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Cultural effects on computational 
metrics of spatial and temporal 
context
Nicholas D. Wright1, Jan Grohn  2, Chen Song  3,4, Geraint Rees  5,6 & Rebecca P. Lawson  5,6,7

The concept of “prediction error” - the difference between what occurred and was expected - is key to 
understanding the cognitive processes of human decision making. Expectations have to be learned 
so the concept of prediction error critically depends on context, specifically the temporal context 
of probabilistically related events and their changes across time (i.e. volatility). While past research 
suggests context differently affects some cognitive processes in East Asian and Western individuals, 
it is currently unknown whether this extends to computationally-grounded measures of learning 
and prediction error. Here we compared Chinese and British nationals in an associative learning task 
that quantifies behavioural effects of prediction error, and—through a hierarchical Bayesian learning 
model—also captures how individuals learn about probabilistic relationships and their volatility. For 
comparison, we also administered a psychophysical task, the tilt illusion, to assess cultural differences 
in susceptibility to spatial context. We found no cultural differences in the effect of spatial context on 
perception. In the domain of temporal context there was no effect of culture on sensitivity to prediction 
error, or learning about volatility, but some suggestion that Chinese individuals may learn more readily 
about probabilistic relationships.

Neuroscience has made substantial advances in understanding the processes by which humans perceive and 
respond to the environment. Importantly, using computational approaches to model and quantify such cog-
nitive processes allows an objective assessment of otherwise subjective reports, and provides unified explana-
tions of diverse behavioural phenomena1–5. Central to understanding perception and decision making is the 
concept of “prediction error”—the difference between what occurred and was expected6,7. Previous cross-cultural 
studies employing subjective reports of prediction error show that East Asians are less susceptible to predic-
tion errors than Westerners. For instance, South Koreans report less surprise than Americans after unexpected 
outcomes in vignettes8; and in the U.S., people born in East Asia report less pleasure and surprise at an unex-
pected gift than those U.S. born9. Whether these subjective reports of cross-cultural differences also apply to 
the objectively measured behavioural and computational aspects of prediction errors is unknown. Here we 
employed computationally-grounded measures to assess susceptibility to prediction error and characterise any 
cross-cultural differences.

A prominent idea in the cross-cultural literature is that people from East Asia (mostly referring to people 
from China, Japan, or Korea) think more holistically than people from the West (mostly referring to European 
North Americas)10,11. At the heart of this distinction is a difference in how context is incorporated into perceiving 
and responding to the environment. East Asians tend to show more context-dependence than Westerners across 
diverse cognitive domains10. This ranges from being more sensitive to what appears behind or around a stimulus 
(i.e. spatial context)12,13, to having a greater sense of dependency between two temporally separated events (i.e. 
temporal context)14. Furthermore, many psychological studies indicate that people from East Asian cultures, 
being more holistic “big picture” thinkers, are more inclined to expect change to occur across time, and therefore 
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show more tolerance of contradiction (see15 for a review), which aligns with subjective reports of diminished 
surprise8,9. Expectations have to be learned across time, and so the concept of prediction error critically depends 
on temporal context.

Previous research suggesting that Chinese participants are better calibrated to the probabilistic association 
between two temporally dissociated stimuli14, and also update their beliefs more readily on the basis of feedback16, 
could be consistent with faster learning of probabilistic relationships in the environment. Additionally, the rate at 
which probabilistic relationships change over time (i.e. volatility) is a form of temporal context that humans learn 
about in order to determine when a prediction error indicates that prior beliefs should be revised17–22 (e.g. faster 
belief updating when conditions are estimated to be volatile). Work suggesting that Chinese participants are more 
likely than Western participants to predict that previous conditions will reverse23, could reflect a greater expecta-
tion for volatility or a general tendency to better tolerate changes in volatility. Despite the fact there are established 
computational models that capture how humans learn to build expectations under conditions of environmental 
change17–22, no studies have examined cross-cultural differences in these mechanisms computationally.

To assess whether cultural differences in context dependence extend to these temporal domains, we employed 
an established probabilistic associative learning paradigm that assays the behavioural effects of prediction error 
as a function of learned expectations. Furthermore, we applied a hierarchical Bayesian learning model to capture 
individual differences in learning across trials17–21. To interrogate different aspects of temporal context in both 
Chinese and British participants we compared (1) behavioural metrics of prediction error (averaged across all 
trials), and computational measures of (2) learning about probabilistic relationships and (3) learning about the 
rate at which these relationships change (i.e. volatility). We hypothesised that objective measures of behavioural 
prediction error would support previous work using subjective reports8,9, and Chinese participants would show 
reduced effects of prediction error on reaction times (RT). This would correspond to a faster RT to respond to 
unexpected stimuli in our task. Second, we predicted that learning rates from the computational model will indi-
cate that Chinese learn more readily than Westerners about probabilistic associations, consistent with work indi-
cating greater sensitivity to covariation14. Lastly, if Chinese participants anticipate greater rates of environmental 
change, we predicted an effect of culture on volatility learning. This would manifest as either a greater volatility 
learning rate, reduced learning rate update in response to volatility (indicating greater tolerance of change) or 
cultural differences in the effect of volatility on behaviour (RTs). The hierarchical Bayesian model adopted here 
permits testing of each prediction.

