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a b s t r a c t 

Recently, a promising trend has evolved from previous centralized computation to decentralized edge 

computing in the proximity of end-users to provide cloud applications. To ensure the Quality of Service 

(QoS) of such applications and Quality of Experience (QoE) for the end-users, it is necessary to employ 

a comprehensive monitoring approach. Requirement analysis is a key software engineering task in the 

whole lifecycle of applications; however, the requirements for monitoring systems within edge comput- 

ing scenarios are not yet fully established. The goal of the present survey study is therefore threefold: 

to identify the main challenges in the field of monitoring edge computing applications that are as yet 

not fully solved; to present a new taxonomy of monitoring requirements for adaptive applications or- 

chestrated upon edge computing frameworks; and to discuss and compare the use of widely-used cloud 

monitoring technologies to assure the performance of these applications. Our analysis shows that none of 

existing widely-used cloud monitoring tools yet provides an integrated monitoring solution within edge 

computing frameworks. Moreover, some monitoring requirements have not been thoroughly met by any 

of them. 

© 2017 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In recent years, a wide variety of software solutions, such as

nternet of Things (IoT) applications, have emerged as cloud-based

ystems. As a consequence, billions of users or devices get con-

ected to applications on the Internet, which results in trillions

f gigabytes of data being generated and processed in cloud dat-

centers. However, the burden of this large data volume, generated

y end-users or devices, and transferred toward centralized cloud

atacenters, leads to inefficient utilization of communication band-

idth and computing resources. Since all the resource capacity

nd computational intelligence required for data processing reside

rincipally in the cloud-centric datacenters, data analytics for cur-

ent cloud solutions (e.g. for Amazon AWS IoT 1 and Google Cloud

ataflow 

2 ) is still an open research problem. 
∗ Corresponding author. 

E-mail addresses: Salman.Taherizadeh@fgg.uni-lj.si (S. Taherizadeh), 

onesAC@cardiff.ac.uk (A.C. Jones), TaylorIJ1@cardiff.ac.uk (I. Taylor), Z.Zhao@uva.nl 

Z. Zhao), Vlado.Stankovski@fgg.uni-lj.si (V. Stankovski). 
1 Amazon AWS IoT, https://aws.amazon.com/iot/ . 
2 Google Cloud Dataflow, https://cloud.google.com/dataflow/ . 
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To overcome above problem, modern cloud frameworks such as

dge ( Shi and Dustdar, 2016 ), fog ( Bonomi et al., 2014 ) and os-

otic ( Villari et al., 2016 ) computing are aimed at increasing ca-

abilities and responsibilities of resources at the edge of the net-

ork compared to traditional centralized cloud architectures by

ot only placing services in the proximity of end-users or devices,

ut also using new data transfer protocols to improve the inter-

ction with datacenter-based services. This also provides a low-

atency response time for the application. 

Along these lines, the main goal of the SWITCH project 3 is to

ntroduce a novel software design model by which QoS/QoE ob-

ectives can be included in the complete lifecycle of applications

unning in modern cloud frameworks, including edge computing.

ased on this conceptual model, SWITCH solution provides an en-

ironment for developing software systems and monitoring their

xecution, and an autonomous platform for adapting system be-

avior. The focus of the present paper is on monitoring such self-

daptive applications within an edge computing context, where

ome data processing takes place at the edge of the network, and

herefore monitoring and self-adaptation of this processing is nec-
3 The SWITCH project, http://www.switchproject.eu/ . 
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Fig. 1. An example for multi-layer edge computing frameworks. 
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essary in order to ensure that effective use is made of centralized

cloud facilities, edge devices, and the entire infrastructure that an

edge computing framework provides. 

As a motivating example, Fig. 1 provides one modern comput-

ing framework schema – edge computing architecture – which

includes different layers: (I) Centralized cloud computing, (II)

SDN/NFV technologies, (III) Edge computing, and (IV) IoT objects,

sensors or users. 

The multi-layer architecture, shown in Fig. 1 as an example of

pioneer cloud computing frameworks, is described below: 

Layer (I) Centralized cloud computing layer: The central-

ized cloud computing layer includes cloud datacenters which can

belong to various providers. The centralized cloud computing

layer can be utilized for the purpose of long-term storage and

application-level data processing operations that are typically less

time-sensitive. In other words, the capability of this layer would

be using centralized cloud infrastructure in order to run big data

analytics and process less time-sensitive data. In this layer, appli-

cations may be composed of different, modular services, each one

performing different high-level data processing according to users’

requirements for various purposes. For instance, an IoT disaster

early warning application might have two services in this layer:

“warning trigger” service and “call operator” service. A “warning

trigger” may be a surveillance service that processes the incoming

data measured by sensors in order to notify another service, e.g.

“call operator”, when irregular incidents occur. The “call operator”

service may decide whether or not to send an alert to emergency

systems or to the public entities. 

Layer (II) SDN/NFV technologies layer: Software-Defined Net-

working (SDN) ( Astuto et al., 2014 ) and Network Functions Virtu-

alization (NFV) ( Jesus-Gil and Botero, 2016 ) are emerging as new

ways of designing, building and operating networks. These two

complementary technologies are able to support transition of data

between edge nodes and cloud datacenters. Introduction of these

technologies can easily improve dynamism and management of the

network. For example, it is possible to change the path through

which data flows between the centralized cloud computing layer

(the first layer) and the edge computing layer (the third layer)

if the current network quality is not satisfactory. In combination,

SDN and NFV have the potential to specify network flows, enhance
etwork performance and also provide network management ab-

traction independent of underlying networking devices. In this

ay, SDN and NFV can be taken into consideration as enabling so-

utions to steer the evolution of not only network environments,

ut also new cloud-based application architectures such as edge

omputing frameworks. 

Layer (III) Edge computing layer: At the edge computing layer,

dge nodes represent gateways and data capturing services able

o act on raw data, for example aggregating, filtering, encrypting

nd encoding the local data streams in real-time. This layer is a

lace where the cloud resources are being distributed and moved

ear to the end-users and end-devices. This is the main reason

hat edge computing has been called ubiquitous computing as well.

he rationale of employing edge nodes is to analyze time-sensitive

ata closer to the location where these data streams are collected,

ence taking some of the computational load off the resources

t the centralized cloud computing layer (the first layer) and, in

ome cases, reducing network load too ( Satyanarayanan, 2017 ) at

he SDN/NFV technologies layer (the second layer). Edge nodes can

lso have other functionalities, dependent on the requirements of

ndividual use cases. In an early warning system, these nodes con-

ist of services to receive data over direct link from sensors, fil-

er the input data stream, aggregate the measured values and send

he data to the “warning trigger” which is another service running

t centralized cloud computing layer. Hence, an edge computing

ayer can offload significant traffic from the core network and dat-

centers. That is why this new paradigm, as an extension of cen-

ralized cloud, provides low latency, location awareness, and opti-

izes users’ experience under QoS requirements for time-critical

nd even real-time applications. 

Layer (IV) IoT objects/sensors/users layer: In this layer, con-

ected devices have a pervasive presence in the Internet. Objects

e.g. smart home modules) can be remotely controlled; sensors are

ble to measure different parameters (e.g. temperature, baromet-

ic pressure, humidity and other environmental variables) and also

sers are capable of using online software solutions via connected

evices such as mobile phones. 

The multi-layer edge computing architecture depicted in

ig. 1 offers the following improvements over the classical cloud

omputing model: 
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• Reducing the amount of network traffic: Edge nodes at the edge

computing layer (the third layer) are able to filter unneces-

sary data and significantly aggregate only key information that

should be streamed to the centralized cloud computing layer

(the first layer), and then received, stored and processed. 
• Improving the application performance: Data processing locally

on edge nodes at the edge computing layer (the third layer)

next to end-users or end-devices rather than at the centralized

cloud computing layer (the first layer) can be exploited as a so-

lution to shrink latency, reduce response time and hence im-

prove the application QoS. 
• Facilitating new approaches of load-balancing: The edge com-

puting paradigm has introduced new functionalities of service

migration such as movement of running services between the

centralized cloud computing layer (the first layer) and the edge

computing layer (the third layer) to support load-balancing

on-demand ( Sharma et al., 2017 ). Or it can provide a highly-

improved load-balancing behavior by scaling the power of com-

puting locally on edge nodes when compared to traditional,

centralized computation. 
• Providing the awareness of location, network and context infor-

mation: In consequence of the edge computing architecture, it

is now possible to track end-users’ information such as their

location, mobility, network condition, behavior and environ-

ment in order to efficiently provide customized services. This

would ensure end-users’ needs and preferences for QoE (as di-

rect measurement of users’ satisfaction) are accounted for. 
• Minimizing energy consumption: Rapid growth in the number

of objects and users connected to the Internet has been al-

ways been associated with the demand for maximizing the en-

ergy efficiency. Tasks can be offloaded from end-devices to edge

nodes that are not far away such as centralized cloud data-

centers. This fact helps to reduce the energy consumption at

end-devices, centralized computing infrastructures and network 

points between the edge computing layer and centralized cloud

computing layer. 

The performance of edge computing applications varies signifi-

antly depending on runtime variations in running conditions e.g.

he number of arrival requests to be processed, availability of vir-

ualized resources, network connection quality between different

pplication components distributed over the Internet, etc. There-

ore, tracking dynamic changes of operational environments is es-

ential in order to identify and remedy any deterioration of system

ealth. To this end, the use of monitoring capabilities in every layer

f an edge computing framework helps the cloud-based applica-

ion provider to recognize where any performance bottlenecks are.

esides this, it allows the system to predict potential issues, and

o enhance the application performance to avoid QoE degradation

xperienced by the user. 

Such advanced cloud-based frameworks, providing highly dis-

ributed, heterogeneous and even federated environments, can ex-

loit lightweight container-related virtualization technologies (such

s CoreOS, 4 Kubernetes, 5 OpenShift Origin 

6 and Docker Swarm 

7 )

or the automatic deployment of different services which commu-

icate with each other through well-defined, efficient mechanisms.

herefore, various monitoring requirements in terms of cloud in-

rastructure, container virtualization, communication network and

pplication-specific condition are present when using edge com-

uting platforms. 
4 CoreOS, https://coreos.com/ . 
5 Kubernetes, https://kubernetes.io/ . 
6 OpenShift Origin, https://www.openshift.org/ . 
7 Docker Swarm, https://docs.docker.com/swarm/ . 
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The significance of a monitoring system fully-configured for

n application adaptation objective has been discussed in expe-

ience studies in various cloud contexts. Such studies present a

ide range of monitoring technologies and methodologies of di-

erse applicability in practice. Various research works have an-

lyzed these monitoring tools and approaches needed for cloud

pplications so far ( Aceto et al., 2012; Aceto et al., 2013; Fatema

t al., 2014; Garcia-Valls et al., 2014; Mohamaddiah et al., 2014;

ard and Barker, 2014; Hazarika and Singh, 2015; Alcaraz-Calero

nd Aguado, 2015; Sugapriya and Jeya, 2015; Alhamazani et al.,

015 ). However, such monitoring studies have not addressed the

rea of self-adaptive applications within edge computing frame-

orks, which represent a new era of cloud computing. This is an

mportant area, since failing to analyze and determine the whole

pectrum of monitoring requirements in the right way may lead to

 massive software engineering failure for these types of applica-

ions. 

The primary goal of the present paper has been to explore the

undamental challenges to the evolution of monitoring in the edge

omputing context that are not well-addressed in academic litera-

ure and industries. In order to understand how these challenges

an currently be met, we focus on the comparison and analysis of

haracteristics of existing cloud monitoring technologies to deter-

ine their strengths and weaknesses precisely in this domain. 

