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 35 

ABSTRACT 36 

During inattentive wakefulness and non-REM sleep, neocortex and thalamus co-37 

operatively engage in rhythmic activities that are exquisitely reflected in the EEG as 38 

distinctive rhythms spanning a range of frequencies, from <1 Hz slow waves to 13 Hz 39 

alpha waves. In thalamus, these diverse activities emerge through the interaction of cell-40 

intrinsic mechanisms and local and long-range synaptic inputs. One crucial feature, 41 

however, unifies thalamic oscillations of different frequencies: repetitive burst firing 42 

driven by voltage-dependent Ca2+ spikes. Recent evidence reveals that thalamic Ca2+ 43 

spikes are inextricably linked to global somatodendritic Ca2+ transients and are essential 44 

for several forms of thalamic plasticity. Thus, we here propose that alongside their 45 

“rhythm-regulation function”, thalamic oscillations of low-vigilance states have a 46 

“plasticity function” that, through modifications of synaptic strength and cellular 47 

excitability in local neuronal assemblies, can shape on-going oscillations during 48 

inattention and non-REM sleep and may potentially reconfigure thalamic networks for 49 

faithful information processing during attentive wakefulness. 50 

 51 

 52 

 53 
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From the moment we enter a state of relaxed inattentive wakefulness through to the 55 

deepest stages of non-REM sleep, the human EEG expresses a range of distinctive waves, 56 

progressively increasing in amplitude and decreasing in frequency, the most prominent of 57 

which are the alpha rhythm, sleep spindles, delta waves and slow waves1 (Fig. 1, left column). 58 

The emergence of these EEG rhythms is reliant upon finely-tuned interactions between 59 

neocortical and thalamic neuronal assemblies, with strong modulation from many subcortical 60 

regions including brain stem and hypothalamus2,3. Although in the thalamus these low-61 

vigilance state-dependent activities are generated by diverse cellular, synaptic and network 62 

mechanisms, intracellular recordings from thalamocortical (TC) [G] and nucleus reticularis 63 

thalami (NRT) [G] neurons highlight a critical common feature: the rhythmic occurrence of 64 

action potential bursts driven by voltage-dependent Ca2+ spikes4–10 (Figs. 1, middle and right 65 

columns, & 2). During sleep spindles [G], delta and slow waves of non-REM sleep, these action 66 

potential bursts have high intra-burst frequencies (100-500 Hz) in both TC and NRT neurons 67 

and are driven, following relatively short periods of membrane hyperpolarization, by a Ca2+ 68 

spike reliant on the opening of low voltage-gated T-type Ca2+ channels (T-VGCCs)11. This 69 

Ca2+-spike is commonly known as the low-threshold spike (LTS)12,13 (Fig.  2 & Box 1). During 70 

alpha waves of relaxed, inattentive wakefulness and theta waves of light non-REM sleep, action 71 

potential bursts in TC neurons have a notably lower frequency (50-70 Hz) and are driven by 72 

high-threshold Ca2 spikes (HTSs) (Box 1) that likely involve both T-VGCCs and high voltage-73 

gated L-type Ca2+ channels (L-VGCCs)10 (Figs. 1, middle column, & 2). The near ubiquitous 74 

presence of LTSs and HTSs in TC and NRT neurons during low-vigilance states raises the 75 

question of why individual thalamic neurons are paradoxically engaged in the energetically 76 

expensive generation of rhythmic burst firing14 during periods of attentional and behavioural 77 

inactivity that are classically associated with energy preservation. 78 

Here, we provide an up-to-date synopsis of the roles of LTSs and HTSs in thalamic 79 

oscillations of low-vigilance states and then appraise recent evidence regarding the cellular 80 

mechanism of thalamic LTS generation and the inextricable link between LTSs, T-VGCCs and 81 

global somatodendritic Ca2+ signalling in TC and NRT neurons. Finally, we review the crucial 82 

involvement of rhythmic LTSs at frequencies relevant to low-vigilance state oscillations in 83 

several forms of thalamic cellular and synaptic plasticity. These recent insights lead us to 84 

propose that, alongside their role in providing an essential contribution to the full expression 85 

of the corresponding EEG rhythm (which hereafter we refer to as the ‘rhythm-regulation 86 

function’), thalamic oscillations of low-vigilance states, through their dependence on global 87 

Ca2+ spikes, have a ‘plasticity function’ that can modify synaptic strength and intrinsic cellular 88 
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excitability in thalamic networks to stabilize and control on-going oscillations and potentially 89 

contribute to optimal information processing during attentive wakefulness. 90 

 91 

LTS and HTS role in EEG rhythms 92 

In the nearly 90 years since the first description of a physiologically relevant rhythm in 93 

the human EEG15, significant effort has been directed towards gaining a deep understanding of 94 

the mechanisms and physiological significance of EEG waves. The complex picture that has 95 

emerged reveals that, although the source of the EEG signals resides within neocortical 96 

supragranular layers, the rhythm generator(s) of different EEG waves are found within both 97 

the neocortex and thalamus (Fig. 2). In this section, we briefly review the current state of 98 

knowledge regarding the neocortical and thalamic rhythm-generators of delta, slow, spindle 99 

and alpha and theta waves with emphasis on the key role of rhythmic burst firing of thalamic 100 

neurons (for detailed mechanisms of low-vigilance state oscillations, see Refs. 11,16-20). 101 

Delta Waves (0.5-4Hz). Under standard conditions, neocortical slices do not expresses delta 102 

oscillations. However, pharmacological modifications that re-instate the modulatory 103 

neurotransmitter tone found in vivo during deep non-REM sleep can produce oscillations at 104 

delta frequency in slices of primary and association cortices, which are mainly driven by 105 

powerful reciprocal excitation of layer 5 intrinsically bursting neurons21,22. 106 

TC neurons of first-order [G] , higher-order [G] and intralaminar thalamic nuclei [G], 107 

as well as NRT neurons, can all exhibit relatively short periods of delta oscillations in vivo 108 

