
Abstract—Modeling and simulation play an important role 
in transportation networks analysis. With the widespread 
of personalized real-time information sources, it is relevant 
for the simulation model to be individual-centered. The 
agent-based simulation is the most promising paradigm in 
this context. However, representing the movements of re-
alistic numbers of travelers within reasonable execution 
times requires significant computational resources. It also 
requires relevant methods, architectures and algorithms 
that respect the characteristics of transportation networks. 
In this paper, we tackle the problem of using high-perfor-
mance computing for agent-based traffic simulations. To do 
so, we define two generic agent-based simulation models, 
representing the existing sequential agent-based traffic 
simulations. The first model is macroscopic, in which trav-
elers do not interact directly and use a fundamental dia-
gram of traffic flow to continuously compute their speeds. 
The second model is microscopic, in which travelers inter-
act with their neighbors to adapt their speeds to their sur-
rounding environment. We define patterns to distribute 
these simulations in a high-performance environment. The 
first distributes agents equally between available computa-
tion units. The second pattern splits the environment over 
the different units. We finally propose a diffusive method to 
dynamically balance the load between units during execu-
tion. The results show that agent-based distribution is more 
efficient with macroscopic simulations, with a speedup of 
6 compared to the sequential version, while environment-
based distribution is more efficient with microscopic simu-
lations, with a speedup of 14. Our diffusive load-balancing 
algorithm improves further the performance of the envi-
ronment based approach by 150%.
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I. Introduction

M
obility policies makers need decision support 
systems to decide which transportation poli-
cies they should implement. In this context, 
simulation is one of the important tools to test 

strategies and multiple scenarios without impacting 
the real traffic [1], [18]. However, transport systems are 
becoming progressively more complex since they are 
increasingly composed of connected entities (mobile de-
vices, connected vehicles, etc). It becomes critical that 
simulation tools take into account this fact. Indeed, with 
the generalization of real-time traveler information, the 
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1http://www.instant-mobility.com/

behavior of modern transport networks becomes harder to 
analyze and to predict.

For these reasons, agent-based simulation, which adopts 
an individual-centered approach, is one of the most rele-
vant paradigms to design and implement such applications. 
The development of agent-based traffic simulations is rele-
vant in several contexts and in pursuit of various objectives. 
The simulation can be used to validate the impact of the use 
of cooperative systems [16], [19], to test changes in behav-
ior after the introduction of new mobility services, such as 
carpooling, etc. An agent-based traffic simulation platform 
simulates the behavior of travelers interacting in a com-
plex, dynamic and open environment, on which they have a 
partial perception [3]. Each agent tries to find the most ef-
ficient route to reach his destination in a network evolving 
dynamically. In some applications (e.g. [33]), an agent can 
potentially be informed of the status of the network and use 
this information to modify his route. In this kind of simula-
tions, it is important to model and simulate a realistic num-
ber of travelers to correctly observe the effects of individual 
decisions. In the European project Instant Mobility1 for in-
stance, the objective was to supply a multimodal platform 
with individual and multimodal travel queries and dynam-
ic positions of travelers and vehicles. To allow the platform 
to demonstrate its efficiency in an operational context, we 
implemented a simulator (called SM4T [34]), which had to 
be executed with an actual volume of travelers. Other ex-
amples where simulations must be scalable concern testing 
of new mobility services such as carpooling, car sharing, 
dial a ride, evacuation modeling, the exchange of informa-
tion between connected vehicles, etc.

However, the simulation of an actual number of pas-
sengers in a big city (several millions of travelers) requires 
both considerable computing power and an architecture al-
lowing the distribution of computations on many hosts. The 
majority of current agent-based traffic simulators do not al-
low such distribution. This induces limitations on the num-
ber of simulated travelers, means of transport and the size 
of the considered networks. provide reproducible generic 
distribution patterns that could be used by existing and fu-
ture implementations of agent-based traffic simulations.

