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Abstract 

Three wall panels of identical calculated U-value were simultaneously assessed in a 
large dual environmental chamber under a number of steady state and dynamic 
hygrothermal boundary conditions. This study used large-scale wall elements under 
identical controlled conditions in order to eliminate uncontrollable variables normally 
encountered in full-scale studies. The following panels were tested: Mineral Wool 
Panel, Wood Fibre Panel and the Biond Panel (an assembly of wood fibre and hemp-
lime). Within the limits of the error range of the calculation, the measured U-value was 
same for all test panels when assessed under steady state and dynamic hygrothermal 
boundary conditions. It was however observed that in a boundary condition simulating 
intermittent heating, the Biond panel showed the highest heat storing and releasing 
capability whereas the Mineral Wool Panel showed the lowest. In terms of moisture 
management, the Biond panel exhibited the highest moisture dampening ability within 
the panel structure. Higher thermal and hygric inertia of the Biond panel may be useful 
in mitigating overheating of dwellings and reducing interstitial condensation.  

 

Key words: Mineral Wool; Wood Fibre; Biond; U-value; bio-based insulation 
materials; hemp-lime; thermal conductivity; moisture. 

1. Introduction 

Buildings employ both passive and active methods to regulate the indoor environment. 

Both approaches contribute to the reduction in embodied and operational energy. 

Active strategies pursue optimisation of the control and operation of efficient building 

services systems, whilst passive strategies focus on the energy saving potential of the 

building fabric and fenestration through, for example, optimised orientation, glazing 

ratios, and better use of insulation materials [1]. Green building rating tools such as 
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BREEAM (Building Research Establishment Environmental Assessment Method) [2] 

LEED (Leadership in Energy and Environmental Design) [3], and CASBEE 

(Comprehensive Assessment System for Building Environmental Efficiency) [4] have 

proposed adopting passive technologies at the initial stages of design development 

[5]. Voluntary standards such as Passive House [6] and Minergie-P [7] also promote 

a fabric-first approach through high fabric thermal performance, low U-values, minimal 

thermal bridging, and significantly reduced fabric air permeability, relative to that often 

permitted in local and national building codes. These rating tools and standards 

emphasise the importance of manufacturing building envelopes that carry low 

embodied energy and offer high energy saving potential. The increasing rate of carbon 

emission and resource depletion puts sustainability and operational performance to 

the fore in selecting insulation materials for building envelope [8]. Some rating 

schemes, e.g., BREEAM In-Use [9], and all European Commission member states 

have developed assessment methods and certification schemes, e.g., Display Energy 

Certificates [10], for the evaluation of post-occupancy operational energy. Accordingly, 

in order to sustain professional reputations and to meet the targeted levels of CO2 

emissions, it is vitally important that building envelope systems perform to their 

predicted level with regards to building operational energy use. However, post-

occupancy evaluations have revealed that, in many instances, actual energy use in 

buildings is far in excess of the predicted performance [11-13]. This phenomenon is 

largely described as the ‘energy performance gap’ [14]. Some causes of ‘energy 

performance gap’ are recognised as inaccurate estimation of energy use, low 

construction quality, inadequate building services, mismatch between the specification 

and the actual construction details, occupants’ behaviour and the ‘Rebound Effect’ 

where actual energy use is less than what is expected due to behaviour adjustment of 



the economic agent [15-17]. The risk of overheating the UK buildings with regards to 

future weather scenario and the role of the materials with high thermal inertia is well 

documented [18-20]. As such, the current paper concerns with the thermal and hygric 

performance of three wall panels with bio-based and mineral materials as the key 

constituents. 

 Previous studies 

Hygrothermal performance of wall panels has been studied by a number of 

researchers using climate chambers, e.g., vapour open wall by Goto et al.[21], internal 

application of mineral wool on masonry walls by Pavlik and Černý [22], hemp-lime, 

concrete and brick wall panels by Arnaud [23], hemp fibre and mineral wool insulation 

by Latif et al. [24]. On the other hand, in-situ experimental studies have also been 

conducted to evaluate the hygric, thermal or hygrothermal performance of wall panels 

or insulation materials. For example, the comparison of hemp fibre insulation with 

mineral wool insulation by Latif et al. [25], thermal transmittance of cellulose and 

mineral wool insulation by Nicolajsen [26], interstitial condensation study of masonry 

walls with internal glass fibre insulation by Southern [27], thermal performance of 

insulation, board materials, inner linings and thermal paint on a historic brick wall by 

Walker and Pavia [28], hygrothermal performance of hemp-lime walls by Shea et al. 

