
Abstract—Modeling and simulation play an important role
in transportation networks analysis. With the widespread
of personalized real-time information sources, it is relevant
for the simulation model to be individual-centered. The
agent-based simulation is the most promising paradigm in
this context. However, representing the movements of re-
alistic numbers of travelers within reasonable execution
times requires significant computational resources. It also
requires relevant methods, architectures and algorithms
that respect the characteristics of transportation networks.
In this paper, we tackle the problem of using high-perfor-
mance computing for agent-based traffic simulations. To do
so, we define two generic agent-based simulation models,
representing the existing sequential agent-based traffic
simulations. The first model is macroscopic, in which trav-
elers do not interact directly and use a fundamental dia-
gram of traffic flow to continuously compute their speeds.
The second model is microscopic, in which travelers inter-
act with their neighbors to adapt their speeds to their sur-
rounding environment. We define patterns to distribute
these simulations in a high-performance environment. The
first distributes agents equally between available computa-
tion units. The second pattern splits the environment over
the different units. We finally propose a diffusive method to
dynamically balance the load between units during execu-
tion. The results show that agent-based distribution is more
efficient with macroscopic simulations, with a speedup of
6 compared to the sequential version, while environment-
based distribution is more efficient with microscopic simu-
lations, with a speedup of 14. Our diffusive load-balancing
algorithm improves further the performance of the envi-
ronment based approach by 150%.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 145 • SPRING 20181939-1390/18©2018IEEE

Matthieu Mastio, Mahdi Zargayouna,
and Gérard Scemama
Université Paris Est, IFSTTAR, GRETTIA
14–20, boulevard Newton,
77447 Champs sur Marne, France
E-mail: {matthieu.mastio;
hamza-mahdi.zargayouna;
gerard.scemama}@ifsttar.fr

Omer Rana
School of Computer Science and Informatics,
Cardiff University, Cardiff, United Kingdom
E-mail: ranaof@cardiff.ac.uk

Distributed Agent-Based
Traffic Simulations

Digital Object Identifier 10.1109/MITS.2017.2776162
Date of publication: 19 January 2018

©
IS

TO
C

K
P

H
O

TO
.C

O
M

/B
E

R
YA

11
3

High Performance Computing in Simulation
and Optimization of Dynamic Transportation

I. Introduction

M
obility policies makers need decision support
systems to decide which transportation poli-
cies they should implement. In this context,
simulation is one of the important tools to test

strategies and multiple scenarios without impacting
the real traffic [1], [18]. However, transport systems are
becoming progressively more complex since they are
increasingly composed of connected entities (mobile de-
vices, connected vehicles, etc). It becomes critical that
simulation tools take into account this fact. Indeed, with
the generalization of real-time traveler information, the

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 146 • SPRING 2018

1http://www.instant-mobility.com/

behavior of modern transport networks becomes harder to
analyze and to predict.

For these reasons, agent-based simulation, which adopts
an individual-centered approach, is one of the most rele-
vant paradigms to design and implement such applications.
The development of agent-based traffic simulations is rele-
vant in several contexts and in pursuit of various objectives.
The simulation can be used to validate the impact of the use
of cooperative systems [16], [19], to test changes in behav-
ior after the introduction of new mobility services, such as
carpooling, etc. An agent-based traffic simulation platform
simulates the behavior of travelers interacting in a com-
plex, dynamic and open environment, on which they have a
partial perception [3]. Each agent tries to find the most ef-
ficient route to reach his destination in a network evolving
dynamically. In some applications (e.g. [33]), an agent can
potentially be informed of the status of the network and use
this information to modify his route. In this kind of simula-
tions, it is important to model and simulate a realistic num-
ber of travelers to correctly observe the effects of individual
decisions. In the European project Instant Mobility1 for in-
stance, the objective was to supply a multimodal platform
with individual and multimodal travel queries and dynam-
ic positions of travelers and vehicles. To allow the platform
to demonstrate its efficiency in an operational context, we
implemented a simulator (called SM4T [34]), which had to
be executed with an actual volume of travelers. Other ex-
amples where simulations must be scalable concern testing
of new mobility services such as carpooling, car sharing,
dial a ride, evacuation modeling, the exchange of informa-
tion between connected vehicles, etc.

However, the simulation of an actual number of pas-
sengers in a big city (several millions of travelers) requires
both considerable computing power and an architecture al-
lowing the distribution of computations on many hosts. The
majority of current agent-based traffic simulators do not al-
low such distribution. This induces limitations on the num-
ber of simulated travelers, means of transport and the size
of the considered networks. provide reproducible generic
distribution patterns that could be used by existing and fu-
ture implementations of agent-based traffic simulations.

In this paper, we propose to study distribution methods
for agent-based traffic simulations. We define two generic
agent-based simulation models, representing the main
types of agent-based simulations of the literature. The first
model is called macroscopic, in the sense that travelers do
not interact directly but use a fundamental diagram of traf-
fic flow to continuously compute their speeds. This is the
choice performed for instance in these works [8], [22], [34].
The second model is called microscopic, in which travelers
interact with their neighbors to adapt their speeds to their
surrounding environment. This is the most common choice

performed in the literature for agent-based simulations
(e.g. [5], [24]). This paper studies two distribution patterns
(agent-based and environment-based) applied to these two
simulation models. The results show that agent-based distri-
bution is more efficient with macroscopic simulations while
environment-based distribution is more efficient with mi-
croscopic simulations. We propose a load-balancing mecha-
nism for the environment-based distribution and show that,
with the right parameters definition, it has a positive impact
on the distribution platform.

