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ABSTRACT: Mn3O4, FeMnOx, and FeOx catalysts synthesized 
via a solvothermal method were employed for catalytic oxidation 

of methyl−ethyl−ketone (MEK) at low temperature. Mn3O4 with 
sphere-like morphology exhibited the highest activity for MEK 

oxidation, over which MEK was completely oxidized to CO2 at 
200 °C, and this result can be comparable to typical noble metal 

loaded catalysts. The activation energy of MEK over Mn3O4 (30.8 

kJ/mol) was much lower than that of FeMnOx (41.5 kJ/mol) and 

FeOx (47.8 kJ/mol). The dominant planes, surface manganese 
species ratio, surface-absorbed oxygen, and redox capability 
played important roles in the catalytic activities of catalysts, while 
no significant correlation was found between specific surface area 

and MEK removal efficiency. Mn3O4 showed the highest activity,  
accounting for abundant oxygen vacancies, low content of surface Mn

4+
 and strong reducibility. The oxidation of MEK 

to CO2 via an intermediate of diacetyl is a reaction pathway on Mn3O4 catalyst. Due to high efficiency and low cost, 

sphere-shaped Mn3O4 is a promising catalyst for VOCs abatement. 
 
 
1. INTRODUCTION 
 
Volatile organic compounds (VOCs) emitted from many 
industrial processes and transportation activities are 
considered a major source of photochemical smog, ozone 

depletion, and ground-level ozone generation.
1,2

 Among the 

present tech-nologies for VOCs removal, catalytic combustion 
appears to be one of the most eff ective and energy-saving 
techniques due to its potential to completely convert pollutants 

into CO2 and H2O at low operating temperatures.
3−5 

 
Methyl−ethyl−ketone (MEK) is a ketone widely used as 

solvent in many industrial applications. However, it is 
hazardous and its emission to the atmosphere has to be 
controlled according to environmental regulations. In recent 
years, many studies have focused on the catalytic oxidation of 

MEK.
6−14

 The noble-metal based catalysts, such as Pt/NaX,
6
 

Pt/Al-pillared clays,
7
 PdOx-MnOx/Al2O3,

8
 and Pd−Ce/ZSM-

5,
9
 have already exhibited activity for MEK oxidation in the 

previous studies. However, high cost and unstable at high 
temperatures prevent the noble metals from wide industrial 
applications. In contrast, transition metal oxides are considered 
as a promising candidate due to their low cost and excellent 
stability in practical applications. Some transition metal oxides 

catalysts (e.g., V2O5−P2O5,
10

 La-transition metal (Cr, Co, Ni,  

 
 

Mn) perovskites,
11

 Fe2O3,
12

 Mn/γ-Al2O3,
13

 and Cr/ZrO2
14

) 

have already been investigated in the previous studies. 

Nevertheless, more toxic byproducts of MEK, for example, 

diacetyl (DAC), have been identified for catalytic oxidation of 

MEK on transition metal oxides.
8,9

 Meanwhile, high operation 

temperature also limits the application of existing transition 

metal oxides catalyst. Thus, it is necessary and important to 

design novel transition metal oxides catalysts with excellent 

low-temperature activity and elucidate the catalytic reaction 

mechanisms to avoid and control the formation of reaction 

byproducts.  
Within the transition metal oxide catalysts, manganese 

oxides present very interesting properties as catalyst for VOCs 
total oxidation because of the multiple diff erent coordination 
numbers and oxidation states that Mn can adopt, as well as the 

presence of defects (primarily oxygen vacancies).
15

 Gandhe et 

al.
16

 showed that cryptomelane type manganese oxides, also 

called octahedral molecular sieve (OMS-2), had a highly  

 
 

 
    



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. FE-SEM and HR-TEM images of (a, a’, a”) Mn3O4, (b, b’, b”) FeMnOx, and (c, c’, c”) FeOx samples.  
 
