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Visual Sentiment Prediction based on
Automatic Discovery of Affective Regions

Jufeng Yang, Dongyu She, Ming Sun, Ming-Ming Cheng, Paul L. Rosin and Liang Wang

Abstract—Automatic assessment of sentiment from visual :
content has gained considerable attention with the increasing m
tendency of expressing opinions via images and videos online. =
This paper investigates the problem of visual sentiment analysis,
which involves a high-level abstraction in the recognition process.
While most of the current methods focus on improving holistic
representations, we aim to utilize the local information, which is
inspired by the observation that both the whole image and local
regions convey signi cant sentiment information. We propose
a framework to leverage affective regions, where we rst use
an off-the-shelf objectness tool to generate the candidates, and
employ a candidate selection method to remove redundant and
noisy proposals. Then a convolutional neural network (CNN) is
connected with each candidate to compute the sentiment scores,
and the affective regions are automatically discovered, taking the
objectness score as well as the sentiment score into consideration.
Finally, the CNN outputs from local regions are aggregated with Fig. 1. Images from popular affective datasets: (a) Twitter | [14] and (b)
the whole images to produce the nal predictions. Our framework Twitter Il [17]. The bounding boxes |nd|(_:ate the local Affective Reglons_
only requires image-level labels, thereby signi cantly reducing labeled by users. As can be seen, sentiments are evoked by the affective
the annotation burden otherwise required for training. This is 'c9'ons as well as the whole image appearance.
especially important for sentiment analysis as sentiment can be
abstract, and labeling affective regions is too subjective and

labor-consuming. Extensive experiments show that the proposed of hercejving sentiment in the same manner as humans. Instead
Sgﬁ::;hrn;)eonuctﬁrenr;?msat?:etsst?te'Of'the'art approaches on eight ¢ designing visual features .manually, Convolutional Negral
_ _ _ _ _ Network (CNN) can automatically learn deep representations
_ Index Terms—Visual sentiment analysis, sentiment classica- 4 jmages [12]. Several researchers have also applied CNN to
tion, affective region, convolutional neural networks image sentiment classi cation [13]-[16] and demostrated the
superior performance of the deep features against hand-tuned
|. INTRODUCTION features for sentiment classi cation.

ITH the increasing popularity of social networks, more Visual sentiment analysis is inherently more challenging
and more Internet users tend to express their opiniofifan traditional recognition tasks, since it involves a much
with different media types [1]. Algorithms to identify senti-higher level of abstraction and subjectivity in the human
ment can be helpful to understand such user behaviors [Rleognition process [18]. Recognizing sentiments evoked by
In particular, understanding the sentiment in visual medigages from social media is more dif cult than many other
content {.e., images, videos) has attracted increasing reseasgbual recognition taskss.g, object classi cation [19], scene
attention. Potential use of approaches developed for visual spstognition [20], etc It is necessary to take a rich set of
timent analysis is broad, including affective image retrieval [3gues into consideration for visual sentiment prediction. Most
aesthetic quality categorization [4], opinion mining [5], comexisting methods employing CNNs try to learn sentiment
ment assistant [6fptc representations from the global perspective of whole images,
Inspired by psychology and the principles of art, researcheiereas the visual sentiment can also be evoked from the local
have investigated different groups of hand-crafted featurgsyions within images [21]-[23]. Different from detecting
(e.g, color [7], [8], texture [9], [10], shape [11]) from imageconcrete visual objects [24], there are dif culties modeling
level, with the goal of endowing computers with the capabilitthe sentiment due to theffective gap between the low-level
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all regions have the same weights for sentiment prediction,This journal paper extends our earlier work [27] in four
which may go against the human attention theories that thspects. (1) The framework is improved by adding the candi-
human vision system selectively processes parts of an imatge selection module to suppress the possibly noisy proposals
in detail [25]. Youet al. [22] try to match local image regionsand reduce computational load. (2) Three alternative fusion
with the descriptive visual attributes, aiming to discover theperations are employed to combine the holistic representation
speci c-attribute regions, but lack generalization ability fowith the affective regions, which aim to capture the local
sentiment analysis. information in different ways. (3) More implementation details

To address these problems, we propose to leverage logeg provided and extensive experimental results on both large-
details as well as the global information for visual sentimefg¢ale and small-scale datasets are presented, where the hyper-
analysis. We introduce a new notion named Affective Regioff@rameters are determined in a systematic way. (4) The consis-

(ARs), which contains two distinguishing characteristics: ~ tency of the discovered affective regions and the ground truth
is evaluated on the EmotionROI benchmark [21], showing that

1) an AR is a salient region and probably contains one g, hroposed method can automatically nd high-quality ARs
more objects, which can attract people’s attention, angiihout human annotations.

2) an AR conveys signi cant sentiments. The rest of this paper is organized as follows. Sec. II

Fig. 1 shows some ARs in popular datasets [14], [17]. As c@dmmarizes the related work on visual sentiment analysis
be seen, the visual sentiment can be induced from the ARRd deep learning. Sec. Il introduces the proposed method
within images. For example, in the fourth image of (a), thef discovering affective regions and our deep framework for
sentiment is mostly evoked from the region of the bleedirggntiment prediction. In Sec. IV and V, we present and
hand, while in the second image of (b), the beautiful ledfsualize the experimental results on the popular benchmark
rather than the gray stone conveys the positive sentimeftasets. And nally, Sec. VI concludes this paper.

However, manually labeling the ARs of images for training

the detector is too subjective and labor-consuming. This paper [l. RELATED WORK

proposes a framework that only requires the image-level labelyymerous methods for visual sentiment analysis have been

to discover AR automatically, thereby signi cantly reducinqjevebped based on still images [10], [17] and videos [28],

the annotation burden. [29]. In this section, we review the methods for affective image
In detail, we rst use an off-the-shelf tool to generatgrediction and region-based CNNs that are closely related to

bounding box candidates along with their objectness scatgs work.

for the input image, which is inspired by the strong co-

occurrence relationships between objects and sentiment [%@].

