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Challenges and gaps for energy 
planning models in the developing-world 

context 
Abstract  
Energy planning models (EPMs) support multi-criteria assessments of the impact of energy policies 

on the economy and environment. Most EPMs have originated in developed countries and are 

primarily aimed at reducing greenhouse gas emissions while enhancing energy security. In contrast, 

most, if not all, developing countries are predominantly concerned with increasing energy access.  

Here, we review thirty-four widely used EPMs to investigate their applicability to developing 

countries and find an absence of consideration of the objectives, challenges, and nuances of the 

developing context. Key deficiencies arise from the lack of deliberation of the low energy demand 

resulting from lack of access and availability of supply. Other inadequacies include the lack of 

consideration of socio-economic nuances such as the prevalence of corruption and resulting cost 

inflation, the methods for adequately addressing the shortcomings in data quality, availability and 

adequacy, and the effects of climate change. We argue for further research on characterisation and 

modelling of suppressed demand, climate change impacts, and socio-political feedback in developing 

countries, and the development of contextual EPMs.  

1 Introduction 
Continued anthropogenic greenhouse gas (GHG) emissions have led to their unprecedented 

atmospheric concentrations1, contributing to and amplifying global climate change2. Fossil fuels and 

land use change (for example, through deforestation and farming) are two primary sources of GHG 

emissions, of which the emissions from land-use has been nearly constant3, while the emissions from 

fossil fuel based energy systems increased by 50% between 2000 and 20134. Current energy and 

transportation systems can result in substantial GHG discharges5, with a likely global mean 

temperature increase between 2.0–4.9 °C, with a median of 3.2 °C by 21006. Even if current GHG 

concentrations remain constant, the world will experience a few centuries of rising temperature and 

ocean level7,8. Therefore, substantial reductions in global GHG emissions are essential for mitigating 

climate change. 

In addition to the infrastructural elements of national energy systems (i.e. generation, distribution, and 

transmission), access to grid electricity and purchasing power of the population influence energy end-

use and GHG emissions. Figure 1a illustrates that both access to electricity and per capita CO2

emissions are more significant in high-income countries, compared to low- and middle-income 



2 

developing countries. Most developed countries can ensure 100% access to electricity, which only a 

few developing countries can match. In 2010, annual per capita CO2 emissions ranged from 0.02–

15.14 tCO2 in low and middle-income countries, compared to 1.6–42.63 tCO2 in high-income ones. In 

general, there is a positive association between electricity access and GHG emissions. One notable 

exception is Costa Rica, an upper middle-income country, which had 98% access to electricity but per 

capita CO2 emissions of 1.7 tCO2, well below the average of 2.09 tCO2 for all low and middle-income 

countries in 2010. This is because 93.3% of Costa Rica’s energy was from renewable resources, of 

which hydroelectric sources accounted for 75.8% (ref.:9). 

<Insert Figure 1 about here> 

As a result, future energy planning objectives of developed and developing countries are distinctly 

different. In developed countries, the focus today is on reducing emissions while enhancing energy 

security, primarily characterised by a shift from fossil fuels towards more renewable resources. 

However, developing countries are concerned with increasing access to electricity, which is 

considered a prerequisite for development and economic empowerment, as reflected by the inclusion 

of energy as a goal in the Sustainable Development Goals10. The current CO2 emissions per capita of 

developing countries are low, often much below the global average (Figure 1c).   Hence, emission 

reduction is not always on the agenda for developing countries, even at a cursory level, except for a 

few large countries such as China and India11.  

Energy planning models (EPMs) play an essential role in the development of the energy sector at 

global, national and regional levels by enabling informed decision-making. EPMs are especially 

crucial as significant investments in innovative energy research and planning are required for 

decarbonisation12. The development of EPMs started in the late 1950’s and early 1960s13 but 

intensified after the oil crisis of the 1970s in light of the realization of the effects of exogenous 

political events on global and national energy supply14.  It was necessary, then, to critically assess the 

interrelationships between the sources of energy supply and demand, as well as to identify pathways 

for long-term development of the energy sector15. The drive for global sustainability in the 1990s --

spurred in particular by the Rio Earth Summit in 1992 and the 1995 report of the Intergovernmental 

Panel on Climate Change (IPCC)16--brought forward the issue of GHG emissions and their impact on 

the environment. As a result, further models were developed for projecting climate change and 

investigating the environmental impact and its mitigation. However, given that some two-thirds of 

global GHG emissions come from the electricity, heat, and transportation sectors4, the integration of 

the environmental aspects of energy demand and supply within EPMs became necessary, providing a 

comprehensive picture of the interrelationships between energy, environment, and climate change.  

Over the past four decades, a substantial number of EPMs have been developed by researchers and 

organizations in different countries, with various objectives and scopes. EPMs range from the holistic 
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– modelling the partial or whole energy system of a country, region or the world – to the more 

sectoral – providing projections of the energy needs of, for example, transportation or industry. Given 

that the IEA estimates the growth in energy demand over the next 23 years will be higher in 

developing Asian countries than the rest of the world17 and future emissions from growth regions will 

be critical in the current 1.5°C temperature discourse1, it is essential to understand how EPMs reflect 

the challenges being faced by decision-makers in different parts of the world. 

Previous work has reviewed EPMs of different types. Suganthi et al.18 categorised energy demand 

projection models based on their methods but misclassified bottom-up and top-down approaches. 

