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Abstract

Urban environments are urgently required to become smarter. However, building advanced applications on the Internet

of Things requires seamless interoperability. This paper proposes a water knowledge management platform which

extends the Internet of Things towards a Semantic Web of Things, by leveraging the semantic web to address the

heterogeneity of web resources. Proof of concept is demonstrated through a decision support tool which leverages

both the data-driven and knowledge-based programming interfaces of the platform.

The solution is grounded in a comprehensive ontology and rule base developed with industry experts. This is

instantiated from GIS, sensor, and EPANET data for a Welsh pilot. The web service provides discoverability, context,

and meaning for the sensor readings stored in a scalable database. An interface displays sensor data and fault inference

notifications, leveraging the complementary nature of serving coherent lower and higher-order knowledge.

Keywords: Water management, Decision support tool, Interoperability, Big data, Ontology, Semantic Web, Internet

of Things, Smart water networks

1. Introduction

In order to tackle sustainability and economic challenges through ICT, urban environments, including the water

sector, are undergoing a transformation towards smart systems through the use of web-enabled sensors, analytics

software, and decision support tools. Smart water networks have been noted to promote efficacy, efficiency, and

resilience of water infrastructure (CTRL+SWAN, n.d.; Mutchek and Williams, 2014; Thompson and Kadiyala, 2014).

However, as with fields such as smart grids and smart cities, the application of ICT in the water value chain is restricted

due to an inability to share data and knowledge, and hence interoperate, across the people and software components

involved (EIP Water, n.d.). This has limited the impact of advanced applications such as optimisation engines, artificial

intelligence, and semantic inference. Network operators need modern decision support tools which empower them to

make optimal decisions based on extensive data sources and relevant insights, and this interoperability challenge is

increasingly pertinent (Curry et al., 2014).

In smart grids, this has been stated by IEEE to occur due to three main issues: lack of machine communication

protocols, lack of common data formats and lack of common meaning of exchanged content (IEEE Standards Com-
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mittee et al., 2011). In the ‘smart water’ domain, the same core issues have restricted the utility and hence prevalence

of ICT penetration. Notably, a recent report from the ICT4Water cluster of EC FP7 projects highlighted the need for

standardised models to address the issue of interoperability in the smart water domain (Vamvakeridou-Lyroudia et al.,

2015) and specifically indicated the importance of ontologies as a means to maintain semantic clarity and integrate

knowledge. This leads to a clear precedent in the smart water domain to develop common communication protocols,

data models and semantic vocabularies.

The Internet of Things is addressing the need for interoperable communication protocols, and much progress has

been made in the past 5 years, towards enabling device discoverability and message exchange. However, beyond the

requirement for applications to receive data, they must be able to consume and utilise it correctly with confidence,

which requires a thorough understanding of its context, meaning, and provenance. This requires a robust approach

towards semantic interoperability, and achieving this goes beyond the presently observed Internet of Things, through

a convergence with the semantic web. This has been termed the Semantic Web of Things (SWoT), with the key

difference being a focus on application-layer interoperability, as opposed to protocol-layer interoperability (Calbi-

monte et al., 2014). SWoT therefore promises to support advanced applications such as artificial intelligence, where

data semantics must be explicitly machine interpretable in order for automated machine-to-machine communication

to be sufficient for reliable data utilisation. These explicit semantic statements are typically collated into semantic

models, which create a shared understanding of the domain and a shared method of representing data and their mean-

ing. Within this remit, ontologies are the most expressive option, but are also the most complex, in terms of human

comprehension and computational complexity. Critically, ontology based models also allow the use of inference to

produce new knowledge about a system beyond what has been explicitly stated.

This paper proposes that fostering a Semantic Web of Things will unlock vast potential in the smart water domain,

by robustly addressing the interoperability challenge which has been noted as responsible for 40% of the value of IoT

systems (James Manyika et al., 2015). The paper therefore presents a knowledge-based data and inference platform,

and an example decision support tool, which demonstrate the value of the approach. The knowledge management

platform couples a scalable time-series database with a semantic knowledge base, empowered by SWRL rules and an

accompanying inference engine. This is grounded in a comprehensive domain ontology which describes not only the

sensor data and metadata, but also the systemic context of the data, based on a socio-technical system model of the

water value chain. This model federates and extends typical GIS schemas, product descriptions, and expert knowledge

as an OWL ontology. The ontology is then instantiated through a semi-automatic process, supporting the integration

of legacy systems. A key novelty of the approach is the semantic rule base which integrates expert domain knowledge

and use case specific heuristic rules with the knowledge-based solution. This is accomplished with real world data

from both clean and wastewater networks for a pilot site in Wales, within the context of an EC FP7 research project,

entitled ‘Water analytics and Intelligent Sensing for Demand Optimised Management’ (WISDOM).

The value of the hybrid semantic approach is demonstrated through a decision support tool which integrates a

semantic rule engine with a comprehensive set of use-case based rules, the platform, and a graphical user interface.
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The use case of ‘alert impact prediction’ was chosen, whereby a problem such as a blockage occurs in the network, and

the decision maker needs to evaluate the impact of the incident on the network and its end-users, within the utility’s

business context. The application therefore uses semantic inference to predict the affected network components, and

allows the user to interrogate the issue by viewing dynamic and static data about the network and problem. This

requires an integrated presentation of predicted, static, and dynamic data, in a manner suitable to the expert decision

making process. By highlighting the value of leveraging both the knowledge-based, and data-driven programming

interfaces of the platform, the decision support tool serves as evidence towards the value of the Semantic Web of

Things.

The paper therefore addresses the following primary research question: does a decision support system grounded

in IoT and semantic web provide added value over rule based systems currently used in the sector and those observed

in literature?

The overarching methodology adopted is that of action research, whereby the researcher works with the stakehold-

ers of a target system to both solve an immediate challenge and generate knowledge from the process and outputs.

This involves an iterative learning approach of defining the problem, specifying a proposed solution, building and

testing a proposed solution, then reflecting and learning from the iteration. Such an approach allows agility through

frequent adaptation, and promotes high-quality outputs through transparency and regular expert review. As such, this

paper couples the specification, development, and testing of each of the various components investigated towards

answering the stated question.

The rest of the paper proceeds by discussing background concepts and related work in section 2, then section 3

provides an overview of the proposed solution, and section 4 presents the knowledge management platform in detail.

The benefit of the approach is demonstrated through an example semantic inference use case built on the platform

in section 5, and section 6 presents a decision support tool which leverages the coherent lower and higher-order

knowledge served by the platform’s programming interface. Section 7 then discusses the work conducted and offers a

perspective on the future of knowledge management in smart water.

2. Background

2.1. Smart Water and Utility Decision Support Tools

The application of ICT and cybernetics principles to the water sector has grown significantly in recent years

through the notion of smart water networks (Amir Cahn, 2013; Mutchek and Williams, 2014; Sensus, 2012). These

aim to use intelligent sensing (Allen et al., 2013), optimisation (W Zhao et al., 2016), and decision support (Schenk,

2010) to operate clean and waste water networks and assets in a more efficient, sustainable and reliable manner. A

cluster of European Commission Seventh Framework Programme (EC FP7) research projects, ICT4Water, has been

formed to investigate various aspects of this proposition (ICT4Water, 2015), and the European Innovation Platform

for water (EIP-water) has launched an action group for water monitoring for decision support (EIP Water, n.d.).
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The smart water networks forum (SWAN) is serving as a nucleus for this trend, and has proposed a framework for

smart water networks (Amir Cahn, 2013) consisting of several layers: physical, sensing and control, collection and

communication, data management and display, and data fusion and analysis.

One key impact scenario identified by SWAN is intelligent pressure management to reduce leakage and energy

consumption whilst improving network resilience. Recent work has demonstrated a 12.5% leakage reduction through

intelligent pressure reduction based on an EPANET model (Babel et al., 2009), and this was conferred by another

work (Creaco et al., 2016) which minimised energy consumption whilst optimising network pressures. Another work

utilised a cloud-based machine learning approach to leakage management (Mounce et al., 2015), and a platform has

been developed which aims to integrate ICT with water networks to promote reliable and resilient resource man-

agement, whilst reducing energy consumption (Lee et al., 2015), based on a cyber-physical approach. However,

implementing these smart water solutions in practice requires pervasive interoperability, as highlighted by the recent

SWAN report on communication in smart water (Andreas Hauser et al., 2016).

2.2. Supporting Smart Systems through the Internet of Things

The role of IoT in smart water has been increasingly noted (Wong and Kerkez, 2016; Robles et al., 2015), re-

sulting in various reference architectures and platforms. It is noteworthy that (Robles et al., 2015) highlights the

role of semantics and knowledge-oriented interoperability, although the authors only offer a model of a system’s ICT

components, as opposed to the underlying socio-technical system, although the paper does stress the value of adding

semantics to the work presented.

In the broader smart city field, many examples exist of IoT platforms aiming to coordinate data management (AL-

MANAC, n.d.; Kolozali et al., 2014; Lea and Blackstock, 2014; RERUM, n.d.). The CityPulse project (CityPulse,

n.d.) for example, emphasises scalable IoT stream processing, and includes semantic tagging of streams, but this is

based only on a simple ontology describing the domain of data and event streams, rather than contextualising the

data through a model of the target socio-technical system. The ALMANAC project (ALMANAC, n.d.) proposed a

service oriented architecture for the collection and analysis of near real time information, and again boasted semantic

interoperability. The ALMANAC platform went beyond the semantic modelling conducted in CityPulse to include

domain concepts, such as their ontology for water applications (ALMANAC, n.d.), but this only described 6 types of

object, so again lacks true domain contextualisation. The RERUM project proposed an IoT framework, but empha-

sised its security and privacy aspects (RERUM, n.d.); this again utilised a semantic model, but it only described the

cyber-physical nature of IoT systems, and not the underlying socio-technical system, similar to CityPulse. Finally,

the recent Hypercat standard specifies a lightweight file format and API for discovering and accessing IoT resources

(BSI, 2016).