Finally, we note that it is poorly understood whether cultural impacts on an individuals’ degree of context 
dependence generalises across multiple domains. Thus, here we also extend the cross-cultural literature on spatial 
context effects in visual perception by assaying the same participants’ context dependence in an established and 
psychophysically characterised ‘tilt illusion’ task. We hypothesised that culture will affect the magnitude of the 
spatial context effect in this perceptual task, and if individual differences in spatial and temporal context depend-
ence are domain general then the impact of temporal context dependence in the probabilistic associative learning 
task may predict the effect of spatial context in the tilt illusion task.

Results
Temporal context: behavioural prediction errors. We used a common probabilistic associative learn-
ing (PAL) task17,20,21 to test the impact of violated expectations (i.e. prediction errors) on reaction times (RT)21 
in Chinese nationals (n = 36) and age, gender, and IQ matched British nationals (n = 36) (see methods for full 
participant details and a priori power analysis to determine sample size).

On each trial, participants performed binary classification of images of faces and houses. A tone preceding 
each image was either highly-, non- or weakly-predictive of a given outcome (face or house; Fig. 1a), and these 
associations changed across time (Fig. 1b). As such, trials were classified according to whether the image was 
expected, neutral or unexpected. Although we had no specific hypotheses about the effect of culture on process-
ing sensory noise, to optimise the task to reveal the effects of expectations on behaviour we orthogonally varied 
the uncertainty of each outcome image with three levels of noise (low, medium, high)21.

Analysing the RT data revealed robust behavioural effects consistent with a violation of expectations (pre-
diction errors), but no difference between cultures (Fig. 1c). We analysed the RTs for correct trials in a 3 expect-
edness (unexpected, neutral, and expected) × 3 noise (high, medium, and none) × 2 nationality (Chinese and 
British) mixed ANOVA in which nationality was a between subject factor. Consistent with previous studies21, we 
found significant main effects for noise (F(2,136) = 18.980, p < 0.001, partial η2 = 0.218) and, crucially, expect-
edness (F(2,136) = 80.159, p < 0.001, partial η2 = 0.541). Thus, RTs were longer for increasingly surprising visual 
stimuli (Fig. 1c). There was no main effect of nationality (F(1,68) = 1.045, p = 0.310, partial η2 = 0.015) and no 
significant interactions between nationality and expectedness (F(2,136) = 0.354, p = 0.703, partial η2 = 0.005), 
noise (F(2,136) = 0.700, p = 0.498, partial η2 = 0.010), or expectedness and noise (F(4,272) = 1.069, p = 0.372, 
partial η2 = 0.015).

We also computed log Bayes Factors (logBF10) as an additional test of the effects of nationality, see Methods for 
full details. Bayes Factors provide information with a similar purpose to p-values but are argued to hold advan-
tages24. They provide a more stringent assessment of the strength of evidence for an effect, for example p-values of 
0.05 to 0.01 typically equate to “anecdotal” evidence in terms of Bayes Factors, while moving from “anecdotal” to 
“substantial” evidence generally equates to p-values < 0.0125–27. Further, they enable statements about an alterna-
tive hypothesis, so here can provide evidence for an absence of effect rather than just absence of evidence.

This analysis revealed that the winning model contained only the main effects for noise and expectedness 
(logBF10 = 240.8 ± 0.77%; decisive evidence), and was substantially better (4.07 ± 1.16% times better) than a 
model also containing a main effect of nationality (logBF10 = 239.4 ± 0.86%). The winning model was also deci-
sively better (more than 1300 times better) than all models containing interactions with nationality.
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Temporal context: learning about probabilities and volatility. While the model-agnostic analysis 
above indicates no effects of culture at the level of gross behaviour (collapsed across all trial types), this analysis 
throws away temporal information and therefore does not have the sensitivity to detect individual differences 
in how each participants learn to expect a given outcome across time. Therefore, to investigate learning about 
probabilistic relationships and volatility across cultures we adopted a participant-specific Bayesian model. The 
Hierarchical Gaussian Filter (HGF)18,28 applied here has been used previously for this same task, to examine con-
text dependence in autism21. Please see Lawson et al.21 and the Methods for full model details.

Briefly, learning occurs simultaneously on three coupled levels of an uncertainty hierarchy (x1, x2, and x3). 
Level 1 (x1) addresses learning about stimulus outcomes (face or house), level 2 (x2) addresses learning about 
probabilities (tone-image contingencies), and level 3 (x3) addresses learning about changes in these probabili-
ties across time (volatility). The HGF allows us to infer each individual’s beliefs about these sources of temporal 
context (the perceptual model) and map these beliefs on to their observed RTs (the response model; see Fig. 2a).

Before examining the model parameters, we first fit three alternative learning models to the data and 
compared them to the three level HGF with random-effects Bayesian model selection29. Relative to simple 
reinforcement-learning models with fixed (RW30) and dynamic (SK131) learning rates and a two-level HGF in 
which volatility updates were eliminated, the three-level HGF was the best model for explaining the data (Fig. 2b). 
This is consistent with a recent application of this exact model and task to study context effects in autism21.