[29], cross-laminated timber wall assemblies by McClung et al.[30], glass wool 

insulation by Stazi et al. [31],  sheep wool insulation by Tucker et al. [32] and mineral 

wool insulation by Toman et al. [33]. While in-situ studies are useful in assessing the 

hygrothermal performance of envelope systems in real life scenarios, tests carried out 

in a climate chamber complement the findings of in-situ tests by focusing on certain 

hygric or thermal properties of the envelope system that requires less background 

noise and controlled hygrothermal boundary conditions during assessments. 



 The aim to the current study 

The aim of the current article is to compare, in steady state and dynamic boundary 

conditions, the U-value, thermal inertia and hygric performance of a composite bio-

based panel (‘Biond’) with two other mainstream wall panels in controlled hygrothermal 

boundary conditions. Two of the wall panels, Biond and Wood Fibre, contain bio-based 

materials, and the other wall panel contains mineral wool. The Biond panel [28] is a 

newly developed prefabricated timber-framed composite panel with hemp-lime  and 

cellulose fibre (hemp or wood fibre) at the core.  The panel attempts to utilise the 

excellent hygric and thermal mass and moderate thermal resistance of hemp-lime [34-

38] and excellent thermal resistance and good hygric and thermal mass of hemp or 

wood fibre [25, 39] with the aim of improving the overall energy performance of the 

envelope systems. Because of prefabrication of the Biond panel, mass production is 

possible with better quality control and reduced wasted resources. Thus, 

prefabrication is an advantage over in-situ casting of hemp-lime since in-situ casting 

may result into inconsistent quality and performance due to the dependence on the 

skill of the builders and sourcing of the materials. The findings of the paper will inform 

on the potential thermal performance gap that may occur due the difference in steady 

state and dynamic hygrothermal boundary conditions. The findings will further inform 

on the thermal inertia of the selected wall panels.  

2. Material and Method 

 Overview of the methodology 

The U-value, thermal inertia and hygric performance of the wall panels are compared 

in controlled steady state and dynamic hygrothermal boundary conditions. The 

measured U-value and thermal capacity are furthered compared with the analytically 

determined design U-values and calculated thermal capacities.  



All panels used in the experiment have the identical design/calculated U-value of 0.15 

W/m2K. Previously, tests were conducted in tests cells built of similar panels in a 

number of coheating tests as detailed in [40] that focused more on the overall energy 

use of the test buildings in steady state internal conditions. The current experiments 

use a large environmental chamber, installed in the Building Research Park, 

Wroughton, that allows wider range of controlled hygrothermal boundary conditions 

than those offered by coheating tests. The panels were installed alongside each other 

in a sample holder positioned between the two cells of the large environmental 

chamber.  

 Wall assemblies and instrumentation 

Three wall assemblies, each having dimensions of 1.1 m X 1.1 m, incorporate the 

following insulation materials: Mineral Wool 1, Mineral Wool 2, Hemp-lime and Wood 

Fibre 1, Wood Fibre 2 and Wood Fibre 3. Table 1 presents the physical properties of 

the insulation materials. The details of the assemblies with instrumentation are shown 

in Figs.1-3. 

Table 1. Key constituents of the insulation material of the wall assemblies. 