2.3. Beyond the Internet of Things to a Semantic Web of Things

The common emphasis on semantics in the most recent IoT platforms is noteworthy, but fails to deliver the higher-

order interoperability potential which the semantic web offers, due to the lack of semantic models for the water
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domain. The nature of IoT and semantic web convergence has recently been driven by the W3C Web of Things Work-

ing Group, which is developing a suite of standards to overcome silos in the industry, including a ’Thing Description’

model: a vocabulary for describing Things, with a default serialization of JSON-LD (W3C 2017). This demonstrates

a clear appetite in the industry for development in this direction of convergence. The long-term ambition of such work

is to closely integrate time-series data (which a great deal of IoT data is), with RDF data in a homogeneous manner.

However, this represents a significant ongoing research challenge in its own right, whereas significant value can be

derived in the short-term from using these technologies in a loosely-coupled manner, which allows mature tools to be

leveraged alongside each other without fundamental changes, which is a beneficial compromise.

The value of the convergence of the semantic web and IoT has been noted by many authors (Gyrard et al., 2014;

Jara et al., 2014; Pfisterer et al., 2011; Sahlmann and Schwotzer, 2015), although they express different perspectives

on this new field. These works share an emphasis on powerful interoperability through ontologies and open models.

Jara et al. (Jara et al., 2014) present their survey and vision towards a SWoT, highlighting interoperability at a greater

level of abstraction as an evolution of IoT, through high-level modelling of real world entities. Gyrad et al. (Gyrard et

al., 2014) also present their vision of SWoT, but instead emphasise it as an evolution, through semantic interoperability

across domains, and again through greater domain knowledge modelling. The earlier work of Pfisterer et al. (Pfisterer

et al., 2011) also proposed SWoT with an emphasis on modelling real world entities, but framed the work as an

evolution of semantic sensor networks. Finally, (Sahlmann and Schwotzer, 2015) adopts a novel stance on SWoT,

whereby web-enabled things exchange micro-ontologies, as an extension of MQTT and CoAP. This proposes an IoT

revolution through fundamental change of its enabling technologies, rather than integrating a higher-order knowledge

layer above existing approaches.

One example which acknowledged the role of higher-order knowledge management in the water domain is (Stew-

art et al., 2010), where a knowledge-based system was developed for the web which enabled consumption knowledge

to be elicited from smart metering data. Also highly significant, the WatERP project proposed an agent-oriented ICT

platform to enable supply and demand matching in water networks, and used a domain ontology alongside a data

warehouse to manage the solution’s data (WatERP, 2013), although the ontology is still relatively simple compared to

those utilised in other domains such as energy and building information modelling.

As well as promoting semantic interoperability, inference represents a key advantage of ontological modelling; that

new knowledge can be created from explicit knowledge. That is to say that beyond what is manually or automatically

instantiated of a domain model, it is possible to infer new knowledge based on the existing statements made in the

domain model. This relies on the ‘open world assumption’ which ontological modelling utilises. This assumes that

anything which is not stated may be true, as opposed to conventional object-oriented modelling which assumes that

anything which is not stated is not true. The role and mechanisms of semantic inference have been well explained

recently (Shu et al., 2016) in the context of data validation. Based on such a semantic inference capability, an inference

engine can utilise various methods to infer further truths from the explicitly stated truths.
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2.4. Semantics in Smart Cities and Smart Water

As a recent challenge, ontological models in the smart water field are sparse, although some relevant examples

are observed. Firstly, in the broader smart city field, the ISO/IEC Joint Technical Committee’s report on smart cities

(ISO/IEC JTC1, 2014) highlighted the need for ontologies. IBM developed the SCRIBE smart city ontology 5 years

ago (Rosario Uceda-Sosa et al., 2011), commenting on a lack of available ontologies, and stable OWL tools. Their

ontology paved the way for formal descriptions of city services, events, metadata, and abstractions. A smart city

ontology termed ‘Knowledge Model 4 City’ was developed in (Bellini et al., 2014), with a focus on public transport

and mobility, and also included a mapping to sensor concepts. However, this simple ontology seemed to only facilitate

the query of public transport data by SPARQL. The SEMANCO project developed a large smart city ontology in

OWL DL-Lite for the purpose of data integration (Nemirovski et al., 2013), resulting in 592 classes. The SEMANCO

ontology appears to be intended for the exchange of static data in the planning phase of urban areas though, given

the lack of sensor concepts and dynamic data provision. It could therefore contribute to an upper ontology which

links ontologies in each sector, as operational data and semantics are closely coupled to their target system and

industry. The CityGML standard (Grger and Plmer, 2012) formalises concepts and relationships relevant to geospatial

knowledge in cities, and some semantics as to the nature of objects and spaces in cities, but in an insufficient manner

for interoperability of operational smart city data across verticals. Finally, BSI:PAS 182 (BSI, 2014) proposes a high

level smart city ontology, which serves as an important step, albeit as a ‘lowest common denominator’ approach,

which hence captures little semantic depth.

In the smart water field, high-order semantic interoperability is only being recognised as a challenge very re-

cently, in part caused by the growth of IoT and smart water networks. Attention is increasingly being paid to this

challenge though, with an ongoing cluster of EC research projects, ICT4Water, highlighting the importance of se-

mantic modelling (ICT4Water, 2015). The most relevant existing water ontology is that developed in the WatERP

project (WatERP, 2013), which models water balance concepts from the clean water network at a high level. An-

other very relevant model is the semantic water interoperability model (SWIM) (Reynolds, 2014), which formalizes

a description of water sector devices such as sensors, pumps, reservoirs and valves. As well as this, Waternomics,

another ICT4Water project, has developed a linked data model (Curry et al., 2014), and a waste water treatment plant

ontology was observed in the literature (Sottara et al., 2014). Also, several examples of water ontologies have been

identified in the literature which were not specifically for the purpose described. Most notably are the works related to

the CUAHSI Hydrologic Information System (CUAHSI, 2008; Huang et al., 2011; Horsburgh et al., 2009), SWEET

(SWEET, n.d.) and HydrOntology (Vilches-Blzquez et al., 2009). These ontologies, and several others, are compared

in Table 1. From Table 1, it is clear that whilst significant semantic modelling has been conducted, this is mainly

aimed at the field of earth sciences rather than considering man-made water infrastructure artefacts, and is hence not

sufficient for the challenge described. The INSPIRE water and wastewater network data specifications (INSPIRE

Thematic Working Group Utility and Government Services, 2013) are very relevant to the smart water domain, but

they only formalise simple concepts and relationships, hence only including 68 named entities in the UML formali-
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sation available, with the other INSPIRE ‘thematic areas’ being less relevant from a utility network perspective. The

WatERP ontology is very relevant and has significant overlap with the scope of the current work, although it is not

comprehensive enough for the identified challenge.

It is evident that little effort to date has focused on the challenge identified; most efforts have been targeted at

the earth science domain rather than the man-made water value chain, which only has a small number of limited

ontologies. Semantic modelling in this specific domain has been raised as a critical issue (ICT4Water, 2015), and is

widely acknowledged as such in the neighbouring fields of smart grids and smart cities. There is a significant gap

in the field of capturing in-depth knowledge regarding the technological, network, social, sensory and ICT artefacts

involved in water management decisions in a water value chain. Also, there is a significant gap in leveraging the value

of semantic inference, and of demonstrating the value of the Semantic Web of Things through powerful interoperable

platforms and applications.

3. Overview and System Architecture

This section presents the ICT platform developed, from the sensors and actuators to browser-based interfaces for

utility experts and domestic end-users. The requirements engineering process and outputs at the system level are

discussed first, then the overall architecture is discussed. Then, a description of the software implementation of the

knowledge management components is offered, and finally a focus on the inference and rule engine integrated into

the knowledge management service.

3.1. Requirements Elicitation and the Need for Semantics

A comprehensive requirements engineering methodology was conducted for the overall software solution, which

was then decomposed for the elicitation and refinement of individual component requirements. This followed a typical

iterative analysis and design approach alongside industry experts, which is now described briefly before the outcomes

pertinent to this paper are discussed.

The first stage of the process was to gather knowledge about the domain, target systems, and intended value

proposition of the overall software solution. Following this, formal modelling was conducted of the business pro-

cesses involved in the target system, and scenarios for the use of ICT within these were developed. Next, software

requirements were produced for the overall software solution, following use case specifications and sequence dia-

grams. These requirements were then iterated alongside domain experts, and the previously developed scenarios, in

order to ensure a comprehensive set of requirements was produced. This specification therefore bounded the scope

of the software development task, by defining what it should be able to solve, and what is out of scope. This al-

lowed a system architecture to be curated, and the requirements were then decomposed into separate requirements for

each component. For the knowledge management service, this was then refined further alongside the development

of knowledge modelling requirements and an observed need for domain expert engagement and buy-in regarding the

produced ontologies.
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Table 1: Summary of relevant semantic models

Acronym/name Description Owner # Entities Date

SWIM Device level IoT semantic model for the water

industry.

Aquamatix 41 2016

WISDOM Cyber-physical and social ontology of the water value

chain.

Cardiff

University

492 2016

SAREF ‘Common denominator” of 23 smart appliance

domain models.

ETSI 154 2015

OntoPlant Extends the SSN ontology to decouple control logic

from equipment choices in waste water treatment

plants

Sottara et al. 301 2014

WaterML2 Common format for hydrological time series data

exchange.

OGC 131 2014

Utility Network

Schemas

Water and sewer network model; part of a large

European directive for geospatial data exchange.