Bhattacharyya et al.19 analysed available EPMs for application in developing countries but did not 

present details on relevant socio-economic parameters and their effect on policies. Pfenninger et al.20

categorised EPMs into four types: energy system optimization; energy system simulation; power 

system and electricity market and qualitative and mixed methods. They recommended further 

development and integration of innovative approaches into EPMs to address the complex interactions 

among disciplines such as social science, ecology, finance, and behavioural psychology. Urban et al.21

analysed twelve EPMs to investigate their suitability for developing contexts and suggested that 

critical characteristics of developing countries such as the informal economy and supply shortages 

were overlooked. The study identified a bias towards industrialised countries in the EPMs, yet 

specifics were not offered on socio-economic drivers such as political stability (or lack thereof) and 

corruption in energy markets in developing contexts.  

In light of this, there is a lack of evidence-based analysis of contextual variations, model structures, 

and relevant emerging socio-economic variables for EPMs in the developing world context. To that 

end, we reviewed thirty-four current, highly used, macro-level EPMs to investigate their applicability 

and deficiency for energy systems in developing countries. Our focus is on the factors that affect the 

demand and supply of energy, as well as the rational development of the energy sector in a developing 

country.  

2 Typology and structure of energy planning models 
We conducted a systematic survey of published literature on EPMs. Our study focuses on models 

predominantly used for the planning of energy systems and infrastructures and that are more strategic, 

as opposed to operational.  First, a preliminary study was conducted to gather an overview of the 

topics related to EPMs that resulted in the identification of two main themes: energy demand and 

supply; and energy information and emission models. Electronic databases  namely Google Scholar, 

ScienceDirect, JSTOR, IEEE Xplore, Scopus, Web of Science, and other official websites with 

energy databanks, specifically United Nations (UN), World Bank, International Monetary Fund 

(IMF), International Energy Agency (IEA), Energy Information Administration (EIA) were searched 

for relevant publications using the keywords listed in Table 1. The keywords were categorised into 
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five-word groups, which were combined using the Boolean operator ‘AND’, e.g. ‘Energy planning 

model’ AND ‘Forecasting’ AND ‘Input variables’ AND ‘Organization’ AND ‘Global’. Based on the 

search and the available literature, thirty-four models developed by international organizations or 

institutions were selected for analysis (Table 2). In addition to the published journal articles and 

books, manuals of different models were investigated to explore their structure and key components. 

The reviewed models were categorized based on model objectives to contextualise the subsequent 

analysis and discussion. Model structures were then analysed to investigate their relevance and 

deficits in developing contexts. For the categorization by model objective, four categories were used: 

energy information systems, energy demand-supply, energy-economic and energy emissions models. 

Table 2 illustrates EPM types, and their inputs, outputs, and underlying methods. Five characteristics 

of input variables were analysed: qualitative, quantitative, financial, aggregated and disaggregated. 

Although financial data are typically classed as ‘quantitative’, based on the extensive use of these 

variables in different models it was deemed worthwhile to include them as a separate characteristic. 

The underlying methods were categorised into accounting framework, regression, optimization, 

econiomic, simulation, and equilibrium methods. Output variables were classified into energy, 

emissions, and cost measures. 

<Insert Table 1 about here> 

Among the analysed 34 models, quantitative and financial data are utilised in 34 and 32 models 

respectively. 27 models used disaggregated data as input variables. In the case of the output variables, 

most of the model’s outputs are energy (30 models), emission (29 models), and cost (28 models). 

Model outputs are often normalised; e.g. cost/GDP, cost/capita, cost/generation, and emissions/GDP. 

Reviewed models adopted different underlying methods for estimation and projection. Optimization 

methods are widely utilised (13 models), followed by simulation (11 models) and economic (10 

models) methods. Optimization methods are mostly applied to energy demand and supply, and 

economic models. 

<Insert Table 2 about here> 

EPMs have three common components and a basic workflow: input variables  underlying 

estimation/projection methods  output variables. Key variations, however, lie in the type, resolution 

(temporal and spatial), scope and timeframe of the input and output variables. Model objectives and 

the nature of the data most often determine the choice of estimation/projection methods. 

Primary input variables in the studied EPMs are quantitative, financial and disaggregated. EPMs are 

numerical models and utilise quantitative data for calculation. Qualitative parameters are typically 

interpreted as ordinal data for modelling purposes. While modelling energy infrastructure in a holistic 

approach to cover a broader context, the supply, demand and socio-economic sectors require 

disaggregated data for a better interpretation of the existing systems.   
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In the case of underlying methods, optimization was utilised in fourteen models because they would 

create an optimization loop as a way of testing whether the selected output satisfies the defined 

constraints. In some models, especially energy demand and supply models, the primary objective is to 

find the least cost solution for the energy market. Optimization methods in such models would render 

the opportunity to test different policies against the least cost option. However, simulation methods 

were also utilised in a significant number of models.  