The remainder of this paper is structured as follows. In
section II, we present the previous studies for agent-based
traffic simulation and the existing distributed agent-based
platforms. Section III presents a generic simulator for the
execution of both macroscopic and microscopic agent-
based traffic simulations. Section IV presents the two dis-
tribution patterns (agent-based and environment-based)
and their application to the two simulation models. Section V
presents the load-balancing mechanism. Section VI explains
our experimental setup and the results of our simulations.
Section VII concludes this paper.

II. Related Work
In this section, we position our work with the previous works
in the literature. In the next paragraph, we present the existent
agent-based traffic simulators. Then we will focus on the ex-
isting proposals for distributing these platforms. We will finally
describe the generic parallel multiagent platforms.

There exists several agent-based traffic simulations in
the literature. Most of them are microscopic, in the sense
that they rely on local interactions between traveler agents to
define agents speeds. For instance, Transims [26], MATSim
[24], Sumo [5] and Vissim [14] are widely used microscopic
simulators of this type. Archisim [13] are also agent-based
traffic simulation platforms describing precisely the behav-
iors of each traveler at a microscopic scale. Some existing
agent-based simulations are “macroscopic”, in the sense that
they compute the agents speeds based on a function mapping
the number of agents traveling on an edge with their speeds.
This model is generally used when an individual representa-
tion of travelers is needed but there are no reliable data about
their local behavior. The authors in [8], [22], [34], have made
this choice.

The problem of distributing agent-based traffic simu-
lations have attracted a lot of researches recently. Some
previous works have addressed the specific problem of dis-
tributing agent-based traffic simulations. In [6], the authors
propose dSumo, a distribution platform applied to the Sumo
microscopic simulation platform. In [21], the authors pro-
pose a parallel version of Paramics [9]. However, they do not
implement a load-balancing mechanism and present small
clusters and networks (grid-like). The authors in [27] pres-
ent a parallelization of the Transims platform, with a load-
balancing mechanism. They use a master-slave model for

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 147 • SPRING 2018

synchronizing the different hosts.
In the present work, our objective
is to propose completely distribut-
ed mechanisms, independent from
specific traffic platforms. In addi-
tion, to the best of our knowledge,
our work is the only one dealing
with the distribution of simulations
using the two different interaction
models (viz. microscopic and mac-
roscopic). More theoretical works
studied general methods to address the traffic simulation
distribution problem. In [23] and [30], the authors propose
to relax some synchronization constraints to achieve a bet-
ter scalability by reducing the time the hosts wait for each
other. This relaxation of constraint implies a loss a precision
which is not viable in the case of a traffic simulator. Indeed,
we could reach a state where the vehicles overlap and occupy
the same position in the network. Our objective is to have a
perfect accuracy of distributed traffic simulation, where the
result in terms of traffic is exactly the same between a se-
quential and a distributed simulation.

Some general-purpose multiagent platforms have been
specifically developed for large scale simulation in the
last years. RepastHPC [12], a distributed version of Repast
Symphony, uses the Repast’s concepts of projections and
contexts and adapts them for distributed environments.
Pandora [2] is close to RepastHPC and automatically gen-
erates the code required for inter-server communications.
GridABM [17] is based on Repast Symphony but takes an-
other approach and proposes to the programmer general
templates to be adapted to the communication topology
of his simulation. Flame [11] allows the programmer to
generate HPC simulations from finite state machines. It
has also been sugested to use graphical units (GPGPU)
to scale up the multiagents simulations. As we have seen
in other articles, the TurtleKit 3 platform has been used
in GPGPU [25]. However, these distributed platforms do
not offer fine controls on how the communications be-
tween hosts are performed. Indeed, the communication
layer is transparent for the programmer, which makes it
easier for him to implement distributed simulations, but
prevents him from optimizing the distribution. The best
way to manage the communications depends on the ap-
plication and using such general platforms for a traffic
simulator would not produce optimal results. In [28] the
authors discuss the issues related to multiagent simula-
tion in a distributed virtual environment. The authors
describe methods to split the virtual environment in sev-
eral zones to parallelize the simulation execution. This
work proposes an efficient splitting of a continuous space
in two dimensions. In the present paper, we use an ad-
aptation of this work for a graph structure to distribute
traffic-based simulations.

III. Generic Agent-Based Traffic Simulations
In the following, we present two generic agent-based traf-
fic simulations. They are designed with the objective of
representing the existing agent-based traffic simulations.
They contain the main features of these types of simula-
tion, namely the network representation and the agents
movements on this network. The next section presents the
common components of these simulations. The next sec-
tions present the differences between the two simulations,
mainly concerning the travelers speed computation.

A. The Multiagent System
In our proposals, we consider agents that are virtual autono-
mous entity, evolving in an environment, and taking actions
to realize their objectives [7]. Agents are able to act on their
environment, and to interact with the others agents.

A common base is shared by both simulations, which is
composed of a dynamic set of agents representing travelers,
interacting with a transportation network environment. We
model the transportation network in which the travelers evolve
with a graph G(V, E), where { , ..., }E e en1= is a set of edges
representing the roads and , ...,V v vn1= " , is a set of vertices
representing the intersections. The agents, representing the
travelers, move on this network from their origins to their des-
tinations, trying to minimize their travel costs. Fig. 1 describes
the steps followed by a traffic simulation. First, the simulation
platform loads the parameters (simulation duration, number
of generated agents, etc.) and the description of the network.
Then, it creates the logical graph from the network repre-
sentation, to enable shortest paths calculation and agents
movements. The scheduler, which is responsible of agents
execution, ranges over the agents and asks them to execute
one step of simulation (either to compute a shortest path or to
move from one position to another). When an agent reaches his
destination, he comes back to his origin point (to keep a con-
stant number of agent in the simulation). When all agents have
executed their step instructions for one tick of simulation time,
the scheduler increments the simulation tick counter (step++),
and the process starts again. When the simulation duration is
reached, the simulation stops and the results are collected.