EC-INSPIRE 68 2013

WatERP Lightweight ontology of generic concepts for water

sensing and management.

EURECAT 25 classes 2013

WDTF Format for transferring flood warning and forecasting

data to the governing body. Precursor to WaterML2.

Australian

Bureau of

Meterology

337 2013

CityGML

UtilityADE

Domain extension for modeling utility networks in 3D

city models, based on topology and component

descriptions.

OGC 317 2012

SSN Ontology Describes sensors and sensor networks, for use in web

applications, independent of any application domain.

W3C 80 2012

SWEET Middle-level ontology for environmental terminology. NASA 6000 2011

Hydrologic

Ontology for

Discovery

Supports the discovery of time-series hydrologic data

collected at a fixed point. Precursor to WaterML2.

CUAHSI 4098 2010

HydrOntology Aims to integrate hydrographical data sources: town

planning perspective, top down methodology.

Vilches-

Blzquez et

al.

250 2009
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The requirement engineering process produced outputs at each stage, including business process diagrams, soft-

ware use cases, sequence diagrams, scenario descriptions, meta-requirements, software requirements, competency

questions, non-functional ontology and process requirements and a semi-automated extraction of domain vocabulary.

Following this extensive process, several observations led to the decision to pursue a system which represented a con-

vergence of IoT, semantic web, artificial intelligence, and rule-based systems. Critically, the need for an ontological

grounding for the solution emerged from the following requirements, for which existing approaches were deemed

unsuitable:

• The knowledge modelling component should aim to be application agnostic; it should have value outside of the

initially intended system.

• The supported data and underlying domain perspectives should be easily extensible and adaptable.

• It should be possible to modify the underlying data structure easily without taking the service offline.

• It should be possible to query over multiple datasets simultaneously.

• It must be possible to integrate multiple ICT systems which exhibit semantic heterogeneity.

• It must be simple to integrate a rule-based approach with the knowledge base.

The classes of domain problems which are directly within the scope of the software are expressed through the scenarios

which were a key outcome of the requirements engineering process. Whilst these have extensive descriptions beyond

the scope of this paper, they can be broadly understood from the knowledge management modules perspective as

follows:

• Integrating domestic smart meter and user engagement data with supply-side data to provide analytics to both

sides

• Integrating the visualisation and API access for utility GIS data, telemetry data, asset data and metadata

• Supporting the discovery and use of sensor data for predictive analytics and optimisation, including pumping

optimisation, CSO spill prediction, and leakage detection

• Providing knowledge-based analytics into the behaviour of the system, using static data and timeseries values

at predefined key times and levels of aggregation (e.g. previous single timestep, average of last 10 timesteps,

max of last 50 timesteps).

As well as understanding which problems the software is designed to solve, it is relevant to state potential capabilities

and problems which are out of scope:

• Direct SPARQL access to all timeseries data
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• Generic stream-based RDF reasoning

• Complex hydraulic flow modelling

• Fully automated integration with legacy systems or data

Further, several problems were not directly considered, but the system could be useful in tackling them with little

additional work:

• Complex pressure management scheme experiments will not be conducted

• Business strategy level analytics will not be considered, as the focus is on operational decision making

• Maintenance prediction and prioritisation will not be considered

• Remote actuation will not be directly experimented

In a broad sense, the knowledge management platform is capable of solving problems primarily related to the in-

tegration of knowledge sources, knowledge-based reasoning (similar to expert reasoning), and the discovery and

contextualisation of data and Things. The system improves the access to, and utilisation of, timeseries sensor data by

external analytics, but does not itself provide analytics features over full streams of high-velocity timeseries data nor

use traditional hydraulic models.

3.2. System Architecture

The ICT platform utilised a service-oriented architecture to coordinate data and knowledge management in a

scalable manner above a communication interoperability layer, to expose a comprehensive range of information to

the business services layer. This is shown in Figure 1 below, which also illustrates the role of the governance service

across the core platform services.

3.3. Knowledge Management Software

The knowledge management service included a semantic web service, a time series database, a resource catalogue

API, and a Drools rule engine, as well as a RESTful API for querying and updating the knowledge base. The functional

architecture of the knowledge management service is shown in Figure 2 below.

The first noteworthy component of the knowledge management service was the triple store and SPARQL endpoint,

which stored static knowledge about the socio-technical system, and contextualised references to the dynamic data

stored in the time series database. This was an instantiation of the domain ontology described in section 4. The triple

store was updated by subscribing to messages from the event bus, such that it always represented the latest state of the

water value chain. The ontology was stored in a persistent triple store which used the Apache Jena libraries for query

and update functions. The server exposed a simple RESTful API and a standard SPARQL endpoint, where the former

allowed simpler interactions with the web service by client applications, to reduce future development barriers. In
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Figure 1: Functional architecture of the proposed ICT solution
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Figure 2: Knowledge management UML component diagram

order to retrieve static data, applications query the triple store directly. In order to discover dynamic data, or to gain

context for known data, applications could query the ontology via the SPARQL endpoint. For applications to retrieve

dynamic data, they utilised the time series database portion of the API, which adopted a coherent structure and naming

convention.
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The time series database utilised the KairosDB libraries (KairosDB, n.d.), which are built on the Apache Cassandra

database solution. This allows fault tolerant and scalable data storage and retrieval, and is hence better suited for

handling high volumes of raw, well structured, data than a triple store.

Sensor data integration had three aspects: centralisation, pre-processing and storage, and integrated discovery and

metadata description. Centralisation of the sensor data involved wireless sensors publishing observations to an Apache

Kafka event bus, either directly or via a gateway at some sites. Data streams were subscribed to directly by some real-

time applications, and also by the internal knowledge management module, where the observation timestamps and

values were then sent to the kairosDB time series service, and also the ontology service. The Kairos service then

undertook basic pre-processing before storing observations against an internal sensor ID, and the ontology service

updated its ’latest observation value’ accordingly. The APIs of these services could then be used across all of the

sensors in an integrated way. Finally, the sensor metadata and semantic data was integrated within the ontology

service, which was linked with the kairosDB time series data through the internal sensor ID, and cataloguing of the

sensors was achieved through the Hypercat endpoint.

The inference solution integrated the Pellet reasoner for simpler rules and OWL-based inference, with a separate

Drools engine for managing more complex SWRL rules. This approach was chosen as Drools was found to offer better

performance and reliability during testing. Therefore, at each timestep, the Drools engine re-evaluated the triple store

against the rules, and updated the triple store accordingly with any new inferred knowledge. The use of Drools within

an ontology-driven application has been demonstrated previously (Sottara et al., 2012) within a waste water treatment

plant, albeit not in an IoT platform setting.

3.4. Resource Discoverability and Interoperability Signposting

To promote automated and simplified manual discoverability of water network virtual resources, and to leverage

recent developments in the IoT field, the knowledge-based solution was integrated with the recommendations of

the Hypercat standard (Hypercat Limited, 2016), due to its recent community adoption and standardisation. This

mandated the modelling and alignment of the simple Hypercat metamodel as an OWL ontology with the water value

chain ontology produced. It was also chosen to support the Hypercat RESTful API through a simple wrapper around

the JENA ARQ query engine utilised as shown in Figure 2. This wrapper converted Hypercat queries into SPARQL

SELECT queries, so as to retrieve resource descriptions from the knowledge base via the Apache Jena ARQ library.

After executing the query, the wrapper then converted the resulting object into a Hypercat compliant catalogue object.

Provisioning for the retrieval of resource information via the Hypercat approach allowed for simpler discover-

ability, owing to the accessible nature of the Hypercat specification. This also supported greater reusability of the

developed solution, through applications developed for the Hypercat ecosystem. By querying the Hypercat API of the

knowledge-management service, a catalogue was returned describing all of the active sensors on the network and the

service’s endpoints, and this was updated automatically as entities were added or removed.

The incorporated API provided an alternative, simpler mechanism by which to retrieve information about sensors
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installed in the target systems than the SPARQL endpoint. Specifically, the Hypercat-enabled data included the

location, type, URI, API type, latest reading value, latest reading time, unit of measure, name of the sensor, and a

textual description. Also, a pilot-site agnostic upper catalogue was exposed which provided discoverability of the

available knowledge bases and accompanying pilot sites. As the sensor readings were hosted on a KairosDB server,

this ‘signposting’ would allow a developer to integrate the available data into an application with far less difficulty.

For a full semantic description of the sensor, sensing method, and physical contextualisation of the data, the developer

could then query the full knowledge base via the SPARQL endpoint if desired. Whilst the sensors were the only

entities which were Hypercat-enabled, it would have been possible to Hypercat-enable the entire knowledge-base, but

this was not required for the use cases considered likely.

3.5. Semantic Inference and Rules Engine

The inference and rule engine was closely coupled with the knowledge management software, due to their related

functionality, and the need for the inference to maintain pace with updates to the knowledge base. This relied on a

combination of the native Apache Jena inference engine, the Pellet engine, and the Drools rule engine; the latter of

which handled the triggering of business rules.

Apache Jena natively supports 4 types of reasoner based on the architecture: transitive reasoner, RDFS rule

reasoner, OWL/Lite reasoners, and generic rule reasoner (Apache Jena - Jena Ontology API, n.d.). These increase

in inference capability from the transitive reasoner to the generic rule reasoner, although even the most capable of

the Jena reasoners typically achieves less inference than the Pellet reasoner, due to Jena being RDF based and Pellet

considering the entire conjunctive query (Complexible, n.d.).

As the Jena API integrates the Pellet inference engine (Complexible, n.d.) with little effort, and the Pellet engine is

well regarded for capability and speed, the Pellet reasoning engine was chosen to exploit the maximum potential from

the OWL axioms. Further, Pellet relaxes OWL-DL restrictions on the OWL-Full features, and allows the majority of

SWRL built-in atoms. This meant that Pellet could reason over rules which included maths features and numerical

comparisons, which have been included in the developed SWRL rule set. However, during testing this inference

capability was found to be slower, and less reliable, than the use of a separate Drools engine. The Drools rule

engine was incorporated into the platform to augment the inference capabilities of the Pellet reasoner, which achieved

acceptable inference completeness and speeds over native OWL axioms, but not over heuristic business rules.

