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Abstract

The aim of this study was to improve the overall electromechanical response
of dielectric composite actuators. The microstructures of rank-1 and rank-2 lam-
inates, composed of two materials of varying dielectric and shear moduli, were
optimised for four types of actuation due to an applied nominal electric field.

A homogenization theory, established in the literature in finite electroelas-
ticity for rank-1 layered composites, was specialized to the actuation types to
develop a closed-form solution. A similar lamination methodology was then de-
rived for rank-2 laminates to obtain a numerical solution. Expressions for specific
sequentially laminated microstructures of rank-1 and rank-2 type were obtained
so as to determine optimum microstructural configurations for maximum longitu-
dinal stretch. These results were obtained iteratively using the Newton-Raphson
method for a set of simultaneous equations.

Results for rank-1 laminates obtained in finite strain were found to produce
actuation strains higher than those obtained by previous authors in small strain.
Rank-2 laminates then presented an improvement in actuation strain compared
to those obtained in small strain by the same authors. Ratios of shear and dielec-
tric moduli were varied to obtain different contrasts and four parameters were
defined to contribute to rank-2 laminate performance, namely two lamination
angles and two volume fractions.

For all actuation types, rank-2 longitudinal stretch presented strong improve-
ment from rank-1 laminates. Electromechanical instability was observed in rank-2
laminates for two of the four actuation types and a trade-off requirement was
demonstrated between applied nominal electric field, shear and laminate mi-
crostructure for optimum performance.

At least a tenfold enhancement of phase electric fields was obtained for rank-2
laminates and the current configuration of lamination angles highlighted differ-
ences to the reference configuration. The ratios of shear and dielectric moduli
were lastly perturbed and further enhancement of maximum longitudinal stretch
obtained as a foundation for future work.
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Chapter 1

Introduction

For a very long time, engineers and scientists have vehemently pursued motion-
generating devices capable of mimicking the musculature and kinematics of the
human form. Electro-active Polymers (EAPs) have gradually become the greatest
prospect of generating a solution to this conundrum of providing small, light and
affordable actuation capable of electrochemo-mechanical programming and ma-
nipulation. Dielectric elastomer actuators (DEAs), in particular, offer very good
electromechanical capabilities in terms of achievable stresses, strains, response
speeds, lifetimes, reliability and efficiency. Several applications have already been
employed including robot arms, loudspeakers and variable-texture systems as dis-
cussed by Carpi et al. (2008) and Brochu & Pei (2010). However, one setback
these type of actuators seem to present is that they require high electric fields
as much as 10-100 V/µm as driving actuation which may limit their particular
application, particularly in biomedical fields.

Most DEAs take advantage of large-scale deformations in the plane of the
film. When exposed to high electric fields, DEAs contract in the direction of the
electric field lines perpendicular to them due to Maxwell stress. The new de-
vices are essentially rubbery capacitors in the form of two charged parallel plates
sandwiching a dielectric material. On application of power, charges accumulate
on opposite electrodes, attracting each other and squeezing down the polymer

Figure 1.1: Basic mechanism of Dielectric Elastomer Actuators courtesy of Ashley (2003).

1
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Figure 1.2: Mechanism of controllable sur-
face textures using DEAs courtesy of Ash-
ley (2003). As the film grows in the plane,
the gel spreads out along with the expanding
film and bunches up at the points at which
the film compresses.

insulator, as presented in figure 1.1. One interesting application of DEAs is that
presented by Ashley (2003) in figure 1.2 of changing the texture of a surface
which can be desirable in areas such controlling air flow over surfaces of aircraft.
The mechanism could be used for making ”riblets” that improve the aerody-
namic drag characteristics of aircraft wings, as investigated by Garcia-Mayoral
& Jimenez (2011). Typical elastomers used as dielectrics in DEAs are silicone,
acrylic or polyurethane while common compliant electrodes are usually based on
carbon black or graphite powders.

The very nature of the electromechanical coupling mechanism has been an
issue of numerous debates in the past: the aforementioned ”Maxwell stress” has
been attributed to account for the electromechanical response of these devices by
Pelrine et al. (1998) whereas Dorfmann & Ogden (2005) and McMeeking & Lan-
dis (2005) proposed a different approach for electromechanical coupling based on
the notion of total stress, where the coupling response is then included in the con-
stitutive description, in agreement with the follow-up work by Suo et al. (2008).
The general idea that can be extracted from either side of this debate is that the
electromechanical behaviour is the result of the intrinsic electrical properties due
to polarisation, as well as of the elastic mechanical ones.

In an effort to improve the overall electromechanical response of dielectric elas-
tomers it is therefore crucial to focus intensely on properties that have a direct
influence on achievable stresses and strains, such as the elastic or shear modulus
and the dielectric constant. The scope of this work thus concerns dielectric elas-
tomer composites, the particular classes of which are rank-1 and rank-2 laminates
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composed of two materials of varying dielectric and shear moduli. Bertoldi & Gei
(2011) mention that in order to design a new class of optimised devices based
on dielectric composites, investigations are necessary focusing both on their fail-
ure under the applied loads and on the effect inclusions such as volume fraction,
geometry and material properties have on their performance. This optimisation
was also mentioned to be challenging due to the multiple failure modes that these
materials possess, such that anyone undertaking such an optimisation should be
on alert as to the possibility of instabilities presenting themselves at increased
electrical excitation.

Thus the motivation of this study is threefold. My initial goal is to derive
an explicit expression, from continuum mechanics fundamentals, for the effective
energy-density function of the composites and to choose an appropriate lamina-
tion sequence such that the overall behaviour of the composite is transversely
isotropic. The second goal shall then be to apply this theory by producing exact
results for specific sequentially laminated microstructures of rank-1 and rank-2
type and determine optimum microstructural configurations for maximum longi-
tudinal strain. Finally, these results shall be applied to various boundary-value
problems, with key features of the overall laminate optimisation procedure for
rank-1 and rank-2 laminates highlighted in an effort to provide an exhaustive
and objective analysis of this process. What this study ultimately represents is
a rigorous scientific optimisation methodology for rank-1 and rank-2 laminates
of controlled electromechanical applied nominal electric fields for targeted maxi-
mum longitudinal stretch.

Chapter 2 embarks us on this study by introducing a continuum mechanics
treatment for large strain finite elasticity, characterized by a typical non-linear
stress-stretch relationship over large strain ranges. As the current configuration
is distinct from the reference configuration, the electric balance equations will
then be introduced so as to immediately plunge into the realm of electroelasticity
with consistent stress tensors and equilibrium equations provided. I shall then
prescribe the hyper-electroelastic, Neo-Hookean form of energy to this study and
its response described by the strain energy function W, i.e. the stored energy per
unit undeformed volume, which depends on the current state of deformation and
electrical excitation.

Chapter 3 corresponds to a homogenization theory at finite strain for rank-1
layered composites introduced by Gei et al. (2013), recalled and specialized to be
applied to four types of actuation. A similar lamination methodology will then
be presented for rank-2 composites so as to obtain a numerical solution, while
a closed-form solution would have been established for rank-1 laminates. An al-
ternative energy formulation executed by Spinelli & Lopez-Pamies (2015) will be
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presented in the context of this study with its interchangeable suitability to this
study being highlighted.

In chapter 4, I will begin to distinguish the first two boundary-value prob-
lems in order to assess the behaviour of the heterogeneous devices described,
with relevant results of the analysis illustrated. This chapter focuses solely on
boundary-value problems in plane strain, beginning with an initial optimisation
for each rank laminate in order to provide foundation for work in later sections.
The initial results will be compared to those obtained by Tian et al. (2012) in
an effort to provide initial validation. The study will then follow, in part, the
sequence executed by the same aforementioned authors. An effort shall also be
made to compare results of the two forms of plane strain problems. This chapter
shall close with the exposition of the current electric field and configuration of
rank-2 laminates.

Chapter 5 follows the structure of the previous chapter, except now for boundary-
value problems in a three-dimensional environment. This three-dimensional rep-
resentation aims to bring about a comparison with the plane-strain boundary-
value problems, as well as discovery of any additional microstructural uniqueness
occurring in rank-1 and rank-2 laminates. This then will enable a comparison
of electromechanical instability occurrence in plane strain and three-dimensional
environments. An attempt to reduce this instability, initially presented in the
previous chapter, will be executed in its thoroughness for rank-2 laminates as
well. Characterising these electromechanical instabilities however, is beyond the
scope of this work and no general instability problems will be presented.

By the time I present chapter 6, I will be in a position to re-define the parame-
ters that lead to microstructure optimisation, which are in the form of shear and
dielectric moduli, and perturb these with guidance from information obtained
in chapters 4 and 5 in order to introduce newly-configured rank-1 and rank-2
laminates. The current electric field will then be determined in a manner analo-
gous to chapter 4 and comparison to these previous results also presented. These
new laminates will also be investigated for the four boundary-value problems
previously introduced. What this will then enable me to do is put forth a recom-
mendation for strategies to employ in rank-1 and rank-2 sequentially-laminated
composite design by enlisting all the observations presented throughout the text.
This chapter in general is involved in providing a designer’s perspective towards
achieving the overall goal of this study, conducting an exhaustive approach of
microstructure optimisation for rank-1 and rank-2 laminates as well as factors
contributing to it.

In chapter 7, I discuss future work as well as summarise key points emphasised
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throughout the text.