efficient activity for the total oxidation of ethyl acetate, which 

was ascribed to the presence of Mn
4+

/Mn 
3+

 type redox 
couples and facile lattice oxygen on catalysts. A template-free 
oxalate route was applied to synthesize mesoporous 

manganese oxides with high surface area (355 m
2
 g

−1
) and 

well-defined mesopores by Tang et al.
17

 They found that the 

optimum mole ratio of Mn
4+

/Mn
2+

 on mesoporous manganese 
oxides was close to 1.0 for VOC complete oxidation. Catalytic 
combustion of benzene and toluene was studied over 

manganese oxide catalysts (Mn3O4, Mn2O3 and MnO2) by 

Kim and Shim.
18

 The sequence of catalytic activity was as 

follows: Mn3O4 > Mn2O3 > MnO2, which was correlated with 

the oxygen mobility on the catalyst. Piumetti et al.
19

 reported 

three mesoporous manganese oxide catalysts (Mn2O3, Mn3O4 

and MnxOy) prepared by the solution combustion synthesis for 
the total oxidation of VOCs (ethylene, propylene, toluene and 
their mixture). The best catalytic activity was also achieved 

with the Mn3O4 catalyst, which showed the highest amount of 

electrophilic oxygen on the surface (Oα-species).  
Additionally, iron-based catalysts, for example, , Fe/HfTi,

20
 

Fe/Ti-PILC,
21

 mesoporous α-Fe2O3,
22

 and iron-functionalized 

disordered mesoporous silica (FeKIL-2),
23

 are known to exhibit 

good activity in the combustion of VOCs and also considered as 
environmentally friendly materials, because more than one 

valence states of the iron (Fe
3+

 and Fe
2+

) could promoted the 

mutual transformation between the electrons and formation of 
oxygen vacancy caused by charge mismatching, resulting in 
formation of chemisorbed oxygen. To develop cost-eff ective 
approach, the transition metal (e.g., manganese and iron) 

 
oxides catalysts may be potential and promising for MEK 
combustion.  

The textural property of metal oxides, including micro-
morphology, exposed crystal plane, and crystallinity, is 
associated with their catalytic behavior. The morphology-
controlling strategy has become a new approach for tuning the 
catalytic performance of oxides and oxide incorporating 

catalysts.
24,25

 Recent research indicated that sphere-shaped 

metal oxides represent a new class of powerful catalysts, 
because of their high surface area, low density, easy recovery, 

self-supporting capacity, and surface permeability.
26−28

 The 

preparation method is a critical factor to control the 

morphology of catalysts and dispersion of active sites.
29−31

 A 

solvothermal synthesis technique was proposed for the 
preparation of sphere-shaped transition metal oxides used in 

other catalysis, such as sphere α-Fe2O3/MWCNT as photo-

catalyst for the degradation of rhodamine B,
32

 sphere MnOx 

for room-temperature oxidation of HCHO,
33

 and sphere-like 

NiCo2O4 for eolectro-catalytic oxidation of methanol.
34

 This 

route paved the possible way for the formation of sphere-
shaped manganese and/or iron oxides with high low-temper-

ature catalytic activity and CO2 selectivity in MEK 

combustion. Up to our knowledge, there is no literature 
reporting the catalytic combustion of MEK over sphere-like 
transition metal oxides.  

In this work, we described a sphere-like Mn3O4 catalyst via 

a solvothermal reaction as an efficient catalyst for combustion 
of MEK. The relationship between physicochemical properties 

 
  

   



   
 
and catalytic behavior and mechanisms of MEK combustion 

were investigated by various catalyst characterizations. 
 
2. EXPERIMENTAL SECTION 
 
The detailed experimental section is described in the 
Supporting Information (SI) (Text S1). 
 
3. RESULTS AND DISCUSSION  

3.1. Correlation of Physicochemical Property and 
Catalytic Activity. 3.1.1. Structural Properties. The mor-

phologies of Mn3O4, FeMnOx and FeOx samples were 
investigated by FE-SEM and HR-TEM, as shown in Figure 1. 

Mn3O4 possessed a submicrometer sphere-like morphology 
with the average diameter of around 400 nm (Figure 1a). The 

sphere-shaped Mn3O4 was resulting from the aggregation of 

fine grains of Mn3O4 with average diameter of around 40 nm 
(Figure 1a’). When iron was introduced, the morphology of 

FeMnOx turned into agglomeration structure consisting of a 
cluster of nanoparticles with the size of about 40 nm (Figure 
1b and 1b’). However, the nanoparticles were observed with 

the small size in the range of 20−30 nm for FeOx (Figure 1c 
and 1c’). In Figure 1a”, the clear (101) lattice fringe with an 

interplanar spacing of 0.49 nm reveals that Mn3O4 is mainly 
enclosed by the (101) planes, which was also observed on 
manganese oxides (E-450: NaOH route) synthesized by Tang 

et al.
17

 FeMnOx possesses a surface lattice spacing of 0.49 and 
0.27 nm for the (101) and (104) crystal planes, respectively 
(Figure 1b”). Figure 1c” shows a clear (104) lattice fringe with 

an interplanar spacing of 0.27 nm on FeOx, implying FeOx is 
mainly enclosed by (104) facets.  

