

 

DISCUSSION 

 

In recent years, mixture toxicity of pesticides has received an increased 

attention. However, only a minor fraction has focused on lower organizational 
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levels. By providing an insight into the mechanisms of toxicity, biomarkers can 

provide a forewarning of the interaction between chemicals, highlighting for 

instance, modes of action that were not evident by the individual action of 

each component (Walker 1998). This is particularly important for mixtures that 

include chemicals with specific and reactive modes of action, such as 

pesticides, since they can modulate the toxicokinetics and/or toxicodynamics 

of one another (Escher and Hermens 2002). Moreover, an earlier perception 

of mixture’s effects is important to understand the effects of chronic, low-

concentration exposures, which seems to be more appropriate to current 

ecotoxicology challenges (Eggen et al. 2004). 

In overall, the effects of CPF and MCZ field dose exposures to adult isopods 

were mostly transitory, as shown by detoxification and oxidative stress-related 

enzymes that resulted in a new homeostasis status within the course of the 

experiment. However, it was noteworthy that some effects on juveniles were 

be more prominent and/or lasted longer than in adults. This could be seen in 

GST activity and several energy-related parameters, becoming particularly 

clear when comparing the responses of both life-stages as percentage of the 

respective control. This is in agreement with findings reported by several 

authors after evaluating life stage-related differences in terrestrial isopods’ 

vulnerability to several kinds of stress (Ribeiro et al. 2001; Stanek et al. 2006; 

Morgado et al. 2013). These doses may pose problems to juveniles, which 

might have consequences at higher organizational levels if the costs were too 

high in the medium/long-term (i.e. impaired recruitment/population 

growth/reproduction). When evaluating the effects of pesticides or mixtures, 

besides their application doses, one must also consider the strategy of 
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application usually followed in the field. This is particularly relevant for MCZ 

since, although having a short half-life in soil (one to seven days depending 

on soil and conditions), it is used as fortnightly repeated applications during 

prolonged periods (Adam Wightwick and Menzies 2010). CPF can also be 

applied with similar periodicity, notwithstanding its higher persistence. These 

situations may prevent organisms from completely recovering of previous 

exposures and thus increase the vulnerability to further events. In addition, 

exposures were tested under controlled conditions, which are optimum for 

isopods, with no predation risk or other abiotic influences that may impair their 

physiology or survival. 

 

Neurotoxicity 

There were no evidences of CPF-induced inhibition in AChE activity, for the 

treatments used in this experiment. Strong CPF-induced inhibitions were 

already shown in a wide range of soil organisms but the effective doses seem 

to vary considerably. Reinecke and Reinecke (2007) showed AChE activity in 

the earthworm Aporrectodea caliginosa to be affected after two weeks of 

exposure, even by treatments intended to mimic background concentrations 

registered in orchards. Booth et al (2003) also found effects on the wolf spider 

Lycosa hilaris after field dose exposure to CPF, but they were restricted to the 

first 24h. Similar early effects would be skipped in the present experiment 

because the first sampling time was performed at 48h. Nevertheless, as 

reported by the same authors, such short-lasting transient effects may not 

lead to serious fitness costs to the organisms in the long-term (Booth et al. 

2003). On the other hand Collange et al (2010) only found AChE inhibition in 
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the earthworm Lumbricus terrestris at much higher concentrations (≥ 12 mg 

CPF / kg soil).  

Literature shows that dithiocarbamates such as MCZ have minimal inhibitory 

effects on AChE activity (Espigares et al. 1998). Although having 

neurodegenerative effects as well, MCZ is thought to affect primarily other 

neurotransmission sub-types such as the GABAergic or dopaminergic 

systems (Negga et al. 2012; Brody et al. 2013). 

Two additional outcomes must also be pinpointed for AChE. First, the 

significantly lower activity observed in juveniles at 96h may have been partly 

influenced by a higher control value, when comparing to the remaining 

sampling times and to additional values reported for juveniles of P. pruinosus 

(Morgado et al. 2013). The second is related to the significant increases 

observed in AChE activity. Since these were restricted to MCZ-containing 

treatments, they may be related to the metallic content of this compound 

(complex of Mn2+ and Zn2+ chelated with ethylenethiourea (Brody et al. 