Material 
Key 

Constituents 

Thickness 

(mm) 

Density 

(kg/m3) 

Specific 

Heat 

Capacity 

(J/KgK) 

Thermal 

Capacity 

J/m2K 

Thermal 

Conductivity 

(W/mK) 

Thermal 

Resistance 

(m2K/W) 

Mineral Wool 1 

[41] 
Mineral wool 140 100 840 11760 0.035 4.00 

Mineral Wool 2 

[41] 
Mineral wool 100 50 840 4200 0.035 2.86 

Hemp-lime 

(measured 

properties) 

Hemp shive, 

lime, drying 

additive 

120 240 
1700  

[42] 
48960 0.07 1.71 

Wood fibre 1 [43] Wood fibre 180 55 2100 20790 0.038 4.74 

Wood Fibre 2 [44] Wood fibre 60 140 2100 17640 0.038 1.58 

Wood Fibre 3 [43] Wood fibre 220 55 2100 25410 0.038 5.79 

OSB [45] Wood 9 650 1550 9067.5 0.13 0.07 

Timber Stud [46] Wood Variable 470 1650  Variable 0.12  Variable 

Plasterboard [47] Gypsum 12.5 668 1090 9101.5 0.19 0.07 

Air layer [48]  Air 25 1.2 1005 30.15  0.024 0.18 [49] 

 



 

Fig. 1. Details and instrumentation of the Mineral Wool panel. 

 

 

Fig. 2. Details and instrumentation of the Biond panel 



 

Fig. 3. Details and instrumentation of the Wood Fibre Panel 

The wall panels are instrumented with five Campbell Scientific CS215 digital 

temperature and relative humidity sensors, five Type-T thermocouples and two 

Hukseflux heat flux sensors as presented in Figs. 1-3.  

The CS215 sensor [50] is 180 mm in length with an average diameter of 15 mm. The 

accuracy of temperature measurement is ± 0.9 °C in the range of -40 °C to +70 °C. 

The accuracy of the relative humidity measurement is ±4% in the range of 0%-100% 

relative humidity at 25 °C. The Type T thermocouples have an accuracy of ± 1 °C or 

± 0.75% (whichever is greater) and a range of -75-260 °C [51]. Hukseflux HFP01 heat 

flux sensors (Figs. 1-3) have the accuracy of ± 5% on walls and the measurement 

range of -2000 W/m2 and +2000 W/m2 [52]. The thickness of the sensor is 5 mm with 

a diameter of 80 mm. The wall panels have I joist timber/OSB studs at the middle and 

both ends. The heat flux sensors are placed in between two studs, using thermal 

paste, so that the effect of thermal bypass is considered. 



 The large Environmental Chamber 

The Large Environmental Chamber (Fig. 4), situated at the Building Research Park, 

Wroughton, is formed of two highly insulated chambers. The dimensions of the 

chamber that represents the conditions of the indoor environment (Room 1) is 4 m x 

4 m x 2.9 m. The dimensions of the chamber that represents the conditions of the 

outdoor environment (Room 2) is 3 m x 4 m x 2.9 m (Fig. 5). The test panel is placed 

in between the two sections of the chamber (Fig. 6). The temperature and humidity 

range of the environmental chamber during operation is presented in Table 2. 

Table 2. The operation temperature and relative humidity range inside the 
environmental chamber. 

 
Room 1, Indoor Room 2, Outdoor 

Temperature range 5°C to 40 °C -20°C to 40 °C 

Relative Humidity Range 10%-95% 10%-95% 

Stability in time ±1.0K or better and ±3% RH 

or better 

±1.0K or better and ±3% RH or 

better 

Stability in space ±2.0K or better and ±3% RH 

or better 

±2.0K or better and ±3% RH or 

better 

 

 

Fig. 4. The large environmental chamber. 



 

Fig. 5. The layout of the environmental chamber. 

 

 

Fig. 6. The test panels in the environmental chamber. 



 The Hygrothermal protocol 

Three test profiles were designed to assess the thermal performance, thermal inertia 

and hygric behaviour of the test panels in steady state and dynamic conditions. The 

steady state profile was based on the average internal and external temperature and 

relative humidity in the UK during the winter time. The dynamic test profiles were based 

on the average diurnal temperature and relative humidity during the winter. The profile 

was further simplified to address the limitations of the upper and lower limit of the 

combined temperature and relative humidity generation capacity of the large 

environmental chamber. The third profile was based on the changes in internal 

temperature only in such a way that the effect of thermal inertia could be quantified in 

terms of heat storage in the panels and heat release to the indoor. Therefore, there 

was no active moisture control during the third test. The profiles are described in detail 

in section 3. 