Figure 2 shows the XRD patterns of the Mn3O4, FeMnOx 

and FeOx catalysts. For FeMnOx sample, the peaks at 24.3°,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. XRD patterns of Mn3O4, FeMnOx, and FeOx.  
 
33.3°, 35.7°, 41.0°, 54.2°, 57.4°, 62.6°, and 64.2° correspond 
to the (012), (104), (110), (113), (116), (018), (214), (300) 

plane diff raction patterns of Fe2O3 (ICDD #01−079−0007), 
respectively. The diff raction peaks centered at 2θ of 38.3° and 

49.5° over MnFeO3 can be assigned to the (400) and (134) 

planes, respectively (ICDD #01-076-0076). Only one peak at 
18.1° corresponds to the (101) plane diff raction pattern of 

Mn3O4 (ICDD #00-016-0350). This may be due to the fact 

 
that the Mn oxides were in a highly dispersed state. Compared 

with FeMnOx, the diff raction intensities of Fe2O3 significantly 

decreased for FeOx, indicating the smaller size of FeOx 
nanocrystal. The full width at half-maximum of the peaks for 

FeMnOx was narrower than that of FeOx, also meaning that the 

grain size of Fe2O3 on FeMnOx was larger than that on FeOx, 

similar to the results of SEM (Figure 1). For Mn3O4, a strong 
diff raction peak of the (101) plane appeared significantly. It 
implies the thickness of crystal perpendicular to the (101) plane 

orientation over Mn3O4 is greater than that over FeMnOx.  
SI Figure S1 shows that all samples exhibit typical 

irreversible type IV shape isotherms. The condensation step on 

the isotherm at relative pressure of P/P0 = 0.6−0.9 is the 
characteristic of capillary condensation of framework-confined 

mesopores, and the condensation step on the isotherm at P/P0 
higher than 0.9 indicates the presence of textural pores 

contributing to the filling of interparticle spaces.
35

 Mn3O4 and 

FeMnOx displayed H3-type hysteresis cycles at P/P0 = 
0.8−1.0, indicating the coexistence of structural and inter-

particle accumulation mesopores (average pore size (Dp)) = 

19.4 and 19.0 nm for Mn3O4 and FeMnOx, respectively, SI 

Table S1). FeOx exhibited H2 hysteresis loops at P/P0 = 0.6− 
0.9, suggesting the presence of large amounts of structural 

mesopores (Dp = 9.2 nm, SI Table S1). The BET surface area 

and pore volume were listed in Table S1. FeOx possessed the 

largest surface area (92.7 m
2
/g) and smallest pore volume 

(0.22 cm
3
/g), followed by FeMnOx (47.1 m

2
/g, 0.25 cm

3
/g) 

and Mn3O4 (46.9 m
2
/g, 0.28 cm

3
/g). It was consistent with the 

results of SEM (Figure 1), which the smallest size of 

nanoparticles were observed for FeOx. 
3.1.2. Surface Properties. XPS was conducted to character-

ize the chemical state of the elements in the near-surface region.  
Deconvolution of the Mn 2p3/2, Fe 2p3/2, and O 1s peak from 
each sample was performed by fitting a Gaussian−Lorentzian  
(GL) function with a Shirley background in Figure 3. The 
results from deconvolution (i.e., molar ratios of metal oxide 
species) are presented in Table 1.  

Figure 3a illustrates XPS spectra of Mn 2p region for Mn3O4 

and FeMnOx samples. For Mn3O4 catalyst, the binding energies  
of Mn 2p3/2 and Mn 2p1/2 were observed at 641.4 and 653.2 eV, 

respectively, which are characteristic XPS peaks of Mn3O4, and  
the splitting width (11.8 eV) is consistent well with the earlier 
report.