In this paper, we propose to study distribution methods 
for agent-based traffic simulations. We define two generic 
agent-based simulation models, representing the main 
types of agent-based simulations of the literature. The first 
model is called macroscopic, in the sense that travelers do 
not interact directly but use a fundamental diagram of traf-
fic flow to continuously compute their speeds. This is the 
choice performed for instance in these works [8], [22], [34]. 
The second model is called microscopic, in which travelers 
interact with their neighbors to adapt their speeds to their 
surrounding environment. This is the most common choice 

performed in the literature for agent-based simulations 
(e.g. [5], [24]). This paper studies two distribution patterns 
(agent-based and environment-based) applied to these two 
simulation models. The results show that agent-based distri-
bution is more efficient with macroscopic simulations while 
environment-based distribution is more efficient with mi-
croscopic simulations. We propose a load-balancing mecha-
nism for the environment-based distribution and show that, 
with the right parameters definition, it has a positive impact 
on the distribution platform.

The remainder of this paper is structured as follows. In 
section II, we present the previous studies for agent-based 
traffic simulation and the existing distributed agent-based 
platforms. Section III presents a generic simulator for the 
execution of both macroscopic and microscopic agent-
based traffic simulations. Section IV presents the two dis-
tribution patterns (agent-based and environment-based) 
and their application to the two simulation models. Section V 
presents the load-balancing mechanism. Section VI explains 
our experimental setup and the results of our simulations. 
Section VII concludes this paper.

II. Related Work
In this section, we position our work with the previous works 
in the literature. In the next paragraph, we present the existent 
agent-based traffic simulators. Then we will focus on the ex-
isting proposals for distributing these platforms. We will finally 
describe the generic parallel multiagent platforms.

There exists several agent-based traffic simulations in 
the literature. Most of them are microscopic, in the sense 
that they rely on local interactions between traveler agents to 
define agents speeds. For instance, Transims [26], MATSim 
[24], Sumo [5] and Vissim [14] are widely used microscopic 
simulators of this type. Archisim [13] are also agent-based 
traffic simulation platforms describing precisely the behav-
iors of each traveler at a microscopic scale. Some existing 
agent-based simulations are “macroscopic”, in the sense that 
they compute the agents speeds based on a function mapping 
the number of agents traveling on an edge with their speeds. 
This model is generally used when an individual representa-
tion of travelers is needed but there are no reliable data about 
their local behavior. The authors in [8], [22], [34], have made 
this choice.

The problem of distributing agent-based traffic simu-
lations have attracted a lot of researches recently. Some 
previous works have addressed the specific problem of dis-
tributing agent-based traffic simulations. In [6], the authors 
propose dSumo, a distribution platform applied to the Sumo 
microscopic simulation platform. In [21], the authors pro-
pose a parallel version of Paramics [9]. However, they do not 
implement a load-balancing mechanism and present small 
clusters and networks (grid-like). The authors in [27] pres-
ent a parallelization of the Transims platform, with a load-
balancing mechanism. They use a master-slave model for 



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE •  147 •  SPRING 2018

synchronizing the different hosts. 
In the present work, our objective 
is to propose completely distribut-
ed mechanisms, independent from 
specific traffic platforms. In addi-
tion, to the best of our knowledge, 
our work is the only one dealing 
with the distribution of simulations 
using the two different interaction 
models (viz. microscopic and mac-
roscopic). More theoretical works 
studied general methods to address the traffic simulation 
distribution problem. In [23] and [30], the authors propose 
to relax some synchronization constraints to achieve a bet-
ter scalability by reducing the time the hosts wait for each 
other. This relaxation of constraint implies a loss a precision 
which is not viable in the case of a traffic simulator. Indeed, 
we could reach a state where the vehicles overlap and occupy 
the same position in the network. Our objective is to have a 
perfect accuracy of distributed traffic simulation, where the 
result in terms of traffic is exactly the same between a se-
quential and a distributed simulation.