 Method of data analysis 

2.5.1. Design U-value 

The design U-value of the wall panels are calculated following BS EN ISO 6946:2017 

[53]. The calculation methods are as follows, 

U-value of wall panels of homogeneous layers:  

The total thermal resistance, RT, of a wall panel of thermally homogeneous layers 

perpendicular to the heat flow is: 

RT = Rsi + R1 + R2 + … + Rn + Rse        [1] 

Where, 

Rsi   The internal surface resistance 

R1, R2...Rn  Thermal resistance of the layers 



Rse  The external surface resistance 

U-value of wall panels of homogeneous and inhomogeneous layers:  

R of a building component with homogeneous and inhomogeneous layers parallel to 

the surface is the average of the upper and lower limits of the resistance: 

 RT = (R’T + R”T)/2         [2] 

Where, 

R’T  The upper limit of total thermal resistance  

R”T  The lower limit of total thermal resistance 

 

For one-dimensional heat flow, R’T  is determined by: 

  1/ R’T = fa/ RTa + fb/ RTb +…+ fq/ RTq                [3]   

Where, 

RTa, RTb… RTq are the thermal resistances from environment to environment for each 

section, calculated using equation [1] 

fa, fb… fq are the fractional areas of each section. 

The horizontal cross-section of a wall panel [54] is presented in Fig. 7, where a, b and 

c are the width of perpendicular sections and d1, d2, d3 are the thickness along the 

depth. 

 

Fig.7 Horizontal cross-section of a notional wall panel [54] 

. 



For the determination of R”T, it is assumed that all planes parallel to the surfaces are 

isothermal.  

The equivalent thermal resistance, Rj, for thermally inhomogeneous layers is 

individually determined by, 

 1/ Rj = fa/ Raj + fb/ Rbj +…+ fq/ Rqj                    [4] 

Where: 

Raj, Rbj…….. Rqj are the thermal resistance of fractional areas fa, fb… fq of layer j. 

 

Finally, the lower limit of the thermal resistance is,  

R”T = Rsi + R1 + R2 + … +Rn + Rse                [5] 

 

The error in thermal transmittance is: 

 e = ((R’T- R”T)*100)/ (2 RT)                [6] 

 

2.5.2. In-situ U-value 

U-values can be determined according to BS ISO 9869-1 [55] by dividing the average 

heat flux by the average temperature difference between the interior and the exterior.  

The data are obtained for 72 hours or more for heavyweight structures and minimum 

three nights for lightweight structures. However, day/night variation is irrelevant for the 

tests inside the environmental chamber since solar radiation was not simulated. The 

equation for U-value is, 

  U =  ∑ qjnj=1∑ (Tij−Tej)nj=1                                                                                                                              [7] 
Where: 



U  Thermal transmittance (W/m2K) 

Q Heat flux (W/m2) 

Ti  Interior temperature (°C) 

Te  Exterior temperature (°C).  

The computed asymptotical value will be close to the real value if the heat content in 

the panels is same at the beginning and end of the tests, and the heat flux sensors 

are not exposed to solar radiation. 

According to BS ISO 9869-1 [55], heat flux measurement may have the following 

operational errors [56], 

a. An error of 5% is attributable to the calibration of the heat flux sensor and the 

temperature.  

b. An error of 5% is attributable to the inconsistency in thermal contact between 

the surface and the sensor. However, high conductance thermal paste has 

been used between the heat flux sensors and the surfaces. The error is 

assumed as 2%. 

c. The operational error of 2-3% attributable to the change of temperature 

distribution for the installation of the heat flux sensors. An error of 2% is taken 

for the current experiment. 

d. An error of 10% is attributable to the temporal variations of temperature and 

heat flux variation. The error is assumed as 8% for the current experiment since 

data were taken for sufficient period of time.  

e. For U-value measurement, 5% error is suggested for the variation in radiant 

and air temperature and non-homogenous internal temperature distribution. 



