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Learning From the Past:
Uncovering Design Process
Models Using an Enriched
Process Mining
Design documents and design project footprints accumulated by corporate information
technology systems have increasingly become valuable sources of evidence for design
information and knowledge management. Identification and extraction of such embedded
information and knowledge into a clear and usable format will greatly accelerate contin-
uous learning from past design efforts for competitive product innovation and efficient
design process management in future design projects. Most of the existing design infor-
mation extraction systems focus on either organizing design documents for efficient
retrieval or extracting relevant product information for product optimization. Different
from traditional systems, this paper proposes a methodology of learning and extracting
useful knowledge using past design project documents from design process perspective
based on process mining techniques. Particularly different from conventional techniques
that deal with timestamps or event logs only, a new process mining approach that is able
to directly process textual data is proposed at the first stage of the proposed methodology.
The outcome is a hierarchical process model that reveals the actual design process hid-
den behind a large amount of design documents and enables the connection of various
design information from different perspectives. At the second stage, the discovered pro-
cess model is analyzed to extract multifaceted knowledge patterns by applying a number
of statistical analysis methods. The outcomes range from task dependency study from
workflow analysis, identification of irregular task execution from performance analysis,
cooperation pattern discovery from social net analysis to evaluation of personal contri-
bution based on role analysis. Relying on the knowledge patterns extracted, lessons and
best practices can be uncovered which offer great support to decision makers in manag-
ing any future design initiatives. The proposed methodology was tested using an email
dataset from a university-hosted multiyear multidisciplinary design project.
[DOI: 10.1115/1.4039200]
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1 Introduction

In the information age today, the advancement and widespread
application of information management systems [1,2] that use
textual databases to organize information have been archiving vast
amounts of digital design documents at various stages of product
design projects. Examples include customer requirements,
computer-aided design (CAD) models, emails, chat logs, design
forums, test reports, customer reviews, and repair reports. As these
archival documents have objectively recorded the execution of past
design projects, they have become the essential source of design
information and empirical knowledge to assist decision makers in
better managing future design projects and their corresponding
processes. It is, therefore, considered that mining empirical infor-
mation from historical design documents and reutilizing them in
practical design work is one of the most important factors to enable
modern enterprises to gain sustainable competitive edge [3].

Most of the existing design information extraction systems have
been focusing on extracting product-relevant information from
design documents such as CAD models and sketches for product

optimization. However, design documents such as emails, confer-
ence minutes, and conversation transcripts, which contain invalu-
able process-relevant information, are mostly underutilized in the
context of design information extraction. Different from product-
relevant information which focuses on product structures and prod-
uct functions, process-relevant design information is more about
“How a product is designed,” “who executes what tasks,” and “who
often work together.” Based on such information patterns, successes
or failures of past design projects can be learned and reutilized to
support decision making at all stages of product development by
means of suggesting promising problem solutions, evaluating possi-
ble alternatives, allocating the most suitable resources, and identify-
ing bottlenecks for improvements. A detailed review of process-
based design reuse was carried out by Baxter [4]. However, most of
the reviewed methods heavily rely on human experience and judge-
ment to construct a process model, which is often error-prone, time-
consuming, or virtually impossible due to the length of the project
and its breadth in terms of technical capacity and geographic cover-
age. To avoid or reduce the influence of human involvement, a
promising opportunity relies on computational algorithms to auto-
matically uncover critical process-relevant information, e.g., pro-
cess models, from archived design project documents.

Process mining is a prevailing technique that looks inside the
process by automatically extracting business workflow models
from event logs recorded by business information systems [5].
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Although process mining has been proved as an efficient tool that
learns from the past for business process management, creating
automatic approaches for mining design process models from
archival design documents is still a major challenge for efficient
process information reutilization in the context of product design.
As most of the design data that record design process executions
are semistructured or unstructured texts, traditional process min-
ing approaches that depend on structured event logs become
incompetent in the context of design process model discovery.
Furthermore, as design processes are usually unpredictable and
iterative [6], design task execution is rarely repeated exactly in the
same form and manner. Therefore, traditional process mining
approaches that attempt to model process behavior in a flat and
linear model might produce very huge and complex models for
design processes.

In our previous study, we have proposed a layered text mining
system which aims to discover process model from design
documents recording past design processes [7]. As an extension,
this paper presents a methodology for learning critical process-
relevant design knowledge from the past via an enriched process
mining approach. It intends to become a supporting tool that could
help decision makers to improve future projects based on the best
practices learned from past design projects. In detail, the proposed
methodology consists of two main stages: uncovering the design
process model first and then enabling knowledge learning from
the uncovered model. The first stage is designed to establish a
hierarchical process model from the input design documents using
an enriched process mining approach. Different from the existing
process mining techniques which deal with event logs and time-
stamps, the inputs in our study are archived design documents
written in a natural language (in this case, English). In addition,
by focusing on modeling the documented design process in a hier-
archical and modular manner, the proposed approach is able to
reduce the model complexity that is caused by the flexible nature
of design process. The second stage focuses more on analyzing
the uncovered process model so as to enable design information
and empirical knowledge learning from multiple perspectives,
e.g., the actual execution trace/route via workflow analysis, bottle-
neck via performance analysis, cooperation via social network
analysis, and individual contributions via role analysis. Such stud-
ies would help designers making practical and efficient decisions
in future design projects. For proposal validation, the effective-
ness of the proposed methodology is demonstrated with the help
of a case study taken from a real university-hosted design project.

The remainder of this paper is structured as follows: Section 2
reviews related works; Section 3 describes the first stage of the
proposed methodology and different methods incorporated within
the proposed process mining approach; Section 4 presents a num-
ber of statistical analysis methods used in the second stage.
Section 5 reports the real-life case study; Section 6 discusses pos-
sible extensions and future work; and Sec. 7 concludes.

2 Related Work

2.1 Design Information Extraction. Design information
extraction has its root in linguistics and data mining, with a partic-
ular focus on extracting high-quality design information in the
form of patterns and terms from design documents by means of
natural language processing and data mining. Typical design
information includes customer requirements, design rationales,
technology trends, product structures, problem solutions, and
resource allocation. Through design information extraction, infor-
mation contained within design documents can be made more
accessible for assisting decision-makers in making more doable
and efficient decisions, which aim to optimize product design or
speed up product development processes.

Due to the easy access of CAD documents, a significant body
of the early research work on design information extraction has
focused on retrieving and reusing past CAD models by extracting

parametric associations. Some of them use color and texture as
main features to retrieve similar CAD drawings from an image
database [8,9], while others treat CAD models as structured text
files and use text mining techniques to represent CAD models as
vectors of identifiers [10,11]. Based on the retrieved CAD models,
design information relating to product geometry can be reused to
speed up product development process via reusing the associated
manufacturing processes [12], thus reducing the time required to
generate a process plan. However, these CAD-based information
extraction and reutilization systems are only suitable for solving
geometric problems, which relate more to product structure.