More specifically, the main contribution of this paper can be

ummarized as follows: (I) providing a systematic analysis of dif-

erent monitoring concepts within edge computing frameworks;

II) identifying the main open challenges and significant techni-

al issues in such modern monitoring approaches; (III) providing a

axonomy of monitoring requirements needed to support dynamic

daptation of applications within edge computing frameworks; and

IV) presenting the future research directions for monitoring tech-

iques in the adaptation of edge computing applications. 

The rest of the paper is organized as follows. Section 2 presents

 requirement analysis of monitoring levels within edge computing

rameworks. We finish this section with an overview of challenges.

ection 3 develops a taxonomy of monitoring requirements for

dge computing applications. Section 4 discusses existing widely-

sed monitoring technologies and the level to which they address

he requirements identified from an edge computing viewpoint.

he conclusion appears in Section 5 . 

. Monitoring levels 

To adapt edge computing applications to the changing execu-

ion environment and ensure application QoS requirements con-

inue to be satisfied, it is necessary to employ a comprehensive

onitoring system able to address the whole spectrum of re-

uirements, pertaining to different levels including (1) the un-

erlying infrastructures (e.g. VM’s computing resources, etc.), (2)

dge computing platforms (e.g. Docker containers, etc.), (3) net-

ork connections between individual application components and

4) application-specific measurements (e.g. service response time,

tc.). 

This section explains a requirement analysis of all four

reviously-mentioned monitoring levels for cloud-based applica-

ions from an edge computing viewpoint. A modern software engi-

eering discipline provides an approach to design such applications

ased on a set of different loosely coupled independent compo-

ents running either in Virtual Machines (VMs) or containers and

ence, for completeness, we consider both VM and container lev-

ls of virtualization. Emphasis in this section has been put on the

mportance of monitoring needs for self-adaptive applications from

dge computing viewpoint, in order to present a new taxonomy of

onitoring requirements for such applications in Section 3 . 

https://coreos.com/
https://kubernetes.io/
https://www.openshift.org/
https://docs.docker.com/swarm/
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Table 1 

Overview of research on different VM-level monitoring systems. 

Paper Goal Measured metrics (VM-level) 

Al-Hazmi et al. (2012 ) Monitoring federated clouds CPU, memory, disk, network usage, etc. 

Wood et al. (2008 ) Modeling resource utilization of cloud applications CPU, disk, network usage 

Kwon and Noh (2013 ) IaaS cloud monitoring CPU, memory, disk 

Meera and Swamynathan (2013 ) IaaS cloud monitoring CPU, memory 

Clayman et al. (2010a ) Monitoring federated clouds CPU, memory, network usage 

Caglar and Gokhale (2014 ) Intelligent resource provisioning CPU, memory 
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2.1. VM-level monitoring 

All the physical resources including CPU, memory, disk and net-

work can be virtualized. Multiple VMs can be deployed on a sin-

gle physical machine and thus share physical resources between

each other. Based on the vision of edge computing, it is necessary

to have control over a pool of configurable virtualized resources

exploited in both the centralized cloud computing layer (the first

layer depicted in Fig. 1 ) and the edge computing layer (the third

layer shown in Fig. 1 ). It should be possible for such resources

to be autonomously provisioned and de-provisioned with little, or

preferably no intervention of an application provider. In order to

have efficient resource utilization and prevent any problems in vir-

tualized resources, monitoring of the VMs used in the cloud dat-

acenters and edge nodes is critical. Performance optimization can

be best achieved by efficiently monitoring the utilization of these

virtualized resources. Capabilities for monitoring such resources in-

clude tools for monitoring mainly usage of CPU, memory, storage

and network: 

• CPU usage shows the amount of actively used CPU as a percent-

age of total available CPU in a VM. If the processor utilization

reaches 100% and the CPU run queues start filling up, the sys-

tem has run out of available processing capacity and adaptation

action must be taken at that point – or, preferably, before that

point, in anticipation. 
• Memory usage indicates the percentage of memory that is used

on the selected machine. 
• Disk usage refers to the amount of data read or written by a

VM. Or it can also indicate the percentage of used drive space.

Adding additional storage to the VM and allocating it to the ap-

propriate partition can often resolve disk space issues. 
• Network usage is the volume of traffic on a specific network

interface of a VM, including external and internal data traffic. 

Relevant papers that have been published in this area are in-

cluded in Table 1 . We provide more details in the following para-

graphs. 

Al-Hazmi et al. (2012) adopted a cloud monitoring system

to provide Monitoring-as-a-Service (MaaS) usable by both cloud-

based application providers and customers which may have dif-

ferent views on the monitoring data in a multi-tenant environ-

ment. Their monitoring solution works across federated clouds;

however it is restricted to datacenters’ monitoring tools. This ap-

proach needs all infrastructures to apply the same monitoring sys-

tem; whereas an important requirement in edge computing frame-

works is for a monitoring solution which is not cloud-specific and

capable of working across federated testbeds. 

Wood et al. (2008) developed a mathematical model to esti-

mate resource overhead for a VM. The proposed model can be

adopted for approximating virtualized resource requirements (es-

pecially CPU) of any application on a determined platform. More-

over, the model can be used to estimate the aggregated resource

needs for VMs co-located on one host. Their solution defines the

minimum amount of resources necessary for a VM to avoid per-

formance reduction because of resource starvation. However, their

approach is not able to directly measure how application perfor-
ance (measured, for example, by response time) will vary. An-

ther notable point in this work is that profiling resource usage

f virtualized applications is offline and occurs on monthly or sea-

onal timescales. Therefore, it makes the proposed model less use-

ul due to the dynamic environment of edge computing scenarios. 

Kwon and Noh (2013) demonstrated an architecture for a mon-

toring system consisting of a dashboard to show the real-time re-

ource utilization for servers and VMs. It was mentioned that if

PU, memory, and storage are overloaded, then the virtual servers

ill not be able to perform their normal function. However, the ar-

icle did not explain how the experiment could be implemented in

ractice and therefore it is not completely clear that the proposed

olution can be used to improve the performance of VMs, as the

uthors claim. It should be noted that the proposed monitoring ar-

hitecture is usable only for a specific kind of virtualization (Xen

ypervisors). 

Meera and Swamynathan (2013) proposed an agent-based re-

ource monitoring system which provides VM-related informa-

ion (CPU and memory utilization) to the cloud-based application

rovider for efficient resource optimization. The proposed monitor-

ng architecture can be improved by adding an alarm feature that

riggers if a value breaches a threshold that can be used for many

urposes such as failure prediction or Service Level Agreement

SLA) assessment. This architecture is limited by its dependence on

entralized coordination. In contrast, with regard to the needs of

elf-adaptive edge computing solutions, monitoring agents which

eport the availability of resources should be autonomous. 

Clayman et al. (2010a) described a monitoring framework called

attice which is able to measure and report system parameters

f virtual infrastructures for the management of cloud-based ser-

ices in real-time. This monitoring framework provides necessary

ibraries along with APIs to implement a customized monitor-

ng system and it could be considered more as a toolkit than a

eady-to-use tool. The main functionality of the Lattice monitoring

ramework is the collection and distribution of measurement data

hrough either UDP or multicast protocol. Therefore, their proposed

olution does not include the functionality for visualization. 

Caglar and Gokhale (2014) presented an autonomous, intelli-

ent resource management tool called iOverbook usable in het-

rogeneous and virtualized environments. This tool provides an

nline overbooking strategy based on a feed-forward neural net-

ork model by carefully considering the historic resource usage to

orecast the mean hourly CPU and memory usage one step ahead.

owever, their work could be improved by effective filtering of po-

ential outliers that can quench heavy data transmission overhead

specially on edge nodes in large-scale edge computing environ-

ents. Also, in order to make the proposed solution capable of

orking with a high sampling frequency in highly dynamic envi-

onments, one step further could be taken to consider various time

ntervals instead of a fixed hourly rate. 

.2. Container-level monitoring 

In comparison with VMs, the use of containers which does not

equire an Operating System (OS) to boot up as another form of

erver virtualization ( Seo et al., 2014 ) is rapidly increasing in pop-
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Table 2 

Common set of container-level parameters. 

Container-level metric Type Description 

rx_bytes B/s Bytes received by the container 

rx_packets Pckt/s Packets received by the container 

tx_bytes B/s Bytes sent by the container 

tx_packets Pckt/s Packets sent by the container 

cpu_usage Float %CPU usage of the container 

memory_usage KB %memory usage of the container 

io_service_bytes_read B/s Bytes read from block device by the container 

io_service_bytes_write B/s Bytes written to block device by the container 
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larity. One particular reason for this is that container images have

ignificantly smaller size than full VM images. Along these lines,

ifferent container-based virtualization platforms such as Amazon

C2 Container Service (ECS) 8 and Google Container Engine (GKE) 9 

ave been provided as alternatives to hypervisor-based technolo-

ies. Because of the lightweight nature of containers, it is possible

o deploy container-based services (e.g. microservices ( Kratzke and

uint, 2017 )) in different hosting environments faster and more

fficiently than using VMs. Moreover, it is easier to pull con-

ainer images or migrate container instances of application com-

onents across computing nodes in the cloud; the more traditional

M-based techniques are too heavyweight to achieve this type of

gility that is required in edge computing frameworks. This agility

s needed because the migration process is an efficient tool for

any purposes such as load-balancing, dealing with hardware fail-

res, scaling systems or reallocating resources. A migration mech-

nism has to operate automatically to provide almost zero down-

ime even in the specific situation, for example, when an infras-

ructure failure occurs in each level of multi-layer edge computing

rameworks shown in Fig. 1 . 

According to the edge computing trend in which cloud envi-

onments are becoming more dynamic and workloads vary over

ime, using this lightweight cloud technology can support self-

daptation of the entire system to address the needs of applica-

ion providers and users. This support is also due to the ability of

articularly interoperable service packaging and orchestration that

his technology provides us to bind various software components

n order to build the whole application. It means that decentral-

zed edge clouds which move the computation and data manage-

ent to the edge of the network away from datacenters require

 lightweight distribution and orchestration of portable application

omponents such as containerization. 

If the system uses containers to run application services in both

he centralized cloud computing layer (the first layer depicted in

ig. 1 ) and the edge computing layer (the third layer shown in

ig. 1 ), container-level monitoring becomes mandatory. 

According to the literature ( Stankovski et al., 2016; Preeth et al.,

015; Beserra et al., 2016; Vangeepuram, 2016; Dusia et al., 2015 ),

he common set of container-level metrics to be monitored and

seful in the context of application adaptation is shown in Table 2 .

Besides this, there are different tools provided just in order to

onitor containers and display runtime value of key attributes for

 given container, as listed in Table 3 . 

All container-specific monitoring tools compared in Table 3 pro-

ide a REST API to expose statistics about a given container and

his remote API can be externally invoked by other entities. 

Docker provides a built-in command called docker stats which

eports runtime metrics and resource usage for a given container.
8 Amazon EC2 Container Service, https://aws.amazon.com/ecs/ . 
9 Google Container Engine, https://cloud.google.com/container-engine/ . 
etrieving a detailed set of metrics is also possible by sending a

ET request to the Docker Remote API. 10 

Container Advisor (cAdvisor) is an open-source system that

easures, aggregates, processes, and displays monitoring data

bout running containers. This monitoring information can be used

s an understanding of the runtime resource usage and perfor-

ance characteristics of running containers. cAdvisor shows data

or the last 60 s only. However, it supports the ability to eas-

ly store the monitoring information in an external database such

s InfluxDB that allows long-term storage, retrieval and analysis.

nfluxDB is an open-source Time Series Database (TSDB) capable

f real-time and historical analysis. Complementing this, Grafana

s an open-source Web-based user interface to visualize large-

cale monitoring information. It is able to run queries against the

atabase and show the results in an appropriate scheme. On top

f cAdvisor, using Grafana and InfluxDB could effectively improve

isualizing the monitored parameters collected by cAdvisor in con-

ise charts for any time period. 