3 Developing country characteristics not addressed in EPMs 
Almost all EPMs were constructed in developed countries (Table 3) and considered their energy 

systems, economic assumptions, and the extent to which GHG emissions need to be reduced. While 

CO2 emissions per capita in high-income countries are decreasing (Figure 1b), they are increasing in 

the developing upper-middle and middle-income countries, whose primary objective often is to 

improve access to convenient forms of energy. Despite the fact that some EPMs have been widely 

adopted for energy system planning in developing countries, they lack consideration of a substantial 

number of issues affecting developing contexts; e.g. the effects of a lack of innovation, and the 

varying nature of privatisation, decentralisation and competition in the energy industry22. Policy 

priorities in EPMs need to be more country-specific or regional, because of the differences in 

objectives due to the common socio-economic vulnerability or conditions, and geographical and 

climatic characteristics. Indicators relevant to most developing economies include22: issues regarding 

resource management; assessment of energy alternatives; the economic and technical challenges 

associated with the transformation of the energy infrastructure from a centralised one to an intelligent 

and decentralised one; and financial vulnerabilities in households.  Addressing these in EPMs is 

necessary to provide higher reliability of estimates. 

<Insert Table 3 about here> 

In the following sections, the issue of suppressed demand in developing countries is analysed, 

followed by a discussion of the difference in socio-economic characteristics such as corruption and 

political stability, as well as their effect on the economy. Subsequent sections explore the impact of 

data inadequacy on the development of EPMs and the impact of climate change, focusing on the 

effect of energy planning on land development and food production, as well as the role of extreme 

weather events. Finally, the impact of poor characterisation of variables on EPMs is discussed.

3.1 Suppressed demand in developing countries 

Suppressed demand refers to the incapability of the people or community or nation to meet minimum 

services levels (MSL) necessary for human development23, such as clean and safe drinking water and 

adequate energy for cooking and lighting because of some host barriers24. Barriers can be a lack of 

infrastructure, low technology penetration, and poverty, particularly the high costs of energy services 

compared to household incomes25. Energy infrastructure barriers such as the lack of access to grid 
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electricity can lead to minimal or no use of electrical appliances. The barriers can also interact to 

produce a situation where the population cannot afford energy for basic needs because of low income 

and high unit cost. On the other hand, studies show that the reduced unit cost often results in higher 

demand for energy. For example, the transition from kerosene to electric lighting in developing 

countries reduced the unit cost of light by more than 90% but augmented the consumption of lighting 

services (lumens) by a factor of 4025-27. In the case of the technology barrier, the penetration of 

specific technology among the population can be hindered by the higher initial cost. This cost can be 

compensated by high income and policy incentives (such as tax reduction on the technology or 

subsidies) by governments.  

Emissions from developing countries are much lower than the global average because of suppressed 

energy demand. Energy consumption of many household needs, such as heating and cooking, and 

lighting, may not reflect the real demand. The lack of consideration of suppressed demand can result 

in an inaccurate estimation of baselines for Clean Development Mechanism (CDM) projects28. More 

specifically, CDM rules state that ‘the baseline may include a scenario where future anthropogenic 

emissions by sources are projected to rise above current levels, due to the specific circumstances of 

the host Party’29. However, a UNFCCC report (paragraph 35 of Decision 2/CMP.530) encouraged the 

CDM Executive Board ‘to further explore the possibility of including in baseline and monitoring 

methodologies, as appropriate, a scenario where future anthropogenic emissions by sources are 

projected to rise above current levels due to specific circumstances of the host Party’. These 

guidelines explicitly differentiate energy contexts between developed and developing countries. None 

of the reviewed EPMs considered the CDM guidelines, which may increase error in future energy 

planning strategies for developing contexts. 

3.2 Difference in socio-economic characteristics 

Developed countries have different socioeconomic attributes than those of developing countries. The 

literature suggests that political instability affects the economic growth of a country31, especially GDP 

growth32. The rate of change of stability is lower in developed countries that are often characterised 

by steady GDP growth (Figure 2a-e). However, all developing countries do not necessarily 

demonstrate a similar association between GDP growth and political stability, which varies 

substantially (Figure 2f-j). There are also exceptions. Despite the negative progression of political 

stability, some countries have positive GDP growth (e.g. Japan, Germany, Philippines, and 

Bangladesh). Developed economies mostly maintain steady progress on the positive side of the 

political stability scale (that is, they have a political stability score of 0 to 2.5), while the same 

parameter is on the negative side of the scale in most of the developing countries (that is, the score 

ranges from 0 to -2.5). In most developed country EPMs, GDP is the only socio-economic parameter 

for demand projection. Considering GDP growth or GDP volume alone is thus unlikely to represent 

the nuances of the economic structure of a developing country. More integrative modelling is, 
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therefore, required for predicting future energy demand while accounting for the structural changes in 

the economy. The increasing share of industry and services in the economic output with a 

corresponding rise in energy use and emissions in developing countries has the potential to further 

augment world GHG emissions, despite the decreasing trend for emissions in high-income countries. 

<Insert Figure 2 about here> 

Along with the stage of economic development, the intensity and distribution of economic activities 

influence a country’s energy consumption. The analysis of GDP per capita against electricity 

consumption in Figure 3 shows a positive relationship; i.e. electricity consumption increases with the 

growth in GDP. The coefficients of determination (R2) in the plots are very high for low and lower-

middle-income countries as compared to the upper-middle and high-income countries. In high-income 

countries, the change in GDP per capita has little influence on electricity consumption. In contrast, an 

increase in GDP per capita significantly amplifies electricity consumption in low and lower-middle-

income countries, as previously reported33. This amplification in energy consumption may have 

resulted from the presence of suppressed demand. 