Besides the product geometry embedded in CAD models, there
is wealth of nongeometric design information embedded in other
types of design documents such as patents [13], customer reviews
[14], repair verbatim [15], production configuration data [3], and
communication transcripts [16]. Two significant research streams
are discovery of technology trends from patents and extraction of
customer opinions from online reviews [13,17]. Both the technol-
ogy trends and the customer opinions could inspire designers to
search and identify solutions for product optimization. For exam-
ple, in the ISAL (issue, solution, and artifact) system, a series of
text mining algorithms were specifically designed to automatically
discover design rationales from patent documents for an engineer-
ing design purpose. With a similar purpose of market-driven tech-
nology innovation, potential product concepts of solar-lighting
devices were identified from a collection of domain-specific pat-
ents [18]. Another example is automatically translating customer
reviews into engineering characteristics for quality function
deployment [14].

The literature review on design information extraction indicates
that most of the existing works have put attention on information
relating to product, but extracting and reusing the information
relating to design process has little work. Design process models,
as an integrated part of design information, can be reused for deci-
sion making at various stages of design processes. Imperative
efforts are needed to explore the potential of automatically
extracting process relevant information like process models from
historical design documents.

2.2 Process Mining. Process mining, also known as event
mining or workflow mining, is a general methodology used to
diagnose business processes by discovering models (e.g., Petri
net, business process model and notation, and event graph models)
that describe reality from historical event data [19]. The business
process models discovered can be compared with a priori models
to check whether reality, as recorded in the event log, conforms
to the business specifications [20], or be used for simulation and
performance analysis [21]. Traditionally, process mining has been
focusing on control-flow discovery; that is, automatically discov-
ering the causal dependencies or execution patterns between activ-
ities from enactment logs [22–24]. In recent years, as techniques
have matured, process mining has been applied successfully in a
wide range of real cases, e.g., shipbuilding industry [25], risk
management [26], financial service [27], and healthcare processes
[28].

Although traditional process mining techniques are able to dis-
cover high quality models from logs of well-structured processes,
they usually return “spaghetti-like” models when applied to logs
of unstructured processes [29]. The most essential reason is that
traditional process mining approaches aim to unify all the behav-
iors recorded in event logs in a unique and flat model. This strat-
egy is not suitable for unstructured processes, where process
executions greatly differ from each other. As a remedy, Gunther
and van der Aalst [29] proposed a fuzzy mining to simplify the
discovered model with the concept of roadmap abstraction. Maggi
et al. [30,31] used a semistructured process scheme referred to as
“declarative workflow” to present unstructured processes with
a set of constraints that state the rules among activities.
Diamantini et al. [32] employed hierarchical graph clustering to
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identify subprocesses, which reflect meaningful collaboration
work practices.

As traditional process mining approaches lack the ability of
handling unstructured data, mining process model from natural
language texts has been attaining more and more attention in
recent years. Sinha and Paradkar [33] utilize use cases as source
documents and presented a text analysis approach for semi-
automatically transforming use cases into business process mod-
els. Friedrich et al. [34] combines the existing tools from natural
language processing and augmented them with an anaphora reso-
lution mechanism to generate business process model and notation
models from process descriptions. Most of these process mining
approaches follow a similar mining scheme, which consists of
three steps: syntactic analysis which focuses on tokenization and
par-of-speech tagging, semantic analysis which detects actions
and actors using semantic dictionaries and knowledge bases, and
model generation which discovers sequence flows through prede-
fined signal words. One major limitation of these approaches is
that the input text has to describe a model sequentially, and the
statements in the descriptions must relate to process model. Fur-
thermore, creating such descriptions requires extra manual efforts.

To summarize, because design process is often flexible, and the
execution of a design process is usually recorded in a text-rich for-
mat, it has become imperative to research suitable techniques,
such as process mining, for the discovery of underlying design
process models. Furthermore, to address the difficulties currently
faced, such techniques should not only be able to handle the tex-
tual data as the evidence left alongside a design process, but also
be able to model its process structure which is inherently flexible.

3 Uncovering Design Process Model From Design

Project Documents

Figure 1 depicts the proposed methodology of learning process-
relevant information and knowledge from past design documents
based on an enriched process mining approach. As shown in
Fig. 1, the starting point of the whole system is a set of design
documents, which record the process executions of a past design
project in natural language format. Based on the design

documents, the embedded design process is uncovered and ana-
lyzed in two stages: uncovering the design process model and
learning from the discovered process model.

The goal of the first stage is to uncover a hierarchical process
model, which consists of a hierarchical tree and a set of subpro-
cess models, using the proposed process mining approach. The
obtained hierarchical tree decomposes the embedded design
process into several functional modules. The subprocess models
present the detailed execution traces of the modules in the hier-
archical tree.

The second stage aims to distill multifaceted knowledge pat-
terns from the discovered process model via statistical analysis,
such as workflow analysis for uncovering task dependencies, per-
formance analysis for detecting potential bottlenecks or irregular
task executions, social network analysis for discovering coopera-
tion patterns, as well as resource utilization and role analysis for
estimating the degree of individual contributions.

Details about the first stage of uncovering design process model
are reported in this section, whereas details on the second stage
are presented in Sec. 4.

3.1 Constructing Hierarchical Tree. A top-down clustering
approach based on document content is specifically designed to
surface a modular representation of the embedded design process.
The heuristic is that design documents with similar content are
likely to be relevant to the same design task in reality. Therefore,
the proposed approach decomposes the input design documents
into clusters based on their content similarity. The content similar-
ity of any two documents relies on the overlapping of their
topic distributions. Furthermore, in order to get a hierarchical rep-
resentation of the underlying design process, the decomposition
procedure proceeds in a top-down manner, until desired homoge-
neousness is achieved. As a result, the hierarchical representation
is a tree, and each node of the tree corresponds to a functional
module, within which more detailed, homogeneous executions
could be observed from the corresponding document cluster.

Figure 2 describes the top-down clustering approach for con-
structing the hierarchical tree in detail. The meanings of some
fundamental notions are defined as follows:

Fig. 1 The methodology of learning from archival design project documents
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� C is a set of document clusters;
� M is a set of functional modules, each module ðswi;CiÞ cor-

responds to a subprocess model swi mined from a document
cluster Ci; and

� T � fM �Mg is a tree that organizes M in a hierarchical
structure.

The algorithm starts by representing the documents using a set
of latent topics. As deep belief networks (DBN) [35,36] have been
witnessed to perform well in both learning and fast inferring per-
document topic distributions, the DBN-based topic modeling
approach [16] is employed to obtain the top distribution for each
input document. A typical DBN model is a deep neural network
consisting of one input layer of observation, one output layer of
reconstruction, and several hidden layers. It transforms a docu-
ment Di from a word-frequency vector into a topic-probability
vector Di ¼ ðh1;…; hHÞ, where H is the number of topics detected
from the entire document archive D, and hj 2 ½0; 1� is the proba-
bility that the jth topic appears in a document.

Based on the per-document-topic representation, the algorithm
starts constructing the process hierarchy by initializing it with a
root node M :¼ fðD;ØÞg, which is the whole document set. Next,
in per iteration shown in lines 5–12, one document cluster with
the least homogeneous content is selected from C and partitioned
into smaller ones using the top-down hierarchical clustering algo-
rithm. Equation (1) computes the content homogeneity of a docu-
ment cluster Ci, which is inversely proportional to the average
distance from the cluster members to the cluster center

homogeneity Cið Þ ¼ 1�
X
d2Ci

dist Dd;Dci

� �
= Cij j (1)

where Dd is the per-document-topic distribution, Dci is the aver-

age per-document-topic distribution of Ci, dist Dd;Dci

� �
measures

the cosine distance between any two topic distributions, and Cij j
is the cluster size.