(usually a few cycles), whereas sustained delta oscillations are consistently observed in 109 

decorticated animals23,24. In contrast to the neocortex, delta oscillations in thalamic neurons 110 

occur via cell-intrinsic mechanisms [G]. Specifically, the dynamic interaction of T-VGCCs 111 

with hyperpolarization-activated cyclic-nucleotide gated (HCN) channels in TC neurons4,20,25 112 

and Ca2+-activated K+ currents in NRT neurons26 forms the pacemaker mechanism that enables 113 

individual thalamic neurons to elicit LTS-bursts at delta frequency (Figs. 1, middle and right 114 

column, & 2). Consequently, although no study has, as yet, directly investigated the relative 115 

contribution of neocortex and thalamus to EEG delta waves of natural sleep, the presence of 116 

delta frequency-generators in both brain regions suggests that neocortex and thalamus might 117 

both have a role in producing this EEG rhythm (Fig. 2). 118 

Slow (< 1 Hz) Waves. Together with delta waves, EEG slow waves of stage N3 of non-REM 119 

sleep also contain slow (< 1 Hz) waves27 that reflect the synchronous, rhythmically alternating 120 
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depolarized “Up” [G] and hyperpolarized “Down” states [G] observed in almost all neocortical 121 

and thalamic neurons so far investigated in vivo5,6,28-31 and in vitro9,22,32-35, termed slow (< 1 122 

Hz) oscillations5 (Fig. 1, middle and right columns). Despite the long-standing view that these 123 

oscillations are generated by intracortical mechanisms and imposed upon a passive thalamus 124 

(reviewed in Ref. 36), it has now been conclusively demonstrated both in naturally sleeping 125 

and anesthetized animals that the full expression of sleep slow waves in the EEG requires active 126 

thalamic participation30,37. Thus, whereas both neocortex and thalamus in isolation have 127 

different generators of slow oscillations (see below) (Fig. 2), the co-operation between these 128 

brain regions is essential to generate slow (<1 Hz) waves in the EEG during stage N3 of natural 129 

non-REM sleep. 130 

When synaptic transmission is blocked, only a small number of neocortical neurons 131 

exhibit slow (< 1 Hz) oscillations in vitro21,22,38. Consequently, this activity in neocortical 132 

networks is primarily generated by the interaction between synaptic excitation and 133 

inhibition22,32. In contrast, in the TC neurons of sensory, motor and intralaminar thalamic nuclei 134 

slow (<1 Hz) oscillations are generated by a cell-intrinsic mechanism that requires the finely 135 

tuned interplay between the leak K+ current, the T-VGCC window current (ITwindow) [G], the 136 

Ca2+ activated non-selective cation current (ICAN) and the HCN current9,11,17,39. A similar 137 

mechanism drives slow (< 1 Hz) oscillations in NRT neurons except for the additional 138 

requirement of Na+- and Ca2+-activated K+ currents34. Importantly, due to the critical voltage-139 

dependence of ITwindow
11,17,39, slow (< 1 Hz) oscillations in individual TC and NRT neurons can 140 

be easily transformed into delta oscillations (and vice-versa) by altering the membrane 141 

potential and hence the magnitude of ITwindow
9,33,34 (cf. Figs. 1,2,6-8 in Ref. 34). Notably, 142 

periods of delta oscillations can be observed during the Down states of slow (< 1 Hz) 143 

oscillations in TC and NRT neurons both in vivo and in vitro5,6,9,34 (referred to as delta waves 144 

nested within slow waves) (Fig. 1, middle and right column), thus contributing to the 145 

concurrent expression of these two waves in the EEG during stage N3 of natural sleep. 146 

 Thalamic LTS-bursts have numerous important involvements in slow (< 1 Hz) 147 

oscillations. First, in both TC and NRT neurons the transitions from Down-to-Up state are 148 

always marked in vitro, and very often in vivo, by the occurrence of an LTS-burst5,6,9,30,33,34 149 

(Figs. 1 & 2). Second, as indicated earlier, LTS-bursts at delta frequency can be present during 150 

the Down state of slow (< 1 Hz) oscillations in both TC and NRT neurons5,6,9,34 (Fig. 1, middle 151 

and right column). Third, LTS-bursts at spindle frequency are observed both during the Up 152 

states and the Up-to-Down state transitions of slow (< 1 Hz) oscillations in single NRT 153 
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neurons6,28,34 (Fig. 1, right column), reflecting the presence of spindles in the corresponding 154 

states of sleep slow waves in the EEG40,41.  155 

Sleep Spindles (7-14 Hz). Originally suggested by Morison and Bassett (1945)42, a thalamic 156 

generator for sleep spindles was conclusively demonstrated by studies in the mid/late ’8043,44. 157 

In subsequent years, in vitro experiments showed that the LTS-driven, mutual synaptic 158 

interaction between excitatory TC and inhibitory NRT neurons is the generator of sleep 159 

spindles7,8 (Fig. 2). Both in vivo43-46 and in vitro7,8, an LTS is not present at each cycle of the 160 

spindle wave in TC neurons, whereas individual NRT neurons can fire an LTS at each  cycle 161 

(Figs. 1, middle and right column, & 2). The neocortex is not equipped with spindle wave-162 

generating networks, thus elimination of the thalamic input to the neocortex abolishes spindles 163 

in the EEG during natural sleep43,44,46. However, the neocortical feedback to TC and NRT 164 

neurons provides essential contributions to some sleep spindle properties47,45,48. 165 

Alpha (8-13 Hz) and Theta (4-7 Hz) Waves. Alpha waves are present in the EEG during relaxed 166 

inattentive wakefulness, i.e. in the behavioural state that falls between fully attentive 167 

wakefulness and stage N1 of non-REM sleep1,27 (Fig. 1, left column), and also during attentive 168 

perception49,50. The mechanisms underlying the alpha waves of these two behavioural states 169 

might be different, and here we will restrict the discussion to those occurring during inattentive 170 

wakefulness. Similarly, we will discuss the theta waves that are present in the EEG of humans 171 

and higher mammals during stage N1 of non-REM sleep1,27 (Fig. 1, left column) and not those 172 

generated during fully awake conditions51, which have different underlying mechanisms. 173 

Although occurring during very different behavioural states, alpha waves of inattentive 174 

wakefulness and theta waves of N1 non-REM sleep share a similar mechanism in thalamus. As 175 

shown in vitro and in vivo10, both waves are driven by a subset of gap junction-linked TC 176 

neurons10,52 that generate HTSs phase-locked to each cycle of the corresponding EEG rhythm 177 