The agents execute a step method each time they are
activated by the scheduler. When created, an agent has an
origin node o and a destination node .d The first action

To the best of our knowledge, our work is the only one
dealing with the distribution of simulations using the
two different interaction models (viz. microscopic
and macroscopic).

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 148 • SPRING 2018

that he executes when created and activated by the sched-
uler is to compute an *A shortest path algorithm between
o and .d The shortest path is performed on the graph ,G
which edges costs are dynamic, depending on the current
traffic. When he has a current path, the agent moves ac-
cording to it. At each tick, he moves the allowed distance
following his current speed. The speed of the agent is com-
puted following the simulation model (microscopic or mac-
roscopic), described in the following sections. Each time
he reaches a node, the agent recomputes a shortest path, to
check if the current traffic conditions have evolved and if a
new shortest path has become available2.

These are the main components of the model that are
common to both types of simulations. In the following sec-
tions, we present the specific methods for the two simula-
tions, namely macroscopic and microscopic.

B. Macroscopic Simulation Model
In the macroscopic simulation model, the speed of an agent
on an edge is computed following the number of other

agents traveling on the same edge. To this end, a funda-
mental diagram of traffic flow is used. The diagram de-
fines a relation between the flow (vehicles/hour) and the
density (vehicles/km) (cf. Fig. 2, left) on an edge or a part
of an edge to calculate the speed of the agents at each time.
The fundamental diagram suggests that if we exceed a
critical density of vehicles ,kc the more vehicles are on a
road, the slower they will move.

With the distribution objective that we have, the loca-
tions of the agents and their interaction patterns are the
most important. In the macroscopic model, the agents do
not interact directly. The speed of the agent is computed
with an interaction between the agent and the edge. The
latter knows the number of agents currently using it, and
based on the speed function providing the right speed to be
used by the agent, based on the fundamental diagram (cf.
Fig. 2, right).

C. Microscopic Simulation
In the microscopic simulation model, the speed of an agent
on an edge is computed following the position and speed of
the vehicles surrounding him. In this model, the information
available to each agent is only local. The agents perceive a

Load Parameters and
Network

Simulation Context Agent

Act

Run Agents

Create Graph

Run Context

Time Over?

Step++

Yes

Yes

Yes
No

No

No

Collect Results

End

On a Vertex?

Destination
Reached?

Move

Turn Back
Calculate
Itinerary

FIG 1 Steps of a simulation.

2The graph being directed, turnarounds are only possible at nodes and
there is no need for the agent to execute a shortest path while traveling
on an edge.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 149 • SPRING 2018

part of their environment, delimited by their aoi3 and then
calculate their next move given the perceived informa-
tion. This implies many local communications between the
agents, because their actions will be conditioned by the ac-
tions of the other agents present in their aoi. This model is
generally based on:
■ a car-following model
■ a lane-changing model
■ and/or a gap acceptance model

All three models focus on local interactions. In the fol-
lowing, we describe an example of car-following model.

At each time tick of the simulation, each agent computes
his speed based on the speed and position of the agent be-
fore him. The variables needed to describe our model are
the following:
1) ()x tn the position of n at time t
2) ()x tnl the speed of n at time t
3) ()x tnm the speedup of n at time t
4) () () ()s t x t x tn n n1= -- the inter-agent distance
5) () () ()s t x t x tn n n1= --l l l the relative speed
6) T the reaction time

Thus, at any time step, the speed of an agent is given by
the relation:

n() () () ()x t T s t s t x tn n na b c+ = + +m l l

If there is no vehicle preceding the agent, he will accel-
erate until he reaches the speed limit of his edge.

In this model, each agent registers his experienced trav-
el time when he reaches the end of the edge (as proposed by
the authors in [32]). The shortest path calculation is based
on the graph where the travel times costs are fed by the
agents following this procedure.

In contrast with the macroscopic model, the agents in
the microscopic model do interact directly. The speed of the
agent is computed with a direct interaction between the
considered agent and the agents before him. This differ-
ence between the two models conditions the choice of the
relevant distribution pattern for the considered simulation
type. The distribution patterns are described in the follow-
ing section.

IV. Distribution
We define two patterns to distribute traffic simulations.
The patterns are the same than those identified by the au-
thors in [29] for general-purpose situated multiagent simu-
lations, and we believe that they present two representative
distribution patterns for this kind of simulations. The first
pattern (called agent-based distribution) is the distribution
model used by [4]. It consists in the duplication of the trans-
port environment on all processing units, and the equal
dispatching of the agents on each one. As a consequence,

agents stay on the same unit during all the simulation. The
second pattern (called environment-based distribution) is
the mostly used pattern in the literature. It consists in par-
titioning the transportation environment and the dispatch-
ing of each subpart of the environment—and all the agents
in it—on each processing unit. In this pattern, agents might
have to move from one unit to another if their itinerary
crosses several subparts of the transport environment.

A. Agent-Based Distribution
The first distribution pattern is agent-based, since it clus-
ters the set of agents in k equal parts (with k the number
of available processing units), and distributes each subset

5,000

4,000

3,000

2,000

1,000

120

100

80

60

40

20

0

0

S
pe

ed
 (

km
/h

)
F

lo
w

 (
V

eh
ic

le
s/

h)

0 50 100 150 200
Density (Vehicles/km)

(a)

250 300 350 400

0 50 100 150 200
Density (Vehicles/km)

(b)

250 300 350 400

FIG 2 Fundamental diagram (left) Speed in function of density (right).