After each decomposition, a set of new hierarchical relations is
created in T (shown in line 11). The whole decomposition process
can be iterated until all the leave modules in T are homogeneous
enough, producing a hierarchical structure of the process in T.

3.2 Discovering Subprocess Model. The second stage aims
to mine subprocess models for the modules in the generated hier-
archical tree from the corresponding document clusters. Let sw be
a subprocess model. The formal representation of sw is a tuple

ðO;A;EÞ, where O is a finite set of fundamental elements that
point to physical objects, such as people, organizations, tools, and
locations, A is a finite set of design events which consists of sev-
eral physical objects in O, and E � A� A defines the potential
sequence in which design events have been executed. Based on
this definition, the procedure of subprocess model discovery is
further decomposed into three steps: meta-information extraction
for O, event discovery for A, and edge detection for E.

3.2.1 Meta-Information Extraction. The focus of meta-
information extraction is extracting special writing expressions,
called as named entities (NEs), from the inputted design texts.
The extracted NEs might point to some physical objects that had
been involved in the target design process. In this work, seven
types of process relevant NEs are considered, namely, tasks/
activities (TE), timestamps (SE), persons (PE), organizations
(OE), locations (LE), input/output information (IE), and techni-
ques/tools (ME). A hybrid named entity recognition (NER)
approach is proposed to recognize the above NEs from texts. By
treating all the noun phrases (NP) as candidate NEs, the proposed
NER approach first generates a small set of seed NEs from the
candidate NPs via rule matching. Next, through learning more
complex features from the seed NEs, the proposed NER approach
expands more general NEs from the remaining candidate NEs.
The motivation for using the integration of rule matching and
machine learning is to keep human intervention at the minimum.

3.2.1.1 Seed entity generation. The rules for matching seed
entities are created based on the concept of “speech acts.” Origi-
nally, “speech acts” are defined as “illocutionary” verbal utteran-
ces that have a performative function to present a speaker’s
intentions, such as promising, ordering, requesting, and inviting
[23]. Based on this theory, this paper considers that noun phrases
associated with special verbs or nouns might point to process rele-
vant objects with high confidence. Examples of verbal utterances
include “submit,” “complete,” “use,” and “software.” This paper
calls such verbs and nouns as speech act words. Each entity type
owns a speech act dictionary WE and a set of matching rules
formed on WE. The preliminary set of speech act words in WE is
manually selected from a set of randomly selected sentences. To
get a more general WE, the preliminary WE is then expanded by
including more synonyms using WordNet,2 which is a large lexi-
cal database of English.

Fig. 2 Top-down clustering for constructing hierarchical tree

2Princeton University “About WordNet.” WordNet. Princeton University, 2010.
http://wordnet.princeton.edu
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Give the speech act dictionary WE, seed NE is defined as noun
phrases that are associated with speech act verbs or contain speech
act nouns in WE. Here, the open library, Stanford CoreNLP [37]
which provides a set of natural language analysis tools, is used to
find the candidate noun phrases in the texts.

3.2.1.2 Entity expansion. Based on the seed entities detected, a
kernerlized support vector machine (SVM) classifier is trained to
retrieve more general NEs from the remaining candidate NEs. As
kernel function can save time and effort of explicitly selecting fea-
tures into the feature space, a string kernel based on surrounding
words [16] is employed to measure the similarity between two NEs.

It is the normal case that one sentence might mention several
NEs simultaneously. For distinguishing NEs appearing in the
same sentence, only the surrounding words located in a local con-
text of a seed or candidate NE are used to compute the string ker-
nel. As highlighted in Fig. 3, the local context of an NE is defined
as the words from the end of its preceding NP to its own last
word. Furthermore, due to the common sense that words which
have a shorter distance to a NE play a more significant role in con-
veying the meaning of the NE, all the words in the local context
are weighted according to their instance to the head word of a NE

con neð Þ ¼ ðw1c1;…;wVcVÞ (2)

wi ¼ 1� di=lenðNEÞ (3)

where ci indicates the ith word in the local context of ne, wi is the
weights, d is the number of words between the ith word and the
head word of ne, and lenðneÞ is number of words in the local con-
text of ne.

Based on Eqs. (2) and (3), the kernel function for training the
SVM classifier is defined as

kernel ne1; ne2ð Þ

¼
Xi¼lenðne1Þ

i¼1

Xj¼lenðne2Þ

j¼1

minðwi;wjÞsignðci; cjÞ=ðnumc þ 1Þ (4)

where signðci; cjÞ returns 1 or 0, indicating whether ci and cj are
two identical words, and numc is the number of words shared in
the local contexts of two NEs.

Using the above kernel function, a SVM classifier is trained on
the seed entities and applied to predict the entity type of the
remaining candidate NEs.

3.2.2 Event Discovery. The second step aims to detect design
events from design documents by identifying the semantic rela-
tions among the recognized NEs. Let NETYPE ¼ fTE;PE; SE;
OE;LE; IE;MEg be the entity types in the first step, a design
event is defined as a graph EG ¼ ðV; v0; ts; teEÞ, where

� V—each vertex v 2 V denotes a NE, and the entity type of v
belongs to NETYPE;

� v0—the graph is centered at v0, v0 2 V, and the entity type of
v0 must be TE (task entity);

� ts; te–ts; te 2 V are the starting and ending time of an event,
and their entity type must be SE (time entity);

� E—each edge e 2 E denotes a relation between a normal ver-
tex and the center vertex v0, therefore, E 2 fv0 � Vg.

According to the above definition, a design event can be viewed
as a higher-order relation that is centered at a task entity, and all
the other related NEs connect to the central task entity directly or
indirectly. Two problems here are the number of NEs in design
events is varying, and event graphs might overlap on some verti-
ces because design events could share some resources. To tackle
the two problems, a graph partition based method of higher-order
relation extraction is proposed. Figure 4 shows the workflow of
the proposed approach. The basic idea is factorizing the higher-
order relation in a design event graph into several binary relations,
and reconstructing the design event by finding the maximal cli-
ques around each task entity based on the binary relations.

3.2.2.1 Direct binary relation detection. It is the normal case
that two entities mentioned in the same sentence are more likely
to be related. Based on this assumption, the step of binary relation
detection is to find pairs of NEs that are mentioned in the same
sentence and have a semantic relation. A rule-based pattern
matching approach is used to match binary relations sentence by
sentence. The rules include

� Rule 1: two entities must be mentioned in the same clause.
� Rule 2: two entities are directly connected in the sentence

dependency tree.

Fig. 4 Workflow of design event discovery

Fig. 3 Example of local context

Journal of Mechanical Design APRIL 2018, Vol. 140 / 041403-5

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 02/19/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



� Rule 3: the type of two entities must be consistent with one
of the binary relation types predefined via expert knowledge.