(Figs.1, middle column, & 2) (Box 1). This HTS-burst-based rhythm entrains the firing of local 178 

thalamic interneurons and other non-HTS-bursting TC neurons giving rise to a thalamic output 179 

at alpha or theta frequency, depending on the behavioural state53. Significantly, periods of alpha 180 

waves supported at the cellular level by HTS-burst firing are occasionally present during the 181 

Up states of slow (< 1 Hz) oscillations in TC neurons in vitro9,10,33 and in vivo54 (Fig. 1, middle 182 

column). From a functional perspective, inhibition of HTSs and HTS-bursts within a small (< 183 

1 mm3) area of lamina A of the dorsal lateral geniculate nucleus (LGN) in freely moving cats 184 

markedly, selectively and reversibly decreases alpha waves in the surrounding thalamic 185 

territory and in the EEG recorded from the primary visual cortex by 90% and 75%, 186 
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respectively53. NRT neurons do not exhibit HTSs and HT-bursts and the firing of the vast 187 

majority (90%) of these neurons is not correlated to the EEG alpha rhythm in freely behaving 188 

cats53. 189 

Alpha wave-generating intrinsic and network mechanisms, mostly involving layer 5 190 

neurons, have been described in the neocortex in vitro55,56 though no in vivo study has 191 

conclusively shown whether these cortical generators play an essential role in the alpha rhythm 192 

of relaxed wakefulness. On the other hand, many studies in vivo provide indirect support for a 193 

cortical involvement in “classical” EEG alpha waves57,58. Thus, whereas the precise nature of 194 

neocortical alpha-generating networks is at present not clear, it is reasonable to suggest that the 195 

alpha and theta waves that characterize the EEG of relaxed inattentive wakefulness and N1 196 

non-REM sleep, respectively, are strongly, though not exclusively, driven by the thalamic 197 

HTS-burst-generating mechanism described above (Fig. 2). 198 

 199 

“Rhythm-regulation function”  200 

 As summarized in the previous section and illustrated in Fig. 2, intrinsic and network 201 

generators exist in both neocortex and thalamus which are capable of locally eliciting 202 

oscillations at alpha and theta, spindle, slow and delta frequency. However, simply on the basis 203 

of the structurally widespread and functionally powerful reciprocal connections between 204 

neocortex and thalamus it would be unreasonable to argue that the alpha, theta, spindle, slow 205 

and delta rhythms recorded in the EEG during low-vigilance states solely and uniquely rely on 206 

the rhythm-generating processes of one of these brain regions without any contribution from 207 

the other. Indeed, in all studies where this question has been directly addressed under 208 

unrestrained fully behaving conditions (see earlier discussion) the EEG rhythms of low-209 

vigilance-states have been found to be either modulated, regulated or controlled (to various 210 

degrees and in different properties) by neocortex and/or thalamus. Thus, as neocortical 211 

dynamics affects thalamically-generated oscillations so does thalamic activity influence 212 

neocortically-generated waves, with these interactions facilitating/reinforcing the overall 213 

synchrony in large thalamic and cortical neuronal populations59. Notably, the extent of this 214 

“rhythm-regulation function” of thalamic low-vigilance state oscillations varies greatly among 215 

different EEG rhythms, ranging from the strong rhythm imposed on the neocortex by the 216 

thalamically-generated sleep spindles to the more subtle thalamic modulation of slow 217 

oscillations recorded in neocortex. Within this scenario, therefore, referring to some of these 218 
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EEG rhythms as “thalamic spindles” or “cortical slow oscillation” is misleading unless 219 

appropriately qualified and has contributed to inaccurate views on their mechanisms. 220 

 221 

Mechanisms of LTS generation 222 

 As illustrated in the previous sections, the importance of LTS-bursts of TC and NRT 223 

neurons for low-vigilance-state oscillations has been known for several decades. However, the 224 

precise site of generation of LTSs and the extent of their propagation through the 225 

somatodendritic tree of thalamic neurons have remained unclear. Early experiments in inferior 226 

olive neurons (another class of LTS-bursting neurons) proposed a somatic and/or perisomatic 227 

origin for LTSs60, aligning them with fast Na+-action potentials that originate in the axon initial 228 

segment before spreading to the soma and dendrites61. In contrast, subsequent in vitro studies 229 

indicated that the majority of T-VGCCs underlying thalamic neuron LTSs are in the 230 

dendrites62-66, a finding seemingly incompatible with a perisomatic origin. Indeed, 231 

computational models demonstrated that thalamic LTS-bursts can be most readily reproduced 232 

with T-VGCCs located in the dendrites67,68. Therefore, until recently, it has generally been 233 

assumed that LTSs are locally initiated in thalamic neuron dendrites. However, in vitro 234 

experiments combining dendritic patch clamp recordings and 2-photon Ca2+ imaging from TC 235 

and NRT neurons with computational modelling have now invalidated this assumption. In fact, 236 

unlike the focal mechanisms (i.e. initiation in a specific subcellular region) that underlie other 237 

all-or-none neuronal signals (e.g. Na+-action potentials, dendritic Ca2+ or NMDA spikes69,70), 238 

LTSs are generated by a unique global mechanism that requires depolarization of the whole 239 

cell and simultaneous widespread recruitment of spatially distributed T-VGCCs68 (Fig. 3a,b). 240 

This is made possible by the specific electrotonic [G] properties of TC and NRT neurons (Box 241 

2). Therefore, in thalamic neurons LTSs cannot be focally generated in dendrites and are unable 242 

to be spatially constrained to specific subcellular compartments, as is the case, for example, for 243 

dendritic Ca2+ spikes in cortical neurons69,70. 244 

This mechanism inextricably links LTSs in thalamic neurons to synchronous, transient 245 

increases in intracellular Ca2+ concentration throughout the entire somatodendritic tree64,68. As 246 

such, whenever an LTS is recorded at the soma of TC and NRT neurons it is also 247 

simultaneously present along their whole somatodendritic axis (Fig. 3a) and this process is 248 

accompanied by a transient and substantial increase in intracellular Ca2+ throughout the entire 249 

dendritic tree (Fig. 4). This ‘whole cell LTS Ca2+ transient’ (Δ[Ca2+]LTS) is mediated by T-250 

VGCCs, with a contribution from L-VGCCs in TC neurons71 and voltage-gated R-type Ca2+ 251 
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channels in NRT neurons72, but does not rely on dendritic backpropagating action potentials 252 