Some general-purpose multiagent platforms have been 
specifically developed for large scale simulation in the 
last years. RepastHPC [12], a distributed version of Repast 
Symphony, uses the Repast’s concepts of projections and 
contexts and adapts them for distributed environments. 
Pandora [2] is close to RepastHPC and automatically gen-
erates the code required for inter-server communications. 
GridABM [17] is based on Repast Symphony but takes an-
other approach and proposes to the programmer general 
templates to be adapted to the communication topology 
of his simulation. Flame [11] allows the programmer to 
generate HPC simulations from finite state machines. It 
has also been sugested to use graphical units (GPGPU) 
to scale up the multiagents simulations. As we have seen 
in other articles, the TurtleKit 3 platform has been used 
in GPGPU [25]. However, these distributed platforms do 
not offer fine controls on how the communications be-
tween hosts are performed. Indeed, the communication 
layer is transparent for the programmer, which makes it 
easier for him to implement distributed simulations, but 
prevents him from optimizing the distribution. The best 
way to manage the communications depends on the ap-
plication and using such general platforms for a traffic 
simulator would not produce optimal results. In [28] the 
authors discuss the issues related to multiagent simula-
tion in a distributed virtual environment. The authors 
describe methods to split the virtual environment in sev-
eral zones to parallelize the simulation execution. This 
work proposes an efficient splitting of a continuous space 
in two dimensions. In the present paper, we use an ad-
aptation of this work for a graph structure to distribute 
traffic-based simulations.

III. Generic Agent-Based Traffic Simulations
In the following, we present two generic agent-based traf-
fic simulations. They are designed with the objective of 
representing the existing agent-based traffic simulations. 
They contain the main features of these types of simula-
tion, namely the network representation and the agents 
movements on this network. The next section presents the 
common components of these simulations. The next sec-
tions present the differences between the two simulations, 
mainly concerning the travelers speed computation.

A. The Multiagent System
In our proposals, we consider agents that are virtual autono-
mous entity, evolving in an environment, and taking actions 
to realize their objectives [7]. Agents are able to act on their 
environment, and to interact with the others agents.

A common base is shared by both simulations, which is 
composed of a dynamic set of agents representing travelers, 
interacting with a transportation network environment. We 
model the transportation network in which the travelers evolve 
with a graph G(V, E), where { , ..., }E e en1=  is a set of edges 
representing the roads and , ...,V v vn1= " , is a set of vertices 
representing the intersections. The agents, representing the 
travelers, move on this network from their origins to their des-
tinations, trying to minimize their travel costs. Fig. 1 describes 
the steps followed by a traffic simulation. First, the simulation 
platform loads the parameters (simulation duration, number 
of generated agents, etc.) and the description of the network. 
Then, it creates the logical graph from the network repre-
sentation, to enable shortest paths calculation and agents 
movements. The scheduler, which is responsible of agents 
execution, ranges over the agents and asks them to execute 
one step of simulation (either to compute a shortest path or to 
move from one position to another). When an agent reaches his 
destination, he comes back to his origin point (to keep a con-
stant number of agent in the simulation). When all agents have 
executed their step instructions for one tick of simulation time, 
the scheduler increments the simulation tick counter (step++), 
and the process starts again. When the simulation duration is 
reached, the simulation stops and the results are collected.

The agents execute a step method each time they are 
activated by the scheduler. When created, an agent has an 
origin node o and a destination node .d  The first action 

To the best of our knowledge, our work is the only one 
dealing with the distribution of simulations using the  
two different interaction models (viz. microscopic  
and macroscopic).
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that he executes when created and activated by the sched-
uler is to compute an *A  shortest path algorithm between 
o and .d  The shortest path is performed on the graph ,G
which edges costs are dynamic, depending on the current 
traffic. When he has a current path, the agent moves ac-
cording to it. At each tick, he moves the allowed distance 
following his current speed. The speed of the agent is com-
puted following the simulation model (microscopic or mac-
roscopic), described in the following sections. Each time 
he reaches a node, the agent recomputes a shortest path, to 
check if the current traffic conditions have evolved and if a 
new shortest path has become available2.