<Insert Figure 3 about here> 

The trends in per capita gross national income (GNI) and energy consumption for the period 1960-

2013 of eighteen randomly selected countries from four World Bank economic classifications are 

illustrated in Figure 4. The high and upper-middle-income countries, the relation between GNI per 

capita and electricity consumption per capita has a logarithmic progression, which denotes that when 

a country reaches a stable income level, the energy consumption becomes linear in characteristic 

(Figure 4). In the case of developing contexts with lower middle and low income, the increase in GNI 

boosts up the electricity consumption exponentially (Figure 4), because GNI/capita augmentation 

influences the ‘suppressed’ demand by allowing more people to access electricity. Moreover, 

improved buying capacity enables consumers to buy and utilise more electronic products, resulting in 

exponential electricity consumption growth. After reaching a stable economic stage, the energy 

consumption growth slows steadily34, despite the fact that the GDP can keep rising.

<Insert Figure 4 about here> 

In developing economies, corruption influences policy decisions, including the procurement of mega 

projects—often resulting in the selection of higher cost options35,36, that may benefit the decision 

maker(s) to the detriment of the environment and economy. For example, post-2009, Bangladesh’s 

increased dependence on volatile international energy markets for oil imports was due to the growth 

in for-profit, private sector oil-based generation plants operating during off-peak hours that resulted in 

greater macroeconomic risks37. The sub-optimal decision to increase oil-based electricity generation 

beyond peak generation capacity requirements has been reported as ad-hoc and short-sighted37.  
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<Insert Figure 5 about here> 

Evidence suggests that reduced corruption can result in a significant increase in GDP; e.g. if 

Bangladesh can enhance its bureaucratic integrity and efficiency to the level of Uruguay its annual 

GDP growth would elevate by over half a percentage35. Figure 5 compares inflation with the 

Corruption Perceptions Index (CPI) of different nations. Countries with higher CPI scores are less 

corrupt and more developed and in most cases, have less inflation. In contrast, countries with higher 

levels of corruption tend to have higher inflation. The economic inflation rate is associated with the 

size of the national debt of a country. Energy projects are typically big and require significant 

investments. Loans from international financial organizations such as the World Bank, Asian 

Development Bank (ADB) and International Monetary Fund (IMF), and local and international banks, 

constitute a large proportion of energy investments in developing countries. Corruption has been 

reported in all life cycle stages of energy projects, but most evidence on its existence and extent are 

reported for the tendering process,38 which directly increases the project cost and corresponding loan 

amount. The terms of these loans are typically longer (e.g. decades) and interest rates are higher, due 

to the perceived risks of political instability and inflation—resulting in higher repayment cost and 

increased national debt. The consequences of increased pressures on public finance are the inevitable 

rise in personal and sometimes business tax rates, further increasing inflation. Another impact of a 

corruption-related increase in macroeconomic stress is the detrimental effect on social and economic 

development, as money intended for these sectors is often reallocated for debt repayment37. 

Comparatively low levels of corruption in developed countries have limited effects on energy projects 

and the economy, the modelling of which is, therefore, low in priority. In contrast, energy project 

procurement, management and operation in developing countries are evidently corrupted with severe 

impacts on the economy39. Corruption and its effects on micro- and macroeconomic performance in 

all life cycle stages of energy planning should, therefore, be an integral part of any modelling effort in 

developing countries.  

Among the 34 reviewed EPMs, none of them addressed the implications of corruption on the energy 

economy.  In addition to corruption, none of the reviewed models considered the effect of political 

instability on the economy, which was found to be prominent in developing contexts. Also, the 

influence of per capita income change drives energy consumption differently in developing 

economies than that of developed ones; this aspect was also found to be less elaborately modelled in 

the reviewed EPMs.       

3.3 Data inadequacy  

Estimation/projection quality in EPMs depend on data adequacy and accuracy, as historical trends 

determine the future projection. EPMs are mostly mathematical models in which data inadequacy can 

result in inaccurate estimation or at least increase the uncertainty of prediction. Also, incomplete data 
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records hinder the assessment of potential interrelations among the variables, rendering the EPM 

development process difficult. Data inadequacy is reported to be more pronounced in developing 

contexts than that of developed ones40-42, in particular regarding the required level of disaggregation 

and resolution, as well as the provenance of data. Careful considerations should be given, especially 

in developing contexts, to the collection of quality-assured data. On the other hand, modelling 

approaches should be flexible enough to accommodate incomplete historical data up to an acceptable 

limit while compensating for the possible variations in temporal and spatial resolutions.  

3.4 Climate change impact 

Climate change is projected to disproportionately impact some developing countries (e.g. Bangladesh, 

Philippines, Malawi and India) not only because of their development status and perceived 

shortcomings in adaptation capacity but also because of their inherent geographical and social 

vulnerabilities. Moreover, the global energy system is transitioning away from centralised generation 

and management to a more distributed, intermittent renewable energy and land-based system, where 

land and infrastructure resilience to natural hazards is becoming increasingly important, even for 

energy planning43. The impacts of climate change on the broader economy and environment require 

the consideration of region- and country-specific parameters for resilience, adaptation, mitigation, and 

development in EPMs. None of the EPMs reviewed considers the impacts of climate change. Even 

energy emissions models consider only energy related emissions and may also consider their future 

evolution from decarbonisation perspectives. 

