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Visual Sentiment Prediction based on
Automatic Discovery of Affective Regions
Jufeng Yang, Dongyu She, Ming Sun, Ming-Ming Cheng, Paul L. Rosin and Liang Wang

Abstract—Automatic assessment of sentiment from visual
content has gained considerable attention with the increasing
tendency of expressing opinions via images and videos online.
This paper investigates the problem of visual sentiment analysis,
which involves a high-level abstraction in the recognition process.
While most of the current methods focus on improving holistic
representations, we aim to utilize the local information, which is
inspired by the observation that both the whole image and local
regions convey signi�cant sentiment information. We propose
a framework to leverage affective regions, where we �rst use
an off-the-shelf objectness tool to generate the candidates, and
employ a candidate selection method to remove redundant and
noisy proposals. Then a convolutional neural network (CNN) is
connected with each candidate to compute the sentiment scores,
and the affective regions are automatically discovered, taking the
objectness score as well as the sentiment score into consideration.
Finally, the CNN outputs from local regions are aggregated with
the whole images to produce the �nal predictions. Our framework
only requires image-level labels, thereby signi�cantly reducing
the annotation burden otherwise required for training. This is
especially important for sentiment analysis as sentiment can be
abstract, and labeling affective regions is too subjective and
labor-consuming. Extensive experiments show that the proposed
algorithm outperforms the state-of-the-art approaches on eight
popular benchmark datasets.

Index Terms—Visual sentiment analysis, sentiment classi�ca-
tion, affective region, convolutional neural networks

I. I NTRODUCTION

W ITH the increasing popularity of social networks, more
and more Internet users tend to express their opinions

with different media types [1]. Algorithms to identify senti-
ment can be helpful to understand such user behaviors [2].
In particular, understanding the sentiment in visual media
content (i.e., images, videos) has attracted increasing research
attention. Potential use of approaches developed for visual sen-
timent analysis is broad, including affective image retrieval [3],
aesthetic quality categorization [4], opinion mining [5], com-
ment assistant [6],etc.

Inspired by psychology and the principles of art, researchers
have investigated different groups of hand-crafted features
(e.g., color [7], [8], texture [9], [10], shape [11]) from image
level, with the goal of endowing computers with the capability
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Fig. 1. Images from popular affective datasets: (a) Twitter I [14] and (b)
Twitter II [17]. The bounding boxes indicate the local Affective Regions
labeled by users. As can be seen, sentiments are evoked by the affective
regions as well as the whole image appearance.

of perceiving sentiment in the same manner as humans. Instead
of designing visual features manually, Convolutional Neural
Network (CNN) can automatically learn deep representations
of images [12]. Several researchers have also applied CNN to
image sentiment classi�cation [13]–[16] and demostrated the
superior performance of the deep features against hand-tuned
features for sentiment classi�cation.

Visual sentiment analysis is inherently more challenging
than traditional recognition tasks, since it involves a much
higher level of abstraction and subjectivity in the human
recognition process [18]. Recognizing sentiments evoked by
images from social media is more dif�cult than many other
visual recognition tasks,e.g., object classi�cation [19], scene
recognition [20], etc. It is necessary to take a rich set of
cues into consideration for visual sentiment prediction. Most
existing methods employing CNNs try to learn sentiment
representations from the global perspective of whole images,
whereas the visual sentiment can also be evoked from the local
regions within images [21]–[23]. Different from detecting
concrete visual objects [24], there are dif�culties modeling
the sentiment due to the “affective gap” between the low-level
visual features and high-level sentiment [10].

Little work has paid close attention to the use of local
information for sentiment analysis. Liet al. [23] propose a
context-aware classi�cation model based on a bilayer sparse
representation that simultaneously takes the local and global
context into account. However, this approach is limited by its
heavy dependence on the initial segmentation results to model
appearances of different objects. In addition, they suppose that
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all regions have the same weights for sentiment prediction,
which may go against the human attention theories that the
human vision system selectively processes parts of an image
in detail [25]. Youet al. [22] try to match local image regions
with the descriptive visual attributes, aiming to discover the
speci�c-attribute regions, but lack generalization ability for
sentiment analysis.

To address these problems, we propose to leverage local
details as well as the global information for visual sentiment
analysis. We introduce a new notion named Affective Regions
(ARs), which contains two distinguishing characteristics:

1) an AR is a salient region and probably contains one or
more objects, which can attract people's attention, and

2) an AR conveys signi�cant sentiments.

Fig. 1 shows some ARs in popular datasets [14], [17]. As can
be seen, the visual sentiment can be induced from the ARs
within images. For example, in the fourth image of (a), the
sentiment is mostly evoked from the region of the bleeding
hand, while in the second image of (b), the beautiful leaf
rather than the gray stone conveys the positive sentiment.
However, manually labeling the ARs of images for training
the detector is too subjective and labor-consuming. This paper
proposes a framework that only requires the image-level label
to discover AR automatically, thereby signi�cantly reducing
the annotation burden.

In detail, we �rst use an off-the-shelf tool to generate
bounding box candidates along with their objectness score
for the input image, which is inspired by the strong co-
occurrence relationships between objects and sentiment [26].
Then a candidate selection method is employed to remove the
redundant proposals while preserving several valuable ones.
The deep CNN is connected with each candidate and used to
compute sentiment score. The objectness score and sentiment
score are combined to calculate the AR score, based on which
the top-K ARs are discovered by re-ranking the candidate
regions considering both the objectness score as well as the
sentiment score. Finally, the CNN outputs from the global
and local views are aggregated through alternative fusion
operations (i.e., max pooling, sum pooling and concatenation)
to produce the �nal predictions.

Our contributions are summarized as follows:

� We propose a deep framework for automatically discov-
ering the affective regions of images which are likely
to evoke signi�cant sentiment information. Our frame-
work is independent of object categories and requires no
bounding box annotation, which is more general than the
existing methods.

� We build a visual sentiment prediction model using a deep
CNN, which utilizes the holistic and local information
from both the global image and the local regions. The
�nal representation is effective for visual sentiment clas-
si�cation, and outperforms the state-of-the-art approaches
on the affective datasets.

� Experimental results show that our proposed framework
can be generalized to the small-scale benchmarks with
the help of transfer learning.