Chapter 2

General theoretical background
on electroelasticity

2.1 Introduction

We shall begin by introducing continuum mechanics kinematics, mechanical bal-
ance laws and electric field equations relating to large strain hyper-electroelasticity.
These will be defined in Lagrangian quantities in the reference configuration, with
some forms of Eulerian quantities in the current configuration also presented. A
description of kinematics of these two configurations will be presented in order
to provide mechanical equilibrium equations and boundary conditions as well the
neo-Hookean form of energy. This will be followed by electromechanical expres-
sions as well as boundary conditions in terms of the aforementioned neo-Hookean
energy. The now-called hyper-electroelasticity will also be presented in the form
of an example boundary-value problem. In this text I will use Latin letters and
Greek letters for scalars, bold-face Latin letters for vectors, bold-face Latin ital-
icized letters for second-order tensors and bold-face calligraphic letters for third
order tensors.

2.2 Analysis of deformation

Consider an electroelastic solid continuum occupying B0 ⊂ R3 in the undeformed
stress-free configuration (in the absence of any electric field or mechanical load).
Let the region, in three-dimensional euclidean space, occupied by the body in
this configuration be denoted by B0, with boundary ∂B0 as shown by figure 2.1.
Let X denote the position vector of a material point within the body in this
configuration. Let us suppose the material is now deformed from the configura-
tion B0 so that the point X occupies the position x = X (X) in the deformed
configuration, denoted by B which has boundary ∂B. It should be noted that

6
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time dependence is not considered in this study. The vector field X , which is
a one-to-one, orientation-preserving mapping with suitable regularity properties,
describes the deformation of the body and is defined for X ∈ B0 ∪ ∂B0.

F
X x

Surrounding space

∂B

B

X , x
1 1

X , x
2 2

X , x
3 3

e
1

e
2

e
3

B
0

∂B
0

Figure 2.1: Configuration and deformation of a continuum body showing the reference and
current configuration in three-dimensional euclidean space.

The deformation gradient tensor F relative to B0 is defined by

F = GradX , X ∈ B0, [2.1]

where Grad denotes the gradient operator with respect to X. In Cartesian com-
ponents, Fij = {GradX}ij = ∂xi/∂Xj, where Xi and xi, i = 1, 2, 3, are the
components of X and x, respectively. We also adopt the notation

J = detF , [2.2]

with the standard convention J > 0. Associated with F are the (symmetric) right
and left Cauchy-Green deformation tensors, here denoted C and B , respectively,
and defined by

C = FTF = U 2, B = FFT = V 2, [2.3]
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where U , V are positive definite and symmetric tensors. The equation

dx = FdX, [2.4]

(in components, dxi = FijdXj) describes how an infinitesimal line element dX of
material at the point X transforms linearly under the deformation into the line
element dx at x. Now let dA0 ≡ n0dA0 denote a vector surface area element
on ∂B0, where n0 is the unit outward normal to the surface, and dA ≡ n dA
the corresponding area element on ∂B. The area elements are thus connected
according to Nanson’s formula, as follows:

n dA = JF−Tn0dA0, [2.5]

where F−T = (F−1)T and T denotes the transpose. It should also be noted as
mentioned by Fu & Ogden (2001) that, unlike a line element, the normal vector
is not embedded in the material, i.e. n is not in general aligned with the same
line element of material as n0.

The corresponding volumes dV 0 in B0 and dV in B are related by the follow-
ing:

dV = JdV 0. [2.6]

In this case, J = 1 such that the volume in B0 is unchanged during deformation,
which means that the deformation is isochoric. A material for which equation
[2.2] is constrained to be satisfied for all deformation gradients F is said to be
incompressible. From equation [2.4] the following expression is obtained

|dx|2 = (Fm0) · (Fm0)|dX|2 = (FTFm0) ·m0|dX|2, [2.7]

where the unit vector m0 has been introduced and is in the direction of dX while
· signifies the scalar product of two vectors. This means that the ratio |dx|/|dX|
of the lengths of a line element in the deformed and reference configurations is
given by the following

|dx|
|dX|

= |Fm0| = [m0 · (FTFm0)]1/2 ≡ λ(m0). [2.8]

This equation defines the stretch λ(m0) in the direction m0 at x, and we note
this restriction is according to the inequalities

0 < λ(m0) <∞. [2.9]

If there is no stretch in the direction m0, then λ(m0) = 1, and hence

(FTFm0) ·m0 = 1. [2.10]

If there is no stretch in any direction, i.e. equation [2.10] holds for all m0, then it
follows that FTF = I , where I is the identity tensor. A suitable tensor measure
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of strain is therefore FTF − I since this tensor vanishes when the material is
unstrained. This leads to the definition of the Green strain tensor

G =
1

2
(FTF − I ), [2.11]

where 1/2 is a normalization factor.
The deformation gradient can be decomposed according to the polar decom-

positions
F = RU = VR, [2.12]

where R is a proper orthogonal tensor and U ,V are positive definite and sym-
metric tensors. Each of the decompositions in [2.12] is unique and U and V are
called the right and left stretch tensors, respectively. These stretch tensors can
also be put in spectral form, and for U we have the spectral decomposition

U =
3∑
i=1

λiu
(i) ⊗ u(i), [2.13]

where λi > 0, i ∈ {1, 2, 3}, are the principal stretches and u(i), the unit eigenvec-
tors of U , are the Lagrangian principal axes, and ⊗ denotes the tensor product.
Similarly, V has the spectral decomposition

V =
3∑
i=1

λiv
(i) ⊗ v(i), [2.14]

where
v(i) = Ru(i), i ∈ {1, 2, 3}. [2.15]

Let ρ and ρ0 be the mass densities in B and B0, respectively. Then, since the
material in the volume element dV is the same as that in dV 0 the mass is con-
served, i.e. ρdV = ρ0dV

0, and hence, from [2.6] the mass conservation equation
may be expressed in the form

ρ0 = ρJ. [2.16]

2.3 Stress tensors and equilibrium equations

The stress vector on the vector element area dA, denoted by t, depends on n
according to the formula

t = σ n, [2.17]

where σ is a symmetric, second order tensor independent of n denoted the
Cauchy stress tensor. Using equation [2.5] the force on dA may be written as
follows:

t dA = S n0dA0, [2.18]
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where the Piola-Kirchoff stress tensor S is related to σ by

S = JσF−T. [2.19]

If b denotes the body force per unit mass, then in integral form, the equilibrium
equation for the body may be written with reference to either B0 or B below∫

B
ρbdV +

∫
∂B

σ n dA =

∫
B0
ρ0bdV 0 +

∫
∂B0

S n0 dA0 = 0, [2.20]

and the resultant moment of the applied forces about a point x is∫
B0
ρ0(x−X)× bdV 0 +

∫
∂B0

(x−X)× S n0dA0 = 0. [2.21]

On use of the divergence theorem, equations [2.20] yield the equivalent equilib-
rium equations

divσ + ρb = 0, [2.22]

DivS + ρ0b = 0, [2.23]

where, in components, {DivS}i = Sij,j. Again Div and div represent the diver-
gence operators in B0 and B, respectively.

Considering the nonlinear theory of elasticity, electromechanical equilibrium
along the deformation history, requires that

DivS = 0, SFT = (SFT)T, [2.24]

where [2.241] is obtained from [2.20] while [2.242] is obtained from [2.21]. The
continuity of tractions can be imposed at the interface between two materials
following on from equation [2.24] such that

[[S ]]n0 = 0 , [2.25]

where the double square brackets denote the jump across a given interface i.e.
[[f ]] = fA − fB between two given materials A and B. We now consider the
work done by the surface and body forces in a virtual displacement δx from the
current configuration B. By using the divergence theorem and equation [2.23],
the resultant applied force on the body in B0, can be obtained by∫

B0
ρ0b · δxdV 0 +

∫
∂B0

(S n0) · δxdA0 =

∫
B0

tr(SδFT)dV 0, [2.26]

where the left-hand side of [2.26] represents the virtual work of the body and
surface forces and in the integrand on the right-hand side tr denotes the trace of
a second-order tensor, and δF = Gradδx. The term on the right-hand side is the
virtual work of the stresses in the bulk of the material. For a conservative system
this latter work is recoverable and is stored as elastic strain energy W which has
been well defined and explored by Ogden (1997).
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2.4 Constitutive assumptions and energy for-

mulations

2.4.1 Hyperelastic materials: strain energy functions

For conservative materials the mechanical response is described by a strain en-
ergy function W which reveals the stored energy per unit undeformed volume,
depending on the current state of deformation. Analytical considerations provide
that the function W of a hyperelastic material is a scalar-valued tensor function
depending exclusively on the deformation gradient F . For an incompressible hy-
perelastic solid, the stress-deformation relations introduced by Ogden (1997) can
be represented as

S =
∂W

∂F
− pF−T, σ = F

∂W

∂F
− pI , detF = 1, [2.27]

where p is an arbitrary hydrostatic pressure, to be determined by boundary
conditions. It should be noted that p has no effect on the deformation of an
incompressible solid. For an isotropic hyperelastic material, W is a function of
the following strain invariants Ii (i = 1, 2, 3) defined as follows

I1 = trC , I2 =
1

2
((trC )2 − trC 2), I3 = detC = J2. [2.28]

The invariants of the right Cauchy-Green deformation tensor C can be defined
in terms of the principal stretches as follows

I1 = λ21 + λ22 + λ23,

I2 = λ21λ
2
2 + λ22λ

2
3 + λ21λ

2
3,

I3 = λ21λ
2
2λ

2
3,

[2.29]

in the form W = W (I1, I2, I3). The first invariant, I1, is found by Boyce &
Arruda (2000) to correlate with the average polymer chain with regards to the
macromolecular network structure of elastomeric materials. For convenience it is
usual to require that the strain-energy function W should vanish in the reference
configuration where F = I so that I1 = I2 = 3 and I3 = 1. The neo-Hookean
strain energy model of hyper-elasticity used in this study is presented as follows:

W =
µ

2
(λ21 + λ22 + λ23 − 3) =

µ

2
(I1 − 3), [2.30]

where µ is the initial shear modulus and Jm is a constant governing the maximum
stretchability of the material, not to be confused with J .
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2.5 Electric balance equations

It is considered now that the deformed configuration B arises from the combined
application of mechanical loads and an electric field. The induced electric field
E on the body satisfies the governing equation

curl E = 0 , [2.31]

in the entire space, with respect to the current coordinate system. Consequently,
we define a scalar field, the electric potential φ, such that E = −∇xφ where ∇x

denotes the gradient with respect to the current coordinate system. The electric
displacement field is

D = ε0E + P, [2.32]

where ε0 is the permittivity of the vacuum and P is the polarization, or the
electric dipole-density. In the absence of free charges the electric displacement
field is governed by the local equation

div D = 0. [2.33]

It has previously been determined, and subsequently highlighted by Dorfmann
& Ogden (2005), that the referential counterparts E0 and D0 of the electric field
and the electric displacement are

E0 = FTE, [2.34]

D0 = JF−1D. [2.35]

The corresponding electric field and electric displacement are governed by the
equations

Div D0 = 0, Curl E0 = 0 . [2.36]

Let us also assume the body B0 to be completely surrounded by an infinite free
(vacuum) space such that P = 0 . In an electro-elastic problem, this means
equations [2.31] and [2.33] must be satisfied in the surrounding space as well,
such that equation [2.32] becomes

D = ε0E. [2.37]

In Lagrangian formulation, the standard continuity conditions for the electric
displacement and the electric field through ∂B0 are

[[D0]] · n0 = −ω0, n0 × [[E0]] = 0, [2.38]

where ω is the surface charge distribution. Note that [2.25] and [2.38] are also
valid across all interfaces between phases in a composite material.
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2.6 Electro-elastic constitutive equations

The development of constitutive equations enables a clear determination of the
relationship between the external electric input and the electromechanical re-
sponse of the material in a composite. For each phase in the composite, it can
be assumed to be hyperelastic and behaving as an ideal dielectric as already
described i.e. D = εE, where the dielectric constant (or permittivity) ε is inde-
pendent of the deformation. Considering thermodynamic arguments, [2.271] can
be recalled as introduced by Ogden (1997), while the constitutive law of electric
displacement, can be expressed next to it as highlighted by Dorfmann & Ogden
(2017) as follows

S =
∂W

∂F
− pF−T, D0 = −∂W

∂E0 . [2.39]

Assuming E0 as independent electric variable [i.e. W = W (F ,E0)], a form of
energy with Neo-Hookean behaviour is given as:

W =
µ

2

[
tr(FTF )− 3

]
− ε

2
(F−TE0 ·F−TE0). [2.40]

According to the electroelastic theory of continua at finite strain highlighted
by Dorfmann & Ogden (2005), direct equations can also be formulated in the
current configuration B. In reference to equations [2.24] and [2.36] where σ now
refers to the total (true) stress, which replaces S , analogous to [2.19], as follows:

σ = SFT/J. [2.41]

For the free energy [2.40], the explicit form of [2.39] can be obtained by substi-
tuting [2.34] and [2.35], leading to the following

S + pF−T − µF =
1

ε
FD0 ⊗D0 = εF−TE0 ⊗ F−1F−TE0, [2.42]

which corresponds to the following

σ + pI − µFFT =
1

ε
D⊗D = εE⊗ E. [2.43]

It should be noted that [2.39]2 is included in equation [2.42].

2.6.1 Example boundary-value problem

An attempt shall now be made to solve a simple electromechanical problem of
bi-axial strain so as to provide a framework for the interpretation and solution
of boundary-value problems to be presented in the next chapter. To this end,
we now consider an ideal dielectric membrane which is homogeneous, isotropic,
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hyper-electro-elastic and incompressible. The body is subjected only to an elec-
tric field generated by a voltage difference between the stretchable electrodes
coating the two extended surfaces, which are opposite to one another. Neglecting
fringe effects, the perceived deformation is homogeneous, with the electric field
vanishing outside the device, and inside it, uniformly aligned along direction x2
given in figure 2.2.

O
1

O
2

O
3

+ + + + + + + +

+ + + + + + +

+ + + + + +

x
3

x
1

x
2

Df

Figure 2.2: Current configuration of a planar soft dielectric actuator subjected to a voltage
difference ∆φ.

The total change of energy stored, by performing a summation of all the con-
tributions, is determined using equation [2.40]. The mechanical part of the energy
function is found to depend only on the principal stretches. In this boundary-
value problem, appropriate boundary conditions also need to be applied. These
have been established in equations [2.25] and [2.38]. The deformation is defined
by λ1, λ2 and λ3 and the components of the deformation gradient F are given
by the following

F =

 λ1 0 0
0 λ2 0
0 0 λ3

 . [2.44]

In the planar actuator presented in figure 2.2, any mechanical external force is
applied to the elastomer and the electric field outside the body is assumed negli-
gible, such that the total true and nominal stresses vanish identically throughout
the actuator as implied by equation [2.25].

Substitution of equation [2.44] into [2.42] leads to the following

S11 = λ1µ−
p

λ1
, S22 = ε

E0 · E0

λ22
− p

λ2
+ λ2µ, S33 =

µ

λ1λ2
− pλ1λ2, [2.45]
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where E0 = ∆φ/H0 along x2 is the only non-vanishing component of the electric
field and H0 is the distance between electrodes. The associated stress state is
such that the total Cauchy stress components σ13 = σ23 = σ33 = 0. Alternatively,
imposing S11 = S22 = S33 = 0, incompressibility can also be used from λ1λ2λ3 = 1
with λ1 = λ3 to determine that λ2 = 1/λ21. Thus it is possible to determine the
3 remaining unknowns λ1, λ2 and p in the form

λ1 =

√
(E0)2ε+ λ42µ

λ2
√
µ

, λ2 =

√
λ21 −

√
µ(−4(E0)2ε+λ41µ)

µ
√

2
, p =

(E0)2ε

λ22
+ λ22µ.

[2.46]

2.7 Conclusions

In this chapter I have introduced the theory of large strain finite elasticity based
on the Neo-hookean model of elasticity. In the next chapter I will introduce a
continuum mechanics treatment within the theory of deformable dielectrics for a
rank-1 sequentially laminated composite. This treatment will then be applied to
a rank-2 composite, of which a numerical solution shall be obtained.



Chapter 3

Sequentially laminated
composites

3.1 Introduction

We will now expand a homogenization theory in finite strain for rank-1 layered
composites, in a manner analogous to that introduced by Gei et al. (2013), and
then extend this to rank-2 composites. Using interface-continuity conditions and
constitutive laws, two constants that define the problem will be derived, α and
β̃, and hence the phase-difference in hydrostatic pressure for each rank laminate.
An alternative energy formulation executed by Lopez-Pamies (2014) shall then
be highlighted and compared to the formulation already presented.

3.2 A description of the lamination procedure

In respect of the reference configuration, B0, consider a laminated composite pre-
sented in figure 3.1, composed of two distinct phases; one phase, ”A” comprises
of a stiff, high dielectric material while another phase, ”B” composes entirely of
a soft, low dielectric material with an arbitrary lamination angle θ. This is a
rank-1 laminate. For purposes of this investigation we will assume the charac-
teristic size of the heterogeneity is much smaller than the size of the actuator
and the morphology of the actuator is such that the heterogeneous dielectric is
macroscopically homogeneous. We consider the deformation of the actuator due
to electromechanical coupling but with no external loads, thus the traction is
zero. Geometrically, the layers are characterized by their thickness HA and HB

and volume fractions given by CA
R1 = HA/(HA +HB) and CB

R1 = 1−CA
R1. Upon

application of external electromechanical loading, the body reaches a current con-
figuration B.

16
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Figure 3.1: Geometry of the reference configuration of a two-phase layered dielectric actuator
subjected to a electric field difference ∆φ applied between electrodes.

Using these assumptions, the effective macroscopic behaviour of the system can
be determined from homogenization theory previously executed in variation by
Ogden (1974), DeBotton (2005), Gei et al. (2013) and Lopez-Pamies (2014). As
electric field actuation is the area of interest in this body of work, the microscopic
free energy in each phase, is introduced. Assuming E0 as independent electric
variable (i.e. W = W (F ,E0)), the required expressions in reference to equation
[2.40] are given below:

WA =
µA

2

[
tr(FTF )− 3

]
− εA

2
(F (−T )E0 ·F (−T )E0), [3.1]

WB =
µB

2

[
tr(FTF )− 3

]
− εB

2
(F (−T )E0 ·F (−T )E0), [3.2]

where µA and µB are the shear moduli in each phase while εA and εB are the
dielectric moduli in each phase. The representation of [3.1] and [3.2], despite
being identical, have expressions whose difference will be distinctive later when
discussing rank-2 laminates. Continuity at all the internal interfaces between
phases ”A” and ”B” is enforced imposing equations already described as equations
[2.25] and [2.38]. The normal n0 is pointing toward ”B” and can be easily related
to angle θ. Following the approach of Gei et al. (2013), the heterogeneous actuator
will be presented on similar bases of macroscopic average quantities S av, F av,
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D0av and E0av. These quantities sufficiently prescribe all conditions in which
the validity of governing equations [2.25], [2.36] and [2.38] remains fulfilled in
all points in the body. The macroscopic total stress and electric field can be
obtained from the macroscopic average total energy W av via constitutive relations
presented in [2.39] now displayed as follows:

S av =
∂W av

∂F av − pav(F av)−T, D0av = −∂W
av

∂E0av , [3.3]

where quantities with label ‘av’ prescribe the average over a representative volume
of the composite. In the entirety of this homogenization theory, some of the
assumptions made by Tevet-Deree (2008), as well as others already mentioned,
will be applied and are summarised here, namely:

• Any difference between the macroscopic strain responses of the composites
and those that would develop in the phases are solely due to the hetero-
geneity and the spatial arrangement of the phases. This arrangement of the
phases in terms of lamination angle θ will be noted.