The Drools rule engine is specifically designed for business rules, and uses forward-chaining and backward-

chaining to infer new knowledge from existing data, with rules stated in either the Drools native language or a decision

table. Drools reasoning is optimised for when x, then y business rules using their PHREAK algorithm; an evolution

of the Rete algorithm, whereas Pellet is optimised for knowledge inference using tableaux algorithms over description

logic axioms. Therefore, the Drools engine is better able to handle a large number of rules, with faster and more

reliable firing of complex rules than Pellet. Also, it is important to note that SWRL limits the kind of rules which can

be expressed using built-in atoms, as SWRL only natively handles comparisons and simple maths, string, date and
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URI functions. Even moderately complex rules can become difficult for humans to read and write, whereas the Drools

Rule Language is comparatively simple to write, and yet is more expressive. Drools also allows more complex pattern

matching within the conditional part of a rule and more complete functionality in the consequence part, including

update, insert, and delete functions. SWRL cannot be used to delete or insert new named entities, modify properties

used in the antecedent, count instances or test negated atoms, due to the monotonic nature of SWRL. Whilst the rules

were formalised in SWRL and converted to the Drools rule language to experiment with a complete semantic web

approach, expressing them in the native Drools language, or a Drools Domain Specific Language (DSL) is an area of

further research.

3.6. API Overview and Illustrative Usage

The knowledge management system offered a variety of APIs to support the retrieval of knowledge by tools of

varying complexity, as shown in Table 2. This could integrate both knowledge-based applications and data-driven

applications, and could be used at various lifecycle stages. A generic use of these endpoints would be to firstly

discover resources, then retrieve data based on the nature of the client application. A generic process diagram for

using these APIs is illustrated in Figure 3.

Table 2: Implemented knowledge management API

Endpoint Description Parame-

ters

#Response

type

GET /cat Retrieves a catalogue of knowledge bases on the

server

None JSON

GET /{site name}/cat Retrieves a catalogue of resources available at a site None JSON

/{site name}/sparql Standard SPARQL endpoint query JSON

GET /{site name}/water/... Convenience endpoint for common water queries query JSON

GET /{site name}/data KairosDB endpoint for timeseries data query JSON

/cat:
Retrieve catalogue of sites

(Hypercat object)

/{site name}/cat:
Retrieve catalogue of site resources

(Hypercat object)

/{site name}/sparql:
Retrieve static data

(JSON, explicit RDF/OWL semantics)

/{site name}/water:
Retrieve simplified

(JSON, implicit semantics)

/{site name}/data:
Retrieve timeseries sensor data

(JSON/WaterML)

Figure 3: Generalized process of using knowledge base APIs
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As shown in Figure 3, it would be typical for applications to first query the Hypercat endpoint, to determine the

online resources. If the application has already determined the available site knowledge bases and endpoints, it may

directly query the site’s Hypercat endpoint to then discover the online sensors at that site. At that point, the usage

of the system would vary depending on the nature of the client application; a simple dashboard for example may

only query the simplified API to determine some common static knowledge about the network and the latest sensor

readings. Alternatively, a more complex application may query the knowledge base directly via SPARQL to retrieve

detailed static data. An application could also query the timeseries endpoint to retrieve dynamic sensor data, and then

query the SPARQL endpoint to retrieve semantic context for the dynamic data, to facilitate its correct use in the client

application. An example which highlights the value of these varied endpoints is provided in section 6.

4. A Knowledge-based Approach to Water Management

This section presents the process and artefacts related to the knowledge-based approach adopted, which includes

the development methodology, the domain ontology and its validation, and the instantiation of the ontology from

legacy data.

4.1. Requirements and Ontology Engineering

The ontology service’s requirements and curation process primarily used the well regarded NeOn methodology

(Prez et al., 2008) for manual curation from existing semantic resources. Minor adaptations were made to this ap-

proach, due to changes in the technological landscape in the past 9 years since the NeOn methodology was published,

such as the growth of the Internet of Things, which has fundamentally shifted the way the internet is used. Also, a

key requirement was for the ontology to have value outside of the target system as a benchmark in the field. This in-

volved balancing the knowledge engineering objectives prioritised by NeOn with the software engineering objectives

of the overall IoT project, and the softer requirements from the domain experts of fostering ownership and human

intelligibility.

In order to scope the ontology, a literature review was conducted of the semantic resources in the field, to give

context to the model. Secondly, the software requirements were decomposed further into competency questions, con-

ceptually orchestrated through the project’s scenarios. These were then formed as a set of formal SPARQL queries

which the ontology was required to answer, and which were adapted as the project matured and the role of the ontol-

ogy service became clearer. The initial intent of the ontology was to capture the physical, cyber, and social concepts

relevant to network-level operational management in water utility systems; to unify the knowledge management of

geospatial data, domain specific concepts, and IoT metadata. The boundaries of the ontologys scope were also clar-

ified beyond the initial intent by stating those concepts which it would not focus on: natural artefacts, electricity

consumption, non-domestic consumers, the internal operation of water assets, and financial aspects. An indicative

excerpt of the competency questions is now provided:
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• How much water is domicile X currently consuming?

• What material is pipe X made from?

• How frequently does sensor X report observations?

• Which are the output pipes of asset X?

• How much water is currently in reservoir X?

• Where is asset X located?

• What is smart valve Xs current state?

• What does sensor X measure, in which units, and what was its latest observation?

• Who is the designated manager for asset X?

Following scope formalisation, existing models were manually selected and reworked into a base ontology, which

was extended with domain and project specific concepts and T-Box axioms, to meet the competency questions derived

for each of the project’s impact scenarios. This included the reuse of a typical GIS schema and the extension of

a socio-technical system model (Dam, 2009). The resulting artefact was then collaboratively iterated with water

industry experts towards a consensus until the candidate ontology was deemed an accurate and sufficient description

of the water management domain. Following this, further alignments were sought with external semantic resources to

foster interoperability.

4.2. Water Value Chain Ontology

The water value chain ontology modelled the concepts, relationships, properties, datatypes, restrictions, and logic,

in water networks from abstraction to discharge, using OWL constructs. This was grounded in a view of the network

as 3 main interlinked systems: physical, social, and cyber. The ontology therefore captured domain knowledge from

these 3 perspectives, and across each of these 3 perspectives.

The physical water network model was an extension of a typical GIS schema from a water utility, and so primarily

described the physical network assets and their properties. This included objects such as pipes, fittings, manholes,

pumps, and treatment plants, and properties such as pipe diameters, fitting locations, and manhole types. The GIS

schema was extended through abstraction into a metamodel of socio-technical systems, and was also extended with

descriptions of domestic properties, natural water bodies, and physical phenomena and fluid dynamics. The model

fundamentally viewed the physical network as a network of nodes and arcs, with each node potentially also being a

super-node containing a subsystem of nodes and arcs, as in the case of a treatment plant.

The social water network model described the organisations and people involved in the water value chain, such

as utility companies, regulators, and local governments, as well as different functional managers and persons within
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these organisations. Similar to the physical model, this adopted a 2 level of detail approach, whereby organisations

were viewed as supersystems of people, and their relationships and processes. This modelling decision was taken

as it was recognised that organisational-level modelling would be sufficient in many cases, but specifying the person

responsible for a specific asset may be required for certain applications. Socio-technical relationships were also

modelled, such as ownership, management responsibility, and regulations.

The cyber water network model described the sensors, actuators, data, and software, in the ICT system which

supports the network’s management. This was accomplished as an extension of the W3C SSN ontology (Compton

et al., 2012), although observations were not stored in RDF; the ontology instead described where these observations

were stored in the timeseries database. This allowed the observations to be contextualised but also stored in a scalable

manner. Typical metadata was described, such as sensing frequency and accuracy, but further systemic context was

also captured regarding the meaning of the data. Specifically, the nature of the sensed phenomenon and the physical

entities being observed were provided with classes and slots for description in the ontology. Cyber-physical relation-

ships were therefore described to formalise relationships between sensors, data, time series database fields, network

assets, and fluid dynamics properties. This is illustrated in Figure 4.

The ontology’s grounding in the SSN ontology was facilitated by an adoption of the same upper ontology, the

DOLCE+DnS Ultralite (DUL) upper ontology (Gangemi, n.d.). This integrates the DOLCE Lite-Plus library with

the Descriptions and Situations ontology, and simplifies it for practical use. Therefore, the developed ontology uses

similar design patterns to those of the DUL ontology, and hence focuses on the properties (SSN:property) and roles of

the designed artifacts (DUL:DesignedArtifact) which participate in processes (DUL:Process) in the water network, as

well as the agents (DUL:SocialAgent) which control these artifacts, and especially the observations (SSN:observation,

subclass of DUL:Situation) made by sensors, and their resulting information objects (DUL:InformationObject). The

majority of the ontology is hence an extension of these classes with subclasses and additional properties, although

concepts related to network topology (i.e. graph theory) and water consumption behavior were also added.

4.3. Ontology Validation

Following the development of the ontology & accompanying software, the requirements were tested against, to

evaluate the ontology and the overall solution’s acceptability against initial intentions. This involved a number of

specific workshops with domain and software experts.

