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ABSTRACT 

Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life 

and decreased life expectancy. Lack of progress in improving treatment outcomes has been 

attributed to limited knowledge of the underlying biology, although large-scale genomic 

studies have begun to provide insights. We report a new genome-wide association study of 

schizophrenia (11,260 cases and 24,542 controls) and through meta-analysis with existing data 

we identify 50 novel associated loci and 145 loci in total. Through integrating genomic fine-

mapping with brain expression and chromosome conformation data, we identify candidate 

causal genes within 33 loci. We also show for the first time that the common variant association 

signal is highly enriched among genes that are under strong selective pressures. These findings 

provide novel insights into the biology and genetic architecture of schizophrenia, highlight the 

importance of mutation intolerant genes and suggest a mechanism by which common risk 

variants persist in the population.   

  



2 
 

Schizophrenia is characterised by psychosis and negative symptoms such as social and 

emotional withdrawal. While onset of psychosis typically does not occur until late adolescence 

or early adult life, there is strong evidence from clinical and epidemiological studies that 

schizophrenia reflects a disturbance of neurodevelopment1.  It confers substantial mortality and 

morbidity, with a mean reduction in life expectancy of 15-30 years2,3. Although recovery is 

possible, most patients have poor social and functional outcomes4. No substantial 

improvements in outcomes have emerged since the advent of antipsychotic medication in the 

mid-20th century, a fact that has been attributed to a lack of knowledge of pathophysiology1.  

Schizophrenia is both highly heritable and polygenic, with risk ascribed to variants spanning 

the full spectrum of population frequencies5-7. The relative contributions of alleles of various 

frequencies is not fully resolved, but recent studies estimate that common alleles, captured by 

genome-wide association study (GWAS) arrays, explain between a third and a half of the 

genetic variance in liability8. There has been a long-standing debate, from an evolutionary 

standpoint, as to how common risk alleles persist in the population, particularly given the early 

mortality and decreased fecundity associated with schizophrenia9. Various hypotheses have 

been proposed including compensatory advantage (balancing selection), whereby 

schizophrenia alleles confer reproductive advantages in particular contexts10,11; hitchhiking, 

whereby risk alleles are maintained by their linkage to positively selected alleles12; or 

contrasting theories that attribute these effects to rare variants and gene-environment 

interaction13. Addressing these competing hypotheses is now tractable given advances from 

recent studies of common genetic variation in schizophrenia.  

The largest published schizophrenia GWAS, that from the Schizophrenia Working Group of 

the Psychiatric Genomics Consortium (PGC), identified 108 genome-wide significant (GWS) 

loci and unequivocally demonstrated the value of increasing sample sizes for discovery in 

schizophrenia genetics research5. Here, we report a large, phenotypically homogeneous GWA 
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study of schizophrenia which, when combined with previous published data, identifies novel 

facets of genetic architecture and biology, and demonstrates that the evolutionary process of 

background selection contributes to the persistence of common risk alleles in the population. 

 

RESULTS 

GWAS and Meta-analysis 

We obtained genome-wide genotype information for schizophrenia cases from the UK (the 

CLOZUK sample), which we combined with control datasets obtained from public repositories 

or through collaboration. The final sample size was of 11,260 cases and 24,542 controls (5,220 

cases and 18,823 controls not in previous schizophrenia GWAS; Methods; Supplementary 

Figure 1 and Supplementary Figure 2). At a genome wide level, the association statistics 

indicated that the common variant architecture in the CLOZUK sample was highly correlated 

with an independent sample of 29,415 cases and 40,101 controls from the PGC (genetic 

correlation = 0.954±0.030; p=6.63x10-227) and this was further confirmed by polygenic risk 

score and trend test analyses across the datasets at a range of association p-value thresholds 

(Methods and Supplementary Table 1 and Supplementary Table 2).  

Meta-analysis of the CLOZUK and the independent PGC dataset, excluding related and 

overlapping samples (total 40,675 cases and 64,643 controls; Supplementary Figure 3), 

identified 179 independent GWS SNPs (p<5x10-8, Supplementary Table 3) mapping to 145 

independent loci (Methods, Figure 1, Supplementary Table 4). The 145 associated loci 

include 93 of those that were GWS in the study of the PGC, the majority of which showed a 

strengthened association (Supplementary Figure 4, Supplementary Table 5). This does not 

imply the remaining 15 PGC loci were false positives, rather this reflects the expected inflation 

of effect sizes for GWS SNPs in incompletely powered studies, and as we demonstrate, is 
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consistent with all 108 PGC loci representing true positives (see Supplementary Note). Of the 

52 loci not identified by the PGC, two have been reported as genome-wide significant in other 

studies: the locus at ZEB214 and a locus on chromosome 8 (38.0-38.3 MB)15.  

In further independent samples (5,662 cases and 154,224 controls); 43 of the 50 GWS index 

SNPs showed the same pattern of allelic association, a level that far surpasses chance 

(p=1.05x10-7). Despite the modest number of cases in these samples, 18 of the 50 index alleles 

reached nominal significance (p<0.05), again implausible by chance (p=1.46x10-11). None 

demonstrated evidence for heterogeneity of effect (Methods, Supplementary Table 6).  

Mutation intolerant genes  

Recent studies have shown that mutation intolerant genes capture much of the rare variant 

architecture of neurodevelopmental disorders such as autism, intellectual disability and 

developmental delay as well as schizophrenia16-19. Here, we show that for schizophrenia, this 

also holds for common variation. Using gene set analysis in MAGMA20, loss-of-function (LoF) 

intolerant genes (N=3,230) as defined by the Exome Aggregation Consortium (ExAC)21 using 

their gene-level constraint metric pLI ≥ 0.9, were enriched for schizophrenia common variant 

associations in comparison with all other annotated genes (p=4.1x10-16). 

It has been shown that pLI is correlated with gene expression across tissues, including brain21, 

which raises the possibility that the LoF-intolerant gene enrichment in schizophrenia  may 

reflect enrichment for signal in genes expressed in the brain. However, LoF-intolerant gene set 

enrichment was robust to the inclusion of both “brain expressed” (N=10,360) and “brain 

specific” (N=2,647) gene sets19 as covariates in the analysis (p=1.89x10-10) or to controlling 

for FPKM gene expression values  in brain22 (p=1.03x10-14). 

It has been suggested that clustering of risk alleles in mutation intolerant genes is a hallmark 

of early-onset traits under natural selection23,24. However, LoF-intolerant genes are known to 
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be enriched for SNPs identified as genome-wide significant in GWAS studies (as listed in the 

NHGRI-EBI GWAS Catalog25) and for broad categories of disorders21. To examine whether 

our finding is a property of polygenic disorders in general, we obtained summary genetic data 

from a neuropsychiatric and non-psychiatric late-onset disorder (Alzheimer’s disease, type-2 

diabetes) and a psychological trait (Neuroticism), each of which has been shown to be under 

minimal selective pressure (see Methods). These other phenotypes show at best a weak signal 

for enrichment of the LoF-intolerant gene set in the MAGMA analysis, not comparable to that 

seen in schizophrenia (Alzheimer’s disease p=0.008, type-2 diabetes p=0.016, Neuroticism 

p=0.066). 

To quantify the contribution of SNPs within LoF-intolerant genes to schizophrenia SNP-based 

heritability (h2
SNP) we used partitioned LDSR26 (Supplementary Table 7). Overall, genic 

SNPs account for 64% of h2
SNP, a 1.23-fold enrichment proportional to their SNP content 

(p=5.93x10-14). Consistent with the analysis using MAGMA, h2
SNP was enriched in LoF-

intolerant genes (2.01-fold; p=2.78x10-24), which explained 30% of all h2
SNP (equating to 47% 

of all genic h2
SNP). In contrast, genes classed as non LoF-intolerant (pLI<0.9) were significantly 

depleted for h2
SNP relative to their SNP content (0.90-fold; p=5.86x10-3), although in absolute 

terms, SNPs in these genes accounted for 34% of h2
SNP. A finer scale analysis of the relationship 

between LoF intolerance scores and enrichment for association showed that enrichment is 

restricted to genes with a pLI score above 0.9, precisely those defined as “LoF-intolerant” 

(Supplementary Figure 5). 

Common risk alleles in regions under background selection 

Our finding that LoF-intolerant genes are enriched for common risk variants raises the question 

of how such alleles are found at common frequencies in the population. While the contribution 

of ultra-rare variation in functionally important genes to disorders associated with low 

fecundity can be accounted for by de novo mutation16,19,27, this cannot explain the persistence 
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of common alleles. To address this question, we used partitioned LDSR to test the relationship 

between schizophrenia associated alleles and SNP-based signatures of natural selection. These 

included measures of positive selection, background selection, and Neanderthal introgression. 

We examined the heritability of SNPs after thresholding them at extreme values for these 

metrics (top 2%, 1% and 0.5%), including in the baseline model annotation sets such as LoF-

intolerant genes and genomic regions with extreme linkage disequilibrium patterns (Methods).  

We observed strong evidence for schizophrenia h2
SNP enrichment in SNPs under strong 

background selection (BGS), which was consistent across all the thresholds we examined 

(Table 1). We also found a significant depletion of h2
SNP in SNPs subject to positive selection 

as indexed by the CLR statistic. These two results are mutually consistent, as the calculation 

of the CLR statistic explicitly controls for the effect of BGS28. This suggests that SNPs under 

positive selection, but under weak or no BGS, are depleted for association with schizophrenia. 

No significant relationship between h2
SNP and other positive selection or Neanderthal 

introgression measures was found after correction for multiple testing (Table 1). An LDSR 

analysis treating BGS measures as a quantitative trait, rather than as a binary one, confirmed 

that the relationship between BGS and schizophrenia association was not due to the imposition 

of arbitrary thresholds to define strong BGS (p=7.73x10-11). We also note that the τc statistic 

of the LDSC model is significant for BGS, in both binary (p=0.041) and quantitative (p=0.023) 

analyses (Supplementary Table 8). The τc statistic indicates  the enrichment of BGS after 

controlling for all other annotations in the model  (including LoF-intolerant genes)26, and thus 

represents a robust and conservative test for the BGS enrichment. 

The above analyses accounts for a possible confounding relationship between LoF intolerance 

and BGS. To illustrate this more clearly, we binned the BGS intensities into four categories of 

increasing score, and classified SNPs in these bins according to whether they are in LoF-

intolerant genes, “all other” genes sets and a non-genic set (Supplementary Figure 6). Note 
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that the lower boundary of the top bin (BGS intensity > 0.75) corresponds approximately to the 

top 2% BGS threshold in Table 1 and is equivalent to a reduction in effective population size 

estimated at each SNP of 75% or more29. We found significant heritability enrichment across 

all BGS intensity intervals in LoF-intolerant genes that increased progressively with higher 

intensity scores. Importantly, we also found heritability enrichment for SNPs under BGS 

pressure in genes that are not LoF intolerant, restricted to the highest BGS intensity bin. Indeed 

the highest BGS intensity bin in non-LoF genes was enriched for heritability at a level roughly 

equivalent to all LoF genes. These findings point to BGS and LoF intolerance as making at 

least partially independent contributions to heritability enrichment in schizophrenia. In 

contrast, none of the phenotypes we selected on the basis of their minimal impact on fecundity 

(Alzheimer’s disease, type-2 diabetes, neuroticism) showed significant BGS enrichment for 

heritability using either the BGS τc statistic of the LDSR model (minimum p > 0.24), or when 

specifically testing regions of high BGS intensity in genes that are tolerant (pLI<0.9) of 

functional mutations (minimum p > 0.40).   

Systems genomics  

Using MAGMA, we undertook a primary analysis of 134 central nervous system related gene 

sets we have previously shown captures the excess CNV burden in schizophrenia30. In a GWAS 

context, we now show that collectively, this group of gene sets captures a disproportionately 

high fraction of h2
SNP (30% of total heritability; enrichment =1.63; p= 8.57x10-13; 46% of genic 

heritability; Supplementary Table 7). Of the 134 sets, 54 were nominally significant of which 

12 survived multiple-testing correction (family-wise error rate (FWER) p < 0.05, 

Supplementary Table 9), with no notable association for gene sets such as the ARC protein 

complex and NMDAR protein network, that we have previously implicated in rare variant 

studies30,31. Stepwise conditional analysis, adjusting sequentially for the more strongly 

associated gene sets, resulted in six gene sets that were independently associated with 
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schizophrenia (Table 2 and Data Supplement).  These extend from low-level molecular and 

sub-cellular processes to broad behavioural phenotypes. The most strongly associated gene set 

is constituted by the targets of the Fragile X Mental Retardation Protein (FMRP)32. FMRP is a 

neuronal RNA-binding protein that interacts with polyribosomal mRNAs (the 842 target 

transcripts of this gene set32) and is thought to act by inhibiting translation of target mRNAs, 

including many transcripts of pre- and post-synaptic proteins. The FMRP target set has been 

shown to be enriched for rare mutational burden in de novo exome sequencing studies of 

autism33 and intellectual disability31. In schizophrenia studies, it has also been shown to be 

nominally significantly enriched for association signal in sequencing studies8,31 and in 

GWAS5,8 but only inconsistently in studies of copy number variation30,34. Here we provide the 

strongest evidence to date for the enrichment of this gene set in schizophrenia.  

We highlight another five gene sets that are independently associated with schizophrenia. Three 

of these derive from the Mouse Genome Informatics database35 and relate to behavioural and 

neurophysiological correlates of learning; Abnormal Behaviour (MP:0004924), Abnormal 

Nervous System Electrophysiology (MP:0002272) and Abnormal Long Term Potentiation 

(MP:0002207). We note that two of these gene sets (MP:0004924 and MP:0002207) were 

among the five most enriched of 134 gene sets tested in a recent schizophrenia CNV analysis30. 

The remaining two independently associated genes sets were voltage-gated calcium channel 

complexes36 and  the 5-HT2C receptor complex37. The calcium channel finding confirms 

extensive evidence from common and rare variant studies implicating calcium channel genes 

in schizophrenia5,8, including a novel GWAS locus in CACNA1D identified in our meta-

analysis. Whilst there is less convergent evidence in support of the involvement of the 5-HT2C 

receptor complex in schizophrenia, the fact that we identify independent association for this 

gene set implicates these genes in schizophrenia pathophysiology and potentially rejuvenates 

a previous avenue of 5-HT2C ligand therapeutic endeavour in schizophrenia research38.  
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However we interpret this result with caution given the small size of this gene set and the fact 

that a number of its genes encode synaptic proteins that are structurally related to other receptor 

complexes37, not only 5-HT2C.  