2013)), as summarised in Barillet et al (2007). Another hypothesis is that 

these exposures triggered the production of the monomeric AChE-R that 

shares similar hydrolytic activity but remains soluble within the synaptic cleft 

(Soreq 2001). Santos et al (2010) also observed a similar increase in AChE 

activity of P. pruinosus when exposed to mixture of molluscicidal baits and 

suggested that it could be related to intra-specific responses of the central 

nervous system of this isopod. 

 

Detoxification 
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The major differences between adults and juveniles were related to the 

detoxification enzyme GST. In fact, a dose-dependent increase of GST 

activity was found in adult isopods after 48h of exposure. However, after 96h 

these organisms seemed to have already achieved a homeostasis status that 

was maintained until day 7. On the contrary, the significant GST increase was 

not found in juveniles, despite the apparently similar dose-dependent increase 

observed in all the treatments except the most severe ones. Complete 

homeostasis was also not achieved before day 7 as shown by the significant 

inhibition at 96h in mixtures. Overall, GST results seemed to highlight the 

complexity of dose and time-dependencies in the kinetics of detoxification 

enzymes. Such interplay can help explaining the responses observed for 

juveniles exposed to mixture treatments. Hence, whereas adults seemed to 

be effective on dealing with the contamination stress, juveniles did not show 

such prompt response, which led to longer-lasting effects. The fact that 

juveniles had more problems in effectively using this detoxification mechanism 

when exposed to mixtures achieves an extra relevance if considering that 

other protective systems can also be simultaneously affected. GST is a group 

of multi-functional enzymes involved on phase II of xenobiotics’ 

biotransformation (Lagadic et al. 1994; Xu et al. 2005). However, MCZ was 

previously reported to inactivate also the phase I’s cytochrome P450 enzymes 

(Szépvölgyi et al. 1989; Siddiqui et al. 1991), which in combination with GST 

inhibition is likely to constitute a serious impairment on overall detoxification 

capacity. Nebbia et al (1993) showed the action of zineb (another Zn2+-

containing dithiocarbamate fungicide) to affect mixed function oxidases, even 

before acting on the glutathione-related enzymes, which highlights the 
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generalized impairments on multiple detoxification mechanisms. Pesticide 

biotransformation by organisms can be an important process for promoting 

interaction between pesticides (Spurgeon et al. 2010). A potential effect of 

MCZ on the mixed function oxidases may have affected the transformation of 

CPF to CPF oxon, therefore attenuating CPF effects on the mixture 

(particularly in AChE). Assessing the kinetics of both pesticides and their 

metabolites could enlighten about their actual exposure pattern, therefore 

contributing to explain in detail the time-course of responses observed. 

 

Oxidative stress 

Despite no direct evidences of oxidative damage were registered on LPO, 

results suggest that the ROS-scavenging enzymatic activity was actually 

being required. GST and CAT were the only enzymes with such properties 

assessed in this experiment but several other molecules (enzymatic or non-

enzymatic) must also have contributed to the maintenance of this balance. 

Albeit none of these pesticides has oxidative stress as the primary mode of 

action, both were previously referred to constitute pro-oxidant agents (Jager 

et al. 2007; Tsang and Trombetta 2007). We found almost no differences in 

CAT activity between juveniles and adults since both followed the typical time- 

and dose-dependent “bell-shaped” or “inverted bell-shaped” curves that 

normally feature oxidative stress enzymes (Iizawa et al. 1994; Walker 1998). 

The life stage-related differences registered must be therefore related to the 

pace of activation/inactivation processes rather than actual differences in 

overall responses. Our results also suggest that CPF and MCZ differed on the 

type of curve since an inhibition followed by an increase was registered for 
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CPF while the opposite pattern seemed to occur for MCZ. The effects 

observed for CPF on CAT activity seemed to be in line with those reported by 

Ferreira et al (2015) for the sampling times after exposure to dimethoate, 

another OPs pesticide. It was not clear if complete homeostasis was achieved 

during this experiment because both life stages seemed to present a dose-

dependent decrease in CAT activity at day 7, particularly pronounced in 

mixture treatments. 