The initial, automated check of the ontology’s consistency through the built in Protégé reasoner was consistently

passed, such that the ontology does not contain contradictory statements. The competency questions were answered by

the ontology after being posed as SPARQL queries. The domain expert validation was conducted separately with the

domain expert partners through one day workshops, and in both cases the ontology’s modelling choices were broadly

validated, the majority of the detailed modelling choices were validated and corroborated between workshops, and

some revisions and extensions were suggested. An additional workshop with the WISDOM partners and external

industrial experts was then also conducted, which served to validate that the changes made were sufficient and hence
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Figure 4: Key cyber-physical relationships in the water value chain ontology (inverses not shown)

that the ontology was sufficient. The organisation types of these companies are shown in Figure 5.

The ontology was therefore considered by a wide range of stakeholders in the water value chain, most of whom

had little bias towards the project. This offered a broad view on the ontology and hence tested its extent, as well as

its detail in areas of the water value chain which the WISDOM partners were not experts in. That consensus was

reached that the ontology represented a shared and sufficient conceptualization of the domain by this group, which

was a significant milestone in its validation. Some of the comments from the SIG expert validation session were:

• The ontology addresses the problem of interacting between tools (GIS, SAP, customer data)

• Include alarms as well as sensors

• ‘Governing body’ is also called ‘regulator’

• Include ‘water testing company’

These comments were all used to revise the ontology. The majority of the comments however were advisory

or generic, such as regarding possible future work, rather than required changes in the scope currently addressed.

Examples of these comments were:

• The work could be considered as a type of enterprise service bus

• An ontology is also called a taxonomy

• Sensors could also be ‘social sensors’, which report numbers of tweets etc
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Figure 5: Organizations involved in the validation process

Table 3: Example competency question (prefix statements omitted)

Natural language question:

What is sensor E2000’s current reading?

SPARQL query:

SELECT ?reading

WHERE {

wis:E2000 rdf:type wis:LevelSensor.

wis:E2000 wis:hasLatestOutput ?output.

?output dul:hasDataValue ?reading }

Output (CSV format):

reading

2.00

• Collaboration relationships exist between utilities which share a water resource

Table 3 below presents an example outcome of the competency question testing, showing how the deployment

answers the questions when formalized as SPARQL queries, where the queries were answered in circa 15ms.

4.4. Instantiation through Reuse of GIS and EPANET Data

Following from the domain ontology development, the knowledge base development involved the instantiation of

this domain model at each pilot site. This section presents an overview of the process and outputs of this work, which

resulted in pilot site knowledge bases for both clean and waste water networks at Welsh pilot sites. This work adopts

a novel methodology of converting GIS and EPANET data to RDF data through a Python script. Each knowledge

base used the same domain ontology, but was itself separate to the other knowledge bases, as their integration was not
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Table 4: Summary of water and wastewater network input data

Entity type Number of entities Number of properties

Sensors at clean assets 29 5

Hydrants 261 18

Control valves 46 18

Clean mains 1517 19

Water meters 26 15

System valves 485 19

beneficial to the targeted use cases. Each knowledge base was produced by reusing existing data from utility company

partners, and then extended manually.

The knowledge bases were instantiated primarily by reusing GIS, sensor, and EPANET data provided by industrial

partners, through a Python script. This was then enriched manually with further sensor and social entity descriptions.

Each pilot sites Abox was kept separate, but could be trivially merged with the Tbox if required, or kept separate until

storage in the triple store. After pre-processing, the Python script used RDF and CSV libraries to parse, build and

output relevant files, by iterating over each line of the input file and creating named entities, data properties, and object

properties as appropriate. The main reused GIS objects were system valves, meters, mains, control valves, hydrants,

asset sensors, conduits, nodes, pumps, sensors and subcatchments as summarised in Table 4 below. In total, these

represented 6 MB of data and resulted in 100k RDF A-box triples, including 10k named entities.

This model transformation converted the data from simple lists of values with implicit semantics, to an RDF

graph based on the developed model, as shown in Figure 6, with the benefits of explicit semantics, high levels of

expressiveness, and unique IDs. Where appropriate, the properties themselves are objects with their own sets of

object and data properties; therefore, the meaning is far more explicit and could be reused by other software with

greater confidence in its meaning, hence requiring less investment to ensure successful interoperability.

Expressiveness and extensibility are significant benefits of the semantic modelling approach. For example, the

‘hasMaterial’ property is an object property which connects a pipe to a material, the material can then be described

by properties such as surface roughness, for hydraulic modelling, or fracture toughness, for earthquake resilience

simulation. These examples show respectively that the approach allows greater value to be derived from the initial

data by formally describing it in a machine interpretable manner, and allows extensibility beyond its initial purpose

with little effort. Further, semantic inference over the RDF form of the data allows greater value to be derived from the

original data. For example the ‘goesToIpid’ is a datatype property which connects a pipe to an integer, but an SWRL

rule was used to infer the knowledge that, given that the integer is the ID of another pipe, the latter is downstream of

the former pipe.
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Data property assertions:
    Pipe_1 hasLength "5.93"^^xsd:double
    Pipe_1 hasNominalDiameter "6.0"^^xsd:double
    Pipe_1 isPumped false
    Pipe_1 hasIpid 16573054
    Pipe_1 hasAbsoluteDiameter "152.0"^^xsd:double
    Pipe_1 hasUnit "IN"

Data property assertions:
    Pipe_2 hasLength "5.43"^^xsd:double
    Pipe_2 hasNominalDiameter "6.0"^^xsd:double
    Pipe_2 isPumped false
    Pipe_2 hasIpid 2048352
    Pipe_2 hasAbsoluteDiameter "152.0"^^xsd:double
    Pipe_2 hasUnit "IN"

atAsset

has individual

has subclass

hasDownstreamNode

hasMaterial

hasUpstreamNode

hasWaterType

observes

Key:

Pipe_1

Fitting_1

Hydrant_1

Pipe_2

Fitting_2

Potable_Water

FlowRateProperty
FlowMeter_1

AC

TrunkMain

Material
owlThing

Hydrant

WaterType

FlowSensor

Figure 6: Example of graph database manifestation showing partial graph, object properties, and data properties

5. Example Use Case: Fault Impact Inference

To demonstrate the value of the SWoT approach, and especially the knowledge-based services, an example use

case is presented which highlights the value of a platform which exposes dynamic data, higher-order knowledge,

and inference-based knowledge. This forms the back-end to the GUI presented in section 6. The use case itself is

now described, before presenting the supporting technology for each required human-machine interaction towards the

desired decision support.

5.1. Use Case Description and Requirements

The proposed use case assumed that a fault had occurred within the water value chain, such as a pipe blockage.

The proposed stages of decision making towards addressing this are: i) identification, ii) assessment, iii) impact

mitigation, and iv) resolution. Identification is the process of acknowledging the issue and notifying the appropriate

person. Assessment is the observation of the issue and appropriate data, and applying expert knowledge to decide on

the following actions. Impact mitigation is the minimisation of the effect of the issue on the performance indicators

of the organisation through immediate action. Resolution is the restoring of normal functioning of the system through

maintenance or a revised system design. Finally, an additional stage of learning was identified, regarding a long term

feedback loop so as to reduce the occurrence and impact of similar or related faults in the future, but this was deemed
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to require a separate use case. Ideally, the proposed application should assist the domain expert through this process

to the greatest extent possible, and be supported by its back-end infrastructure so as to enable this with ease.

The proposed solution for this use case attempted to leverage ICT greatly to assist the decision maker, with an

emphasis on back-end support and interoperability. This made significant use of the Drools rule engine, and custom

semantic rules, alongside the described hybrid knowledge management platform. By prioritising this processing at

the platform layer, the resultant knowledge could be shared by multiple applications, for example if the same issue

affected different business processes and hence different expert decision makers. By offering a single point of truth

with a range of data and contextualisation methods to various applications, the response of the organisation can be

streamlined, coordinated, and more effective.

As a core software requirement, the inference engine needed to have the ability to detect problems in the network,

and then determine the network entities affected by the problem. This would serve as decision support for operations

managers, by empowering them with knowledge about the cause and impact of the problem, for example this would

help to identify customers affected by a network blockage and hence proactively engage with them as opposed to

waiting for customers to issue a complaint.

5.2. Knowledge-based Decision Support

ICT was leveraged across the 4 stages identified within the scope of this use case. This is now described for each

stage in turn before the application logic is presented in detail.

Identification of faults occurred through rule-based detection. The concept of an alert was modelled in the domain

ontology, as well as the problem itself which caused the alert, and object properties then connected these to the

physical network entities, their topological representation, and the related sensors and properties. Each alert had an

associated ‘alert condition’, which could be a complex fault detection algorithm, but a simple ‘acceptable range’ was

used for proof of concept. This range then had an upper and lower bound, which an SWRL rule was able to evaluate

against the latest observation from the appropriate sensor and change the status of the alert if needed, as shown in the

next subsection. This acknowledged the issue within the ICT system, and notified the expert of the issue through the

GUI, which could be supplemented with automated email or text notifications if suitable.

Assessment of the issue was deemed to require an intuitive presentation of the cause of the alert and its implica-

tions, with the ability for deeper interrogation of underlying data and logic. This was achieved through a combination

of rule-based inference, graphical presentation of knowledge and data exploration functionality. Firstly, the rule en-

gine determined the affected network entities, as well as the likely problem which caused the alert, and its severity

and detection time. By updating the knowledge base with this information, it was then discovered by the application

through the Hypercat API, so as to present knowledge about the problem in an intuitive and graphical manner. Finally,

underlying raw data could be interrogated through the GUI, following discovery of the sensors and their endpoints

through the Hypercat API. This returned dynamic data from the time series database to present graphs of the sensor

readings relevant to the issue, as well as static data about the network entities from the knowledge base.
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The described rules would also assist with impact mitigation, by identifying the customers likely to be affected

by the issue and exposing their details in a secure manner to the appropriate member of staff. Also, by including

knowledge regarding the organisation’s performance indicators, the inference engine could offer targeted information

and suggested actions. This would support the stage of resolution, which could also be supported by extending the

knowledge-base to cover the asset management processes, people, and organisations, as this could identify nearby

people able to resolve the issue. The rules utilised throughout this process of decision support are now described in

detail, as they form a core part of the contribution.