[G] (bAPs), as demonstrated by its insensitivity to tetrodotoxin62,64,71. In fact, when TC and 253 

NRT neurons are depolarized (and thus T-VGCCs are mostly inactivated), action potentials 254 

backpropagate very inefficiently into the dendritic tree62,64,72,73 (Fig. 3b). As a result, bAP-255 

evoked Ca2+ transients in thalamic neurons, unlike Δ[Ca2+]LTS, are spatially restricted to the 256 

soma and proximal dendrites62,64,71,74 (Fig. 4b). Significantly, Δ[Ca2+]LTS have now been 257 

demonstrated in TC neurons of the rat LGN, ventrobasal (VB) and posterior medial (PoM) 258 

nuclei64,67, cat medial geniculate body (MGB)74 and in mouse and rat NRT neurons62,75,76, 259 

highlighting their conservation in both glutamatergic and GABAergic neurons as well as in 260 

functionally different thalamic nuclei and across species. Due to the known similarities in 261 

morphological and electrophysiological properties of TC neurons in limbic and intralaminar 262 

thalamic nuclei, it would seem unlikely that global Δ[Ca2+]LTS will not be present in these 263 

thalamic populations. 264 

In summary, during low-vigilance states, where rhythmic LTSs predominate, burst 265 

firing of both TC and NRT neurons is associated with global somatodendritic intracellular Ca2+ 266 

signalling, whereas during attentive wakefulness, where tonic firing is more typical, Ca2+ 267 

signalling is spatially constrained, a feature with important consequences for thalamic function 268 

(see below). 269 

 270 

Δ[Ca2+]LTS phase-locked to waves 271 

In many neurons, when action potentials backpropagate into the dendrites, their 272 

interspike intervals are often considerably shorter than the time required for subsequent Ca2+ 273 

extrusion/buffering and as a consequence Ca2+ can accumulate progressively during spike 274 

trains64,70. In contrast, the long refractory period of the LTS (determined by the inactivation 275 

and recovery from inactivation of T-VGCCs)77 relative to the decay time of individual 276 

Δ[Ca2+]LTS (determined by Ca2+ uptake by sarco/endoplasmic reticulum Ca2+ ATPases64,74) 277 

prevents summation of Δ[Ca2+]LTS and substantial Ca2+ accumulation. Indeed, as it has been 278 

demonstrated directly in TC neurons of the cat MGB in vitro, rhythmic Δ[Ca2+]LTS are tightly 279 

phase-locked to LTS-bursts of both delta and slow (< 1 Hz) membrane potential oscillations74 280 

(Fig. 4c). Significantly, Δ[Ca2+]LTS during slow (< 1 Hz) oscillations have longer decay times 281 

than during delta oscillations74 (Fig. 4c), probably as a result of the activation of ICAN and 282 

ITwindow during the former, lower frequency activity9,17,39. It is tempting, therefore, to speculate 283 
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that Δ[Ca2+]LTS transients associated with oscillations of different frequencies may serve 284 

diverse roles in thalamic neurons, as we previously suggested36. 285 

Although it is yet to be demonstrated, the requirement of LTSs in TC and NRT neurons 286 

for sleep spindle generation strongly suggests that rhythmic Δ[Ca2+]LTS should also occur 287 

during these oscillations. Since NRT neurons can fire LTS-bursts at spindle frequency, it will 288 

be interesting to determine whether the main T-VGCC subtype (CaV3.3)77,78 and Ca2+ 289 

buffering/uptake processes of these GABAergic neurons permit Ca2+ oscillations during 290 

spindles or whether, unlike delta and slow (< 1 Hz) oscillations, Ca2+ will accumulate in NRT 291 

dendrites. 292 

Unlike LTSs, the mechanism(s) underlying the generation of the HTSs that underlie 293 

alpha waves of inattentive wakefulness and theta waves of stage N1 sleep in TC neurons10,53 294 

still remain somewhat elusive. Nevertheless, the partial contribution of T-VGCCs to HTSs10 295 

(Fig. 2) (Box 1) indicates that they may share a mechanism similar to LTSs and require 296 

involvement of dendritic Ca2+ channels. Indeed, individual HTSs are associated with 297 

significant dendritic Ca2+ transients (unpublished observations), although the somatodendritic 298 

membrane potential changes and Ca2+ signals that accompany HTSs at alpha and theta 299 

frequencies remain to be determined. 300 

 301 

New function of thalamic oscillations 302 

So far we have outlined the essential contribution of thalamic low-vigilance state 303 

oscillations to the full expression of these rhythms in the EEG (i.e. their “rhythm-regulation 304 

function”) and the critical involvement of Ca2+ spike-dependent burst firing in these thalamic 305 

oscillations. The question then arises as to why these oscillations use the energetically more 306 

expensive LTSs (with accompanying Δ[Ca2+]LTS) and HTSs and not single (or trains of) action 307 

potentials14 during behavioural states which are commonly associated with energy 308 

preservation. One answer might be that, compared to tonic action potentials, bursts provide a 309 

higher reliability of signal transmission79–82 since they are less sensitive to noise83, and more 310 

effectively trigger responses in some classes of neocortical neurons84–86, probably by 311 

selectively engaging the resonance properties of the postsynaptic cells87. However, recent 312 

studies (see next section) that have investigated the impact of rhythmic LTSs for synaptic and 313 

cellular plasticity in thalamic neurons suggest a different, though complementary, answer to 314 

this energy conundrum, which leads us to propose a novel ‘plasticity function’ for thalamic 315 

oscillations of low-vigilance states. Note that, whereas below we are exclusively discussing 316 
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plasticity mechanisms elicited by rhythmic LTSs at frequencies relevant to low-vigilance state 317 

oscillations, isolated LTS-bursts do occur in TC neurons of sensory thalamic nuclei during 318 

attentive wakefulness79,88,89. Whether LTS-dependent plasticity may also occur in thalamus 319 

during the latter behavioural state remains to be demonstrated. 320 

 321 

LTS-dependent thalamic plasticity 322 

Hebbian plasticity requires temporal association between pre- and postsynaptic activity 323 

to modify synaptic strength, and several Hebbian cellular learning processes that require bAPs 324 

have been identified that can enhance or reduce synaptic efficacy based on the timing between 325 

bAPs and postsynaptic potentials90. Similarly, a number of non-Hebbian learning rules that do 326 

not rely on temporal association of pre- and postsynaptic activity have also been described91. 327 