These are the main components of the model that are 
common to both types of simulations. In the following sec-
tions, we present the specific methods for the two simula-
tions, namely macroscopic and microscopic.

B. Macroscopic Simulation Model
In the macroscopic simulation model, the speed of an agent 
on an edge is computed following the number of other 

agents traveling on the same edge. To this end, a funda-
mental diagram of traffic flow is used. The diagram de-
fines a relation between the flow (vehicles/hour) and the 
density (vehicles/km) (cf. Fig. 2, left) on an edge or a part 
of an edge to calculate the speed of the agents at each time. 
The fundamental diagram suggests that if we exceed a 
critical density of vehicles ,kc  the more vehicles are on a 
road, the slower they will move.

With the distribution objective that we have, the loca-
tions of the agents and their interaction patterns are the 
most important. In the macroscopic model, the agents do 
not interact directly. The speed of the agent is computed 
with an interaction between the agent and the edge. The 
latter knows the number of agents currently using it, and 
based on the speed function providing the right speed to be 
used by the agent, based on the fundamental diagram (cf. 
Fig. 2, right).

C. Microscopic Simulation
In the microscopic simulation model, the speed of an agent 
on an edge is computed following the position and speed of 
the vehicles surrounding him. In this model, the information 
available to each agent is only local. The agents perceive a 
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FIG 1 Steps of a simulation.

2The graph being directed, turnarounds are only possible at nodes and 
there is no need for the agent to execute a shortest path while traveling 
on an edge.



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE •  149 •  SPRING 2018

part of their environment, delimited by their aoi3 and then 
calculate their next move given the perceived informa-
tion. This implies many local communications between the 
agents, because their actions will be conditioned by the ac-
tions of the other agents present in their aoi. This model is 
generally based on:
■ a car-following model
■ a lane-changing model
■ and/or a gap acceptance model

All three models focus on local interactions. In the fol-
lowing, we describe an example of car-following model.

At each time tick of the simulation, each agent computes 
his speed based on the speed and position of the agent be-
fore him. The variables needed to describe our model are 
the following:
1) ( )x tn the position of n  at time t
2) ( )x tnl the speed of n  at time t
3) ( )x tnm the speedup of n  at time t
4) ( ) ( ) ( )s t x t x tn n n1= -- the inter-agent distance
5) ( ) ( ) ( )s t x t x tn n n1= --l l l the relative speed
6) T the reaction time

Thus, at any time step, the speed of an agent is given by 
the relation:

n( ) ( ) ( ) ( )x t T s t s t x tn n na b c+ = + +m l l

If there is no vehicle preceding the agent, he will accel-
erate until he reaches the speed limit of his edge.

In this model, each agent registers his experienced trav-
el time when he reaches the end of the edge (as proposed by 
the authors in [32]). The shortest path calculation is based 
on the graph where the travel times costs are fed by the 
agents following this procedure.

In contrast with the macroscopic model, the agents in 
the microscopic model do interact directly. The speed of the 
agent is computed with a direct interaction between the 
considered agent and the agents before him. This differ-
ence between the two models conditions the choice of the 
relevant distribution pattern for the considered simulation 
type. The distribution patterns are described in the follow-
ing section.

IV. Distribution
We define two patterns to distribute traffic simulations. 
The patterns are the same than those identified by the au-
thors in [29] for general-purpose situated multiagent simu-
lations, and we believe that they present two representative 
distribution patterns for this kind of simulations. The first 
pattern (called agent-based distribution) is the distribution 
model used by [4]. It consists in the duplication of the trans-
port environment on all processing units, and the equal 
dispatching of the agents on each one. As a consequence, 

agents stay on the same unit during all the simulation. The 
second pattern (called environment-based distribution) is 
the mostly used pattern in the literature. It consists in par-
titioning the transportation environment and the dispatch-
ing of each subpart of the environment—and all the agents 
in it—on each processing unit. In this pattern, agents might 
have to move from one unit to another if their itinerary 
crosses several subparts of the transport environment.