� Rule 4: the sentence or clause is in present tense.
� Rule 5: no negative words (e.g., don’t, not) exists between

two entities.

It is worth to mention that rule 3 is designed to eliminate
unpractical binary relations that provide no or less significant
information for event detection, for example, relations between
two location entities and two time entities. In addition, rule 4 is
introduced to find design events that are being done or will be
done, and rule 5 is for eliminating negative relations.

This step would produce a binary relation graph G ¼ ðV;EÞ.
The vertices in V are the NEs mentioned in a document, the edges
in E are the binary relations between the mentioned NEs, and the
weight of each edge, wðeje 2 EÞ, is the frequency of the corre-
sponding binary relation.

3.2.2.2 Indirect higher-order relation detection. The step of
indirect higher-order relation detection aims to partition the binary
relation graph G ¼ ðV;EÞ by finding the maximal clique around
each entity in G. Each maximal clique is a candidate event, and
maximal cliques around different task entities can overlap on
some vertices.

First, a clique that is centered at a task entity v0 is defined as a
subgraph of G in the form of G0 ¼ ðV0; v0;E

0Þ, where V0 � V,
E0 � E, v0 � V0, typeðv0Þ ¼ TE, and for each v 2 V0 � v0, there is
at least one path from v to v0. Therefore, a maximal clique that is
centered at v0 is defined as MG ¼ ðVMG; v0;E

MGÞ and there is no
other clique G0 ¼ ðV0; v0;E

0Þ that densityðG0Þ > densityðMGÞ.
The function densityðG0Þ shown in Eq. (5) computes the density
of a clique using the mean of the edge weights

densityðG0Þ ¼
X
e2E0

wðeÞ
� �

=jV0j (5)

Next, the maximal clique around each task entity is greedily
detected by expanding an initial clique in all the directions that
the clique density increases. The initial clique is a subgraph in
which all the entities have a direct relation to the central task
entity. New nodes are added to the initial clique if they are con-
nected to the initial clique and the density of the new clique is
larger than the density of the old one. The process of clique
expansion stops when no more nodes could be added. By this
means, nodes with weak connections to their neighbors would be
eliminated, and the number of the entities in an event is deter-
mined by the local density of the binary relation graph.

3.2.2.3 Event selection. The candidate events obtained in the
last step might contain very small cliques that might be noises. To
filter the noisy cliques off, the step of event selection first ranks
the candidate events detected from a single document by weight-
ing them according to the sum over their edge weights. Next, a
cutoff q is then used to select candidate events whose weights fall
into the q% top rank. In this way, only maximal cliques that have
a larger number of nodes or stronger edges remain as design
events.

For simplifying the discovered design event graph, all the paths
from the central task node to other indirectly connected nodes are
replaced by single edges. The weight of the new edges is the
smallest edge weight in the corresponding paths.

Finally, the starting and beginning time nodes of each design
event are simply set as the minimal and maximal time indicated
by the time entity nodes. If no time entity node is included in a cli-
que, the creation time of the corresponding document is used in
place.

3.2.3 Edge Detection. Let the discovered design events be the
task nodes in the subprocess model, the step of edge detection is
to identify the precedence relations among the task nodes. Given
two design events (e.g., ai and aj), the possibility that a

precedence relation exists is estimated by how close the two
events were executed

prðai !gajÞ ¼ 1� d=g (6)

where g is the size of the time window and d is the time interval,
which is determined by the starting time of ai and the ending time
of aj. Based on prðai !gajÞ, the relation between ai and aj is clas-
sified as follows:

� ai 6¼ 6¼ aj: there is no relation if prðai !gajÞ 2 ð/; 0�
[ð1;/Þ;

� ai ¼¼ aj: ei is parallel with ej if prðai !gajÞ equals 1, which
means two events are executed at the same time;

� ai ! aj: ej is executed following ei if prðai !gajÞ 2 ð0; 1Þ.
Only when the precedence relation ai ! aj is detected, a corre-

sponding edge is added into the subprocess model. It is notewor-
thy that by using the time criteria, not only the direct relations
ai ! aj and aj ! ar but also the long-distant relation ai ! ar are
taken into account as long as ai and ar are executed close enough.
In this way, two events that are highly related but disturbed by a
third event can be reconnected.

4 Learning From the Discovered Process Model

The second stage of the proposed methodology proceeds to dis-
till multifaceted design information of empirical knowledge pat-
terns from the hierarchical process model using statistical analysis
methods. In detail, the discovered process model is viewed in three
correlated dimensions, consisting of design tasks/events, person-
nel, and time. Different analysis methods are applied to individual
dimensions or the combination of any two dimensions to mine par-
ticular process information that could be helpful in solving special
problems. Figure 5 illustrates this analysis process in a three-
dimensional model. Referring to Fig. 5, the personnel dimension is
the people involved in the discovered process, and the task dimen-
sion refers to subprocess models in the hierarchical tree or the
small design events that constitute the subprocess models. As
shown in Fig. 6, the discovered process model is analyzed from
five perspectives: workflow analysis, performance analysis, role
analysis, social network analysis, and resource utilization analysis.

4.1 Workflow Analysis. The workflow aspect of the uncov-
ered process model provides information regarding the question:
“what does the actual process look like?”; by analyzing the rela-
tionship between the subprocess models or the design events. This
is achieved through two aspects. First, the hierarchical tree cap-
tures the subordination relationships between the functional mod-
ules, which reflects how the entire design process is iteratively
decomposed to several smaller design tasks. Second, the subpro-
cess model within each module reflects the detailed execution
traces that a specific design problem is solved. Such a hierarchical

Fig. 5 The three-dimensional model for analyzing the discov-
ered process model
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representation is able to help decision-makers to quickly locate
and understand the parts they are interested in.

4.2 Performance Analysis. The performance aspect analyzes
the subprocess models according to their execution time. This is
helpful to answer questions like: “are there any irregular task exe-
cutions or bottlenecks in the actual process?” In product design
process, irregular executions or bottlenecks usually are design
tasks that slow down the whole design process. Identifying irregu-
lar executions or bottlenecks allows decision-makers to determine
the area where problem occurs and identifies the root causes, so as
to avoid the same mistakes in a new design project. To identify
irregular executions, subprocess models are compared in a dotted
chart, which represents the subprocess models or their subordina-
tive events in the vertical axis, and the corresponding execution
time in the horizontal axis. Based on the dotted chart, irregular
executions and bottlenecks might be subprocess models that have
an extremely long duration or were suspended frequently. The
execution traces related to the irregular subprocess models should
be carefully inspected, so as to detect the actual root causes such
as lacking resources, waiting for the outputs of other design tasks,
and having an operator who needs training.

4.3 Role Analysis. The role analysis aims to determine the
relative value of the people involved by measuring and comparing
their contributions to the whole design process. By focusing on
the interaction between personnel and time, generalists who were
always active throughout the entire design process could be recog-
nized as core participants, whereas people who only participated
in some specific design events could be recognized as specialists
in the field relevant to those design events. The dotted chart is
again used to perform role analysis. The vertical axis represents
the people included in the process model, the horizontal axis indi-
cates the time, and each dot denotes that a people is involved in a
design event at a time. The density of the dots reflects the contri-
bution of the people to the whole design process. Based on the
doted chart, the key personnel from a similar past project can be
quickly identified and considered for a new design project.