Agent i Agent i – 1

xi (t) xi –1(t)
Si (t)

FIG 3 The car-following model.

3Area of interest

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 150 • SPRING 2018

on a unit and executes the simulation (cf. Fig. 4). The trans-
portation network is duplicated on each unit. This method
ensures that each unit has the same amount of work at
any time of the simulation. In the following, we describe
the use of this pattern for both simulation models that we
have defined.

1) Macroscopic Simulation with Agent-Based Distribution
In a macroscopic simulation, when it is distributed follow-
ing the agent-based distribution pattern, every units con-
tinuously (at each simulation tick) informs the other units
of its network state. This is due to the fact that they do not
have a complete view of the network state, since only a part
of the agents evolves in the unit. Thus, they send the list
of edges together with the number of agents currently on
them. Each unit is then able to compute the shortest paths
and the relevant speed of the agents (using the fundamen-
tal diagram of traffic).

2) Microscopic Simulation with Agent-Based Distribution
When distributed following the agent-based distribution
pattern, the agents in a microscopic simulation do not use
a fundamental diagram of traffic to compute their speeds.
Instead, they need to know the state of the agents preced-
ing them. To do so, they interrogate the edges in the other
units to know if there are agents preceding them, and if it
is the case, to know their states. Moreover, the units ex-
change the current travel times (provided by the agents as
explained in the microscopic model), in order to compute
the shortest paths of the agents.

B. Environment-Based Distribution
The second approach to distribute traffic simulations is en-
vironment-based. It tries to keep on the same unit the agents
who are geographically close in the transport network (cf.
Fig. 5). To this end, the network is splitted in k parts (with
k the number of available processing units), and distributed

1

2

3
6

4

5

9

7

8

10

11

12

14

13

1

2

3
6

4

5

9

7

8

10

11

12

14

13

1

2

3
6

4

5

9

7

8

10

11

12

14

13

1

2

3
6

4

5

9

7

8

10

11

12

14

13

FIG 4 Agents distribution.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 151 • SPRING 2018

on the different units. Each unit is only aware of what is
happening on the part of the graph that it is managing, and
the agents that are in the same area are now likely to be on
the same unit. If an agent reaches a part of the network that
is not managed by his current unit, he moves to the proper
unit. In order for the environment distribution method to be
effective, each unit has to manage approximately the same
number of agents and the number of edges connecting the
partitions has also to be minimized (to reduce the number
of agents being transferred between units).

The problem of graph partitioning has been widely studied
in the scientific literature. We propose a method derived
from the Differential Greedy algorithm [15] that allows us
to use the algorithm with weighted vertices while produc-
ing more connected partitions (Algorithm 1). For edges
partitioning, we make the same choice as [10] by not cut-
ting edges in the middle. We associate each edge with the
partition of its origin node.

The algorithm starts by creating a minimal partition
with only one node each (instructions (1) to (5)). Then, while
there are nodes to be associated to partitions, the algorithm:
■ chooses the lightest partition ,Pp in terms of agents

present in it (instruction (6))
■ finds the nodes that are the most connected with the

nodes already in Pp and that are the least connected
with the nodes that are not in .Pp The parameter e gives
more or less importance to the nodes that are close to the
partition (instruction 7).

■ chooses one of these nodes, adds it to the partition and
removes it from the nodes to process (instructions 8
to 10).
This algorithm is fast and intuitive. Our modification

of the original differential greedy algorithm concerns the
choice of the current partition to treat. The “lightest” par-
tition in the original algorithm concerns the number of

13

13

14

14

11

11

12

10

8

7

9

6
3

2

1

4

5

10

8

7

9

6

5

4
2

3

1

12

Host 1 Host 2

Host 3 Host 4

(b)(a)

FIG 5 Environment distribution.

Require: Graph (,G V E= ,) number k of partition
Ensure: Partition P
(1) k 1-, ...,P P P0!

(2) V V!l
for [,]p k0 1! - do

(3) v ! random vertex of V l
(4) P vp ! " ,
(5) V V v!l l" ,

end for
while | |V 02l do

(6) p ! index of the lightest partition
(7) ()minm 1v V e= +! l (number of v’s neighbors Pp!) – (number of v’s
neighbors Pp")
(8) mv = random vertex of |()v V 1! e+l (number v’s neighbors)P p! -

(number of v’s neighbors) m=Pp"

(9) { }P P mvp p! ,

(10) \ { }V V mv!l l

end while
(11) Return P

Algorithm 1 Differential Greedy algorithm

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 152 • SPRING 2018

nodes in the partition, while in our algorithm, it concerns
the number of agents in the partition.

1) Macroscopic Simulation with Environment-Based Distribution
When used with an environment-based distribution, the
computation units in the macroscopic simulation exchange
the current travel times on the transport edges, to be able to
compute the shortest paths for the agents. However, since
all the agents on an edge are present on the same unit, they
do not need to exchange the number of agents per edge.
The fundamental diagram of traffic and the speeds of the
agents can indeed be defined locally.

2) Microscopic Simulation with Environment-Based Distribution
When distributed following the environment-based distri-
bution pattern, the agents in a microscopic simulation need
to know the state of the agents preceding them. In contrast
with the agent-based distribution model, the agents pre-
ceding them are by definition present on the same com-
putation unit. The interrogation of the edges is then local
to the concerned computation unit. The units keep on ex-
changing the current travel times (provided by the agents)
to compute the shortest paths for the agents.