36
 According to literature,

17,37,38
 manganese species at  

binding energies (BE) = 640.6 ± 0.2, 641.7 ± 0.2, and 643 ± 

0.2 eV were assigned to the surface Mn
2+

, Mn
3+

, and Mn
4+ 

species, respectively. Thus, no surface Mn
2+

 species was detected 

on both Mn3O4 and FeMnOx catalysts. The oxide species of Mn
4+

 

(642.8 eV) and Mn3O4 (641.4 eV) were obtained on the surface of 

Mn3O4 sample, whereas Mn
4+

 (642.8 eV) and Mn
3+

 (641.6 eV) 

species were found on the surface of FeMnOx sample. As shown 

in Table 1, the ratios of Mn
4+

/ Mn3O4 and Mn
4+

/Mn
3+

 on the 

surface of MnOx and FeMnOx were approximately 0.75 and 1.00, 

respectively. It is remarkable to note that the intensities of Mn
4+

 
characteristic peaks increased with the addition of Fe. The 

diff erences in the content of surface Mn
4+

 may result in the 

diff erent perform-ances between MnOx and FeMnOx sample on 
catalytic activity.  

Fe 2p3/2 spectra for FeOx and FeMnOx is presented in Figure 3b. Peaks 
located near 711.5 and 710 eV were assigned to Fe3+ 
 
and Fe

2+
,
39−41

 respectively, indicating that iron species in 

FeOx and FeMnOx are present both as Fe
3+

 and Fe
2+

. The 

molar ratios of Fe
2+

/Fe
3+

 on the surface of FeMnOx and FeOx 
were approximately 2.00 and 0.80, respectively (Table 1). It 

  

http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b00136/suppl_file/es7b00136_si_001.pdf
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Figure 3. XPS spectra of (a) Mn 2p, (b) Fe 2p, and (c) O 1s regions for the samples. 
 

 

Table 1. XPS Results of Catalysts 
 

   binding energy (eV)     molar ratio  

sample Mn3O4 Mn3+ Mn4+ Fe2+ Fe3+ O
sur 

O
latt  Fe2+ /Fe3+ Mn4+ /Mn3+     Mn4+ /Mn3O4 

O
sur 

/O
latt 

Mn3O4 641.4  642.8   532.0 529.4   0.75 2.45 

FeMnOx  641.6 642.8 709.9 711.6 532.0 529.6  2.00 1.00 1.33 

FeOx    709.8 711.2 531.4 529.7  0.80  0.37 

Mn3O4 aged 641.4  642.9   531.6 529.6   1.49 1.01 
            

 
 

demonstrated that the intensity of Fe
2+

 characteristic peak 
increases with the addition of Mn. 
 

As shown in Figure 3c, the fitted O 1s spectra displayed three 

major oxygen contributions with the corresponding peaks 

centered at 529.4−530.2 eV, 531.4−532.1 eV, and ∼533.5 

eV. 

 

These bands can be attributed to lattice oxygen (Olat), surface-absorbed oxygen stemmed from oxygen 
vacancies  

(Osur),
42,43

 and carbonates (Ocar),
42,44

 respectively. Compared 

with Mn3O4 and FeMnOx, an obvious shift of the surface- 
 

absorbed oxygen peak toward lower binding energy was 

observed on FeOx. It is worth noting that the lattice oxygen are 

nucleophilic reagents and are usually responsible for selective 

oxidation reactions. Conversely, electrophilic surface-

absorbed oxygen (O2
2−, O−, and O2

−), which implies the 

 

formation of radicals, are highly reactive and give rise to the total 

oxidations,
45−47

 especially at temperatures below 400 °C.
48

 Thus, 
surface-absorbed oxygen stemmed from the oxygen vacancies has 

higher mobility than lattice oxygen
18,49

 and greatly influences the 

redox property of catalyst.
50

 In Table 1, the ratio of Osur/Olat is 

approximately 0.37, 1.33, and 2.45 for FeOx, FeMnOx, and 

Mn3O4, respectively. It confirmed that a large amount of surface-
adsorbed oxygen species existed on 

Mn3O4. 