• As typical actuators mainly consist in very thin specimens, in all of them
we disregard edge effects concentrated along the boundary of the electrodes
or related to a lack of heterogeneity of the surface charge distribution. This
implies the electric field outside the boundary vanishes identically and the
Lagrangian electric field E0av is directed along x2.

• We shall fix the rigid-body of the finite deformation such that the two
straight boundaries remain aligned with x1 and the electric fields E0av and
Eav = (F av)−TE0av act along the orthogonal direction, namely

E0av = E0ave2, Eav = Eave2, [3.4]

where e2 is the unit vector associated with x2.

• The electrodes are flexible with a negligible elastic moduli and thus do not
extract mechanical traction on the dielectric layer.

• We consider the deformation of the actuator due to electromechanical cou-
pling but with no external loads. This is enforced already by the traction
boundary condition [2.25].

• In view of the dielectric anisotropy, the electric displacements, D0av and
Dav are not in general aligned with e2 and for the type of actuation being
investigated, E0av = ∆φ/H0, where H0 is the distance between electrodes.
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• Equation [2.382] (continuity of the tangential component of the electric
field) can be also written as

[[E0]] ·m0 = 0, [3.5]

where m0 is aligned with the interface and such that n0 ·m0 = 0 according
to figure 3.1.

• The continuity at the interface in relation to the deformation gradient shall
be determined as follows:

[[F ]]m0 = 0 . [3.6]

• In all illustrative drawings presented, the requirement that the size of the
layers of the core phase will be much smaller than the size of the layers in
the rank-1 and rank-2 laminates is not strictly satisfied i.e. drawings are
not to scale.

• The figures presented throughout this text will reflect a laminate configu-
ration such that all points on the corresponding electromechanical loading
path lie within the range 0 ≤ ∆φ/H0 ≤ 100 MV/m.

3.3 Homogenised solution of rank-1 and rank-2

laminates

3.3.1 Rank-1 solution

Based on the homogenisation procedure given in this section, Gei et al. (2013)
mention how the behaviour expected of the laminate is that of a macroscopic be-
haviour both mechanically and electrically. The latter is evident from the eulerian
constitutive relationship Dav = εavEav, where matrix εav depends on the proper-
ties of both phases, irrespective of the driving actuation. The aim is to obtain
results for rank-1 layered dielectrics, specialised to the extended Neo-Hookean
free energy in equation [3.1] or [3.2].

Considering the rank-1 geometry in consideration, the electric field outside the
actuator vanishes and, with consideration that ñ0 as the outward unit normal to
the boundaries of the actuator, the boundary conditions [2.38] are of the form
presented below:

D0av · ñ0 = −ω0, ñ0 × [[E0av]] = 0 , [3.7]

the former implying equation [3.4]. Equations [3.71,2] state that the electric dis-
placement is continuous across the interface and the electric field is continuous
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along the interface, respectively. The jump in the electric displacement between
the two phases can then be represented as follows:

[[D0]] · n0 = 0. [3.8]

According to the theory of composite materials, the macroscopic deformation
gradient F av, the macroscopic total first Piola-Kirchhoff stress S av and the La-
grangian electric field E0av are defined as

F av = CAFA +CBFB, S av = CASA +CBSB, E0av = CAE0A +CBE0B.
[3.9]

Interface compatibility [3.6], together with eq. [3.9]1 provide the relations:

FA = F av
(
I + αCBm0 ⊗ n0

)
, FB = F av

(
I − αCAm0 ⊗ n0

)
, [3.10]

where α is a real parameter. Considering [2.38]2, it requires that the jump in E0

be along the direction normal to the layers, namely

E0A − E0B = β̃n0, [3.11]

where β̃ is another real parameter. It follows from [3.9]2 and [3.11] that

E0A = E0av + CBβ̃n0, E0B = E0av − CAβ̃n0. [3.12]

The scalar parameters α and β̃ are obtained by imposing the continuity of
tractions from equation [2.25] and tangential components of the electric field
[2.38]2 at the interface after the substitution of the constitutive laws [3.3]1,2.
With both parameters being described by the free energy [3.1] and [3.2], their
expressions were presented by Gei et al. (2013) as:

α =
µB − µA

CAµB + CBµA
F avn0 ·F avm0

F avm0 ·F avm0
, [3.13]

β̃ =
εB − εA

CBεA + CAεB
(F av)−TE0av · (F av)−Tn0

(F av)−Tn0 · (F av)−Tn0
+ αE0av ·m0. [3.14]

Once α and β̃ have been determined, the macroscopic total stress and electric
field can be determined through equations [3.9]2,3. The jump in hydrostatic phase
pressures pA and pB across each interface is obtained by multiplying the traction
continuity condition [2.25] with the vector (F av)−Tn0, yielding

pB − pA =

{[
(F av)−T E0av · (F av)−T n0

]2 εAεB(εA − εB)

(CBεA + CAεB)2

+ µB − µA
}

1

(F av)−T n0 · (F av)−T n0
.

[3.15]
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Spinelli & Lopez-Pamies (2015) recorded simple explicit expressions for the
macroscopic electroelastic response and stability of layered composites with any
number of ideal dielectric elastic phases under general electromechanical loading
conditions. The following set of invariants was expressed:

I1 = F av · F av, I2 = (F av)−T · (F av)−T, I4 = F avn0 · F avn0,

I5 = (F av)TF avn0 · (F av)TF avn0, J6 = E0av · Eav,

J7 = (F av)−TE0av · (F av)−TE0av,

J8 = (F av)−1(F av)−TE0av · (F av)−1(F av)−TE0av,

J9 = E0av · n0, J10 = (F av)−TE0av · (F av)−Tn0.

[3.16]

The effective free energy function is then represented as

W av(F av,E0av) =
µav

2
[I1 − 3]− µav − µHav

2

[
I4 −

1

I2 − I1I4 + I5

]
−ε

av

2
J7 +

(εav − εHav)J2
10

2[I2 − I1I4 + I5]
,

[3.17]

where

µav = CA
R1µ

A + CB
R1µ

B, µHav =

(
CA
R1

µA
+
CB
R1

µB

)−1
, [3.18]

εav = CA
R1ε

A + CB
R1ε

B, εHav =

(
CA
R1

εA
+
CB
R1

εB

)−1
. [3.19]

What equation [3.17] emphasises is that the resulting free energy for rank-1 lam-
inated composites is not of the separable form. In the next section, this theory
shall be adapted to a rank-2 composite in order to fully optimize the geometry
of rank-2 composites in a manner analogous to rank-1 composites. This will all
be carried out for various boundary conditions.

3.3.2 Rank-2 solution

A rank-2 laminate can be created by layering a rank-1 laminate with either a third
phase whose material parameters differ from the two materials used to construct
the rank-1 laminate, or by using one of the constituent phases already present in
the laminate. The latter construction process will be adopted in this study. We
shall now laminate a rank-1 laminate with the compliant phase of low dielectric
constant, denoted already as material ”B” in order to obtain a particulate mi-
crostructure of the stiff and high dielectric inclusions surrounded by a compliant
and low dielectric matrix as presented in figure 3.2.
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Figure 3.2: Geometry of the reference configuration of a two-phase rank-2 composite consisting
of a rank-1 composite laminated with a soft homogeneous phase. θR1 is negative in the figure.

As before, it is assumed that the characteristic size of the layers in the rank-1
laminate, denoted the core, is smaller in comparison with the corresponding size
of the layers of the homogeneous soft phase, denoted the matrix. Following this
construction process, it is implicitly assumed that the deformation in the rank-2
composite is piecewise constant with a different constant in each of the three dif-
ferent phases. It should be noted that this assumption violates the requirement
that X (X) will be locally continuous at the interface between the inner rank-
1 composite and the third phase. However, since we have already established
that the characteristic size of the layers of the rank-1 composite is substantially
smaller than the corresponding size of the layers of the rank-2 composite, the
local fluctuations of the actual fields, whose wavelength is comparable with the
thickness of the layers in the rank-1 laminate, will decay a few wavelengths from
the interface. These fluctuations are mentioned by DeBotton (2005) to have only
a negligible effect on the macroscopic response of the composite.

Following on from the rank-1 lamination process, optimum configurations for
CB
R1 and θR1, will be determined through an iterative approach using the Newton-

Raphson method, but now the volume fraction of the soft phase and lamination
angle in the layered rank-1 laminate present the possibility of the configuration
requiring re-optimisation. Figure 3.3 displays this configuration whereby holis-
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tically, the configuration is exactly the same as that of the previously discussed
rank-1 laminate with a new unit normal and tangent to the interface denoted n0

R2

and m0
R2 respectively, aligned with the interface as shown.