This journal paper extends our earlier work [27] in four
aspects. (1) The framework is improved by adding the candi-
date selection module to suppress the possibly noisy proposals
and reduce computational load. (2) Three alternative fusion
operations are employed to combine the holistic representation
with the affective regions, which aim to capture the local
information in different ways. (3) More implementation details
are provided and extensive experimental results on both large-
scale and small-scale datasets are presented, where the hyper-
parameters are determined in a systematic way. (4) The consis-
tency of the discovered affective regions and the ground truth
is evaluated on the EmotionROI benchmark [21], showing that
our proposed method can automatically �nd high-quality ARs
without human annotations.

The rest of this paper is organized as follows. Sec. II
summarizes the related work on visual sentiment analysis
and deep learning. Sec. III introduces the proposed method
of discovering affective regions and our deep framework for
sentiment prediction. In Sec. IV and V, we present and
visualize the experimental results on the popular benchmark
datasets. And �nally, Sec. VI concludes this paper.

II. RELATED WORK

Numerous methods for visual sentiment analysis have been
developed based on still images [10], [17] and videos [28],
[29]. In this section, we review the methods for affective image
prediction and region-based CNNs that are closely related to
this work.

A. Affective Image Prediction

Previous methods on affective image prediction can be
roughly divided into dimensional approaches and categorical
ones. The dimensional approaches represent sentiment in
the two dimensional (2-D) valence-arousal coordinate space
[30] or a three dimensional space [31]. Hanjalic [32] repre-
sents human affective response using three basic dimensions,
i.e., valence, arousal and control (dominance), where there
is a corresponding value for every affective state. Zhaoet
al. [33], [34] propose to predict the personalized emotion
perceptions of images in the valence-arousal space using
shared sparse regression as a learning model. Meanwhile,
the categorical approaches map sentiment into one of the
representative categories. There is also some work predicting
the discrete probability of different sentiment categories [35]–
[39]. Since categorical approaches make it easier for a human
to understand, we target categorical sentiment prediction in
this work.

1) Shallow modeling methods:Most previous methods on
affective image prediction employ traditional low-level fea-
tures. Machajdiket al. [10] de�ne a combination of rich
hand-crafted features based on art and psychology theory,
including composition, color variance and image texture,etc.
Lu et al. [11] investigate how shape features in natural
images in�uence sentiments aroused in human beings, and
provide evidence for the signi�cance of roundness-angularity
and simplicity-complexity for predicting sentiment content.
Zhao et al. [8] introduce more robust and invariant visual
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Dataset GT-Box Positive Negative Sum

IAPSa [43] N 209 186 395
Abstract [10] N 139 89 228
ArtPhoto [10] N 378 428 806
Twitter I [14] N 769 500 1,269
Twitter II [17] N 463 133 596
EmotionROI [44] Y 660 1,320 1,980
Flickr&Instagram [16] N 16,430 6,878 23,308
Flickr [17] N 435,798 48,424 484,222

Fig. 2. Statistics of the available affective datasets. Most datasets developed
in this �eld contain no more than two thousand samples, mainly due to the
subjective and labor intensive labeling process. Note that the Flickr dataset is
weakly-labeled and none of these datasets except EmotionROI provide ground
truth bounding box (GT-Box) corresponds to affective regions.

features designed according to art principles. These hand-
crafted visual features are proven to be effective on several
small datasets, whose images are selected from a few speci�c
domains,e.g., abstract paintings and art photos [10].

To bridge the “affective gap” between low-level features
and high-level sentiment, Borthet al. [17] model a mid-
level concept,i.e., Adjective Noun Pairs (ANPs), which are
used to detect image concepts instead of expressing senti-
ments directly. Liet al. [40] further compute the weighted
sum of the textual sentiment values of ANPs describing the
image and take the textual sentiment into account. Yuanet
al. [41] propose the Sentribute, an image-sentiment analysis
algorithm based on 102 mid-level attributes, which are easier
to interpret and ready to use for high-level understanding.
Furthermore, Zhaoet al. [42] combine features of different
levels including low-level features from elements-of-art, mid-
level features from principles-of-art and high-level features
from a semantic concepts detector in a multi-graph learning
framework. Chenet al. [26] build object detection models to
recognize six frequent objects including car, dog, dress, face,
�ower and food, and propose a new classi�cation model to
handle attributive and proportional similarity between visual
sentiment concepts. In contrast, our algorithm concentrates
on whether a selected region contains objects or not, which
is independent to object categories and more robust for real
applications.

2) Deep modeling methods:In recent years, CNNs have
been incorporated into a number of visual recognition systems
in a wide variety of domains [45], [46]. The strength of these
models lies in their ability to learn discriminative features from
raw data inputs using the back propagation algorithm [47],
in contrast to more traditional recognition pipelines which
compute hand-engineered features on images as an initial
preprocessing step [48].

Several recent methods exploit deep CNNs for image sen-
timent prediction. Based on their previous work [17], Chenet
al. [49] adapt deep networks for constructing DeepSentiBank,
a classi�cation model for visual sentiment concepts, which
shows signi�cant improvements in both annotation accuracy
and retrieval performance. Also, some methods incorporate
the model weights learned from a large-scale general dataset
[50], and further �ne-tune the CNNs for the task of visual
sentiment prediction [13], [15]. In [13], two types of ac-

tivations from CNNs are used as image-level features for
classi�cation, namely the 4096-dimensional output from fc7
and the 1000-dimensional output from fc8. Youet al. [14]
employ a progressive strategy to train a CNN making use of
half a million images that are labeled with the website meta
data, and further perform benchmarking analysis on the Flickr
and Instagram (FI) dataset. In [22], a method based on the
attention model is developed in which local visual regions
induced by sentiment related visual attributes are considered.

Due to the expensive manual annotation of sentiment labels,
the existing affective datasets, including IAPSa [43], ArtPhoto
[10], Abstract Paintings [10], Twitter I [14], Twitter II [17]
and EmotionROI [44] typically contain less than two thousand
images (see also Fig. 2). This is far from the required scale
for training robust deep models. The Flickr dataset [17] is
weakly-labeled with 2 categories using the meta-data provided
by the up-loaders. Moreover, only the EmotionROI dataset has
provided ground truth affective regions. Note that in this paper
we focus on the binary sentiment (i.e., positive and negative)
prediction problem, for which a variety of benchmark datasets
with reliable ground-truth can be employed to validate the
effectiveness of the proposed algorithm.