The HGF comprises two parts, the response and perceptual models (Fig. 2a), analysed in turn. The response 
model parameters (β0-β4, ζ) capture the effect of trial-wise modelled estimates of surprise, uncertainty, volatil-
ity and decision noise on (log) reaction times. Full details of the β’s in the response model are explained in the 
methods. These trial-wise quantities influenced RTs equivalently in Chinese and British participants, as shown 
by a multivariate analysis of variance (MANOVA) revealing no effect of nationality across all of the response 
model parameters (Pillai’s Trace = 0.04, F(6,64) = 0.448, p = 0.844, partial η2 = 0.04). This is consistent with our 
model-agnostic analysis of behaviour collapsed across all trials (see results above and Fig. 1c).

The perceptual model parameters (ω2, ω3) are the tonic volatilities at their respective levels and indicate, for 
each individual participant, how they learn and see the world. As such, ω3 encapsulates the rate at which volatility 
is estimated to change (i.e. phasic volatility learning rate) and ω2 captures the rate at which probabilities are esti-
mated to change (i.e. probability learning rate). A MANOVA revealed a trend towards a significant multivariate 
effect of nationality on the perceptual model parameters (Pillai’s Trace = 0.074, F(2,68) = 2.71, p = 0.073, partial 

Figure 1. PAL task and behavioural results. (a) Shows one example trial. Participants respond to each image 
and indicate whether it is a face or a house. Example face and house stimuli shown here have no noise added 
to the images. Please see main text for further details. (b) Shows the changing probabilistic associations over 
the course of the experiment, as well as the stable and volatile trial periods. (c) The mean RTs of Chinese 
and British participants by expectedness of the image. RTs increased linearly in both groups with increasing 
unexpectedness, consistent with violation of expectations (prediction errors), but there was no main effect or 
interaction with culture. Error bars represent s.e.m.
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η2 = 0.074). Follow up one way ANOVAs revealed no effect of nationality on ω3 (F(1,69) = 0.36, p = 0.55, 95% CI: 
−1.6–0.8), however Chinese participants had a larger ω2 than British participants (F(2,69) = 5.49, p = 0.02, 95% 
CI: 0.1–1.3; Fig. 2c). Larger ω2 can be understood similarly to a learning rate, and indicates faster updating of 
beliefs about probabilistic relationships in Chinese participants. An additional Bayes Factor analysis is in general 
agreement with these results. A model containing an effect of nationality on ω2 was anecdotally, 2.46 ± 0.00%, 
better than the null, and a model containing an effect of nationality on ω3 was substantially, 3.50 ± 0.01%, worse 
than the null.

These perceptual model parameters also give rise to dynamic learning rates that change trial-to-trial at each 
level (α2, α3; see methods). This enabled us to additionally assess cultural differences in learning as a result of 
contextual changes from stable periods of the task (where the probabilities remain fixed; dark green boxes Fig. 1b) 
to volatile phases of the task (where the probabilities switch multiple times; light green boxes Fig. 1b). When the 
environmental context is volatile people should increase, or update, their learning rate in response to this change 
in environmental statistics, an effect that has been demonstrated across perceptual21, motor32, and reward learn-
ing tasks22,33,34, but not addressed cross-culturally.

Figure 2. Computational model and model based results for PAL task. (a) Shows a schematic of the three level 
HGF model. See main text and methods for full model details. (b) Shows the results of the model comparison. 
(c) Chinese participants tend to have a higher ω2 than British participants, but there are no cultural differences 
in ω3 (d) While all participants increase their learning rates in response to volatility, there is no cultural 
difference in updating either α2 or α3 when switching from stable to volatile task phases. rw = Rescorla Wagner, 
sk = Sutton-K1, HGF 2 = two level HGF, HGF 3 = three level HGF. * denotes group differences with significance 
p < 0.05. Dotted lines show the linear increase in learning rate between stable and volatile task periods for each 
group.
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To address learning about probabilities (α2), a repeated measures ANOVA examining task phase (sta-
ble, volatile) with a between-subjects factor of nationality, revealed a significant main effect of task phase 
(F(1,69) = 125.09, p < 0.001, partial η2 = 0.64), indicating that across all participants, learning rates increase in 
response to volatility (Fig. 2d). There was also a significant main effect of nationality (F(1,69) = 4.22, p = 0.04, 
partial η2 = 0.06), indicating that Chinese participants tend to have a larger overall α2 (a recapitulation of the 
effect of culture on ω2). Crucially, there was no interaction between nationality and task phase, suggesting that 
both Chinese and British nationals update equivalently (F(1,69) = 2.52, p = 0.12, partial η2 = 0.03). An additional 
Bayes Factor analysis also found that the winning model contained the main effects of task phase and nationality 
(logBF10 = 31.7 ± 5.53%). The model won by a margin at the anecdotal level, being 1.11 ± 5.53% times better than 
a model only containing the main effect of task phase (logBF10 = 31.6 ± 0.18%) and 1.68 ± 5.82% times better than 
a model containing also containing an interaction between task phase and nationality (logBF10 = 31.2 ± 1.81%).