The process of determining the free energy of the rank-2 composite is essen-
tially the same process executed for the rank-1 composite, with the inner rank
one material treated as a homogenized material, whose subscript shall be de-
noted ”R1”. The subsequent free energy will now be prescribed to be ”W av

R2 ”
and arbitrary lamination direction ”n0

R2”. According to this schematic, there are
two independent microstructural parameters for each composite and thus four
independent parameters for the rank-2 composite. Namely, these are the volume
fraction of the soft phase in the core (CB

R1), the volume fraction of the core in the
composite (CR1) and the lamination angles of the two laminates (θR1, θR2).

Specifically, at each stage the core of a rank-1 composite is laminated with an
identical homogeneous constituent, the matrix phase. By following this lamina-
tion procedure the end result is a particulate composite consisting of an inclusion
phase which is embedded in a matrix phase. In terms of the macroscopic energy
of the composite, the expression for the energy of a rank-2 composite becomes
the following.

W av
R2 = WR1CR1 +WB

R2C
B
R2, [3.20]

where, as W av represents the total macroscopic energy of the rank-1 laminate,
W av

R2 represents the total macroscopic energy of the rank-2 laminate. The energy
of the soft phase is that presented in equation [3.2] while that of phase ”R1” is the
same as that in equation [3.17]. It is now apparent that the energy of phase ”R1”
is exactly the same as the total energy of the rank-1 laminate W av. In section 3.3,
we have obtained explicit expressions for the nominal macroscopic total stress in
terms of the overall deformation gradient F av and the applied nominal electric
field E0av. For a rank-2 laminate, corresponding Euler-Lagrange equations can-
not be solved analytically and thus numerical solutions need to be determined.
Here we have introduced new subscripts which should not be muddled with those
corresponding to the rank-1 solution. The subscript always corresponds to the
rank of the laminate being considered.

Due to the electric field, there are mechanically induced stresses correspond-
ing to phases ”AR1” and ”BR1” microscopically which contribute to the overall
macroscopic actuation strain on the rank-1 composite. Thus when considering
the rank-2 laminate, these microscopic contributions of mechanically induced
stress are ”R1” and ”BR2”

1 where ”BR2” represents the soft homogeneous phase

1Phases BR2 and BR1 are of the same material, however for purposes of this section it is
useful to distinguish them. For the rest of this study, the soft phase will be specified for the
laminate being discussed.
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Figure 3.3: Geometry of a rank-2 laminate zoomed in to display unit normals and tangents and
volume fractions present at each layer.

layered with the anisotropic rank-1 laminate. This implies that for all intents
and purposes and in agreement with the lamination process already established,
only phases ”AR1”, ”BR1” and ”BR2” exist in the rank-2 composite as displayed
in figure 3.3. This maintains the earlier declaration that a rank-1 composite is
being laminated with a homogeneous matrix phase. Thus the rank-1 relations to
the rank-2 laminate can now be expressed as follows:

CR1 = CA
R1 + CB

R1, S av
R2 = SR1CR1 + SBCB

R2. [3.21]

The macroscopic deformation gradient and average electric field in relation to the
rank-2 laminate can also be expressed as follows.

F av
R2 = CR1FR1 + CB

R2F
B, E0av

R2 = CR1E0R1 + CB
R2E

0B. [3.22]

with FR1 = CA
R1F

A +CB
R1F

B. From a computational point of view, it should be
noted that equation [3.212] is significantly simpler than the rank-2 equivalent of
equation [3.31] since [3.212] includes the already defined total first Piola-Kirchhoff
stress which need not be computed again. Whereas [3.31] depends not only on
rank-2 equivalents of F av and its partial derivative, but also on the phase pres-
sures in all three phases. It should be noted that, despite the clear interface
between phases ”B” and ”R1” in figure 3.2, only two materials compose the
rank-2 laminate such that in reality there is no actual interface between BR1 and
BR2. The remaining rectangular orientation of the stiff phase may also imply
infinite stresses at the ”corners” of the interfaces therefore these corners can be
smoothed as presented by Rudykh et al. (2011).

Determination of the numerical solution for a rank-2 laminate is now possible
and was executed using equation [2.25] which defines the traction continuity and
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[3.8] for the electric displacement and thus the jump between phases ”R1” and
”BR2.” These jump conditions are combined with the imposition of respective
boundary conditions for the specific boundary-value problem e.g. S11 = S22 =
S33 = 0 as presented in the example in section 2.6.1. These sets of equations can
then be solved simultaneously for determination of rank-2 laminate parameters
αR2, β̃R2, λ and one of the phase pressures, in this case pR1. The corresponding
parameters for rank-1 laminates were also solved in a likewise manner in section
3.3.1. The sets of simultaneous equations were solved by iteration using a Newton-
Raphson method in MATHEMATICAR© commercial software.

3.4 An alternative energy formulation

Lopez-Pamies (2014) also developed an analytical, nonlinear homogenisation
framework for determining the overall response of elastomeric composites sub-
ject to finite deformations. The strategy executed involved an iterated homog-
enization procedure that provides an exact solution for energy W av in terms of
an auxiliary dilute problem. The second step, similar to that carried out by
DeBotton (2005), consisted of the construction of suitable classes of sequential
laminates. The alternative definition of the effective free energy function was
given by

W (F av,E0av) = min
Fav∈K

max
E0av∈E

∫
∂B0

W (X,F ,E0)dX. [3.23]

Where K and E denote sufficiently large sets of admissible deformation gradients
and electric fields. The problem of computation of Euler-Lagrange solutions was
executed by adopting a semi-inverse approach in which the sets K and E of ad-
missible deformation gradients and electric fields were restricted to include only
certain classes of sub-fields. The maximization and minimization operations in
equation [3.23] are over suitably restricted sets K and E of deformation gradient
tensors F av and electric fields E0av, whose precision however shall not be specified
in this text.

Lopez-Pamies (2014) applied the same lamination procedure already pre-
sented for rank-1 laminates in section 3.2, followed by determination of expres-
sions analogous to equations [3.10] and [3.12]. Considering solely piecewise con-
stant deformation gradients and electric fields, the effective stored-energy func-
tion of the rank-1 laminate was expressed in a similar form to that by DeBotton
(2005) as

W av(F av,Eav) = min
α

max
β̃
{CAWA(FA,E0A) + CBWB(FB,E0B)}. [3.24]

The minimisation condition with respect to α implies mechanical equilibrium
(equation [2.25]) whereas the maximisation with respect to β̃ implies Gauss’ law
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(equation [2.36]) across material interfaces. Following the formulation presented,
the jump conditions implied are similar to those already presented in equations
[2.25], [2.38]2 and [3.6].

The rank-2 formulation follows that already presented, with the same piece-
wise constant deformation gradients and electric fields. The effective free energy
function of the corresponding rank-2 laminate is given by an expression analogous
to [3.24], presented as follows:

W av
R2(F

av,E0av) =min
αR2

max
β̃R2

{
CB

R2W
R1(FR1 + CR1αR2m

0
R2 ⊗ n0

R2,E
0R1 + CR1βR2n

0
R2)

+ CR1W av
R1(F

R1 − CB
R2αR2m

0
R2 ⊗ n0

R2,E
0R1 − CB

R2βR2n
0
R2)
}
.

[3.25]

In comparison to the previously formulated rank-2 energy in equation [3.20],
equation [3.25] has been restricted to per-layer fields to correspond to the unique
exact effective stored-energy function. Thus, when performing computations,
equation [3.25] is more convenient as equation [3.20] requires first establishing
the rank-1 solution, then supplementing of this solution into the rank-2 problem
which then leads to the rank-2 solution. However, both equations [3.20] and [3.25]
produce the exact same closed-form solution when applied to rank-1 laminates,
and subsequent rank-2 solution. Thus in the microstructure optimisation process,
both forms of the energy can be utilised interchangeably. Although, it is empha-
sised that the theory of [3.25] is entrenched in a derivation whose procedure is
mathematically-intensive. Thus it is not the prime driver of the optimisation
process used in this study. Checks were also successfully completed to ensure
that [3.25] will satisfy all conditions in this study.

3.5 Conclusions



Chapter 4

Boundary value problems in
plane strain

4.1 Introduction

This chapter focuses solely on boundary-value problems in a plane strain envi-
ronment of two types. The first boundary-value problem will refer to plane strain
with shear strains considered while the second will relate to plane strain with no
shear strains considered. We shall begin with an initial optimisation for each rank
laminate to provide a basic framework of the optimisation process. The initial
results in finite strain will be compared to those obtained by Tian et al. (2012),
which were reported for small strain. An effort shall also be made to compare
results of the different plane-strain boundary-value problems, in an attempt to
observe the effect of shear strains on rank-1 and rank-2 laminates of this type.
This chapter shall round off with exposing the current state of lamination angles
and phase electric fields in rank-2 laminates.

In the previous work accomplished by Tian et al. (2012), it was investigated
that the electromechanical coupling, rather the macroscopic strain, induced in
the composite through the application of a unit electric field, can be amplified by
many orders of magnitude by a combination of constituent materials with high
contrast and a highly complex and poly-disperse micro-structure. For varying
contrasts, whose shear and dielectric moduli were equal, results were obtained for
optimum configurations. Beginning from these micro-structure arrangements, the
formulations in section 3.2 will be used to optimise the micro-structure of rank-1
and rank-2 laminates in order to determine the maximum achievable longitudinal
stretch. The lamination process has already been described in section 3.2, relating
to a stiff phase ”A” with a high dielectric constant and a compliant phase ”B”
with a low dielectric constant. These two phases will have material parameters
of εA = 100 ε0, ε

B = 10 ε0, µ
A = 100 MPa and µB = 10 MPa such that the

27
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contrast between materials will be given by µA/µB = εA/εB = 10. This contrast
will be increased in steps of {10x, x = 1, 2..., 4} and results for each contrast
presented. Initially, the contrast of 100 and corresponding configuration obtained
by Tian et al. (2012) was selected as the template contrast so as to compare results
obtained by the same author in small strain with results obtained in this study
in finite strain. For any initial optimisation in this study for all boundary-value
problems, the contrast of 100 will be the reference for any initial optimisation and
then the contrast will be varied to produce the results in the order of contrasts
already described.