As such the cumulative error can be expressed as, 

Cumulative error in U-value = √52 + 22 + 22 + 82 + 52 = 11 %            [8] 

2.5.3. Assessment of thermal inertia 

2.5.3.1.  Experimental analysis 

Thermal inertia was assessed by comparing the amount of heat released by different 

wall panels to the interior and the amount of heat stored in the panels for an intermittent 

heating profile.  As a comparative measure, the analysis was carried out in heat flux 

terms (W/m2) and energy terms (KWh). The key steps of the analysis are as follows, 

1. The outward heat flux from the inner surface and external surface (excluding 

the rain screen) were measured when internal temperature was higher than the 

external temperature. The difference between the two measurements 

represents the ‘trapped heat’ or ‘heat sink’ in the panels. 

2. Inward heat flux was measured when internal temperature was going down 

from 30°C to 15°C and finally stayed at 15 °C while the external temperature 

remained constant at 15 °C. Since, the external temperature is planned to be 

higher than or equal to internal temperature, any internal heat gain from the wall 

will be due to their thermal mass.  

3. The discrepancy between the ‘heat sink’ and the ‘released heat’ is calculated 

as the ‘Heat retained in the system’ since this remaining heat is not released 

back to the interior during the thermal cycle.  

2.5.3.2. Analytical determination 

Effective heat capacity is analytically assessed in terms of equivalent heat capacity 

[57], Thermal Time Constant [58] and effective thickness [59]. 

One of the simplified ways of comparing the thermal response of the wall panels is to 

analytically determine their equivalent heat capacity using the following equation [57]: 

(𝜌. 𝑐)𝑒𝑞 = 1𝐿 . ∑ (𝜌𝑖 . 𝑐𝑖 . 𝛿𝑖)𝑛𝑖=1            [9] 



Where ρ is density (kg/m3), c is specific heat capacity (J/KgK), L is the thickness of the 

wall panel, n is the number of layers in the wall panel, ρi 
 is the density of a single layer, 

ci is the heat capacity of a single layer and δi is the thickness (m) of a single layer of 

the wall panel.  

Effective heat capacity is also determined from the Thermal Time Constant (TTC) [58]. 

TTC is defined as the sum of the individual products of thermal resistance and thermal 

capacity (areal heat capacity). The thermal resistance of each layer is calculated from 

the external surface up to the centre of the selected layer including the external surface 

resistance. Thus, assuming external surface resistance as 0.04 m2k/W, the thermal 

resistance of the nth layer is, 

Rn = r0 + r1 + r2 + r3…… + 0.5*rn  [10] 

And for an envelope with n layers, TTC = ∑ (ρi. ci. δi. Ri)ni=1                        [11] 

Effective heat capacity of area A is derived from the following equation, 

Qm = A ∗ TTCR                              [12] 

Where, R is the total thermal resistance of the selected envelope. 

Annex C of BS EN ISO 13786  [59], for the purpose of simplified approximation of 

effective heat capacity, suggests the effective thickness of a wall component as 100 

mm for the period of variations of one day. Effective heat capacity is expressed as, 

 (𝜌. 𝑐)𝑒𝑞 =  ∑ (𝜌𝑖 . 𝑐𝑖 . 𝛿𝑖)𝑖   [13] 

Where, effective thickness = ∑  𝛿𝑖  𝑖  



3. Results and discussion 

 Winter steady state test 

For the steady state test, internal temperature and relative humidity were set as 20°C 

and 60% and the external temperature and relative humidity were set as 5°C and 90%, 

respectively (Fig. 8).  Thus, the target temperature difference was 15K, and the target 

vapour pressure difference was 6.2 Hectopascal (hPa).  The measured 13-day test 

profile is presented in Fig. 9, the average temperature difference was 14.2K and the 

average vapour pressure difference was 5.4 hPa. The direction of vapour and heat 

flow was from the “interior” to the “exterior”. It can be noted that there is a spike in the 

time series in Fig. 9. The spike happened due to a temporary electric malfunction of 

the climate chambers. However, we analysed the data initially both with and without 

the spike and did not find any difference in the U-values as the effect was averaged 

out. 

 

Fig. 8. The internal and external air to air temperature differences of the test 

cells. 



 

Fig. 9. The steady state hygrothermal profile in the environmental chamber. 