Prometheus 11 is an open-source monitoring tool as well as a

SDB. It gathers monitoring parameters from pre-defined resources

t specified intervals, shows the results, checks out rule expres-

ions, and is capable of triggering alerts if the system starts to ex-

erience abnormal behavior. Prometheus uses LevelDB 

12 as its lo-

al storage implementation for indices and storing the actual sam-

le values and timestamps. Although cAdvisor, in comparison with

rometheus, has been considered as the easier tool for use, it has

imits with alerting on occurrence of an identified event when

omething requires attention. However, both may not properly pro-

ide turnkey scalability themselves, capable of handling large num-

er of monitored containers. 

Docker Universal Control Plane (DUCP) is a tool to manage, de-

loy, configure and monitor distributed applications built using

ocker containers. This container management solution supports

ll the Docker developer tools such as Docker Compose to deploy

ulti-container applications across clusters. High scalability and

eb-based interface are some of the key features of DUCP as a

ocker native commercial solution. 

Scout 13 is another container monitoring tool which has a Web-

ased graphical management environment, and is able to store at

ost 30 days of measured metrics. It consists of a logical reasoning

ngine capable of alerting based on metrics and their associated

redefined thresholds. Similar to Scout, there are many commercial

olutions to monitor containers with the same characteristics. 

Container-level monitoring is currently a hot research topic, as

ompared to related areas, for example monitoring of cloud infras-

ructures. Relevant papers that have been published in this area

re included in Table 4 . 

Stankovski et al. (2016) proposed a distributed self-adaptive ar-

hitecture that applies the edge computing concept with container-

ased technologies such as Docker and Kubernetes to ensure the

oS for time-critical applications. Their idea is to deploy the con-

ainerized application (file upload use case) in different geographic

ocations in a way that the service is created, served and destroyed

or every file upload request. For each container, features of re-

ources required for the host can be allocated upon monitoring

ata and operational strategies defined by the end-user, applica-

ion developer and/or administrator. 

Preeth et al. (2015) evaluated the performance of Docker con-

ainers based on system resource utilization. From their bench-

arks, the authors found that container-based virtualization can

e compared to an OS running on bare-metal in terms of memory,
10 Docker Remote API, https://docs.docker.com/engine/api/v1.21/ . 
11 Prometheues, https://prometheus.io/ . 
12 LevelDB, https://github.com/syndtr/goleveldb . 
13 Scout, https://scoutapp.com/ . 

https://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/
https://docs.docker.com/engine/api/v1.21/
https://prometheus.io/
https://github.com/syndtr/goleveldb
https://scoutapp.com/
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Table 3 

Overview of container-specific monitoring tools. 

Monitoring tool License REST API Being scalable Alerting Time Series GUI 

Database (TSDB) 

Docker Built-in Tool a Apache 2 Yes No No No No 

cAdvisor b Apache 2 Yes No No No Yes 

cAdvisor + In- 

fluxDB c + Grafana d 
cAdvisor: Apache 2, InfluxDB: 

MIT, Grafana: Apache 2 

Yes Yes No Yes Yes 

Prometheus Apache 2 Yes No Yes Yes Yes 

DUCP e Commercial Yes Yes Yes No Yes 

Scout Commercial Yes No Yes Yes Yes 

a Docker, https://www.docker.com/ . 
b cAdvisor, https://github.com/google/cadvisor . 
c InfluxDB, https://influxdata.com/time- series- platform/influxdb/ . 
d Grafana, http://grafana.org/ . 
e Docker Universal Control Plane (DUCP), https://docs.docker.com/ucp/ . 

Table 4 

Overview of research on different container-level monitoring systems. 

Paper Goal Measured metrics (Container-level) 

Stankovski et al. (2016 ) Adaptation of cloud applications (for time-critical applications) CPU, memory, disk, network usage 

Preeth et al. (2015 ) Performance evaluation of virtualization technology CPU, memory, disk, network usage, etc. 

Beserra et al. (2016 ) Performance evaluation of virtualization technology (for I/O-bound applications) Disk 

Vangeepuram (2016 ) Performance evaluation of virtualization technology (for Cassandra server) CPU and disk 

Dusia et al. (2015 ) Support application QoS (for bandwidth-intensive applications) Network usage 
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CPU and disk usage. With regard to these three metrics, the per-

formance of Docker approximates the performance of native envi-

ronment. But, according to the network utilization, the host OS has

considerably less network bandwidth compared to the Docker con-

tainer. However, in this work, one host was allocated to just one

container to simplify the experiments. In addition, container per-

formance against other virtualization technologies could be evalu-

ated as a further complement to this work. 

Beserra et al. (2016) analyzed the performance of container vir-

tualization in comparison with VM-based virtualization for HPC

disk I/O-bound jobs. Based on the evaluation, results showed that

containerized environments generally work more effectively than

VMs for disk I/O and data intensive applications. Moreover, both

virtualization technologies achieved the same performance if there

is just one abstraction per physical server. 

Vangeepuram (2016) undertook an experimental performance

comparison of Apache Cassandra TSDB between Linux container

and bare metal. They considered three different workload scenar-

ios: write, read and mixed (read & write) loads. The results of the

research work showed that the Cassandra cluster on bare metal

consumes less CPU utilization than it does when it is containerized

in both write and mixed scenarios, but there is no significant dif-

ference for the read scenario. The Cassandra cluster on bare metal

has less latency compared to containers in all scenarios. Further-

more, considering the disk throughput, no concrete inference can

be drawn from the findings. However, memory utilization was not

considered in this work. Monitoring memory consumption would

have provided more realistic results, since the performance of Cas-

sandra becomes poor if the system does not have enough memory

as it starts to do mostly garbage collection at some point. 

Dusia et al. (2015) introduced a mechanism to guarantee net-

work QoS for time-critical applications using Docker. Their imple-

mentation is able to prioritize the network access of all containers

running on a host in a way that the containers with higher priority

will be given more share of the total available network bandwidth.

Therefore, in this way, a containerized application that is network

bandwidth intensive cannot result in a poor or undesirable exe-

cution due to other applications sharing a Docker host. However,

authors performed their experiments in a static setting, without

considering current dataflow requirements or ongoing buffer sta-
tus. 
 

.3. End-to-end link quality monitoring 

Cloud-based applications, such as early warning systems, have

ime-critical requirements, such as minimal delay and jitter toler-

nce, and require suitable support to achieve guaranteed network-

ased QoS. This is a challenge because performance is difficult

o keep up if the network infrastructure’s conditions continuously

hange. 

The idea that some application services are deployed on the

odes at the edge of the network and others on centralized dat-

centers has raised serious concerns about the network quality of

inks between these services across an edge computing framework.

his is a challenging research area, because it relates not only to

ive-migration of services between edge nodes and datacenters, but

lso among different nodes at the same layer in edge computing

rameworks. 

Network performance for all communications passing through

he edge computing framework has to be measured by end-to-end

ink quality monitoring. Regardless of what network technologies

re being used, the edge paradigm contains four types of network

onnections among application components to be considered: 

• Communications between a cloud datacenter and an edge

node: new enabling technologies, such as SDN and NFV, provide

a basis for applying advanced principles on how networks can

be appropriately developed, implemented, deployed and oper-

ated between the cloud datacenter and edge nodes in an edge

computing framework. In recent years, SDN and NFV open up

novel opportunities providing a method for virtualizing net-

work on-demand based on end-to-end connection quality at

any time. Network components (e.g., routers, bridges, switches,

etc.) can be virtualized by NFV, and thereby it is efficiently pos-

sible to dynamically instantiate, migrate and scale up or down

network functions such as routing, packet forwarding and fire-

wall services. Alongside NFV, SDN offers a set of APIs and con-

trol protocols such as SNMP and OpenFlow that enable the net-

work to be programmable, managed and automated. 
• Communications between edge nodes: edge nodes at various

geographical locations manage a pool of virtualized resources

locally. In this way, collaborative provisioning and content de-

livery among peered edge nodes helps the application provider

improve the entire application performance. The data transmis-

https://www.docker.com/
https://github.com/google/cadvisor
https://influxdata.com/time-series-platform/influxdb/
http://grafana.org/
https://docs.docker.com/ucp/
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Table 5 

Overview of research on different link quality monitoring systems. 

Paper Goal Measured metrics (Network-level) 

Lampe et al. (2013 ) Support application QoS (for audio/video streaming services) Delay 

Chen et al. (2014 ) Support application QoS (for cloud gaming systems) Throughput, delay, packet loss 

Samimi et al. (2007 ) Support application QoS (for communication services) Delay, packet loss, jitter, etc. 

Mohit (2010 ) Support application QoS (for communication services) Throughput, delay, packet loss 

Hsu and Lo (2014 ) Ensure QoE to the users (for multimedia services) Throughput, delay, packet loss, jitter 

Taherizadeh et al. (2016a ) Ensure QoE to the users (for data streaming services) Throughput, delay, packet loss, jitter 

Cervino et al. (2011 ) Support application QoS (for real-time streaming services) Throughput, delay, packet loss, jitter 
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sion among these nodes can be performed either by a central-

ized approach such as SDN, or via a fully distributed method

through traditional routing protocols, e.g. OSPF ( Verma and

Bharadwaj, 2016 ). 
• Communications between/within cloud datacenters: with the

remarkable growth in cloud-based applications, the volume of

data exchanged between software components in different tiers

deployed on cloud datacenters is rapidly increasing. Ensuring

that these types of applications are able to offer favorable ser-

vice quality has been a challenging issue due to runtime vari-

ations in network conditions intrinsic to connections between

individually replicated and distributed application components

across/within different cloud datacenters. 
• Communications between IoT object/user and edge nodes: self-

adaptive application providers have to dynamically adapt their

services to the IoT device and customer’s network circum-

stances to provide high performance and a seamless experience.

According to the literature ( Lampe et al., 2013; Chen et al.,

014; Samimi et al., 2007; Mohit, 2010; Hsu and Lo, 2014; Taher-

zadeh et al., 2016a; Cervino et al., 2011 ), the most important met-

ics to be analyzed for network measurement include: 

• Network throughput, which is the average rate of successful

data transfer through a network connection. 
• Network delay, which specifies how long a packet takes to

travel across a link from one endpoint or node to another. This

metric can also mean Round-Trip Time (RTT) which is the time

elapsed from the propagation of a message to a remote place

to its arrival back at the source. 
• Packet loss, which is when one or more packets of data travel-

ing across a network fail to reach their destination. 
• Jitter, which is the variation in the end-to-end delay of sequen-

tial received packets. This network parameter is extremely im-

portant for real-time applications, e.g. oil exploration or con-

nected vehicle application, as jitter impacts the size of the as-

sociated data stream buffers. 

As can be seen in Table 5 , some effort s have been made to re-

earch and build monitoring systems that focus on end-to-end link

uality measurement of cloud environments. 

Lampe et al. (2013) explained that limitations of the net-

ork infrastructure, such as high latency, potentially affect the

oS of cloud-based computer games for a user. The authors con-

ucted their research focusing on network latency measurement

nd would benefit from additional end-to-end link quality metrics;

or example, the effects of network disturbances, such as increased

acket loss or fluctuating throughput which are noticeable indica-

ors of network performance within edge computing frameworks. 

Chen et al. (2014) performed an extensive traffic analysis of two

ommercial gaming systems (StreamMyGame and OnLive). The re-

ults demonstrate that limitations of bandwidth and packet loss

ause a negative effect on the graphic quality and the frame rates

n the cloud gaming systems. Alternatively, the network delay does

ot predominantly impact the graphic quality of the gaming ser-

ices, due to buffering. The authors focus on the users’ perspective
n cloud-based gaming systems, and the performance of gaming

ervices could be evaluated from the service providers’ perspective

s another research area. 