4.4 Social Network Analysis. The social network aspect
analyzes the relationship between the involved people, aiming to
provide information about “who is typically working together?”
The social network graph is used to measure and visualize the
connections between the project participants based on their joint
events. Based on the connections, the project participants can be
clustered into groups. From an organizational perspective, these
discovered groups reflect different departments cooperating on the
design process. Furthermore, the degree of incoming edges within
a group measures the possibility that a people is the leader of this
group. Similarly, the degree of incoming edges across groups

measures the possibility that a people is a manager of the design
process as managers usually interact with people from different
departments. Equation (7) calculates the possibility that a partici-
pant is a manager

s manager pð Þ ¼
fr numðneiðpÞ � coopðpÞÞ

fr numðPÞ �
X

p02neiðpÞ�coopðpÞ
wðp;p0Þ

(7)

where P denotes all the involved people, neiðpÞ indicates the peo-
ple who are directly connected to p in the social network graph,
coopðpÞ are the people in the same group with p, wðp; p0Þ is the
interaction strength of two people, and function fr numðÞ calcu-
lates the number of unique group labels in a set of participants.

4.5 Human Resource Utilization. People involved in past
design projects and their levels of knowledge and skills are usu-
ally valuable resources that can be transformed to produce benefit
in future design projects. To extract information about human
resources, such as “who executed what tasks?” and “to what
degree was a people involved in a task?,” the human resource uti-
lization aspect analyzes the relationship between the personnel
and the subprocess models. A histogram is created for each sub-
process model to compare the engagement of the involved people.
This could provide decision-makers helpful guidance when allo-
cating the most suitable people to a similar new design task, so as
to improve the human resource utilization in the new project.

5 Case Study

All the algorithms integrated in the proposed process mining
approach were implemented in PYTHON. The entire process mining
approach was demonstrated and verified on a real case study of a
university-hosted design project named “traffic wave project.” It
focused on designing a traffic control system to ease the traffic
congestion on expressway and published the study results in a
conference paper [38]. This project had eight core participants,
including students and professors from two different disciplines.
Throughout the design process, they frequently contacted a lot of
people from engineering design, vehicle design, control, model
building, and external companies. In addition, as this project is
only one of the correlated subprojects of a bigger project, core
participants from other subprojects were also involved. The whole
design process lasted about 2 years, from March 2011 to February
2013.

5.1 Dataset and Evaluation. The example data were a set of
emails collected from the traffic wave project. Throughout the
design process, all of the participants always sent a copy to a
specific common account when they used emails to exchange and
discuss their opinions. This culminated in a total of 569 emails
that were collected and saved in a MS Outlook file. Each email
contains information about the design tasks discussed in the email
body, the involved people are mentioned as either the email
sender/receiver or in the email body, and the time is indicated by
the creation time of the emails.

The original dataset was cleaned by removing the duplicates in
the reply thread, resulting in 357 remaining emails. The personal
pronouns in the email body were replaced by the names of the
people in the TO, FROM, and CC fields of the corresponding
emails. To give a deeper impression of the cleaned email dataset,
Fig. 6 plots the histogram of email length.

To validate how well the discovered process model conform to
reality, two senior participants and one junior participant from the
traffic wave project were requested to sketch the originating pro-
cess model embedded in the email dataset prior. Next, the quality
of the discovered process model was assessed by mapping it back
to the originating process model with the experts’ help. To assess
the correctness of the discovered knowledge patterns, every

Fig. 6 Histogram of document length
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knowledge pattern was checked with the three interviewed partici-
pants. A knowledge pattern was right if it was in accordance to
the experts’ experience.

5.2 Experimental Results

5.2.1 Overview of the Hierarchical Process Model. Three
hundred sentences were randomly selected to manually seed the
speech act words, and 13,734 NEs including 191 unique personal
names were recognized by the hybrid NER approach. By setting
the cutoff parameter q as 0.8, 661 design events were detected by
the event detection approach, and 41 subprocess models were con-
structed in the hierarchical tree.

To give an intuitive feeling of the discovered design event,
Fig. 7 illustrates an example of event detection. Figure 7(a)
gives an example document which consists of multiple sentences.
Figure 7(b) shows the binary relation graph constructed from it. In
Fig. 7(b), seven entities were recognized as task entities, i.e.,
“make group,” “report progress,” “redefine problem,” “be issue,”
“adopt transportation system,” “target aspect,” and “shape proj-
ect.” Figure 7(c) illustrates two event graphs detected from the
binary relation graph in Fig. 7(b). From the entities contained in
the event graphs, it can also be observed that entities within a
design event are usually mentioned in different sentences, rather
than all in a single sentence.

5.2.2 Workflow Analysis. Figure 8 compares the automated
subprocesses with the originating tasks that were given by the
interviewed participants. All the subprocesses listed in Fig. 8 are
named according to its most frequent event. Subprocesses for
which the interviewed participants can find a relevant originating
task are highlighted and connected to their originating tasks in the
middle column. Figure 8 shows that 39 of the 41 subprocesses
have a counterpart in the originating tasks. In contrast, eight of the
nine originating tasks are connected to at least one subprocess.
These findings indicate that the automated subprocesses have an

actual reflection of the originating tasks, but in a more detailed
view.

Figure 9 illustrates a segment of the discovered hierarchical
process model. However, due to the space limitation, Fig. 9 only
shows three subprocesses. The rectangular nodes present small
design events, and the arrows indicate their workflows within a
subprocess. From the names of the design events, it can be
observed that the three subprocesses were all concerning the exe-
cution of a presentation, but with regard to different aspects. The
first subprocess in Fig. 9 shows a very clear workflow of schedul-
ing and rescheduling the presentation date, the second subprocess
is about making the presentation, and the third subprocess reflects
the procedure of making assessment after the presentation.
According to the feedback from the interviewed participants, the
three subprocess models correctly reflect the procedure that the
undergraduate participants of this project did the presentation for
their final year project using the achievements of this traffic wave
project.

5.2.3 Performance Analysis. Figure 10(a) visualizes the dot-
ted chart of the subprocess models. The horizontal axis indicates
the time, and the vertical axis presents the 41 subprocesses listed
in Fig. 8. The dots are the events belonging to each subprocess.
The dotted chart in Fig. 10(a) shows that most subprocesses pro-
ceeded concurrently, e.g., tasks 1–3 and tasks 4–7. From
Fig. 10(a), it can also be observed that the design activities in
most subprocesses have been more or less temporally suspended.
Subprocesses that have been suspended frequently or for a long
time might be executed irregularly. Based on this assumption,
Fig. 10(a) shows that there are six subprocesses that might have
irregular executions, i.e., task 3, task 6, task 9, task 12, task 16,
and task 18.