An identical analysis for α3, which addresses learning about volatility rather than probabilities (Fig. 2d), again 
revealed a significant main effect of task phase (F(1,69) = 11.62, p = 0.001, partial η2 = 0.14), but no main effect 
of nationality (F(1,69) = 1.59, p = 0.21, partial η2 = 0.02) or interaction (F(1,69) = 2.1, p = 0.15, partial η2 = 0.03). 
An additional Bayes Factor analysis revealed that the winning model provided strong evidence for the main 
effect of task phase (logBF10 = 3.2 ± 0.34%). This model was anecdotally, 1.07 ± 0.63% times, better than a model 
containing both the main effect of task phase and the main effect of culture (logBF10 = 3.1 ± 0.53%), and substan-
tially, 3.48 ± 1.88% times, better than a model also containing the interaction between task phase and culture 
(logBF10 = 2.0 ± 1.85%).

Spatial context: tilt illusion. In addition to the learning task described above, which concerns aspects of 
temporal context in relation to prediction error, we administered a task to formally assess cultural differences in 
spatial context. The tilt illusion occurs when the orientation of a grating surrounding a central stimulus causes 
this central stimulus to appear tilted away from its physical orientation. The tilt illusion is an established measure 
of contextual effects in low level vision and offers a psychophysically robust and biologically informed compli-
ment to previous cross cultural literature examining the effects of background on the perception of14 and memory 
for objects12. The tilt illusion task we employed has previously been shown to illicit large inter-individual differ-
ences across participants35, making it particularly well suited to address potential systematic differences in spatial 
context sensitivity across cultures.

In keeping with previous research, we quantified the tilt illusion magnitude as the orientation difference 
between two physically dissimilar stimuli that appeared perceptually equal in the presence of the surrounding 
context35. See Methods for full task details.

We observed a robust tilt illusion across all participants (Fig. 3c), which was not affected by culture. Tilt 
illusion magnitudes differed from zero overall (F(1,65) = 173.47, p < 0.001, M = −1.342, SD = 0.828, 95%CI: 
−1.5– −1.1) and in both the British (F(1,32) = 82.166, p < 0.001, M = −1.356, SD = 0.859, 95%CI: −1.7– −1.1) 
and Chinese (F(1,32) = 89.129, p < 0.001, M = −1.328, SD = 0.808, 95%CI: −1.6– −1.0) participants. However, 
there was no cultural difference (F(1,64) = 0.01, p = 0.9, 95%CI: −0.4–0.4), a result also confirmed by an 

Figure 3. Tilt illusion task and results. (a) Shows an example trial from the staircase procedure which first 
measured orientation discrimination threshold. Participants indicated whether the stimulus in the second 
interval appeared clockwise or anti-clockwise relative to the stimulus in the first interval. (b) Shows a trial in the 
two alternative forced choice measurement of the tilt illusion magnitude. On each trial, participants indicated 
whether the central stimulus in the second interval, compared with the central stimulus in the first interval, 
appeared clockwise or anti-clockwise. (c) The tilt illusion magnitude did not differ between cultures. Error bars 
show s.e.m.
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additional Bayes factor analysis in which a model containing nationality was substantially, 3.94 ± 0.00% times, 
worse than the null.

Correlations between measures of context across tasks. We examined whether context effects 
were domain-general or specific by testing for pairwise correlations between the different measures of 
context-sensitivity from our two tasks. Tilt illusion magnitude did not correlate with either ω2 (r(63) = 0.020, 
p = 0.87) or ω3 (r(63) = −0.160, p = 0.20), indicating that these assays of temporal and spatial context are rela-
tively domain specific across participants. An additional Bayes factor analysis broadly supports these results, with 
a model just containing the intercept better predicting the tilt illusion magnitude than a model also containing ω2. 
(3.90 ± 0.00% times better; substantial) or than a model also containing ω3 (1.96 ± 0.00% times better; anecdotal).

Discussion
The suggestion that there are cultural differences in the extent to which individuals expect change, process pre-
diction errors, and tolerate contradiction is an enduring one15, but has never before been robustly assessed using 
computational metrics of learning or cognitive tasks that assay reflexive behavioural responses to prediction 
errors. Here we took a computational approach that enabled us to parse components of learning about different 
forms of temporal context in Chinese and British nationals. We identified robust behavioural effects on RT, con-
sistent with prediction error in the probabilistic associative learning (PAL) task, which did not differ between cul-
tures either in our model-agnostic analysis (Fig. 1c) or in the response model parameters from our computational 
analysis. However, we found some evidence that culture might affect learning of probabilistic associations in 
the PAL task, with Chinese individuals learning more quickly about the association between cues and outcomes 
(Fig. 2c). Contrary to previous psychological reports that East Asians tend to expect more change across time, we 
found no effect of culture on formal computational metrics of learning about volatility, and while all participants 
updated their learning in response to sudden fluctuations in environmental contingencies (i.e. switches from 
stable to volatile periods of the task), this effect did not differ between cultures (Fig. 2d). Finally, in the tilt-illusion 
task whilst we again identified marked contextual effects of the spatial surround on the perception of the central 
grating, this spatial context effect did not differ between cultures.