V. Diffusive Load Balancing
With the environment-based distribution, the graph par-
titioning is executed once, based on the initial positions
of the agents and the network structure. However, if the
network structure is stable, agents positions are of course
changing over the simulation, which could lead to load im-
balance during the simulation. Typically, travelers drive
from their residential areas to work areas in the morning
and drive back home in the evening. Certain parts of the
network, and consequently their corresponding computa-
tion units, would have many more agents to handle than
the others, and the whole simulation would slow down. In-
deed, at the end of each time step of the simulation, all the
units have to wait for each others to synchronize. The over-
all execution time of a simulation step is then equal to the
execution time of the slowest unit. As the execution time
of a given unit is directly linked to the number of agents

executing on this unit, it is important in these conditions to
keep the load balanced.

A. The Algorithm
A straightforward way to balance the load dynamically
would be to part the graph from scratch when one unit is
overloaded. But in the traffic simulations we are targeting,
we have to deal with big graphs and many agents: the time
needed to part the graph and to move all the agents from
one unit to another would be counterproductive and would
slow down the simulation.

That is why we have developed a dynamic load bal-
ancing algorithm, able to diffuse incrementally the ex-
cessive workload of a unit on the units around. At the
beginning of the simulation, we use the modified differ-
ential greedy algorithm to part the graph. Then, during
the simulation, each unit maintains a list of boundary
vertices of the traffic network. These vertices are the
ones who have a common edge with a vertex managed
by another unit. When the load of a processing unit (in
terms of number of agents) exceeds a threshold, we trig-
ger the load balancing mechanism. The unit will request
the load of the processing units around, and will transfer
its most heavy vertex (in terms of number of agents on
it) to his least loaded neighbor (cf. algorithm 2). How-
ever, when there is a huge number of agents on a ver-
tex, the latter will continually be sent between the units.
To avoid this perpetual oscillation, we define a limit on
the number of agents from which the vertex will not be
moved. This algorithm avoids to part the graph from
scratch, and allows a good load-balancing with a linear
complexity: () ()O n O k+ .

For instance, in Fig. 6, the W values represent the num-
ber of agents in each partition. The partition 1 is initially
overloaded (a), compared to the others. The partition 2,
which is the neighboring partition with the smallest load is
selected for the transfer. At this point, both vertices 7 and 9
are candidates to be transferred, as they are in the bound-
ary between the partition 1 and 2. The heaviest vertex (9) is
selected, and sent to partition 2. This gives us a new graph
partition, by load diffusion.

The choice of the coefficient a is crucial here, because
it will determine how often the mechanism will be trig-
gered. Indeed, the closer a is of 1, the most often the proce-
dure of load balancing will be triggered. Triggering it too
often would leads to unstable partitions.

VI. Experiments and Results

A. Implementation
A way to execute a distributed simulation is to define a
distributed program where each computation unit, while
executing the same program, owns only a part of the pro-
gram data in its private memory, and all the processors are

Require: P partition of a graph (,G V E=)
Require: P i current partition
Require: n total number of agents
Require: k number of processing units

(/)threshold n k! a
if number of agents in thresholdP i 2 then

!Pmin partition connected to P i with the minimum load
!vmax the heaviest vertex P i! connected to Pmin with | | . (/)v n k0 51

move vmax to Pmin
end if

Algorithm 2 Diffusive Load Balancing algorithm

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 153 • SPRING 2018

connected by a network. The advantage of this approach is
its high scalability. Indeed, it can be implemented on most
parallel architectures and we can deploy the same simula-
tion on larger systems if we need more computing power
and memory. We use Python to develop our simulator, for
its efficiency in quick prototyping. Python is a mature por-
table language with a lot of well tested scientific librar-
ies and is along with C and Fortran one of the most used
languages for high performance computing [20]. Here, we
do not seek absolute performance, but we aim to study the
relative efficiency of different distribution methods. Thus
we believe that Python is a relevant choice. The inter-
process communications are managed by MPI, which is
the standard language for parallel computing with a huge
community of users. MPI offers a simple communication
model between the different processes in a program and
has many efficient implementations that run on a variety
of machines4.

We have executed the distributed simulations on an ex-
perimental cluster that we have set up. For our tests, we
used two hosts under Linux Mint 17.2 Rafaela (kernel ver-
sion 3.16.0-38-generic) each with an Intel Xeon processor
CPU E7-4820 (32 cores at 2 Ghz) with 250 GB of memory.
We ran the simulations on two configurations: the first is
a sequential version of the program on a single core, the
second is a distributed version on the whole 64 cores.

The considered network is a real network concern-
ing the Paris-Saclay region, France, with 1895 nodes and
3831 edges. The number of travelers using this network
is around 110,000. We consider from 10,000 travelers to
500,000 travelers in our simulations. That means that we
represent from around 10% to around 500% of the real
number of travelers in our simulations.

B. Results

1) Macroscopic Vs. Microscopic Model
We compare the two methods of distribution (agent-based
and environment-based distributions) with the different
paradigms (micro and macro) increasing the number of
agents (from 10,000 to 500,000).

The speedups for the two distributions methods applied
on the different paradigms are plotted in Fig. 8 and Fig. 7.
The speedup measures how many times the distributed
simulation is faster compared to the corresponding sequen-
tial execution.

As we can see, the agent distribution is efficient for a
macroscopic model (more than 5 times faster with 500,000
agents). There is no local interactions in this type of sim-
ulations. This method allows to get a perfectly balanced
load all along the simulation, while keeping the amount of
inter-servers communications at the minimum.