. . X Affective Image Prediction
Then a candidate selection method is employed to remove the ¢

redundant proposals while preserving several valuable ones, Tévious methods on affective image prediction can be
ghly divided into dimensional approaches and categorical

The deep CNN is connected with each candidate and used4 _ : : _
. The dimensional approaches represent sentiment in

compute sentiment score. The objectness score and sentin®&\5S : _ :
score are combined to calculate the AR score, based on whigh tWe dimensional (2-D) valence-arousal coordinate space

the topK ARs are discovered by re-ranking the candidatgCl oF a three dimensional space [31]. Hanjalic [32] repre-
regions considering both the objectness score as well as Ff&tS human affective response using three basic dimensions,
sentiment score. Finally, the CNN outputs from the glob&f- valence, arousal and control (dominance), where there
and local views are aggregated through alternative fusibh@ corresponding value for every affective state. Zleao

operationsi(e., max pooling, sum pooling and concatenatiorfj- [33]; [34] propose to predict the personalized emotion
to produce the nal predictions. perceptions of images in the valence-arousal space using

- . . shared sparse regression as a learning model. Meanwhile,
Our contributions are summarized as follows: . ) .
the categorical approaches map sentiment into one of the

We propose a deep framework for automatically discovepresentative categories. There is also some work predicting
ering the affective regions of images which are likelyhe discrete probability of different sentiment categories [35]—
to evoke signi cant sentiment information. Our frame{39]. Since categorical approaches make it easier for a human
work is independent of object categories and requires tm understand, we target categorical sentiment prediction in
bounding box annotation, which is more general than tlieis work.
existing methods. 1) Shallow modeling methoddviost previous methods on
We build a visual sentiment prediction model using a deeggffective image prediction employ traditional low-level fea-
CNN, which utilizes the holistic and local informationtures. Machajdiket al. [10] de ne a combination of rich
from both the global image and the local regions. Thieand-crafted features based on art and psychology theory,
nal representation is effective for visual sentiment clasincluding composition, color variance and image textete,
si cation, and outperforms the state-of-the-art approachés et al. [11] investigate how shape features in natural
on the affective datasets. images in uence sentiments aroused in human beings, and
Experimental results show that our proposed framewopkovide evidence for the signi cance of roundness-angularity
can be generalized to the small-scale benchmarks wahd simplicity-complexity for predicting sentiment content.
the help of transfer learning. Zhao et al. [8] introduce more robust and invariant visual
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Dataset GT-Box Positive Negative sum tivations from CNNs are used as image-level features for
IAPSa [43] N 209 186 395 classi cation, namely 'Fhe 4096-dimensional output from fc7
Abstract [10] N 139 89 2og and the 1000-dimensional output from fc8. Yet al. [14]
ArtPhoto [10] N 378 428 806 employ a progressive strategy to train a CNN making use of
Twitter | [14] N 769 500 1,269 half a million images that are labeled with the website meta
Ewutt;a_r IIR[(1)I7][44] '\:( 466630 113?230 153860 data, and further perform benchmarking analysis on the Flickr
motion ’ )

Flickr&Instagram [16] N 16,430 6.878 23308 and Instagram (FI) dataset. In. [22],.a method.based on the
Flickr [17] N 435798 48,424 484222 attention model is developed in which local visual regions

induced by sentiment related visual attributes are considered.

Fig. 2. Statistics of the available affective datasets. Most datasets developegh e to the expensive manual annotation of sentiment labels
in this eld contain no more than two thousand samples, mainly due to tl ’

subjective and labor intensive labeling process. Note that the Flickr datas&ﬁ? existing aﬁeCt_ive_ datasets, in(?IUding IAPSa [_43]7 ArtPhoto
weakly-labeled and none of these datasets except EmotionROI provide gro{ih@], Abstract Paintings [10], Twitter | [14], Twitter 1l [17]

truth bounding box (GT-Box) corresponds to affective regions. and EmotionROI [44] typlca"y contain less than two thousand
images (see also Fig. 2). This is far from the required scale

] ] o for training robust deep models. The Flickr dataset [17] is
features designed according to art principles. These hangkayy-labeled with 2 categories using the meta-data provided

crafted visual features_are proven to be effective on seve@) the up-loaders. Moreover, only the EmotionROI dataset has

small datasets, whose images are selected from a few spe¢jigyided ground truth affective regions. Note that in this paper

domains,e.g, abstract paintings and art photos [10]. we focus on the binary sentimerite{, positive and negative)
To bridge the affective gap between low-level features prediction problem, for which a variety of benchmark datasets

and high-level sentiment, Bortlet al [17] model a mid- \ith reliable ground-truth can be employed to validate the
level Concept,i.e., AdjeCtive Noun Pairs (ANPS), which areeﬁ’ectiveness of the proposed a|gorithm_

used to detect image concepts instead of expressing senti-
ments directly. Liet al [40] further compute the weightedB. Region-based CNNs

sum of the textual sentiment values of ANPs describing the\y,e trace the roots of our approach to region-based CNN
image and take the textu:_:ll sentime_nt into acc_ount. Yeian (R-CNN) [46], an algorithm applying deep CNN to bottom-
al. [41] propose the Sentribute, an image-sentiment analygi§ generate region proposals in order to localize and seg-
algorithm based on 102 mid-level attributes, which are easigent objects. It has been proved that when labeled training
to interpret and ready to use for high-level understandingaia are scarce, supervised pre-training for an auxiliary task,
Furthermore, Zhaet al. [42] combine features of different y|owed by domain-speci ¢ ne-tuning, boosts performance
levels including low-level features from elements-of-art, midsignicantly [51]. Girshick [52] shows that it is possible
level features from principles—of—art.and high—level featur_% further reduce training and testing time, while improving
from a semantic concepts detector in a multi-graph learig@iection accuracy and simplifying the training process, us-
framework. Cheret al. [26] build object detection models 0ing an approach called Fast R-CNN. Fast R-CNN reduces
recognize six frequent objects including car, dog, dress, faggtection time excluding region proposal computation to 50—
ower and food, and propose a new classi cation model t@poms per image, depending on network architecture. &en
handle attributive and proportional similarity between visug|| [24] introduce a fully-convolutional network version that
sentiment concepts. In contrast, our algorithm concentralgg,yitaneously predicts object bounds and objectness scores at
on whether a selected region contains objects or not, whighch position. Meanwhile, R-CNN has been applied to various
is |n'dep.endent to object categories and more robust for r%é‘éks,e.g, pedestrian detection [53], action detection [54], [55]
applications. and semantic segmentation [56].