B. Region-based CNNs

We trace the roots of our approach to region-based CNN
(R-CNN) [46], an algorithm applying deep CNN to bottom-
up generate region proposals in order to localize and seg-
ment objects. It has been proved that when labeled training
data are scarce, supervised pre-training for an auxiliary task,
followed by domain-speci�c �ne-tuning, boosts performance
signi�cantly [51]. Girshick [52] shows that it is possible
to further reduce training and testing time, while improving
detection accuracy and simplifying the training process, us-
ing an approach called Fast R-CNN. Fast R-CNN reduces
detection time excluding region proposal computation to 50–
300ms per image, depending on network architecture. Renet
al. [24] introduce a fully-convolutional network version that
simultaneously predicts object bounds and objectness scores at
each position. Meanwhile, R-CNN has been applied to various
tasks,e.g., pedestrian detection [53], action detection [54], [55]
and semantic segmentation [56].

Different from the traditional methods on region based
CNNs for �nding salient objects in an image, our work aims
to automatically identify the ARs that evoke sentiment and
use the local information as the supplementary sentiment
representation. This requires us to analyze not only the regions
containing objects but also the surrounding background [21],
which may have affective in�uence on the selected regions.
Moreover, R-CNN based methods require ground truth bound-
ing box annotations for training, but it is time- and labor-
consuming to label affective regions manually. In this paper,
we employ an off-the-shelf tool to generate object proposals
as candidate affective regions and propose to select the AR
considering the low-level as well as the affective-level content.
Compared with the methods requiring accurate segmenta-
tion [23] or concrete category information [26], it is much
easier to acquire object proposals in the preprocessing stage,
and will better generalize to other datasets.
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Discovering Affective Regions

Input

Convolutional Neural Networks for 
Affective Image Classification

Fusion
Operation

Output

Sentiment
Prediction

Fig. 3. Pipeline of the proposed approach. Given the input image, thousands of candidates along with the objectness scores are generated, and the candidate
selection method is applied to remove the candidates which are overlapped and less important. The sentiment score of each proposal is roughly computed
through CNN, which is then combined with the objectness score to discover affective regions. Finally, the sentiment label is predicted by fusing the local
information with the holistic representation using several alternative operations.

III. M ETHODOLOGY

In this section, we aim to develop an algorithm to auto-
matically discover ARs carrying signi�cant sentiments and
combine the standard holistic representation with a local
representation for image sentiment analysis. Fig. 3 shows
the pipeline of our proposed framework. We use an object
detection technique,i.e., Edgeboxes [57], to produce the
candidate windows guiding the search for ARs, and then apply
the candidate selection method to reduce redundant and noisy
proposals. Thus, the sentiment content of each proposal is
estimated at both the low-level and affective-level for the ARs
detection. Finally, the deep representation of the detected ARs
is combined with the holistic representation through three
alternative fusion strategies,i.e., max pooling, sum pooling
and concatenation, to generate the �nal predictions.

A. Producing Candidate Proposals

1) Generating:Detecting concrete visual objects like dogs
and cars has been researched extensively in computer vi-
sion [56], [58]. However, modeling abstract emotional con-
cepts like amusement and excitement is very challenging. The
dif�culty comes from the “affective gap” that lies between
low-level visual features and high-level sentiment. Previous
methods [17], [26] have proved that associating adjectives with
concrete objects can make the combined visual concepts more
detectable and tractable for visual sentiment analysis. Inspired
by the strong co-occurrence relationships between objects and
sentiment, we suggest that object proposals can be used as the
potential sentiment regions.

Since our framework takes the object proposals as inputs
and obtains the �nal prediction by fusing the prediction of

each affective region with the holistic representation, the
performance of the proposed framework largely depends on
the quality of the candidate regions. However, an effective
candidate extraction approach is challenging since the affective
region detection needs to capture not only objects but also
regions of the background that may evoke sentiment. There are
two criteria that should be satis�ed. First, the proposed frame-
work is based on the assumption that the candidate proposals
can cover the objects in the affective images as well as parts
of the background, which requires a high detection recall rate.
Second, since the selected affective region proposals are then
fed into the CNN, only a limited number of candidates should
be produced so as to allow for ef�ciency whilst maintaining
accuracy.

During the past decades, many object proposal methods
have been proposed to tackle the object detection problem.
According to [59], [60], EdgeBoxes [57] and BING [61]
are faster than methods such as Selective Search [62] and
Objectness [63], while EdgeBoxes achieves better quality
of proposals compared to BING. Considering the balance
between the speed and quality, this paper uses EdgeBoxes to
generate a set of candidate windows as it provides the best
trade-off. Such an off-the-shelf tool can generate thousands
of candidate boxes in a fraction of a second, from which a
subsequent re�nement step based on object boundary estimates
is applied to improve localization. For a given imageI ,
a set of candidate bounding boxes with objectness score
B = f bi ; Obj scoreI

i gn
i =1 is produced by EdgeBoxes.

2) Selecting and �ltering:To achieve high recall for object
detection, Zitnicket al. [57] employ a bottom-up strategy,
generating thousands of proposals in each image. However,
most of the candidate proposals are heavily overlapped and
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redundant for predicting sentiment. It is necessary to �lter
out the noisy region proposals carrying little sentiment, and
removing noisy proposals at the initial stage of the algorithm
can greatly reduce the computation time of the subsequent
steps. To address this problem, we introduce the candidate
selection module to select proposals from the affective region
candidates inspired by [64].