Samples of Mn3O4, FeMnOx, and FeOx were further 

characterized by Raman spectroscopy, which is powerful tool 

to probe vibrational behavior of lattices and hence probe 
structural diff erences in oxides, as displayed in Figure 4. The 

Raman band centered at 651 cm
−1

 over Mn3O4 and FeMnOx 

  

 
42,43 
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Figure 4. Raman spectra of Mn3O4, FeMnOx, and FeOx catalysts.  
 
catalysts can be attributed to the Mn2O3 phase,

51
 and the band 

at 1317 cm
−1

 over FeMnOx and FeOx samples can be assigned 

to the Fe2O3 phase in multi phonon mode.
52

 The oxygen 

vacancy concentration in oxide catalysts has been indirectly 

measured in the literature in the region of 585 cm
−1

.
53,54

 The 

relevant peaks of the synthesized catalysts were deconvoluted 

using a Gaussian method, and the corresponding peak areas 

are shown in SI Table S1. It can be seen that the oxygen 

vacancy concentration follows the order Mn3O4 > FeMnOx ≫ 

FeOx, which correlates well with the O 1s result (Table 1). 

The formation of oxygen vacancies has a significant influence 

on MEK oxidation. These defective sites can act as active 

centers in MEK oxidation reaction as the adsorbed oxygen 

molecules over oxygen vacancies tend to be readily transferred 

and subsequently replenish the consumed O
2−

 species in the 

bulk catalysts timely.  
3.1.3. Reducibility. H2-TPR was employed to investigate the 

redox ability of Mn3O4, FeMnOx, and FeOx catalysts, as shown in 
Figure 5. The reduction behavior of these catalysts was very  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. H2-TPR profile of Mn3O4, FeMnOx, and FeOx catalysts.  

 

diff erent. For Mn3O4, two peaks centered at 302 and 449 °C was 

ascribed to the reduction of MnO2 to Mn3O4
42,55,56

 and Mn3O4 

to MnO,
56,57

 respectively. FeOx showed one peak at 376 °C, 

which may correspond to the reduction of Fe
3+

 to Fe
2+

.
39,58

 

Compared with Mn3O4, the reduction peak of MnO2 (309 °C) 

shifted to higher temperatures for FeMnOx. The 

 
peaks at 428 and 513 °C were attributed to the reduction of 

Mn3O4 and Fe
2+

, respectively. According to the area and 
temperature of reduction peaks, the reducibility of catalysts 

decreased in the order of Mn3O4 > FeMnOx > FeOx.  
3.1.4. Catalytic Performance. The evaluation of the 

catalytic activities on the oxidation of MEK is shown in Figure 
6(a). The MEK oxidation activity increased with an increase in 

reaction temperature. T50 and T90 (the reaction temperature 
corre-sponding to MEK conversion of 50% and 90%, 
respectively) were used to compare the catalytic activities of 

the samples. For Mn3O4, FeMnOx, and FeOx samples, the 

values of T50 are 182, 196, and 262 °C, respectively, and T90 
are 194, 215, and 276 °C, respectively. The apparent activation 
energy (Ea) was also introduced to compare the low-
temperature activity of our samples, because the catalyst with 
lower Ea value could cause MEK to be oxidized more readily. 
The Ea values were calculated under the low MEK conversion 
(<25%) at temperature range of 130 170 °C, 150 180 °C, and 

170 210 °C for Mn3O4, FeMnOx, and FeOx samples, 
respectively. As shown in Figure 6(b). The Ea value increased 

in the order of Mn3O4 (30.8 kJ/mol) < FeMnOx (41.5 kJ/mol) 

< FeOx (47.8 kJ/mol). In SI Table S2, MEK conversion rates 

of our samples decreased in the order of Mn3O4 (3.97 × 10
−4 

 
mmol mLcat

−1
 h−1

) > FeMnOx (1.96 × 10−4
 mmol mLcat 

−1
 h−1

) 

> FeOx (4.88 × 10−4
 mmol mLcat

−1
 h−1

). Therefore, it can be 

deduced that the activities of the three samples decreased in the  
order of Mn3O4 > FeMnOx > FeOx. If compared to other 
catalysts reported in the literature (SI Table S2), the 

outstanding activity of sphere-like Mn3O4 prepared in this 

work was apparent. For example, Mn/γ-Al2O3 had T50 of 195 
°C and T90 of 375 °C for MEK combustion.