Samimi et al. (2007) introduced a model including a network-

ased monitoring system and enabling dynamic instantiation, con-

guration and composition of services on overlay networks. The

esults show that to simplify and accelerate the deployment and

rototyping of communication services, distributed cloud infras-

ructures can be designed and used to dynamically adapt the ser-

ice quality to the workloads in which the service provider needs

 large number of resources. However, when it comes to overlay

etworks, encapsulation techniques are not without drawbacks, in-

luding overhead, complications with load-balancing and interop-

rability issues with devices like firewalls. 

Mohit (2010) mentioned that computation-based infrastructure 

easurement is not adequate for the optimal implementation of

unning cloud services. Network-level evaluation of the cloud ser-

ice is also very important. The author suggests an approach that

ncludes use of different technologies without implementation and

etailed information. Moreover, their solution relies on high capac-

ty edge routers which are expensive and consequently cannot be

fforded in all use cases. 

Hsu and Lo (2014) presented a mapping from QoS to QoE and

hereby an adaptation model to translate end-to-end link quality

etrics (including delay, packet loss rate, jitter and throughput)

nto QoE of the end-user in multimedia services running on the

loud. To this end, they proposed a function to evaluate the QoE

core after the user watches the streaming video. The results indi-

ate that the network QoS and users’ QoE are consistent and linked

ogether. Therefore, service providers are able to apply the pro-

osed autonomous function to calculate users’ QoE impression and

o rapidly react to the QoE degradation. The proposed approach

oes not take into account the trade-off between network cost op-

imization and quality which is a significant factor to be consid-

red in the adaptation of edge computing scenarios ( Ahmed and

ehmani, 2017 ). However, it should be noted that different users

ave different objectives e.g. conflicting objectives of price and

uality. 

Taherizadeh et al. (2016a) proposed a non-intrusive network

dge monitoring approach which is able to measure critical QoS

etrics including delay, packet loss, throughput and jitter in order

o adapt service quality experienced by the users for real-time data

treaming applications running on edge computing platforms. The

uthors claim that network edge-specific monitoring knowledge

elps application providers accomplish more satisfactory adapta-

ions to the user’s conditions (e.g. network status). In this work,

he main adaptation possibility includes dynamically re-connecting

sers to a set of the best reliable servers offering fully-qualified

etwork performance. 

Cervino et al. (2011) performed experiments to evaluate the

enefits of deploying VMs in clouds for P2P streaming. The authors

trategically placed network traffic distribution nodes into cloud

nfrastructures around the world owned by Amazon. The main

oal is to improve the QoS of live-streaming even in P2P video-
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Table 6 

Overview of research on application-level monitoring systems. 

Paper Goal Measured metrics (Application-level) 

Leitner et al. (2012 ) Adaptation of cloud applications (e.g. Twitter) Response time (time-per-data item), application 

throughput (data item-per-second), etc. 

Evans et al. (2015 ) Adaptation of cloud applications (e.g. Twitter) Total incoming tweets per second, number of channels 

running in pipeline, etc. 

Emeakaroha et al. (2012 ) Cloud application SLA violation detection Response time, application throughput, etc. 

Farokhi et al. (2015 ) Adaptation of cloud applications (e.g. Web 

applications) 

Response time 

Xiong et al. (2013 ) Modeling the performance of cloud applications 

(e.g. Web applications) 

Response time and application throughput 

Mastelic et al. (2012 ) Modeling the performance of cloud applications 

(e.g. audio and video services) 

Response time (render time per frame) 

Shao and Wang (2011 ) Modeling the performance of cloud applications Response time, availability of application, etc. 

Wamser et al. (2017 ) Ensure QoE to the users (e.g. live video 

streaming services) 

Application throughput (frames per second), dropped 

frames and video quality 

Rossi et al. (2015 ) Modeling the performance of cloud applications Response time 

Jamshidi et al. (2015 ) Adaptation of cloud applications Response time and application throughput 

Rao et al. (2011 ) Intelligent resource provisioning Response time and application throughput 

Islam et al. (2012 ) Intelligent resource provisioning Response time 
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conferencing services by creating network connections among

Amazon’s cloud datacenters, making use of the low latency and

reduced packet loss that exists among its datacenters. The au-

thors assess different network QoS metrics of connections between

Amazon datacenters in different regions that provide better net-

work quality than the average Internet connection. Their imple-

mentation deals with trans-continental communications and con-

sequently does not address traffic localization including data ex-

changes between nearby peers just in one area. Since in some

cases such as Pokémon GO, (one of 2016s successful games) edge

nodes distributed around a country (e.g. Australia) would occasion-

ally need to send data (only a subset of scoring information) up to

a central datacenter whereas the game requires constant back-and-

forth interactions between the users and the edge nodes in close

proximity. 

2.4. Application-level monitoring 

The edge computing framework itself is application agnostic in

that it is not dedicated to a single type of software system or

purpose. However, every cloud-based application needs to be ex-

tended to include application-level monitoring capabilities to mea-

sure metrics that present information about the situation of the

service and its performance. Although a large number of research

works consider the reliability of the underlying cloud infrastruc-

tures, there is still a lack of efficient application-level monitoring

techniques to be able to detect and measure QoS degradation. In

Table 6 , different works to monitor application-level metrics are

summarized. 

Leitner et al. (2012) proposed the monitoring system called

CloudScale which measures the distributed application’s perfor-

mance at runtime and also adopts user-specified scaling policies

for provisioning and de-provisioning of virtual resources. Their

proposed event-based approach models the workload behavior,

supports multi-dimensional analysis, and defines the adaptation

action. However, it considers only elasticity which often could be

to increase and decrease the total number of computing nodes in

the resource pool, regardless of application topology or reconfigu-

ration. 

Evans et al. (2015) used container-based virtualization to run

a Twitter analysis application called Sentinel. The application con-

sists of multiple containerized components distributed in the cloud

and can provide Docker container reconfiguration on demand as

well as real-time service monitoring to inform the reconfiguration

module to restructure the application based on changing circum-
tances (load, etc.). The proposed system is capable of being scal-

ble for running components to be dynamically duplicated in order

o share the workload. 

Emeakaroha et al. (2012) implemented the monitoring frame-

ork called CASViD which is general purpose and supports the

easurement of low-level system metrics for instance CPU and

emory utilization as well as high-level application metrics which

epend on the application type and performance. The results imply

hat CASViD, which is based upon a non-intrusive design, can de-

ne the effective measurement interval to monitor different met-

ics. It can offer effective intervals to measure different metrics for

aried workloads. As the next step, it is possible to improve this

ramework in order to support multi-tier applications. This is chal-

enging, due to the distributed nature of edge computing appli-

ations nowadays, each application has different types of compo-

ents with different application-level metrics. 

Farokhi et al. (2015) proposed a fuzzy autonomic resource con-

roller to meet service response time constraints by vertical scal-

ng for both memory and CPU without either resource over- and

nder-provisioning. The controller module autonomously adjusts

he optimal amount of memory and CPU needed to address the

erformance objective of interactive services, such as a Web server.

ince the maximum memory or CPU capacity is limited, the pro-

osed system could be extended to consider both vertical and hor-

zontal scaling to be able to afford unlimited amount of workload

ossibly generated in large-scale edge computing scenarios. 

Xiong et al. (2013) proposed a model-driven framework called

PerfGuard to achieve automated adaptive application perfor-

ance. This approach, which is capable of identifying performance

ottlenecks, has three modules: (1) a sensor element to collect

untime system metrics as well as application-level metrics e.g. re-

ponse time and application throughput; (2) a model building ele-

ent that enables the creation of a customized performance model

howing the correlation between system metrics and application

erformance; (3) a model updating element to automatically de-

ect when the performance model needs to be changed. A poten-

ial downside to this approach is that if the performance analyst

oes not have enough knowledge or experience to define a proper

erformance metric to make the model, their mechanism may not

e useable. Moreover, outliers can have huge effects on the regres-

ion, limiting the dependability of the metrics obtained as a basis

or adaptation in some contexts. 

Mastelic et al. (2012) discussed how the CPU or memory us-

ge affects the response time, which in their case, is the render

ime per frame. Their monitoring system includes the consump-
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ion of all processes belonging to the application. These processes

ave the same parent process and hence by listing a list of pro-

ess IDs (PIDs) for the monitored application, it is possible to sum

p the resource consumption of all processes belonging to the

pplication and calculate total resource consumption at a certain

oint in time. This model could benefit from being extended to

nclude other types of metrics; for instance network-level parame-

ers, since monitoring and management of various real-time data

treaming applications including audio and video streaming ser-

ices is a big data challenge. 

Shao and Wang (2011) proposed a performance guarantee ap-

roach based on a Runtime Model for Cloud Monitoring (RMCM).

n this work, a performance model is constructed upon runtime

onitored data using the linear regression algorithm. These rele-

ant metrics include the resource allocated to the VM where the

pplication resides, the number of co-existing applications on the

ame VM, the actual resource occupation by the application, the

orkload and so on. The results show that the performance model

an be effective for controlling the provisioning approach to attain

pecified performance objectives. Because of the manual installa-

ion and configuration of monitoring agents in this work, non-

unctional requirements of monitoring, such as scalability and mi-

ration, may not be satisfiable. A further direction to pursue could

e also to consider how to find the effective measurement inter-

als. 

Wamser et al. (2017) focused on the live-migration of service

nstances for HTTP-based video streaming to cope with the impact

f user mobility. They used an edge computing environment to ob-

ain fast replacement of cloud services across different edge nodes

f a user perceives poor video quality. In this work, supported by

he INPUT project, 14 a Deep Packet Inspection (DPI) monitoring

ool was used to measure three application-level metrics including

rames per second, dropped frames and video quality, since these

etrics have a positive correlation with the user’s QoE. When any

f predefined thresholds for these metrics is violated for a specific

eriod of time, the service has to be migrated from the current

dge node to another one. 

Rossi et al. (2015) introduced a model to estimate the response

ime of cloud applications according to the Linux OS’s counters, for

xample LoadAVG. One of the most important reasons to estimate

pplication-level metrics upon low-level metrics (e.g. CPU load) is

hat monitoring application-level metrics (such as response time)

ould cause overhead in both network channel and computing re-

ources. Moreover, monitoring high-level metrics can have privacy

mplications for users. The results show that the load values given

y LoadAVG accompany the application response time behavior,

hich leads to a strong positive correlation between the two be-

aviors. Their work only considers LoadAVG, and hence this model

ould be developed more completely by exploring other counters

uch as iostat and netstat . 

Jamshidi et al. (2015) presented a self-learning adaptation tech-

ique called FQL4KE which is a fuzzy control method based on the

einforcement Learning (RL) algorithm for learning optimal elastic-

ty policies. This approach aims at automating the scaling process

ithout leveraging any a priori knowledge on the running cloud

pplication. The proposed architecture includes a learning module

hich constantly upgrades the knowledge base of the controller

y learning adaptation rules suitable for the system. However, the

roposed approach cannot deal with time-varying goals. If system

oals change, the controller has to relearn everything from the be-

inning. A more fundamental problem in real world environments
s the fact that the number of situations can be enormous and 

14 The INPUT project, http://www.input-project.eu/ . 

 

 

 

 

herefore the learning procedure could become impractical, due to

ime constraints in new computing paradigms. 