3.4.1 Energy vs land vs food 

Land-based economic sectors are particularly vulnerable to sea level rise, as well as natural disasters 

such as floods, tsunamis, and landslides due to increased precipitation, all of whose occurrence is 

projected to increase. Developing countries are particularly vulnerable to these impacts because of 

their tropical and sub-tropical locations and geomorphology44. For projected sea level rises of 45 and 

100 cm, up to 15,600 and 30,000 km2 of land area respectively will be permanently flooded in 

Bangladesh45, corresponding to up to about one-fifth of the country’s total land area. The production 

of rice, the staple food, will decrease from 236 to 96 kg/capita-year if the sea level rises by 32 cm by 

2050 and 30 kg/capita-year if the rise is 88 cm by 210046. In the case of Maldives, the entire island 

country would drown if the sea level rises, as the highest point is only 2.4m higher than the sea level. 

Moreover, energy infrastructure in several countries is vulnerable to sea level rise47,48, as they are 

situated near the water resource such as river and sea for cooling purpose49. Direct impacts of climate 

change on energy systems are thus related to energy infrastructure resilience and energy production 

when vulnerable lands are used for energy crops. 

As a matter of course, and in line with the theoretical discourse on stages of economic growth, the 

least developed and developing countries aim to become developing and developed respectively—

representing a gradual shift in focus from agricultural towards more industrialised societies50. 
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Industrial development is often manifested in the transformation of agrarian lands into industries and 

energy infrastructures in the populated countries with severe shortages of buildable land—which 

affect food production. The situation is exacerbated when a significant share of arable land is 

allocated to energy crop production, leading to a conflict between the goals of energy and food 

securities—both of which are critical issues for developing countries with relatively large population 

and modest land mass, such as Bangladesh. Of the 34 studied models, only BD2050 considered the 

effects of energy sector development (e.g. land-based bioenergy) on food production51. Before 

BD2050’s launch in 2015, the International Atomic Energy Agency’s (IAEA) Wien Automatic 

System Planning package (WASP) was predominantly used for energy planning. WASP is essentially 

an optimum solution finder for the supply-side expansion and is mostly unsuitable for modelling land-

based interactions. The increasing interactions between food, land and energy, therefore, need to be 

modelled and assessed holistically for informed decision-making. 

3.4.2 Effects of extreme weather events 

Extreme weather events are typically rare, yet climate change will make some of these events more 

likely to occur and more likely to be severe52. Slow-onset events such as heatwaves and unexpected 

low temperatures have a direct effect on comfort related energy demand53, in addition to the resulting 

increased mortality, especially among the elderly, children and the infirm. While effects such as these 

are common to both the developing and developed countries, the amplitude and duration of extreme 

events, as well as the inability to cope with their sudden onset are often more pronounced in tropical 

and sub-tropical developing countries; e.g. heatwaves in India and Pakistan in 201554. Air 

conditioning accounts for 28% of electricity consumption in the hottest months in Delhi, India55. 

Although India started its first energy efficiency rating for air conditioning and labelling programme 

in 200656, aimed at reducing annual electricity demand by 27 TWh by 202057, a heatwave can escalate 

that demand58. Climate change impacts are seldom considered in EPMs likely because they originate 

in developed countries that have been shown to be less vulnerable than developing countries where 

climate change can cause immense damages59. None of the reviewed EPMs considered the climate 

change impact. BD2050 only explored the implication of energy policies on food security. That does 

not necessarily explore the impact of climate change in Bangladesh. Energy demand projection and 

infrastructure resilience should, therefore, consider the probability of extreme weather events, 

especially in EPMs for developing countries. 

3.5 Effects of poor characterisation  

Poor characterisation of the energy system and its underlying socio-economic parameters can lead to 

inappropriate modelling of future energy and emissions scenarios in both developed and developing 

countries (Table 4). Inaccurate projections affect energy system planning and infrastructure 

development, especially in the long term. Furthermore, energy dynamics in developing countries are 

complicated because of the prevalence and different distribution of the following socio-economic and 
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political parameters: political stability, energy use characteristics of the extremely poor, the 

pervasiveness of small unregistered businesses, the presence of large informal sectors, corruption, and 

subsidies. Moreover, most of these aspects have seldom been addressed in a reasonable level of detail 

in the literature. The gap in knowledge is exacerbated by the limited availability of modelling 

expertise in developing countries. Complexities such as these make the energy models in developing 

countries more vulnerable to poor characterization than that of the developed ones. 

<Insert Table 4 about here> 

4 Implications and considerations for EPMs     
Although developing countries have lower per-capita GHG emissions than those of developed 

countries, there is a marked increasing trend in emissions since 1990 1990. The rate of change is often 

higher than previously projected. For example, despite the energy system being mostly based on 

renewable energy (93.3% of the total in 2010), per capita, CO2 emissions in Costa Rica increased by 

78.6% between 1990 and 2011 (ref.:9). Similarly, higher emissions growth rates can be found for 

United Nations Framework Convention on Climate Change (UNFCCC) non-Annex countries that did 

not have an emissions reduction target9. In contrast, most developed countries demonstrate a 

decreasing trend. CO2 emissions from the middle-income nations already surpassed that of the high-

income countries as illustrated in Figure 1d. Upper-middle-income nations are also about to exceed 

the emissions from high-income countries. Although India and China dominate in emissions growth at 

present, Brazil, India, Indonesia, China and South Africa are projected to eclipse global GHG 

emissions in 205060. According to the 2017 IEA World Energy Outlook17, China will start to decrease 

CO2 emissions from 2030 but will still emit 2.8 times more in 2040 than in 2000. On the other hand, 

CO2 emissions from advanced economies started to decline in 2014, and by 2040, they will emit 0.3 

times less than in 2000. However, CO2 emissions from the rest of the world will keep increasing 

gradually, and will collectively emit 2.4 times more CO2 by 2040 than in 2000.  