The weak bAPs of TC and NRT neurons62,73 (Fig. 3a,b) cannot alone strongly depolarize the 328 

dendritic tree and are thus unlikely to be a reliable mechanism for induction of Hebbian 329 

synaptic plasticity in these neurons. In contrast, the global and substantial depolarization 330 

provided by the LTS and the associated somatodendritic Δ[Ca2+]LTS (Figs. 3 & 4) are strong 331 

candidates for mechanisms of plasticity in thalamic neurons, as indicated by the in vitro studies 332 

summarized below. 333 

Inhibitory synaptic plasticity. GABAergic synapses (of presumed NRT origin) onto TC 334 

neurons of the PoM nucleus have been shown to undergo non-Hebbian long-term potentiation 335 

(iLTP)71 (Fig. 5a). This plasticity occurs via retrograde signalling by nitric oxide (NO) (whose 336 

production is stimulated by postsynaptic Ca2+ entry) to presynaptic NO-dependent guanylyl 337 

cyclase. This Ca2+-dependent iLTP is reliant upon postsynaptic L-VGCCs (since it is abolished 338 

by the L-VGCC blocker nimodipine) and is induced by repetitive LTSs at slow oscillation 339 

frequency (0.1 Hz for 10 min) but not by tonic action potential firing. Interestingly, delivering 340 

LTSs at delta frequency (1 or 5 Hz) drastically reduces (by 60%) or fails to elicit iLTP, 341 

respectively. At first glance, a plasticity that requires L-VGCCs and occurs during LTS-342 

bursting but not tonic firing seems counterintuitive. However, when considering the spatial 343 

distribution of GABAergic synapses across the TC neuron dendritic tree92, alongside the global 344 

mechanism of LTS generation68 and strong attenuation of bAPs in thalamic neurons62,73, the 345 

picture becomes clear. As such, whereas L-VGCCs are crucial for this form of iLTP at 346 

GABAergic synapses on TC neurons, they can only be recruited by the robust global membrane 347 

potential depolarization provided by T-VGCC-dependent LTSs (V in Fig. 5, panel a) and not 348 

by weakly depolarizing bAPs.  349 
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 An LTS-dependent inhibitory long-term depression (iLTD) has been described at the 350 

NRT-to-TC neuron synapses in the VB nucleus93 (Fig. 5b). Unlike iLTP, which can be induced 351 

by postsynaptic LTSs without pairing to synaptic activity, iLTD requires coincident activation 352 

of synaptic input with rhythmic postsynaptic LTSs and is elicited using a short (70 sec) protocol 353 

that reproduces delta waves nested within slow (< 1 Hz) oscillations, i.e. 7 trains of LTSs, with 354 

each train containing 4 LTSs at delta frequency (1.6 Hz) and being delivered at 0.1 Hz (cf. Fig. 355 

1, middle column). Consequently, despite the LTS-dependent induction of a global [Ca2+]LTS 356 

in TC neurons and unlike iLTP where all inhibitory synapses are potentiated, only synapses 357 

activated during the induction protocol undergo iLTD. Critically, iLTD, unlike iLTP, is not 358 

triggered by recruitment of high voltage Ca2+ channels. In fact, even when evoked dendritic 359 

high-voltage Ca2+ transients match the amplitude and spatial extent of those observed during 360 

T-VGCC activation, iLTD is absent, suggesting a specific signalling pathway requiring T-361 

VGCCs. Finally, this form of iLTD requires the Ca2+-phosphatase calcineurin and is of both 362 

homosynaptic and heterosynaptic origin since it is gated by activation of metabotropic 363 

glutamate receptors of TC neurons via glutamate released from corticothalamic afferents. 364 

Thus, two forms of plasticity exist at GABAergic NRT-TC synapses that can potentiate 365 

or depress them depending on TC neuron burst-firing frequency. In particular, since iLTP is 366 

preferentially elicited by rhythmic LTSs at 0.1 Hz whereas iLTD by LTSs at 1.6 Hz it is 367 

possible that during sleep slow waves NRT-TC synapses may be strengthened by slow (< 1 368 

Hz) oscillations and weakened by delta (0.5-4 Hz) waves nested within slow oscillations. 369 

Excitatory synaptic plasticity. As well as plasticity at thalamic inhibitory synapses, excitatory 370 

synapses onto TC and NRT neurons have also been found to undergo LTS-dependent forms of 371 

LTP. At the synapses of VB TC neurons onto NRT neurons, pairing presynaptic input with 372 

postsynaptic LTS-bursts results in LTP94 (Fig. 5c). This plasticity requires GluN2B NMDA 373 

receptor subunits and cannot be triggered if the postsynaptic depolarization is provided by Na+-374 

dependent firing without T-VGCC activation or if LTSs are supressed by genetic ablation of 375 

CaV3.3 channels. Moreover, the TC-NRT LTP is selectively evoked by postsynaptic LTS-376 

bursts at delta frequency (1 Hz for 3 or 6 min), providing further evidence for potential T-377 

VGCC- and LTS-dependent thalamic plasticity during non-REM sleep. 378 

At the cortico-thalamic synapses on VB TC neurons, Hsu et al.95 have described LTP 379 

induction by LTS-bursts (at 0.167 Hz) but not by high frequency (125 Hz) tonic action 380 

potentials. The same group previously reported Hebbian NMDA-dependent LTP and non-381 

Hebbian L-VGCC-dependent LTD selectively at cortico-thalamic but not lemniscal synapses 382 
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on VB TC neurons96. Interestingly, both forms of plasticity require postsynaptic depolarization 383 

which, under physiological conditions, can only be provided in thalamic neurons by LTSs, and 384 

possibly HTSs, but not by bAPs68. 385 

Electrical synapse plasticity. Rhythmic LTS-burst firing elicited at delta frequency (2 Hz for 5 386 

min) in either one or both of paired-recorded, connexin-36-coupled NRT neurons can trigger 387 

robust LTD of the gap-junction coupling strength97 (Fig. 5d). This gap-junction coupling LTD 388 

requires Ca2+ entry through voltage-gated channels98 but is insensitive to tetrodotoxin97, 389 

demonstrating that LTSs are capable of inducing gap-junction plasticity even in the absence of 390 

action potentials. On the other hand, although spike trains delivered from depolarized potentials 391 

also evoke gap-junction LTD, the magnitude is smaller (by 50%) than that induced by repetitive 392 