 

Energy-related parameters 

The most relevant aspects arising from the analysis of the energy-related 

parameters are possibly those associated to the comparison of life stage-

related responses. We found few evidences of abnormal depletion on any of 

the energy reserves assessed, neither in adults nor juveniles, which was 

expected given the short duration of the experiment. Stanek et al (2006) also 

found no depletion in Porcellio scaber after two weeks of exposure to diazinon 

and claimed that such duration was insufficient to provoke effects. Whilst the 

21 days study of Ribeiro et al (2001) with Porcellio dilatatus exposed to 

parathion showed significant decreases, Ferreira et al (2015) did not find 

consistent effects on reserves after exposing P. pruinosus to dimethoate 

during 28 days. When considering the whole energy available the most 

relevant outcome was the dose-dependent increase at day 7. A similar 

situation was observed by Morgado et al (2013) leading to the hypothesis that 

it could have been due to behavioural changes on feeding and/or metabolism. 

Such increase was concurrent with reductions of Ec, which, however, were 

the opposite in the present experiment. In this way, although not ruling out this 
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hypothesis, additional factors may as well be involved (e.g. . differences in 

moult cycle). Drobne and Štrus (1996) reported chemical contamination with 

Zn2+ to disturb the moult cycle in P. scaber, leading isopods to enter ecdysis 

during the first week of exposure. This seems not to be restricted to metals 

since it was also highlighted as an hypothesis by Ferreira et al (2015) for 

dimethoate and further confirmed using transcriptomic and metabolomics 

approaches (Loureiro and Soares 2014 Dec 16). Transcriptomic analysis 

showed dimethoate-induced impairments to moult by affecting, for instance, 

the regulation of genes coding for chitinase (chitin-degrading enzymes) or 

haemocyanin (respiratory pigment also involved in moult processes) 

transcription (Loureiro and Soares 2014 Dec 16). Similarly, a metabolomic 

approach showed once more, metabolites associated with moult (i.e. the 

aminoacids lysine, valine, leucine, isoleucine, (Loureiro and Soares 2014 Dec 

16)). Considering that isopods, and crustaceans in general, accumulate 

reserves during the pre-ecdysis period (Sánchez-Paz et al. 2006; Carter and 

Mente 2014), such increase in energy available might not imply greater 

fitness. Instead, it may indicate a disruption in moult cycles that, by assessing 

total energy content, the analytical method was unable to distinguish. Further 

research is needed to infer about this hypothesis (i.e. prolonged studies to 

relate moult cycles and energy reserves). As stated previously, no significant 

differences were found in adults’ Ec, neither with treatment nor time. By the 

opposite, juveniles exposed to mixtures showed decreased Ec after 48h and 

significantly higher Ec at day 7. This is different from  Morgado et al (2013) 

but probably reflects the different source, nature and duration of the stress 

event. Regarding CEA, the most important results were also associated with 
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mixture treatments. Contrary to adults, CEA in juveniles exposed to mixtures 

seemed to be impaired throughout the study period becoming mostly negative 

at day 7. While this biomarker provides an indication of differentiated effects 

on bioenergetics parameters, complementary assessments focused on 

determining the aerobic scope, would help clarify the consequences of such 

different responses for isopods’ fitness (Sokolova 2013). 

 

Conclusions 

Briefly, this study showed that whereas the recommended doses of each 

pesticide elicited effects that were mostly transient, slightly higher single 

pesticide concentrations and mixture treatments impaired some physiological 

processes in these organisms, particularly in juveniles. We found these 

pesticides to affect detoxification and antioxidant systems, and identified 

differences in energy-related parameters, suggesting life-stages to respond 

differently to contamination stress and to have different metabolic costs 

associated. Our results stress that understanding the time-dependence of the 

underlying mechanisms governing the joint-effects of pesticides can help 

assessing and anticipating mixtures’ effects. Moreover, it is also emphasized 

the importance of taking life stage-related differences in consideration when 

evaluating the environmental risks of pesticides and pesticide mixtures. 