From the hygrothermal profile attained in the environmental chamber, U-value of the 

panels was determined following ISO 9869. The running U-value and the average U-

value of the panels are shown in Figs. 10 and 11, respectively.  The results are within 

the error range of the designed U-value of the panels of 0.15 W/m2K. 

 

Fig. 10. The running U-value of the panels during the winter steady state test. 



 

Fig. 11. The average U-value of the panels during the winter steady state test. 

The evolution of vapour pressure and relative humidity in the centre of the panels was 

also assessed (Fig. 12). It can be observed that from the 10th hour, the relative 

humidity and vapour pressure within the Biond and Mineral Wool panels are nearly 

identical, within the measurement error range. For the same relative humidity, based 

on the data provided in [54, 60] and as compiled in Fig. 13, moisture adsorption by 

mass in Hemp-lime and Wood Fibre are higher than that in Mineral Wool by ten and 

twelve times, respectively. It implies that the increase of moisture content had a 

negligible effect on the dry thermal conductivity values of Biond and Wood Fibre 

panels during this experiment. 



 

Fig.12. Relative humidity and vapour pressure in the centre of the panels. 

 

Figure 13. Adsorption isotherms of Stone Wool, Hemp-lime and Wood Fibre 

insulations. 

 Winter dynamic test 

The designed hygrothermal profile for winter dynamic test is shown in Fig. 14. The 

internal temperature and relative humidity were kept constant at 20°C and 50% with a 

vapour pressure of 11.7 hPa. The external temperature and relative humidity 



fluctuated between 15°C and 80% (vapour pressure 13.6 hPa) to 5°C and 90% 

(vapour pressure 7.8 hPa) at every 6 hours. Therefore, while the temperature gradient 

was always towards the exterior, the slope of vapour pressure gradient was changing 

at every six hours. The eight-day hygrothermal profile that was finally achieved by the 

environmental chamber is shown in Fig. 15.  

 

Fig. 14. The designed winter dynamic profile in the environmental chamber. 

 

Figure 15. The winter dynamic profile in the environmental chamber. 



Fig. 16 shows the running U-value and Fig. 17 shows the average U-value of the test 

panels, respectively. The averages U-values of Mineral Wool and Biond panels are 

within the error range of the designed U-value of the panels of 0.15 W/m2K. The upper 

limit of the U-value of the Wood Fibre panels is 9.6% lower than the design U-value. 

 

Fig. 16. The running U-Value of the panels during the winter dynamic test. 

 

Fig. 17. The average U-Value of the panels during the winter dynamic test. 

Since the slope of the vapour pressure gradient between the interior and exterior was 

alternating, its effect on heat flux was also assessed. (Fig. 18). No noticeable effect of 

vapour pressure gradient on heat flux was observed. 



 

Fig.18. Heat flux in the internal surfaces and vapour pressure difference 

between the interior and the exterior. 

Finally, relative humidity and vapour pressure at the centre of the panels were 

analysed (Fig. 19). The respective average relative humidity at the centre of Mineral 

Wool, Biond and Wood Fibre panels was 67%, 78% and 77% with the dew point 

temperature of 10.4°C, 12.1° C and 10.9°C respectively. As mentioned earlier, unlike 

the Mineral Wool panel that contains a vapour barrier, the other two panels are vapour 

open, and moisture propagation through them are managed by their moisture 

management capacities. For this reason, 10-11% higher relative humidity in those 

panels than that in the Mineral Wool panel is not unlikely. 



 

Fig. 19. Relative humidity and vapour pressure at the centre of the panels. 

 Thermal response test 

The aim of the thermal response test was to compare the effect of thermal inertia of 

the wall panels.  To this end, an intermittent internal heating regime was established. 

The internal temperature was set at 30 °C for 12 hours and 15 °C for 12 hours while 

the external temperature was kept constant at 15 °C so that the direction of heat flow 

cannot be outward during the second half of the cycle. No relative humidity profile was 

set, and as a result, the relative humidity in the chambers was uncontrolled. 