Systems genomics and mutation intolerant genes 

The LoF-intolerant genes and the six conditionally independent (“significant”) CNS-related 

gene sets together account for 39% of schizophrenia SNP-based heritability (p=5.07x10-26), 

equating to 61% of genic heritability (Figure 2A; Supplementary Table 7). This is likely to 

be an underestimation of the true effect of these gene sets since distal non-genic regulatory 

elements (not included in this analysis) will add to the heritability explained by these genes. In 

examining the relationship between the LoF-intolerant and CNS-related gene sets (Figure 2A), 

genes belonging to both categories were the most highly enriched (2.6-fold; p=7.90x10-15), 

although LoF-intolerant genes that were not annotated to our significant CNS gene sets still 

displayed enrichment for SNP-based heritability (1.74-fold; p=9.77x10-10), while genes that 

were in the significant CNS gene sets but had pLI<0.9 showed more modest enrichment (1.39-

fold; p= 6.05x10-4). Notably genes outside these categories were depleted in heritability relative 

to their SNP content (enrichment=0.79, p=1.82x10-7). 

This general pattern remained when we focussed on the six significant CNS gene sets 

individually, in that the enrichment in these gene sets derives primarily from their intersection 

with LoF-intolerant genes (Figure 2B). Indeed, only the targets of FMRP showed significant 

enrichment for SNPs in genes that are not LoF intolerant (2.06-fold; p=4.23x10-5).  

Data-driven gene set analysis  

To set the systems genomics results in context, and to ensure we were not missing enrichment 

in other gene sets by our hypothesis driven approach, we undertook a purely data-driven 

analysis of a larger comprehensive annotation of gene sets from multiple public databases, 
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totalling 6,677 gene sets (Methods, Supplementary Table 10). Six gene sets survived FWER 

correction for the full 6,677 gene sets and showed independence through conditional analyses. 

The LoF-intolerant gene set was the most strongly enriched followed by the two most strongly 

associated functional gene sets we had specified in our hypothesis-driven CNS gene set 

analysis (FMRP targets and MGI Abnormal Behaviour genes). The other three sets were 

calcium ion import (GO:0070509), membrane depolarisation during action potential 

(GO:0086010) and synaptic transmission (GO:0007268). These are highly overlapping with 

the independently associated sets from our primary CNS systems genomic analysis. Indeed if 

we repeat the data-driven comprehensive gene set analysis whilst adjusting for the six 

independently associated CNS gene sets, then the only surviving enrichment term is the LoF-

intolerant genes. These results are consistent with those from CNV analysis30 in that they do 

not support annotations other than those related to CNS function, and demonstrate that 

hypothesis based analysis to maximise power does not substantially impact on the overall 

pattern of results. 

Identifying likely candidates within associated loci  

To identify SNPs and genes which might be causally linked to the GWS associations, we used 

FINEMAP39 to identify credibly causal alleles (those with a cumulative posterior probability 

for a locus of at least 95%) and functionally annotated these alleles using ANNOVAR40. This 

identified 6,105 credible SNPs across 144 GWS loci, excluding the MHC region (Methods, 

Supplementary Table 11). From these, we defined a highly credible set of SNPs (N=25) as 

those that are more likely to explain the associations than all other SNPs combined (i.e. with a 

FINEMAP posterior probability greater than 0.5).  Of these, 14 mapped to genes based on 

putative functionality (exonic SNPs that cause non-synonymous or splice variations or 

promoter SNPs, n=6) or mapped to regions identified as likely regulatory elements (n=8) 

through chromosome conformation analysis performed in tissue from the developing brain 
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using Hi-C41 physical interactions (Methods; Supplementary Table 12). One of the 

implicated alleles is a nonsynonymous variant in the manganese and zinc transporter gene 

SLC39A8. Nonsynonymous variants in this gene have been associated with severe 

neurodevelopmental disorders and deficiencies of SLC39A8 with related impaired 

glycosylation42, highlighting a mechanism of therapeutic potential. 

We also applied Summary-data based Mendelian Randomisation (SMR) analysis43 to the data 

in concert with the dorsolateral prefrontal cortex eQTL data from the CommonMind 

Consortium44 aiming to identify variants that might be causally linked through expression 

changes of specific genes. (Methods, Supplementary Table 13).  After applying a 

conservative threshold (pHEIDI>0.05) which prioritises those co-localised signals due to a single 

causal variant43, we identified 22 candidates at 19 loci with a false discovery rate p<0.05.  

In total, the combination of FINEMAP, Hi-C and SMR analyses assigned potentially causal 

genes at 33 GWS loci and implicated a single gene at 27 of these loci. However, the analyses 

intersect for a single gene, ZNF823, indicating the need for more comprehensive functional 

genomic annotations in CNS relevant tissues.     

 

DISCUSSION 

In the largest genetic study of schizophrenia to date, we explore the genomic architecture of, 

and the evolutionary pressures on, common variants associated with the disorder. Our study 

provides the first evidence linking common variation in LoF-intolerant genes to risk of 

developing schizophrenia and demonstrates that these genes account for a substantial 

proportion (30%) of schizophrenia SNP-based heritability. Systems genomic analysis 

highlights six gene sets that are independently associated with schizophrenia, and point to 

molecular, physiological and behavioural pathways involved in schizophrenia pathogenesis.  
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Given mutation intolerance is due to high selection pressure21,23,24, our finding that 

schizophrenia risk variants that persist at common allele frequencies are enriched in loss-of-

function intolerant genes might appear counter-intuitive. However, novel evidence presented 

here suggests this can be reconciled by background selection (BGS) which is a consequence of 

purifying selection in regions of low recombination45,46. In such regions, recurrent selection 

against deleterious variants causes haplotypes to be removed from the gene pool, which reduces 

genetic diversity in a manner equivalent to a reduction in effective population size47. This in 

turn impairs the efficiency of the selection process, allowing alleles with small deleterious 

effects to rise in frequency by drift48. Such a consequence of purifying selection has been shown 

to be compatible with the genomic architecture of complex human traits49 and to influence 

phenotypes in model organisms50. We have explicitly modelled this effect (both theoretically 

and via simulations; Supplementary Note) and provide strong evidence for the feasibility of 

this effect as explanatory for the effect sizes seen for common alleles in schizophrenia.  

We did not find enrichment for any measure of positive selection or Neanderthal introgression. 

A recent study explained a negative correlation between schizophrenia associations and metrics 

indicative of a Neanderthal selective sweep as evidence for positive selection or polygenic 

adaptation in schizophrenia12. We do not find any significant correlation in our model, which 

addresses the contribution of BGS, and hence our results are not consistent with large 

contributions of positive selection to the genetic architecture of schizophrenia (Table 1). 

Indeed positive selection is not widespread in humans, as reported by other studies that 

explicitly considered or accounted for BGS28,51. Polygenic adaptation, the co-occurrence of 

many subtle allele frequency shifts at loci influencing complex traits52, remains an intriguing 

possibility, but has not been implicated in psychiatric phenotypes, including schizophrenia, in 

recent analyses53,54.  In contrast, BGS has been proposed as a mechanism driving Human-

Neanderthal incompatibilities, as regions with stronger estimated BGS have lower estimated 
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Neanderthal introgression55. We therefore conclude that the bulk of the BGS signal we obtain 

is unlikely to be influenced by positive selection29, challenging theories of selective advantage 

of schizophrenia risk alleles to explain their high population frequencies. 

 

AUTHOR CONTRIBUTIONS 

A.F.P. curated and processed genetic data, performed statistical analyses, contributed to the 

interpretation of results and participated in the primary drafting of the manuscript. 

P.H., A.J.P., V.E-P., A.C. and E.S. performed statistical analyses, contributed to the 

interpretation of results and participated in the primary drafting of the manuscript. 

S.R. curated and processed genetic data and participated in the primary drafting of the 

manuscript. 

N.C. and M.L.H. contributed to the interpretation of results and participated in the primary 

drafting of the manuscript. 

S.E.L., S.B. and A.L. participated in the recruitment of participants for the study and curated 

and managed their phenotypic information. 

D.C., J.H, L.H, E.R. and G.K. contributed and curated data used in the statistical analyses. 

K.M. managed the laboratory and genotyping procedures in Cardiff University. 

J. H. M, D. A. C. and D.R. supervised the recruitment of the participants for the study. 

S. A. M. managed the genotyping of samples for the study.  

N. R. W. contributed genotypes of control samples and participated in the primary drafting of 

the manuscript. 

D.H. G, L. M. H., D. M. R., P. S., E. A. S. and H.W. performed statistical analyses and 

contributed to the interpretation of results. 

M. J. O. and M. C. O’D. conceived and supervised the project, contributed to the interpretation 

of results and participated in the primary drafting of the manuscript. 

J. T. R. W. conceived and supervised the project, led the recruitment of the participants and 

sample acquisition for the study, performed statistical analysis, contributed to the interpretation 

of results and participated in the primary drafting of the manuscript. 



14 
 

All other authors contributed genotypes of control samples or summary statistics of replication 

samples. 

All authors had the opportunity to review and comment on the manuscript and all approved the 

final manuscript. 

 

COMPETING FINANCIAL INTERESTS 

D. A. C. is a full-time employee and stockholder of Eli Lilly and Company. The remaining 

authors declare no conflicts of interest. 

 

REFERENCES 

1. Owen, M.J., Sawa, A. & Mortensen, P.B. Schizophrenia. Lancet (2016). 

2. Thornicroft, G. Physical health disparities and mental illness: the scandal of premature 
mortality. The British Journal of Psychiatry 199, 441-442 (2011). 

3. Olfson, M., Gerhard, T., Huang, C., Crystal, S. & Stroup, T. Premature mortality among 
adults with schizophrenia in the united states. JAMA Psychiatry 72, 1172-1181 (2015). 

4. Morgan, C. et al. Reappraising the long-term course and outcome of psychotic 
disorders: the AESOP-10 study. Psychological Medicine 44, 2713-2726 (2014). 

5. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological 
insights from 108 schizophrenia-associated genetic loci. Nature 511, 421-427 (2014). 

6. Singh, T. et al. Rare loss-of-function variants in SETD1A are associated with 
schizophrenia and developmental disorders. Nature Neuroscience 19, 571-7 (2016). 

7. Rees, E. et al. Analysis of copy number variations at 15 schizophrenia-associated loci. 
Br J Psychiatry 204, 108-14 (2014). 

8. Purcell, S.M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. 
Nature 506, 185-190 (2014). 

9. Power, R.A. et al. Fecundity of patients with schizophrenia, autism, bipolar disorder, 
depression, anorexia nervosa, or substance abuse vs their unaffected siblings. JAMA 
psychiatry 70, 22-30 (2013). 

10. Huxley, J., Mayr, E., Osmond, H. & Hoffer, A. Schizophrenia as a Genetic Morphism. 
Nature 204, 220-221 (1964). 

11. Shaner, A., Miller, G. & Mintz, J. Schizophrenia as one extreme of a sexually selected 
fitness indicator. Schizophrenia Research 70, 101-109 (2004). 



15 
 

12. Srinivasan, S. et al. Genetic Markers of Human Evolution Are Enriched in 
Schizophrenia. Biological Psychiatry 80, 284–292 (2016). 

13. Uher, R. The role of genetic variation in the causation of mental illness: an evolution-
informed framework. Mol Psychiatry 14, 1072-1082 (2009). 

14. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for 
schizophrenia. Nature Genetics 45, 1150-1159 (2013). 

15. Shi, Y. et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nature 
Genetics 43, 1224-1227 (2011). 

16. McRae, J.F. et al. Prevalence and architecture of de novo mutations in developmental 
disorders. Nature 542, 433–438 (2017). 

17. Kosmicki, J.A. et al. Refining the role of de novo protein-truncating variants in 
neurodevelopmental disorders by using population reference samples. Nature Genetics 
49, 504–510 (2017). 

18. Samocha, K.E. et al. A framework for the interpretation of de novo mutation in human 
disease. Nature Genetics 46, 944-950 (2014). 

19. Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 
individuals with schizophrenia. Nature Neuroscience 19, 1433-1441 (2016). 

20. de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. MAGMA: Generalized gene-
set analysis of GWAS data. PLoS Comput Biol 11, e1004219 (2015). 

21. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 
536, 285–291 (2016). 

22. Fagerberg, L. et al. Analysis of the Human Tissue-specific Expression by Genome-
wide Integration of Transcriptomics and Antibody-based Proteomics. Molecular & 
Cellular Proteomics 13, 397-406 (2014). 

23. Smith, N.G.C. & Eyre-Walker, A. Human disease genes: patterns and predictions. Gene 
318, 169-175 (2003). 

24. Blekhman, R. et al. Natural selection on genes that underlie human disease 
susceptibility. Current biology : CB 18, 883-889 (2008). 

25. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait 
associations. Nucleic acids research 42, D1001-D1006 (2014). 

26. Finucane, H.K. et al. Partitioning heritability by functional annotation using genome-
wide association summary statistics. Nature Genetics 47, 1228-1235 (2015). 

27. Takata, A., Ionita-Laza, I., Gogos, Joseph A., Xu, B. & Karayiorgou, M. De Novo 
Synonymous Mutations in Regulatory Elements Contribute to the Genetic Etiology of 
Autism and Schizophrenia. Neuron 89, 940-947 (2016). 



16 
 

28. Huber, C.D., DeGiorgio, M., Hellmann, I. & Nielsen, R. Detecting recent selective 
sweeps while controlling for mutation rate and background selection. Molecular 
Ecology 25, 142-156 (2016). 

29. McVicker, G., Gordon, D., Davis, C. & Green, P. Widespread Genomic Signatures of 
Natural Selection in Hominid Evolution. PLoS Genet 5, e1000471 (2009). 

30. Pocklington, A.J. et al. Novel Findings from CNVs Implicate Inhibitory and Excitatory 
Signaling Complexes in Schizophrenia. Neuron 86, 1203-14 (2015). 

31. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. 
Nature 506, 179-184 (2014). 

32. Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic 
function and autism. Cell 146, 247-61 (2011). 