4.2 Plane strain with in-plane vanishing trac-

tions

4.2.1 Initial optimisation: rank-1 laminates

Consider now a boundary-value problem where the device will deform macro-
scopically at vanishing tractions, specifically, for the conditions

Sav
11 = 0, Sav

12 = 0, Sav
22 = 0, [4.1]

along the electric activation. Due to the intrinsic macroscopic mechanical anisotropy,
the deformation gradient is imposed to be as follows

F av =

 λ ξ/λ 0
0 1/λ 0
0 0 1

 , [4.2]

where ξ is the amount of shear related to the shear angle γ in the current config-
uration i.e. tanγ = ξ, λ is the longitudinal stretch and λmax is the maximum lon-
gitudinal stretch along an electromechanical equilibrium path. For plane strain,
it should be noted that Sav

33 6= 0 as it is associated with the out of plane stretch
constrained due to there being no strain along direction x3. It was determined,
by DeBotton (2005) and Tian et al. (2012), that for rank-1 laminates the ac-
tuation strain δl1 mainly depends on the relative angle between the direction
of the applied nominal electric field and the interface i.e. θR1, but only a lit-
tle on the volume fraction of the phases (CA

R1, C
B
R1). Due to the combination of

the two phases, the rank-1 laminate is highly anisotropic such that the actua-
tion strain in some directions is larger than when compared to the homogeneous
strain. Thus this optimisation process will also aim to confirm these observations.

1where δl = λ− 1 e.g. when λ = 1.03 then δl = 3%.
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The results for rank-1 laminates at a contrast of 100 and applied nominal
electric field of 100 MV/m are presented on table 4.1 and figure 4.1. The inter-
pretation of these configurations is as follows: HSmS refers to the stretch due to a
homogeneous material in small strain obtained by Tian et al. (2012) while HLgS
refers to the stretch due to a homogeneous soft material obtained in this study in
large strain. The curve TSmS in figure 4.1 refers to the result obtained by Tian
et al. (2012) for a rank-1 laminate while TLgS refers to the performance of the
geometry found by Tian et al. (2012), this time taking into account non-linear
effects in large strain. Finally, R1LgS corresponds to the optimised configuration
for λmax for a rank-1 laminate obtained in this study. It is evident that there is
an improvement in λmax for a rank-1 laminate from the soft material such that
the actuation is homogeneous, similar to the improvement obtained by Tian et al.
(2012). Specifically, the longitudinal stretch2 has improved by 12% from homoge-
neous, similar to the improvement obtained by Tian et al. (2012). As presented
on table 4.1, a homogeneous strain (λmax − 1) of 2.21% was obtained by Tian
et al. (2012) in small strain in response to a nominal electric field of 100 MV/m
whereas in finite strain a homogeneous strain of 2.34% was obtained presenting
an improvement of 6%. The two sets of results for a soft material such that the
actuation is homogeneous provide the foundation of significant enhancement of
longitudinal strain to be obtained once the new optimal θR1 and CB

R1 configura-
tions have been obtained.

Case λmax ξ CB
R1 θR1[

◦]
HSmS 1.022100 1
HLgS 1.023440 1
TSmS 1.024800 not known 0.5 61.2
TLgS 1.026213 -0.00926 0.5 61.2
R1LgS 1.026214 -0.00949 0.5 60.9

Table 4.1: Rank-1 laminate longitudinal stretch, amount of shear and microstructure configu-
rations. HSmS and HLgS refer to the stretches due to homogeneous materials in small strain
obtained by Tian et al. (2012) and in finite strain obtained in this study, respectively. Curve
TSmS refers to the result obtained by Tian et al. (2012) while TLgS refers to the performance
of the geometry of TSmS, this time taking account non-linear effects. R1LgS is the rank-1
optimum configuration in finite strain.

2The difference between λ and λmax is recalled here. λ refers to any point along the curves for
a corresponding applied nominal electric field, whereas λmax refers to the maximum longitudinal
stretch obtained when the laminate is optimised at a specific target electric field. The same
differentiation will be applied to the amount of shear ξ and ξmax.
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Figure 4.1: Longitudinal stretch obtained due increasing applied nominal electric field for rank-
1 laminates and a soft material such that the actuation is homogeneous relating to table 4.1.
Curves for R1LgS and TLgS are found to be near identical and thus are superimposed and
homogeneous curve for large strain is black dotted/HLgS. Straight lines refer to small strain
results obtained by Tian et al. (2012) for a soft material such that the actuation is homogeneous
(Green line/HSmS) and Rank-1 laminate (Red line/TSmS). Configurations are presented on
table 4.1.

4.2.2 Influence of increasing contrast on rank-1 laminates

The optimum configurations at increasing contrast and corresponding λmax for
rank-1 laminates are presented on table 4.2. When these configurations at dif-
ferent contrasts are compared, the values of θR1 and CB

R1 corresponding to λmax
are exactly the same. This is also confirmed by investigating optimum laminate
configurations at increasing contrasts and this is reflected in figure 4.2(b) showing
the influence of varying θR1 at a constant applied nominal electric field of 100
MV/m. The effect of increasing contrasts is minimum in this boundary-value
problem as displayed in figure 4.2(a) which displays that as the applied nominal
electric field is increased for a set configuration there is little difference in λmax
at increasing contrasts. This implies that for rank-1 laminates with shear strain
considered there is no great benefit in varying the contrast when the ratios of
shear to dielectric moduli are equal.

The absolute values of phase electric fields have also been presented on table
4.2 and it is noticeable that with increasing contrast the absolute value of electric
field in phase ”A” is almost constant and much lower in comparison to that for
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Curve µA/µB = εA/εB λmax ξ EA
R1 [MV/m] EB

R1 [MV/m] CB
R1 θR1[

◦]
Yellow 10 1.025373 -0.00663 89.2 128.8 0.5 60.9

Red 100 1.026313 -0.00949 88.9 134.9 0.5 60.9
Green 1000 1.026316 -0.00984 88.9 135.6 0.5 60.9
Blue 10 000 1.026326 -0.00987 88.9 135.7 0.5 60.9

Table 4.2: (a) Rank-1 laminate microstructure configurations and corresponding longitudinal
stretch and phase electric fields for contrasts of {10x, x = 1, 2..., 4} corresponding to figure
4.2(a) for a boundary-value problem of plane strain with in-plane vanishing tractions.
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Figure 4.2: (a) Resulting longitudinal stretch when varying applied nominal electric field up
to 100 MV/m at optimum configurations reflected on table 4.2 and (b) influence of varying
lamination angle at increasing contrasts of {10x, x = 1, 2..., 4} for the range 0◦ ≤ θR1 ≤ 180◦

at an applied nominal electric field of 100 MV/m with maximum values of λ corresponding to
those on table 4.2.

phase ”B.” What this implies is that the deformation experienced is greater in the
soft phase and is a result of the greater ability of the soft phase to deform, while
the stiffer phase does not contribute greatly to the overall laminate deformation.
From a contrast of 10 to that of 100, the phase electric field of the soft phase has
increased but does not increase greatly at higher contrasts after that. Thus at
higher contrasts and in single phases the electric fields remain almost constant,
which can be attributed to the similar amounts stiff and soft phase in each of the
rank-1 laminates. These equal amounts of stiff to soft phase, along with the lack
of change of optimum lamination angle with increasing contrast, also enforces the
aforementioned fact that the soft phase is dominant in the deformation of rank-1
laminates as all other parameters are unchanging.

At a contrast of 100, the effect of the configuration on the amount of shear
for a rank-1 laminate is presented in figures 4.3(a) and 4.3(b). With regards
to volume fraction, it is interesting that the influence of volume fraction is less
pronounced at CB

R1 ≥ 0.9 and CA
R1 ≤ 0.1 as compared to CB

R1 = 0.7 or CA
R1 = 0.3
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Figure 4.3: (a) Influence of increasing volume fraction on the shear angle of a rank-1 laminate
at a contrast of 100 and lamination angle of 60.9◦ and (b) resulting shear angle and various
values for θR1 with increasing applied nominal electric field.

in figure 4.3(a). Compare this behaviour with statements made earlier relating
to phase electric fields on table 4.2. This confirms that the phase electric fields
reflected are due to the inherent nature of the phases i.e. stiff and more dielectric
or soft and less dielectric as the effect of volume fraction is the same at either
extreme of stiff or soft phase. If the lamination angle is unchanging, it is evident
that both greater stretch and shear are experienced when the volume fraction is
0.5. At CB

R1 = 0.5, this configuration is one of the many presented in figure 4.3(b)
and what is unique here is that the lamination angle corresponding with λmax
is not the same as the lamination angle corresponding to the greatest amount
of shear (ξmax) experienced at an applied nominal electric field of 100 MV/m.
For example, the curve relating to θR1 = 70◦ does not give a great amount of
shear relative to θR1 = 20◦, due to a stiffening effect that the material seems
to undergo as it evolves through various lamination angles. This is revealed by
comparing figures 4.2(b) and 4.3(b) where the gradient at θR1 = 20◦ in figure
4.2(b) is greater than at θR1 = 70◦. This implies θR1 influences both λ and ξ
concurrently. The non-linear nature of finite strain is observed through the fact
that at θR1 = 30.9◦ the maximum shear angle is experienced and then decreases
after that at points such as θR1 = 20◦. The value of applied nominal electric field
should not be taken for granted here as Gei et al. (2013) presents similar results
to figure 4.3(b) for much greater voltages. Therefore within the limit of applied
nominal electric field presented of 100 MV/m, one can establish either a lami-
nation angle corresponding to λmax, which is not the same as θR1 that provides
maximum shear.