The thermal response profile that was practically achieved by the environmental 

chamber is shown in Fig.20. It can be observed that the change in temperature from 

30°C to 15 °C was attained in 6 hours as a steep ramp function instead of a step 

change. This was due to the inability of the environmental chamber to instantly attain 

the value of 15 °C. Furthermore, the exterior temperature varied between 16 °C and 

16.3°C instead of remaining at a steady 15 °C.  As a result, there was a temperature 

difference of 0.8 °C between the interior and exterior when the interior temperature 

was at its minimum.  These caused a potential of heat flow from the exterior to the 

interior which was corrected during the data analysis. 



 

Figure 20. The thermal response temperature profile in the environmental 

chamber, relative humidity is uncontrolled (240 hours’ data is presented). 

Heat flux through panels during two typical stable temperature cycles are presented 

in Fig. 21.  

 

Fig. 21. Typical heat flux and temperature profile during the thermal response 

test. 

The results of the analysis are presented in Fig. 22 in heat flux terms (W/m2) and in 

Fig. 23 in energy terms (Wh) for a 24-hour cycle. It can be observed that the ‘heat sink’ 

is higher in the Biond panel than in the Mineral Wool and Wood Fibre panels by 84% 

and 42%, respectively.  The ‘heat retained in the system’ is higher in the Biond panel 



than in the Mineral Wool and Wood Fibre panels by 220% and 268%, respectively. It 

can also be noticed that, while outward heat flux from inside surface is highest in the 

Biond panel, the net ‘outward heat flux’ from outside is lower in the Biond panel than 

that in the Mineral Wool and Wood Fibre panels by 8% and 12%., respectively. Thus, 

when the panels are not in thermal equilibrium with the boundary conditions, internal 

heat flux sensors may overestimate the rate of heat loss from the panels. 

 

Fig.22. Thermal response of the panels in a 24-hour cycle. 

 

Fig. 23. Thermal response of the panels in energy terms in a 24-hour cycle. 
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The data are further analysed to understand the thermal inertia effect of the panels. 

The temperature evolution along the depth of the panels is compared during the 

following states of one typical thermal cycle:  

1. Heating up period: The internal and external temperatures are set to 30°C and 

15°C, respectively, as shown in Figs. 24-26.  

2. Cooling down period: The internal temperature decreases from 30°C to 15°C 

and stays at 15 °C while the external temperature is set to 15°C as shown in 

Figs. 27-29. 

Figs. 24-26 show that the Mineral Wool panel attains the steady state heat flow in 6 

hours whereas the Biond and Wood Fibre panels are yet to reach steady state in 11 

hours. It is plausible that the Biond and Wood Fibre panels continue absorbing heat 

due to their higher volumetric heat capacity. 

 

Fig. 24. The evolution of temperature gradient along the depth of the Mineral 

Wool panel during heating up. 



 

Fig. 25. The evolution of temperature gradient along the depth of the Biond 

panel during heating up. 

 

Fig. 26 The evolution of Temperature gradient along the depth of the Wood 

Fibre panel during heating up. 

In Figs. 27-29, thermal inertia effects of the panels are compared in two ways. Firstly, 

the influence of the variability of the interior surface temperature of the panels between 

the 1st hour and the 9th hour on the variability in the temperature near the centre of the 

panels were assessed. Materials with higher thermal inertia respond to the changes 

in boundary temperature at a slower rate compared to the materials with lower thermal 

inertia. It can be observed that the temperature variability at the centre of the Mineral 



Wool, Biond and Wood Fibre panels are 30%, 9% and 18%, respectively. Secondly, 

the thermal evolution along the depth of the panels was compared once the 

temperature of both sides of the panels was equal (±1°C). It can be observed that the 

ranges of temperature difference ΔT between the centre of the panels and the interior 

surface during hour 7 to hour 12 were 4.85 °C to 2.82 °C, 5.98 °C to 4.34 °C and 3.99 

°C to 2.36 °C, respectively for Mineral Wool, Biond and Wood fibre panels.  

 

Fig. 27. Evolution of Temperature gradient along the depth of the Mineral Wool 

panel during cooling down. 

 

Fig. 28. Evolution of Temperature gradient along the depth of the Biond panel 

during cooling down. 