9

7

12

3

11
17

8

14 2

6

5

7

1(W = 41) 2(W = 26)

3(W = 33)

(a)

9

7

12

3

11
17

8

14 2

6

5

7

1(W = 41) 2(W = 26)

3(W = 33)

(b)

9

7

12

3

11
17

8

14 2

6

5

7

1(W = 32) 2(W = 35)

3(W = 33)
(c)

FIG 6 Diffusive load balancing.

6

5

4

3

S
pe

ed
up

2

1

0
0 100,000 200,000 300,000 400,000 500,000

Number of Agents

Macro Micro

FIG 7 Speedup for the agent-based distribution.4MPI4PY is an efficient interface that allows to use MPI with Python.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 154 • SPRING 2018

However, this method is particularly ineffective in the
case of a microscopic simulation. Indeed, the agents will
now interact a lot with other agents that are not situated in
the same unit. This will generate a lot of communications
between the servers, and the gain of the parallelization
is annihilated by the time required by these communica-
tions. This method is even less efficient than the sequential
execution for the microscopic model (speedup 1 1).

For a macroscopic simulation, the environment distri-
bution is less efficient than agent distribution. It is well
adapted for a microscopic simulation though. This method
is up to 15 times faster than a sequential execution applied
in a microscopic simulation.

2) Impact of Load-Balancing
For the assessment of the load-balancing mechanism, we have
to define the optimal value of a for the experiments. To do so,
we execute three different types of simulations, each applied
to the microscopic simulation type: the first, called “static” is
the environment-based distribution approach presented ear-
lier. The second is the load-balancing approach with .1 2a =

(called “dynamic_1_2”) and the third is the load-balancing
approach with .1 3a = (called “dynamic_1_3”)5. Fig. 9 shows
the results. Each point in the curves represents the difference
between the optimal load (equal agents distribution between
units) and the load on the most loaded process, for each time
step. As we can see, with the “static” approach, the differ-
ence (the imbalance) is big. With the dynamic approach and

.1 2a = , the balance is better than with the static approach,
but the load is unstable. Finally, with .1 3a = the oscillations
ceases and the load of the simulation is successfully balanced
between the processes. Based on a series of experiments that
we have executed, choosing a bigger a would lead to more
imbalanced partitions, so we choose to keep .1 3a = for the
rest of our experiments.

Table I indicates the execution times for a simulation of
1,000 time steps with the sequential method and the two
distribution methods (static and dynamic with .1 3a =).
Fig. 10 shows the speedups of the two methods in compari-
son to the sequential execution.

18

S
pe

ed
up

2

4

6

8

10

12

14

16

0
0 100,000 200,000 300,000 400,000 500,000

Number of Agents

Macro Micro

FIG 8 Speedup for the environment-based distribution.

Im
ba

la
nc

e

1,500

1,000

500

2,000

2,500

3,000

3,500

0
0 200 400 600 800 1,000 1,200

Time Step

Static
Dynamic_1.2
Dynamic_1.3

FIG 9 Load imbalance.

S
pe

ed
up

20

10

30

40

50

60

0
0

50
,0

00

10
0,

00
0

15
0,

00
0

20
0,

00
0

25
0,

00
0

30
0,

00
0

Number of Agents

Static Dynamic_1.3

FIG 10 Speedup for the different methods.

Number of agents 10,000 50,000 100,000 250,000 500,000

Sequential (1 proc) 12814 62672 142350 315876 631243

Static (64 cores) 463 2136 3902 9636 18929

Dynamic_1.3
(64 cores)

327 1382 2665 6468 13480

Table I. Load balancing: computational times (in seconds).

5We do not display the curve for .1 1a = because it was extremely unstable.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 155 • SPRING 2018

Finally, Fig. 11 exhibits the efficiency of the dynamic
load balancing in function of the number of used pro-
cesses. The simulation we ran here was for 100,000 agents
and 1000 time steps, with 64 processes. We can see that
with our load balancing, the simulation scale very well
with the number of process we have at our disposal. For
100000 (which is approximately the load we can expect on
the Paris-Saclay network) we reach a speedup of 54 with
64 processes.

VII. Conclusions and Perspectives
In this paper, we applied two distribution methods on
two types of agent-based traffic simulators. We have seen
that agent-based distribution is well suited for macro-
scopic simulators while environment-based distribution
is well suited for microscopic simulations. These findings
are useful for the distribution of the existing agent-based
traffic simulations. Microscopic simulations can be more
optimally distributed using dynamic load-balancing mech-
anisms, such as the diffusive load-balancing method pre-
sented in this paper.

The proposed diffusive load balancing algorithm that
we have proposed is able to dynamically balance the loads
of a traffic simulation, and is efficient with our experimen-
tal setup. In a future work, we will test this method on a
cloud-like environment (single core units, linked by a net-
work). We will also investigate a hybrid approach: when a
process has to manage a very loaded vertex, being able to
distribute the agents on this vertex between two or more
units would allow us to improve furthermore the perfor-
mance of the simulation.

We also plan to consider multimodal agent-based traffic
simulators. The presence of different transport modes and
networks could encourage to mix the patterns presented in

this paper with a distribution per transport mode. We are
also working on the integration of information networks
(such as social networks or intervehicular interaction [32])
and their impact on the distribution performance. Indeed,
if travelers interact often, they should be preferably ex-
ecuted on the same units, or else they will generate too
many communication and deteriorate the performance of
the system.

About the Authors
Matthieu Mastio received his M.Sc
degree in computer science from the
University of Lille (France) in 2011
and his Ph.D degree in computer sci-
ence from the University of Paris-Est
(France) in 2017. He is mainly inter-
ested in multiagent simulation, traffic

modeling and high-performance computing.