Our finding that behavioural indices of prediction error are similar across Chinese and British nationals is 
important to understand whether emerging Western biological accounts of neuropsychiatric and neurodevel-
opmental conditions, that centrally involve prediction error36–38, can be transferred wholesale to China or vice 
versa. For example, recent studies have begun to use the HGF model to interrogate the neurocomputational basis 
of sensory difficulties in autism21 and hallucinations in psychosis39. Previous work indicates that prediction errors 
(or surprises) are experienced differently between East Asian and Western individuals on the basis of subjective 
impacts measured by self-report8,9. In contrast, we examined implicit behavioural measures of prediction error 
(the brief and reflexive slowing down of RT when expectations are violated), and found no cultural difference. 
One reason for this discrepancy may lie in recent work that has begun to dissociate objective and subjective 
aspects of prediction errors. For example, trial-wise self-reported fluctuations in wellbeing or happiness are com-
putationally well described as a function or recent rewards vs expectations (i.e. reward prediction errors) but 
the prediction errors and raw subjective self-reports are reflected in distinct brain regions40. Future work could 
directly compare effects of culture on objective and subjective aspects of prediction error, and one might predict 
that East Asian nationals will exhibit less subjective impact of prediction errors, but the same magnitude of objec-
tive impact on behaviour or neural responses.

Through the HGF, we were also able to model the temporal evolution of behaviour (RTs) in the PAL task and 
infer individual differences in learning about two different sources of temporal context: probabilistic relationships 
between cues and outcomes; and changes in these associations across time (i.e. volatility). We found no effect of 
culture on overall learning about volatility (Fig. 2c) or changes in learning in response to sudden fluctuations in 
volatility (i.e. switches from stable to volatile periods of the task; Fig. 2d). This contrasts with previous reports that 
East Asian participants expect more change to occur across time. For example, Chinese students indicate with 
higher probability that a current couple will break up, or that who enemies will become lovers in later life23. When 
shown a linear trend line, East Asian participants are more likely to predict a reversal in the trend, compared to 
Western participants who tend to predict further linear increases23. Unlike previous studies we explicitly manipu-
lated changeability in this task (i.e., ground truth structure indicated in Fig. 1b) allowing us to objectively measure 
participant’s estimates of, and responses to, volatility. A recent study applying this task and computational model 
to autistic, vs neurotypical, adults identified robust differences in how volatility is estimated and related to neural 
the integrity of the noradrenaline system21. Again, the dissociation between subjective reports and objective/
neural measurements may be important to reconcile our findings with existing findings in the cross-cultural liter-
ature. For example, it has been suggested that cultural differences in holistic processing may be better understood 
as a “constellation of lay beliefs about the nature of the world, rather than a cognitive style”15. Differences between 
cultures in lay beliefs may become apparent in questionnaires, structured interviews, or open-ended pencil and 
paper tasks, but need not necessarily constitute a fundamental difference in cognitive or neural processing.

However, our model-based analysis tentatively suggests that there may be cultural differences in probability 
learning (Fig. 2c). Such effects need to be replicated in future work: previous high-profile cross-cultural find-
ings in other cognitive domains such as memory12,41 have shown mixed replicability42,43, and the Bayes Factor 
analyses for the models containing an effect of culture on ω2 and α2 were only supported at the “anecdotal” level. 
Nonetheless it is worth considering the implications of these potential findings. It is a strength of the HGF that 
probability learning can adapt to the estimated volatility at the higher levels of the model18, but equivalent learn-
ing about volatility in both Chinese and British participants indicate that the differences in ω2 are not inher-
ited from the level above. Higher values of ω2 would produce increased precision-weighting of perceptual belief 
updates at level 2, making probability updates less reliant on current expectations (over sensory inputs). If the 
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finding that East Asian participants tend towards a larger ω2 is replicated, this might suggest general effects of 
culture on the relative weighting of current beliefs relative to new information.

Someone with a large probability learning rate more readily updates their beliefs in the face of new informa-
tion which could conceivably lead to the pattern of findings in an earlier surprise gift study9 – East Asian par-
ticipants not only report less surprise on receiving an unexpected gift but also a higher estimated probability of 
receiving an unexpected gift in the first place. However, a general tendency to expect the unexpected would have 
been captured in the volatility parameters of the HGF, where we observed no effects of culture. It is worth noting 
that many of the subjective reports of reduced surprise in East Asian participants tend to involve stories or test 
conditions related to interpersonal interactions, whereas our task involves purely perceptual decision making. 
Recent research in the domain of social learning suggests that Chinese participants update their beliefs about 
others’ character traits more readily in light of social feedback16. It will be important for future computationally 
informed studies to examine cross-cultural effects on contingency learning in socially framed tasks3,44.