2) Deep modeling methoddn recent years, CNNs have Different from the traditional methods on region based
been incorporated into a number of visual recognition system@siNs for nding salient objects in an image, our work aims
in a wide variety of domains [45], [46]. The strength of thesg automatically identify the ARs that evoke sentiment and
models lies in their ability to learn discriminative features fromase the local information as the supplementary sentiment
raw data inputs using the back propagation algorithm [4#kpresentation. This requires us to analyze not only the regions
in contrast to more traditional recognition pipelines whickontaining objects but also the surrounding background [21],
compute hand-engineered features on images as an inifidich may have affective in uence on the selected regions.
preprocessing step [48]. Moreover, R-CNN based methods require ground truth bound-

Several recent methods exploit deep CNNs for image séng box annotations for training, but it is time- and labor-
timent prediction. Based on their previous work [17], Clegn consuming to label affective regions manually. In this paper,
al. [49] adapt deep networks for constructing DeepSentiBanke employ an off-the-shelf tool to generate object proposals
a classi cation model for visual sentiment concepts, whichs candidate affective regions and propose to select the AR
shows signi cant improvements in both annotation accura@onsidering the low-level as well as the affective-level content.
and retrieval performance. Also, some methods incorpor&@®@mpared with the methods requiring accurate segmenta-
the model weights learned from a large-scale general dataset [23] or concrete category information [26], it is much
[50], and further ne-tune the CNNs for the task of visuakasier to acquire object proposals in the preprocessing stage,
sentiment prediction [13], [15]. In [13], two types of ac-and will better generalize to other datasets.
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Fig. 3. Pipeline of the proposed approach. Given the input image, thousands of candidates along with the objectness scores are generated, and the candidat
selection method is applied to remove the candidates which are overlapped and less important. The sentiment score of each proposal is roughly computec
through CNN, which is then combined with the objectness score to discover affective regions. Finally, the sentiment label is predicted by fusing the local
information with the holistic representation using several alternative operations.

I1l. M ETHODOLOGY each affective region with the holistic representation, the

In this section, we aim to develop an algorithm to autd€rformance of the proposed framework largely depends on
matically discover ARs carrying signi cant sentiments and'® guality of the candidate regions. However, an effective
combine the standard holistic representation with a Ioc%?r]_d'date extraction approach is challenging since the affective
representation for image sentiment analysis. Fig. 3 shoffg!on detection needs to capture not only quects but also
the pipeline of our proposed framework. We use an objer&glons of the background that may evoke sentiment. There are
detection techniquej.e, Edgeboxes [57], to produce thetWo criteria that should be satis ed. First, the proposed frame-
candidate windows guiding the search for ARs, and then apfﬂ’?rk is based on the a_lssumption t_hat_the candidate proposals
the candidate selection method to reduce redundant and ndig{) COver the objects in the affective images as well as parts
proposals. Thus, the sentiment content of each proposalof he bacl_<ground, which requires a hlgh_ detection recall rate.
estimated at both the low-level and affective-level for the ARRECONd, since the selected affective region proposals are then
detection. Finally, the deep representation of the detected AS into the CNN, only a limited number of candidates should
is combined with the holistic representation through thré¥® Produced so as to allow for ef ciency whilst maintaining
alternative fusion strategiegge., max pooling, sum pooling accuracy. _
and concatenation, to generate the nal predictions. During the past decades, many object proposal methods

have been proposed to tackle the object detection problem.

According to [59], [60], EdgeBoxes [57] and BING [61]
are faster than methods such as Selective Search [62] and
1) Generating: Detecting concrete visual objects like dog©bjectness [63], while EdgeBoxes achieves better quality
and cars has been researched extensively in computer ofi-proposals compared to BING. Considering the balance
sion [56], [58]. However, modeling abstract emotional corketween the speed and quality, this paper uses EdgeBoxes to
cepts like amusement and excitement is very challenging. Thenerate a set of candidate windows as it provides the best
dif culty comes from the “affective gap” that lies betweentrade-off. Such an off-the-shelf tool can generate thousands
low-level visual features and high-level sentiment. Previowd candidate boxes in a fraction of a second, from which a
methods [17], [26] have proved that associating adjectives wighbsequent re nement step based on object boundary estimates

concrete objects can make the combined visual concepts misreapplied to improve localization. For a given imade
detectable and tractable for visual sentiment analysis. Inspiredset of candidate bounding boxes with objectness score
by the strong co-occurrence relationships between objects d&ha fh; Obj_score g, is produced by EdgeBoxes.
sentiment, we suggest that object proposals can be used as tt® Selecting and Itering:To achieve high recall for object
potential sentiment regions. detection, Zitnicket al. [57] employ a bottom-up strategy,
Since our framework takes the object proposals as inpwsnerating thousands of proposals in each image. However,
and obtains the nal prediction by fusing the prediction ofmost of the candidate proposals are heavily overlapped and

A. Producing Candidate Proposals
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redundant for predicting sentiment. It is necessary to lter
out the noisy region proposals carrying little sentiment, and
removing noisy proposals at the initial stage of the algorithm
can greatly reduce the computation time of the subsequent
steps. To address this problem, we introduce the candidate
selection module to select proposals from the affective region
candidates inspired by [64]. .
EdgeBoxes generates thousands of proposals in each image "
that can achieve high recall for object detection. However, =
since it still generates a large number of original object win-
dows for the CNN to process, following [65], we rst check the
same geometric characteristicé®( the area and height/width
ratio) of candidate bounding boxes. We empirically Iter out
the regions with small areas< (800 pixels) or with high
height/width (or width/height) aspect ratios above a threshold
(> 6), since objects which are either too small or too long are
unlikely to attract people's attention. Thus, a much smaller
number of proposals can be fed into the candidate selection
method. Following previous algorithms [64], [66], we build () Candidates Selection
the afnity matrix W 2 R" " for each image, in which
each element denotes the intersection-over-union (IoU) SCOF&s 4. Given the input image (a), the candidate windows are generated by

between any pair of the bounding boxes andienotes the EdgeBoxes and small or high aspect ratio boxes are Itered out. As shown in
number of candidates: (b), the proposals with blue bounding boxes are dropped in this step. Different

colors in (c) indicate the different clusters produced by normalized cut, from
i\ t“ 1 which the representative proposals are selected.