The current discourse on economic development is that along with Brazil, Russia, India, China and 

South Africa (BRICS), eleven further countries, known by the numeronym N-11— Bangladesh, 

Egypt, Indonesia, Iran, Mexico, Nigeria, Pakistan, the Philippines, Turkey, South Korea and Vietnam 

– have a high potential of becoming among the world's largest economies in the 21st century61. 

Projections of energy demand growth in smaller economies but with more significant populations 

have primarily been inaccurate. For example, the 2010 Power Sector Master Plan (PSMP) projected 

that primary energy demand in Bangladesh in 2030 would be 616 TWh62, which was later revised up 

in 2015 Plan to 860 TWh in the ‘business as usual’ (BaU) scenario—a 40% increase in the projected 

amount within five years63. The updated projected demand can be ascribed to flawed assumptions of 

the probability of demand growth and the lack of the consideration of suppressed demand. Policies 

based on inaccurate projections are unlikely to be efficient and sustainable.  
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The consideration of the identified deficiencies in developing contexts and their treatment in energy 

planning models need to be context specific, both regarding integration with existing models and for 

the development of new ones. In cases where empirical relationships between deficient parameters 

and outcome variables are well established and accepted by the stakeholders, the decision on 

integration versus new EPM development will depend on the complexity of integration with the 

existing model and the potential for contribution in policy development and energy planning. On the 

other hand, not all deficiencies need to be accounted for in all model types. Table 5 provides an 

applicability matrix of the identified variables against model typologies.  

<Insert Table 5 about here> 

A summary of potential considerations for the identified deficiencies for the development of or 

integration into future country/region specific localised EPMs follows. 

Suppressed demand. Detailed relationships between the constituent variables of energy demand –

such as the elasticity between income threshold and buying capacity and grid connectivity – need to 

be addressed in EPMs for developing contexts.  

Dynamics between political stability and economic growth. Not all developing countries share 

similar political stability. If there exists an evident correlation between economic growth and political 

stability, it should ideally be explicitly modelled in the EPM. Where the relationship is not conclusive, 

further research needs to be conducted, even for implicit or proxy considerations. 

Influence of corruption on the energy economy.  The treatment of corruption in models should be 

context specific. Multiplier based modelling will be time and cost effective if a significant relationship 

exists between corruption and outcome indicators. In cases where the relationship is not apparent or 

cannot be mathematically formulated, conveniently, underlying causes can be investigated further. 

Data gathering, validation and sharing. A structured data gathering and sharing system can 

contribute to the enhanced accuracy of the EPMs, as well as the effectiveness of the resulting policies. 

Climate change impacts on energy infrastructure and systems. Depending on the country-specific 

impacts of climate change on energy systems and infrastructure, its degree of incorporation in EPMs 

can be varied. If the projected climate change has a significant effect on future energy infrastructure 

and systems, it should be modelled explicitly, especially for land-based variables such as land use, 

distributed energy generation, food production and bioenergy. In most cases, the explicit modelling of 

climate change impacts would require further investigations on the interactions between related 

variables. 

5 Outlook 
Distinct differences exist between the evolution of energy systems in developing and developed 

countries, as a response to varying social, technical, economic and environmental stimuli. Developed 
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countries primarily aim to reduce climate-affecting GHG emissions while enhancing energy security. 

In contrast, developing countries are predominantly concerned with increasing access to conventional 

forms of energy through infrastructure expansion, which is often seen as a prerequisite for economic 

and social development. Despite the differences in overall policy goals, EPMs play a central role in 

energy sector development and transformation in both developing and developed countries. Current 

EPMs were mostly created in developed countries, often with the assumptions and biases of the 

country and region in which they were developed. Recognising the importance of EPMs in shaping 

the energy future, our analysis of 34 EPMs revealed several important shortcomings for the 

developing context. 

A key finding from our Review is the lack of consideration in the analysed EPMs of the unique 

socioeconomic characteristics in developing countries such as suppressed demand, corruption, and 

political instability. Disregarding suppressed energy demand can potentially underestimate total 

demand, rendering future planning inaccurate and ineffective, especially for long-horizon planning 

such as 2050 pathways. Corruption is a complex socio-economic factor and can increase capital and 

operation costs of energy projects and infrastructure in some developing countries, affecting 

sustainability. Also, the economy is sometimes linked with political instability which, on its own can 

affect energy infrastructure resilience.  

Apart from the developing context-specific socio-economic deficiencies in the current EPMs, climate 

change impact on land availability and food production is likely to alter the dynamics of energy-food-

emissions interactions, especially in the highly populated developing countries. Increasing penetration 

of distributed energy resources and bioenergy goals require that EPMs should now consider land-

based interactions between energy, food, and environment for future planning and development.  

Country-specific trends in GHG emissions are also evolving. Collectively, middle- and upper-income 

countries now emit more than that of the high-income countries since 2007. Emissions are increasing 

at a much faster rate in developing economies than previously projected. EPMs can play an essential 

role in setting the emerging economies towards a low-carbon pathway while enhancing access to 

energy. Most reviewed EPMs were initially intended for their country/region of origin in the 

developed world, embedding the contexts in which they were designed. Their later use in developing 

countries demonstrated their potential for informed decision-making on energy systems planning. 