33. Iossifov, I. et al. De Novo Gene Disruptions in Children on the Autistic Spectrum. 
Neuron 74, 285-299 (2012). 

34. Szatkiewicz, J.P. et al. Copy number variation in schizophrenia in Sweden. Molecular 
Psychiatry 19, 762-73 (2014). 

35. Blake, J.A., Bult, C.J., Eppig, J.T., Kadin, J.A. & Richardson, J.E. The Mouse Genome 
Database: integration of and access to knowledge about the laboratory mouse. Nucleic 
Acids Research 42, D810-7 (2014). 

36. Müller, C.S. et al. Quantitative proteomics of the Cav2 channel nano-environments in 
the mammalian brain. Proceedings of the National Academy of Sciences 107, 14950-
14957 (2010). 

37. Becamel, C. et al. Synaptic multiprotein complexes associated with 5-HT(2C) 
receptors: a proteomic approach. The EMBO journal 21, 2332-42 (2002). 

38. Liu, J. et al. Prediction of Efficacy of Vabicaserin, a 5-HT(2C) Agonist, for the 
Treatment of Schizophrenia Using a Quantitative Systems Pharmacology Model. CPT: 
Pharmacometrics & Systems Pharmacology 3, e111 (2014). 

39. Benner, C. et al. FINEMAP: efficient variable selection using summary data from 
genome-wide association studies. Bioinformatics 32, 1493-1501 (2016). 

40. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing data. Nucleic acids research 38, e164-e164 
(2010). 

41. Won, H. et al. Chromosome conformation elucidates regulatory relationships in 
developing human brain. Nature 538, 523-527 (2016). 

42. Park, J.H. et al. SLC39A8 Deficiency: A Disorder of Manganese Transport and 
Glycosylation. American Journal of Human Genetics 97, 894-903 (2015). 

43. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts 
complex trait gene targets. Nature Genetics 48, 481-487 (2016). 



17 
 

44. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for 
schizophrenia. Nat Neurosci 19, 1442-1453 (2016). 

45. Charlesworth, B. The Effects of Deleterious Mutations on Evolution at Linked Sites. 
Genetics 190, 5-22 (2012). 

46. Charlesworth, B., Betancourt, A.J., Kaiser, V.B. & Gordo, I. Genetic Recombination 
and Molecular Evolution. Cold Spring Harbor Symposia on Quantitative Biology 74, 
177-186 (2009). 

47. Comeron, J.M., Williford, A. & Kliman, R.M. The Hill-Robertson effect: evolutionary 
consequences of weak selection and linkage in finite populations. Heredity 100, 19-31 
(2007). 

48. Charlesworth, B. Background Selection 20 Years on: The Wilhelmine E. Key 2012 
Invitational Lecture. Journal of Heredity (2013). 

49. North, T.L. & Beaumont, M.A. Complex trait architecture: the pleiotropic model 
revisited. Scientific Reports 5, 9351 (2015). 

50. Rockman, M.V., Skrovanek, S.S. & Kruglyak, L. Selection at linked sites shapes 
heritable phenotypic variation in C. elegans. Science 330, 372-6 (2010). 

51. Vitti, J.J., Grossman, S.R. & Sabeti, P.C. Detecting Natural Selection in Genomic Data. 
Annual Review of Genetics 47, 97-120 (2013). 

52. Stephan, W. Signatures of positive selection: from selective sweeps at individual loci 
to subtle allele frequency changes in polygenic adaptation. Molecular ecology 25, 79-
88 (2016). 

53. Field, Y. et al. Detection of human adaptation during the past 2,000 years. Science 
(2016). 

54. Key, F.M., Fu, Q., Romagne, F., Lachmann, M. & Andres, A.M. Human adaptation 
and population differentiation in the light of ancient genomes. Nat Commun 7(2016). 

55. Harris, K. & Nielsen, R. The Genetic Cost of Neanderthal Introgression. Genetics 203, 
881-891 (2016). 

 

ACKNOWLEDGEMENTS 

General 

This project has received funding from the European Union’s Seventh Framework Programme 

for research, technological development and demonstration under grant agreement n° 279227 

(CRESTAR Consortium). The work at Cardiff University was funded by Medical Research 



18 
 

Council (MRC) Centre (MR/L010305/1), Program Grant (G0800509) and Project Grant 

(MR/L011794/1) and the European Community’s Seventh Framework Programme HEALTH-

F2-2010-241909 (Project EU-GEI). U.D. received funding by the German Research 

Foundation (DFG, grant FOR2107 DA1151/5-1; SFB-TRR58, Project C09) and the 

Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (grant 

Dan3/012/17). E.M.B. and N.R.W. received salary funding from the National Health and 

Medical Research Council (NHMRC; 1078901, 105363). E.S. and A.C. received funding from 

Agencia Estatal de Investigación (AEI; CGL2016-75904-C2-1-P), Xunta de Galicia (ED431C 

2016-037) and Fondo Europeo de Desarrollo Regional (FEDER). The iPSYCH and GEMS2 

teams acknowledge funding from The Lundbeck Foundation (grant no R102-A9118 and R155-

2014-1724), the Stanley Medical Research Institute, an Advanced Grant from the European 

Research Council (project no: 294838), the Danish Strategic Research Council and grants from 

Aarhus University to the iSEQ and CIRRAU centers. 

Case data 

We thank the participants and clinicians who took part in the CardiffCOGS study. For the 

CLOZUK2 sample we thank Leyden Delta for supporting the sample collection, anonymisation 

and data preparation (particularly Marinka Helthuis, John Jansen, Karel Jollie and Anouschka 

Colson), Magna Laboratories, UK (Andy Walker) and, for CLOZUK1, Novartis and The 

Doctor’s Laboratory staff for their guidance and cooperation. We acknowledge Lesley Bates, 

Catherine Bresner and Lucinda Hopkins, at Cardiff University, for laboratory sample 

management. We acknowledge Wayne Lawrence and Mark Einon, at Cardiff University, for 

support with the use and setup of computational infrastructures. 

Control data 



19 
 

A full list of the investigators who contributed to the generation of the Wellcome Trust Case 

Control Consortium (WTCCC) data is available from its URL. Funding for the project was 

provided by the Wellcome Trust (WT) under award 076113. The UK10K project was funded 

by the Wellcome Trust award WT091310. Venous blood collection for the 1958 Birth Cohort 

(NCDS) was funded by the UK’s Medical Research Council (MRC) grant G0000934, 

peripheral blood lymphocyte preparation by Juvenile Diabetes Research Foundation (JDRF) 

and WT and the cell-line production, DNA extraction and processing by WT grant 

06854/Z/02/Z. Genotyping was supported by WT (083270) and the European Union (EU; 

ENGAGE: HEALTH-F4-2007- 201413). The UK Blood Services Common Controls (UKBS-

CC collection) was funded by WT (076113/C/04/Z) and by the National Institute for Health 

Research (NIHR) programme grant to NHS Blood and Transplant authority (NHSBT; RP-PG-

0310-1002). NHSBT also made possible the recruitment of the Cardiff Controls, from 

participants who provided informed consent. Generation Scotland (GS) received core funding 

from the Chief Scientist Office of the Scottish Government Health Directorates CZD/16/6 and 

the Scottish Funding Council HR03006. Genotyping of the GS:SFHS samples was carried out 

by the Genetics Core Laboratory at the WT Clinical Research Facility, Edinburgh, Scotland 

and was funded by the MRC and Wellcome Trust (grant 10436/Z/14/Z ). The Type 1 Diabetes 

Genetics Consortium (T1DGC; EGA dataset EGAS00000000038) is a collaborative clinical 

study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases 

(NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human 

Genome Research Institute (NHGRI), National Institute of Child Health and Human 

Development (NICHD), and JDRF. The People of the British Isles project (POBI) is supported 

by WT (088262/Z/09/Z). TwinsUK is funded by WT, MRC, EU, NIHR-funded BioResource, 

Clinical Research Facility and Biomedical Research Centre based at Guy’s and St Thomas’ 

NHS Foundation Trust in partnership with King’s College London. Funding for the QIMR 



20 
 

samples was provided by the Australian National Health and Medical Research Council 

(241944, 339462, 389875, 389891, 389892, 389927, 389938, 442915, 442981, 496675, 

496739, 552485, 552498, 613602, 613608, 613674, 619667), the Australian Research Council 

(FT0991360, FT0991022), the FP-5 GenomEUtwin Project (QLG2-CT- 2002-01254) and the 

US National Institutes of Health (NIH; AA07535, AA10248, AA13320, AA13321, AA13326, 

AA14041, MH66206, DA12854, DA019951), and the Center for Inherited Disease Research 

(Baltimore, MD, USA). TEDS is supported by a program grant from the MRC (G0901245-

G0500079), with additional support from the NIH (HD044454; HD059215). In the GERAD1 

Consortium, Cardiff University was supported by WT, MRC, Alzheimer’s Research UK 

(ARUK) and the Welsh Government. Kings College London acknowledges support from the 

MRC. The University of Belfast acknowledges support from ARUK, Alzheimer's Society, 

Ulster Garden Villages, N.Ireland R&D Office and the Royal College of Physicians/Dunhill 

Medical Trust. Washington University was funded by NIH grants, Barnes Jewish Foundation 

and the Charles and Joanne Knight Alzheimer's Research Initiative. The Bonn group was 

supported by the German Federal Ministry of Education and Research (BMBF), Competence 

Network Dementia and Competence Network Degenerative Dementia, and by the Alfried 

Krupp von Bohlen und Halbach-Stiftung. 

CRESTAR Consortium Members 

Evanthia Achilla1, Esben Agerbo2,3 , Cathy L. Barr4, Theresa Wimberly Böttger2, Gerome 

Breen5,6, Dan Cohen7, David A. Collier5,8, Sarah Curran9,10, Emma Dempster11, Danai Dima5, 

Ramon Sabes-Figuera1, Robert J. Flanagan12, Sophia Frangou13, Josef Frank14, Christiane 

Gasse2,3, Fiona Gaughran15, Ina Giegling16, Jakob Grove18,19, Eilis Hannon11, Annette M. 

Hartmann16, Barbara Heißerer19, Marinka Helthuis20, Henriette Thisted Horsdal2, Oddur 

Ingimarsson21, Karel Jollie20, James L. Kennedy22, Ole Köhler23, Bettina Konte16, Maren 

Lang14, Sophie Legge24, Cathryn Lewis5, James MacCabe15, Anil K. Malhotra25, Paul 



21 
 

McCrone1, Sandra M. Meier2, Jonathan Mill5,11, Ole Mors23, Preben Bo Mortensen2, Markus 

M. Nöthen26, Michael C. O'Donovan24, Michael J. Owen24, Antonio F. Pardiñas24, Carsten B. 

Pedersen2,3, Marcella Rietschel14, Dan Rujescu16, Ameli Schwalber19, Engilbert Sigurdsson21, 

Holger J. Sørensen27, Benjamin Spencer28, Hreinn Stefansson29, Henrik Støvring3, Jana 

Strohmaier14, Patrick Sullivan30,31, Evangelos Vassos5, Moira Verbelen5, James T. R. 

Walters24, Thomas Werge27. 

1Centre for Economics of Mental and Physical Health, Health Service and Population Research 

Department, Institute of Psychiatry, King’s College London, London, UK. 2National Centre 

for Register-Based Research, Department of Economics and Business, School of Business and 

Social Sciences, Aarhus University, Aarhus, Denmark. 3Centre for Integrated Register-based 

Research, CIRRAU, Aarhus University, Aarhus, Denmark. 4Toronto Western Research 

Institute, University Health Network, Toronto, Canada. 5MRC Social, Genetic and 

Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, 

King’s College London, London, UK. 6NIHR Biomedical Research Centre for Mental Health, 

Maudsley Hospital and Institute of Psychiatry, Psychology and Neuroscience, King's College 

London, London, UK. 7Department of Community Mental Health, Mental Health Organization 

North-Holland North, Heerhugowaard, The Netherlands. 8Discovery Neuroscience Research, 

Eli Lilly and Company Ltd, Lilly Research Laboratories, Erl Wood Manor, Surrey, UK. 

9Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & 

Neuroscience, King’s College London, London, UK. 10Brighton and Sussex Medical School, 

University of Sussex, Brighton, UK. 11University of Exeter Medical School, RILD, University 

of Exeter, Exeter, UK. 12Toxicology Unit, Department of Clinical Biochemistry, King’s 

College Hospital NHS Foundation Trust, London, UK. 13Clinical Neurosciences Studies 

Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA. 

14Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, 



22 
 

Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany. 15Department of 

Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College 

London, London, UK. 16Department of Psychiatry, University of Halle, Halle, Germany. 

17Department of Biomedicine, Aarhus University, Denmark. 18Bioinformatics Research Centre 

(BiRC), Aarhus University, Aarhus, Denmark. 19Concentris Research Management GmbH, 

Fürstenfeldbruck, Germany. 20Leyden Delta B.V., Nijmegen, The Netherlands. 21Department 

of Psychiatry, Landspitali University Hospital, Reykjavik, Iceland. 22Centre for Addiction and 

Mental Health, Toronto, Ontario, Canada. 23Psychosis Research Unit, Aarhus University 

Hospital, Risskov, Denmark. 24MRC Centre for Neuropsychiatric Genetics and Genomics, 

Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff 

University, Cardiff, UK. 25Division of Psychiatry Research, The Zucker Hillside Hospital, 

Northwell Health System, Glen Oaks, New York, USA. 26Department of Genomics, Life & 

Brain Center, University of Bonn, Bonn, Germany. 27Mental Health Services in the Capital 

Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, Denmark. 

28Department of Psychological Medicine, Institute of Psychiatry, Psychology and 

Neuroscience, King's College London, London, UK. 29deCODE Genetics, Reykjavik, Iceland. 

30Center for Psychiatric Genomics, Department of Genetics, University of North Carolina, 

Chapel Hill, North Carolina, USA. 31Department of Medical Epidemiology and Biostatistics, 

Karolinska Institutet, Stockholm, Sweden. 

GERAD1 Consortium Members 

Denise Harold1,9, Rebecca Sims1, Amy Gerrish1, Jade Chapman1, Valentina Escott-Price1, 

Richard Abraham1, Paul Hollingworth1, Jaspreet Pahwa1, Nicola Denning1, Charlene Thomas1, 

Sarah Taylor1, John Powell2, Petroula Proitsi2, Michelle Lupton2, Simon Lovestone2,10, Peter 

Passmore3, David Craig3, Bernadette McGuinness3, Janet Johnston3, Stephen Todd3, Wolfgang 

Maier4, Frank Jessen4, Reiner Heun4, Britta Schurmann4, 5, Alfredo Ramirez4, Tim Becker6, 



23 
 

Christine Herold6, André Lacour6, Dmitriy Drichel6, Markus Nothen7, Alison Goate8, Carlos 

Cruchaga8, Petra Nowotny8, John C. Morris8, Kevin Mayo8, Peter Holmans1, Michael 

O’Donovan1, Michael Owen1 and Julie Williams1.  

1Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, 

Neurosciences and Mental Health Research Institute, Department of Psychological Medicine 

and Neurology, School of Medicine, Cardiff University, Cardiff, UK. 2King's College London, 

Institute of Psychiatry, Department of Neuroscience, De Crespigny Park, Denmark Hill, 

London. 3Ageing Group, Centre for Public Health, School of Medicine, Dentistry and 

Biomedical Sciences, Queen's University Belfast, UK. 4Department of Psychiatry, University 

of Bonn, Sigmund-Freud-Straβe 25, 53105 Bonn, Germany. 5Institute for Molecular 

Psychiatry, University of Bonn, Bonn, Germany. 6Deutsches Zentrum für Neurodegenerative 

Erkrankungen (DZNE), Bonn. 7Department of Genomics, Life & Brain Center, University of 

Bonn, Bonn, Germany. 8Departments of Psychiatry, Neurology and Genetics, Washington 

University School of Medicine, St Louis, MO 63110, US. 9Present address: Neuropsychiatric 

Genetics Group, Department of Psychiatry, Trinity Centre for Health Sciences, St James's 

Hospital, Dublin. 10Present address: Department of Psychiatry, University of Oxford. 

FIGURE LEGENDS 

 

Figure 1. Manhattan plot of schizophrenia GWAS associations from the meta-analysis of 

CLOZUK and an independent PGC dataset (N=105,318; 40,675 cases and 64,643 controls). 

The 145 genome-wide significant loci are highlighted in green.  

 

Figure 2. Partitioned heritability analysis of gene sets in schizophrenia. A: Heritability of 

genomic partitions and the six conditionally independent (“significant”) gene sets (Table 2). 

Radius of each segment indicates the degree of enrichment, while the arc (angle of each slice) 

indicates the percentage of total SNP-based heritability explained. No relative enrichment 
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(enrichment=1) is shown by the dashed red line (and depletion equates to enrichment<1, inside 

red line). B: Heritability of the significant CNS gene sets dissected by their overlap with LoF-

intolerant genes. Whiskers represent heritability/enrichment standard errors. Asterisks indicate 

the significance of each heritability enrichment (* <= 0.05; ** <= 0.01; *** <= 0.001).  
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Top 2% of scores  

(genome-wide) 
Top 1% of scores  

(genome-wide) 
Top 0.5% of scores  

(genome-wide) 

Metric Ref. Enrichment 
2-sided 
p-value 

Enrichment 
2-sided 
p-value 

Enrichmen
t 

2-sided 
p-value 

Background Selection (B-statistic)  29 1.801 0.001 2.341 9.90x10-4 2.365 0.002 

Positive selection (CLR)  28 0.408 6.53x10-5 0.173 5.80x10-7 0.259 0.016 

Positive selection (CMS)  106 0.054 0.001 -0.037 0.006 -0.039 0.007 

Positive selection (XP-EEH)  105 0.621 0.342 0.383 0.303 0.125 0.268 

Positive selection (iHS)  104 0.973 0.946 0.980 0.974 1.633 0.557 

Neanderthal posterior probability (LA)  107 0.807 0.347 0.800 0.462 0.858 0.745 

 
Table 1. Heritability analysis of natural selection metrics.  
Partitioned LDSR regression results for SNPs thresholded by extreme values (defined as top percentiles vs all other SNPs) of each natural selection 
metric. All tests have been adjusted for 58 "baseline" annotations, which include categories such as “LoF-intolerant”, “recombination coldspot” 
and “conserved” (see Methods). Enrichment values below 1 indicate a depletion of h2

SNP in an annotation category (less contribution than expected 
for a given number of SNPs). Negative enrichments should be considered zero (no contribution to h2

SNP by these SNPs). Underlined values indicate 
results surviving correction after adjusting for all tests (Bonferroni α= 0.05/18= 0.0028). Reference numbers for each metric indicate references in 
the main text. 
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Gene Set Number of 
genes 

Enrichment 
p value (FWER) 

Conditional 
p value 

Targets of FMRP32 798 1x10-5 1.9x10-8 

Abnormal Behaviour 
(MP:0004924) 1939 1.8x10-4 1.4x10-5 

5-HT2C receptor complex37 16 0.029 0.001 

Abnormal Nervous System 
Electrophysiology 
(MP:0002272) 

201 0.003 0.002 

Voltage-gated calcium 
channel complexes36 196 0.011 0.016 

Abnormal Long Term 
Potentiation (MP:0002207) 142 0.030 0.031 

     
Table 2. Functional gene set analysis highlights six independent gene sets associated with 
schizophrenia 
 
FMRP: Fragile X Mental Retardation Protein. 
MP refers to Mammalian Phenotype Ontology term of the MGI: Mouse Genome Informatics35, 
from which gene sets were derived. 
FWER: Westfall-Young family-wise error rate, as implemented in MAGMA20,88. 
Conditional p value refers to stepwise conditional analysis that adjusts sequentially for 
‘stronger’ associated gene sets. 
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METHODS 

GWAS and reporting of independently-associated regions 

Details of sample collection and genotype quality control are given in the Supplementary 

Note. The CLOZUK schizophrenia GWAS was performed using logistic regression with 

imputation probabilities (“dosages”) adjusted for 11 PCA covariates. These covariates were 

chosen as those nominally significant (p < 0.05) in a logistic regression for association with the 

phenotype1. To avoid overburdening the GWAS power by adding too many covariates to the 

regression model2, only the first twenty PCs were considered and tested for inclusion, as higher 

numbers of PCs only become useful for the analysis of populations that bear strong signatures 

of complex admixture3. The final set of covariates included the first five PCs (as recommended 

for most GWAS approaches4) and PCs 6, 9, 11, 12, 13 and 19. Quantile-quantile (QQ) and 

Manhattan plots are shown in Supplementary Figure 7 and 8. 

In order to identify independent signals among the regression results, signals were 

amalgamated into putative associated loci using the same two-step strategy and parameters as 

PGC (Supplementary Table 14). In this procedure, regular LD-clumping is performed (r2 = 

0.1, p < 1x10-4; window size <3 Mb) in order to obtain independent index-SNPs. Afterwards 

loci are defined for each index SNP as the genomic region which contains all other imputed 

SNPs within an r2≥0.6. To avoid inflating the number of signals in gene-dense regions or in 

those with complex LD, all loci within 250kb of each other were annealed. 

Meta-analysis with PGC 

A total of 6,040 cases and 5,719 controls from CLOZUK were included in the recent PGC 

study5. We reanalysed the PGC data after excluding all these cases and controls, obtaining a 

sample termed ‘INDEPENDENT PGC’ (29,415 cases and 40,101 controls). Adding the 

summary statistics from this independent sample to the CLOZUK GWAS results allowed for 
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a combined analysis of 40,675 cases and 64,643 controls (without duplicates or related 

samples). This meta-analysis was performed using the fixed-effects procedure in METAL6 

with weights derived from standard errors. For consistency with the PGC analysis, additional 

filters (INFO>0.6 and MAF>0.01) were applied to the CLOZUK and INDEPENDENT PGC 

summary statistics, leaving 8 million markers in the final meta-analysis results. QQ and 

Manhattan plots are shown in Supplementary Figure 3 and Figure 2. The same procedure as 

above was used in order to report independent loci from this analysis (Supplementary Table 

3, Supplementary Table 4). As raw PGC genotypes were not available for the LD-clumping 

procedure, 1KGPp3 was used as a reference. 

Replication of new GWAS loci 

In order to validate the association signals from the CLOZUK+PGC meta-analysis, we 

amalgamated data contributed by other schizophrenia genetics consortia (total of 5,762 cases 

and 154,224 controls, details in Supplementary Note). We sought GWAS summary statistic 

data for the index SNPs from the 50 novel genome-wide significant loci (Supplementary 

Table 4). These summary statistics were meta-analysed in METAL using the fixed-effects 

procedure to obtain replication and heterogeneity statistics (Supplementary Table 6). 

Estimation and assessment of a polygenic signal 

Association signals caused by the vast polygenicity underlying complex traits can be hard to 

distinguish from confounders related to sample relatedness and population stratification. In 

order to effectively disentangle this issue, we used the software LD-Score v1.0 to analyse the 

summary statistics of our association analyses, and estimate the contribution of confounding 

biases to our results by LDSR7. An LD-reference was generated from 1KGPp3 after restricting 

this dataset to strictly unrelated individuals8 and retaining only markers with MAF>0.01. In 

order to improve accuracy, the summary statistics used as input were refined by discarding all 
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indels and restricting SNPs to those with INFO>0.9 and MAF>0.01, a total of 5.16 million 

SNPs. The resulting LD-score intercept for the CLOZUK GWAS was 1.085±0.010, which 

compared to a mean χ2 of 1.417 indicates a polygenic contribution of at least 80%. For the 

CLOZUK+PGC meta-analysis, the LD-score intercept was 1.075±0.014 (mean χ2= 1.960), 

which supports more than 90% of the signal being driven by polygenic architecture. Both of 

these figures are in line with other well-powered GWAS studies of complex human traits7, 

including schizophrenia5. This analysis was also used to calculate SNP-based heritability 

(h2
SNP) for our three datasets (CLOZUK, INDEPENDENT PGC and the CLOZUK+PGC meta-

analysis), which we transformed to a liability scale using a population prevalence of 1% 

(registry-based lifetime prevalence9). For reference and compatibility with epidemiological 

studies of schizophrenia, prevalence estimates of 0.7% (lifetime morbid risk10) and 0.4% (point 

prevalence10, more akin to treatment resistant schizophrenia prevalence (appropriate for 

CLOZUK) were used for additional liability-scale h2
SNP calculations (Supplementary Table 

15). 

The LDSR framework allowed us to compare the genetic architecture of CLOZUK and 

INDEPENDENT PGC, by calculating the correlation of their summary statistics11. A genetic 

correlation coefficient of 0.954±0.030 was obtained, with a p-value of 6.63x10-227. We also 

examined the independent SNPs that reached a genome-wide significant (GWS) level in the 

INDEPENDENT PGC dataset, of which there were 76 after excluding the extended major 

histocompatibility complex region (xMHC). In the CLOZUK sample 76% (n=57) of these 

GWS SNPs were nominally significant (p<0.05). Using binomial sign tests based on clumped 

subsets of SNPs12 we found that all but 1 (98.6%) of these 76 GWS SNPs were associated with 

the same direction of effect in the CLOZUK sample, a result highly unlikely to reflect chance 

(p=2.04x10-21, Supplementary Table 1). Moreover, of the 1,160 SNPs with an association p-

value less than 10-4 in the INDEPENDENT PGC sample, 82% showed enrichment in the 
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CLOZUK cases (p=3.44x10-113), confirming very large numbers of true associations will be 

discovered amongst these SNPs with increased sample sizes. Additionally, the new sample 

introduced in this study (CLOZUK2) was compared by the same methods with the PGC dataset 

and showed results consistent with the full CLOZUK analysis, providing molecular validation 

of this sample as a schizophrenia sample (Supplementary Table 1). 

We went on to conduct polygenic risk score analysis. Polygenic scores for CLOZUK were 

generated from INDEPENDENT PGC as a training set, using the same parameters for risk 

profile score (RPS) analysis in PGC5, arriving at a high-confidence set of SNPs for RPS 

estimation by removing the xMHC region, indels, and applying INFO>0.9 and MAF>0.1 cut-

offs. Scores were generated from the autosomal imputation dosage data, using a range of p-

value thresholds for SNP inclusion13 (5x10-8, 1x10-5, 0.001, 0.05 and 0.5). In this way, we can 

assess the presence of a progressively increasing signal-to-noise ratio in relation to the number 

of markers included14. As in the PGC study, we find the best p-value threshold for 

discrimination to be 0.05 and report highly significant polygenic overlap between the 

INDEPENDENT PGC and CLOZUK samples (p<1x10-300, Nagelkerke r2=0.12, 

Supplementary Table 2), confirming the validity of combining the datasets. For comparison 

with other studies we also report polygenic variance on the liability scale15, which amounted 

to 5.7% for CLOZUK at the 0.05 p-value threshold (Supplementary Table 2). As in the PGC 

study the limited r2 and Area Under the Receiver Operating Characteristic curve (AUROC) 

obtained by this analysis restricts the current clinical utility of these scores in schizophrenia. 

Gene set analysis 

In order to assess the enrichment of sets of functionally related genes, we used MAGMA 

v1.0316 on the CLOZUK+PGC meta-analysis summary statistics. From these we excluded the 

xMHC region for its complex LD and the X-chromosome given its smaller sample size. In the 

resulting data, gene-wide p-values were calculated by combining the p-values of all SNPs 
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inside genes after accounting for LD and outliers. This was performed allowing for a window 

of 35 kb upstream and 10 kb downstream of each gene in order to capture the signal of nearby 

SNPs that could fall in regulatory regions17,18. Next we calculated competitive gene set p-values 

on the gene-wide p-values after accounting for gene size, gene set density and LD between 

genes. For multiple testing correction in each gene set collection, a FWER19 was computed 

using 100,000 re-samplings.  

We performed sequential analyses using three approaches: 

1. Loss-of-function intolerant genes: We tested the enrichment of the loss-of-function (LoF) 

intolerant genes described by ExAC20. This set comprises all genes defined in the ExAC 

database21 as having a probability of LoF intolerance (pLI) statistic higher than 90%. While 

these genes do not form part of cohesive biological processes or phenotypes, they have been 

previously found to be highly expressed across tissues and developmental stages20. Also, they 

are enriched for hub proteins22, which makes them interesting candidates for involvement in 

the “evolutionary canalisation” processes that have been proposed to lead to pleiotropic, 

complex disorders23. 

2. CNS-related genes: These gene sets were compiled in our recent study24, and include 134 

gene sets related to different to aspects of central nervous system function and development. 