The results obtained now enable one to pose the following question: if opti-
misation for λmax is possible, what of a configuration in which the laminate is
optimised for shear? If the rank-1 laminates are optimised for maximum amount
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of shear or ξmax, new configurations now given by table 4.3 are established. There-
fore for a boundary-value problem of plane strain with in-plane vanishing trac-
tions, it is possible to optimise rank-1 laminates for either maximum γ3, or λmax.
Most of the phenomena exactly experienced relating to volume fraction and lam-
ination angle with increasing contrast are observed in these curves as well, with
minimum improvement in amount of shear at higher order contrasts.

It should be noted that the amount of shear experienced as shown on table
4.3 is very small. However, even if the numerical value of amount of shear is
small, this does not mean that the contributory effect of shear itself to the over-
all longitudinal stretch is also small. A new optimum lamination angle has been
obtained when the laminates are optimised for configurations which provide the
maximum amount of shear. The lamination angle θR1 has changed significantly
from 60.9◦ to 30.9◦ for most contrasts. Shear strains have therefore effectively
driven this lamination angle evolution, despite their perceived low values. Figure
4.4(b) shows how shear angle changes with varying volume fraction and what is
emphasised here is that CB

R1 represents a point of symmetry in which the exact
same curves are obtained at the same values of CA

R1 similar to figure 4.3(a). There
is a stiffening of the laminate which is more pronounced at specific volume frac-
tions as the contrast increases, with the curve for a contrast of 10 000 showing
near straight line behaviour at the maximum shear angle as the volume fraction
of the soft phase approaches 1, implying a soft material such that the actuation
is homogeneous. It should also be noted that the amounts of phase electric fields
experienced for ξmax optimisation on table 4.3 are similar to those presented on
table 4.2.

Curve µA/µB ξmax λ CB
R1 θR1[

◦]
Yellow 10 -0.02013 1.01744 0.5 30.8

Red 100 -0.02861 1.01505 0.5 30.9
Green 1000 -0.02963 1.01477 0.5 30.9
Blue 10 000 -0.02973 1.01474 0.5 30.9

Table 4.3: Rank-1 laminate configurations and corresponding maximum amount of shear for
contrasts of {10x, x = 1, 2..., 4} corresponding to figure 4.4 for a boundary-value problem of
plane strain with vanishing tractions.

4.2.3 Initial optimisation: rank-2 laminates

It is useful to continue this optimisation process by first comparing figures 3.1
and 3.2. It has already been established that symmetrical behaviour of longitudi-

3where shear angle γ = atan[ξ] as presented in figure 4.9(c)
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Figure 4.4: (a) Shear angle presented as a result of increasing applied nominal electric field for
increasing contrasts presented on table 4.3 for rank-1 laminates (b) shear angle presented as a
result of increasing volume fraction of the soft phase for increasing contrasts presented on table
4.3 for rank-1 laminates.

nal stretch is present at various lamination angles for a rank-1 laminate and thus
for rank-2 laminates, one can deduce that the more complicated microstructure
would create barriers to this symmetrical behaviour. Therefore for rank-2 lam-
inates, the microstructure is now more complex and it should be expected that
the various contrasts will present profound differences to each other.

Recalling the formulation for rank-2 laminates, when the specimen is sub-
jected to plane-strain loading conditions, the out of plane stress component has
to be taken into consideration. Each single phase is treated as an incompressible
neo-Hookean dielectric material with energy as in equation [2.40] and [3.20]. As
we have already established, an optimum configuration is expected for a set vol-
ume fraction and lamination angle. The method of solution of rank-2 laminates
has already been presented in section 3.3.2.

Optimum configurations for rank-2 laminates are shown in figure 4.5. The
interpretation of these curves is as follows: for the same contrast of 100, different
optimum configurations were found to be present at different applied nominal
electric fields, given in table 4.4. At an applied nominal electric field of 100
MV/m, the configuration for λmax for a rank-2 laminate is the one presented
with configuration on table 4.4 as R2LgS. The nominal electric field was then
reduced to 50 MV/m and the corresponding configuration for λmax determined,
presented as R2LgS50. R2TSmS is the configuration determined by Tian et al.
(2012) in small strain while R2TLgS is the same configuration in large strain.
It is evident that at ∆φ/H0 = 50 MV/m, the corresponding configuration for
λmax is different to the one when the configuration is determined at an applied



CHAPTER 4. BOUNDARY VALUE PROBLEMS IN PLANE STRAIN 35

nominal electric field of 100 MV/m. At ∆φ/H0 =50 MV/m in figure 4.5, the
curve R2LgS50 presents a value of λmax greater than that of λ for R2LgS at this
point. The same phenomena would be obtained for configurations optimised for
any other nominal electric fields up to 100 MV/m. This confirms the presence
of an optimum configuration that provides λmax at a set applied nominal electric
field. The curve R2TLgS presents an improved value for λmax to R2TSmS of
12% while R2LgS presents an improvement of 5% from R2TLgS. Using the new
laminate configuration obtained (R2LgS), an improvement in strain of 78% from
R1LgS was obtained, while R2LgS presents a 20% improvement from R2TSmS
and confirming the approach of this study.

Case λ ξ CB
R1 θR1[

◦] CR1 θR2[
◦]

R2TSmS 1.10299 not known 0.531 60.3 0.964 14.6
R2TLgS 1.11795 0.07241 0.531 60.3 0.964 14.6
R2LgS50 1.12033 0.08228 0.507 61.4 0.963 15.0
R2LgS 1.12405 0.11811 0.508 65.1 0.963 12.3

Table 4.4: Rank-2 laminate configurations obtained for a contrast of 100 and applied nominal
electric field of 100 MV/m and in small strain (R2TSmS) by Tian et al. (2012), the same
configuration in large strain (R2TLgS), optimum configuration for λ in large strain at an
applied nominal electric field of 50 MV/m (R2LgS50) and optimum configuration for λ in large
strain at a nominal electric field of 100 MV/m (R2LgS). Corresponding curves are presented
in figure 4.5.
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Figure 4.5: Rank-2 laminate influence of increasing applied nominal electric field on longitudinal
stretch obtained for a contrast of 100 and applied nominal electric field of 100 MV/m in small
strain (R2TSmS) by Tian et al. (2012), the same configuration in large strain (R2TLgS), opti-
mum configuration in large strain at an applied nominal electric field of 50 MV/m (R2LgS50)
and optimum configuration in large strain at a nominal electric field of 100 MV/m (R2LgS).
Corresponding configurations are presented on table 4.4.

4.2.4 Influence of increasing contrast on rank-2 laminates

Table 4.5 presents results obtained by Tian et al. (2012) in small strain while
table 4.6 shows the results obtained for contrasts up to 10 000 for λmax and max-
imal strain δl. At the lowest contrast of 10, the effect of electric field was found
to be less pronounced such that the improvement in the rank-2 laminate from
the rank-1 is very small. This brings to suggestion the theory that for a material
that is at very low contrasts at which the dielectric and shear moduli are equal,
there is little benefit in using a rank-2 laminate as opposed to a rank-1 laminate
for actuation purposes. A substantial increase in λmax from the homogeneous
value has been obtained at contrasts of 1000 and higher. It is evident that re-
sults obtained from contrasts of 100 upwards reflect a remarkable improvement
in maximum longitudinal stretch attainable in large strain.

At the point of interest which is 100 MV/m, the statement that λmax increases
with increasing contrast for a rank-1 laminate also applies to rank-2 laminates,
as well as applying in both small strain according to Tian et al. (2012), and large
strain in this study. The amount of strain however is considerably high at a
contrast of 10 000 which may imply a difficult configuration to configure, as we
shall observe when the laminates are optimised for ξmax. Table 4.6 shows that the
amount of shear is increasing in magnitude with increasing contrast. Comparing
tables 4.5 and 4.6, the configurations obtained in both studies for contrasts of
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Line µA/µB = εA/εB λmax δl/δlHom CB
R1 θR1[

◦] CR1 θR2[
◦]

Black 10 1.02542 1.15 0.569 61.9 0.819 21.4
Red 100 1.10298 4.66 0.531 60.3 0.964 14.6

Green 1000 1.82720 37.43 0.584 63.1 0.992 27.5
Blue 10 000 5.98488 225.56 0.690 62.8 0.997 42.3

Table 4.5: Rank-2 laminate configurations at contrasts of {10x, x = 1, 2..., 4} at maximum
longitudinal stretch and longitudinal strain obtained for a contrast of 100 and applied nominal
electric field of 100 MV/m by Tian et al. (2012) i.e. R2TSmS. Values were initially presented
as maximal strain and have been converted in terms of stretch in this table. Points have also
been represented as straight lines in figure 4.6.