However, the identified shortcomings in this review suggest that the formulation of localised EPMs 

are essential not only for the countries concerned but also for a low-carbon pathway for the world.   
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Figures 
Figure 1: National CO2 emissions characteristics. (a) CO2 emissions vs access to electricity in high and low-
income countries in 2010. Access to electricity in low and middle-income countries ranges from 3.5–100% of 
the population. In contrast, the figure is 72.6–100% in high-income countries. (b) CO2 emissions per capita for 
the period 1992-2011. (c) CO2 emissions per capita in selected developed and developing countries for the 
period 1972-2011. (d) CO2 emissions in countries by income group from 1960 to 2011. The income group 
classification used here is that from the World Bank list of economies (July 2015): low income, $1,045 or less; 
lower middle income, $1,046–4,125; upper middle income, $4,126–12,735; and high income, $12,736 or more. 
Data is taken from ref. 9. 
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Figure 2: GDP growth vs political stability trends. GDP growth and political stability scores are shown for  
developed (a-e) and developing (f-j) countries. Straight lines represent the fitted regression line, visually 
depicting the trend in the data. Data is taken from refs 64,65.  
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Figure 3: GDP per capita vs electricity consumption from 1995 to 2013. The R2 values denote the coefficient of 1
determination, which measures how close the data are to the fitted regression lines . Data taken from ref. 9.  2
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Figure 4: Growth trends across developed and developing countries. (a) Growth in GNI per capita of different countries from 1960 to 2014. (b) Growth trends in electricity 1
consumption of different countries from 1960 to 2014. In panel (b), the trends in the data are visually depicted by fitted regression lines. The y-axis values are on a 2
logarithmic scale, and the dashed and solid lines denote exponential and logarithmic progression of the data, respectively. The income group classification used here is that 3
from the World Bank list of economies (July 2015): low income, $1,045 or less; lower middle income, $1,046–4,125; upper middle income, $4,126–12,735; and high 4
income, $12,736 or more. Data taken from ref. 9.  5
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Figure 5: Comparison of corruption perceptions with inflation and consumer prices. Corruption Perceptions 1
Index (CPI) 2014 vs. Inflation (2014) among the top and bottom 35 countries of the CPI list. High-income 2
countries where EPMs have originated are illustrated by hollow purple diamond shapes. For detail, see Table 3. 3
Data taken from refs 9,66.  4
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Tables 1

Table 1: Searched keywords and associated groups 2

Model Objective Components Origin of 
development

Geographical 
applicability 

Energy planning Forecasting Input variables Organization Global
Energy information Projection Estimation methods Country Regional

Energy economic Demand and 
Supply; Demand; 
Supply

Output variables Country

Energy supply and
demand

Economic 

Energy supply Emission control
Energy demand
Emission reduction 

3
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Table 2: Characteristics of existing energy planning models 

Model Input variables* Method† Output variables‡ Total Reference
Qul Qua Fin Agg Dagg RE OP EC SM EQ AF En Em Co

Energy information system
E3 ■ ■ ■ ■ ■ ■ 6 67

CO2DB ■ ■ ■ ■ ■ 5 68

Energy economic model
MAM ■ ■ ■ ■†† ■ 5 69

MARKAL-
MACRO

■ ■ ■ ■ ■ ■‡‡ ■ ■ ■ ■ 10 70

MICRO-
MELODIE

■ ■ ■ ■ ■ ■‡‡ ■ ■ ■ 9 71

TIMES- MACRO ■ ■ ■ ■ ■ ■‡‡ ■ ■ ■ 9 72

Energy demand-supply model
DECPAC ■ ■ ■ ■ ■ ■ ■ ■ 8 73

IKARUS ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 10 74

ENPEP ■ ■ ■ ■ ■‡‡ ■** ■ ■ ■ 9 71,75

LEAP ■ ■ ■ ■ ■†† ■ ■ ■ ■ ■ 10 76-78

POLES ■ ■ ■ ■†† ■ ■ ■ 7 79

MESSAGE-III ■ ■ ■ ■ ■ ■ 6 80

WASP ■ ■ ■ ■ ■ ■ ■ 7 81

MARKAL ■ ■ ■ ■ ■ ■ ■ 7 82

TIMES ■ ■ ■ ■ ■ ■ ■ 7 83

MEDEE ■ ■ ■ ■ ■ ■ 6 84

MAED ■ ■ ■ ■ 4 85

NEMS ■ ■ ■ ■ ■ ■ ■ 7 86

ENERPLAN ■ ■†† ■ ■ ■ 5 71,75

MESAP ■ ■ ■ ■ ■ ■†† ■ ■ ■ ■ 10 71
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Energy emissions model
UK 2050 ■ ■ ■ ■ ■ ■ ■ ■ 8 87