Interestingly, we also found no effects of culture on our spatial context task whilst studies examining spatial 
context in the Framed Line Test have shown reasonably (although not uniformly45) replicable cultural effects 
comparing East Asian and Western individuals13,46–49. In contrast, tasks examining spatial effects on memory 
show heterogeneous results: with two studies showing more context dependence in East Asians12,41, two show-
ing no effect42,43 and one showing no effect in one dataset but an effect in a footnoted follow up50. Our study is 
one of a handful examining spatial effects on perception using robust psychophysical methods, although one 
previous study used a conceptually analogous “rod and frame task” and reported a cultural difference14. Whilst 
the Ebbinghaus illusion shows cultural differences between East Asian and Western participants51,52, two studies 
examining Navon figures do not as well support cultural influence (one showed an effect on RT but not error 
rate53 and one showed no effect51). It is plausible that our null result highlights limited cultural effects in some 
low-level visual tasks that reflect perceptual processing, rather than post-hoc reasoning about a visual stimulus. 
Future work could compare cultural effects on spatial context across high and low-level visual tasks also test 
different East Asian populations, for example different groups within China as well as in Japan or South Korea.

Studies with low power have a reduced chance of detecting a true effect, therefore statistical power is an espe-
cially important consideration when reporting null findings54,55. Here we pre-determined the minimum sample 
size necessary to ensure that we had sufficient power to detect a difference between groups of similar magnitude 
to previous reports21. In fact, as effect sizes are often inflated in initial reports56, we doubled this minimum sample 
size and accordingly we had >99% power to detect a true difference between groups. We are therefore confident 
that the absence of differences between cultures reported here are not due to insufficient power and our Bayes 
Factor analyses provide evidence in favour of the null where appropriate.

In summary, here we combine advanced computational approaches in decision and perceptual neuroscience, 
with cross-cultural comparisons in traditional psychology, to study the susceptibility to prediction error and the 
sensitivity to temporal and spatial contexts in different cultures. Across two different tasks and their computa-
tional/psychophysical measures, we found that the cross-cultural similarities in objectively measured effects of 
temporal and spatial context are perhaps more striking than the cross-cultural differences. Given the fast growth 
of China’s scientific output, identifying robust cross-cultural commonalities and differences in psychological 
process matters profoundly to interpret scientific findings and additionally has important economic and social 
implications beyond academia.

Methods
Participants. 72 participants gave informed consent (36 Chinese and 36 British; both groups balanced for 
gender) for a study approved by the University College London Ethics Committee (4357/002). All participants 
were neurologically normal, had no psychiatric history, no hearing difficulties and normal or corrected-to-nor-
mal vision. All participants gave written informed consent to take part in this study and were compensated finan-
cially for their time. All methods used were in accordance with the relevant guidelines and regulations.

Age did not differ between Chinese (mean 24.2 years +/− standard deviation 2.7) and UK participants (mean 
24.7 years +/− 6.7; F(1,71) = 0.175, p = 0.681). Chinese participants were Chinese nationals who had moved to 
the UK within the previous two years, of whom a majority (83%) had moved to the UK less than one year before. 
UK participants were UK nationals who had spent their entire lives in the UK other than ≤1 year abroad.

IQ was assessed using the Cattell Culture Fair Intelligence Test57. The groups did not differ significantly on 
IQ (F(1,71) = 3.270, p = 0.075; Chinese: M = 124.544, SD = 7.988, range = 102.2–133.8; British: M = 120.653, 
SD = 10.146, range = 102.2–133.8). We also administered a holism questionnaire developed to assess holistic vs. 
analytic reasoning58. Chinese participants (M = 5.403, SD = 0.798) had a more holistic thinking style than British 
participants (M = 4.922, SD = 0.629; F(1,70) = 8.049, p = 0.006) using this self-report measure.

General procedure. To render their culture more salient, participants were tested in pairs of two of the same 
culture (although with no-shows, 4 Chinese and 8 UK participants were tested alone) and they wrote a short 
description in their native language about a memorable New Year’s celebration. Participants then completed the 
two tasks described below, with the order counterbalanced between participants. The tasks were performed on 
two identical Dell Optiplex 980 Desktop Computers, with Dell 2007FPb 20″ UltraSharp displays (1600 × 1200) 
with a 4:3 aspect ratio and a refresh rate of 60 Hz.

Probabilistic associative learning (PAL) task. We implemented a previously described PAL task21 to 
test for cultural modulation of expectation violations (prediction errors) on RTs. As shown in Fig. 1a, on each 
trial participants heard an auditory stimulus for 300 ms (either a low 330 Hz or high 660 Hz pure tone) followed 
by a 200 ms interstimulus interval (ISI), and then saw a visual stimulus for 130 ms (either a face or house), before 
responding by button press if it was a face or house (time for response was randomly generated between 800 and 
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1800 ms). Finally, participants waited for another 200 ms before the trial ended. The association between the tones 
and the pictures was either highly (p = 0.84), neutral (p = 0.5), or weakly (p = 0.16) predictive. The probability of 
one type of visual stimulus, given one type of auditory stimulus, was always equal to one minus the probability 
of the other visual stimulus, given the same auditory stimulus, thus p(face|hightone) = 1 − p(house|hightone). 
Because each block contained the same number of randomly intermixed low and high tone trials, the marginal 
probabilities of houses and faces were identical before the auditory stimulus was presented, i.e. p(face) = p(house).