A. Agent-Based Distribution
The first distribution pattern is agent-based, since it clus-
ters the set of agents in k  equal parts (with k  the number 
of available processing units), and distributes each subset 
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on a unit and executes the simulation (cf. Fig. 4). The trans-
portation network is duplicated on each unit. This method 
ensures that each unit has the same amount of work at 
any time of the simulation. In the following, we describe 
the use of this pattern for both simulation models that we 
have defined.

1) Macroscopic Simulation with Agent-Based Distribution
In a macroscopic simulation, when it is distributed follow-
ing the agent-based distribution pattern, every units con-
tinuously (at each simulation tick) informs the other units 
of its network state. This is due to the fact that they do not 
have a complete view of the network state, since only a part 
of the agents evolves in the unit. Thus, they send the list 
of edges together with the number of agents currently on 
them. Each unit is then able to compute the shortest paths 
and the relevant speed of the agents (using the fundamen-
tal diagram of traffic).

2) Microscopic Simulation with Agent-Based Distribution
When distributed following the agent-based distribution 
pattern, the agents in a microscopic simulation do not use 
a fundamental diagram of traffic to compute their speeds. 
Instead, they need to know the state of the agents preced-
ing them. To do so, they interrogate the edges in the other 
units to know if there are agents preceding them, and if it 
is the case, to know their states. Moreover, the units ex-
change the current travel times (provided by the agents as 
explained in the microscopic model), in order to compute 
the shortest paths of the agents.

B. Environment-Based Distribution
The second approach to distribute traffic simulations is en-
vironment-based. It tries to keep on the same unit the agents 
who are geographically close in the transport network (cf. 
Fig. 5). To this end, the network is splitted in k  parts (with 
k  the number of available processing units), and distributed 

1

2

3
6

4

5

9

7

8

10

11

12

14

13

1

2

3
6

4

5

9

7

8

10

11

12

14

13

1

2

3
6

4

5

9

7

8

10

11

12

14

13

1

2

3
6

4

5

9

7

8

10

11

12

14

13

FIG 4 Agents distribution.



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE •  151 •  SPRING 2018

on the different units. Each unit is only aware of what is 
happening on the part of the graph that it is managing, and 
the agents that are in the same area are now likely to be on 
the same unit. If an agent reaches a part of the network that 
is not managed by his current unit, he moves to the proper 
unit. In order for the environment distribution method to be 
effective, each unit has to manage approximately the same 
number of agents and the number of edges connecting the 
partitions has also to be minimized (to reduce the number 
of agents being transferred between units).

The problem of graph partitioning has been widely studied 
in the scientific literature. We propose a method derived 
from the Differential Greedy algorithm [15] that allows us 
to use the algorithm with weighted vertices while produc-
ing more connected partitions (Algorithm 1). For edges 
partitioning, we make the same choice as [10] by not cut-
ting edges in the middle. We associate each edge with the 
partition of its origin node.

The algorithm starts by creating a minimal partition 
with only one node each (instructions (1) to (5)). Then, while 
there are nodes to be associated to partitions, the algorithm:
■ chooses the lightest partition ,Pp  in terms of agents 

present in it (instruction (6))
■ finds the nodes that are the most connected with the 

nodes already in Pp  and that are the least connected 
with the nodes that are not in .Pp  The parameter e  gives 
more or less importance to the nodes that are close to the 
partition (instruction 7).

■ chooses one of these nodes, adds it to the partition and 
removes it from the nodes to process (instructions 8 
to 10).
This algorithm is fast and intuitive. Our modification 

of the original differential greedy algorithm concerns the 
choice of the current partition to treat. The “lightest” par-
tition in the original algorithm concerns the number of 
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Require: Graph ( ,G V E= ,)  number k  of partition
Ensure: Partition P
(1) k 1-, ...,P P P0!