Figure 10(b) plots the temporal event throughput, which calcu-
lates the number of events executed in a short period. Continuous
periods that have temporal event throughputs larger than a thresh-
old of average throughput are identified as busy periods, otherwise
inactive periods. According to Fig. 10(b), this traffic wave project

Fig. 7 Examples of design event

041403-8 / Vol. 140, APRIL 2018 Transactions of the ASME

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 02/19/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



had four relatively busy periods and three relatively inactive peri-
ods. The design tasks started during the inactive periods might be
causes that impede the project progress. In Fig. 10, the subpro-
cesses started during the first inactive period are tasks 4–9, the
subprocesses started during the second inactive period are tasks
15–17, and no subprocesses are started during the third inactive
period. The interviewed participants explained that during the first
inactive period, the whole design project was temporally sus-
pended to apply an approval from a related organization, and they
were not familiar about the application procedure, therefore

slowing down the design progress. For the second inactive period,
it was explained that the core participants spent a long time in
contacting the manufacturers of different simulation tools before
they found a suitable one, and task 15 is related to this procedure.

Taking the above analyses together, the detected irregular sub-
processes or bottlenecks indicate the areas where problems that
might slow down project progress occur. Identifying irregular exe-
cutions or bottlenecks and their potential root causes allow
decision-makers to be aware of such issues and avoid them in a
new design project if it bears similar nature.

Fig. 8 Comparison between the automated subprocesses and the originating tasks

Fig. 9 A segment of the hierarchical process model
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5.2.4 Role Analysis. Figure 11(a) plots the dotted chart for
comparing the relative engagement of the people involved in the
traffic wave project. The vertical axis represents the 191 people
detected in the discovered process model. The dots indicate that
people are involved in some events at some time. The local dot
density in Fig. 11(a) reflects the temporal engagement of the cor-
responding people in a continuous period. For example, Fig. 11(a)
shows that P60-80 joined the project very late, and P160-180 were
active at the beginning but withdrew midway. Such participants
who were involved only in a short period might be specialist in
handling some special design tasks. The global dot density of
each line indicates the overall engagement of the people in the
entire design process. To visualize the global dot density,
Fig. 11(b) plots the number of the dots in each line. Figure 11(b)
shows that P0-1 and P7-12 might be core participants of the traffic
wave project as they had the largest global dot densities and were
continuously active throughout the entire design process.

5.2.5 Social Network Analysis. Figure 12 shows four social
networks formed under different conditions. Figure 12(a) visual-
izes the interaction behaviors of all the 191 participants. As
Fig. 11 shows that a significant portion of the participants only
participated in a small number of events, Figs. 12(b) and 12(c) fil-
ter out participants less actively engaged so as to help decision-
makers to focus more on the behaviors of the actively involved
members. In the four social networks, the nodes in the same color
mean people who are clustered in the same cliques, except for the

red nodes which denote people who fail to join any clique. The
solid edges depict the interaction within a clique, while the dashed
edges reflect the interaction across different cliques. The interac-
tion strength of any two connected nodes is measured by the num-
ber of their joint events.

The graphs in Fig. 12 reveal the existence of three big cliques,
within which people interacted frequently. Among the three cli-
ques, C1, including P0, P7-10, P12, and P16, corresponds to the
core participants of this project. This is consistent with the obser-
vation obtained from the role analysis in Fig. 11. The nodes fil-
tered out by the graphs in Figs. 12(b)–12(d) indicate that people in
C2 and C3 engaged less actively than the people in C1. This find-
ing is consistent with the feedback that people in C2 and C3 were
not the main participants of this project, but participants from
other sister subprojects.

Inspecting the degree of incoming edges across different cli-
ques reveals that there are four participants who frequently inter-
act with people from different cliques, which indicates that they
occupy a kind of administrative position. They are P1, P18, P19,
and P34, and are denoted by the four biggest nodes in Fig. 12. In
addition, Fig. 12 also highlights originators who have the highest
degree of incoming edges within a clique. They are P0, P21, and
P23, who occupy a kind of leadership position. This observation
was confirmed by the interviewed participants; that the people
denoted as admins are four professors who supervised different
subprojects, and P0 is the student leader of the traffic wave
project.

Fig. 10 Performance analysis: (a) dotted chart of subprocesses and (b) temporal event number
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5.2.6 Human Resource Utilization. Figure 13 illustrates two
histograms that compare the percentage engagement of the people
involved in two example subprocesses. The engagement degree of
the participants is measured by the number of events they exe-
cuted in a subprocess.

Referring to Fig. 13, 14 people are involved in the first subpro-
cess, and 19 people in the second subprocess. Figure 13 also
shows that all the core members included in the clique C1 of
Fig. 12, i.e., P0-1, P7-10, P12, and P16, are involved in both sub-
processes more or less. Another interesting observation can be

made in Fig. 13(a) is that a noncore participant, P146, executed
mostly a half of the events of the first subprocess, while the most
active core member only executed 7% of the events. In contrast,
the histogram in Fig. 13(b) reveals that the core members played a
major role in the second subprocess as two of the top-three active
participants are from the core members, i.e., P0 and P1.

6 Discussion

The validations with the experts’ help have proven the efficacy
of the proposed process mining approach. With respect to the
workflow analysis, the discussion with the experts revealed that
the discovered process model indeed represented the innate char-
acter of their processes. Moreover, the hierarchical structure
allows people to focus only on the most relevant part of the pro-
cess. This is especially helpful when the complete process is flexi-
ble and not so straightforward for junior personnel who are new to
the project.

For the performance analysis, it was confirmed that the major
task reflected by subprocesses, namely, T4, T5, T7, T10, and T11,
indeed slowed down the whole project for several months. It was
also stated that the inputs of the next major task reflected by T12
an T14 in Fig. 10 had no dependence on the outputs of T4, T5,
T7, T10, and T11. In this case, the entire project time could be
reduced by at least 3 months if T12 and T14 were started simulta-
neously with T4.

In the discussion about the role analysis results, the interviewed
participants were somehow surprised that 191 people were
involved throughout the project as there were only eight core
members at the beginning. When given the social network graphs,
the three participants could name different cliques and recognize
the clique consisting of the core members. It is also interesting to
be pointed out that three of the four participants recognized
as admins, i.e., P1, P18, and P34, failed to join any cliques in
Fig. 10. What this means for social network analysis is that one
cannot focus only on people who interact with each other most
frequently. Instead, some participants like admins might have less
interactions with regular participants, but play a significant role in
making all the participants work together. Knowing different
kinds of cooperation patterns would help decision-makers to

Fig. 11 Role analysis via dotted chart

Fig. 12 Social network analysis
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allocate the most suitable human resources in the future design
projects.

Additionally, the proposed process mining approach can help
decision-makers gain a deeper understanding of a past design pro-
ject from a more objective point of view. Because the process
models are directly discovered from real-life design documents,
they respect the reality and reduce the human bias introduced by
conventional approaches such as surveys, interviews, and discus-
sions. Furthermore, the discovered process model can be further
analyzed to detect good practices or bad experiences such as irreg-
ular executions, delays, and bottlenecks in actual executions.

The discussion with the core participants also revealed several
possibilities for future improvement and extension. The current
work used project emails as the data source for case study valida-
tion. There might be situation that some design tasks were less-
frequently discussed via email correspondence, but recorded by
other types of design documents, such as conference minutes, pro-
gress reports, and conversation transcripts. For example, Fig. 8
shows that the process model discovered from the email dataset
provides rare information about the originating task of hardware
validation. Concerning this problem, the proposed approach itself
is universal to other types of design documents. Therefore, as long
as more design documents can be provided, the proposed
approach could lead to a more comprehensive process model and
other major performance patterns concerned.