These include, among others, gene sets which have been implicated in schizophrenia by at least 

two independent large-scale sequencing studies25,26: targets of the fragile-X mental retardation 

protein (FMRP27), constituents of the N-methyl-D-aspartate receptor (NMDAR28) and activity-

regulated cytoskeleton-associated protein complexes (ARC29,30), as well as CNS and 

behavioural gene sets from the Mouse Genome Informatics database version 6 31.  

3. Data-driven: The final systems genomic analysis was designed as an “agnostic” approach, 

with the aim of integrating a large number of gene sets from different public sources, not 
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necessarily conceptually related to psychiatric disorders, as this has been successful 

elsewhere18,32. We conducted this analysis to test whether additional gene sets were associated 

in addition to those from the 134 CNS-related gene sets. For this, first we merged together the 

LoF-intolerant gene set and the 134 sets in the CNS-related collection. Second, we selected 

additional gene set sources to encompass a comprehensive collection of biochemical pathways 

and gene regulatory interaction networks: 2,693 gene sets with direct experimental evidence 

and a size of 10-200 genes18 were extracted from the Gene Ontology (GO33) database release 

01/02/2016; 1,787 gene sets were extracted from the 4th ontology level of the Mouse Genome 

Informatics database version 6; 1,585 gene sets were extracted from REACTOME34 version 

55; 290 gene sets were extracted from KEGG35 release 04/2015; and 187 gene sets were 

extracted from OMIM36 release 01/02/2016. The total number of gene sets included was 6,677. 

Detailed results of the analyses of the CNS-related and data-driven collection are given in 

Supplementary Table 9 and Supplementary Table 10. Reported numbers of genes in each 

gene set are those with available data in the meta-analysis. This may differ from the original 

gene set description as some genic regions had null or poor SNP coverage. Following the data-

driven gene set analysis as described we also conducted analysis adjusting for our CNS-related 

gene sets to determine whether the data-driven analysis was contributing additional findings. 

Partitioned heritability analysis of gene sets 

It is known that the power of a gene set analysis is closely related to the total heritability of the 

phenotype and the specific heritability attributable to the tested gene set37. In order to assess 

the heritability explained by the genes carried forward after the main gene set analysis, LD-

Score was again used to compute a partitioned heritability estimate of CLOZUK+PGC using 

the gene sets as SNP annotations. As in the MAGMA analysis, the xMHC region was excluded 

from the summary statistics. These were also trimmed to contain no indels, and only markers 

with INFO > 0.9 and MAF > 0.01, for a total of 4.64 million SNPs. As a recognised caveat of 
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this procedure is that model misspecification can inflate the partitioned heritability estimates38, 

all gene sets were annotated twice: Once using their exact genomic coordinates (extracted from 

the NCBI RefSeq database39) and another with putative regulatory regions taken into account 

using the same upstream/downstream windows as in the MAGMA analyses. Additionally, all 

SNPs not directly covered by our gene sets of interest were explicitly included into other 

annotations (“non-genic”, “genic but not LoF-intolerant”) based on their genomic location. 

Finally, the “baseline” set of 53 annotations from Finucane et al. 201538, which recapitulates 

important molecular properties such as presence of enhancers or phylogenetic conservation, 

was also incorporated in the model. All of these annotations were then tested jointly for 

heritability enrichment. We note that using exact genic coordinates or adding regulatory 

regions made little difference to the estimated enrichment of our gene sets, and thus throughout 

the manuscript we report the latter for consistency with the gene set analyses (Figure 2; 

Supplementary Table 8).   

Natural selection analyses 

We aimed to explore the hypothesis that some form of natural selection is linked to the 

maintenance of common genetic risk in schizophrenia40-42. In order to do this, for all SNPs 

included in the CLOZUK+PGC meta-analysis summary statistics, we obtained four different 

genome-wide metrics of positive selection (iHS43, XP-EEH44,  CMS45 and CLR46), one of 

background selection (B-statistic47, post-processed by Huber et al. 201646) and one of 

Neanderthal introgression (average posterior probability LA48). The use of different statistics 

is motivated by the fact that each of them is tailored to detect a particular selective process that 

acted on a particular timeframe (see Vitti et al. 201349 for a review). For example, iHS and 

CMS are based on the inference of abnormally long haplotypes, and thus are better powered to 

detect recent selective sweeps that occurred during the last ~30,000 years50, such as those 

linked to lactose tolerance or pathogen response45. On the other hand, CLR incorporates 
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information about the spatial pattern of genomic variability (the site frequency spectrum51), 

and corrects explicitly for evidences of background selection, thus being able to detect signals 

from 60,000 to 240,000 years ago46. The B-statistic uses phylogenetic information from other 

primates (chimpanzee, gorilla, orang-utan and rhesus macaque) in order to infer the reduction 

in allelic diversity that exists in humans as a consequence of purifying selection on linked sites 

over evolutionary timeframes52. As the effects of background selection on large genomic 

regions can mimic those of positive selection53, it is possible that the B-statistic might 

amalgamate both, though the rather large diversity reduction that it infers for the human 

genome as a whole suggests any bias due to positive selection is likely to be minor54. Finally, 

XP-EEH is a haplotype-based statistic which compares two population samples, and thus its 

power is increased for alleles that have suffered differential selective pressures since those 

populations diverged44. Though methodologically different, LA has a similar rationale by 

comparing human and Neanderthal genomes48, in order to infer the probability of each human 

haplotype to have been the result of an admixture event with Neanderthals. 

For this work, CLR, CMS, B-statistic and LA were retrieved directly from their published 

references, and lifted over to GRC37 genomic coordinates if required using the ENSEMBL 

LiftOver tool55,56. As the available genome-wide measures of iHS and XP-EEH were based on 

HapMap3 data57, both statistics were re-calculated with the HAPBIN58 software directly on the 

EUR superpopulation of the 1KGPp3 dataset, with the AFR superpopulation used as the second 

population for XP-EEH. Taking advantage of the fine-scale genomic resolution of these 

statistics (between 1-10 kb), all SNP positions present in CLOZUK+PGC were assigned a 

value for each measure, either directly (if the position existed in the lifted-over data) or by 

linear interpolation. To simplify the interpretation of our results, all measures were transformed 

before further analyses to a common scale, in which larger values indicate stronger effect of 

selection or increased probability of introgression. For example, the background selection B-
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statistic, in which values of zero indicate the strongest effect (see Charlesworth 201259 for its 

theoretical derivation), was included in all our analyses as 1 - B, which we termed “BGS 

intensity” in the main text.  

Heritability enrichment of these statistics was tested by the LD-Score partitioned heritability 

procedure. We derived binary annotations from the natural selection metrics by dichotomising 

at extreme cut-offs defined by the top 2%, 1% and 0.5% of the values of each metric in the full 

set of SNPs. This approach is widely used in evolutionary genomics, due to the difficulty of 

setting specific thresholds to define regions under selection46,49. Consistent with the previously 

described LDSR partitioned heritability protocol, enrichment was estimated with all binary 

annotations included in a model with multiple categories that represent important genomic 

features. This model included the 3 main categories of our set-based analysis (“non-genic”, 

“genic” and “LoF-intolerant”), 2 categories based on genomic regions with outlying LD 

patterns (recombination hotspots and coldspots)60, and the 53 “baseline” categories of Finucane 

et al. 201538.  

We then derived the τc coefficient38 (and associated p value) of the significantly enriched 

natural selection annotations (i.e. the background selection metric), This represents the 

enrichment of an annotation over and above the enrichment of all other annotations, which is 

a conservative approach, as most of the categories in our model are partially overlapping. In 

order to increase our power and for additional validation, we noted that LD-Score allows testing 

the full range of quantitative metrics, in an extension of the partitioned heritability framework. 

Results of this analysis are reported in Supplementary Table 8. 

Analysis of other phenotypes 

To explore the specificity of our natural selection results, we retrieved data from other well-

powered GWAS of complex traits. We selected three phenotypes for which a) the genome-



36 
 

wide summary statistic data are publicly available b) the sample size is larger than 50,000 

individuals, and c) have minimal impact on fecundity61-63 (and hence the traits behave as neutral 

or approximately neutral to selection) d) summary statistics were considered adequate for LD-

Score analysis based on baseline Z-scores >438,64 (Supplementary Table 8). The phenotypes 

chosen were Alzheimer’s disease65, Neuroticism66 and Type-2 diabetes67. For the LD-Score 

analyses, as the public release of these statistics did not include imputation INFO scores at the 

time of this study, we restricted the set of SNPs to those included in the HapMap3 project68, as 

recommended7. To facilitate comparison with the schizophrenia results, we also restricted our 

schizophrenia summary statistic data to these SNPs, and repeated the analyses above using 

BGS as a binary (top 2%) and quantitative trait. 

We also employed MAGMA on the summary statistics of these additional phenotypes in order 

to examine whether the LoF-intolerant gene set enrichment displayed specificity to 

schizophrenia, after excluding the xMHC and APOE regions. 

Finemapping, Hi-C and SMR  

Accurately locating causal genes (“fine-mapping”) for complex disorders is a challenge to 

GWAS studies, and usually requires multiple approaches123. To highlight credibly causal 

variants, we used FINEMAP v1.169 at each of the 145 identified loci (Supplementary Table 

3), selecting variants with a cumulative posterior probability of 95%. These were then 

annotated with ANNOVAR70 release 2016Feb1 (Supplementary Table 11). We mapped the 

SNPs with a FINEMAP posterior probability higher than 0.5 to the developing brain Hi-C data 

generated by Won et al. 201671, following the methodology described therein, which allowed 

us to implicate genes by chromatin interactions instead of solely chromosomal position 

(Supplementary Table 12). We compiled results from the eQTL analysis of the CommonMind 

Consortium post-mortem brain tissues72. This included 15,782 genes, which were curated to 

remove any genes with FPKM=0 across >10% of individuals. All the SNPs from the meta-
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analysis data were mapped to the eQTL data using RS numbers, position, and allele matching. 

Both datasets were analysed together using SMR73, which resulted in 4,276 genes showing 

eQTLs with overlapping SNPs and genome-wide significant p-values (Supplementary Table 

13). 

 

URLs 

CLOZUK+PGC2 meta-analysis summary statistics: walters.psycm.cf.ac.uk 

CRESTAR consortium: www.crestar-project.eu/ 

Wellcome Trust Case/Control Consortium: www.wtccc.org.uk 

People of the British Isles project: www.peopleofthebritishisles.org 

Mouse Genome Informatics: www.informatics.jax.org 

Psychiatric Genomics Consortium: www.med.unc.edu/pgc/ 

  

DATA AVAILABILITY STATEMENT 

The gene content of the CNS-related gene sets that survive conditional analysis (“significant”) 

is given in MAGMA format in the Data Supplement. Summary statistics from the 

CLOZUK+PGC2 GWAS are available for download (see URLs).  
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Case sample collection 

We collected blood samples from those with treatment-resistant schizophrenia (TRS) 
in the UK through the mandatory clozapine blood-monitoring system for those taking 
clozapine, an antipsychotic licensed for TRS. Following national research ethics 
approval and in line with UK Human Tissue Act regulations we worked in partnership 
with the commercial companies that manufacture and monitor clozapine in the UK. 
We ascertained anonymous aliquots of the blood samples collected as part of the 
regular blood monitoring that takes place whilst taking clozapine due to a rare 
haematological adverse effect, agranulocytosis. The CLOZUK1 sample was 
assembled in collaboration with Novartis (Basel, Switzerland). The company, through 
their proprietary Clozaril® Patient Monitoring Service (CPMS), provided whole-blood 
samples and anonymised phenotypic information for 6,882 individuals with TRS (5528 
cases post-QC), which were included in the in a recent schizophrenia GWAS by the 
PGC1. The CLOZUK2 sample, previously unreported, was assembled in collaboration 
with the other major company involved in the supply and monitoring of clozapine in the 
UK, Leyden Delta (Nijmegen, Netherlands). The company, through their proprietary 
Zaponex® Treatment Access System (ZTAS), provided whole-blood samples and 
anonymised phenotypic information for 7,417 of those taking clozapine (4973 cases 
post-QC). Both Clozaril® and Zaponex® are bioequivalent brands of clozapine 
licensed in the UK2.  

We restricted the CLOZUK1 and CLOZUK2 samples to those with a clinician reported 
diagnosis of treatment-resistant schizophrenia. The UK National Institute for Health 
and Care Excellence (NICE) advise prescription of clozapine is reserved for those with 
schizophrenia in whom two trials of antipsychotics have failed (including one second-
generation antipsychotic)3 which mirrors the criteria for licensed use of clozapine. The 
sole alternative licensed indication for clozapine in the UK is for the management of 
resistant psychosis in Parkinson’s disease (PD)4 and, although this is a rare indication, 
we excluded PD patients (n=8) from the case dataset. We also excluded those with 
off-license indications, which included those with alternative clinician diagnoses of 
bipolar affective disorder and personality disorders (n=56). Together with the clinical 
guidelines outlined, these exclusions ensure that CLOZUK1 and CLOZUK2 samples 
are from those patients that conform to a clinical description of TRS. We have reported 
the use of CLOZUK1 as a schizophrenia dataset in previous publications1,5-7 and have 
presented evidence to support the use of TRS-defined individuals as valid 
schizophrenia samples8, which we have updated and expanded in the next section, 
including validation of a clinician diagnosis of TRS against research diagnostic criteria 
for schizophrenia.  

In addition we also included in our analysis a more conventional cohort of UK-based 
patients with schizophrenia (CardiffCOGS). Recruitment was via secondary care, 
mainly outpatient, NHS mental health services in Wales and England. These patients 
were not exclusively taking clozapine at the time of their recruitment. All cases 



underwent a SCAN interview9 and case note review followed by consensus research 
diagnostic procedures and were included if they had a DSM-IV schizophrenia or 
schizoaffective disorder-depressive type diagnosis, as previously reported5. The 
CardiffCOGS samples were recruited and genotyped in two waves: CardiffCOGS1 
(512 cases, included in a previous GWAS1) and CardiffCOGS2 (247 cases).  

Genotyping for these case samples was performed by the Broad Institute 
(Massachusetts, USA) for the CLOZUK1 sample and CardiffCOGS1 cases, using 
Illumina HumanOmniExpress-12 and OmniExpressExome-8 chips as described 
elsewhere5. The CardiffCOGS2 cases and the CLOZUK2 sample were genotyped by 
deCODE Genetics (Reykjavík, Iceland), using Illumina HumanOmniExpress-12 chips. 