(2) V V!l
for [ , ]p k0 1! - do

(3) v !  random vertex of V l
(4) P vp ! " ,
(5) V V v!l l" ,

end for
while | |V 02l do

(6) p !  index of the lightest partition
(7) ( )minm 1v V e= +! l  (number of v’s neighbors Pp! ) – (number of v’s 
neighbors Pp" )
(8) mv = random vertex of |( )v V 1! e+l  (number v’s neighbors )P p! -

(number of v’s neighbors ) m=Pp"

(9) { }P P mvp p! ,

(10) \ { }V V mv!l l

end while
(11) Return P

Algorithm 1 Differential Greedy algorithm
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nodes in the partition, while in our algorithm, it concerns 
the number of agents in the partition.

1) Macroscopic Simulation with Environment-Based Distribution
When used with an environment-based distribution, the 
computation units in the macroscopic simulation exchange 
the current travel times on the transport edges, to be able to 
compute the shortest paths for the agents. However, since 
all the agents on an edge are present on the same unit, they 
do not need to exchange the number of agents per edge. 
The fundamental diagram of traffic and the speeds of the 
agents can indeed be defined locally.

2) Microscopic Simulation with Environment-Based Distribution
When distributed following the environment-based distri-
bution pattern, the agents in a microscopic simulation need 
to know the state of the agents preceding them. In contrast 
with the agent-based distribution model, the agents pre-
ceding them are by definition present on the same com-
putation unit. The interrogation of the edges is then local 
to the concerned computation unit. The units keep on ex-
changing the current travel times (provided by the agents) 
to compute the shortest paths for the agents.

V. Diffusive Load Balancing
With the environment-based distribution, the graph par-
titioning is executed once, based on the initial positions 
of the agents and the network structure. However, if the 
network structure is stable, agents positions are of course 
changing over the simulation, which could lead to load im-
balance during the simulation. Typically, travelers drive 
from their residential areas to work areas in the morning 
and drive back home in the evening. Certain parts of the 
network, and consequently their corresponding computa-
tion units, would have many more agents to handle than 
the others, and the whole simulation would slow down. In-
deed, at the end of each time step of the simulation, all the 
units have to wait for each others to synchronize. The over-
all execution time of a simulation step is then equal to the 
execution time of the slowest unit. As the execution time 
of a given unit is directly linked to the number of agents 

executing on this unit, it is important in these conditions to 
keep the load balanced.

A. The Algorithm
A straightforward way to balance the load dynamically 
would be to part the graph from scratch when one unit is 
overloaded. But in the traffic simulations we are targeting, 
we have to deal with big graphs and many agents: the time 
needed to part the graph and to move all the agents from 
one unit to another would be counterproductive and would 
slow down the simulation.

That is why we have developed a dynamic load bal-
ancing algorithm, able to diffuse incrementally the ex-
cessive workload of a unit on the units around. At the 
beginning of the simulation, we use the modified differ-
ential greedy algorithm to part the graph. Then, during 
the simulation, each unit maintains a list of boundary 
vertices of the traffic network. These vertices are the 
ones who have a common edge with a vertex managed 
by another unit. When the load of a processing unit (in 
terms of number of agents) exceeds a threshold, we trig-
ger the load balancing mechanism. The unit will request 
the load of the processing units around, and will transfer 
its most heavy vertex (in terms of number of agents on 
it) to his least loaded neighbor (cf. algorithm 2). How-
ever, when there is a huge number of agents on a ver-
tex, the latter will continually be sent between the units. 
To avoid this perpetual oscillation, we define a limit on 
the number of agents from which the vertex will not be 
moved. This algorithm avoids to part the graph from 
scratch, and allows a good load-balancing with a linear 
complexity: ( ) ( )O n O k+ .