13
 Catalysts of α-  

Fe2O3 (T50 of 230 °C, T90 of 250 °C and Ea of 117 kJ mol−
1
)
12

 

and Cr/ZrO2 (T50 of 230 °C and Ea of 55.2 kJ mol−
1
)
14

 were 

also less active than sphere-shaped Mn3O4 catalyst reported in 
the present paper. Therefore, although this comparison has to 
be taken with caution because of the diff erent reaction 

conditions employed, our sphere-shaped Mn3O4 catalyst 
exhibited the highest catalytic activity among the non-noble 
metal loaded catalysts reported for this catalytic system. Even 
compared with the noble metal loaded catalysts, both MEK 

conversion and CO2 yield rate of our sphere-shaped Mn3O4 

were higher than noble metal loaded catalysts reported.
6−9

 T50 

(182 and 189 °C based on MEK conversion and CO2 yield, 

respectively), T90 (194 and 198 °C based on MEK conversion 

and CO2 yield, respectively) and Ea (30.8 kJ mol
−1

) of our 

sphere-shaped Mn3O4 were lower than those (T50 = 190 °C 

and T90 = 205 °C based on CO2 yield) over Pt/NaX,
6
 (T50 = 

210 °C and T90 = 265 °C based on MEK conversion) over Pt/  
BAsap,

7
 (T50 = 292 °C, T90 = 305 °C and Ea = 117 kJ mol

−1
 

based on CO2 yield) over Pd−Mn/Al2O3,
8
 and (T50 = 210 °C 

and T90 = 226 °C based on MEK conversion) over Pd−Ce/  
ZSM-5,

9
 but a little higher than those (T50 = 170 °C and 

T90 = 190 °C based on CO2 yield) over Pt/OMS-2.
15 

 
In Figure 6(c), CO2 yield increased with an increase in reaction 

temperature on the three samples, which was similar to MEK 

conversion. Interestingly, MEK was completely oxidized to CO2 

over Mn3O4 catalyst at 200 °C, and no partial oxidation products 
were detected, as substantiated by the good carbon balance (ca. 

99.5%). Additionally, CO2 yields of 98.8% and 92.1% were 

obtained on FeMnOx at 220 °C and FeOx at 290 °C, respectively. 

If taking T50’ and T90’ as the temperature at which CO2 yield is 
50% and 90%, respectively, the activities of the three samples also 

decreased as follows: Mn3O4 (T50’: 189 
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Figure 6. Ignition curves (a), Ea (b), CO2 (c), and CO (d) yield for MEK oxidation over Mn3O4, FeMnOx, and FeOx catalysts.  
 

°C; T90’: 198 °C) > FeMnOx  (T50’: 207 °C; T90’: 218 °C)> 

FeOx (T50’: 271 °C; T90’: 287 °C). It further demonstrates that 

Mn3O4 catalyst is a promising catalyst for the low-temperature 

catalytic oxidation of MEK. Figure 6(d) presents CO yield from 
MEK combustion over all samples. Unlike the curves of MEK 

conversion and CO2 yield, CO yield showed a “volcano-shaped” 

curve, and low conversion of MEK to CO was observed over all 
samples. Maximum CO yields of only 1.13%, 1.06%, and 2.77% 

were detected on Mn3O4, FeMnOx and FeOx catalysts, 

respectively. It means that CO yield does not always increase with 
reaction temperature rising. No or only a little CO was formed at 
the optimum operation temperature (e.g.,  
T90 and T100). It is of importance in the catalytic 
combustion of VOCs.  

The excellent catalytic results for MEK oxidation obtained with 

sphere-shaped Mn3O4 catalyst can be due to several factors that 

are intimately correlated. Considering that the catalytic activities 

of samples, the growth of plentiful (101) planes (Figures 1 and 2) 

are the active facets for MEK combustion on Mn3O4 catalyst. 