Participants completed three blocks. The first block consisted of 168, the second of 120, and the third of 168 
trials, for a total of 456 trials. Within each block periods of highly, neutral, and weakly predicted trials changed 
pseudo randomly in blocks of 12, 36, or 72 trials. Each period and cue type contained equal numbers of low, 
medium, and high noise trials.

Computational analysis of the PAL task. To computationally assess learning about different sources 
temporal information across cultures we used a widely adopted participant-specific Bayesian model to track 
the role of distinct forms of uncertainty on behaviour (log RTs). The HGF has been recently applied in several 
studies of learning under conditions of volatility19–21,32,39,59–62. The version of the HGF applied here has been used 
previously to examine the effect of context dependence in autism21. Curtailed model details are provided below to 
avoid unnecessary repetition, please see Lawson et al.21 for full model details.

For each participant, the perceptual-model parameters ω2 and ω3, and the response model parameters (β0-β4, 
ζ) were estimated from the trial wise log RT measures by using variational Bayes, as implemented in the HGF 
toolbox (http://www.translationalneuromodeling.org/tapas/).

Perceptual model. The HGF’s perceptual model tracks a participant’s learning of the task’s structure: the trial 
wise stimulus outcomes at level 1 (x1), the probabilistic relationship between the tone and the outcome at level 2 
(x2), and the volatility of these relationships at level 3 (x3). Beliefs are updated trial-to-trial via prediction errors, 
which evolve as trajectories across time, with dynamic learning rates (the precision weight on the prediction 
error) at each level (α2, α3). Two participant-specific perceptual parameters, ω2 and ω3, allow for individual differ-
ences in approximate Bayes-optimal learning.

ω3 determines the rate at which estimates of trial wise phasic volatility are updated. ω2 captures a tonic (learn-
ing) rate at which probabilistic relationships are estimated to change.

Response model. The response model captures the mapping from a participant’s trial wise beliefs, i.e. the per-
ceptual model, on to behavioural responses (log RTs). The response model is a simple linear model of the form:

β β β β β ζ∼ + ⋅ + ⋅ + ⋅ + ⋅ +RTlog ( surprise unc1 unc2 volatility ) (1)t t t t t( )
0 1

( )
2

( )
3

( )
4

( )

where β0 is baseline log RT, β1 represents surprise about the outcome at the lowest level of the HGF (i.e. outcome 
prediction error), β2 and β3 capture the uncertainty (i.e. variance) of the beliefs at levels 1 and 2 respectively and 
β4 is the phasic volatility at level 3. Here ζ captures decision noise. 

Psychophysical measurement of visual context effect: the tilt illusion. We used a previously val-
idated paradigm35 to measure the susceptibility to tilt illusion and quantify cultural differences in the effects of 
spatial context63. In the tilt illusion a central test grating is surrounded by a grating with a different orientation, 
and this context alters the perceived orientation of the central test stimulus63,64. The tilt illusion magnitude is 
quantified as the orientation difference between two gratings that appeared perceptually equal because of the 
presence of the surrounding context. We used a temporal two-alternative-forced-choice paradigm with stimuli 
presented at central fixation. Stimulus parameters are indicated below.

Procedure. First, each participant’s orientation discrimination threshold was measured using a two alterna-
tive forced choice staircase. Two circular grating stimuli (diameter = 1.5 degrees of visual angle, spatial fre-
quency = 1.5 cycles per degree) were presented one after another and participants indicated by button press 
whether the second grating was tilted clock- or anticlockwise compared to the first (Fig. 3a). Each stimulus 
appeared for 300 ms, with a 200 ms interstimulus interval, each trial terminated with a dynamic randomly sam-
pled coloured mask to eliminate afterimages. One stimulus had a fixed orientation of 0° and the orientation of the 
other was adapted according to a 1-up-2-down staircase, in which an incorrect response increased the difference 
between the two stimuli by 0.1° on the next trial, whilst after two consecutive correct responses the difference was 
reduced by 0.1° on the next trial. The procedure stopped after the direction of the staircase had reversed 19 times, 
at which point we computed the orientation value at which participants were correct 70.71% of the time as the 
average of the last 13 reversals65.

To measure contextual illusion magnitude, two central circular stimuli (diameter = 1.5 degrees of visual angle, 
spatial frequency = 1.5 cycles per degree) were presented in succession, one with and one without surrounding 
annular context (diameter = 6 degrees of visual angle). Participants made a forced choice regarding whether the 
central stimulus in the second interval, compared with the one in the first interval, was rotated clockwise or anti-
clockwise. Each stimulus appeared for 300 ms, with a 200 ms interstimulus interval, each trial terminated with 
a dynamic randomly sampled coloured mask to eliminate afterimages. The interval containing the surrounding 
grating was randomised and counterbalanced across trials. In all trials, one stimulus was fixed (a central grat-
ing of 0° with a 20° annular surround), whilst the other stimulus was a grating with no surround in which the 
orientation varied between trials (Fig. 3b). For the stimulus that varied between trials there were seven possible 
orientations (o1 to o7) calculated according to the following formula:

http://www.translationalneuromodeling.org/tapas/
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in which a is the participant’s point of perceptual equality (see below) and s is the participant’s orientation dis-
crimination threshold. Each of the seven orientations was presented 18 times in randomized order for a total of 
128 trials.