5.3. Inference Engine Rules

The required inference capability for this use case is illustrated in Figure 7 below, where the green arrows indicate

explicit knowledge, and red arrows represent inferred knowledge.

Figure 7: Problem detection and alert propagation inference use case requirements

Towards achieving the inference ability described, 28 SWRL rules were written, which were utilized by the in-

ference engine alongside the OWL axioms present in the domain ontology. An SWRL rule follows the standard ‘if

THIS then THAT’ approach of rule based logic, where the ‘THIS’ and ‘THAT’ portions consist of SWRL atoms.

An SWRL atom is a statement of truth, such that ‘if THIS (statement is true) then THAT (statement is also true)’.

A full description of SWRL is available from W3C (SWRL: A Semantic Web Rule Language Combining OWL and

RuleML, n.d.). SWRL built-ins include functions for comparisons, maths, and string manipulation etc. This section

now describes the rules produced for each use case, and presents them in SWRL syntax.

5.3.1. deployedAtEntity

As sensors were not explicitly described in terms of the node which they were deployed at, inferring their asset-

deployment relationship was fundamental to the knowledge needed to contextualise the capability of the deployed
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sensors. This capability was provided by rule 1.

(1)S ensor(? S ) ∧ atAsset(? S , ? A) ∧ TopologicalNetworkEntity(? E)
∧ atAsset(? E, ? A)⇒ deployedAtEntity(? S , ? E)

5.3.2. observes

Whilst it may be explicitly stated in the knowledge base that a sensor observes a certain property, the SSN ontology

also offers an alternative modelling pattern, such that a sensor is deemed to have a ‘measurement capability’, which

is then itself related to the observed property. Where this was the case, it was useful to infer the direct link between

the sensor and the property, to facilitate the previous rules. This was accomplished through rule 2.

(2)hasMeasurementCapability(? S , ? MC) ∧ f orProperty(? MC, ? P)⇒ observes(? S , ? P)

5.3.3. isActive

This property determines whether an alert is active; relating an alert to a Boolean literal. Inferring this shows the

key benefits of the knowledge based approach utilized: as the sensor descriptions, asset descriptions, alert descriptions,

and dynamic data were all semantically related, it was possible to directly infer whether or not a sensor reading should

trigger an alert. If an alert had an acceptable range, and it was related to a specific sensor, and that sensor’s latest

reading fell outside of the acceptable range, the alarm was triggered. This could occur if the reading was greater

than the allowable maximum, or smaller than the allowable minimum, as otherwise the alarm is not active. This was

formalised through rules 3, 4, and 5.

(3)

WaterAlert(? A) ∧ hasAlertCondition(? A, ? AC1) ∧ hasAcceptableRange(? AC1, ? AR)
∧ hasMaxValue(? AR, ? Xmax) ∧ S ensor(? S ) ∧ triggersAlert(? S , ? A)
∧ hasLatestOutput(? S , ? TVP) ∧ hasValue(? TVP, ? X) ∧ swrlb : greaterThan(? X, ? Xmax)
⇒ isActive(? A, true)

(4)

WaterAlert(? A) ∧ hasAlertCondition(? A, ? AC1) ∧ hasAcceptableRange(? AC1, ? AR)
∧ hasMinValue(? AR, ? Xmin) ∧ S ensor(? S ) ∧ triggersAlert(? S , ? A)
∧ hasLatestOutput(? S , ? TVP) ∧ hasValue(? TVP, ? X) ∧ swrlb : lessThan(? X, ? Xmin)
⇒ isActive(? A, true)

(5)

WaterAlert(? A) ∧ hasAlertCondition(? A, ? AC1) ∧ hasAcceptableRange(? AC1, ? AR)
∧ hasMinValue(? AR, ? Xmin) ∧ hasMaxValue(? AR, ? Xmax) ∧ S ensor(? S ) ∧ triggersAlert(? S , ? A)
∧ hasLatestOutput(? S , ? TVP) ∧ hasValue(? TVP, ? X) ∧ swrlb : lessThanOrEqual(? X, ? Xmax) ∧ swrlb

: greaterThanOrEqual(? X, ? Xmin)
⇒ isActive(? A, f alse)
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5.3.4. hasDownstreamEntity

In order to generalise pipes, pumps, and reservoirs etc. and determine what is upstream or downstream of an

entity, it was useful to use the IPID values held in the legacy GIS database to infer knowledge about flow chronology

through the entities. This allowed later inference of whether an entity was affected by any given problem, and greatly

simplified those rules. Rules 6 and 7 therefore evaluated this for each entity.

(6)goesFromI pid(? p, ? i) ∧ hasI pid(? u, ? i)⇒ hasU pstreamEntity(? p, ? u) ∧ hasDownstreamEntity(? u, ? p)

(7)goesToI pid(? p, ? i) ∧ hasI pid(? d, ? i)⇒ hasU pstreamEntity(? d, ? p) ∧ hasDownstreamEntity(? p, ? d)

5.3.5. hasProblem

In the situation that an alert was active, and the alert was caused by a certain problem, it was beneficial to relate

the problem entity to the problem directly, which rule 8 achieved.

(8)hasAlert(? E, ? A) ∧ f orProblem(? A, ? P) ∧ isActive(? A, true)⇒ hasProblem(? E, ? P)

5.3.6. hasAffectedEntity

Tracing the impact of a problem downstream in a water network to determine further problems which the problem

could cause, and its negative consequences for customers, was both highly beneficial and challenging, due to the

system complexity. Further, if a problem was reported at a downstream entity, one expert task is tracing backwards in

the value chain to determine if an upstream problem could be causing it. Rule 9 aimed to empower water experts by

telling them if an entity is affected by any upstream problems. Further, the knowledge of an entity being affected by

an upstream problem could be used automatically by a further rule to infer a likely problem at that entity, and even

a required action to proactively mitigate the overall impact of the initial problem. Note that ‘hasProblemEntity’ is a

sub-property of ‘hasAffectedEntity’, which allowed this inference to propagate to all downstream elements.

(9)WaterAlert(? A) ∧ isActive(? A, true) ∧ hasA f f ectedEntity(? A, ? E) ∧ hasDownstreamEntity(? E, ? D)
⇒ hasA f f ectedEntity(? A, ? D)

5.3.7. affectedByProblem

Rule 10 continued the benefits of rule 9 by directly linking the downstream entity with the problem which it was

affected by. Note that ‘hasProblem’ is a sub-property of ‘affectedByProblem’, allowing the inference to propagate to

all downstream entities.

(10)hasDownstreamEntity(? E, ? D) ∧ a f f ectedByProblem(? E, ? P)⇒ a f f ectedByProblem(? D, ? P)

5.3.8. hasSeverity

This inference ability explored the possibility of evaluating how severe a problem was, based on how far outside

the acceptable range a latest sensor reading was. This was achieved in a simple manner by finding the relative absolute

distance which the reading is outside of the acceptable range. This could be explored further with more specific use
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cases, and more domain knowledge about the criteria for problem severity, such as the likely total future impact on

the organization’s KPIs. However, the work showed that the knowledge-based approach allowed further knowledge to

be derived quite easily about the current situation, to empower decision makers without them having to do their own

analysis of the data. Firstly, in the case of the reading being greater than the maximum allowable value, severity was

defined by 11.

if ValActual>Valmax: Severity =
ValActual− ValMax(

ValMax−− ValMin
2

) (11)

If a problem caused an alert, and the alert was based on an acceptable range, and the alert was triggered by a sensor

whose latest reading was above that range, the severity of the problem was calculated as per equation 11, which was

implemented in SWRL as rule 12

(12)

Problem(? P) ∧ isCauseO f Alert(? P, ? A) ∧WaterAlert(? A) ∧ hasAlertCondition(? A, ? AC1)
∧ hasAcceptableRange(? AC1, ? AR) ∧ hasMinValue(? AR, ? Xmin) ∧ hasMaxValue(? AR, ? Xmax)
∧ S ensor(? S ) ∧ triggersAlert(? S , ? A) ∧ hasLatestOutput(? S , ? TVP)
∧ hasValue(? TVP, ? X) ∧ swrlb : greaterThan(? X, ? Xmax) ∧ swrlb
: subtract(? x1, ? Xmax, ? Xmin) ∧ swrlb
: divide(? x2, ? x1, 2) ∧ swrlb
: subtract(? S evAbs, ? X, ? Xmax) ∧ swrlb
: divide(? S evRel, ? S evAbs, ? x2)
⇒ hasS everity(? P, ? S evRel)

In parallel to the above rule, the opposite logic held when the sensor reading was below the minimum acceptable

range, where the severity was calculated as per equation 13 below, and implemented as rule 14

if ValActual<Valmin: Severity =
ValMin− ValActual(

ValMax−− ValMin
2

) (13)

(14)

Problem(? P) ∧ isCauseO f Alert(? P, ? A) ∧WaterAlert(? A) ∧ hasAlertCondition(? A, ? AC1)
∧ hasAcceptableRange(? AC1, ? AR) ∧ hasMinValue(? AR, ? Xmin)
∧ hasMaxValue(? AR, ? Xmax) ∧ S ensor(? S ) ∧ triggersAlert(? S , ? A)
∧ hasLatestOutput(? S , ? TVP) ∧ hasValue(? TVP, ? X) ∧ swrlb : lessThan(? X, ? Xmin) ∧ swrlb
: subtract(? x1, ? Xmax, ? Xmin) ∧ swrlb
: divide(? x2, ? x1, 2) ∧ swrlb
: subtract(? S evAbs, ? Xmin, ? X) ∧ swrlb
: divide(? S evRel, ? S evAbs, ? x2)
⇒ hasS everity(? P, ? S evRel)

5.3.9. hasDetectionTime

Given that the knowledge base was iteratively updated as new sensor readings are received, and alerts may not be

viewed immediately, it was deemed beneficial to inform decision makers exactly when a problem was first observed.