BD 2050 ■ ■ ■ ■ ■ ■ ■ 7 51

MESAP PlaNet ■ ■ ■ ■ ■ ■ ■ ■ 8 88,89

EFOM-ENV ■ ■ ■ ■ ■ ■ ■ ■ 8 90

IMAGE ■ ■ ■ ■ ■ ■ 6 91

AIM ■ ■ ■ ■ ■ ■ ■ 7 92

ASF ■ ■ ■ ■ ■ 5 93

GREEN ■ ■ ■ ■ ■ ■ ■ 7 94,95

ERM ■ ■ ■ ■ ■ ■ ■ 7 96

IEA ■ ■ ■ ■†† ■ ■ ■ 7 96

CRTM ■ ■ ■ ■ ■ ■ ■ 7 95,96

MR ■ ■ ■ ■ ■ ■ ■ 7 96

WW ■ ■ ■ ■ ■ ■ ■ 7 96

SGM ■ ■ ■ ■ ■ ■ ■ 7 97

Total 3 34 32 10 27 8 13 10 11 7 3 30 29 28
* Input types: Qul (qualitative) Qua (quantitative), Fin (financial), Agg (aggregated) and Disag (disaggregated).
† Methods: RE (regression), OP (optimization), EC (economic – econometric, macroeconomic), SM (simulation), EQ (equilibrium) and AF (accounting framework)
‡ Output types: En (energy – demand and/or supply), Em (emissions) and Co (cost).
** Economic equilibrium
†† Econometric 
‡‡ Macroeconomic 



29 

Table 3: Origin and use of EPMs  

Model Developer Country of 
origin

Applied/adopted 
in developing 

countries

Number of 
countries
applied/
adopted

Ref.

E3 Database Ludwig-Bolkow-Systemtechnik GmbH Germany N/A 67

CO2DB International Institute for Applied 
Systems Analysis (IIASA)

Austria N/A 68

DECPAC International Atomic Energy Agency 
(IAEA)

Austria N/A 73

IKARUS Former German Federal Ministry of
Education, Science, Research, and 
Technology (BMFT)

Germany N/A 74

MAM U.S. Department of Energy USA N/A 69

MARKAL-
MACRO

International Energy Agency (IEA)/ 
ETSAP

France Yes 70

MICRO-
MELODIE

U.S. Department of Energy USA N/A 71

TIMES-
MACRO

Brookhaven National Laboratory USA N/A 72

ENPEP The Commissariat à l'énergie atomique 
et aux énergies alternatives (CEA)

France Yes 60 98

LEAP The Energy Technology Systems 
Analysis Program (ETSAP), International 
Energy Agency (IEA)

France Yes 190* 99

Mesap PlaNet International Atomic Energy Agency 
(IAEA)

Austria N/A 88

EFOM-ENV Stockholm Environmental Institute, 
Boston 

USA Yes 20 100

POLES It has been developed first by CNRS 
(France) and now by CNRS / UPMF 
university, Enerdata, and IPTS (Spain, 
European Commission research center)

France Yes 57* 101

MESSAGE-III International Institute for Applied 
System Analysis (IIASA) 

Austria Yes 102

WASP International Atomic Energy Agency 
(IAEA)

Austria Yes 100 98

MARKAL International Energy Agency (IEA)/ 
ETSAP

France Yes 70* 102,103

MEDEE Institut Economics et Juridigue de 
l'Energie (IEJE), Grenoble

France Yes 100

MAED International Atomic Energy Agency 
(IAEA)

Austria Yes 40 85

NEMS U.S. Department of Energy USA N/A 86

ENERPLAN Tokyo Energy Analysis Group Japan Yes 102

MESAP Institutes für Energiewirtschaft und 
Rationelle Energieanwendung (IER), 
University of Stuttgart

Germany Yes 104
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UK 2050 Department of Energy & Climate 
Change (DECC)

UK Yes 24*† 105

IMAGE PBL Netherlands Environmental 
Assessment Agency/ Utrecht University

Netherlands N/A 91

AIM National Institute of Environmental 
Studies (NIES)

Japan N/A 92

CRTM Joint Center for Satellite Data 
Assimilation (JCSDA)

USA N/A 96

SGM Pacific Northwest National Laboratory
(PNNL) and is maintained by the PNNL 
Joint Global Change Research Institute 
(JGCRI)

USA N/A 97

*Including all the countries that utilised the specific model
† Several 2050 pathways models have been constructed for the following developing countries: Vietnam, 
Bangladesh, Thailand, Nigeria, Mexico, Mauritius, Indonesia, India, Colombia, China and Brazil. These models are 
roughly based on the principles of UK2050 Pathways106, albeit with some minor country-specific additions. 
Except BD2050, where electricity consumption is modelled against various scenarios of GDP and population 
growth, all models lack the consideration of socio-economic parameters. Political instability, corruption, 
suppressed demand and climate change effects are not modelled in any of these developing country pathways.
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Table 4: Effect of poor characterisations of energy systems and economies of developing countries in energy 
planning models 

Model typologies Effect of poor characterisations
Mathematical procedures
Regression, economic, 
simulations and accounting 
frameworks

Fragmented or inaccurate data and relations in the calculation can 
prompt incorrect results

Optimisation The calculated best solution/s may be incorrect, because of the 
inadequate interpretation of economy and resources framework.

Equilibrium Overlooking the disequilibrium of business sectors and overestimate 
business sector impacts that prompt contorted results21. 

Modelling approaches
Top-down model The incorrect or incomplete linkage or data in model frameworks

results in incorrectly computed outputs
Bottom-up model This typology of models would be influenced by inappropriate or 

incomplete relations and information in the frameworks, bringing 
about incorrect results

Hybrid model Hybrid models could lead to inconclusive results due to inappropriate 
interrelations of different parts of the system with economic and 
scientific data.
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Table 5: Applicability of suggested variables in existing EPMs.   

Variables

Types of models

Energy 
information 

systems

Energy demand-
supply model

Energy 
economic model

Energy 
emissions 

model

Political stability √ √

Corruption √

Suppressed demand √ √ √ √

Climate change
impacts

√ √ √