Future approaches using multiple pulse exposures that mimic field application 

strategies could help enlighten about the real safety of these pesticide 

mixtures. 
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FIGURE CAPTIONS 

Figure 1 – Mean AChE activity and corresponding standard error in adults and 

juveniles of Porcellionides pruinosus exposed to single and mixture 

treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 

Asterisks refer to significant differences from its correspondent time control 

(Two-way ANOVA, Tukey HSD, α=0.05). 

 

Figure 2 – Mean GST activity and corresponding standard error in adults and 

juveniles of Porcellionides pruinosus exposed to single and mixture 

treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 

Asterisks refer to significant differences from its correspondent time control 

(Two-way ANOVA, Tukey HSD, α=0.05). 

 

Figure 3 – Mean CAT activity and corresponding standard error in adults and 

juveniles of Porcellionides pruinosus exposed to single and mixture 

treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 

Asterisks refer to significant differences from its correspondent time control 

(Two-way ANOVA, Tukey HSD, α=0.05). 

 

Figure 4 – Total energy available and corresponding standard error in adults 

and juveniles of Porcellionides pruinosus exposed to single and mixture 

treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 

Asterisks refer to significant differences from its correspondent time control 

(Two-way ANOVA, Tukey HSD, α=0.05). 
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Figure 5 – Consumed energy and corresponding standard error in adults and 

juveniles of Porcellionides pruinosus exposed to single and mixture 

treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 

Asterisks refer to significant differences from its correspondent time control 

(Two-way ANOVA, Tukey HSD, α=0.05). 

 

Figure 6 – Cellular energy allocation and corresponding standard error in 

adults and juveniles of Porcellionides pruinosus exposed to single and mixture 

treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 

Asterisks refer to significant differences from its correspondent time control 

(Two-way ANOVA, Tukey HSD, α=0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 33 
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Figure 2 – Mean GST activity and corresponding standard error in adults and 
juveniles of Porcellionides pruinosus exposed to single and mixture 
treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 
Asterisks refer to significant differences from its correspondent time control 
(Two-way ANOVA, Tukey HSD, α=0.05). 
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Figure 3 – Mean CAT activity and corresponding standard error in adults and 
juveniles of Porcellionides pruinosus exposed to single and mixture 
treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 
Asterisks refer to significant differences from its correspondent time control 
(Two-way ANOVA, Tukey HSD, α=0.05). 
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Figure 4 – Total energy available and corresponding standard error in adults 
and juveniles of Porcellionides pruinosus exposed to single and mixture 
treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 
Asterisks refer to significant differences from its correspondent time control 
(Two-way ANOVA, Tukey HSD, α=0.05). 
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Figure 5 – Consumed energy and corresponding standard error in adults and 
juveniles of Porcellionides pruinosus exposed to single and mixture 
treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 
Asterisks refer to significant differences from its correspondent time control 
(Two-way ANOVA, Tukey HSD, α=0.05). 
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Figure 6 – Cellular energy allocation and corresponding standard error in 
adults and juveniles of Porcellionides pruinosus exposed to single and mixture 
treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 
Asterisks refer to significant differences from its correspondent time control 
(Two-way ANOVA, Tukey HSD, α=0.05). 
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Table 1 – Significant differences found when comparing the responses 
measured in biomarkers and energy-related parameters of juveniles and adult 
individuals of Porcellionides pruinosus after exposure to single and combined 
treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 during 
48h, 96h and 7 days. In order to standardize the responses for both age-
classes, all values were converted to percentages to the respective control 
and compared using a Student’s t-test.  denotes a significant increase in 
juveniles when compared to adults whereas  denotes a significant decrease 
in juveniles when compared to adults. Asterisks provide details regarding the 
magnitude of those differences: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. 