LTSs. It is possible that the difference in LTD strength associated with each firing mode relates 393 

to the spatial distribution of gap-junctions on NRT neuron dendrites99, i.e. LTSs might 394 

modulate electrical synapses throughout the dendritic tree, whereas bAPs can only affect those 395 

relatively close to the soma. 396 

Cell-intrinsic plasticity. Together with a role for plasticity at chemical and electrical thalamic 397 

synapses, LTSs can also induce short-lasting plasticity of intrinsic excitability in TC neurons. 398 

Rhythmic Ca2+ entry during repetitive LTSs at delta/spindle frequency (2 - 8 Hz for 5 sec) 399 

stimulates the release of cAMP which in turn causes increased activation of HCN 400 

channels100,101 (Fig. 5e). This effect outlasts the period of LTS-dependent cellular Ca2+ 401 

elevation, thus creating a form of ‘short-term cellular plasticity’ that restrains LTS-burst 402 

generation in TC neurons and should help shaping thalamic spindle and delta oscillations and 403 

thus, in turn, the corresponding EEG rhythms. 404 

 405 

The “plasticity function”  406 

In the sections above, we have presented a framework by which thalamic oscillations 407 

of low-vigilance states, by virtue of their rhythmic LTS-dependent global somatodendritic 408 

depolarization and [Ca2+]LTS, can serve a ‘plasticity function’. A likely setting where this 409 

‘plasticity function’ may be operational is the homeostatic regulation of thalamic circuits 410 

during sleep. Homeostatic modification of synaptic strength is a common feature of current 411 

theories of sleep function102–104, suggesting downscaling of strength at particular synapses 412 

during sleep, whilst preserving enhanced strength at synapses that had been strongly activated 413 

by novel features during the preceding period of wakefulness. Indeed, evidence in support of 414 

these views are starting to accumulate for neocortical synapses105–107. Like their neocortical 415 
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counterparts, thalamic neurons receive continuous synaptic bombardment during wakefulness 416 

from peripheral, subcortical and cortical inputs. Consequently, modifications of intrathalamic 417 

synaptic strength may occur during wakefulness that could require re-scaling during 418 

subsequent periods of inattention, and the previously described forms of intrathalamic 419 

plasticity associated with the rhythmic occurrence of LTSs during low-vigilance state 420 

oscillations offer different mechanisms for such homeostatic modifications in thalamic 421 

neuronal assemblies. 422 

Moreover, the diverse induction rules for synaptic and intrinsic plasticity across 423 

thalamic cell types and synaptic connections that have been demonstrated for low-vigilance 424 

state oscillations suggest that another context where the ‘plasticity function’ might be operating 425 

is the modulation of the very same on-going oscillations. For example, GABAergic NRT-TC 426 

synapses may be either potentiated or depressed depending upon whether the postsynaptic cell 427 

is preferentially expressing LTSs at slow (<1 Hz) oscillations71 or nested delta waves93 428 

frequency, respectively (Fig. 5a,b). This bidirectional plasticity may allow TC neuron slow 429 

oscillations to strengthen NRT-TC synapses, leading in turn to larger IPSPs, more robust post-430 

inhibitory rebound LTS-bursts and enhanced propagation of spindles to the neocortical-431 

hippocampal axis for active participation in memory processes. Subsequent periods of nested 432 

delta oscillations, as they occur during sleep slow waves could then rescale [G] NRT-TC 433 

synapses to ensure continuous optimal transmission. Some of these thalamic plasticity 434 

mechanisms may be operative in the recently described essential and instructive role of delta 435 

and spindle waves in visual cortex plasticity108. 436 

 437 

Concluding remarks 438 

In summary, currently available evidence indicates that together with the well-accepted 439 

“rhythm-regulation function”, thalamic oscillations of relaxed wakefulness and non-REM 440 

sleep can have a “plasticity function” that, by virtue of their rhythmic LTSs and associated 441 

global somatodendritic Ca2+ calcium transients, can modify the strength of excitatory and 442 

inhibitory synapses in local thalamic neuronal assemblies. 443 

Clearly, in order to build a comprehensive picture of the proposed ‘plasticity function’ 444 

of thalamic low-vigilance state oscillations further investigations are needed. First, the specific 445 

type(s) of oscillations that trigger different forms of plasticity should be systematically 446 

assessed. Specifically, iLTP has only been tested at slow and delta but not spindle frequency71, 447 

iLTD was studied at delta but not at other oscillation frequencies93, and the LTP at TC-NRT 448 

synapses94 and the LTD at the NRT-NRT electrical synapses97 have been investigated only 449 
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with a delta frequency induction protocol. Second, to help understanding thalamic sensory 450 

processing and the increasingly recognized role of the thalamus in cognition109, how 451 

generalizable are these Ca2+ spike-dependent plasticity mechanisms across different thalamic 452 

nuclei? For example, iLTP has been described in the higher-order PoM nucleus but has not 453 

been investigated in first-order thalamic nuclei71 whereas iLTD has been demonstrated in the 454 

first-order VB nucleus but not in higher-order nuclei93. Moreover, is any of these (or any other) 455 

plasticity mechanisms occurring in motor, limbic and intralaminar thalamic nuclei? Third, how 456 

synapse-specific is the Ca2+-spike induced plasticity within particular nuclei? For instance, it 457 

remains to be seen whether the iLTP in the PoM nucleus involves NRT afferents and/or other 458 

non-thalamic GABAergic inputs (zona incerta, anterior pretectal nucleus, basal forebrain, 459 

hypothalamus2,110). Furthermore, it may be possible that the parvalbumin- and somatostatin-460 

containing subsets of NRT neurons111,112, which have different spatial distribution, 461 

physiological properties and targets112,113, experience different forms of plasticity. Fourth, 462 

plasticity should be tested using induction protocols that more faithfully reproduce the complex 463 

dynamics of natural low-vigilance state oscillations, i.e. spindle waves nested within slow (< 1 464 