Rao et al. (2011) used a distributed RL mechanism called iBal-

oon for self-adaptive VM resource provisioning in which mon-

toring is essential for autonomic orchestration and adaptation.

owadays, cloud infrastructures offer elastic resources by hori-

ontal or vertical scaling solutions to adapt the application per-

ormance to the changing workload. However, such current scal-

ng approaches which utilize only infrastructure-related monitor-

ng data may cause severe performance drops during workload

ariations at runtime. The authors claim that monitoring only

nfrastructure-level metrics such as memory and bandwidth with-

ut taking into account how application performance is behaving

application-level monitoring) at runtime would complicate the re-

ource provisioning problem due to the lack of detailed measure-

ent. In their work, according to the proposed vertical scaling ap-

roach, each VM is able to adjust its resource allocation in terms

f CPU, memory, and bandwidth. The iBalloon architecture includes

hree fundamental elements: (1) a host-agent which is in charge of

llocating resources to the VMs; (2) an app-agent which includes

he monitoring part of iBalloon and reports runtime information

bout application performance; and (3) a decision-maker which

osts an RL agent placed at each VM to perform automatic re-

ource capacity adjustment. However, iBalloon is limited because

t does not consider other virtualized resources e.g. storage, nor

oes it support other adaptation actions e.g. migration to improve

pplication performance. This is an issue because in order to man-

ge an application deployed on an edge computing framework, it

s necessary to consider the migration of application components

mong heterogeneous infrastructures ( Desertot et al., 2005 ). 

Islam et al. (2012) developed a proactive cloud resource man-

gement approach in which linear regression and neural networks

ave been applied to predict and satisfy future resource demands.

he research problem in this work actually is to analyze time se-

ies monitoring data to extract a prediction model and other char-

cteristics of the monitoring data. The proposed performance pre-

iction model estimates upcoming resource utilization (e.g. aggre-

ated percentage of CPU usage of all running VM instances) at run-

ime and is capable of launching additional VMs to maximize ap-

lication performance. The authors considered predictive accuracy

ased on the application performance in terms of response time.

his approach provides distributed scaling and can be enhanced

o address the resource allocation of a single VM also. At present,

nly CPU utilization is used to train prediction model and their

pproach could further include other types of resources, e.g., mem-

ry, disk and bandwidth. 

.5. Challenges to the evolution of monitoring in the edge computing 

ontext 

Based on our analysis, the following are the most important

urrent challenges in monitoring adaptive applications within edge

omputing frameworks: 

• Mobility management: When a client device is moving, due to

varying network parameters of link between end-user and edge

node such as jitter, delay, bandwidth and so on, the application

QoS can increase and decrease rapidly, in a way that is poten-

tially difficult to predict ( Ahmed and Ahmed, 2016 ). As the lo-

cation of users or end-devices may change over time, dynamic

service migration has gained increasing attention in the context

of the edge computing paradigm to deliver always-on services. 
• Scalability and resource availability at the edge of the network:

Lightweight jobs are most likely processed at the edge of the

network, and hence edge nodes may have hardware capac-

ity limits. Simultaneously, it should be guaranteed that these

http://www.input-project.eu/
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nodes are able to accommodate the increasing demand for

delivering services and growing network traffic volume. Edge

nodes should ensure the availability of the service regardless

of the number of end users’ client devices at the edge network

( Ahmed and Ahmed, 2016 ). 
• Prior knowledge: Supporting the QoS constraints requires the

pre-knowledge of execution environment such as underlying in-

frastructure and the configuration of application components

on the network ( Xiao et al., 2016 ). An adaptation technique is

fully advantageous, if it does not require relying on the knowl-

edge provided by previous experiences. 
• Data management: In large-scale environments, monitoring

probes are generating massive amounts of collected data to be

aggregated, processed and stored. Consequently, it poses other

challenges for instance the utilization of distributed datacenters

with more bandwidth ( Zhao et al., 2015 ) and flexible integra-

tion capabilities ( Esposito et al., 2015 ). 
• Coordinated decentralization: The challenge in building a de-

centralized system is to ensure that all different application

components collectively move the whole system towards a

common goal. 
• Saving expense, time and energy: On-demand resource alloca-

tion should be flexible enough in order to dynamically assign

infrastructure according to the needs of modern self-adaptive

cloud applications, and an important attribute of such is to re-

duce their cost. However, cost optimization should not result in

QoS/QoE degradation. What should be noted here is that appli-

cation providers need to take into account where the adapta-

tion logic is inserted: separately, or together with the monitor-

ing components. For example, whether monitoring modules of

the application are in charge of considering network cost opti-

mization or it is a task of self-adaptation engine. 
• Interoperability and avoiding vendor lock-in: The vendor lock-

in situation is generally considered as a disadvantage in cloud

computing ( Toosi et al., 2014 ). Recently, significant attempts

have been made to address this challenge by driving stan-

dardization of edge computing. For example, the open-source

EdgeX Foundry project 15 which has started in 2017 supported

by the Linux Foundation is aimed at developing a vendor-

neutral framework for IoT edge computing. Similarly, the Open-

Fog consortium 

16 has been founded by tech-giants such as Dell,

Cisco, Intel, Microsoft and ARM in collaboration with Princeton

University to drive standardization of fog computing. This con-

sortium is aimed at leveraging cloud, edge and fog architectures

to enable IoT scenarios. 
• Optimal resource scheduling among edge nodes: A scheduling

mechanism must be intelligent enough to guarantee responses

upon the uncertainty of the runtime environment ( Lee and

Lee, 2015 ) such as changing workloads, users’ channel diversity,

their unstable network conditions, user mobility and so on. 
• Fault tolerance: The application should continue to operate un-

der the presence of a fault ( Chang et al., 2014 ), such as los-

ing control over edge nodes or undetermined latency. This re-

quires elements of decentralized control or off-line detection

and recovery. Fault tolerance has received substantial attention

for real-time systems due to their safety critical nature. 
• Proactive computing: The new paradigm is autonomously trig-

gering decisions and actions by anticipating future states. To

achieve this vision, time constraints must be taken into account

and it usually involves dealing with large amounts of historical

and streaming data ( Fournier et al., 2015 ). 
15 The EdgeX Foundry project, https://www.edgexfoundry.org/ . 
16 The OpenFog consortium, https://www.openfogconsortium.org/ . 
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• Replication of services: In the context of edge computing, ser-

vices can be replicated running on multiple geographically dis-

tributed cloud infrastructures ( Farris et al., 2017 ). Replication of

servers has its own technical issues such as temporary incon-

sistencies to be considered. Furthermore, different companies

have different regulations of using (or not using) new technolo-

gies e.g. internal legislation on the location of data storage. 
• Container security: Using container-based virtualization un-

doubtedly supports the edge computing paradigm, but poses

new security threats. For example, containers are able to com-

municate directly with the host kernel that can lead to security

vulnerability in the system. 
• Non-specific edge nodes: In the multi-layer edge computing

framework shown in Fig. 1 , edge nodes are meant to be a set

of heterogeneous computing platforms possibly not as power-

ful as cloud datacenters. However, the current industry rarely

comes up with a solution for providing general-purpose edge

nodes involved in computation and data analytics. In this re-

gard, the LightKone project 17 has started in 2017 to move com-

putation out of datacenters and directly on the edge of the net-

work. As a further example, the main vision of another project

called Open Edge Computing (OEC) 18 is that all nearby com-

ponents such as WiFi access points, DSL-boxes, base stations

would be capable of offering resources through standardized,

open mechanisms to any types of applications to perform com-

putation at the edge. In practice, the edge nodes typically are

not convenient for handling the workload as general-purpose

computation. Therefore, similar to these nodes, their monitor-

ing mechanisms are generally subject to the proprietary use of

a specific technology, and hence they are not able to address

multi-purpose needs. 

.6. Summary 

In order to simplify the decision-making self-adaptive mech-

nism in the edge computing environment, monitoring solutions

ollect information from different levels. To this end, in addition

o monitoring virtualized resources (e.g. CPU, memory, disk, etc.),

t is important to consider other levels of monitoring, including

ontainer, end-to-end network quality and application. In the cur-

ent section, the papers have been chosen to be reviewed in a

ay that all the important functional and non-functional mon-

toring requirements for adaptive applications within edge com-

uting frameworks would be mentioned. This section also indi-

ated recent challenges and future research directions needing to

e explored in this field. From the analysis of the literature in

he current section, we derive a new taxonomy of requirements

or the development and deployment of relevant monitoring tech-

ologies within edge computing frameworks, which we present in

ection 3 . 

. Taxonomy of monitoring requirements in edge computing 

cenarios 

Drawing on the discussion in Section 2 of cited literature,

able 7 presents a taxonomy of monitoring requirements needed

o support dynamic adaptation of applications orchestrated upon

dge computing frameworks. In this table, there are also 10 com-

on functional requirements which are essential for all types of

onitoring systems within edge computing scenarios. Based on

his taxonomy, in Section 4 we analyze monitoring tools, to define

heir challenges and strengths. 
17 The LightKone project, https://www.lightkone.eu/ . 
18 The Open Edge Computing project, http://openedgecomputing.org/ . 

https://www.edgexfoundry.org/
https://www.openfogconsortium.org/
https://www.lightkone.eu/
http://openedgecomputing.org/
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Table 7 

Taxonomy of requirements for monitoring systems within edge computing frameworks. 

Taxonomy of monitoring requirements within edge computing frameworks 

Functional requirements Common in all monitoring levels • Usable by the provider and customers in a multi-tenant cloud environment 
• Provide the functionality for visualization 
• Able to filter measured values to diminish data exchanges 
• Able to be tuned to any desired monitoring time interval 
• Include capability of long-term storing of measured values 
• Support scaling adaptation policies for large-scale dynamic environments 
• Able to set up automated alerts 
• Support different adaptation actions e.g. service migration, etc. 
• Automatic installation and configuration of monitoring system 

• Able to be customized based on monitoring needs 

Both VM level and container level • Independent from underlying cloud infrastructure provider 
• Quickly react to the dynamic resource management changes over time 
• Support monitoring of all types of hardware virtualizations 
• Offer an API to expose monitoring data 

End-to-end link quality level • Investigate the whole range of end-to-end network QoS properties 
• Support on-demand network configuration 
• Able to reach the device in spite of filters and firewalls 
• Consider user’s link conditions (e.g. network quality) 

Application level 

• Able to deal with the application topology and reconfiguration 
• Define effective measurement interval upon the application performance 
• Support multi-tier applications 
• Able to be adapted with time-varying application adaptation goals 

Non-functional requirements 

• Scalability 
• Non-intrusiveness 
• Interoperability 
• Robustness 
• Live-migration support 
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The functional requirements which are needed for basic moni-

oring within edge computing frameworks and hence are common

n all monitoring levels are summarized in Table 7 and described

elow: 

• Usable by the provider and customers in a multi-tenant

cloud environment: This requirement means to have the abil-

ity of defining multiple roles and views for various types of

users with different permissions to access monitoring data. Es-

pecially in a multi-tenant provisioning platform ( He et al., 2012 )

where multiple tenants potentially with various QoS values are

sharing the same infrastructures and application instances, dif-

ferent tenants should be able to measure parameters and gain

access only to the information that pertains to them. 
• Provide the functionality for visualization: Visualization is a

key functionality for analysis of events in dynamically changing

environments, such as edge computing scenarios. It provides a

powerful interface between the monitoring data stored in the

TSDB and the human brain. 
• Able to filter measured values to diminish data exchanges: It

seems important to provide threshold-based filtering capabili-

ties on the monitored nodes to reduce the runtime communi-

cation overhead for the monitoring data transmission and stor-

age. 
• Able to be tuned to any desired monitoring time interval:

Any custom time interval can be set within the specified num-

ber of seconds, minutes, hours, days or even weeks. The length

of monitoring interval is required to ensure reliability, to avoid

overhead, and to prevent losing control over the running envi-

ronment during adaptation actions. 
• Include capability of long-term storing of measured values:

This functionality is one of core competencies to building a
monitoring approach that is optimized for the storage and re-

trieval of monitoring data, so that (for example) the data can

be used to inform future adaptation strategies. 
• Support scaling adaptation policies for large-scale dynamic

environments: Elasticity management of services within edge

computing frameworks that is able to support scaling policies

even in a large-scale environment needs a scalable monitoring

solution, which still is an open issue that is left largely unsolved

by many of the present monitoring systems. Different charac-

teristics of a monitoring solution such as data storage mecha-

nism, communication protocol for data collection, the resource

consumed to perform the monitoring activity and ability of au-

tomatic self-configuration to tune the monitoring system over

time may affect the scalability of applications in large-scale dy-

namic environments. 
• Able to set up automated alerts: In edge computing scenar-

ios, there is often a need to be able to create custom alert rules

that meet particular criteria. For example, a monitoring solu-

tion should be able to trigger alerts if a given VM or container

instance starts to behave irregularly, or if a metric reaches its

associated threshold. 
• Support different adaptation actions e.g. service migration,

etc.: Within edge computing frameworks, monitoring systems

should deal with uncertainties imposed by application re-

contextualization (e.g. dynamic IP address management) due to

adaptation actions such as VM or container live-migration. 
• Automatic installation and configuration of monitoring sys-

tem: Monitoring systems have to be able to automatically de-

tect when a new VM, container or application instance is cre-

ated due to scaling up elasticity actions. Auto-discovery can be

considered as an approach to automatic installation that refers

to the process of detecting new devices in a cloud environ-
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ment and then performing ongoing monitoring on these de-

vices without human intervention. Similarly a running VM, con-

tainer or application instance might cease to exist due to scal-

ing down elasticity. Automatic installation and configuration of

any monitoring system is a necessity to support scaling adapta-

tion policies in large-scale edge computing environment. 
• Able to be customized based on monitoring needs: It is nec-

essary to support the customizability of monitoring solutions

such as metric extension (incorporate and start measuring any

new particular metric) which allows covering conditions partic-

ular to a specific environment, therefore providing monitoring

approach with a comprehensive view of the execution environ-

ment. 

Functional requirements at both VM and container levels for

monitoring systems within edge computing frameworks are as fol-

lows: 

• Independent from underlying cloud infrastructure provider:

The management of federated cloud environments in edge

computing scenarios needs interoperable monitoring to share

information among heterogeneous frameworks. While it is easy

to design a cloud-specific monitoring platform, implementing a

generic monitoring solution able to work with multiple cloud

infrastructure providers remains a challenging issue. 
• Quickly react to the dynamic resource management changes

over time: This functional requirement is a process, especially

for time-critical edge computing applications, through which

the monitoring solution rapidly involves detecting and collect-

ing information about the changing environment. Compared

to the centralized cloud datacenter approach, edge computing

needs a more agile monitoring system especially because the

edge of the network is a highly dynamic environment where

end-devices may frequently become available/unavailable, de-

vices are moving, or edge nodes change states over time. 
• Support monitoring of all types of hardware virtualizations:

Cloud monitoring solutions within edge computing frameworks

should cover all kinds of hardware virtualizations as well as op-

erating systems across federated clouds. 
• Offer an API to expose monitoring data: All monitoring tools

working at VM, container, network link or application must be

able to provide an API to expose runtime statistics about a

monitored entity and this remote API should be externally ac-

cessible by other entities. 

The functional requirements at network link quality level for

monitoring systems within edge computing frameworks are ex-

plained as follows: 

• Monitor the whole range of end-to-end network QoS proper-

ties: With regard to end-to-end link quality-level measurement,

QoS attributes change constantly and so network-layer param-

eters (mainly network throughput, delay, packet loss and jitter)

need to be closely monitored in the edge computing environ-

ment. 
• Support on-demand network configuration: Monitoring solu-

tions within edge computing frameworks must be able to sup-

port programmable networks which help in managing and con-

trolling virtual network resources dynamically. 
• Able to reach the device in spite of filters and firewalls: It is

usual that specific types of traffic such as ICMP or SNMP pack-

ets are filtered in private administrative domains due to var-

ious security concerns. In such cases, the monitoring solution

should automatically change its mode of operation via differ-

ent communication protocols to be able to find the user’s loca-

tion, reach the device and then measure end-to-end link quality

metrics to the user. To this end, the first requirement is that the
network monitoring solution should be able to access the IP ad-

dress (taking into account any network address translation) of

the user’s device. 
• Consider user’s link conditions (e.g. network quality): Within

edge computing frameworks, beneficial dynamic adaptations to

the user’s network conditions can be accomplished by utilizing

network edge-specific monitoring information. Monitoring and

identifying the network quality of connections between end-

users and application servers makes decision or control tasks

possible which can continuously adapt the deployed service for

optimal performance. For instance, in situations where there

exists more than one server to provide the service at the edge

of the network, the monitoring solution can contribute towards

choosing the best application instance to connect to clients

based on their network edge conditions such as higher reso-

lution via more stable connection for streaming applications. 

Other functional requirements particularly at application level

or cloud monitoring systems in edge computing environments

ave been listed below: 

• Able to deal with the application topology and reconfigura-

tion: It would be better for the monitoring system to be aware

of the topology and any reconfiguration of cloud-based appli-

cations due to adaptation actions during the execution within

edge computing frameworks in order to support management

of metrics collection and various analytics. For example, a mon-

itoring system may know where distributed services together as

the whole application are running and how they are connected

to each other. 
• Define effective measurement interval upon the application

performance: Measurement intervals for monitoring different

types of applications according to their runtime performance

should be optimally determined. Short measurement intervals

may negatively affect the intrusiveness of monitoring tools,

while slow sampling rates might diminish the accuracy of mon-

itoring information. 
• Support multi-tier applications: Within edge computing

frameworks, in contrast to traditional centralized cloud archi-

tectures, a single request sent by an end-user leads to multi-

ple interactions among distinct application tiers across differ-

ent locations. Distinguishing a multi-tier application’s response

time as individual constituent durations is critical for applica-

tion performance diagnosis in edge computing environments.

Therefore, any monitoring solution in edge computing frame-

works should be able to collect monitoring parameters from

multiple tiers of the application. Moreover, the future monitor-

ing generation may also consider multi-tier aspects of the ap-

plication (e.g. monitoring information about different dynamic

provisioning policies at each tier) and the interactions between

different tiers. 
• Able to be adapted with time-varying application adaptation

goals: If goals of application adaptation change over time, the

monitoring solution may need to be dynamically adapted, while

keeping the application running during the monitoring upgrade.

In these cases, the implementation of a monitoring approach

that collects an individual application-specific metric needs to

be dynamically reprogrammed, for example, because of a new

different definition of application response time. 

From the edge computing point of view, all the important non-

unctional requirements of a monitoring system required to sup-

ort dynamic adaptation of edge computing applications, as dis-

ussed in Section 2 on reviewed literature, are listed below: 

• Scalability: A scalable monitoring system can handle a

remarkable number of monitored resources and services
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19 Zenoss, http://www.zenoss.org/ . 
20 Ganglia, http://ganglia.info/ . 
21 sFlow, http://blog.sflow.com/2010/10/ganglia.html . 
( Clayman et al., 2010b ). This monitoring feature is a very signif-

icant property in edge computing environments because of the

necessity of managing a wide variety of parameters that need

to be monitored across different layers of framework. The run-

time orchestration of VMs or containers in edge architectures

possibly including thousands of nodes requires a monitoring so-

lution to be scalable to deliver the monitoring data in a flexible

and timely manner. Due to the distributed nature of edge com-

puting applications, existing centralized monitoring tools that

lack scalability are not suitable because they fail to distribute

the monitoring load, which leads to a single point of failure

( Xu et al., 2016 ). 
• Non-intrusiveness: The edge computing viewpoint attempts to

provide a set of application services in a lightweight, simple

way and any edge computing monitoring solution should fol-

low this lightweight methodology. Therefore, a monitoring im-

plementation should take a non-intrusive approach because of

the necessity of being lightweight to the ordinary flows of ap-

plication and infrastructure ( Taherizadeh et al., 2016b ). Conse-

quently, a low overhead monitoring tool, achieved by adopting

minimal processing, memory capacity and communication traf-

fic, is an essential entity for increasing efficiency in such envi-

ronments ( Agelastos et al., 2014 ). 
• Interoperability: Edge computing aims at the automatic and

cooperative deployment and composition of application ser-

vices, interconnected over both centralized cloud and edge in-

frastructures within highly distributed or potentially federated

environments. Companies can replicate their application com-

ponents in facilities hosted by different cloud infrastructure

providers to balance services or increase availability and reli-

ability or decrease response time under various network condi-

tions and varied amounts of traffic ( Grozev and Buyya, 2013 ).

Therefore, what will be needed in the future is interoper-

ability of monitoring systems for highly adaptive cloud ap-

plications. Unfortunately, monitoring tools prepared by IaaS

providers usually are specific to the underlying infrastructure

and are not able to monitor an application running on other

cloud providers’ infrastructures ( Alhamazani et al., 2015 ). 
• Robustness: Individual parts of a monitoring system them-

selves, or even network links connected them together, may

fail in ways that probably prevent the monitoring system from

keeping up and running continuously. One of the significant

challenges for modern monitoring tools is that they should be

capable of detecting vulnerabilities in an environment and be

able to adapt to a new situation in order to continue its oper-

ation ( Fatema et al., 2014 ). Based on this monitoring aspect, it

follows that considerable attention is needed to develop more

robust cloud monitoring tools which help to cope with different

failure scenarios during execution. Especially when it comes to

the edge computing paradigm, each application component can

have a conversation path to other components, which makes

the overall system an intricate network of communications.

Therefore, analyzing and solving problems for a distributed,

federated system can potentially be cumbersome and infeasible

without robust monitoring tools. 
• Live-migration support: Nowadays, virtualization tech- 

nologies offer a variety of resource management options

such as VM/container creation, deletion, and live-migration

( Liaqat et al., 2016 ). With the growing maturity of edge

computing frameworks, the demand for highly available ap-

plications, consisting of a set of independently deployable,

modular, small services, is increasing. To this end, live migra-

tion of services is a highly desirable feature of such solutions.

In a live-migration scenario, virtualized services can migrate

from a host to another one at any time without stopping

operations. Accordingly, the challenge in this regard is how
the monitoring system can be able to adjust to the new envi-

ronment and changing network conditions required to prevent

faults ( Toosi et al., 2014 ). 

. Analysis of monitoring tools based on identified taxonomy 

As explained before, there exist four levels of monitoring (VM,

ontainer, end-to-end link quality and application) needed for self-

daptive edge computing applications. In this regard, the cur-

ent section has been divided into two subsections in order (I)

o describe different widely-used cloud monitoring tools to con-

ribute to the taxonomical analysis and (II) to compare their

eatures based on the taxonomy presented in Section 3 respec-

ively. These comprehensive presentations offer the opportunity to

chieve appropriate technical conception of monitoring tools oper-

tional within edge computing frameworks. Additionally, the infor-

ation discussed helps to choose the most appropriate monitoring

ool for developing a fully qualified application using edge com-

uting frameworks based on different adaptation objectives. 

.1. Cloud monitoring tools 

There are many tools that offer continuous monitoring and vis-

bility for cloud applications. The next subsections describe differ-

nt types of widely-used monitoring tools usable in edge comput-

ng frameworks and outline advantages and disadvantages of each.

.1.1. Zenoss 19 

Zenoss is an open-source agent-less monitoring platform based

n the SNMP protocol and it monitors networks, servers, appli-

ations and services. The main functionality of Zenoss is mon-

toring principal characteristics of cloud such as availability, in-

entory, configuration, performance and events which are related

o the system. It has an open architecture to enable consumers

o customize it based on their needs ( Gupta, 2015 ). This collec-

ion/monitoring tool is widely-used in enterprise solutions and

rovides a user interface by which users can configure and moni-

or the system ( Telesca et al., 2014 ). It also provides statistics about

he number and identifier of hosts and tenants available in the sys-

em. 