YR
wherej j is used to measure the numbers of pixels. We thenq;; 1)\, , whereN is the size of the training set; is the
apply the normalized cut algorithm [67] to group the candidaigput image, and; is the associated sentiment label. In the
bounding boxes intam clusters. In detail, the normalizedstandard training process, the traditional classi cation loss is
graph Laplacian matrix = D 2(D W)D Z ig computed optimized to maximize the probability of the correct class [45],
whereD 2 R" " is a diagonal matrix witlD; =~ [_; Wj . [69]. Letd; be the output from the penultimate layer, then the
Then the eigenvector matri¥ = [vi; ;vm] 2 R" ™ is  ne-tuning of the last layer is done by minimizing the softmax
constructed wherévy; ;Vm g are them smallest eigenvec- |oss function as follows:
tors of L. Finally thek-meansclustering algorithm is used to QX
obtainm cluste_r labels where each row Vf_ls the feature of I(W) = 1(l = j)logp(li = jjdi;w;); )
the corresponding sample [67]. As shown in Fig. 4, the bound-
ing boxes are rst Itered out to reduce the computational
load. Then with them clusters' bounding boxes, we pick thewhereW = fw; gj, is the set of model parameters, and the
proposal with the highest objectness score in each cluster dndicator functionl(s) = 1 if s is true, otherwisel(s) = 0.
generatem candidate regionsi = fh;g™, for each image. The probability of each sentiment labg(l; = jjdi;w;) can
Compared to the greedy non-maximum suppression (NMBg de ned by the softmax function:
method that is widely used for Itering [46], our candidate
selection method can generate a speci ¢ number of proposals p(li = jjdi;wj) =
while removing the redundant and noisy bounding boxes.

(b Candidates

Objectness Score

Cluster m

N

i=1 j2l

exp(u] d)
jol eXp(WjTodi)

3

Since the number of categories in the affective dataset is

B. Discovering Affective Regions not equal to that of ImageNet, the fc8 classi cation layer is

1) Initializing the framework: CNNs achieve the state-changed to 2-way required by the sentiment dataset, which can
of-the-art performance in the related computer vision task¥oduce a probability prediction over the sentiment classes.
e.g, aesthetic quality rating [4] and image style recognition 2) Estimating sentiment scoré&or the affective-level qual-
[68] by ne-tuning the pre-trained ImageNet model. In thisty of the candidate proposals, we compute the sentiment
work, the CNN is based on the deep model VGGNet [6%cores by feeding the proposal to the CNN. For the generated
with 16 layers. In order to adapt the pre-trained model affective candidates! = fh;gm; of the input imagel, let
ImageNet for sentiment analysis, the CNN is rst ne-tuned offiy;; gj°=l be the output vector of the last layer indicating
the target affective dataset.§, Flickr and Instagram) utilizing the probability of thei-th proposal carrying thg-th class
the original images (without any bounding boxes) to adjusentiment, and is set to 2 as the number of sentiment classes.
the parameters of the deep model. As a supervised learnifithe prediction values for each sentiment are similar then this
approach, the ne-tuned CNN is applied to learn a functionsually indicates that it is dif cult to distinguish the sentiments
f 1L , from a collection of affective training examplesevoked by the proposal. Therefore, we aim to keep only those
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Algorithm 1 Visual Sentiment Analysis using Affective Re-

M Senti_score gions
@ Obj_score Input'
Input Image:l

1:

Fig. 5.
image. For example, the region with a high objectness score indicates that
the corresponding bounding box is extremely likely to be an object.

Visualization of the objectness score and sentiment score in ag.

7
proposals which contain a dominant sentiment. We de ne &:
probabilistic sampling function to evaluate the sentiment score
of thei-th region in an affective-level perspective as follows: 9:

10:

The number of desired affective regioris:

Output:

Predicted sentiment labelY:

Generaten bounding boxes with their objectness scores
B = fh;Obj_score g, .

Apply candidate selection method to generateandidate
regionsH = fhig?, .

Initialize the framework with pre-trained CNN.

Let Ysionar be the predictions of the whole image.

PassH through the CNN model from the second layer to
the last layer.

B: Lety 2 R™ ¢ be the sentiment probability ah pro-

posal using the CNN model, compute the sentiment score
in Egn. (4)

Compute the AR score for the each region in Eqn. (5).
Rank proposals with AR scores and select tdp as
affective regions.

Predict the labelY using the cross-candidates pooling
operation.

return Y

Senti_scord = vy; logy; +1; 4

j=1

where the score ranges between 0 and 1 for binary classi Ga- sentiment Classi cation
tion. The information entropy de ned in Eqn. (4) represents
the degree of uncertainty when predicting sentiment, whichBased on the initialized framework, the sentiment classi -
is also consistent with the affective-level estimation of theation of a given image can be summarized as follows. Given
proposal. TheSenti_score can be high-level and providesa test image, we rst generate the affective candidates based
a more semantic measurement compared to the traditional EdgeBoxes. In order to reduce redundancy, we apply the
methods. candidate selection method based on their loU scores and keep
3) Selecting affective regionsiVe choose ARs accordingjust the best candidates. Both objectness score and sentiment
to two aspects: i) how likely the region contains an objecgcore are considered for selecting affective regions that are
which is represented a®bj_scord , and ii) how much the likely to attract people's attention and include emotional
region carries sentiment at the affective-level, referred to agntent. Then, for each proposal as well as the holistic image,
Senti_scord . Fig. 5 demonstrates that an affective regios c-dimensional predictive result is obtained by the CNN,
should have both higlDbj_scord and Senti_score . The Wwhich is then fused into a nal prediction. In particular, we
reason is that th®bj_score only measures the probability of consider three strategies, namely max pooling, sum pooling
regions containing an object and is based on the texture app@ad concatenation. We utilize the cross-candidates pooling
ance, which lacks the guidance of semantic information. Tiegeration to fuse the outputs from the CNN into an integrated
Senti_scord re ects the sentiment of images at the affectiv@rediction. With max pooling, the high prediction scores from
level, which enables lots of noisy regions to be removed withose candidates containing sentiment are preserved and the
little impact on the sentiment analysis. Such a score allowgisy ones are ignored. The sentiment probabfityf a given
certain exibility for the object regions, which may occur inimage can be de ned as follows:
the background as well. Considering the characteristics of each
score, we introduce the ARcore to evaluate the sentiment
quality of each region with the following de nition:

q
AR _score =

Y =max Yoioval ;fVar, G

(6)