EdgeBoxes generates thousands of proposals in each image
that can achieve high recall for object detection. However,
since it still generates a large number of original object win-
dows for the CNN to process, following [65], we �rst check the
same geometric characteristics (i.e., the area and height/width
ratio) of candidate bounding boxes. We empirically �lter out
the regions with small areas (< 800 pixels) or with high
height/width (or width/height) aspect ratios above a threshold
(> 6), since objects which are either too small or too long are
unlikely to attract people's attention. Thus, a much smaller
number of proposals can be fed into the candidate selection
method. Following previous algorithms [64], [66], we build
the af�nity matrix W 2 Rn � n for each image, in which
each element denotes the intersection-over-union (IoU) scores
between any pair of the bounding boxes andn denotes the
number of candidates:

Wij =
jbi \ bj j
jbi [ bj j

; (1)

wherej � j is used to measure the numbers of pixels. We then
apply the normalized cut algorithm [67] to group the candidate
bounding boxes intom clusters. In detail, the normalized
graph Laplacian matrixL = D � 1

2 (D � W )D � 1
2 is computed

whereD 2 Rn � n is a diagonal matrix withD ii =
P n

j =1 Wij .
Then the eigenvector matrixV = [ v1; � � � ; vm ] 2 Rn � m is
constructed wheref v1; � � � ; vm g are them smallest eigenvec-
tors of L . Finally thek-meansclustering algorithm is used to
obtainm cluster labels where each row ofV is the feature of
the corresponding sample [67]. As shown in Fig. 4, the bound-
ing boxes are �rst �ltered out to reduce the computational
load. Then with them clusters' bounding boxes, we pick the
proposal with the highest objectness score in each cluster and
generatem candidate regionsH = f hi gm

i =1 for each image.
Compared to the greedy non-maximum suppression (NMS)
method that is widely used for �ltering [46], our candidate
selection method can generate a speci�c number of proposals
while removing the redundant and noisy bounding boxes.

B. Discovering Affective Regions

1) Initializing the framework: CNNs achieve the state-
of-the-art performance in the related computer vision tasks,
e.g., aesthetic quality rating [4] and image style recognition
[68] by �ne-tuning the pre-trained ImageNet model. In this
work, the CNN is based on the deep model VGGNet [69]
with 16 layers. In order to adapt the pre-trained model on
ImageNet for sentiment analysis, the CNN is �rst �ne-tuned on
the target affective dataset (e.g., Flickr and Instagram) utilizing
the original images (without any bounding boxes) to adjust
the parameters of the deep model. As a supervised learning
approach, the �ne-tuned CNN is applied to learn a function
f : I ! L , from a collection of affective training examples

Cluster 1

Cluster 2

Cluster m

(a) Input (b) Candidates

(c) Candidates Selection

Objectness_ Score

Fig. 4. Given the input image (a), the candidate windows are generated by
EdgeBoxes and small or high aspect ratio boxes are �ltered out. As shown in
(b), the proposals with blue bounding boxes are dropped in this step. Different
colors in (c) indicate the different clusters produced by normalized cut, from
which the representative proposals are selected.

f (I i ; l i )gN
i =1 , whereN is the size of the training set,I i is the

input image, andl i is the associated sentiment label. In the
standard training process, the traditional classi�cation loss is
optimized to maximize the probability of the correct class [45],
[69]. Let di be the output from the penultimate layer, then the
�ne-tuning of the last layer is done by minimizing the softmax
loss function as follows:

l(W) =
NX

i =1

X

j 2 l

1(l i = j ) log p(l i = j jdi ; wj ); (2)

whereW = f wj gj�l is the set of model parameters, and the
indicator function1(s) = 1 if s is true, otherwise1(s) = 0 .
The probability of each sentiment labelp(l i = j jdi ; wj ) can
be de�ned by the softmax function:

p(l i = j jdi ; wj ) =
exp(wT

j di )
P

j 0�l exp(wT
j 0di )

(3)

Since the number of categories in the affective dataset is
not equal to that of ImageNet, the fc8 classi�cation layer is
changed to 2-way required by the sentiment dataset, which can
produce a probability prediction over the sentiment classes.

2) Estimating sentiment score:For the affective-level qual-
ity of the candidate proposals, we compute the sentiment
scores by feeding the proposal to the CNN. For the generated
affective candidatesH = f hi gm

i =1 of the input imageI , let
f yij gc

j =1 be the output vector of the last layer indicating
the probability of thei -th proposal carrying thej -th class
sentiment, andc is set to 2 as the number of sentiment classes.
If the prediction values for each sentiment are similar then this
usually indicates that it is dif�cult to distinguish the sentiments
evoked by the proposal. Therefore, we aim to keep only those
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0          1

Senti_score
Obj_score

Fig. 5. Visualization of the objectness score and sentiment score in an
image. For example, the region with a high objectness score indicates that
the corresponding bounding box is extremely likely to be an object.

proposals which contain a dominant sentiment. We de�ne a
probabilistic sampling function to evaluate the sentiment score
of the i -th region in an affective-level perspective as follows:

Senti scoreI
i =

cX

j =1

yij � logyij + 1 ; (4)

where the score ranges between 0 and 1 for binary classi�ca-
tion. The information entropy de�ned in Eqn. (4) represents
the degree of uncertainty when predicting sentiment, which
is also consistent with the affective-level estimation of the
proposal. TheSenti scoreI

i can be high-level and provides
a more semantic measurement compared to the traditional
methods.

3) Selecting affective regions:We choose ARs according
to two aspects: i) how likely the region contains an object,
which is represented asObj scoreI

i , and ii) how much the
region carries sentiment at the affective-level, referred to as
Senti scoreI

i . Fig. 5 demonstrates that an affective region
should have both highObj scoreI

i and Senti scoreI
i . The

reason is that theObj scoreI
i only measures the probability of

regions containing an object and is based on the texture appear-
ance, which lacks the guidance of semantic information. The
Senti scoreI

i re�ects the sentiment of images at the affective
level, which enables lots of noisy regions to be removed with
little impact on the sentiment analysis. Such a score allows
certain �exibility for the object regions, which may occur in
the background as well. Considering the characteristics of each
score, we introduce the ARscore to evaluate the sentiment
quality of each region with the following de�nition:

AR scoreI
i =

q
(1 � � ) � Obj scoreI

i
2 + � � Senti scoreI

i
2 ;
(5)

where� controls the trade-off between low-level and affective-
level perspectives. In this paper, we select� by the cross
validation of the large-scale affective dataset. The proposals
with high AR score are considered be an AR and used for
sentiment prediction, while the proposals with lowAR score
are removed from the candidate set.