For instance, in Fig. 6, the W values represent the num-
ber of agents in each partition. The partition 1 is initially 
overloaded (a), compared to the others. The partition 2, 
which is the neighboring partition with the smallest load is 
selected for the transfer. At this point, both vertices 7 and 9 
are candidates to be transferred, as they are in the bound-
ary between the partition 1 and 2. The heaviest vertex (9) is 
selected, and sent to partition 2. This gives us a new graph 
partition, by load diffusion.

The choice of the coefficient a  is crucial here, because 
it will determine how often the mechanism will be trig-
gered. Indeed, the closer a  is of 1, the most often the proce-
dure of load balancing will be triggered. Triggering it too 
often would leads to unstable partitions.

VI. Experiments and Results

A. Implementation
A way to execute a distributed simulation is to define a 
distributed program where each computation unit, while 
executing the same program, owns only a part of the pro-
gram data in its private memory, and all the processors are 

Require: P  partition of a graph ( ,G V E= )
Require: P i  current partition
Require: n  total number of agents
Require: k  number of processing units

( / )threshold n k! a
if number of agents in thresholdP i 2 then

!Pmin  partition connected to P i  with the minimum load
!vmax  the heaviest vertex P i!  connected to Pmin with | | . ( / )v n k0 51

move vmax  to Pmin
end if

Algorithm 2 Diffusive Load Balancing algorithm



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE •  153 •  SPRING 2018

connected by a network. The advantage of this approach is 
its high scalability. Indeed, it can be implemented on most 
parallel architectures and we can deploy the same simula-
tion on larger systems if we need more computing power 
and memory. We use Python to develop our simulator, for 
its efficiency in quick prototyping. Python is a mature por-
table language with a lot of well tested scientific librar-
ies and is along with C and Fortran one of the most used 
languages for high performance computing [20]. Here, we 
do not seek absolute performance, but we aim to study the 
relative efficiency of different distribution methods. Thus 
we believe that Python is a relevant choice. The inter-
process communications are managed by MPI, which is 
the standard language for parallel computing with a huge 
community of users. MPI offers a simple communication 
model between the different processes in a program and 
has many efficient implementations that run on a variety 
of machines4.

We have executed the distributed simulations on an ex-
perimental cluster that we have set up. For our tests, we 
used two hosts under Linux Mint 17.2 Rafaela (kernel ver-
sion 3.16.0-38-generic) each with an Intel Xeon processor 
CPU E7-4820 (32 cores at 2 Ghz) with 250 GB of memory. 
We ran the simulations on two configurations: the first is 
a sequential version of the program on a single core, the 
second is a distributed version on the whole 64 cores.

The considered network is a real network concern-
ing the Paris-Saclay region, France, with 1895 nodes and 
3831 edges. The number of travelers using this network 
is around 110,000. We consider from 10,000 travelers to 
500,000 travelers in our simulations. That means that we 
represent from around 10% to around 500% of the real 
number of travelers in our simulations.

B. Results

1) Macroscopic Vs. Microscopic Model
We compare the two methods of distribution (agent-based 
and environment-based distributions) with the different 
paradigms (micro and macro) increasing the number of 
agents (from 10,000 to 500,000).

The speedups for the two distributions methods applied 
on the different paradigms are plotted in Fig. 8 and Fig. 7. 
The speedup measures how many times the distributed 
simulation is faster compared to the corresponding sequen-
tial execution.

As we can see, the agent distribution is efficient for a 
macroscopic model (more than 5 times faster with 500,000 
agents). There is no local interactions in this type of sim-
ulations. This method allows to get a perfectly balanced 
load all along the simulation, while keeping the amount of 
inter-servers communications at the minimum.
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However, this method is particularly ineffective in the 
case of a microscopic simulation. Indeed, the agents will 
now interact a lot with other agents that are not situated in 
the same unit. This will generate a lot of communications 
between the servers, and the gain of the parallelization 
is annihilated by the time required by these communica-
tions. This method is even less efficient than the sequential 
execution for the microscopic model (speedup 1 1).