Hz) oscillations, alpha waves occurring during slow oscillation Up states, etc. Importantly, 465 

would the longer somatodendritic Ca2+ signals of the slow (< 1 Hz) oscillation produce 466 

different synaptic or cell-intrinsic plasticity compared to the more rapid Δ[Ca2+]LTS of delta 467 

oscillations (cf. Fig. 4c)? Undoubtedly, the most necessary, though technically demanding, 468 

challenge, however, will be to move beyond in vitro approaches and investigate these forms of 469 

thalamic plasticity induced by low-vigilance state oscillations under natural waking-sleeping 470 

conditions and thus identify their behavioural consequences. 471 

  472 
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Box 1. The high-threshold spike. 473 

High-threshold spikes (HTSs) of TC neurons are small, brief depolarizations that occur at 474 

membrane potentials slightly more depolarized than tonic firing (a,b). They were originally 475 

identified with extracellular and intracellular recordings in vitro and extracellular recordings in 476 

freely moving cats during relaxed wakefulness10. HTSs are present in about 30% of TC neurons 477 

in visual, somatosensory and motor thalamic nuclei of mice, rats and cats (other thalamic nuclei 478 

have not yet been investigated)10,16,52,53 (a,b,d) and their presence has now been conclusively 479 

confirmed by in vivo intracellular recordings in awake mice (e). Though the voltage waveform 480 

of HTSs is entirely contained within membrane potentials > -55 mV (a,b,d,e), they are 481 

generated by the opening of probably both T- and L-type voltage-gated Ca2+ channels10. The 482 

HTSs of TC neurons in the dorsal lateral geniculate nucleus are phase-locked to the thalamic 483 

local field potential (LFP) in vitro (d) and to the alpha-frequency LFP recorded simultaneously 484 

in the primary visual cortex in vivo during relaxed wakefulness (e). The burst of action 485 

potentials generated by an HTS, i.e. the HTS-burst, is markedly different from the burst elicited 486 

by a low-threshold spike, i.e. the LTS-burst, in that it has i) an intra-burst frequency between 487 

50 and 70 Hz (b,c), and ii) a constant inter-spike interval (ISI) (b,c)10,16, i.e. it lacks the 488 

characteristic decelerando pattern of LTS-bursts in TC neurons. Notably, extracellularly 489 

recorded bursts of action potentials with identical features to those of HTS-bursts have been 490 

reported in motor thalamic nuclei of awake monkey114 and humans115. 491 

  492 
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Box 2. The global low-threshold spike. 493 

Simultaneous activation of T-VGCCs at spatially distant locations relies on thalamic neuron 494 

distinctive electrotonic properties. Dendrites are electrically distributed elements and thus, 495 

when they receive input locally, membrane voltage gradients emerge between different points 496 

within the tree. At the opposing ends of a typical dendrite, the non-symmetric ‘boundary 497 

conditions’, represented by the large electrically ‘leaky’ soma and the thin, significantly less 498 

‘leaky’ sealed dendritic tip, ensure that local membrane potential changes attenuate and shift 499 

in phase significantly more when they spread in the dendrite-to-soma direction (left diagram: 500 

red electrode to blue electrode) than in the opposite direction (left diagram: blue electrode to 501 

green electrode). Consequently, viewed from the soma, most neurons appear somewhat 502 

electrically compact. Although first predicted in computational models, it has only recently 503 

been revealed using dendritic patch clamp recordings that this effect is particularly strong for 504 

TC (L = 0.24) and NRT (L = 0.26) neurons68. Thus, whereas their dendritic trees may be 505 

large in physical space, in electrotonic space they appear small. As a result, from the somatic 506 

viewpoint, TC and NRT neurons behave almost as if they do not have dendrites at all and more 507 

like an isopotential sphere. Consequently, as the soma is depolarized by a synaptic input or 508 

experimentally through current injection (right diagram: blue electrode), the membrane 509 

potential in the entire dendritic tree (right diagram: red and green electrodes) follows with very 510 

little amplitude-attenuation or phase-shift between the somatic and dendritic voltage (at least 511 

at low frequencies). This permits co-incident activation of T-VGCCs expressed throughout the 512 

dendritic tree which results in a global somatodendritic LTS and [Ca2+]LTS. Importantly, when 513 

the membrane potential is changing more rapidly than during an LTS, such as during action 514 

potentials, the membrane capacitance and axial resistance act as low-pass filters, leading to the 515 

significant attenuation of bAPs. 516 

 517 

 518 

 519 

 520 

  521 
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Figure 1. Cellular thalamic counterparts of EEG rhythms of relaxed wakefulness and 522 

non-REM sleep. 523 

Representative intracellular recordings from thalamocortical (TC) (middle column) and 524 

nucleus reticularis thalami (NRT) (right column) neurons depicting the membrane potential 525 

changes occurring in these neurons during the respective EEG rhythms shown in the left 526 

column (N1-N3: non-REM sleep stages27). Sleep spindles can occur in isolation or following 527 

a K-complex. A K-complex in the EEG results from a single cycle of the slow (< 1 Hz) 528 

oscillations. In the TC neuron column, yellow boxes highlight alpha and delta oscillations 529 

nested in the Up and Down state, respectively, of slow (< 1 Hz) oscillations in N3. In the NRT 530 

neuron column, yellow boxes highlight spindle waves in the Up state and delta oscillations in 531 

the Down state, respectively, of slow (< 1 Hz) oscillations in N3. NRT neurons do not express 532 

firing coherent with alpha/theta waves (wake state and N1). Action potentials in the traces 533 

depicted in the middle and right column have been truncated for clarity of illustration. Adapted 534 

with permission from Refs. 10,33,34,46,116-118. 535 

 536 

Figure 2. Contribution of T-type Ca2+ channels to low-vigilance state oscillations.  537 