 

 AChE GST LPO CAT Ea Lipid Carb Prot Ec CEA 

48h 

1CPF       * **   

5CPF        ***   

10CPF  *       *  

1MCZ  **     * ** **  

5MCZ **    *** *** **  * *** 

10MCZ       *  *  

1CPF/1MCZ  ***    * **   ** 

1CPF/5MCZ *** **     * * **  

5CPF/1MCZ * **     * * ***  

5CPF/5MCZ  **  ** *** ***   ** *** 

10CPF/10MCZ  ***  *   **  ***  

96h 

1CPF *          

5CPF  *     *  *  

10CPF **      *** *   

1MCZ **    ** ** ** **  * 

5MCZ ***  *  ** **  *  *** 

10MCZ *** * *   ** *   ** 

1CPF/1MCZ *** **   ** ***    ** 

1CPF/5MCZ *** **  **       

5CPF/1MCZ ** **         

5CPF/5MCZ *** ***   *      

10CPF/10MCZ ***          

7d 

1CPF           

5CPF           

10CPF         *  

1MCZ *** *  *    *   

5MCZ ***   *    **   

10MCZ **   * *** **  **  *** 

1CPF/1MCZ **   ** ** * * **  ** 

1CPF/5MCZ **    ** * *** *** ** *** 

5CPF/1MCZ ** *   *** *** ** *  *** 

5CPF/5MCZ        *   

10CPF/10MCZ     ** * *   * 
 

AChE - acetylcholinesterase; GST - gluthathione S-transferases; LPO - lipid 
peroxidation; CAT - catalase; Ea - energy available; Lipid - lipids content; 
Carb - carbohydrates content; Prot - proteins content; Ec - energy 
consumption; CEA - cellular energy allocation. 
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Figure 1SD – Experimental design applied to evaluate toxicity of mixtures of 
chlorpyrifos (CPF) and mancozeb (MCZ) to the terrestrial isopod 
Porcellionides pruinosus in LUFA 2.2 soil. The axes units correspond to the 
concentrations of the pesticides expressed as number of field doses (FD) 
applied for each pesticide. 
 



 41 

 
 
Figure 2SD – LPO rates and corresponding standard error in adults and 
juveniles of Porcellionides pruinosus exposed to single and mixture 
treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 
Asterisks refer to significant differences from its correspondent time control 
(Two-way ANOVA, Tukey HSD, α=0.05). 
 
 

 
 
Figure 3SD – Lipids content and corresponding standard error in adults and 
juveniles of Porcellionides pruinosus exposed to single and mixture 
treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 
Asterisks refer to significant differences from its correspondent time control 
(Two-way ANOVA, Tukey HSD, α=0.05). 
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Figure 4SD – Carbohydrates content and corresponding standard error in 
adults and juveniles of Porcellionides pruinosus exposed to single and mixture 
treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 
Asterisks refer to significant differences from its correspondent time control 
(Two-way ANOVA, Tukey HSD, α=0.05). 
 

 
 
Figure 5SD – Proteins content and corresponding standard error in adults and 
juveniles of Porcellionides pruinosus exposed to single and mixture 
treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in LUFA 2.2 soil. 
Asterisks refer to significant differences from its correspondent time control 
(Two-way ANOVA, Tukey HSD, α=0.05). 
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Table 1SD – Details of the factorial multivariate analysis of variance (MANOVA) for biomarkers and energy-related parameters 1 
measured in Porcellionides pruinosus exposed to single and mixture treatments of chlorpyrifos (CPF) and mancozeb (MCZ). Life 2 
stage, sampling time, CPF and MCZ were used as independent variables and the entire set of parameters assessed was used as 3 
dependent variables. Significant differences are shown in bold (α =0.05). 4 
 5 