The subprocesses shown in Fig. 9 also reflect some iterative
design events. For example, the student participants scheduled the
presentation date first. Next, they rescheduled the presentation
date for several times. Such loops and iterations play a key role in
measuring the efficiency of a design process and could help
decision-makers to find solutions to facilitate design processes.
Therefore, creating automatic approaches for identifying loops
and iterations in the design process presents the opportunities to
improve the ability of the discovered process model at supporting
decision making.

At a more macrolevel, the proposed process mining approach
also introduces the possibility of managing and retrieving past
design documents in a structured, graphic manner. For example,
by representing a design project as the process model uncovered
from its archival documents, past design projects can be compared
according to the structure similarity of their process models. This
is a critical step to search for and reutilize interesting information
from large quantities of past design projects.

7 Conclusions

This paper presented a methodology for learning from the his-
torical design documents based on process mining. The proposed
methodology was developed in two main stages: the discovery of
a design process model from archival design project documents
and learning multifaceted knowledge patterns from the discovered
process models. Novelties of the proposed methodology include
(1) proposing a new process mining approach with the capability
of handling textual data; (2) capturing the flexibility of a design
process via a hierarchical and modular representation; and (3)
applying statistical analysis methods to learn valuable knowledge
patterns from the uncovered process model. The proposed meth-
odology has been tested using an email dataset collected from a
university-level design project. The results provided evidence that
the proposed approach can not only correctly reveal the actual
executions of past design processes, but also return meaningful
knowledge patterns to support future design project and process
management.

References
[1] Kotinurmi, P., Laesvuori, H., Jokinen, K., and Soininen, T., 2004, “Integrating

Design Document Management Systems Using the Rosettanet E-Business
Framework,” 6th International Conference on Enterprise Information Systems
(ICEIS 2004), Porto, Portugal, Apr. 14–17, pp. 502–509.

[2] Linas, G., and Romualdas, B., 2006, “Electronic Document Management in
Building Design,” J. Civ. Eng. Manage., 12(2), pp. 103–108.

[3] Efthymiou, K., Sipsas, K., Mourtzis, D., and Chryssolouris, G., 2015,
“On Knowledge Reuse for Manufacturing Systems Design and Planning: A Semantic
Technology Approach,” CIRP J. Manuf. Sci. Technol., 8, pp. 1–11.

[4] Baxter, D., Gao, J., Case, K., Harding, J., Young, B., Cochrane, S., and Dani,
S., 2007, “An Engineering Design Knowledge Reuse Methodology Using Pro-
cess Modelling,” Res. Eng. Des., 18(1), pp. 37–48.

[5] van der Aalst, W. M. P., Weijters, T., and Maruster, L., 2004, “Workflow
Mining: Discovering Process Models From Event Logs,” IEEE Trans. Knowl.
Data Eng., 16(9), pp. 1128–1142.

[6] Browning, T. R., Fricke, E., and Negele, H., 2006, “Key Concepts in Modeling
Product Development Processes,” Syst. Eng., 9(2), pp. 104–128.

[7] Lan, L., Liu, Y., and Lu, W. F., 2016, “Discovering a Hierarchical Design Pro-
cess Model Using Text Mining,” ASME Paper No. DETC2016-59829.

[8] Tao, S., Huang, Z., Ma, L., Guo, S., Wang, S., and Xie, Y., 2013, “Partial
Retrieval of CAD Models Based on Local Surface Region Decomposition,”
Comput.-Aided Des., 45(11), pp. 1239–1252.

[9] Tao, S., Wang, S., and Chen, A., 2017, “3D CAD Solid Model Retrieval Based
on Region Segmentation,” Multimedia Tools Appl., 76(1), pp. 103–121.

[10] Sivakumar, S., and Dhanalakshmi, V., 2013, “An Approach Towards the Inte-
gration of CAD/CAM/CAI Through STEP File Using Feature Extraction for
Cylindrical Parts,” Int. J. Comput. Integr. Manuf., 26(6), pp. 561–570.

Fig. 13 Examples of human resource utilization

041403-12 / Vol. 140, APRIL 2018 Transactions of the ASME

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 02/19/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.6667&rep=rep1&type=pdf
http://gs.elaba.lt/object/elaba:6116237/6116237.pdf
http://dx.doi.org/10.1016/j.cirpj.2014.10.006
http://dx.doi.org/10.1007/s00163-007-0028-8
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1002/sys.20047
http://dx.doi.org/10.1115/DETC2016-59829
http://dx.doi.org/10.1016/j.cad.2013.05.008
http://dx.doi.org/10.1007/s11042-015-3033-3
http://dx.doi.org/10.1080/0951192X.2012.749527


[11] Yu, W. D., and Hsu, J. Y., 2013, “Content-Based Text Mining Technique for
Retrieval of CAD Documents,” Autom. Constr., 31, pp. 65–74.

[12] Huang, R., Zhang, S., Bai, X., Xu, C., and Huang, B., 2015, “An Effective Sub-
part Retrieval Approach of 3D CAD Models for Manufacturing Process Reuse,”
Comput. Ind., 67, pp. 38–53.

[13] Liang, Y., Liu, Y., Kwong, C., and Lee, W., 2012, “Learning the ‘Whys’: Dis-
covering Design Rationale Using Text Mining—An Algorithm Perspective,”
Comput.-Aided Des., 44(10), pp. 916–930.

[14] Jin, J., Ji, P., and Liu, Y., 2015, “Translating Online Customer Opinions Into
Engineering Characteristics in QFD: A Probabilistic Language Analysis
Approach,” Eng. Appl. Artif. Intell., 41, pp. 115–127.

[15] Rajpathak, D. G., 2013, “An Ontology Based Text Mining System for Knowl-
edge Discovery From the Diagnosis Data in the Automotive Domain,” Comput.
Ind., 64(5), pp. 565–580.

[16] Lan, L., Liu, Y., Lu, W., and Alghamdi, A., 2015, “Automatic Discovery of Design
Task Structure Using Deep Belief Nets,” ASME Paper No. DETC2015-47369.

[17] Liu, Y., Liang, Y., Kwong, C. K., and Lee, W. B., 2010, “A New Design
Rationale Representation Model for Rationale Mining,” ASME J. Comput. Inf.
Sci. Eng., 10(3), p. 031009.

[18] Jin, G., Jeong, Y., and Yoon, B., 2015, “Technology-Driven Roadmaps for
Identifying New Product/Market Opportunities: Use of Text Mining and Qual-
ity Function Deployment,” Adv. Eng. Inf., 29(1), pp. 126–138.

[19] Jans, M., van der Werf, J. M., Lybaert, N., and Vanhoof, K., 2011, “A Business
Process Mining Application for Internal Transaction Fraud Mitigation,” Expert
Syst. Appl., 38(10), pp. 13351–13359.

[20] da Cruz, J. I. B., and Ruiz, D. D., 2011, “Conformance Analysis on Software
Development: An Experience With Process Mining,” Int. J. Bus. Process Integr.
Manage., 5(2), pp. 109–120.