Algorithm 1 Visual Sentiment Analysis using Affective Re-
gions
Input:

Input Image:I
The number of desired affective regions:K

Output:
Predicted sentiment label :~Y

1: Generaten bounding boxes with their objectness scores
B = f bi ; Obj scoreI

i gn
i =1 .

2: Apply candidate selection method to generatem candidate
regionsH = f hi gm

i =1 .
3: Initialize the framework with pre-trained CNN.
4: Let ~YGlobal be the predictions of the whole image.
5: PassH through the CNN model from the second layer to

the last layer.
6: Let y 2 Rm � c be the sentiment probability ofm pro-

posal using the CNN model, compute the sentiment score
in Eqn. (4)

7: Compute the AR score for the each region in Eqn. (5).
8: Rank proposals with AR scores and select topK as

affective regions.
9: Predict the label~Y using the cross-candidates pooling

operation.
10: return ~Y

C. Sentiment Classi�cation

Based on the initialized framework, the sentiment classi�-
cation of a given image can be summarized as follows. Given
a test image, we �rst generate the affective candidates based
on EdgeBoxes. In order to reduce redundancy, we apply the
candidate selection method based on their IoU scores and keep
just the best candidates. Both objectness score and sentiment
score are considered for selecting affective regions that are
likely to attract people's attention and include emotional
content. Then, for each proposal as well as the holistic image,
a c-dimensional predictive result is obtained by the CNN,
which is then fused into a �nal prediction. In particular, we
consider three strategies, namely max pooling, sum pooling
and concatenation. We utilize the cross-candidates pooling
operation to fuse the outputs from the CNN into an integrated
prediction. With max pooling, the high prediction scores from
those candidates containing sentiment are preserved and the
noisy ones are ignored. The sentiment probability~Y of a given
image can be de�ned as follows:

~Y = max
�

~YGlobal ; f ~YAR j gK
j =1

�
; (6)

where ~YGlobal represents the prediction of the whole image
and~YAR j represents the prediction of thej -th affective region,
and we select the topK affective regions based on Eqn. (5).
~Y , ~YGlobal and ~YAR j share the same vector structure of
(ypos ; yneg ), whereypos andyneg indicate the predicted prob-
ability of positive and negative sentiments, respectively.

The sum pooling fuses the prediction probability of all the
proposals, where the weights of consistent proposals can be
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Fig. 6. Example images from (a) small-scale and (b) large-scale affective datasets. The images come from a variety of domains including art, real life, abstract
and so on, in which the sentiment distributions are different.

emphasized.

~Y = (1 � � ) � ~YGlobal + � �
1
K

�
KX

j =1

~YAR j ; (7)

where� is the trade-off between global and local prediction.
The � is also estimated by cross-validation of the large-scale
affective dataset. Both max pooling and sum pooling can
generate the sentiment probability as the �nal prediction.

Concatenation is a simple but effective way by combing the
features for a comprehensive representation:

~Y =
h
~YGlobal ; f ~YAR j gK

j =1

i
: (8)

The �nal feature is generated by concatenating all the pre-
diction results, and the dimension of~Y is (K + 1) � c. In
our experiments, we set the number of affective regions in
all samples to be the same, making it feasible to classify the
concatenated feature vector using an SVM.

IV. EXPERIMENTAL RESULTS

In this section, we present our experiments and evaluate our
method against the state-of-the-art deep methods to validate
the effectiveness of our framework for sentiment classi�cation
and sentiment detection.

A. Dataset

We evaluate our proposed method on eight widely-used
datasets, including IAPSa [43], ArtPhoto [10], Abstract Paint-
ings [10], Twitter I [14], Twitter II [17], EmotionROI [21],
Flickr [17] and Flickr and Instagram (FI) [16]. We divide the
datasets into small-scale and large-scale datasets with respect
to the number of images, as shown in Fig. 6.

1) Small-scale datasets:The International Affective Picture
System (IAPS) [70] is a common stimulus dataset which is
widely used in visual sentiment analysis research [8]–[10],
[71]. IAPSa selects 395 pictures from IAPS and is labeled
with Mikel's eight sentiment categories.ArtPhoto contains
806 artistic photographs from a photo sharing site and the
ground truth labeling is provided by the owner of each image.
Abstract Paintings contains 228 peer rated abstract paintings
consisting of color and texture.Twitter I is collected from
social websites and labeled with two categories (i.e., positive,
negative) by Amazon Mechanical Turk (AMT) workers, and
contains 1,269 images in total. We test our method on all of
the three subsets of Twitter I, including “Five agree”, “At least
four agree” and “At least three agree”, in a similar fashion to
[14]. “Five agree” indicates that all the �ve AMT workers give
the same sentiment label for a given image.Twitter II contains
603 images from the Twitter website, and the ground truths
are obtained by AMT annotation too, resulting in 470 positive
and 133 negative labels.EmotionROI is created as a sentiment
prediction benchmark, and is collected from Flickr resulting
in 1,980 images with six sentiment categories. They use AMT
to collect 15 responses to the regions that evoke sentiment and
represent the ground truth by assuming the in�uence of each
pixel on evoked sentiments is proportional to the number of
drawn rectangles covering that pixel.

2) Large-scale datasets:FI is currently the largest well-
labeled dataset, which is collected by querying with eight
sentiment categories as keywords from social websites. 225
AMT workers were employed to label the images which
resulted in 23,308 images receiving at least three agreements.
We divide FI into binary datasets the same as the IAPSa.
Flickr contains 484,258 images in total, where each image
was automatically labeled using the corresponding ANP.