 Pillai’s Trace F df Error df p 

Life stage 0.88426   200.925      10 263 p < 0.001 

Time 0.51881     9.247      20 528 p < 0.001 

CPF 0.16656     1.558      30 795 p = 0.030 

MCZ 0.16656     3.781      30 795 p < 0.001 

Life stage*Time 0.62511    12.003      20 528 p < 0.001 

Life stage*CPF 0.23638     2.267      30 795 p < 0.001 

Life stage*MCZ 0.37380     3.772      30 795 p < 0.001 

Time*CPF 0.38344     1.830      60 1608 p < 0.001 

Time*MCZ 0.75834     3.877      60 1608 p < 0.001 

CPF*MCZ 0.64354     3.944      50 1335 p < 0.001 

Life stage*Time*CPF 0.43718     2.106      60 60 p < 0.001 

Life stage*Time*MCZ 0.47526     2.305      60 60 p < 0.001 

Life stage*CPF*MCZ 0.47933     2.831      50 50 p < 0.001 

Time*CPF*MCZ 0.74157     2.179     100 100 p < 0.001 

Life stage*Time*CPF*MCZ 0.75299     2.215     100 100 p < 0.001 

 6 
 7 
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Table 2SD – Details of the two-way ANOVAs for biomarkers and energy-related parameters measured in Porcellionides pruinosus 8 
exposed to single and mixture treatments of chlorpyrifos (CPF) and mancozeb (MCZ). CPF and MCZ were the independent 9 
variables and the parameters assessed were individually analyzed as dependent variables. Significant differences are shown in 10 
bold (α =0.05). 11 

  AChE GST CAT LPO Ea Lipid Carb Prot Ec CEA 

Adults            

 CPF 
F=14.14; 

p<0.001 
F=10.169; 

p<0.001 
F=1.724; 

p=0.177 
F=2.046; 

p=0.120 
F=3.007; 

p=0.040 
F=2.385; 

p=0.081 
F=0.559; 

p=0.644 
F=0.993; 

p=0.404 
F=0.148; 

p=0.931 
F=2.881; 

p=0.045 

48h MCZ 
F=17.46; 

p<0.001 
F=33.535; 

p<0.001 
F=0.805; 

p=0.498 
F=2.497; 

p=0.071 
F=3.686; 

p=0.018 
F=3.428; 

p=0.024 
F=6.343; 

p=0.001 
F=2.795; 

p=0.050 
F=1.701; 

p=0.179 
F=3.715; 

p=0.018 

 CPF*MCZ 
F=16.57; 

p<0.001 
F=0.457; 

p=0.806 
F=1.248; 

p=0.304 
F=0.718; 

p=0.613 
F=4.533; 

p=0.002 
F=4.142; 

p=0.003 
F=1.09; 

p=0.378 
F=1.056; 

p=0.396 
F=0.781; 

p=0.568 
F=4.682; 

p=0.001 

 CPF 
F=1.218; 

p=0.313 
F=2.411; 

p=0.078 
F=0.48; 

p=0.698 
F=0.753; 

p=0.526 
F=4.972; 

p=0.004 
F=5.804; 

p=0.002 
F=1.854; 

p=0.150 
F=0.591; 

p=0.624 
F=0.165; 

p=0.919 
F=5.072; 

p=0.004 

96h MCZ 
F=4.113; 

p=0.011 
F=1.631; 

p=0.195 
F=3.249; 

p=0.031 
F=3.617; 

p=0.020 
F=1.171; 

p=0.331 
F=1.302; 

p=0.285 
F=1.91; 

p=0.141 
F=2.592; 

p=0.064 
F=1.104; 

p=0.357 
F=1.628; 

p=0.195 

 CPF*MCZ 
F=2.528; 

p=0.041 
F=3.340; 

p=0.011 
F=3.153; 

p=0.016 
F=0.427; 

p=0.828 
F=4.833; 

p=0.001 
F=6.067; 

p<0.001 
F=4.42; 

p=0.002 
F=3.175; 

p=0.0.015 
F=0.488; 

p=0.784 
F=5.092; 

p<0.0001 

 CPF 
F=26.86; 

p<0.001 
F=3.463; 

p=0.023 
F=0.864; 

p=0.466 
F=1.187; 

p=0.325 
F=0.455; 

p=0.715 
F=0.394; 

p=0.758 
F=3.854; 

p=0.015 
F=0.919; 

p=0.439 
F=0.598; 

p=0.620 
F=0.372; 

p=0.774 

7d MCZ 
F=20.46; 

p<0.001 
F=1.978; 

p=0.130 
F=4.969; 

p=0.004 
F=1.159; 

p=0.222 
F=9.577; 

p<0.001 
F=7.195; 

p<0.001 
F=12.092; 

p<0.001 
F=6.511; 

p<0.001 
F=9.194; 

p<0.001 
F=9.191; 

p<0.001 

 CPF*MCZ 
F=13.67; 

p<0.001 
F=1.861; 

p=0.119 
F=0.37; 
p=0.867 

F=1.188; 
p=0.329 

F=0.911; 
p=0.482 

F=0.824; 
p=0.539 

F=2.218; 
p=0.068 

F=1.073; 
p=0.387 

F=3.506; 
p=0.009 

F=1.445; 
p=0.225 

            