As all of these samples are intrinsically related and their recruitment and genotyping 
conforms to research and technical standards, thus we have combined them and used 
the term “CLOZUK” throughout this manuscript to describe the schizophrenia case 
dataset.  

 

Case sample validation 

Validation of Clinical Diagnosis 

In order to validate the clinical diagnosis of treatment-resistant schizophrenia in the 
CLOZUK sample we used the CardiffCOGS participants for whom we acquired both 
clinical and consensus research diagnosis. Prior to the research interview we obtained 
clinicians’ diagnoses for all participants. From participants on clozapine we selected 
those with a clinical diagnosis of schizophrenia and confirmed that this matched the 
diagnosis provided when the participant was started on clozapine (i.e. treatment-
resistant schizophrenia) so as to be equivalent to the samples included in CLOZUK. 
We then compared this diagnosis with the consensus research DSM-IV diagnosis 
arrived after following a SCAN interview, note review and diagnostic procedures 
described above. 214 participants within the CardiffCOGS sample were taking 
clozapine and had a clinician-assigned diagnosis of treatment resistant schizophrenia. 
Following consensus research diagnosis, 194 of these participants were identified as 
having DSM-IV schizophrenia or schizoaffective disorder depressed sub-type, giving 
a positive predictive value (PPV) of 90.7%. Many international groups and consortia 
also consider other diagnoses as ‘schizophrenia’ samples, namely schizoaffective 
disorder bipolar type, delusional disorder and schizophreniform disorders1. If we 
expand our analysis to include these categories then 210 of 214 (PPV=98.1%) of those 
on clozapine with a clinical diagnosis of schizophrenia would receive a DSM-IV 
research diagnosis of one of these schizophrenia spectrum disorders. These results 
are entirely consistent with equivalent reports of the validity of clinician diagnoses in 
two Scandinavian studies10,11. 

Genetic Molecular validation of CLOZUK as a schizophrenia dataset  



The Schizophrenia Working Group of the Psychiatric Genomics Consortium identified 
40 target subgroups within their primary GWAS analysis and performed a leave-one-
out analysis1. Using risk alleles identified in the remainder of the primary sample, 
polygenic risk profile scores were calculated for all individuals in the target subgroup; 
and the ability of these scores to distinguish between cases and controls was then 
evaluated. The predictive value of the risk profile score when applied to CLOZUK1 
was indistinguishable from its performance in other schizophrenia subgroups, indeed 
the values for Nagelkerke’s pseudo-R2 for CLOZUK are the 5th highest of all 
subsamples, implying that CLOZUK is one of the samples most highly enriched for 
schizophrenia risk alleles (see data for 'noclo_clo' in Extended data Figure 6b1).  In 
terms of CNVs, the rates of individual confirmed schizophrenia loci in CLOZUK1 are 
entirely consistent with those of the other schizophrenia studies12. As for CLOZUK2, 
sign test and polygenic score analyses, as described in the Methods section of the 
manuscript (Online Methods, section “Estimation and assessment of a polygenic 
signal”), confirm its similarity to the PGC samples in respect of schizophrenia-related 
genetic architecture. 

 

Control sample collection 

Control samples were collected from publicly available sources (EGA) or through 
collaboration with the holders of the datasets. Individual datasets were curated using 
the same procedures as the case-only datasets. In order to maximize the numbers of 
individuals that could be effectively included in the GWAS without introducing 
confounders, these datasets were chosen on the basis of having recruited individuals 
with self-reported UK ancestry (either exclusively or primarily) and having been 
genotyped on Illumina chips. A summarized view of all the datasets included in the 
GWAS is provided later in this document, which includes further details of the control 
datasets. 

 

Genotype quality-control (QC) 

Given the many data sources used and the variety of genotyping chips available, a 
stringent quality control (allowing only 2% of missing SNP and individual data) was 
performed separately in each individual dataset, using PLINK v1.913 and following 
standard procedures14. To facilitate merging and to avoid common sources of batch 
effects15, all SNPs in each dataset were also aligned to the plus strand of the human 
genome (build 37p13), removing strand-ambiguous markers in the process. As most 
control datasets lacked any markers in the Y chromosome or in the mitochondrial 
DNA, every SNP from these regions was discarded in the combined genotype data. 
The final merge of all case and control datasets left 203,436 overlapping autosomal 



SNPs. For the X-chromosome, we obtained data for all the cases and 13,085 (out of 
24,542) controls, which provided 4,612 overlapping SNPs. 

All individuals were imputed simultaneously in the Cardiff University high-performance 
computing cluster RAVEN16, using the SHAPEIT/IMPUTE2 algorithms17,18. As 
reference panels, a combination of the 1000 Genomes phase 3 (1KGPp3) and UK10K 
datasets was used, as this has previously been shown to increase the accuracy of 
imputation for individuals of British ancestry, particularly for rare variants19.  

After imputation, a principal component analysis (PCA) of common variants (MAF 
higher than 5%) was carried out to obtain a general summary of the population 
structure of the sample, using the EIGENSOFT v6 toolset20. A plot of the first two PCs 
showed the existence of a large fraction of cases (~20%) with no overlapping controls 
(Supplementary Figure 1, A). A comparison with the 1KGPp3 dataset, performed 
using PCA and ADMIXTURE21 estimates, showed that most of these cases were 
similar in genetic ancestry to non-European individuals, namely from the East Asian 
or West African superpopulations (Supplementary Figure 1, B). In order to use only 
cases with matching control samples and to ameliorate population stratification in the 
association analysis22, all individuals not falling into an area delimited by the mean and 
3 standard deviations of the two first principal components of the control samples were 
excluded from further analyses (Supplementary Figure 1, C). By repeating PCA only 
on the selected individuals, no outliers could be detected in the first two principal 
components, and ADMIXTURE plots were homogenised as well (Supplementary 
Figure 2).  

The CLOZUK sample was further pruned by removing all individuals with inbreeding 
coefficients (F) higher than 0.2, and leaving only a random member of each pair with 
a relatedness coefficient (𝜋𝜋�) higher than 0.2. Furthermore, to ensure the independence 
of our analyses with previous GWAS conducted by the Schizophrenia Working Group 
of the PGC, relatedness coefficients of CLOZUK individuals were also calculated with 
all the individual datasets included in the latest PGC GWAS1 following approval by the 
Consortium. Detected genetic relatives (or duplicates) were excluded in CLOZUK in 
the same way as intra-population relatives. After this process, we excluded 3,103 
individuals as PCA-based ancestry outliers, 5 individuals due to heterozygosity and 
985 individuals due to relatedness. Finally, 35,802 samples (11,260 cases and 24,542 
controls) with 9.66 million imputed markers (INFO>0.3; MAF>0.001; HWE p > 1x10-6) 
remained in the CLOZUK dataset. 

 

Estimating the proportion of true positives in PGC GWAS loci 

We used the uniformly minimum variance conditionally unbiased estimator (UMVCUE) 
of Bowden & Dudbridge 23 to estimate true effect sizes for the genome-wide significant 
autosomal index SNPs from the previous GWAS of schizophrenia carried out by the 
PGC 1. This method combines replication data (here, the deCODE samples reported 



in the original study) with the discovery data to minimise upward biases in effect size 
due to “winner’s curse” (i.e. selecting SNPs with p<5x10-8). We then estimated the 
probability that each SNP would be genome-wide significant in the combined 
CLOZUK+PGC meta-analysis, assuming that the effect size of the SNP in the 
CLOZUK sample was that estimated by the UMVCUE (i.e. a true positive). We did 
likewise assuming no effect in the CLOZUK sample (i.e. a false positive), and used 
these probabilities to estimate the proportion of true positive SNPs, along with a 95% 
confidence interval. 

Of the 108 SNPs reported in the original study, 7 were not available in our meta-
analysis, having been excluded in the QC pipeline carried out in the CLOZUK GWAS. 
Of the 101 remaining SNPs, 18 were not genome-wide significant in the combined 
CLOZUK+PGC analysis. (Note that this number is slightly higher than that in 
Supplementary Table 5 since the latter uses the most significant SNP in the region, 
which may be different to the original lead SNP). Assuming that all 101 represent true 
signals, we expect 80 to remain GWS in our meta-analysis following the Bowden and 
Dudbridge approach (using the formula given in section 9.ii of the procedure described 
below, setting p=1). We actually observe 83, consistent with all the PGC signals being 
true positives, with a 95% CI of (0.8,1) –see section 9.iv of the procedure. 

Detailed procedure 

This was done using a similar pipeline to Hamshere et al. 24: 

1. Use the UMVCUE method to obtain estimates of effect sizes (log odds ratios) and 
variances for each of the index SNPs from the PGC study using both  the discovery 
(GWAS) and replication (deCODE) samples. 

2. Use these to simulate a “true” effect size in the CLOZUK sample: given UMVCUE 
effect size μ and its variance σ2, generate a random effect size (β) by sampling 
from a normal(μ, σ2).  Convert this into an odds ratio OR=eβ. 

3. Use this “true” effect size to simulate a log-OR (+variance) in CLOZUK by using 
its sample size and MAF. Let the minor (reference) allele be A and the other allele 
be a. The frequency of the minor allele is p and the odds ratio associated with the 
minor allele is B. There are N controls and M cases in CLOZUK. Consequently the 
observed frequency q of A alleles in controls is approximately distributed as a 
normal(p, p(1-p)/2N).  Sample q from this distribution and calculate (N1, N2), the 
corresponding number of A and a alleles in the controls (=2Nq, 2N(1-q) 
respectively). 

4. The frequency r of A alleles in cases is given by r=pB/(1+pB-p). Observed 
frequency s of A in cases is then approximately distributed as a normal(r,r(1-
r)/2M). Sample s and calculate corresponding numbers of A and a alleles  in cases 
(M1, M2) = 2Ms, 2M(1-s). 

5. Finally, use N1, N2, M1, M2 to calculate the observed effect size 
βs=ln(M1*N2/M2*N1) and its variance σs2=(1/N1)+(1/N2)+(1/M1)+(1/M2) 



6. Meta-analyse the simulated CLOZUK log-OR and variance generated in the 
previous step with the actual log-OR and variance from the PGC GWAS using a 
fixed effects inverse-variance meta-analysis. 

7. Repeat 2)-6) 10,000 times to estimate the probability that the CLOZUK+PGC 
meta-analysis is genome-wide significant assuming UMVCUE “true” effects (i.e. 
the PGC GWAS result was a true positive) 

8. Repeat 3)-6) 10,000 times to estimate the probability that the CLOZUK+PGC 
meta-analysis is GWS assuming no effect in CLOZUK (i.e. the PGC GWAS result 
was a false-positive)  

9. Use the probabilities in 7) and 8), combined with the observed number of SNPs 
that were GWS in the CLOZUK+PGC meta-analysis to estimate the proportion of 
true positives: 

i. If Pi = probability that SNP i is genome-wide significant (GWS) in 
PGC+CLOZUK given that it is a true effect and Qi = probability that SNP 
i is GWS in PGC+CLOZUK given it is a false positive, and p=proportion 
of true positives, the overall probability that SNP i is GWS = p.Pi + (1-
p).Qi.   

ii. So, the expected total number of GWS SNPs is given by 

E(p) = Σi [(p.Pi + (1-p)Qi] 

And its variance by   

V(p) = Σi [(p.Pi + (1-p)Qi) . (p(1-Pi)+(1-p)(1-Qi)) 

iii. The maximum likelihood estimator of p is the value of p for which E(p) is 
equal to the observed number of GWS SNPs, O. If O is larger than 
E(p=1) then this is set equal to 1. 

iv. The 95% confidence interval for p is the set of values of p for which E(p) 
is not significantly different from O. That is: (O-E(p))2/V(p) <3.841 

 

Background selection effects on traits under negative selection 

The following theoretical analysis aims to characterise how the action of background 
selection (BGS) can influence the magnitude and frequency of effects that can be 
detected by GWA studies of negatively selected complex traits. Assuming that rates 
and distributions of mutational effects are evenly distributed over the genome, we 
conclude that genome regions under strong BGS can contribute more to heritability 
than regions under moderate BGS. This conclusion does not hold for neutral traits, for 
which the expectation is exactly the opposite.  

Detecting genotypic effects in a case-control GWAS design 



For the sake of simplicity we initially consider a haploid population of size n, in which 
the focus is on a pair of SNPs: One of them (x = [x1, x2,..xn]) is neutral and the other 
one (y = [y1, y2,…,yn]) has an effect on a quantitative trait. Let xj be the dosage (0 vs. 
1) of the reference allele of the neutral SNP on individual j and yj the dosage of the 
risk allele for the causal SNP in the same individual. The risk allele has an effect on a 
quantitative trait that correlates negatively with fitness. Let pj be the phenotypic value 
of individual j and, also, let α⋅yj be the genotypic value contributed by the causal SNP, 
where α is the average effect of the allele substitution. Finally, let r2 be the squared 
correlation of the allele dosages of both SNPs25: 

𝑟𝑟2 = 𝑐𝑐𝑐𝑐𝑐𝑐2(𝑥𝑥,𝑦𝑦)
𝜎𝜎𝑥𝑥2∙𝜎𝜎𝑦𝑦2

, where 𝜎𝜎𝑥𝑥2 and 𝜎𝜎𝑦𝑦2 are variances of x and y, respectively. 