Zenoss is able to use predictive thresholds to protect the edge

f the network. In this way, it is able to recognize if an edge node’s

etwork interface or link suddenly has considerably large traffic.

urthermore, it is able to filter predefined packets (e.g. based on

etwork geography) away from the nodes at the edge of the net-

ork. However, it is not robust enough and cannot support the

ive-migration of services that are essential within edge comput-

ng frameworks. Moreover, the product has a limited open-source

ersion for monitoring and the full version requires payment, re-

tricting its applicability in research contexts. 

.1.2. Ganglia 20 

Ganglia ( Massie et al., 2004 ) is a robust distributed monitor-

ng tool capable of being scalable for high-performance computing

nvironments e.g. grids and clusters. It is now being extended to

rivate and public cloud monitoring (e.g. via sFlow 

21 ). Also, there

re cloud-based tools which are integrated with Ganglia, such as

pache Cassandra database usable in edge computing use cases

 Confais et al., 2016 ). However, this monitoring platform does not

eem particularly to be focused on edge computing so far. This

onitoring system enables the users to have a look at runtime

nd historical measured data (such as memory utilization and CPU

http://www.zenoss.org/
http://ganglia.info/
http://blog.sflow.com/2010/10/ganglia.html
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load) for all running VMs/machines that are being monitored. Gan-

glia uses widely used technologies and protocols such as XDR (Ex-

ternal Data Representation), XML (Extensible Markup Language)

and RRDtool to store and visualize time series monitoring data.

Its implementation has been designed to run on different oper-

ating systems and processor architectures, and it has been cur-

rently used on the large number of clusters all over the world.

Since Ganglia is mainly designed to collect infrastructure monitor-

ing data about machines in a high-performance computing cluster

and display them as a series of graphs in a Web interface, it has a

drawback for edge computing as it is not appropriate for bulk data

transfer (no congestion avoidance, windowed flow control, and so

forth). 

4.1.3. Zabbix 22 

The Zabbix monitoring solution ( Tader, 2010 ) is designed for a

server/agent architecture. The Zabbix server runs on a standalone

machine to be able to collect and aggregate monitoring data sent

by the Zabbix agents. BonFIRE 23 is one the main projects which

this open-source monitoring software implementation is designed

for. The Zabbix solution supports an alerting system that triggers

if predefined events and conditions happen, such as if the memory

utilization is over 80%. These alarms are beneficial as the triggers

initiate adaptation plans, such as elasticity actions. SQL databases

are used to store measured metrics, and a Web front-end and an

API are provided to access data. The Zabbix monitoring tool is pri-

marily implemented to monitor network parameters and network

services. The Zabbix agent is quite resource efficient and it can re-

side on edge nodes in a way that is non-intrusive to edge net-

work functions. Because the native Zabbix agent has been devel-

oped in the C language it has a relatively small footprint. How-

ever, robustness of Zabbix could be inefficient. It could become un-

stable and requires restarting in some occasions ( Simmonds and

Harrington, 2009 ). As another important disadvantage to be con-

sidered, auto-discovery characteristic of Zabbix can be inefficient

( Murphy, 2008 ). For example, sometimes it may take more than

five minutes for Zabbix to discover that a host is no longer avail-

able in the network. This limitation in time can be a serious prob-

lem for any runtime self-adaptation scenario, especially if condi-

tions are changing rapidly. 

4.1.4. Nagios 24 

The Nagios monitoring system is an open-source solution to

monitor network and infrastructure resources. It provides a noti-

fication system for resources such as machines, switches, networks

and so on. Nagios is able to alert administration if anything fails

and it also notifies the system if an issue has been detected or set-

tled. For Nagios to be deployed, it requires complex manual config-

uration ( Mongkolluksamee, 2010; Issariyapat et al., 2012 ) and also

scalability could not be seen as its strong point. Nagios uses many

buffers, pipes and queues that could cause bottlenecks if the sys-

tem were to monitor a large-scale cloud environment. In this con-

text therefore, considerable modification would be necessary. As a

consequence, it may not be suitable, as it stands, as an appropriate

monitoring tool in dynamic environments such as edge computing

frameworks. 

4.1.5. OpenNebula 25 

OpenNebula is a complete cloud management platform. The

monitoring part monitors the cloud infrastructure to measure

the state of resources, such as VMs and physical machines
22 Zabbix, http://www.zabbix.com/ . 
23 BonFIRE project, http://www.bonfire-project.eu/ . 
24 Nagios, https://www.nagios.org/ . 
25 OpenNebula, http://www.opennebula.org/ . 

 

n  

s  
 Gorbil et al., 2014 ). OpenNebula’s monitoring tool collects individ-

al metrics via several static sensing elements, called monitoring

robes, which are running on the resources. The collection mode

an use a push or pull method. In push mode, the initiator is the

onitoring probe. The monitoring probe can easily send QoS infor-

ation only when it detects that the changing metrics are greater

han their thresholds. In pull mode, the monitoring manager re-

eatedly queries each probe. This approach is appropriate for keep-

ng maximum consistency between the probes and the monitoring

anager if we are dealing with a real-time environment involving

 small number of nodes but it may not prove scalable for high up-

ate frequencies or large-scale infrastructures. OpenNebula enables

sers to customize and create simple monitoring probes which ap-

ly just the pull mechanism to send the measured information.

penNebula offers the OneGate component to allow VMs to push

onitoring data to the manager in order to collect application-

evel parameters, recognize the problems in running applications.

ote, however, that this module has been designed for only small-

cale cloud environments. 

OpenNebula is able to support VM migration and can be gen-

rally considered as a solution for dynamic environments such as

M-based use cases posed at the edge of network ( Minerva and

respi, 2017 ). The OnLife Project ( Montero et al., 2017 ) using Open-

ebula proposes an edge computing design to dynamically migrate

omputing services closer to the users in order to ensure low la-

ency interactions between IoT services and users. However, the

reliminary barrier to adoption of OpenNebula monitoring part is

loud interoperability as the main field that needs to be addressed.

.1.6. PCMONS 

Private Cloud MONitoring System (PCMONS) ( Chaves et al.,

011 ) is a monitoring system aimed at meeting the need of open-

ource monitoring technologies for private clouds. The monitor-

ng approach is compatible with the Eucalyptus IaaS platform. The

ain feature of PCMONS is the ability to be extensible in order to

dapt to a new environment, such as incorporating new monitor-

ng metrics. However, it has several disadvantages; as PCMONS is

 Nagios module, it inherits Nagios performance and scalability is-

ues that preclude applicability to huge cloud infrastructures; and

t works only for monitoring infrastructure in private clouds. 

.1.7. DARGOS 

DARGOS ( Povedano-Molina et al., 2013 ) is a decentralized re-

ource monitoring solution specifically designed for cloud com-

uting infrastructures. DARGOS uses Node Monitor Agents (NMA)

nd Node Supervisor Agents (NSA). The NMAs are responsible for

athering monitoring information from the VMs and forwarding it

o the NSA. The NSAs collect measured information received from

onitored resources and they are able to send monitoring data to

he cloud administration. DARGOS should be running on the Open-

tack platform now. This is the reason why the OpenStack plat-

orm has been changed to support DARGOS (Nova project). Con-

equently, DARGOS is mainly confined to the cloud infrastructure

t has been integrated with as it depends on the architecture of

he OpenStack Nova implementation. Moreover, DARGOS is neither

obust nor does it support live-migration of services that are ne-

lected for edge computing frameworks. The set of metrics moni-

ored by DARGOS is currently quite limited due to its early devel-

pment status. 

.1.8. Lattice 

The RESERVOIR 

26 project ( Clayman et al., 2012 ) provides tech-

ologies by which services and resources can be efficiently provi-

ioned, monitored, managed and migrated across federated clouds
26 The RESERVOIR project, http://cordis.europa.eu/project/rcn/85304 _ en.html . 

http://www.zabbix.com/
http://www.bonfire-project.eu/
https://www.nagios.org/
http://www.opennebula.org/
http://cordis.europa.eu/project/rcn/85304_en.html
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Table 8 

High-level analysis of functional requirements for cloud monitoring tools. 

Tool Open source License Collection VM Container End-to-end link Application Data storage GUI 

monitoring monitoring quality monitoring monitoring method 

Zenoss Yes GPL Pull Yes Yes Yes a Yes ZODB, MariaDB, HBase, MySQL Yes 

Ganglia Yes BSD Push/Pull Yes No No Yes b RRDtool Yes 

Zabbix Yes GPL Push/Pull Yes Yes Yes Yes Oracle, MySQL, PostgreSQL, SQLite Yes 

Nagios Yes GPL Pull Yes No Yes No Flat file, MySQL Yes 

OpenNebula Yes Apache 2 Push/Pull Yes No No No SQLite, MySQL, Apache Cassandra Yes 

PCMONS Yes New BSD Pull Yes No No No Flat file, MySQL Yes 

DARGOS Yes Apache 2 Push/Pull Yes No No Yes c Nova and Neutron DBs Yes 

Lattice Yes Apache 2 Push Yes Yes No Yes Distributed Hash Table (DHT) No 

JCatascopia Yes Apache 2 Push/Pull Yes No No Yes Apache Cassandra, MySQL Yes 

Tower 4Clouds Yes Apache 2 Push Yes No No Yes InfluxDB, Graphite Yes 

a Zenoss has developed the Fping ZenPack as an extension to monitor network connections. 
b However Ganglia is able to monitor built-in metrics (e.g. load average, CPU utilization, disk free, etc.), it is possible to extend Ganglia’s metric library to measure 

application-specific metrics. 
c DARGOS implements built-in application monitoring solutions to measure the status of Apache web server and MySQL database server. The application-related statistics 

to be monitored are predefined such as the number of requests per second and their uptime. However DARGOS developers claim that it is easily extensible to new monitoring 

environments, and to incorporate new metrics. 
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27 The StatsD protocol, https://github.com/etsy/statsd/wiki . 
28 Tower 4Clouds, http://deib-polimi.github.io/tower4clouds/docs/ . 
29 The MODACLouds project, http://multiclouddevops.com/technologies.html . 
o maximize their exploitation and minimize their costs. RESER-

OIR introduces the Lattice ( Clayman et al., 2010a ) as a non-

ntrusive monitoring framework which can be integrated into

any monitoring systems. Lattice is an open-source monitoring

ystem natively oriented to infrastructure monitoring and mainly

mplemented for working in highly dynamic cloud environments

ncluding a large number of resources. However, RESERVOIR does

ot address the issue of directly providing monitoring informa-

ion to cloud customers. The functionalities of Lattice are focused

n the collection and distribution of monitoring data through ei-

her multicast or UDP protocol. Therefore, Lattice does not provide

unctionalities for visualization, evaluation and automated alerting

 Katsaros et al., 2011a ). 

Lattice conceptually offers a design intended to enable appli-

ation providers to build a monitoring solution fitting their own

nique use case in terms of distribution frameworks such as edge

omputing. However, since a library of monitoring probes to be

asily reused in the Lattice platform has not been provided so far,

t is not highlighted as a monitoring system within edge comput-

ng frameworks. 

.1.9. JCatascopia 

JCatascopia ( Trihinas et al., 2014 ), implemented in the Java pro-

ramming language, is a monitoring tool which is able to mon-

tor federated clouds operating on different cloud providers. It

an retrieve heterogeneous monitoring data both at infrastructure

evel (e.g., memory and CPU) and at application level (e.g., service

vailability and throughput). JCatascopia is able to adaptively fil-

er measured values of monitored metrics upon small delta differ-

nces compared to prior values, in order to reduce the storage and

etwork overhead. Another interesting feature is the possibility to

dapt the monitoring activity after machine migration. To this end,

ach message transmitted to the monitoring server contains the IP

ddress of the monitored resource, so at each change the server is

otified. JCatascopia is neither aimed at directly being able to com-

ute cost assessment, nor is it capable of recognizing the topology

f a deployed application. 