This was achieved by noting the time at which the sensor’s latest reading was outside the acceptable range, but the
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sensor’s previous reading was inside the acceptable range. Rules 15 and 16 therefore state that if an alert has an

acceptable range, and is triggered by a sensor, and the sensor’s latest reading is outside that range, but its previous

reading was inside the range, then the detection time of the problem is the latest reading’s timestamp.

Problem(? P) ∧ isCauseO f Alert(? P, ? A) ∧WaterAlert(? A) ∧ hasAlertCondition(? A, ? AC1)
∧ hasAcceptableRange(? AC1, ? AR) ∧ hasMinValue(? AR, ? Xmin) ∧ hasMaxValue(? AR, ? Xmax)
∧ S ensor(? S ) ∧ triggersAlert(? S , ? A) ∧ hasLatestOutput(? S , ? TVP) ∧ hasValue(? TVP, ? X)
∧ swrlb : greaterThan(? X, ? Xmax) ∧ hasT imestamp(? TVP, ? time) ∧ hasPreviousOutput(? S , ? TVPprev)
∧ di f f erentFrom(? TVP, ? TVPprev) ∧ hasValue(? TVPprev, ? Xprev) ∧ swrlb

: lessThanOrEqual(? Xprev, ? Xmax) ∧ swrlb
: greaterThanOrEqual(? Xprev, ? Xmin)
⇒ hasDetectionT ime(? P, ? time)

(15)

(16)

Problem(? P) ∧ isCauseO f Alert(? P, ? A) ∧WaterAlert(? A) ∧ hasAlertCondition(? A, ? AC1)
∧ hasAcceptableRange(? AC1, ? AR) ∧ hasMinValue(? AR, ? Xmin) ∧ hasMaxValue(? AR, ? Xmax)
∧ S ensor(? S ) ∧ triggersAlert(? S , ? A) ∧ hasLatestOutput(? S , ? TVP) ∧ hasValue(? TVP, ? X)
∧ swrlb : lessThan(? X, ? Xmin) ∧ hasT imestamp(? TVP, ? time) ∧ hasPreviousOutput(? S , ? TVPprev)
∧ di f f erentFrom(? TVP, ? TVPprev) ∧ hasValue(? TVPprev, ? Xprev) ∧ swrlb

: lessThanOrEqual(? Xprev, ? Xmax) ∧ swrlb
: greaterThanOrEqual(? Xprev, ? Xmin)
⇒ hasDetectionT ime(? P, ? time)

5.4. Inference Use Case Testing

The rules were tested individually during development to ensure they were able to infer the desired knowledge

from the desired explicit knowledge, and to ensure that obvious similar situations didn’t invoke false positive in-

ferences, which the presented rule set passed. However, use case based testing of the rules in unison is a far more

reliable test of the performance of the inference engine, as is far more likely to produce false positives due to the

increased complexity in the explicit knowledge. This section therefore presents the use case based testing of the rules,

by illustrating the explicit knowledge in an example instance of the use case, then presenting the inferred knowledge,

followed by discussing the time taken, the robustness of the test, and the value of the inference achieved.

The rules were tested on a middle range laptop; a Samsung 900X, with an Intel i5 1.7GHz processor and 8GB of

memory, on 64-bit Windows 7. The rules were tested in the Protégé software; given the computer specification and

the testing environment it is expected that performance would be better within a dedicated high performance server

or a cloud computing environment. The rules were tested such that the entire domain ontology was reasoned over,

as well as the individuals specifically relevant to the use case. The input and output Aboxes sizes were determined

directly through the RDFlib Python library by command line.

To test the inference capability, an instance of the use case was defined, whereby a reservoir node is connected

formally to a level sensor, and has a tree of downstream nodes and arcs. It was considered that the sensor’s latest
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reading indicated that the reservoir’s water level was too low, and the ability of the inference engine to provide

decision support was tested. The described test case is illustrated in Figure 8, which also shows the named individuals

for the alert, and acceptable range and latest output.

Figure 8: Problem and alert inference test case illustration

The main desired outcomes of the inference engine were the triggering of the alert, the link between the problem

and downstream entities, and knowledge about the time and severity of the problem. Following the application of the

inference engine on the test knowledge base of 56 triples, the Abox contained 972 triples, meaning that 916 triples

had been inferred, of 7185 total inferred axioms. This inference occurred in 1427 ms on the first instance (without

caching), which reduced to circa 450 ms after caching. The desired knowledge primarily centres on the problem

and downstream entity named individuals, so Figure 9 displays the Abox knowledge at these entities following the

inference. This shows that the node is linked to its upstream and downstream entities, is ‘affected by’ the active alert,

and is ‘affected by’ the low level problem. Figure 9 also shows that the problem individual is linked to all of the

downstream nodes, and its severity and timestamp have been inferred.

Based on the inference achieved through the application of the inference engine to the test case, Figure 10 below

highlights some of the key inferred knowledge. Specifically, this shows that knowledge about the reservoir problem

was inferred, and was linked directly to downstream entities. By integrating system knowledge in this manner, lit-

tle work would be required to automatically infer required actions due to the impact of the problem on customers,

as shown at the right hand side of Figure 10. The knowledge-based system approach therefore allows the impact

of problems to be more comprehensively checked; a task which is otherwise prohibited by the time taken, due to

the complexity of the system. The inference ability demonstrated is a significant first step towards an integrated

28



Figure 9: Excerpt of resultant Abox knowledge after problem and alert inference testing

knowledge-based approach, and serves as proof of concept that the approach allows decision makers to be better

informed in managing the water network.

Whilst further research around the potential of this rule-based approach is outside the scope of this paper, some

key avenues are suggested:

• The knowledge of an entity being affected by an upstream problem could be used automatically by a further

rule to infer a likely problem at the downstream entity, and even a required action to proactively mitigate the

overall impact of the initial problem.

• If an entity is affected by an upstream problem, but has another upstream entity, then the former entity is only

partially affected by the upstream problem. This could be explored further for the case of two upstream entities,

both with different problems, or to infer more specific knowledge about how badly affected an entity is by an

upstream problem, based on the relative flow rate it derives from the problematic upstream entity.

• The inference could also be extended with provenance knowledge: by determining if a sensor often malfunc-

tions, or has ‘drifted’ and needs recalibrating, it would be possible to assign a ‘reliability metric’ to a sensor

observation and subsequently infer the likelihood of a false positive when triggering an alert, which would

further inform decision makers.
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Figure 10: Key knowledge inferred and extendable through the alert and problem inference testing

6. Tool Implementation and Evaluation

A decision support tool was developed as a proof-of-concept stage, so as to demonstrate the benefits of the pro-

posed platform, within the context of the use case established in the previous section. The tool aimed to extend the

state of the art of GIS tools, as well as typical water utility dashboards. The following subsection describes the in-

terface from a user and technological perspective, and the subsequent subsection provides evidence of the software’s

performance.

6.1. Interactions with the Knowledge Management APIs

Given the described use case, a decision support tool was built as a client application for the knowledge manage-

ment platform described. This utilised the various APIs exposed in a coherent manner to highlight the value of the

approach, which is now described.

The first use of the knowledge management platform was a call to the Hypercat API to retrieve a list of pilot sites

and knowledge bases, followed by a second call to discover the online sensors and alerts. The discovered SPARQL

endpoints of each sites’ knowledge base were then queried to retrieve descriptions of the water network objects such

as pipes, assets, and sewer overflows. Once a sensor had been selected, as described in the following subsection, the

timeseries endpoint was queried to retrieve its data for graphing. On discovering an active alert, the SPARQL endpoint

30



was queried to retrieve further information such as the affected network entities and the problem’s severity, based on

the results of the inference engine’s algorithms. This demonstrates the value of i) the Hypercat endpoint in aiding

the discovery of remote resources and signposting their interfaces, and ii) the ontological grounding, in providing a

common terminology, meaning and uniform resource identifiers for describing objects.

6.2. Decision Support Interface

The decision support tool used the Google Maps API (Google Developers, n.d.) to visualise the water network

assets in an intuitive manner in a web-browser. CSS was used to mobile-optimise the page, such that it could be

used on-site and away from utility workstations. Information about the assets was made available through context

boxes on clicking assets. On clicking a sensor, an info window was displayed which showed a graph of the sensor’s

latest readings, which could be expanded for further investigation. These functions are illustrated in Figure 11 below.

It was envisaged that a decision maker may use these functions during normal asset management and operational

management of the network, but the main use case considered was responding to a network fault.

Figure 11: Illustration of the user interface in network monitoring mode

If a fault was detected by the inference engine, the side menu was uncovered and an alert icon was shown. On
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clicking this icon, the alert investigation state was entered. On entering this state, the colour of the affected network

entities was changed to the alert’s colour (this provisioned for clarity in the case of multiple alerts), and basic alert

information was shown in the side menu. The user could then click the alert information to present a greater level of

detail, or could click network entities to view information pertaining to the alert. This state is illustrated in Figure 12.

The tool’s functions were programmed in pure Javascript and AJAX, to showcase the platform’s various functions

in a simple manner. Firstly, the network asset locations and descriptions were retrieved via a SPARQL query to the

platform, and parsed from the returned JSON object. The sensor locations and descriptions were retrieved from the

Hypercat API of the platform, and used to interoperate with the timeseries data API. This API was then used to

retrieve the dynamic sensor data, to populate the graph of the sidebar. A more detailed interaction with the dynamic

data could easily be achieved by using an existing Javascript library as a wrapper for the KairosDB API. The tool

checked for active alerts at regular intervals through SPARQL queries, although this could have been achieved through

a subscription-based approach. On entering the alert investigation state, the full description of the alert was retrieved

from the knowledge base, including the impact inference knowledge produced by the SWRL rules and Drools engine.