Mahdi Zargayouna received his M.Sc
degree in computer science and the
Ph.D. degree in computer science and
artificial intelligence from the Uni-
versity of Paris Dauphine (France),
in 2003 and 2007 respectively. Since
2008, he is researcher in computer sci-

ence and transportation science at IFSTTAR, the French
Institute of Sciences and Technologies for Transport,
Development and Networks, in the Transport Engineer-
ing and Computer Science Lab GRETTIA. In 2009, he
was visiting researcher at TU-Delft (Netherlands). He is
since 2014 head of the “Modeling & Multimodality” re-
search team.

Mahdi Zargayouna is mainly interested in multiagent
systems (languages, coordination models, simulation, plan-
ning, etc.), and complex transportation applications
(traveler information, crisis management, dial a ride,
urban parking, etc.). He teaches multiagent systems and
intelligent transportation systems at University of Paris
Dauphine, University Paris Est, and EPITA Engineering
School. He has published more than 50 papers in peer-
reviewed journals and conference proceedings and is
member of the reviewer board of several international
journals and conferences.

Gérard Scemama received his M.Sc
degree and the Ph.D degree in mathe-
matics and operational research from
the University of Pierre et Marie Curie
(France), in 1976 and 1977 respective-
ly. He joined IFSTTAR, the French
Institute of Sciences and Technologies

for Transport, Development and Networks, in 1981. He is re-
search director since 1992 and has been director of the

T
im

e
(s

)

20,000

10,000

30,000

40,000

50,000

60,000

0
0 10 20 30 40 50 60

Number of Processes

FIG 11 Execution time in function of the number of processes.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE • 156 • SPRING 2018

Transport Engineering and Computer Science Lab GRET-
TIA for 14 years (from 1997 to 2011).

Gérard Scemama is mainly interested in supervision and
regulation systems in multimodal networks. He is the inven-
tor of Claire and ClaireSiti supervision systems, for road and
multimodal networks respectively. During his 35 years of
research, Gérard Scemama has managed several National
and European projects and participated in scientific com-
missions of several institutes in France and Europe.

Omer Rana is Professor of Performance
Engineering at Cardiff School of Com-
puter Science & Informatics. He was for-
merly the deputy director of the Welsh
eScience Centre at Cardiff University.
He holds a PhD in “Neural Computing
and Parallel Architectures” from Impe-

rial College London. His research interests are in the areas
of high performance distributed computing, data mining
and analysis and multi-agent systems.

Prior to joining Cardiff University he worked as a soft-
ware developer with Marshall BioTechnology Limited in
London. He is an associate editor of the ACM Transactions
on Autonomous and Adaptive Systems, IEEE Transactions
on Cloud Computing, series co-editor of the book series on
“Autonomic Systems” by Birkhauser publishers, and on the
editorial boards of “Concurrency and Computation: Prac-
tice and Experience” (John Wiley) & Journal of Computa-
tional Science (Elsevier).

References
[1] A. Abadi, T. Rajabioun, and P. A. Ioannou, “Traffic flow prediction for

road transportation networks with limited traffic data,” IEEE Trans.
Intell. Transport. Syst., vol. 16, no. 2, pp. 653–662, 2015.

[2] E. Angelotti, E. Scalabrin, and B. Avila. “PANDORA: A multi-agent sys-
tem using paraconsistent logic,” in Proc. 4th Int. Conf. Computational
Intelligence and Multimedia Applications, 2001, pp. 352–356.

[3] F. Badeig, F. Balbo, G. Scemama, and M. Zargayouna. “Agent-based
coordination model for designing transportation applications,” in
Proc. 11th Int. IEEE Conf. Intelligent Transportation Systems, 2008, pp.
402–407.

[4] J. Barceló, J. Ferrer, D. García, R. Grau, M. Forian, I. Chabini, and E. Le
Saux, “Microscopic traffic simulation for att systems analysis. A paral-
lel computing version,” in Proc. 25th Anniversary of CRT Conf., 1998.

[5] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz. “SUMO: Simu-
lation of urban Mobility—An overview,” in Proc. 3rd Int. Conf. Advanc-
es in System Simulation, 2011, pp. 55–60.

[6] Q. Bragard, A. Ventresque, and L. Murphy. “Self-balancing decentral-
ized distributed platform for urban traffic simulation,” IEEE Trans.
Intell. Transport. Syst., 2016, pp. 1–8.

[7] M. E. Bratman, D. J. Israel, and M. E. Pollack, “Plans and resource-
bounded practical reasoning,” Comput. Intell., vol. 4, no. 3, pp. 349–
355, 1988.

[8] R. Cajias, A. Gonzalez-Pardo, and D. Camacho. “A multi-agent traffic
simulation framework for evaluating the impact of traffic lights,” in
Proc. Int. Conf. Agents and Artificial Intelligence Conf., 2011, vol. 2, pp.
443–446.

[9] G. D. Cameron and G. I. Duncan, “Paramics parallel microscopic simula-
tion of road traffic,” J. Supercomput., vol. 10, no. 1, pp. 25–53, 1996.

[10] N. Cetin, A. Burri, and K. Nagel. “A large-scale agent-based traffic mi-
crosimulation based on queue model,” in Proc. Swiss Transport Re-
search Conf., Monte Verita, Switzerland, 2003, pp. 3–4272.

[11] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and C. Gre-
enough. “Exploitation of high performance computing in the FLAME

agent-based simulation framework,” in Proc. IEEE Int. Conf. High Per-
formance Computing and Communication and Int. Conf. Embedded
Software and Systems, 2012, pp. 538–545.