Since we focus on the binary sentiment prediction, we
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Methods FI Flickr

Baseline

AlexNet [45] 60.54 55.13
VGGNet [69] 70.64 61.28
Fine-tuned AlexNet 72.43 61.85
Fine-tuned VGGNet 83.05 70.12
PCNN (VGGNet) [14] 75.34 70.48
DeepSentiBank [49] 61.54 57.83

Ours

obj + concatenation 83.85 70.05
senti + concatenation 84.07 70.10
AR + concatenation 84.83 70.51
AR + sum-pooling 84.50 70.46
AR + max-pooling 84.21 70.49
AR + concatenation (K = 8 ) 86.35 71.13

Fig. 7. Classi�cation accuracy (%) on the test set of the large scale dataset,
i.e., FI and Flickr. We compare our proposed method with different deep
methods including ImageNet models (row 1-2), �ne-tuned models (row 3-4),
and state-of-the-art algorithms (row 5-6). Our proposed method with different
con�gurations are also given,i.e., combining with the top-1 region (row 7-11),
and leveraging more Affective Regions(row 12). Note that obj/senti indicate
that only objectness score/sentiment score is used, while our “AR” method
selects Affective Regions, where both objectness score and sentiment score
are considered.

convert the multi-sentiment labels into positive and negative
ones according to their valance for datasets except for Twit-
ter I, Twitter II and Flickr, which were originally labeled with
binary sentiment. Speci�cally, for IAPSa, ArtPhoto, Abstract
Paintings, and FI, we divide Mikel's eight sentiment categories
into binary labels according to [43], which suggests that
amusement, awe, contentment and excitement are positive
sentiments and anger, disgust, fear and sadness are negative
sentiments. EmotionROI is labeled with seven sentiments
(i.e., anger, disgust, fear, joy, sadness, surprise, neutral) along
with Valance-Arousal scores, where anger, disgust, fear, sad-
ness can similarly be considered as the negative sentiments.
Since the mean valance of the set of joy and surprise images is
higher than the mean valance of the set of negative images, we
treat them as positive sentiment. Note that we do not include
images with neutral sentiment in the experiment.

B. Implementation Details

CNNs have the capability to incorporate model weights
learned from a more general dataset, which is a convenient
property for tasks lacking suf�cient training data. We employ
the VGGNet with 16 layers [69] as our basic architecture.
Following previous works [13], we initialize our model with
the weights trained from ImageNet. Then the pre-trained
network is �ne-tuned on the large-scale datasets with the 1000-
way fc8 classi�cation layer replaced by the 2-way layer, and
the data are split randomly into 80% training, 5% validation
and 15% testing sets. The learning rates of the convolutional
layers and the last fully-connected layer are initialized as 0.001
and 0.01 respectively. We �ne-tune all layers by stochastic
gradient descent through the whole net using a batch size of
64. A total of 100,000 iterations is run to update the parameters
to extract more precise sentiment-related information. All our
experiments are carried out on two NVIDIA GTX 1080 GPUs
with 32 GB of CPU memory. For the candidate selection
method, we setm = 50 for each image as the experimental

Fig. 8. Impact of different� and� on the validation sets of the FI dataset.
We choose� = 0 :6; � = 0 :3 in the remaining experiments.

trade-off between the performance and computational time,
which provides the initial candidate proposals for discovering
the affective regions.

With the help of transfer learning, we also employ our
framework on small-scale datasets with limited training ex-
amples. In detail, we use the parameters of the CNN trained
on FI on other datasets and �ne-tune the model on the training
set of other datasets. The small datasets are randomly split into
80% training and 20% testing sets except those with a speci�ed
training/testing split [17], [44] and we conduct the experiments
using 5-fold cross validation and average the accuracies as the
�nal results.

C. Baseline

In the following subsections, we evaluate the proposed
method against the state-of-the-art algorithms for image sen-
timent prediction, including those based on hand-crafted fea-
tures and deep methods. In addition, we also show the results
with different con�gurations of the proposed method on the
validation set, especially with different components and fusion
strategies.

1) Hand-crafted features:We extract several low-level fea-
tures from the small-scale datasets, including local descriptors
like SIFT, HOG, GIST, etc. The global color histograms
(GCH) features consists of 64-bin RGB histogram, while the
local color histogram features (LCH ) �rst divide the image
into 16 blocks and use a 64-bin RGB histogram for each
block [72]. We use theColorName to count the pixels of
each of the 11 basic colors presented on the image using the
algorithm in [10]. We also useSentiBank [17], a concept
detector library based on the constructed ontology, to exploits
the 1,200 dimensional features as mid-level representation.
Zhao et al. [8] propose the principle of art features (PAEF)
for sentiment analysis. We use a simpli�ed version provided
by the author to extract 27 dimension features.

2) Deep methods:PCNN proposed by Youet al. [14]
is a novel progressive CNN architecture. They suggest that
leveraging larger amounts of weakly supervised data can



YANG et al.: REGULAR PAPER 9

Fig. 9. Impact of differentK on the validation set of the FI dataset. We set
K = 8 in the remaining experiments.

improve the generalizability of the model. We �ne-tune the
PCNN with the noisy Flickr dataset based on VGGNet and
extract the deep visual features.DeepSentiBank [49] is a
visual sentiment concept classi�cation based on CNNs for
discovering ANPs. We apply the pre-trained DeepSentiBank to
extract 2,089 ANPs as mid-level representations for sentiment.
We also show the performance of deep visual features ofCNN
models pre-trained on ImageNet and �ne-tuned on the affec-
tive datasets, including different architectures,i.e., AlexNet
and VGGNet. To compare with the ImageNet CNN, we
show the results of using LIBSVM [73] trained on features
extracted from the second to the last layer of the model and
reduce the dimensionality employing PCA. In practice, we �nd
that different cost values (parameter C in LIBSVM) produce
similar accuracy, so we just use the default value and use
the one v.s. allstrategy following the same evaluation routine
described in [10].

D. Results on Large-Scale Datasets

We �rst �ne-tune the CNN on the large scale datasets
(i.e., FI and Flickr), and compare the performance of our
framework with the deep methods. Fig. 7 reports the per-
formance of the baselines on the test set of the FI and
Flickr datasets. As can be seen, the pre-trained model on
the ImageNet is inferior to the �ne-tuned model due to the
differences between the distributions in the ImageNet and
sentiment datasets, while VGGNet with a deeper architecture
performs better than AlexNet. The �ne-tuned VGG achieves
83.05% on the FI dataset, which outperforms DeepSentiBank
(61.54%) and PCNN (75.34%). Compared to the weakly-
labeled Flickr, the �ne-tuned CNN on FI shows a greater
improvement in performance due to the reliable annotation.