This was then used to update the map, and to populate the information in the sidebar.

Figure 12: Illustration of the user interface in alert mode

6.3. Software Performance

Towards evaluating the performance of the software for the given use case, this primarily involved determining the

response time to network faults, and the accompanying user experience in receiving decision support. Given that the
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tool was only intended as a proof of concept for the Semantic Web of Things approach, the latter of these is outside

the scope of this paper. However, an ‘in vitro’ test of the responsiveness to alerts, and a discussion of the tool’s

responsiveness in general, are feasible and valuable.

The total response time can be evaluated as the sum of the time for the sensor reading to be updated in the

knowledge base, the time taken for the inference engine to reason over the updated readings, and the time taken for

the active alert to be represented in the GUI. As the first of these three components depends entirely on the sensor

network and communication technologies at a site, it is omitted here, as the current contribution is at the application

layer, and is agnostic to the lower level technology choices.

The time taken for the inference engine to reason over the knowledge base has been explored in section 5.3, where

a time of 450ms was observed following caching. As this time is sub-second, it is deemed satisfactory. The time taken

to retrieve knowledge about the active alerts from the SPARQL endpoint was found to be 550ms after caching, with

an initial time of 3000ms, and with memory consumption increasing from 113MB to 800MB after caching. Typically,

at present, sensor readings are only reported up to as frequently as every 15 minutes (so as to preserve battery life) in

water networks. Given this, the overall latency observed in the ICT solution is deemed satisfactory. Further testing

could compare the scalability of technology choices for each component, against foreseeable scenarios of big data

volumes and velocities for the water sector.

It is especially pertinent to discuss the suitability of the semantic approach in regards to the temporal component of

the target use case, given the urgency of raising appropriate alerts, and the potential criticism of semantic technologies

for their handling time. To this end, further testing could be conducted by increasing the telemetry reporting frequency

near alert limits and observing the response time, to test the scalability of the approach with regards to big data

velocity. However, the developed interface is primarily meant to provide decision support following alert discovery,

where the semantic back-end provides discoverability and context to the time series data. It would be preferential

for alert management and other low latency, mission critical software to subscribe to the telemetry devices via the

Kafka pub-sub approach, where the semantic parts of the platform are used for higher-order analytics, optimisation,

and decision support software. In this way the architecture supports reactivity by promoting interoperability through

the ontology at design-time and low latency through the event bus at run-time.

7. Discussion and Conclusion

This paper has proposed a knowledge management platform which aims to facilitate utility decision support soft-

ware in a more powerful and accessible manner than existing solutions. A tool was presented which leveraged the

benefits of the platform to provide higher-order and more integrated insight to decision makers for a real pilot site

in Wales, based on the use case of responding to a network fault. The platform supports the extension of existing

web-based applications (Walker et al., 2014) by furthering and applying the Internet of Things paradigm in smart

water networks, through comprehensive semantic information provision and expert rule inference capabilities.
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The main advantages of the proposed solution are i) the exposure of knowledge at varying levels of semantic

richness, ii) scalability of the dynamic data storage, iii) automated discoverability of resources through standardised

mechanisms, iv) industry-leading security, and v) robust grounding and extensibility through a domain ontology.

Firstly, the knowledge management platform exposes both timeseries data, and rich semantic web data. The former

is achieved through a KairosDB server and accompanying API, provisioning for data-driven applications. The latter is

achieved through an implementation of the Apache JENA libraries, which host a rigorous domain ontology and a site-

specific knowledge bases. A mechanism was discussed which achieves the automated conversion of GIS and EPANET

data to RDF/XML data, federated to the candidate domain ontology. This data is exposed as a standard SPARQL

endpoint via a RESTful API. This is a critical aspect of the proposal, as the RDF data provides a rich contextualisation

of the dynamic data in a coherent and machine-interpretable manner, enabling more powerful, confident, and quicker

interoperability to be achieved with client applications, as well as extensibility. Further, a set of SWRL rules was

curated from expert knowledge, to augment the inference capabilities of the system in line with a proposed use

case of fault detection and impact inference. This rule base could be extended to include more use cases and more

generic expert knowledge, but demonstrates the value of the approach in leveraging semi-structured or incomplete

data towards a more complete description of the state of the network.

The dynamic data server was based on KairosDB, which is itself an implementation of Cassandra (KairosDB,

n.d.). This is a leading edge big data storage solution for timeseries data, and offers the benefits of robustness,

low response time, and seamless scalability. This contrasts the alternative options of hosting the dynamic data at a

centralised RDF repository, or as a traditional MySQL database, or as a set of distributed linked data. Whilst the

proposed solution performed well, further work could explore a quantitative comparison of these options at the data

volumes and velocities likely in the foreseeable future in the water sector.

It was acknowledged that significant progress and value is evident in the Internet of Things field, and so recent

promising work in the field was integrated with the knowledge-based approach to provide resource discoverability.

The accessibility and simplicity of the Hypercat standard meant that this process was a small effort, and provided a

valuable standardised means for discovering sensors on the target water networks, as well as key semantic information,

and API endpoint and type descriptions. The Hypercat subscription service recommendations were not adopted,

as the solution’s previously chosen event-based architecture better supported the many components outside of the

Hypercat ecosystem. An important aspect of future work will be to integrate the platform with the W3C Web of

Things approach, once their suite of standards has been fully endorsed, although the presented work is likely to be

complementary to these standards, and represents a useful contribution to the ongoing discourse.

The previously described APIs were governed by a robust security solution, which was implemented as a dedicated

governance service, that controlled access to knowledge stored within the system using a role based access control

approach. Additionally, security of information in transit was provided by encryption using TLS/SSL.

Finally, the proposed domain ontology represents a critical step for the smart water industry, as it integrates

existing standards and a representative GIS schema with further smart water concepts, as well as the SSN ontology.
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The grounding in a comprehensive ontology, which includes significant abstraction, allows the system to be extensible

in the event of new smart water concepts emerging, or adaptation to suit the needs of a specific stakeholder or use

case. The ontological approach also supports the reuse of the system knowledge within other domains, and vice versa,

such as if an application aimed to integrate a pumping station operation scheme with its local energy resources, or

dynamic pricing tariffs.

A proof-of-concept decision support tool was presented, which aimed to demonstrate the benefits of the various

functions of the platform. This provided a graphical interface for visualising the target network on a map, alongside

dynamic sensor data, customer data, and alert descriptions, via a multiple level-of-detail approach. The tool extends

traditional GIS systems and existing approaches used in industry, as well as integrating several typically siloed utility

ICT systems. As well as this integration, the key extension to the state of the art demonstrated were the inference

capabilities, whereby the affected households could be more easily identified in the event of a network fault, and

suggested actions could be presented to decision makers.

Given the arguments presented, and in the context of the use case presented, the benefits and functions of the

system presented would not have been possible with the standard rule systems evident in the industry (Servelec

Technologies, n.d.), as they don’t integrate the various types of knowledge (social, sensor, network) in the seamless

manner that the ontology does. Further, the requirements outlined in section 3.1 describe a step change towards the

capabilities of modern web applications, beyond currently evident ICT systems in the water industry and literature.

Traditional knowledge management approaches fail to fulfil one or more of these requirements, hence justifying the

value of the semantic web approach.

As the potential for smart water interventions is broad, the work needed a clear scope. As discussed in section

3.1, this scope manifested through a scenario-based approach to requirements engineering, and resulted in an under-

standing of desired functionality, out-of-scope statements, and an understanding of what the software could solve with

little additional work. This also led to an understanding of the value proposition of the main novelty of the work: the

integration of IoT (via Hypercat), semantic web, and inference technologies, which was validated through experimen-

tation. Specifically, the approach is well suited to integrating data silos, providing discoverability and context to IoT

devices for innovative and lightweight application development, and unifying the data schema and semantics used in

a water domain enterprise. This supports the reuse of software, and hypothetically data, across organisations through

standardisation. This has the benefit of accelerating progress in the field, reducing barriers to innovation within an

enterprise by reducing vendor tie-in, and allowing the development of more advanced knowledge-based analytics soft-

ware for the domain. The main drawbacks of the approach would be the need to adapt the domain ontology developed,

and instantiate this for each target system, as well as addressing the likely skills gap surrounding ontologies within

a water utility aiming to adopt the approach. However, the semi-automated reuse of existing enterprise schemas and

data mitigates the upfront investment in adopting an ontological approach, and the simplified API developed addressed

part of the skills-gap problem, although this remains a largely open issue.

The work conducted serves as a proof of concept for this new approach, although more work would be required
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to explore the solution space further before building production-grade software based on the approach. Specifically,

further work is required to fully understand the integration of a Semantic Web of Things approach alongside legacy

systems, given the prohibitive expense of overhauling entire systems. Typical best practice is to implement an IoT

layer above existing systems, in which case further work would be required to synchronise the SWoT layer with

legacy GIS and telemetry layers, and potentially also hydraulic models. Further work is also required to build broader

industry consensus around a standard ontology for the smart water domain, to fully explore the role of streaming RDF

data, and to fully explore the suitability of inference and knowledge-based software within smart water use cases.

Overall, the proposed solution goes beyond existing research in the water or IoT fields, and represents a step-

change towards a Semantic Web of Things for the water sector. The domain ontology, SWRL rules and inference

engine provide comprehensive semantic context to big data from network sensors. Also, by exposing lower and

higher-order knowledge and resource discoverability in a scalable and secure manner, the platform more powerfully

supports interoperability for leading edge and next generation applications.
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