Senti_scorel 2: where Ygiopar  represents the prediction of the whole image
B ' (5) andYar, represents the prediction of theth affective region,
where controls the trade-off between low-level and affectiveand we select the told affective regions based on Eqgn. (5).
level perspectives. In this paper, we selectby the cross Y, Yciobar and Yar; share the same vector structure of
validation of the large-scale affective dataset. The propos&¥os; Yneg), Whereypos andyneg indicate the predicted prob-
with high AR _score are considered be an AR and used foability of positive and negative sentiments, respectively.
sentiment prediction, while the proposals with I&#R _score The sum pooling fuses the prediction probability of all the
are removed from the candidate set. proposals, where the weights of consistent proposals can be

(1 ) Obj_scorel?+
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Fig. 6. Example images from (a) small-scale and (b) large-scale affective datasets. The images come from a variety of domains including art, real life, abstract
and so on, in which the sentiment distributions are different.

emphasized. 1) Small-scale datasetShe International Affective Picture
System (IAPS) [70] is a common stimulus dataset which is
1 X Yar. ) widely used in visual sentiment analysis research [8]-[10],
K (=1 ” [71]. IAPSa selects 395 pictures from IAPS and is labeled
with Mikel's eight sentiment categorie®\rtPhoto contains
where is the trade-off between global and local predictiorgoé artistic photographs from a photo sharing site and the
The is also estimated by cross-validation of the large-scadgound truth labeling is provided by the owner of each image.
affective dataset. Both max pooling and sum pooling caxbstract Paintings contains 228 peer rated abstract paintings
generate the sentiment probability as the nal prediction. consisting of color and texturéwitter | is collected from
Concatenation is a simple but effective way by combing thgcial websites and labeled with two categories,(positive,

Y= ) Yoioba +

features for a comprehensive representation: negativé by Amazon Mechanical Turk (AMT) workers, and
h K I contains 1,269 images in total. We test our method on all of
Y = Yoioval ;fYar; =1 (8)  the three subsets of Twitter |, including “Five agree”, “At least

four agree” and “At least three agree”, in a similar fashion to
fi4]. “Five agree” indicates that all the ve AMT workers give
the same sentiment label for a given imageitter Il contains
@3 images from the Twitter website, and the ground truths
are obtained by AMT annotation too, resulting in 470 positive
and 133 negative labelEmotionROI is created as a sentiment
prediction benchmark, and is collected from Flickr resulting
IV. EXPERIMENTAL RESULTS in 1,980 images with six sentiment categories. They use AMT

In this section, we present our experiments and evaluate &2COlIECt 15 responses to the regions that evoke sentiment and
method against the state-of-the-art deep methods to valigggBresent the ground truth by assuming the in uence of each

the effectiveness of our framework for sentiment classi catiof*€! on évoked sentiments is proportional to the number of
and sentiment detection. drawn rectangles covering that pixel.

2) Large-scale datasetsFl is currently the largest well-
labeled dataset, which is collected by querying with eight
A. Dataset sentiment categories as keywords from social websites. 225
We evaluate our proposed method on eight widely-uséMT workers were employed to label the images which
datasets, including IAPSa [43], ArtPhoto [10], Abstract Paintesulted in 23,308 images receiving at least three agreements.
ings [10], Twitter | [14], Twitter 1l [17], EmotionROI [21], We divide FI into binary datasets the same as the IAPSa.
Flickr [17] and Flickr and Instagram (FI) [16]. We divide theFlickr contains 484,258 images in total, where each image
datasets into small-scale and large-scale datasets with respé&s automatically labeled using the corresponding ANP.
to the number of images, as shown in Fig. 6. Since we focus on the binary sentiment prediction, we

The nal feature is generated by concatenating all the pr
diction results, and the dimension 8f is (K +1) c. In
our experiments, we set the number of affective regions
all samples to be the same, making it feasible to classify t
concatenated feature vector using an SVM.
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Methods | FI Flickr

AlexNet [45] 60.54 55.13

VGGNet [69] 70.64 61.28

. Fine-tuned AlexNet 72.43 61.85
Baseline | e tined VGGNet 83.05  70.12
PCNN (VGGNet) [14] 75.34  70.48
DeepSentiBank [49] 61.54 57.83

obj + concatenation 83.85 70.05

senti + concatenation 84.07 70.10

ours AR + concatenation 84.83 70.51
AR + sum-pooling 84.50 70.46

AR + max-pooling 84.21 70.49

AR + concatenation =8) 86.35 71.13

Fig. 7. Classi cation accuracy (%) on the test set of the large scale dataset,
i.e,, FI and Flickr. We compare our proposed method with different deep
methods including ImageNet models (row 1-2), ne-tuned models (row 3-4),
and state-of-the-art algorithms (row 5-6). Our proposed method with different

con gurations are also given.e., combining with the top-1 region (row 7-11), _. . S
and gIleveraging more A?ffective Regions(rgow 12). Notpe thatg obj/(senti indi():a%g' 8. Impact of different and on the validation sets of the FI dataset.
that only objectness score/sentiment score is used, while our “AR” meth choose =0:6; =0:3in the remaining experiments.

selects Affective Regions, where both objectness score and sentiment score

are considered.

trade-off between the performance and computational time,

which provides the initial candidate proposals for discovering
convert the multi-sentiment labels into positive and negatiyge affective regions.
ones according to their valance for datasets except for Twit-\yjith the help of transfer learning, we also employ our
ter I, Twitter Il and Flickr, which were originally labeled with framework on small-scale datasets with limited training ex-
binary sentiment. Speci cally, for IAPSa, ArtPhoto, Abstrachmmes_ In detail, we use the parameters of the CNN trained
Paintings, and FI, we divide Mikel's eight sentiment categorigs, F| on other datasets and ne-tune the model on the training
into binary labels according to [43], which suggests thaf of other datasets. The small datasets are randomly split into
amusement, awe, contentment and excitement are posii(f training and 20% testing sets except those with a speci ed
sentiments and anger, disgust, fear and sadness are neggiRing/testing split [17], [44] and we conduct the experiments

sentiments. EmotionROI is labeled with seven sentimeniging 5-fold cross validation and average the accuracies as the
(i.e., anger, disgust, fear, joy, sadness, surprise, neutral) alopg| results.