[12] N. Collier and M. North, “Repast HPC: A platform for large-scale agent-
based modeling,” in Large-Scale Computing, W. Dubitzky, K. Kurows-
ki, and B. Schott, Eds. New York: Wiley, 2011, pp. 81–109.

[13] A. Doniec, R. Mandiau, S. Piechowiak, and S. Espié, “A behavioral
multi-agent model for road traffic simulation,” Eng. Appl. Artif. Intell.,
vol. 21, no. 8, pp. 1443–1454, 2008.

[14] M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator
vissim,” in Fundamentals of Traffic Simulation. New York: Springer,
2010, pp. 63–93.

[15] C. Fiduccia and R. Mattheyses. “A linear-time heuristic for improving
network partitions,” in Proc. 19th Conf. Design Automation, June 1982,
pp. 175–181.

[16] M. Gueriau, R. Billot, N.-E. El Faouzi, S. Hassas, and F. Armetta.
“Multi-agent dynamic coupling for cooperative vehicles modeling,” in
Proc. 29th Conf. Artificial Intelligence, Jan. 2015.

[17] L. Gulyas, G. Szemes, G. Kampis, and W. de Back. “A modeler-friendly
API for ABM partitioning,” in Proc. ASME Int. Design Engineering
Technical Conf. and Computers and Information in Engineering Conf.,
2009, pp. 219–226.

[18] T.-Y. Hu, C.-C. Tong, T.-Y. Liao, and W.-M. Ho, “Simulation-assign-
ment-based travel time prediction model for traffic corridors,” IEEE
Trans. Intell. Transport. Syst., vol. 13, no. 3, pp. 1277–1286, 2012.

[19] M. A. S. Kamal, J.-I. Imura, T. Hayakawa, A. Ohata, and K. Aihara, “A
vehicle-intersection coordination scheme for smooth flows of traffic
without using traffic lights,” IEEE Trans. Intell. Transport. Syst., vol.
16, no. 3, pp. 1136–1147, 2015.

[20] H. P. Langtangen and X. Cai, “On the efficiency of python for high-
performance computing,” in Modeling, Simulation and Optimization
of Complex Processes, Berlin: Springer, Jan. 2008, pp. 337–357.

[21] D.-H. Lee and P. Chandrasekar, “A framework for parallel traffic
simulation using multiple instancing of a simulation program,” ITS J.,
vol. 7, no. 3–4, pp. 279–294, 2002.

[22] D. Meignan, O. Simonin, and A. Koukam, “Simulation and evalua-
tion of urban bus-networks using a multiagent approach,” Simulation
Model. Pract. Theory, vol. 15, no. 6, pp. 659–671, 2007.

[23] D. Mengistu and M. V. Lowis, “An algorithm for optimistic distributed
simulations,” in Modelling, Simulation, and Identification/658: Power
and Energy Systems/660, 661, 662. ACTA Press, 2011.

[24] M. Michal and N. Kai, “Towards multi-agent simulation of the dynam-
ic vehicle routing problem in matsim,” in Proc. 9th Int. Conf. Parallel
Processing and Applied Mathematics, 2012, vol. Part II, pp. 551–560.

[25]F. Michel, “Délégation GPU des perceptions agents: Intégration itéra-
tive et modulaire du GPGPU dans les simulations multi-agents. Appli-
cation sur la plate-forme turtlekit 3,” Rev. Intell. Artif., vol. 28, no. 4,
pp. 485–510, 2014.

[26] K. Nagel and M. Rickert, “Parallel implementation of the transims
micro-simulation,” Parallel Comput., vol. 27, no. 12, pp. 1611–1639,
2001.

[27]K. Nagel and M. Rickert, “Parallel implementation of the transims
micro-simulation,” Parallel Comput., vol. 27, no. 12, pp. 1611–1639,
2001.

[28] O. Rihawi, Y. Secq, and P. Mathieu. “Effective distribution of large
scale situated agent-based simulations,” in Proc. 6th Int. Conf. Agents
and Artificial Intelligence, 2014, vol. 1, pp. 312–319.

[29] O. Rihawi, Y. Secq, and P. Mathieu. “Effective distribution of large scale
situated agent-based simulations,” in Proc. 6th Int. Conf. Agents and Arti-
ficial Intelligence, Angers, France, Mar. 2014, vol. 1, pp. 312–319.

[30] M. Scheutz and P. Schermerhorn, “Adaptive algorithms for the dy-
namic distribution and parallel execution of agent-based models,” J.
Parallel Distrib. Comput., vol. 66, no. 8, pp. 1037–1051, 2006.

[31] J. Wahle, A. L. C. Bazzan, F. Klügl, and M. Schreckenberg, “The
impact of real-time information in a two-route scenario using agent-
based simulation,” Transport. Res. C: Emerg. Technol., vol. 10, no. 5,
pp. 399–417, 2002.

[32] M. Zargayouna, F. Balbo, and K. Ndiaye, “Generic model for resource
allocation in transportation. Application to urban parking manage-
ment,” Transport. Res. C: Emerg. Technol., vol. 71, pp. 538–554, 2016.

[33] M. Zargayouna, B. Zeddini, G. Scemama, and A. Othman, “Agent-
based simulator for travelers multimodal mobility,” Front. Artif. Intell.
Appl., vol. 252, pp. 81–90, Jan. 2013.

[34] M. Zargayouna, B. Zeddini, G. Scemama, and A. Othman. “Simulating
the impact of future internet on multimodal mobility,” in Proc. 11th
ACS/IEEE Int. Conf. Computer Systems and Applications. Los Alamitos,
CA, 2014.