Concerning the influence of surface area, Mn3O4 with the smallest 

surface area (SI Table S1) exhibited the highest activity among 

the samples. It implies that surface area is not the important factor 

influencing the catalytic performance of our samples, although 

surface area is widely considered as a critical factor for catalysts 

applica-tions.
5,20−22

 As previously stated, sphere-shaped Mn3O4 

catalyst 

 
presented the highest concentration of surface-absorbed oxygen 
(Figure 3c and Table 1) and oxygen defects (Figure 4 and SI 

Table S1) among our samples. Compared fresh Mn3O4, the ratio 

of Osur/Olat decreased significantly for Mn3O4 used after the 
stability test (Figure 3c and Table 1), suggesting that a large 
amount of surface-adsorbed oxygen species take part in the 
catalytic reaction of MEK combustion. The surface-absorbed 
oxygen originated from the oxygen vacancies has higher mobility 

than lattice oxygen
18,49

 and greatly influences the redox property 

of catalyst.
50

 Thus, sphere-shaped Mn3O4 displayed greatest 
catalytic activity, due to more surface-absorbed oxygen stemmed 

from oxygen vacancies. Compare with FeMnOx, the lower 

content of Mn
4+

 was detected on the surface of Mn3O4 (see 

Figure 3a and Table 1). Piumetti et al.
19

 also found the lowest 

Mn
4+

/Mn
3+

 ratio on Mn3O4, which exhibited the highest activity 
for the total oxidation of VOCs among three mesoporous 

manganese oxide catalysts (Mn2O3, Mn3O4 and MnxOy). 

Therefore, the lower loading of surface Mn
4+

 also resulted in the 

high activity of sphere-shaped Mn3O4. Finally, the excellent low-

temperature reducibility of Mn3O4 sample (Figure 5) improved 
the catalytic performance for MEK oxidation at low temperature. 

The combination of above properties in sphere-shaped Mn3O4 

catalyst (the plentiful (101) planes, low content of surface Mn
4+

, 
abundant oxygen vacancies, and strong reducibility) could explain 
its excellent behavior as low temperature MEK combustion 
catalyst. 
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Figure 7. DRIFT spectra of MEK combustion on (a) Mn3O4, (b) FeMnOx and (c) FeOx.  
 

Catalyst stability is an important criterion for industrial 

applications. SI Figure S2a shows the stability test of Mn3O4 

catalyst at T90 (194 °C) and GHSV of 25,440 h
−1

 for 30 h. 

Mn3O4 displayed the excellent stability for MEK combustion, 

and only a slight decrease of MEK conversion from 93% to 
89% was observed in the first few hours. The good stability 
provides the possibility for the practical elimination of MEK. 

Coke deposition on Mn3O4 after stability test was determined 

by TGA (SI Figure S2b). The weight loss (0.4 wt %) in 
temperature range of 50−150 °C of the fresh sample can be 

attributed to the desorption of H2O and oxygen. The aged 
sample displayed two stages of weight losses with the first 
stage from 170 to 210 °C and second one from 550 to 600 °C. 
The first stage of weight loss (0.7 wt %) might be attributed to 
combustion/desorption of MEK adsorbed on the aged sample, 

as well as the desorption of O2 and H2O. The second stage 

small weight loss (0.3 wt %) was correspond to the 
combustion of coke deposited on catalyst. Slight decrease in 
BET surface area and pore volume were observed for the aged 
sample (SI Table S1).  

3.2. Mechanisms. In order to evaluate the oxidation behavior 
of MEK more accurately, TPSR of MEK oxidation was carried 
out and the results were illustrated in SI Figure S3. TPSR profiles 

of diacetyl (m/z = 43) and CO2 (m/z = 44) were detected on both 

Mn3O4 and FeMnOx. The intensity of diacetyl initially increased 

with temperature rising up to 150 °C, 

 
and then decreased greatly with further increasing of temper-

ature. The intensity of CO2 increased significantly with the 
whole temperature region. It indicated that diacetyl is a main 

intermediate for MEK oxidation on both Mn3O4 and FeMnOx. 