Juveniles            
 CPF F=1.017; 

p=0.394 
F=1.176; 

p=0.329 
F=6.29; 

p=0.001 
F=0.22; 

p=0.882 
F=1.082; 

p=0.366 
F=1.078; 

p=0.368 
F=1.092; 

p=0.362 
F=2.388; 

p=0.081 
F=3.247; 

p=0.030 
F=0.991; 

p=0.405 

48h MCZ F=3.091; 
p=0.036 

F=0.689; 
P=0.563 

F=3.512; 
p=0.022 

F=2.781; 
p=0.051 

F=0.777; 
p=0.513 

F=0.777; 
p=0.512 

F=3.846; 
p=0.015 

F=3.545; 
p=0.021 

F=2.28; 
p=0.092 

F=0.749; 
p=0.528 

 CPF*MCZ F=1.884; 
p=0.115 

F=1.694; 
P=0.155 

F=1.533; 
p=0.198 

F=1.038; 
p=0.407 

F=4.114; 
p=0.004 

F=6.498; 
p<0.001 

F=4.563; 
p=0.002 

F=3.537; 
p=0.009 

F=2.508; 
p=0.043 

F=3.921; 
p=0.005 

 CPF F=2.516; 
p=0.069 

F=0.854; 
p=0.471 

F=0.047; 
p=0.986 

F=0.998; 
p=0.402 

F=1.905; 
p=0.141 

F=1.598; 
p=0.202 

F=1.925; 
p=0.138 

F=0.823; 
p=0.488 

F=1.109; 
p=0.355 

F=3.531; 
p=0.063 

96h MCZ 
F=13.669; 

p<0.001 
F=4.991; 

p=0.004 
F=0.18; 

p=0.910 
F=2.436; 

p=0.076 
F=3.284; 

p=0.029 
F=2.997; 

p=0.040 
F=7.139; 

p<0.001 
F=0.053; 

p=0.984 
F=3.123; 

p=0.034 
F=3.531; 

p=0.022 

 CPF*MCZ 
F=12.35; 

p<0.001 
F=3.011; 

p=0.019 
F=0.396; 

p=0.849 
F=0.737; 

p=0.599 
F=3.011; 

p=0.019 
F=2.91; 

p=0.023 
F=3.914; 

p=0.005 
F=1.665; 

p=0.162 
F=0.452; 

p=0.810 
F=4.18; 

p=0.003 

 CPF 
F=14.14; 

p<0.001 
F=6.514; 

p<0.001 
F=5.693; 

p=0.002 
F=0.105; 

p=0.957 
F=1.163; 

p=0.334 
F=1.019; 

p=0.393 
F=0.579; 

p=0.632 
F=0.864; 

p=0.466 
F=3.168; 

p=0.033 
F=1.481; 

p=0.231 

7d MCZ 
F=14.14; 

p<0.001 
F=8.351; 

p<0.001 
F=11.377; 

p<0.001 
F=1.475; 

p=0.233 
F=1.180; 

p=0.327 
F=1.246; 

p=0.303 
F=1.986; 

p=0.129 
F=0.247; 

p=0.863 
F=5.965; 

p=0.002 
F=1.719; 

p=0.176 

 CPF*MCZ 
F=14.14; 

p<0.001 
F=5.135; 

p<0.001 
F=3.552; 

p=0.008 
F=0.709; 

p=0.620 
F=1.628; 

p=0.171 
F=1.545; 

p=0.194 
F=0.992; 

p=0.433 
F=3.216; 

p=0.014 
F=2.133; 

p=0.077 
F=2.668; 

p=0.033 

AChE-acetylcholinesterase; GST-gluthathione S-transferases; LPO-lipid peroxidation; CAT-catalase; Ea-energy available; Lipid-12 
lipids content; Carb-carbohydrates content; Prot-proteins content; Ec-energy consumption; CEA-cellular energy allocation.  13 