When selecting and combining affective regions in the deep
model, we have several choices: we can use the objectness
score or sentiment score only, or use the AR score proposed
in this work. We roughly consider the objectness score as a
low-level cue and sentiment score as a high-level cue. The
experimental results show that the sentiment score is more
effective than the objectness score, which is mainly because

Fig. 10. Precision-recall curve for discovering affective regions. Our method
is more consistent with human annotation than objectness (i.e., using the
proposals with the highest objectness scores generated by EdgeBoxes).

the objectness score just indicates how likely a region contains
an object. When both scores are combined into a deep model,
our method using the most con�dent affective regions achieves
84.83%, which performs favorably against the state-of-the-art
methods as well as combing the proposals selected by only
one score, demonstrating the bene�t of using local details for
classi�cation. Analyzing the objectness and sentiment score
of different regions, we observe that the sentiment score often
gives different values even when the area of overlap of two
different proposals is more than half. For two different regions
proposals both containing an affective region, the sentiment
scores are usually similar, and thus it only needs to evaluate
whether the proposal contains an affective region and ignore
the area of proposal.

1) The effect of the hyper-parameters:We report the classi-
�cation performance of using “AR + sum pooling” methods on
the validation set of the FI dataset, and different� and � are
employed for comparison. As shown in Fig. 8, setting� = 0 :6
achieves the best overall accuracy for discovering affective
regions in the validation set. Using only the objectness score
(� = 0 ) gives limited performance, which indicates it is
necessary to use the sentiment score for selecting affective
regions. On the other hand, combining local regions can boost
the classi�cation performance compared with using a single
global representation. Setting� = 0 :3 achieves a balance
in most cases. Therefore, we use� = 0 :6; � = 0 :3 in the
remaining experiments.

2) The effect of the fusion operations:When fusing the
outputs of the affective region and the entire image, we con-
sider three fusion operations for combing the most con�dent
affective regions. Fig. 7 (bottom) shows that all three combi-
nations are useful for capturing information in the holistic and
regional view, while concatenation is the most effective way
since it retains all the information.

3) The effect of the hyper-parameterK : Given an input
image, we not only predict the sentiment of the whole image
but also �nd the affective regions. Although the dataset does
not provide annotations of affective regions, the number of
affective regions is usually small. Here we show an experiment
to determine how many affective regions should be evoked in
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Algorithm IAPS-Subset Abstract ArtPhoto Twitter I Twitter II EmotionROI
Twitter I 5 Twitter I 4 Twitter I 3

GCH 71.76 71.50 67.00 67.91 67.20 65.41 77.68 66.53
LCH 52.91 73.26 64.01 70.18 68.54 65.93 75.98 64.29
ColorName + BoW 57.72 73.28 66.26 64.51 64.79 60.83 70.10 60.13
Gist 65.05 60.97 63.40 65.87 61.47 60.68 77.68 60.38
LBP 56.73 59.85 55.06 55.78 53.94 57.29 65.15 55.26
Gabor 79.21 50.43 58.43 55.37 54.03 53.90 63.72 58.73
SIFT + BoW 86.06 53.54 59.05 63.15 63.71 60.36 70.32 65.30
SIFT + VLAD 83.02 60.53 64.75 70.29 68.91 67.14 77.34 72.15
SIFT + FisherVector 83.28 60.10 62.40 71.09 67.29 65.56 76.34 70.92
DenseSIFT + BoW 56.22 54.38 56.58 64.29 59.94 58.94 60.07 59.85
DenseSIFT + VLAD 58.25 55.74 64.38 67.12 66.49 65.01 77.17 62.13
DenseSIFT + FisherVector 62.55 59.21 64.01 71.76 68.01 65.96 78.01 62.97
HOG + BoW 79.99 60.95 62.40 68.48 61.92 60.99 61.23 61.05
HOG + VLAD 82.52 57.49 68.97 71.99 67.74 66.43 61.92 63.38
HOG + FisherVector 83.76 61.41 68.11 76.07 70.34 68.32 68.12 65.33

PAEF [8] 62.81 70.05 67.85 72.90 69.61 67.92 77.51 75.24
SentiBank [17] 81.79 64.95 67.74 71.32 68.28 66.63 65.93 66.18
DeepSentiBank [49] 85.63 71.19 68.73 76.35 70.15 71.25 70.23 70.11
PCNN (VGGNet) [14] 88.84 70.84 70.96 82.54 76.52 76.36 77.68 73.58
VGGNet 88.51 68.86 67.61 83.44 78.67 75.49 71.79 72.25
Fine-tuned VGGNet 89.37 72.48 70.09 84.35 82.26 76.75 76.99 77.02

obj + concatenation 88.47 73.38 71.34 84.24 81.81 76.68 75.97 77.83
senti + concatenation 88.74 74.23 72.86 84.35 82.44 76.57 78.18 77.95
AR + concatenation 89.39 74.71 73.76 86.10 83.25 77.97 78.89 78.52
AR + sum-pooling 90.32 73.72 73.63 86.39 83.41 77.57 78.32 78.43
AR + max-pooling 89.04 73.92 73.32 86.19 83.11 77.67 78.52 78.32
AR + concatenation (K = 8 ) 92.39 76.03 74.80 88.65 85.10 81.06 80.48 81.26

Fig. 11. Classi�cation results of different methods on the small-scale datasets. GCH represents the features of global color histogram and LCH corresponds to
local color histogram. Note that “obj” means that we only regard the proposals with high objectness score as affective regions, “senti” refers to the proposals
having high sentiment score are used. Note that our method is based on the �ne-tuned VGGNet.

our proposed framework. It is hard to evaluate the quality
of the discovered affective regions directly due to lack of
annotations. Therefore, our aim is to discover how many
affective regions can boost sentiment prediction accuracy. We
show the classi�cation performance when combing different
numbers of affective regions for sentiment analysis. As shown
in Fig. 9, as the number of affective regions is increased, the
accuracy increases as more information becomes available.
However, a further increase in the number of regions leads
to a slight decrease in performance due to the introduction
of noisy regions. Therefore, as a good balance, we choose
to combine 8 affective regions for sentiment analysis in
the remaining experiments, which outperforms the �ne-tuned
VGGNet by 3.3% on FI (86.35%) and 1% on Flickr (71.13%).
We also report the true positive rate of different sentiments on
the large-scale datasets. In detail, the positive and negative
sentiments achieve 92.10% and 72.65% on FI, respectively;
and on Flickr achieve 73.56% and 47.92%, respectively. For
both datasets, the positive class receives a higher accuracy
than the negative class, which is consistent with the number
of training images. More training images can lead to a higher
probability that the corresponding sentiment receives a higher
true positive rate.