Compared with Mn3O4 and FeMnOx, the lower intensity of 

TPSR profile was detected on FeOx, because MS profile was 
measured at temperature from 100 to 210 °C. MEK conversion 

was significantly low on FeOx at temperature range between  
100 and 210 °C (Figure 6). New MS profiles of m/z = 41 and  
74 was observed on FeOx, which could be assigned to 
CH3COC(CH3)CH2 and CH3COOCH3, respectively. 
Interest-ingly, CH3COC(CH3)CH2 (m/z = 41) presented a 
similar changing trend with CO2 (m/z = 44) over FeOx. It 
seems that CH3COC(CH3)CH2 is a main intermediate in 

MEK oxidation on FeOx.  
The mechanisms of MEK oxidation over synthesized catalysts 

were further investigated by in situ FT-IR spectros-copy, as 

displayed in Figure 7. For Mn3O4 catalyst (Figure 7a), a strong 

peak of 3258 cm−1
 was due to OH stretching of the Brønsted 

acid.
59,60

 Brønsted acid sites are very important in oxidation 

catalysis, since the surface acidity, as well as the basic properties, 
may be responsible for the adsorption/desorption rates of reactants 
and products, and are a major factor in the activation of 

hydrocarbons and occurring intermediates.
61

 The lowest intensity 

of OH stretching of the Brønsted acid (3258 cm−1
) was detected 

for MEK oxidation on Mn3O4 catalyst at 
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Scheme 1. Mechanisms of MEK Combustion on Samples  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
100 °C. It suggests that MEK is initially adsorbed on the 

Brønsted acid sites of Mn3O4, resulting in the obvious 

intensity loss of the acidic hydroxyl groups (3258 cm
−1

) at 
low temperature of 100 °C. The peak intensity of 3258 

cm
−1

 (OH stretching of the Brønsted acid) significantly 
increased with reaction temperature increasing from 100 to 
200 °C, because of the oxidation of MEK adsorbed on the 
Brønsted acid sites. Weak bands at 2311, 1586, and 1444 

cm
−1

 were assigned to CO2,
62

 C O stretching vibrations of 

β-diketone ligands,
63,64

 and surface carbonate species,
19

 
respectively. According to the results of TPSR (SI Figure 

S3), the band of 1586 cm
−1

 (C O stretching vibrations of β-

diketone ligands) stemmed from diacetyl (CH3COCOCH3), 
which was a common reaction intermediate in catalytic 

oxidation of MEK.
8
 It indicates that the oxidation of MEK 

to CO2 via an intermediate of trace diacetyl is a reaction 

pathway on Mn3O4 catalyst (Scheme 1).  
In Figure 7b, IR bands at 3258, 2311, 1586, and 1444 cm−1

 

cm−1
 were also observed on FeMnOx catalyst, which was 

similar to Mn3O4. Additionally, two new bands at 1385 and 

1282 cm−1
 corresponding to vs(COO) stretching

65
 and 

δs(CH2),
66

 respectively, appeared in the oxidation of MEK on 

FeMnOx. From MS signal (SI Figure S3), the band of δs(CH2) 

originated from CH3COC(CH3)CH2, which was also an 

intermediate.
9
 The intensity of all bands increased significantly 

when temperature was raised, except for the band of CO2 

(2311 cm−1
). It suggests MEK oxidation to CO2 on FeMnOx 

includes two reaction pathways in parallel via intermediates of 

diacetyl and CH3COC(CH3)CH2, as shown in Scheme 1.  
As shown in Figure 7c, the same trend of bands at 3258 cm−1

 

was observed on FeOx. The relatively strong intensity of band 
at 2311 cm−1 (CO ) was detected, implying inhibition of CO 

2 β2 

desorption on FeOx catalyst. C O stretching vibrations of - 
diketone ligands (1597 cm−1

) and vs(COO) stretching (1385 
cm−1

) was also found on FeOx,
63,64

 indicating the formation of 
diacetyl. Compared with DRIFT of Mn3O4 and FeMnOx, more 
bands appeared on FeO . The bands at 2933, 1715, and 1662 

x v 67  
were attributed to the vibrations of CH ( (CH)), C O vibrations 

(v(C O)),
68

 the bending vibration of OH
−
 species 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

from the water,
69

 respectively. IR bands at 1314 and 1231 

cm
−1

 also corresponded to v (COO) stretching.
70

 Based on the 

results of TPSR (SI Figure
s
 S3), v(C O) (1715) and vs(COO) 

(1314 and 1231 cm
−1

) stemmed from CH3COC(CH3)CH2 and 

CH3COOCH3, respectively. It implied that MEK oxidation 

process was complex on FeOx, including three reaction 

pathways in parallel via intermediates of diacetyl, CH3COC-

(CH3)CH2 and CH3COOCH3 (Scheme 1). 
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