[21] Luengo, D., and Sep�ulveda, M., 2011, “Applying Clustering in Process Mining
to Find Different Versions of a Business Process That Changes Over Time,”
International Conference on Business Process Management (BPM), Clermont-
Ferrand, France, Aug. 29–Sept. 2, pp. 153–158.

[22] Agrawal, R., Gunopulos, D., and Leymann, F., 1998, “Mining Process Models
From Workflow Logs,” Sixth International Conference on Extending Database
Technology: Advances in Database Technology (ETBT), Valencia, Spain, Mar.
23–27, pp. 469–483.

[23] Tiwari, A., Turner, C. J., and Majeed, B., 2008, “A Review of Business Process
Mining: State-of-the-Art and Future Trends,” Bus. Process Manage. J., 14(1),
pp. 5–22.

[24] Li, J., OuYang, J., and Feng, M., 2012, “A Heuristic Genetic Process Mining
Algorithm,” Seventh International Conference on Computational Intelligence
and Security (CIS), Hainan, China, Dec. 3–4, pp. 15–19.

[25] Seung-kyung, L., Bongseok, K., Minhoe, H., Sungzoon, C., Sungkyu, P., and
Daehyung, L., 2013, “Mining Transportation Logs for Understanding the

After-Assembly Block Manufacturing Process in the Shipbuilding Industry,”
Expert Syst. Appl., 40(1), pp. 83–95.

[26] Caron, F., Vanthienen, J., and Baesens, B., 2013, “A Comprehensive Investiga-
tion of the Applicability of Process Mining Techniques for Enterprise Risk
Management,” Comput. Ind., 64(4), pp. 464–475.

[27] De Weerdt, J., Schupp, A., Vanderloock, A., and Baesens, B., 2013, “Process
Mining for the Multi-Faceted Analysis of Business Processes—A Case Study in
a Financial Services Organization,” Comput. Ind., 64(1), pp. 57–67.

[28] Rojas, E., Munoz-Gama, J., Sep�ulveda, M., and Capurro, D., 2016,
“Process Mining in Healthcare: A Literature Review,” J. Biomed. Inf., 61,
pp. 224–236.

[29] Gunther, C. W., and van der Aalst, W. M. P., 2007, “Fuzzy Mining—Adaptive
Process Simplification Based on Multi-Perspective Metrics,” Fifth International
Conference on Business Process Management (BPM 2007), Berlin, Sept.
24–28, pp. 328–343.

[30] Maggi, F. M., Mooij, A. J., and Van Der Aalst, W. M. P., 2011, “User-Guided
Discovery of Declarative Process Models,” IEEE Symposium on Computa-
tional Intelligence and Data Mining (CIDM 2011), Paris, France, Apr. 11–15,
pp. 192–199.

[31] Maggi, F. M., Burattin, A., Cimitile, M., and Sperduti, A., 2013, “Online Pro-
cess Discovery to Detect Concept Drifts in LTL-Based Declarative Process
Models,” OTM Confederated International Conferences on the Move to Mean-
ingful Internet Systems, Graz, Austria, Sept. 9–13, pp. 94–111.

[32] Diamantini, C., Genga, L., and Potena, D., 2016, “Behavioral Process Mining
for Unstructured Processes,” J. Intell. Inf. Syst., 47(1), pp. 5–32.

[33] Sinha, A., and Paradkar, A., 2010, “Use Cases to Process Specifications in
Business Process Modeling Notation,” IEEE International Conference on Web
Services (ICWS), Miami, FL, July 5–10, pp. 473–480.

[34] Friedrich, F., Mendling, J., and Puhlmann, F., 2011, Process Model Generation
From Natural Language Text, Springer, Berlin.

[35] Hinton, G. E., and Salakhutdinov, R., 2009, “Replicated Softmax: An
Undirected Topic Model,” 23rd Annual Conference on Neural
Information Processing Systems (NIPS 2009), Vancouver, BC, Canada, Dec.
7–10, pp. 1607–1614.

[36] Bengio, Y., 2009, “Learning Deep Architectures for AI,” Found. Trends Mach.
Learn., 2(1), pp. 1–27.

[37] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., and
McClosky, D., 2014, “The Stanford CoreNLP Natural Language Processing
Toolkit,” 52nd Annual Meeting of the Association for Computational Lin-
guistics: System Demonstrations (ACL), Baltimore, MD, June 22–27, pp.
55–60.

[38] Lan, L., Wu, X., and Liu, Y., 2015, “Designing a Fast Adaptive
Clustering Approach for Traffic Wave Simulation,” ASME Paper No.
DETC2015-47873.

Journal of Mechanical Design APRIL 2018, Vol. 140 / 041403-13

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 02/19/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1016/j.autcon.2012.11.037
http://dx.doi.org/10.1016/j.compind.2014.12.001
http://dx.doi.org/10.1016/j.cad.2011.08.002
http://dx.doi.org/10.1016/j.engappai.2015.02.006
http://dx.doi.org/10.1016/j.compind.2013.03.001
http://dx.doi.org/10.1016/j.compind.2013.03.001
http://dx.doi.org/10.1115/DETC2015-47369
http://dx.doi.org/10.1115/1.3470018
http://dx.doi.org/10.1115/1.3470018
http://dx.doi.org/10.1016/j.aei.2014.11.001
http://dx.doi.org/10.1016/j.eswa.2011.04.159
http://dx.doi.org/10.1016/j.eswa.2011.04.159
http://dx.doi.org/10.1504/IJBPIM.2011.040203
http://dx.doi.org/10.1504/IJBPIM.2011.040203
http://dx.doi.org/10.1007/978-3-642-28108-2_15
http://dx.doi.org/10.1007/BFb0101003
http://dx.doi.org/10.1108/14637150810849373
http://dx.doi.org/10.1109/CIS.2011.12
http://dx.doi.org/10.1016/j.eswa.2012.07.033
http://dx.doi.org/10.1016/j.compind.2013.02.001
http://dx.doi.org/10.1016/j.compind.2012.09.010
http://dx.doi.org/10.1016/j.jbi.2016.04.007
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://dx.doi.org/10.1109/CIDM.2011.5949297
http://dx.doi.org/10.1007/978-3-642-41030-7_7
http://dx.doi.org/10.1007/s10844-016-0394-7
http://dx.doi.org/10.1109/ICWS.2010.105
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.818.2336&rep=rep1&type=pdf
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1561/2200000006
https://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
http://dx.doi.org/10.1115/DETC2015-47873

	s1
	aff1
	l
	s2
	s2A
	s2B
	s3
	s3A
	1
	FD1
	s3B
	s3B1
	s3B1A
	2
	FN1
	s3B1B
	FD2
	FD3
	FD4
	s3B2
	s3B2A
	4
	3
	s3B2B
	FD5
	s3B2C
	s3B3
	FD6
	s4
	s4A
	5
	s4B
	s4C
	s4D
	FD7
	s4E
	s5
	s5A
	6
	s5B
	s5B1
	s5B2
	s5B3
	7
	8
	9
	s5B4
	s5B5
	10
	s5B6
	s6
	11
	12
	s7
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	13
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