with Valance-Arousal scores, where anger, disgust, fear, sad-
ness can similarly be considered as the negative sentiments.
Since the mean valance of the set of joy and surprise imagegis
higher than the mean valance of the set of negative images, wé the following subsections, we evaluate the proposed
treat them as positive sentiment. Note that we do not incluéitethod against the state-of-the-art algorithms for image sen-
images with neutral sentiment in the experiment. timent prediction, including those based on hand-crafted fea-
tures and deep methods. In addition, we also show the results
with different con gurations of the proposed method on the
validation set, especially with different components and fusion
CNNs have the capability to incorporate model weightstrategies.
learned from a more general dataset, which is a convenientl) Hand-crafted featuresWWe extract several low-level fea-
property for tasks lacking suf cient training data. We employures from the small-scale datasets, including local descriptors
the VGGNet with 16 layers [69] as our basic architecturdike SIFT, HOG, GIST,etc The global color histograms
Following previous works [13], we initialize our model with(GCH) features consists of 64-bin RGB histogram, while the
the weights trained from ImageNet. Then the pre-trainddcal color histogram featured CH) rst divide the image
network is ne-tuned on the large-scale datasets with the 100@to 16 blocks and use a 64-bin RGB histogram for each
way fc8 classi cation layer replaced by the 2-way layer, andlock [72]. We use theColorName to count the pixels of
the data are split randomly into 80% training, 5% validatioeach of the 11 basic colors presented on the image using the
and 15% testing sets. The learning rates of the convolutiorsdgjorithm in [10]. We also us&entiBank [17], a concept
layers and the last fully-connected layer are initialized as 0.0@&tector library based on the constructed ontology, to exploits
and 0.01 respectively. We ne-tune all layers by stochastibe 1,200 dimensional features as mid-level representation.
gradient descent through the whole net using a batch sizezfao et al. [8] propose the principle of art featureBAEF)
64. A total of 100,000 iterations is run to update the parametdos sentiment analysis. We use a simpli ed version provided
to extract more precise sentiment-related information. All otny the author to extract 27 dimension features.
experiments are carried out on two NVIDIA GTX 1080 GPUs 2) Deep methods:PCNN proposed by Youet al. [14]
with 32 GB of CPU memory. For the candidate selectiois a novel progressive CNN architecture. They suggest that
method, we setn = 50 for each image as the experimentaleveraging larger amounts of weakly supervised data can

Baseline

B. Implementation Details
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Fig. 10. Precision-recall curve for discovering affective regions. Our method
is more consistent with human annotation than objectness (sing the
proposals with the highest objectness scores generated by EdgeBoxes).
Fig. 9. Impact of differenK on the validation set of the FI dataset. We set
K =8 in the remaining experiments.

the objectness score just indicates how likely a region contains
improve the generalizability of the model. We ne-tune th@n object. When both scores are combined into a deep model,
PCNN with the noisy Flickr dataset based on VGGNet arelr method using the most con dent affective regions achieves
extract the deep visual featureBeepSentiBank [49] is a 84.83%, which performs favorably against the state-of-the-art
visual sentiment concept classi cation based on CNNs férethods as well as combing the proposals selected by only
discovering ANPs. We apply the pre-trained DeepSentiBank@ye score, demonstrating the bene t of using local details for
extract 2,089 ANPs as mid-level representations for sentime@lgssi cation. Analyzing the objectness and sentiment score
We also show the performance of deep visual featur&Ni  of different regions, we observe that the sentiment score often
models pre-trained on ImageNet and ne-tuned on the affegives different values even when the area of overlap of two
tive datasets, including different architecturés,, AlexNet different proposals is more than half. For two different regions
and VGGNet. To compare with the ImageNet CNN, we@roposals both containing an affective region, the sentiment
show the results of using LIBSVM [73] trained on feature§cores are usually similar, and thus it only needs to evaluate
extracted from the second to the last layer of the model andnether the proposal contains an affective region and ignore
reduce the dimensionality employing PCA. In practice, we néhe area of proposal.
that different cost values (parameter C in LIBSVM) produce 1) The effect of the hyper-parametetdle report the classi-
similar accuracy, so we just use the default value and usation performance of using “AR + sum pooling” methods on
the one v.s. allstrategy following the same evaluation routinghe validation set of the FI dataset, and differenand are

described in [10]. employed for comparison. As shown in Fig. 8, setting 0:6
achieves the best overall accuracy for discovering affective
D. Results on Large-Scale Datasets regions in the validation set. Using only the objectness score

We rst ne-tune the CNN on the large scale datasets = 0) gives limited performance, which indicates it is
(i.e., FI and Flickr), and compare the performance of odecessary to use the sentiment score for selgctlng affective
framework with the deep methods. Fig. 7 reports the pd9ions: Qn the other hand, combining Iocall regions can .boost
formance of the baselines on the test set of the FI aHif classication performance compared with using a single
Flickr datasets. As can be seen, the pre-trained model @qPa! representation. Setting = 0:3 achieves a balance
the ImageNet is inferior to the ne-tuned model due to thé) MOst cases. Therefore, we use= 0:6; = 0:3 in the
differences between the distributions in the ImageNet af@Mmaining experiments.
sentiment datasets, while VGGNet with a deeper architecture2) The effect of the fusion operation®Vhen fusing the
performs better than AlexNet. The ne-tuned VGG achieve@utputs of the affective region and the entire image, we con-
83.05% on the FI dataset, which outperforms DeepSentiBagiker three fusion operations for combing the most con dent
(61.54%) and PCNN (75.34%). Compared to the weaklgffective regions. Fig. 7 (bottom) shows that all three combi-
labeled Flickr, the ne-tuned CNN on FI shows a greatefations are useful for capturing information in the holistic and
improvement in performance due to the reliable annotationf€gional view, while concatenation is the most effective way

When selecting and combining affective regions in the degfice it retains all the information.
model, we have several choices: we can use the objectnes3) The effect of the hyper-parametr: Given an input
score or sentiment score only, or use the AR score proposetage, we not only predict the sentiment of the whole image
in this work. We roughly consider the objectness score asbat also nd the affective regions. Although the dataset does
low-level cue and sentiment score as a high-level cue. Thet provide annotations of affective regions, the number of
experimental results show that the sentiment score is maféective regions is usually small. Here we show an experiment
effective than the objectness score, which is mainly becausedetermine how many affective regions should be evoked in
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Algorithm IAPS-Subset Abstract ArtPhoto Twitter | Twitter I EmotionROI
Twitter I_5 Twitter |_4  Twitter |_3