In the SWITCH project, in order to develop a monitoring system,

Catascopia has been chosen as the baseline technology which was

xtended in this work to fulfil the requirements of containerized

pplications. Since JCatascopia is written in Java, each container in-

tance which includes a monitoring probe requires some packages

nd a certain amount of memory for a Java Virtual Machine (JVM)

ven if the monitored application running alongside the monitor-

ng probe in the container is not programmed by Java. Therefore,

ontainerized monitoring probes in the SWITCH project have been
mplemented through StatsD protocol 27 available for many pro-

ramming languages such as C/C ++ . 

.1.10. Tower 4Clouds 28 

Tower 4Clouds ( Miglierina and Nitto, 2016 ) which is a multi-

loud monitoring platform developed as a part of the MODA-

Louds project 29 collects metrics at VM and application levels.

elf-registering components named data collectors measure met-

ics and send the monitoring data to a central entity called data

nalyzer. Tower 4Clouds is a modular platform which allows ap-

lication providers to build their own monitoring data collectors

or custom metrics. It stores the monitoring data in InfluxDB or

raphite, performs analysis on the sorted data and shows results

hrough Web-based user interface tools such as Grafana at run-

ime. This open-source monitoring platform continuously checks

 set of monitoring rules which determine the application health

nd QoS constraints. If any rule becomes true, an associated ac-

ion will be triggered such as notifying other components (e.g. self-

dapter) by performing REST calls. These rules can be automati-

ally generated through the MODAClouds Integrated Development

nvironment (IDE) or defined by application designers. This mon-

toring platform is able to filter monitoring data at various levels

f abstraction, handle the heterogeneity of resources being mon-

tored and also autonomously to deal with the scaling actions or

ive-migration of services from one VM to another one. It should

e noted that as a data collector in Tower 4Clouds is written in

ava, there is the same problem from which native JCatascopia is

uffering: specific packages dependencies and a specific amount of

emory are required for a JVM. 

However the MODAClouds consortium planned to work towards

aving Docker container images as another method of obtaining

 design-time platform to make cloud applications, they did not

xtend the Tower 4Clouds in order to be capable of container-level

onitoring as well. On the other hand, it is a highly composable

pen-source platform that helps it to be extended or integrated

ith containerized and edge computing scenarios. 

.2. Cloud monitoring tools’ support for functional requirements 

In Table 8 , a list of the previously-mentioned cloud monitor-

ng systems and their functional requirements in a general sense

s provided. These features are investigated in order to find out an

https://github.com/etsy/statsd/wiki
http://deib-polimi.github.io/tower4clouds/docs/
http://multiclouddevops.com/technologies.html
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Table 9 

Detailed analysis of functional requirements for cloud monitoring tools. 

Monitoring Functional Zenoss Ganglia Zabbix Nagios OpenNebula PCMONS DARGOS Lattice JCatascopia Tower 

level requirements 4Clouds 

Common in all 

monitoring 

levels 

Usable by the provider and customers 

in a multi-tenant cloud environment 

No a No Yes No Yes No Yes No No Yes 

Provide the functionality for 

visualization 

Yes Yes Yes Yes Yes Yes Yes No Yes Yes 

Able to filter measured values to 

diminish data exchanges 

No Yes Yes No Yes No Yes Yes Yes Yes 

Able to be tuned to any desired 

monitoring time interval 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Include capability of long-term storing 

of measured values 

Yes Yes Yes Yes Yes Yes Yes No Yes Yes 

Support scaling adaptation policies for 

large-scale dynamic environments 

Yes Yes Yes No Yes No Yes Yes Yes Yes 

Able to set up automated alerts Yes No Yes Yes No f Yes Yes No No g Yes 

Support different adaptation actions 

e.g. service migration, etc. 

No Yes No No Yes No No Yes Yes Yes 

Automatic installation and 

configuration of monitoring system 

Yes b Yes/No c Yes d No e Yes No Yes Yes Yes Yes 

Able to be customized based on 

monitoring needs 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Both VM level and 

container level 

Independent from underlying cloud 

infrastructure provider 

Yes Yes Yes Yes No Yes No Yes Yes Yes 

Quickly react to the dynamic resource 

management changes over time 

Yes Yes No No h Yes/No i No Yes Yes Yes Yes 

Support monitoring of all types of 

hardware virtualizations 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Offer an API to expose monitoring data Yes Yes Yes Yes Yes Yes Yes No Yes Yes 

End-to-end link 

quality level 

Investigate the whole range of 

end-to-end network QoS properties 

No j No Yes l Yes n No No No No No No 

Support on-demand network 

configuration 

Yes No Yes Yes No No No No No No 

Able to reach the device in spite of 

filters and firewalls 

No k No No m No No No No No No No 

Consider user’s link conditions (e.g. 

network quality) 

No No No No No No No No No No 

Application level Able to deal with the application 

topology and reconfiguration 

Yes o No No No No No No No No No 

Define effective measurement interval 

upon the application performance 

No No No No No No No No No No 

Support multi-tier applications Yes Yes Yes No No No Yes Yes Yes Yes 

Able to be adapted with time-varying 

application adaptation goals 

Yes Yes Yes No No No Yes No p Yes Yes 

a Zenoss Service Dynamics is a monitoring platform able to perform multi-tenant operations. However, it is a commercial product. 
b Auto-discovery in Zenoss should be manually activated. This means it is not able to perform on a periodic basis automatically. 
c Ganglia lacks the capability of auto-discovery at inter-cluster level. 
d In order to activate auto-discovery, some configurations need to be manually managed in Zabbix server. 
e Nagios has enterprise monitoring solutions with auto-discovery that are not free. 
f OpenNebula has an approach called Hook Manager to trigger custom scripts for changes (e.g. SHUTDOWN, BOOTING, etc.) in state of VMs or hosts. However, the usage 

of hooks is mainly aimed at having more high availability and strategies on the infrastructure. Moreover, OpenNebula offers the OneFlow component to allow administrators 

to specify auto-scaling rules based on monitoring metrics. 
g Automated alerting ability of JCatascopia has been provided. However, this part of the project is proprietary and not publically released. 
h Nagios is not suitable for monitoring environments that need a high rate of sampling ( Katsaros et al., 2011b; Paterson, 2010 ). 
i The pull mode usable in OpenNebula is not usable for large-scale environments with high update frequencies. For example, having around 50 VMs, the proper monitoring 

period would be around 5 minutes. However, the push mode is more scalable for such large clouds. 
j Fping ZenPack is able to measure latency and packet loss. 
k Fping ZenPack is a ping-like monitoring tool which uses just ICMP protocol to examine if a target node is responding. 
l In comparison with Zenoss, Zabbix is able to measure more network related parameters. 
m However Zabbix supports monitoring by TCP, SNMP and ICMP checks, as well as over IPMI, SSH, JMX, Telnet and also using custom protocols, it lacks automatic network 

traffic engineering and re-routing. 
n There exist different Nagios plugins to monitor network download speed, bandwidth usage, network connections, packet loss, etc. 
o Zenoss Control Center which enables an application to run as a set of distributed services knows where they are running and how they are connected to each other. 
p A future objective for the Lattice monitoring tool is making the ability to dynamically reprogram the measurement and change the monitoring data source at runtime 

( Clayman et al., 2010a ). 
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appropriate base-line technology for the needs of monitoring ap-

plications deployed based on edge computing framework. Monitor-

ing tools compared in this table are not aimed primarily at moni-

toring Docker containers; however, some of them have a module

or extension to monitor Docker containers. Moreover, in details,

Table 9 underlines which functional requirements in the taxonomy

described earlier have been addressed by each of cloud monitoring

systems from free and open-source software viewpoint. 
.3. Cloud monitoring tools’ support for non-functional requirements 

Table 10 presents the analysis of the essential non-functional

equirements for the previously-mentioned cloud monitoring tools.

he goal of the comparison is to specify and trade-off the

trengths, drawbacks and challenges which have been encountered

n the context of self-adaptive applications in terms of edge com-

uting. 
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Table 10 

Non-functional requirement analysis for cloud monitoring systems. 

Tool Scalability Robustness Non-intrusiveness Interoperability Live-migration support 

Zenoss Yes No Yes Yes No 

Ganglia Yes Yes Limited a Yes Yes 

Zabbix Yes No Yes Yes No 

Nagios No No Limited b Yes No 

OpenNebula Yes Yes Yes No Limited c 

PCMONS No No Limited d Yes No 

DARGOS Yes No Yes No No 

Lattice Yes Yes Yes Yes Yes 

JCatascopia Yes Yes Limited e Yes Yes 

Tower 4Clouds Yes Yes Limited f Yes Yes 

Note: Comparison in this table is upon the reviewed literature and based on conducting experiments with the tools. 
a Ganglia daemon called gmond which is running on each monitored node adds an overhead because of both XML event encoding and multicast 

updates ( Arabnejad et al., 2017 ). 
b In Nagios, there are numerous service checks which are resource intensive in terms of overhead incurred by notable CPU and IO usage. 
c Individual configurations in OpenNebula are needed to migrate VMs from one node to another. For example, if the hypervisor is KVM, libvirt’s 

TCP has to be configured. Also a folder should be already shared on both source and destination nodes. 
d Since PCMONS has been implemented as a module for the Nagios monitoring system and hence both principally act in the same direction. 
e As a monitoring probe is written in Java, it requires some packages and a certain amount of memory for a JVM. 
f As a data collector is written in Java, it needs some packages and a specific amount of memory for a JVM. 
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. Conclusions and future outlook 

Monitoring for adaptive edge computing applications has re-

ently gained a wide range of attention in the context of a “fu-

ure Internet”, as a field that still needs to be fully scrutinized and

mproved. Since the self-adaptation of applications developed for

dge computing frameworks is at an early stage of research and

evelopment, we, as the members of cloud community, believe

his review paper would serve as an important reference for fur-

her research in this field. The paper also highlights several chal-

enges and technical problems in existing cloud monitoring ap-

roaches for edge computing purposes, which could be considered

o enhance the performance of such adaptive applications. 

We have also derived a taxonomy for the main functional and

on-functional requirements that cloud monitoring systems should

ddress, and we have related contributions provided in literature

o far. More importantly, this review paper has compared several

idely used cloud monitoring tools, both open source and com-

ercial, along with their capabilities and shortcomings, as well

s how these monitoring systems meet varied requirements. This

omprehensive comparison offers companies, which are providing

ervices based on edge computing, an opportunity to gain insights

f monitoring tools usable in different but interdependent virtual-

zation layers. However, our comparison shows that an integrated

olution that fully monitors all the layers of an edge computing

cenario is currently unavailable. Such a solution would need to

rovide some abstraction layer so that there is at least some com-

onality in the way these different layers are monitored. More-

ver, some requirements have not been really fully met by any of

he existing cloud-based monitoring technologies. 

Another interesting paradigm is the inclusion of more monitor-

ng systems for container-based virtualization technologies able to

rovide a lightweight mechanism for initiating, deploying, scaling

nd moving services between infrastructures within edge comput-

ng frameworks. Container management systems such as Kuber-

etes or OpenShift Origin are lightweight platforms able to orches-

rate containers and automatically provide horizontal scalability of

pplications. However, their native scaling approaches are princi-

ally based on CPU usage; no matter for example how workload

ntensity or application performance is behaving. Therefore, an in-

eresting field of further studies would be the investigation of ad-

itional monitoring systems, preferably the ones that are capable

f being integrated with container management systems and also

 

 

ublished under the Apache 2 license, for easier customization and

ntegration possibilities into other systems. 
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