The expected χ2 association test value between the neutral SNP and the phenotypic 
value in a sample of 2n haploid individuals is 

 𝐸𝐸[𝜒𝜒2] = 2𝑛𝑛 ∙ 𝐸𝐸 �
𝐶𝐶2(𝑥𝑥,𝑝𝑝)
𝑉𝑉𝑥𝑥 ∙ 𝑉𝑉𝑝𝑝

�, 

where 𝐶𝐶(𝑥𝑥,𝑝𝑝), Vx and Vp are the covariances and variances of x and p observed in the 
sample (dosage of the neutral SNP allele and phenotypic value of the individual, 
respectively). This expectation can be given in terms of the true variances and 
covariances of the population, where 𝜎𝜎𝐴𝐴𝐴𝐴2 = 𝜎𝜎𝑦𝑦2 ∙ 𝛼𝛼2 = 𝑞𝑞(1 − 𝑞𝑞)𝛼𝛼2 is the genetic 
variance contributed by the causal SNP with risk-allele frequency q26. Using the 
approximation �(1 − 𝑟𝑟2)/2𝑛𝑛 for the standard deviation of the correlation coefficient 27, 
the well-known set of equations for the expected χ2 in GWA studies are obtained: 

𝐸𝐸[𝜒𝜒2] = 2𝑛𝑛 ∙ �
𝑐𝑐𝑐𝑐𝑐𝑐2(𝑥𝑥,𝑝𝑝)
𝜎𝜎𝑥𝑥2 ∙ 𝜎𝜎𝑝𝑝2

∙ �1 −
1

2𝑛𝑛
� +

1
2𝑛𝑛
� =

𝑐𝑐𝑜𝑜𝑜𝑜2(𝑥𝑥,𝛼𝛼𝛼𝛼)
𝜎𝜎𝑥𝑥2 ∙ 𝜎𝜎𝑝𝑝2

∙ (2𝑛𝑛 − 1) + 1 = 

 

𝛼𝛼2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐2(𝑥𝑥,𝑦𝑦)
𝜎𝜎𝑥𝑥2 ∙ 𝜎𝜎𝑝𝑝2

∙ (2𝑛𝑛 − 1) + 1 =
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𝜎𝜎𝑥𝑥2 ∙ 𝜎𝜎𝑝𝑝2
∙
𝜎𝜎𝐴𝐴𝐴𝐴2

𝜎𝜎𝐴𝐴𝐴𝐴2
∙ (2𝑛𝑛 − 1) + 1 = 
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𝛼𝛼2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐2(𝑥𝑥,𝑦𝑦)
𝜎𝜎𝑥𝑥2 ∙ 𝛼𝛼2 ∙ 𝜎𝜎𝑦𝑦2

∙ ℎ𝑦𝑦2 ∙ (2𝑛𝑛 − 1) + 1. 

𝐸𝐸[𝜒𝜒2] = 𝑟𝑟2 ∙ ℎ𝑦𝑦2 ∙ (2𝑛𝑛 − 1) + 1 = 𝑟𝑟2 ∙
𝑞𝑞(1 − 𝑞𝑞)𝛼𝛼2

 𝜎𝜎𝑝𝑝2
∙ (2𝑛𝑛 − 1) + 1. 

In this set of equations, ℎ𝑦𝑦2 is the true heritability attributable to the causal SNP and 
𝑟𝑟2 ∙ ℎ𝑦𝑦2 =  ℎ𝑥𝑥2 is the heritability that is explained by the neutral SNP. These heritabilities 
are defined here for haploid genomes. However, considering a diploid organism, the 



corresponding heritability is slightly smaller than twice the haploid heritability (by a 
factor 1/2n) because haploid effects are negatively correlated within diploids due to 
sampling:  

𝐸𝐸[𝜒𝜒2] = 𝑟𝑟2 ∙
𝑞𝑞(1 − 𝑞𝑞)𝛼𝛼2

 𝜎𝜎𝑝𝑝2
∙ (2𝑛𝑛 − 2) + 1 = 𝑟𝑟2 ∙

2𝑞𝑞(1 − 𝑞𝑞)𝛼𝛼2

 𝜎𝜎𝑝𝑝2
∙ (𝑛𝑛 − 1) + 1. 

Now we consider specifically schizophrenia, which is traditionally analysed as a case-
control trait. For such traits, the underlying phenotype is the susceptibility to the 
disorder (liability), which can be assumed to be normally distributed with a 
variance 𝜎𝜎𝑝𝑝2 = 1. Assuming that the population prevalence of schizophrenia is k = 
0.007 28, a causal SNP for which the heterozygote increases susceptibility in ∆k = 1%1 
has an effect on population prevalence of: 

𝑘𝑘 + 𝑘𝑘 ∙ Δ𝑘𝑘 ≈ 𝑘𝑘 + α ∙ 𝑧𝑧 = 𝑘𝑘 + 𝛼𝛼 ∙ 𝑖𝑖 ∙ 𝑘𝑘. 

Here, p is the phenotypic value, z is the density of the normal distribution at the liability 
threshold and i is the mean phenotypic liability of the affected group. These variables 
are illustrated in a standard liability threshold model below29: 

 

From the previous equations, the substitution effect α measured on the liability scale 
is: 

𝛼𝛼 =
Δ𝑘𝑘
𝑖𝑖

=
0.01

2.784
= 0.0036 liability units. 

                                            
1 The equation OR = (1 + Δ𝑘𝑘) (1 − 𝑘𝑘) (1 − 𝑘𝑘(1 + Δ𝑘𝑘))⁄  can be used to transform susceptibility increases into 
odds-ratios. In this case, ∆k =1% is equivalent to a marker OR = 1.011 for schizophrenia. 



In the present manuscript we describe a meta-analysis of schizophrenia GWAS data 
of n = 105,318 selected individuals: 40,675 cases and 64,643 controls. In this sample, 
the observable prevalence of schizophrenia is increased 55 times with respect to the 
population prevalence (from k = 0.007 to k’ = 0.386). This causes that, for a SNP of ∆k 

= 1% (as in the previous example), the effect in the sample must be computed from a 
prevalence of 38.6% (i’ = 0.991): 

𝛼𝛼′ =
Δ𝑘𝑘
𝑖𝑖′

=
0.01

0.991
= 0.0101 liability units. 

According to the sample characteristics, the χ2 expected value is 

𝐸𝐸[𝜒𝜒2] = 𝑟𝑟′2 ∙ 2𝑞𝑞′(1 − 𝑞𝑞′) ∙ 𝛼𝛼′2 ∙ (𝑛𝑛 − 1) + 1 = 𝑟𝑟′2 ∙ 2𝑞𝑞′(1 − 𝑞𝑞′) ∙ 𝛼𝛼′2 ∙ 105317 + 1. 

The term q’ stands for the frequency of the risk allele of the causal SNP in the sample, 
and it is expected to be close to its frequency in the population unless the effect ∆k is 
very large, so 𝑞𝑞′ ≈ 𝑞𝑞[1 + Δ𝑘𝑘(𝑘𝑘′ − 𝑘𝑘)]. Consequently, variances, covariances and, 
particularly, correlations of allele dosages in the sample are not expected to be very 
different from the corresponding values in the population.   

A rough approximation can be made for the statistical power of the present 
experiment. The critical value for a χ2 -distribution with 1df for a typical genome-wide 
significance threshold of 5 x 10-8 is 29.72. Using this threshold, the non-centrality 
parameter (NCP) of a χ2 distribution which gives a 5% probability of detection is 14.50. 
So, for the aforementioned SNP to be detected with that probability in this GWA study, 
the following condition must be met: 

14.50 < [𝑟𝑟′2 ∙ 𝑞𝑞′(1 − 𝑞𝑞′) ∙ 𝛼𝛼′2 ∙ 2 ∙ 105317 + 1], therefore 

𝑟𝑟′2 ∙ 𝑞𝑞′(1 − 𝑞𝑞′) ∙ 𝛼𝛼′2 > 6.409 ∙ 10−5. 

Given that the maximum values of 𝑟𝑟′2 and q´(1 – q´) are 1 and 0.25 respectively, the 
minimal α' effect needed for detection is 𝛼𝛼′ = 0.016, which corresponds to ∆𝑘𝑘= 0.016 ∙
0.991 ≈ 0.016 and a substitution effect in the population 𝛼𝛼 = ∆𝑘𝑘/𝑖𝑖 = 0.016/2.784 =
0.006. This is equivalent to a theoretical SNP with OR = 1.017 and MAF = 50%. SNPs 
with smaller allele frequencies should have larger phenotypic effects to have minimal 
chances of being detected at this significance threshold. Note that the NCP of a GWAS 
marker can also be related to other parameters such as the disease risk model and 
the sample case/control ratio30, but for simplicity these have been omitted from our 
calculations. 

Detecting associations with causal SNPs in schizophrenia 

Schizophrenia has been shown to cause a reduction in fertility rate of Rf = 0.6531; 
average in both genders. Assuming a linear effect model on fitness32, a detectable 
SNP with an effect α of 0.016 liability units in the meta-analysis (∆k = 0.01 in the 
population) has a selection coefficient of:  



s = ∆k·k·Rf = 0.01·0.007·0.65 = 0.00004. 

It is known that mutations with deleterious effects larger than s = 1/2Ne, where Ne is 
the effective population size, are under active negative selection. In this model, it is 
expected that the larger the effect of the allele on the trait is, the lower the range of 
the randomly fluctuating frequency will be33. This establishes a negative correlation 
between Ne and the frequency of causal variants. Therefore, it would be unlikely to 
find large-effect alleles at common frequencies in large populations, as has been 
consistently shown in human complex traits and psychiatric disorders in particular34.  

Genetic drift also affects the correlation between SNPs, which reflects their linkage 
disequilibrium. The expected r2 values of a new mutation with other SNPs are initially 
of the order of 1/2Ne. This value is not reduced every generation by recombination as 
might be intuitively thought, but it is increased by drift up to a maximum value35: 

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚2 = 1
1+4𝑁𝑁𝑒𝑒𝑐𝑐

, where c is the recombination rate. 

Summing up, genetic drift affects the probability of detection of causal effects on 
negatively selected traits in two ways. Firstly, it increases the expected frequencies of 
deleterious mutations. Secondly, it increases the expected correlation between pairs 
of loci. As indicated above, the product of both terms q and r2 are included in the 
equation for the expected χ2 in GWA studies. Note that, within some parameter 
ranges, the detection of causal effects for negatively selected traits could be increased 
in populations with small Ne, as these might harbour alleles of larger effect at higher 
frequencies and stronger LD. This effect is not expected for neutral traits because the 
amount of neutral variation, including variation for neutral traits, is proportional to Ne, 
which largely compensates the contrary but relatively small effect of Ne on r2. 

The same rationale can be extended to the effect of background selection (BGS) on 
detection of causal effects at different genome regions. The large-scale differences in 
the amount of neutral variation at genome regions are well explained by the BGS 
model: Selection on deleterious variants reduces variation at linked neutral sites in a 
way that is nearly equivalent to a reduction in Ne36,37, with all of its associated effects. 
Genome regions with reduced Ne would have increased contributions to variation 
which can be effectively detected by GWAS of negatively selected traits. 

Simulation Study 1  

Reductions in Ne allow schizophrenia risk variants to persist at common frequencies 
and explain more heritability 

For testing the feasibility of detecting causal alleles in regions under BGS, pairs of 
causal-neutral biallelic loci were simulated for ten Ne values evenly distributed from 
4500 to 45000 diploid individuals. This range of population sizes accounts for the 
estimations of the effective size of human populations from the out-of-Africa event to 
current times38, and also represents a possible range of differences between genome 



regions. As it will be shown, the general conclusions are not expected to change for 
combinations of parameters out of this range. For each Ne value, ten effects evenly 
distributed from α = 0.02 to 0.2 were simulated. Assuming the aforementioned 
prevalence for schizophrenia of k = 0.007, these α values represent odds ratios from 
OR = 1.06 to OR = 1.62, which are within the ranges detected by GWAS up to this 
date. The corresponding selective value s for each α was calculated as indicated 
above (s = ∆k·k·Rf ) using the reduction in fertility value of Rf = 0.65 and Δ𝑘𝑘 = 𝛼𝛼 ∙ 𝑖𝑖, 
where 𝑖𝑖 = 2.784 as determined by the prevalence. Different recombination rates 
between the two loci were considered, but since the general trend does not change 
with differences in recombination, only the average rate c = 0.000225 between neutral 
SNPs and causal candidates detected in the study was simulated for the whole set of 
10 x 10 combinations of Ne and α values. This value of c is equivalent to a linkage 
between both SNPs of r2 ≈ 0.1, which is a commonly used value for LD-based clumping 
of GWAS results and is assumed to capture the majority of putatively causal SNPs at 
each locus39. 

Each combination of parameters was run for 108 generations. Every time an allele was 
lost, the same allele was reintroduced in the population as a single copy, but the results 
were re-scaled proportionally to Ne. Thus, the number of mutation events was 
proportional to Ne and the rate of mutation was the same for all the different effects. 
Each generation, frequencies at both loci and correlation between loci were computed. 
These were used to calculate the expectation 𝐸𝐸[𝜒𝜒2] using a substitution effect α’ 
equivalent to a selected sample with the increased meta-analysis prevalence 
described in this work (k’=0.386). From that expectation, the probabilities of obtaining 
values of χ2 > 29.72 (significant at the level 5•10-8) were in turn computed using the 
non-central χ2 distribution for two sample sizes (n = 30,000 and n = 100,000) which 
are similar to the two GWAS described in the main manuscript. These probabilities 
were used to calculate two parameters: First, the product f(1 – f), where f is the 
frequency of a neutral SNP that is significantly associated with the trait 
(Supplementary Note Figure 1). Second, the product of the sum of probabilities of 
detection of the effect allele over generations, until the neutral SNP is lost or fixed, 
multiplied by f(1 – f)r2 (Supplementary Note Figure 2). This product is proportional to 
ℎ𝑥𝑥2/𝛼𝛼2, the expected heritability explained by a neutral SNP relative to the squared 
substitution effect.  

Two main and related conclusions can be obtained from the simulations. First, for any 
particular effect α (OR in the figures), the frequencies of SNPs significantly associated 
with causal effects increase as Ne decreases. This is coincident with the observation 
of the abundance of common SNPs at genome regions under strong BGS. Secondly, 
the contribution to heritability increases for decreasing Ne, which supports the 
mechanism proposed to explain the relationship between genomic regions under BGS 
and schizophrenia risk loci. 



An additional block of simulations of 10 x 10 combinations of Ne and α values was 
carried out for the same combination of parameters, but this time for a neutral trait (Rf 
= 0). The results show a completelly different pattern: First, the product f(1 – f) does 
not change with Ne (Supplementary Note Figure 3). Second, the explained heritability 
tends to increase as Ne increases (Supplementary Note Figure 4). This allows us to 
predict that genome regions under strong BGS contribute less to the heritability of 
neutral traits than weakly selected regions, which is congruent with the expectation of 
increasing levels of neutral variation as Ne increases.  

 

        

SUPPLEMENTARY NOTE FIGURE 1. Average product f(1 – f) of allele frequencies at neutral SNPs significantly 
associated with effects on schizophrenia (vertical axis and colour scale). Two sample sizes are shown: n=30,000 
(left) and n=100,000 (right). The surface is given as a function of Ne and the odds ratio (OR) of the causal SNP, 
which is derived from the corresponding effect α in the population (see text). 