GCH 71.76 71.50 67.00 67.91 67.20 65.41 77.68 66.53
LCH 52.91 73.26 64.01 70.18 68.54 65.93 75.98 64.29
ColorName + BoW 57.72 73.28 66.26 64.51 64.79 60.83 70.10 60.13
Gist 65.05 60.97 63.40 65.87 61.47 60.68 77.68 60.38
LBP 56.73 59.85 55.06 55.78 53.94 57.29 65.15 55.26
Gabor 79.21 50.43 58.43 55.37 54.03 53.90 63.72 58.73
SIFT + BowW 86.06 53.54 59.05 63.15 63.71 60.36 70.32 65.30
SIFT + VLAD 83.02 60.53 64.75 70.29 68.91 67.14 77.34 72.15
SIFT + FisherVector 83.28 60.10 62.40 71.09 67.29 65.56 76.34 70.92
DenseSIFT + BoW 56.22 54.38 56.58 64.29 59.94 58.94 60.07 59.85
DenseSIFT + VLAD 58.25 55.74 64.38 67.12 66.49 65.01 77.17 62.13
DenseSIFT + FisherVector 62.55 59.21 64.01 71.76 68.01 65.96 78.01 62.97
HOG + BoW 79.99 60.95 62.40 68.48 61.92 60.99 61.23 61.05
HOG + VLAD 82.52 57.49 68.97 71.99 67.74 66.43 61.92 63.38
HOG + FisherVector 83.76 61.41 68.11 76.07 70.34 68.32 68.12 65.33
PAEF [8] 62.81 70.05 67.85 72.90 69.61 67.92 77.51 75.24
SentiBank [17] 81.79 64.95 67.74 71.32 68.28 66.63 65.93 66.18
DeepSentiBank [49] 85.63 71.19 68.73 76.35 70.15 71.25 70.23 70.11
PCNN (VGGNet) [14] 88.84 70.84 70.96 82.54 76.52 76.36 77.68 73.58
VGGNet 88.51 68.86 67.61 83.44 78.67 75.49 71.79 72.25
Fine-tuned VGGNet 89.37 72.48 70.09 84.35 82.26 76.75 76.99 77.02
obj + concatenation 88.47 73.38 71.34 84.24 81.81 76.68 75.97 77.83
senti + concatenation 88.74 74.23 72.86 84.35 82.44 76.57 78.18 77.95
AR + concatenation 89.39 74.71 73.76 86.10 83.25 77.97 78.89 78.52
AR + sum-pooling 90.32 73.72 73.63 86.39 83.41 77.57 78.32 78.43
AR + max-pooling 89.04 73.92 73.32 86.19 83.11 77.67 78.52 78.32
AR + concatenation = 8) 92.39 76.03 74.80 88.65 85.10 81.06 80.48 81.26

Fig. 11. Classi cation results of different methods on the small-scale datasets. GCH represents the features of global color histogram and LCH corresponds to
local color histogram. Note that “obj” means that we only regard the proposals with high objectness score as affective regions, “senti” refers to the proposals
having high sentiment score are used. Note that our method is based on the ne-tuned VGGNet.

our proposed framework. It is hard to evaluate the qualifyig. 11 and provide comparisons to several state-of-the-art
of the discovered affective regions directly due to lack ofiorks. Note that our method is based on the ne-tuned
annotations. Therefore, our aim is to discover how manyGGNet. “obj” means that we only regard the proposals with
affective regions can boost sentiment prediction accuracy. \iédatively high objectness score as affective regions and “senti”
show the classi cation performance when combing differemefers to the proposals having high sentiment score. Our “AR”
numbers of affective regions for sentiment analysis. As showmethod selects affective regions, where both objectness score

in Fig. 9, as the number of affective regions is increased, taad sentiment score are considered.

accuracy increases as more information becomes availablefor the color features, ColorName is usually not enough to
However, a further increase in the number of regions leadescribe the distribution of image color compared to GCH
to a slight decrease in performance due to the introductiand LCH except for the Abstract dataset. For the texture
of noisy regions. Therefore, as a good balance, we chodeatures, the HOG descriptor is able to achieve the best pre-
to combine 8 affective regions for sentiment analysis igiction accuracy in most datasets compared with other texture
the remaining experiments, which outperforms the ne-tune@presentations like SIFT, Gist, LBP and Gabor. Texture has
VGGNet by 3.3% on FI (86.35%) and 1% on Flickr (71.13%)etter discriminative power than color on these small datasets.
We also report the true positive rate of different sentiments dime reason is that sentiments are usually conveyed through
the large-scale datasets. In detail, the positive and negatimplicated texture regions,g, faces, dogs, buildingstc In
sentiments achieve 92.10% and 72.65% on FI, respectiveddition, we also compare the different encoding algorithms in
and on Flickr achieve 73.56% and 47.92%, respectively. FBig. 11. As can be seen, it achieves better performance while
both datasets, the positive class receives a higher accurasing the Fisher Vector to encode these descriptors on most
than the negative class, which is consistent with the numhgstasets.
of training images. More training images can lead to a higher Compared with the traditional representations based mainly
probability that the corresponding sentiment receives a highg color and texture information, the deep methods achieve
better results, as expected. Our proposed method employs
affective regions and outperforms both hand-crafted features-

true positive rate.