For a macroscopic simulation, the environment distri-
bution is less efficient than agent distribution. It is well 
adapted for a microscopic simulation though. This method 
is up to 15 times faster than a sequential execution applied 
in a microscopic simulation.

2) Impact of Load-Balancing
For the assessment of the load-balancing mechanism, we have 
to define the optimal value of a  for the experiments. To do so, 
we execute three different types of simulations, each applied 
to the microscopic simulation type: the first, called “static” is 
the environment-based distribution approach presented ear-
lier. The second is the load-balancing approach with .1 2a =

(called “dynamic_1_2”) and the third is the load-balancing 
approach with .1 3a =  (called “dynamic_1_3”)5. Fig. 9 shows 
the results. Each point in the curves represents the difference 
between the optimal load (equal agents distribution between 
units) and the load on the most loaded process, for each time 
step. As we can see, with the “static” approach, the differ-
ence (the imbalance) is big. With the dynamic approach and 

.1 2a = , the balance is better than with the static approach, 
but the load is unstable. Finally, with .1 3a =  the oscillations 
ceases and the load of the simulation is successfully balanced 
between the processes. Based on a series of experiments that 
we have executed, choosing a bigger a  would lead to more 
imbalanced partitions, so we choose to keep .1 3a =  for the 
rest of our experiments.

Table I indicates the execution times for a simulation of 
1,000 time steps with the sequential method and the two 
distribution methods (static and dynamic with .1 3a = ). 
Fig. 10 shows the speedups of the two methods in compari-
son to the sequential execution.
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Number of agents 10,000 50,000 100,000 250,000 500,000

Sequential (1 proc) 12814 62672 142350 315876 631243

Static (64 cores) 463 2136 3902 9636 18929 

Dynamic_1.3  
(64 cores)

327 1382 2665 6468 13480 

Table I. Load balancing: computational times (in seconds).

5We do not display the curve for .1 1a =  because it was extremely unstable.
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Finally, Fig. 11 exhibits the efficiency of the dynamic 
load balancing in function of the number of used pro-
cesses. The simulation we ran here was for 100,000 agents 
and 1000 time steps, with 64 processes. We can see that 
with our load balancing, the simulation scale very well 
with the number of process we have at our disposal. For 
100000 (which is approximately the load we can expect on 
the Paris-Saclay network) we reach a speedup of 54 with 
64 processes.

VII. Conclusions and Perspectives
In this paper, we applied two distribution methods on 
two types of agent-based traffic simulators. We have seen 
that agent-based distribution is well suited for macro-
scopic simulators while environment-based distribution 
is well suited for microscopic simulations. These findings 
are useful for the distribution of the existing agent-based 
traffic simulations. Microscopic simulations can be more 
optimally distributed using dynamic load-balancing mech-
anisms, such as the diffusive load-balancing method pre-
sented in this paper.

The proposed diffusive load balancing algorithm that 
we have proposed is able to dynamically balance the loads 
of a traffic simulation, and is efficient with our experimen-
tal setup. In a future work, we will test this method on a 
cloud-like environment (single core units, linked by a net-
work). We will also investigate a hybrid approach: when a 
process has to manage a very loaded vertex, being able to 
distribute the agents on this vertex between two or more 
units would allow us to improve furthermore the perfor-
mance of the simulation.

We also plan to consider multimodal agent-based traffic 
simulators. The presence of different transport modes and 
networks could encourage to mix the patterns presented in 

this paper with a distribution per transport mode. We are 
also working on the integration of information networks 
(such as social networks or intervehicular interaction [32]) 
and their impact on the distribution performance. Indeed, 
if travelers interact often, they should be preferably ex-
ecuted on the same units, or else they will generate too 
many communication and deteriorate the performance of 
the system.
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