Schematic drawings of EEG waves of low-vigilance states with indicated brain regions 538 

of their rhythm generator(s) (top row). Schematic drawings of membrane potential oscillations 539 

in thalamocortical (TC) (bottom row) and nucleus reticularis thalami (NRT) neurons (middle 540 

row)  during different low-vigilance states, with shadowed area highlighting the contribution 541 

of T-type voltage-gated Ca2+ channels in each activity. NRT neurons do not exhibit HTSs and 542 

their firing is not correlated to the EEG alpha rhythm. In most traces, action potentials have 543 

been truncated for clarity of illustration. 544 

 545 

Figure 3. Low-threshold spikes and action potentials in thalamic neurons. 546 

a) In both thalamocortical (TC) and nucleus reticular thalami (NRT) neurons, paired 547 

somatodendritic recordings reveals that the low- threshold spike (LTS) depolarizes the entire 548 

dendritic tree to the same degree as the soma reflecting the global nature of its generation. The 549 

somatic (blue) and proximal (red) and distal (green) dendritic recordings illustrate the similar 550 

amplitude of the LTS throughout the dendritic tree. b) In contrast, action potentials are 551 

markedly attenuated in both thalamic cell types as they propagate from the soma (blue) into 552 

the proximal (red) and distal (green) dendrites. This can also be observed for the action 553 
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potentials in the LTS-driven bursts (a). A distance-dependent increase in the peak latency of 554 

the action potential recorded in the dendritic recordings reveals that they are focally generated 555 

in the perisomatic region. Adapted with permission from Ref. 73. 556 

  557 

Figure 4. Ca2+ signalling in thalamic neurons during non-REM sleep oscillations. 558 

a) Two-photon Ca2+-imaging of pairs of thalamocortical (TC) neuron dendrites (each 559 

originating from different primary dendrites as illustrated on the reconstructed cell) reveals that 560 

synchronous and remarkably similar Ca2+ transients occur at equivalent distances from the 561 

soma during low-threshold spikes (LTSs). b) Schematic illustration of the dendritic Ca2+ 562 

transients that occur in TC and nucleus reticularis thalami (NRT) neurons during LTSs and 563 

single action potentials. c) Schematic illustration of dendritic Ca2+ signalling in TC neurons 564 

during non-REM sleep oscillations. Membrane potential oscillations at delta and slow (< 1 Hz) 565 

frequencies (light blue, top traces) in TC neurons are coupled to synchronous dendritic Ca2+ 566 

oscillations in proximal (red) and distal (green) dendrites. Notably, Ca2+ transients throughout 567 

the dendritic tree decay significantly more slowly during slow (< 1 Hz) than delta oscillations. 568 

Adapted with permission from Refs. 64,74. 569 

 570 

Figure 5. Low-threshold Ca2+ spike-dependent plasticity in thalamus. 571 

Schematic drawings of the mechanisms of different forms of synaptic and cellular plasticity 572 

elicited by rhythmic low-threshold spikes (LTSs) (and associated Ca2+ transients) at 573 

frequencies relevant to oscillations of low vigilance states. a) Inhibitory long-term potentiation 574 

(iLTP) at GABAergic NRT-TC neuron synapses. Note the T-VGCC-elicited depolarization 575 

(V) driving activation of L-VGCCs. b) Inhibitory long-term depression (iLTD) at GABAergic 576 

NRT-TC neuron synapses. Note the requirement for metabotropic glutamate receptor (mGluR) 577 

activation by glutamate released from cortical (CX) afferents. c) Excitatory long-term 578 

potentiation (LTP) at glutamatergic TC-NRT neuron synapses. d) Long-term depression (LTD) 579 

at electrical NRT-NRT neuron synapses. e) Cellular plasticity of intrinsic HCN channels in TC 580 

neurons lead to increased Ih ((+) in inset). 581 

582 
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TOC Summary 872 

During inattentive wakefulness and non-REM sleep thalamic neurons exhibit diverse rhythmic 873 

activities that are essential for the expression of the corresponding EEG rhythm, e.g. alpha, 874 

spindle, delta and slow waves.  In this perspective, Crunelli and colleagues propose that 875 

together with this “rhythm-regulation function”, thalamic oscillations of these low-vigilance 876 

states have a “plasticity function” that, by virtue of their calcium spikes and associated global 877 

somatodendritic calcium transients, modifies the strength of excitatory and inhibitory synapses 878 

in local neuronal assemblies. 879 
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 924 

Glossary 925 

 Thalamocortical neurons: Glutamatergic thalamic neurons that project to the 926 

neocortex. 927 

 928 

 Nucleus reticularis thalami neurons: GABAergic neurons of this thin, laterally 929 

located, thalamic nucleus that do not project to the neocortex. 930 

 931 

 Sleep spindles: Oscillatory brain activity that constitutes an EEG hallmark of non-rem 932 

sleep and consists of waxing-and-waning 7-14 Hz oscillations lasting a few seconds. 933 

 934 

 First-order and higher-order thalamic nuclei: This functional classification of 935 

thalamic nuclei is based on their main driving input: subcortical or cortical. First order 936 

nuclei relay a particular modality of peripheral or subcortical information to a primary 937 

cortical area. Higher order nuclei relay information from layer 5 cortical neurons to 938 

other cortical areas and act like a hub in cortico-thalamo-cortical information pathways. 939 

 940 

 Intralaminar thalamic nuclei. A collection of thalamic nuclei involved in specific 941 

cognitive and motor functions that play a key role in the salience of stimuli of various 942 

modalities. 943 

 944 

 Cell-intrinsic mechanisms: Electrical behavior of a neuron that results from its passive 945 

and voltage-dependent electrical properties without a contribution of the synaptic 946 

network. 947 

 948 

 Up and Down states: Based on their intrinsic properties and/or the influence of the 949 

synaptic network, some neurons present a two-state behavior, characterized by two 950 

membrane potentials, a depolarized “Up” state and a hyperpolarized “Down” state. 951 

 952 

 IT window current: The partial overlap of the T-type calcium channel activation and 953 

inactivation curves define a range of membrane potential, centered around -60 mV, 954 
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where a fraction of the channel population is not inactivated and T-channels can open 955 

generating therefore a small tonic current called the window current.  956 

 957 

 Electrotonic properties: The combined electrical properties of a neuron that alter the 958 

manner in which subthreshold voltage changes propagates throughout the axon and the 959 

dendritic tree. 960 

 961 

 Backpropagating action potentials: The transient depolarization that occurs in the 962 

dendrites as a result of the generation of an action potential in the soma or axon initial 963 

segment. 964 

 965 

 Rescale (synaptic re-scaling): indicates to the normalization of the strength of synaptic 966 

connections that had previously been either increased or decreased in response to 967 

(relatively long-term) changes in neuronal activity. 968 

 969 
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