E. Results on Small-Scale Datasets

based methods and deep approaches, and achieves the best
We transfer the parameters learned on the FlI datasetaturacy in all the small datasets. In detail, compared to the
small-scale datasets, then show our experimental resultsSientiBank and DeepSentiBank which do not use affective
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Fig. 12. Visualization of images from the Fl dataset. Given the input image (a), we systematically cover up different portions of the image with a gray square
and see how the classi er output (b) changes. Column (b) denotes a map of the probabilities estimated by the CNN for the ground-truth class, indicating the
relative importance of locations in the affective image for the CNN. We also show the top-1 regions ranked by differenf.ecabdg §core, Sentiscore,

AR) as object region (c), sentiment region (d), and affective region (e).

regions and represent images at the mid-level, our metheaiployed, which represents the percentages of detected emo-
outperforms them by a large margin. Furthermore, our methtdnally involved pixels out of all the pixels identi ed in the
also shows an advantage over PCNN on all the affectipeedicted region or the ground truth. Following [44], all the
datasets, and the three fusion operations are all useful wittedicted affective regions and ground truth are normalized
concatenation being the most effective method. According to O to 1 for evaluation. Fig. 10 shows the precision-recall
our experimental ndings on the large-scale datasets, when wearve of the objectness score and our proposed AR score.
increase the number of affective regions many regions halke average precision and recall of our method are 0.69
little impact on image sentiment and can even decrease tad 0.59, while the objectness measure achieves 0.63 and
prediction accuracy. Therefore, we combine the same numies3, indicating that the selected affective regions are more
of regions for the nal sentiment prediction on the small-scaleonsistent with the human annotation.

datasets and achieve the best performance. This shows another

advantage of our method, which is that we do not need many V. VISUALIZATION OF AFFECTIVE REGIONS

local regions to be included in the deep model, ensuring anFor the image classi cation approaches, a natural question
acceptable increase in computation overhead. is whether the proposed model can identify the target part
in the image. In this section, we attempt to answer this
question by visualizing the crucial location for classifying
sentiment. Following the previous works [75], we use sliding
We evaluate the affective regions detected by our framewosindows to occlude different portions of the input image with
on the EmotionROI dataset, taking the same training/testiaggray square, and then generate the heat-map by plotting the
split as the previous works [44], [74]. Since the dataset ongstimated probability of the ground truth class at that location.
provides as ground truth the normalized Emotion Stimuli Ma@gompared to other visualization methodsy, embedding the
which is based on 15 bounding boxes, we rst binarize thfeatures with t-SNE or visualizing the Iters of the network,
Emotion Stimuli Map with threshold values2 [0::255F255  this method tends to directly show the regions that the CNN
and compare the ground truth region with the most cofecuses on. As shown in Fig. 12, the rst column is the input
dent discovered affective regions. Precision and recall armage and the second column is the prediction probability of

F. Affective Regions Evaluation
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the correct class using the ne-tuned VGGNet when occludings] X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang, “RAPID: Rating pictorial
the corresponding portions of the image. If the occluded por- aesthetics using deep learning,” ACM Int. Conf. Multimedia2014.

L . . S . Q. You, J. Luo, H. Jin, and J. Yang, “Cross-modality consistent regres-
tion is essential for the sentiment prediction, the correspondi sion for joint visual-textual sentiment analysis of social multimedia,” in

probability in the heat-map will obviously decrease (blue ACM Int. Conf. Web Search and Data Minin2016.
pixels). As can be seen in the three examp|e5' the ne-tund@l Y--Y. Chen, T. Chen, T. Liu, H.-Y. M. Liao, and S.-F. Chang, “Assistive

e . . . image comment robota novel mid-level concept-based representation,”
deep model has the ability to discover the parts in the images |eeg Trans. Affect. Computvol. 6, no. 3, pp. 298-311, 2015.

that can evoke the sentiment. For example, occluding th@] A. Sartori, D. Culibrk, Y. Yan, and N. Sebe, “Who's afraid of Itten:
salient objects€.g, people, re) that can evoke the sentiment  Using the art theory of color combination to analyze emotions in abstract

. _ s paintings,” iNnACM Int. Conf. Multimedia2015.
leads to decreasing prediction probabilities. However, du ] S. Zhao, Y. Gao, X. Jiang, H. Yao, T.-S. Chua, and X. Sun, “Exploring

to the affective gap, the CNN is not discriminative enough ~ principles-of-art features for image emotion recognition,’AGM Int.

to capture the most signi cant sentiment information in the Conf. Multimedia 2014.

images. [9] V. Yanulevskaya, J. Van Gemert, K. Roth, A.-K. _Herpold, N Sepe,_
. . . . and J.-M. Geusebroek, “Emotional valence categorization using holistic

We also visualize the top-1 regions by re-ranking the can- image features” iHEEE Int. Conf. Image Process2008.

didate proposals according to different scolies,(Obj_score, [10] J. Machajdik and A. Hanbury, "Affective image classi cation using

Senti score, AR) in Fig. 12 (c) (d) (), respectively. Column  [ealures nspreq by psychology and art theory, AGM fnt. Cont

(c) and (d) refer to the regions that are selected using Orﬂbi] X. Lu, P. Suryanarayan, R. B. Adams Jr, J. Li, M. G. Newman, and

objectness or sentiment scores. The objectness score selects thel. Z. Wang, “On shape and the computability of emotionsA@M Int.

regions which contain rich information at the low level, while__ Conf. Multimedia 2012,

h . I | h . \ . 12{ L. Zheng, Y. Yang, and Q. Tian, “SIFT meets CNN: a decade survey of
the sentiment score usually evaluates the regions’ sentimen instance retrieval, IEEE Trans. Pattern Anal. Mach. Intell2017.

at the affective level. Considering information from both ofi3] V. Campos, A. Salvador, X. Giri Nieto, and B. Jou, “Diving deep into

these two aspects, our proposed method is able to discover sentiment: Understanding ne-tuned CNNs for visual sentiment predic-
T . tion,” in International Workshop on Affect & Sentiment in Multimedia
more accurate affective regions, see column (e). The detected ,;5

affective regions can be not only complementary for the saligmt] Q. You, J. Luo, H. Jin, and J. Yang, “Robust image sentiment analysis

objects in the image ( rst example), but also extend the regions using progressively trained and domain transferred deep networks,” in

; i AAAI Conf. Artif. Intell, 2015.
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examples). Thus, combing the global and local information ~ tuning CNNs for visual sentiment predictionjhage Vision Comput.
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[16] Q. You, J. Luo, H. Jin, and J. Yang, “Building a large scale dataset for
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VI. CONCLUSION Conf. Artif. Intell, 2016.

: : 7] D. Borth, R. Ji, T. Chen, T. Breuel, and S.-F. Chang, “Large-scale visual
In this paper, we address the problem of automatically re[& sentiment ontology and detectors using adjective noun pairsfQm

ognizing sentiments in images. Inspired by the observation that |nt. conf. Multimedia 2013.
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