Before measuring the tilt illusion, we measured each participant’s point of perceptual equality. Participants 
undertook four trials in which they saw two gratings simultaneously on screen (both rotated by 0°, seven visual 
degrees apart), one of which had a 20° annular surround. Participants were asked to rotate the grating without the 
surround using button presses in order to match the rotation of the grating with the surround.

Analysis of the tilt illusion task. We fit each participant’s data from the tilt illusion phase of the experi-
ment with a psychometric function using the Palamedes MATLAB toolbox66. The psychometric function is given 
by:

ψ = + − −x a b c d c c d F x a b( ; , , , ) (1 ) ( ; , ) (3)

in which F(x; a, b)describes the probability of perceiving the two central stimuli (one with and one without sur-
rounding annular context) to have different orientation as a function of their physical difference in orientation 
(x). The parameter a reflects the tilt illusion magnitude, and the parameter b reflects the orientation discrimina-
tion threshold. The tilt illusion magnitude (as opposed to the orientation discrimination threshold) quantifies the 
susceptibility to spatial context35,67–72 and is compared across cultures here.

We fixed both c (the probability of guessing the stimulus orientation correctly, independently of it being per-
ceived correctly) and d (the probability of making an incorrect response, independently of the perceived stimulus 
orientation) at 0.02 as this is suggested to introduced less bias than fixing them at 073.

We used the logistic function:

=
+ − −

F x a b
b x a

( ; , ) 1
(1 exp( ( ))) (4)

The parameters a and b were estimated for each participant according to a maximum likelihood criterion. 
Standard errors for a and b were calculated by performing a parametric bootstrap based on 1000 simulations. The 
assumptions about the form of F(x; a, b) as well as the fixed values of c and d were tested with goodness-of-fit tests 
based on 1000 Monte Carlo simulations66. Participants were excluded if the goodness-of-fit test failed or if the 
68% bootstrapped confidence interval for the illusion magnitude was greater than the range of orientation values 
(o1 to o7) used in the trials.

Statistics, exclusions and power. Frequentist analysis was conducted in R (3.4.1) using the ggplot2, 
reshape2, and afex packages and MATLAB with the Statistics Toolbox Release 2015b (The MathWorks, Inc., 
Natick, Massachusetts, United States). In the PAL task, repeated measures analysis of variance (ANOVA) with 
the between-subjects factor of culture was used to assess group differences across the different conditions in 
our model-agnostic behavioural analysis. Multivariate analysis of variance (MANOVA; Pillai’s Trace) was used 
to assess for the multivariate effect of culture across the different HGF model parameters for each participant. 
Repeated measures ANOVAs, with a between-subjects factor of culture, were used to compare the dynamic learn-
ing rates. All follow up post-hoc tests reported throughout are two-tailed. To test for pairwise correlations across 
the two tasks, we used the Pearson product-moment correlation.

All additional Bayes factor analyses were conducted in R (3.4.1), using the BayesFactor package with the 
default prior. A Bayes factor is a continuous measure of evidence representing the probability of the observed data 
in one model compared to another. The winning model was the model with the highest BF10 relative to the null 
hypothesis. The proportional error associated with a BF10 is an estimate of the error due to the randomness of the 
Markov Chain Monte Carlo sampling. When comparing models, the relative success of one model over another 
was computed by dividing the BF10. Values greater than one indicate that a model is better than the comparison. 
Semantic labels were assigned to the magnitude of these comparisons to aid interpretation, ranging from anec-
dotal (1–3), to substantial (3–10), to strong (10–30) to decisive (>100; for reference see74). When interactions are 
reported, the model also always includes all the main effects of the interaction.

In the behavioural analysis for the PAL task two Chinese participants were excluded as RTs were unavaila-
ble for ≥1 of the nine within-subject conditions. In the tilt illusion task six participants (three Chinese) were 
excluded from the analysis because their staircase did not converge or goodness-of-fit test showed that their data 
in the contextual illusion phase was not well described by a logistic function.

To ensure that we had sufficient power to detect a significant behavioural difference between cultures we a 
priori determined our minimum sample size based on the effect size (partial η² = 0.203) for the linear group*ex-
pectation interaction previously reported using the same probabilistic associative learning task administered to 
adults with autism and neurotypical controls21. The power calculation was conducted using G Power75 9.1.9.2 and 
indicated that we required a minimum sample size of 34 participants. With a total sample size of 70 participants 
we had >99% power to detect effect size of d = 0.5 at α = 0.05.

Data availability. The datasets associated with this study are available from the corresponding author on 
reasonable request and in accordance with local ethics rules.
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