           

            

SUPPLEMENTARY NOTE FIGURE 2.  Relative contributions to the heritability of the SNPs significantly associated 
with effects (f[1 – f]r2) in the schizophrenia simulations. Note that these contributions must be multiplied by 𝛼𝛼2 to 
obtain the absolute contribution to heritability. Two sample sizes are shown: n = 30,000 (left) and n = 100,000 
(right). Notice that the scale in which this statistic is reported is arbitrary but both plots have the same scale and 
can be compared. 



       

SUPPLEMENTARY NOTE FIGURE 3. Average product f(1 – f) of allele frequencies at neutral SNPs significantly 
associated with effects on a neutral trait (vertical axis and colour scale). Two sample sizes are shown: n = 30,000 
(left) and n = 100,000 (right). The surface is given as a function of Ne and the odds ratio (OR) of the causal SNP, 
which is derived from the corresponding effect α in the population (see text). 

 

       

SUPPLEMENTARY NOTE FIGURE 4. Relative contributions to the heritability of the SNPs significantly associated 
with effects (f[1 – f]r2) in the neutral trait simulations. Note that these contributions must be multiplied by 𝛼𝛼2 to obtain 
the absolute contribution to heritability. Two sample sizes are shown: n = 30,000 (left) and n = 100,000 (right). 
Notice that the scale in which this statistic is reported is arbitrary but both plots have the same scale and can be 
compared. 

 

  



Simulation Study 2 

Reduction in Ne due to negative selection is caused by BGS and allows for improved 
detection of risk alleles in GWAS settings 

The following study describes computer simulations which illustrate that BGS can also 
increase the probability of detecting causal SNPs for a quantitative trait in a GWAS 
setting. It does not intend to be a comprehensive study regarding a range of different 
scenarios and parameters, but to support the feasibility of the BGS effect in generic 
negatively-selected traits which might not fit to a liability threshold model. 

Forward individual simulations were carried out using the software SLiM40 for a diploid 
population of constant size N = 1,000 individuals, run for 100,000 generations. A single 
genome sequence of 1Mb was assumed where mutations occurred at a rate μ = 10–7 
per-nucleotide and generation. The recombination rate between nucleotides was 
assumed to be c = 10–8, constant across the whole sequence, implying an average 
value of 1cM per 1Mb. 

Mutations were assumed to appear at random along the sequence such that 74% of 
mutations were neutral, 24% were assumed to be deleterious for fitness with a 
homozygous effect obtained from an exponential distribution with mean s. Five 
different scenarios were considered using a range of mean values of s (0, 0.0001, 
0.001, 0.01 and 0.1) in order to simulate different magnitudes of BGS. The remainder 
1% mutations were assumed to be slightly deleterious, with a constant selection 
coefficient s = 0.001 (2Ns = 2), and to be true quantitative trait loci (QTL) with an effect 
of one environmental standard deviation. All effects, both for fitness and for the 
quantitative trait were assumed to be additive. Phenotypes of individuals for the 
quantitative trait were obtained adding a normal environmental deviation to the 
genotypic value. 

In the last generation a sample of 100 individuals was taken from the population and 
a GWAS was performed using PLINK, discarding variants with frequency smaller than 
MAF = 1%. The number of SNPs analysed varied from about 4,000 (s = 0) to about 
2,000 (s = 0.1). 

In order to compare the probability of detection of causal SNPs under different levels 
of BGS, the top twenty SNPs with the lowest probability from the GWAS analysis were 
considered, and the number of true causal QTLs in these 20 SNPs was recorded. To 
quantify the magnitude of the genomic reduction in effective population size due to 
BGS the nucleotide diversity (π) was scored for all neutral SNPs. Each scenario was 
replicated 1,000 times. 

As expected, negative selection was found to result in a reduction in neutral diversity, 
which is a clear signature of the BGS process and is related to genomic Ne 
(Supplementary Note Figure 5). Such a reduction was paired with an increased 
number of detected QTLs (Supplementary Note Figure 6). For strong values of the 



selection coefficient (s = 0.1), however, both effects were weaker than for intermediate 
values (s = 0.01), as mutations of large effect do not result in strong BGS because 
they persist less time in the population. 

 

 

SUPPLEMENTARY NOTE FIGURE 5.  Average neutral nucleotide diversity for scenarios with different mean 
selection coefficients of deleterious mutations, where s = 0 implies no BGS. Bars indicate one standard error for 
the mean across replicates.  

 

 

SUPPLEMENTARY NOTE FIGURE 6. Percentage of causal variants (QTLs, mutations affecting the quantitative 
trait) found by GWAS within the 20 top SNPs according to their probability for scenarios with different mean 
selection coefficients of deleterious mutations, where s = 0 implies no BGS. Bars indicate one standard error for 
the mean across replicates.  
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 Detail of samples included in the present study 

 
Samples marked with an asterisk * were included in the PGC schizophrenia study 1; 
all other samples have not previously been reported in schizophrenia GWAS  
 
Summarized description of control samples 

WTCCC2: Wellcome Trust Case-Control Consortium unscreened controls from the 
UK Blood Bank and 1958 Birth Cohort (NCDS).  
 
Cardiff Controls: Unscreened blood donor controls recruited in Wales by Cardiff 
University in collaboration with the NHS Blood and Transplant Authority.   
 
Generation Scotland: Samples from individuals recruited by the Generation Scotland 
Scottish Family Health Study (GS:SFHS). While in the original design there was no 
selection on the basis of medical status or history, these controls have been screened 
for psychiatric disorders using SCID criteria. 
 
T1DGC: Unscreened controls used by the Type 1 Diabetes Genetics Consortium, 
recruited in the UK through the 1958 Birth Cohort. This recruitment was intended to 
be independent from WTCCC2, though any sample overlaps were addressed by the 
GWAS QC pipeline (see Online Methods). 

Samples in the CLOZUK study 

DATASET Samples in GWAS Genotyping chip Reference 

CLOZUK1 5,528 OmniExpress 24* 

CardiffCOGS1 512 OmniExpress 12* 

CLOZUK2 4,973 OmniExpress This study 

CardiffCOGS2 247 OmniExpress This study 

WTCCC2 4,641 Illumina 1.2M  41,42* 

Cardiff Controls 1,078 OmniExpress 43* 
Generation 

Scotland 6,480 OmniExpress 44 

T1DGC 2,532 HumanHap 550 45 

POBI 2,516 Illumina 1.2M 46,47 

TWINSUK 2,426 Illumina 317/610/660/1M 48 

QIMR  2,339 Illumina 317/610/660 49,50 

TEDS 1,752 OmniExpress 51 

GERAD 778 Illumina 660 52 



POBI: Individuals genotyped for the “People of the British Isles” project, which 
collected samples from geographically diverse rural communities throughout the UK. 
The sample is unscreened for psychiatric illness and was recruited from predominantly 
older age brackets (mode 60-69 years at time of collection). 
 
TWINSUK: This sample consists of individuals recruited through the Twins Health 
Registry of the Department of Twin Research of King’s College London. The samples 
included in this study were unrelated and screened for self-reported psychiatric 
disorders. We selected one individual randomly from each twin pair. 
 
QIMR: This sample is a mixture of controls screened for Major Depressive Disorder 
(MDD) and unscreened controls from an Australian community sample. Unrelated 
individuals included in this study were ascertained through studies of twin families. 
 
TEDS: Individuals recruited through the Twins Early Development Study. The sample 
is formed by selected unrelated individuals from the original twin-based design. 
Though unscreened for psychiatric disorders, these individuals had no severe medical 
problems nor suffered severe problems peri- or postnatally. 
 
GERAD: This sample was obtained from the Genetic and Environmental Risk for 
Alzheimer’s disease (GERAD) Consortium. All of these controls were elderly and 
screened for dementia using the MMSE or ADAS-cog assessments. 
 

 
Summarized description of replication samples 

deCODE1: The Icelandic sample consisted of cases and controls who were recruited 
and diagnosed in Iceland as previously described53. Diagnoses were assigned 
according to Research Diagnostic Criteria (RDC) using the Schedule for Affective 
Disorders and Schizophrenia Lifetime Version (SADS-L). Controls were recruited as a 
part of various genetic programs at deCODE and were not screened for psychiatric 
disorders. The  study was approved by the National Bioethics Committee and the 
Icelandic Data Protection Authority, and all participants provided written, informed 
consent. 
 

Replication samples 

DATASET Cases Controls Genotyping chip Reference 

deCODE1 681 137,678 HumanHap/OmniExpress 53 

deCODE2 885 924 HumanHap 54 

iPSYCH 3,226 10,583 HumanCoreExome/PsychChip 56,57 

TOP 970 5,039 OmniExpress - 



deCODE2: This sample included cases and controls from Italy, Georgia, Macedonia, 
Russia and Serbia; these individuals were recruited and diagnosed as detailed 
elsewhere54. All studies were approved by local ethics committees, and all participants 
provided written, informed consent. 
 
iPSYCH: The Danish data consists of two samples (GEMS2 and iPSYCH-SCZ). In 
both samples cases were identified from the Danish Psychiatric Central Research 
Register55, and diagnosed with SCZ by a psychiatrist according to ICD10. Eligible were 
singletons born to a known mother and resident in Denmark on their one-year birthday. 
Samples were linked using the unique personal identification number to the Danish 
Newborn Screening Biobank at Statens Serum Institute, where DNA was extracted 
from Guthrie cards and whole genome amplified in triplicates as described previously 
56,57. The study was approved by the Danish regional scientific ethics committee and 
the Danish data protection agency.  
 
TOP: Thematically Organized Psychosis (TOP) Study cases participating in the 
current study were mainly included from the Therapeutic Drug Monitoring laboratory 
at Diakonhjemmet Hospital, Oslo. This laboratory is used for monitoring of nearly all 
schizophrenia patients treated with clozapine and other antipsychotics in the region. 
We obtained anonymous aliquots of the blood samples collected as part of the regular 
blood monitoring and DNA was extracted and used in the current study based on 
approval from the Regional Committee for Medical and Health Research Ethics. The 
healthy controls were randomly selected from statistical records of persons from the 
same catchment area as the cases. Participants were between 18-60 years old and 
healthy based on clinical examination and disease history, and none had any history 
of severe mental disorders, head injury, neurological disorders, illicit drug use, close 
relatives with severe mental disorder or medical problems that somehow could 
interfere with brain function. All participants provided written informed consent and the 
human subjects protocol was approved by the Regional Committee for Medical and 
Health Research Ethics and the Norwegian Data Protection Agency. In addition, 
healthy blood donors from the same region were included in the control sample. They 
were all thoroughly screened for diseases, and provided blood for DNA analysis, in 
line with approval from the Regional Committee for Medical and Health Research 
Ethics. 
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Supplementary Figure 1 

 
Population structure of the complete CLOZUK dataset. A: PCA showing cases and 
controls, notice the large spread in the cases. B: ADMIXTURE plot (K=3), names of 
ancestral components represent the most similar 1KGPp3 superpopulation. C: PCA 
showing the individuals finally selected for the GWAS. 



Supplementary Figure 2 

 
Population structure of the CLOZUK subset selected for the GWAS. A: PCA showing 
cases and controls, notice the profiles are almost completely overlapping. B: 
ADMIXTURE plot (K=3), names of ancestral components represent the most similar 
1KGPp3 superpopulation. 



Supplementary Figure 3 

 

QQ plot of CLOZUK and PGC2 meta-analysis. 



Supplementary Figure 4 

 

Index SNP p-values for all clumps in the meta-analysis (CLOZUK+PGC) compared 
with PGC. Dotted lines show the genome-wide significant threshold for the two 
datasets. The red line indicates a null of equal p-values in both datasets, and thus 
index SNPs to the left of this line (toward y axis) show increased significance in our 
meta-analysis. All clumps in the xMHC have been excluded from this plot.



Supplementary Figure 5 

 

Schizophrenia association for genes within bins of pLI, an ExAC-based measure of intolerance to functional sequence variation. Bins 
are based on increasing 0.1 intervals of the statistic, and thus all LoF-intolerant genes (defined as pLI > 0.9) are in bin 10.       P-
values correspond to the statistical significance of a MAGMA competitive gene-set analysis.  



Supplementary Figure 6 

 

Schizophrenia SNP-based heritability enrichment, as estimated by LDSR, is influenced by the intensity of background selection (“B”) 
and the genomic location. Error bars indicate enrichment standard errors. Asterisks indicate the significance of enrichment for each 
group of SNPs (* <= 0.05; ** <= 0.01<; *** <= 0.001). 



Supplementary Figure 7 

 

QQ Plot of the CLOZUK GWAS. 



Supplementary Figure 8 

 

Manhattan plot of the CLOZUK GWAS (N=35,802; 11 260 cases, 24,542 controls). 






	CLOZUK GWAS revised manuscript FINAL
	RESULTS
	GWAS and Meta-analysis
	Mutation intolerant genes
	Common risk alleles in regions under background selection
	Systems genomics
	Systems genomics and mutation intolerant genes
	Data-driven gene set analysis
	Identifying likely candidates within associated loci

	DISCUSSION
	REFERENCES
	ACKNOWLEDGEMENTS
	METHODS
	GWAS and reporting of independently-associated regions
	Meta-analysis with PGC
	Replication of new GWAS loci
	Estimation and assessment of a polygenic signal
	Gene set analysis
	Partitioned heritability analysis of gene sets
	Natural selection analyses
	Analysis of other phenotypes
	Finemapping, Hi-C and SMR


	Copy of Supplementary Tables
	Index

	Supplementary Note
	Case sample collection
	Case sample validation
	Validation of Clinical Diagnosis
	Genetic Molecular validation of CLOZUK as a schizophrenia dataset

	Control sample collection
	Genotype quality-control (QC)
	Estimating the proportion of true positives in PGC GWAS loci
	Detailed procedure

	Background selection effects on traits under negative selection
	Detecting genotypic effects in a case-control GWAS design
	Detecting associations with causal SNPs in schizophrenia
	Simulation Study 1
	Simulation Study 2

	Detail of samples included in the present study
	Summarized description of control samples
	Summarized description of replication samples

	References
	Supplementary Figure 1
	Supplementary Figure 2
	Supplementary Figure 3
	Supplementary Figure 4
	Supplementary Figure 5
	Supplementary Figure 6
	Supplementary Figure 7
	Supplementary Figure 8

	Figure 1
	Figure 2