E. Results on Small-Scale Datasets

We transfer the parameters learned on the FI dataset to
small-scale datasets, then show our experimental results in

Fig. 11 and provide comparisons to several state-of-the-art
works. Note that our method is based on the �ne-tuned
VGGNet. “obj” means that we only regard the proposals with
relatively high objectness score as affective regions and “senti”
refers to the proposals having high sentiment score. Our “AR”
method selects affective regions, where both objectness score
and sentiment score are considered.

For the color features, ColorName is usually not enough to
describe the distribution of image color compared to GCH
and LCH except for the Abstract dataset. For the texture
features, the HOG descriptor is able to achieve the best pre-
diction accuracy in most datasets compared with other texture
representations like SIFT, Gist, LBP and Gabor. Texture has
better discriminative power than color on these small datasets.
The reason is that sentiments are usually conveyed through
complicated texture regions,e.g., faces, dogs, buildingsetc. In
addition, we also compare the different encoding algorithms in
Fig. 11. As can be seen, it achieves better performance while
using the Fisher Vector to encode these descriptors on most
datasets.

Compared with the traditional representations based mainly
on color and texture information, the deep methods achieve
better results, as expected. Our proposed method employs
affective regions and outperforms both hand-crafted features-
based methods and deep approaches, and achieves the best
accuracy in all the small datasets. In detail, compared to the
SentiBank and DeepSentiBank which do not use affective
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Fig. 12. Visualization of images from the FI dataset. Given the input image (a), we systematically cover up different portions of the image with a gray square
and see how the classi�er output (b) changes. Column (b) denotes a map of the probabilities estimated by the CNN for the ground-truth class, indicating the
relative importance of locations in the affective image for the CNN. We also show the top-1 regions ranked by different scores (i.e., Obj score, Sentiscore,
AR) as object region (c), sentiment region (d), and affective region (e).

regions and represent images at the mid-level, our method
outperforms them by a large margin. Furthermore, our method
also shows an advantage over PCNN on all the affective
datasets, and the three fusion operations are all useful with
concatenation being the most effective method. According to
our experimental �ndings on the large-scale datasets, when we
increase the number of affective regions many regions have
little impact on image sentiment and can even decrease the
prediction accuracy. Therefore, we combine the same number
of regions for the �nal sentiment prediction on the small-scale
datasets and achieve the best performance. This shows another
advantage of our method, which is that we do not need many
local regions to be included in the deep model, ensuring an
acceptable increase in computation overhead.

F. Affective Regions Evaluation

We evaluate the affective regions detected by our framework
on the EmotionROI dataset, taking the same training/testing
split as the previous works [44], [74]. Since the dataset only
provides as ground truth the normalized Emotion Stimuli Map,
which is based on 15 bounding boxes, we �rst binarize the
Emotion Stimuli Map with threshold values 2 [0::255]=255,
and compare the ground truth region with the most con-
�dent discovered affective regions. Precision and recall are

employed, which represents the percentages of detected emo-
tionally involved pixels out of all the pixels identi�ed in the
predicted region or the ground truth. Following [44], all the
predicted affective regions and ground truth are normalized
to 0 to 1 for evaluation. Fig. 10 shows the precision-recall
curve of the objectness score and our proposed AR score.
The average precision and recall of our method are 0.69
and 0.59, while the objectness measure achieves 0.63 and
0.53, indicating that the selected affective regions are more
consistent with the human annotation.

V. V ISUALIZATION OF AFFECTIVE REGIONS

For the image classi�cation approaches, a natural question
is whether the proposed model can identify the target part
in the image. In this section, we attempt to answer this
question by visualizing the crucial location for classifying
sentiment. Following the previous works [75], we use sliding
windows to occlude different portions of the input image with
a gray square, and then generate the heat-map by plotting the
estimated probability of the ground truth class at that location.
Compared to other visualization methods,e.g., embedding the
features with t-SNE or visualizing the �lters of the network,
this method tends to directly show the regions that the CNN
focuses on. As shown in Fig. 12, the �rst column is the input
image and the second column is the prediction probability of
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the correct class using the �ne-tuned VGGNet when occluding
the corresponding portions of the image. If the occluded por-
tion is essential for the sentiment prediction, the corresponding
probability in the heat-map will obviously decrease (blue
pixels). As can be seen in the three examples, the �ne-tuned
deep model has the ability to discover the parts in the images
that can evoke the sentiment. For example, occluding the
salient objects (e.g., people, �re) that can evoke the sentiment
leads to decreasing prediction probabilities. However, due
to the affective gap, the CNN is not discriminative enough
to capture the most signi�cant sentiment information in the
images.

We also visualize the top-1 regions by re-ranking the can-
didate proposals according to different scores (i.e., Obj score,
Senti score, AR) in Fig. 12 (c) (d) (e), respectively. Column
(c) and (d) refer to the regions that are selected using only
objectness or sentiment scores. The objectness score selects the
regions which contain rich information at the low level, while
the sentiment score usually evaluates the regions' sentiment
at the affective level. Considering information from both of
these two aspects, our proposed method is able to discover
more accurate affective regions, see column (e). The detected
affective regions can be not only complementary for the salient
objects in the image (�rst example), but also extend the regions
of interest to the additional contextual background (last two
examples). Thus, combing the global and local information
can be discriminative for the visual sentiment analysis.

VI. CONCLUSION

In this paper, we address the problem of automatically rec-
ognizing sentiments in images. Inspired by the observation that
both global appearance and local regions produce signi�cant
sentiment responses, we propose a framework to discover
affective regions and combine both information using CNN.
We estimate the level of sentiment content in a region consid-
ering the objectness score and sentiment score. The objectness
score usually �nds regions containing rich texture information
while the sentiment score evaluates the regions' sentiment at
the affective level. We also consider three alternative fusion
operations and implement the proposed model on VGGNet.
The experimental results show that our method outperforms
the state-of-the-art methods on the popular affective datasets.
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