 

Fig. 29. Evolution of Temperature gradient along the depth of the Wood Fibre 

panel during cooling down. 

Effective heat capacity is analytically assessed in terms of equivalent heat capacity 

[37], using Equation [9], Thermal Time Constant [38], using Equation [11] and [12] and 

effective thickness [39]. The findings are presented in Table 3. It can be observed that 

the measured thermal capacity values during one heating-up cycle is in good 

agreement with the Calculated effective thermal capacity (100mm).  

Table 3. Calculated and measured thermal response properties of the panels. 

  Calculated 

Equivalent 

heat 

capacity 

(ρ.c)eq, 

(J/m3k) 

Calculated 

Thermal 

Time 

Constant 

(TTC)A, 

(Hr) 

Calculated 

Total 

Thermal 

Mass Qm 

(Wh/k), 

based on 

(TTC)A, 

Measured 

effective 

Thermal 

Mass, 

(Wh/k) 

Calculated 

effective 

thermal 

capacity 

(100mm), 

(J/m2k)  

Measured 

thermal 

capacity, one 

heating up 

cycle (J/m2k)  

Mineral 

Wool 

148519 48 8.7 6.0 16932 19647 

Biond 248911 128 23.3 11.0 38199 36120 

Wood 

Fibre 

194969 85 15.3 7.8 24348 25511 

 



During this experiment, the fluctuation of vapour pressure and relative humidity in 

different depths of the panels in response to the fluctuating interior temperature were 

measured with specific emphasis on the centre of the panels along the depth. The 

fluctuation at the centre was the lowest in the Biond panel (Fig. 30), plausibly due to 

the high hygric and thermal inertia of the hemp-lime layer. Conversely, the Mineral 

Wool Panel demonstrated the highest degree of relative humidity and vapour pressure 

fluctuation at the centre. Since mineral wool incorporated a vapour barrier in front of 

the inner surface of the insulation, the level of relative humidity and vapour pressure 

were the lowest in the Mineral Wool Panel. Therefore, the higher fluctuation of vapour 

pressure and relative humidity is plausibly due to the low thermal and negligible hygric 

inertia of Mineral Wool. The risk of overheating of buildings due to global warming [61, 

62] and the potential of controlled application of thermal mass, among other measures, 

in managing overheating of buildings is well documented [63-65]. In this respect, the 

role of envelope systems such as the Biond panel as a hybrid of thermal mass and 

thermal insulation requires further investigation. 

 

Fig. 30. Relative humidity and vapour pressure at the centre of Biond, Mineral 

Wool and Wood Fibre panels. 



4. Conclusions 

Three experimental tests were carried out in a large environmental chamber to assess 

the U-value, thermal inertia and hygric response of Biond, Wood Fibre and Mineral 

Wool panels under controlled environmental conditions. One steady state and one 

dynamic profile were used for the U-value analysis. During those tests, it was observed 

that the average U-Value of hemp-based ‘Biond’ test panel and the other two panels 

were within the error range of the corresponding design U-value (0.15 W/m2K) of the 

panels. It implies that, unlike the Mineral Wool Panel, the other two cellulose based 

panels performed nearly to their designed standard without a vapour barrier such as 

that used in the mineral wool panel. However, the role of the inner linings such as 

plasterboard or OSB in controlling moisture flow cannot be ignored either.  When it 

comes to the thermal response of the panels in intermittent heating profile, Biond 

demonstrated higher capacity than the other panels both in retaining and releasing 

heat in response to the interior temperature fluctuation. This characteristic of the Biond 

Panel is useful in maintaining hygrothermally stable room conditions that may 

eventually contribute to the higher level of occupant thermal comfort and reduced 

occurrences of overheating. The study emphasises the fact that the panels with high 

hygric and thermal inertia such as Biond or Wood Fibre need to be assessed in terms 

of their U-value, thermal inertia and hygric response to evaluate their operational 

hygrothermal performance. The paper did not study some aspects of heat and 

moisture transfer during the experiments such as the edge effect, the total moisture 

content in the panels at the beginning and end of the tests in terms of gravimetric 

measurement. These limitations need to be addressed in any future research. 
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