Curve µA/µB = εA/εB λmax δl/δlHom ξ %gain CB
R1 θR1[

◦] CR1 θR2[
◦]

Yellow 10 1.02705 1.15 0.00134 6 0.563 62.1 0.831 20.1
Red 100 1.12405 5.29 0.11811 16 0.508 65.1 0.963 12.3

Green 1000 2.47891 63.10 0.24845 26 0.498 70 0.990 -20.0
Blue 10 000 7.22270 265.47 -7.91313 17 0.518 88.0 0.988 -51.0

Table 4.6: Rank-2 laminate configurations (R2LgS) and amount of shear at contrasts of
{10x, x = 1, 2..., 4} at maximum longitudinal stretch, Longitudinal strain and percentage gain
in λmax are presented in comparison to Tian et al. (2012) in small strain (R2TSmS). Corre-
sponding curves are presented in figure 4.6.
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Figure 4.6: Influence of applied nominal electric field on longitudinal stretch for rank-2 lami-
nates at contrasts of {10x, x = 1, 2..., 4} for the range 1≤ λ ≤2.5 in large strain with horizontal
lines representing values obtained by Tian et al. (2012) in small strain (R2TSmS). Sub-image
displays the full curve and corresponding line at a contrast of 10 000. Laminate configurations
are presented on table 4.6.

10 and 100 show great similarity. However as the contrast is increased to 1000



CHAPTER 4. BOUNDARY VALUE PROBLEMS IN PLANE STRAIN 38

and 10 000, the non-linear effects in this study present a greater effect on the
optimum configuration.

As already established for rank-1 laminates, laminate optimisation in terms
of ξmax can also be performed for rank-2 laminates and this optimisation pro-
vides crucial insight into the effective influence of microstructural interactions of
rank-2 laminates. Figure 4.7 displays the applied nominal electric field influence
on shear angle and we observe that different configurations are obtained due to
an optimisation for maximum shear angle. At contrasts of 10 and 100 we observe
a positive overall maximum shear angle on table 4.7, implying the material is
shearing in a counter-clockwise direction and then at all higher contrasts ξmax is
negative implying a clockwise shearing.

Curve µA/µB = εA/εB ξmax λ δl/δlHom CB
R1 θR1[

◦] CR1 θR2[
◦]

Yellow 10 0.01176 1.02334 0.99 0.563 87.3 0.810 33.3
Red 100 0.26417 1.06172 2.63 0.505 90.0 0.967 31.1

Green 1000 -0.95326 1.92680 39.54 0.502 47.0 0.994 -44.0
Blue 10 000 -20.9042 7.01465 256.60 0.529 58.8 0.980 -90.0

Table 4.7: Rank-2 laminate configurations at contrasts of {10x, x = 1, 2..., 4} when laminates
were optimized for maximum amount of shear. Corresponding curves within the range -40◦ ≤
γ ≤ 20◦ are presented in figure 4.7.

Let us try and envision the interaction between shear angle and both lam-
ination angles for a moment: If we consider contrasts of 10 and 100, there are
positive shear angles at λmax as well as positive inclinations of θR1 and θR2. At
a contrast of 1000, θR1 is positive with θR2 negative and the corresponding γ of
approximately -44◦ as displayed in figure 4.7. An increase in contrast from 100
to 1000 has resulted in a change of shear inclination of the rank-2 laminate. At a
contrast of 1000, the laminate starts with almost no shear i.e. shear values that
are very small and negative, then as the amount of applied nominal electric field
increases at ∆φ/H0 =60MV/m, a distinctly negative inclination presents itself.

One important point to highlight is that that the optimisation process can
present amounts of shear of either positive or negative value. Thus the definition
of ξmax in this study refers in actual fact to |ξmax| such that the largest amount of
shear is the parameter in consideration. Figure 4.7 only displays the shear curves
up to -40◦ in an effort to try and minimise the shear angles experienced. The
reason for this being that shear angles that are too great imply relatively high
shear forces at the interfaces between phases, in such a manner as to possibly
trigger failure within the composite. In the context of material design, high shear
forces would therefore be unfavourable. This was particularly experienced for the
configuration that presents maximum shear at a contrast of 10 000. It can then
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Figure 4.7: Influence of increasing applied nominal electric field on shear angle at contrasts of
{10x, x = 1, 2..., 4} for rank-2 laminates limited to the range -40◦ ≤ γ ≤ 20◦. Corresponding
configurations for optimisation for absolute ξmax beyond this range are presented on table 4.7.

be argued that an optimum configuration for a low fixed shear angle can be deter-
mined to try and keep shear angles at a minimum. Also at a contrast of 10 000,
it is evident that even at low applied nominal electric fields below 40 MV/m, the
shear angle is already unsuitably high, implying that as contrast is increased, it
is imperative to strive for lower shear angles for laminate programming purposes.

Figure 4.8 shows the influence of the two main volume fractions on the shear
angle at a contrast of 100. What is emphasised here is that the volume fraction
of the core in the laminate provides maximum shear effects at 0.9 ≤ CR1 ≤ 1
while the volume fraction of the soft phase in the core maintains most effective
behaviour for shear angle at CB

R1 ≈ 0.5, similar to the rank-1 behaviour presented
earlier in figure 4.4(b) and rank-2 behaviour on table 4.7. The stiff phase in
the core is required to establish a contrast in the laminate for electromechanical
behaviour. When considering the rank-1 anisotropic phase embedded in the rank-
2 laminate, it should be acknowledged that the stiff phase makes up nearly half
of this phase thus reinforcing the requirement that the stiff phase plays just as
crucial a role in laminate performance as the soft phase.
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Figure 4.8: Microstructure interaction of CR1 and CB
R1 with shear angle. Each point corre-

sponds to a unique value for shear angle. µA/µB = εA/εB = 100, θR1 = 64.9◦, θR2 = 11.2◦.

4.3 Plane strain without shear strain consider-

ation

4.3.1 Influence of increasing contrast on rank-1 laminates

Let us maintain the Cartesian coordinate system already introduced and consider
a deformation such that the actuation will deform the specimen macroscopically
in such a manner as to obtain principal strain directions corresponding to x1 and
x2 such that the admissible deformation gradient becomes the following

F av =

 λ 0 0
0 1/λ 0
0 0 1

 . [4.3]

For this boundary-value problem, the influence of increasing contrast on λmax
is more enhanced as presented on table 4.8 and figure 4.10(a). Comparing each
of the curves presented in figure 4.10(a), it is evident that an increase in contrast
leads to an amplification in the longitudinal stretch of rank-1 laminates greater
than in figure 4.2(a). This is attributed to the increase in contrast providing a
more enhanced electromechanical interaction within the material. It is evident
on table 4.8 that lamination angle provides a profound influence on longitudinal
stretch at all contrasts. An addition of stiff phase to the homogeneous material
increases λmax, and then at increasing contrasts, for equal amounts of the soft
and stiff phases, the lamination angle changes only slightly but this slight change
in θR1 is evidently contributing to a profound increase in λmax.

Having established that there is a strong influence of lamination angle on a
rank-1 laminate, figure 4.10(b) displays the evolution of λ for 0 ≤ θR1 ≤ π for
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(c) configurationC2

(a) Undeformed configuration

(b) R2LgS configuration

J

Figure 4.9: Geometry of rank-2 laminates at various configurations at a contrast of 100: (a)
Undeformed configuration, (b) Optimum configuration discussed in section 4.2.3 on table 4.4
and (c) Optimum configuration discussed in section 4.3.4 on table 4.13. Phases embedded in
the laminates are not drawn to scale.
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various contrasts. It is evident there is symmetry of the curves at all contrasts
at π/2 as already presented for the previous boundary value problem in figure
4.2(b). This phenomenon can also be used to predict that a similar symmetry
would be present at θR1 = π as well as θR1 = 3

4
π. The symmetrical behaviour at

opposing lamination angles reflects the fact that rank-1 laminates are piecewise
constant. What is also of note is the fact that λ approaches values below 1 at
certain angles in this particular boundary-value problem, implying a shrinking
in the material at certain configurations. This behaviour may imply a tunable
laminate however will not be explored in this study as the supreme focus is on
optimisation for positive longitudinal stretch. Considering the volume fraction of
all laminates in figure 4.10(a), the weighting of CA

R1 and CB
R1 in all laminates is

equal, similar to tables 4.2 and 4.3.

Curve µA/µB = εA/εB λmax CB
R1 θR1[

◦]
Yellow 10 1.02768 0.5 57.0

Red 100 1.04505 0.5 52.1
Green 1000 1.07906 0.5 51.0
Blue 10 000 1.10509 0.5 51.3

Table 4.8: Rank-1 laminate configurations and maximum longitudinal stretch at contrasts of
{10x, x = 1, 2..., 4}. Corresponding curves are presented in figures 4.10(a) and 4.10(b).
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Figure 4.10: (a) Influence of applied nominal electric field on maximum longitudinal stretch at
contrasts of {10x, x = 1, 2..., 4} presented on table 4.8 for rank-1 laminates and (b) lamination
angle evolution for rank-1 laminates and corresponding longitudinal stretch at contrasts of
{10x, x = 1, 2..., 4} and constant applied nominal electric field of 100 MV/m for 0◦ ≤ θR1 ≤
180◦ presented on table 4.8.
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A note on micro-structure sensitivity for rank-1 laminates

Let us consider the statement earlier introduced in section 4.2.1, that λ depends
on the relative angle between the direction of the applied nominal electric field and
θR1 but only a little on the volume fraction of the phases when shear strains are
considered. This statement shall now be confirmed for validity also when shear
strains are not considered. Figure 4.11 displays numerous configurations obtained
when volume fraction and lamination angle are simultaneously optimised within
prescribed limits at a contrast of 100 at an applied nominal electric field of 100
MV/m. The optimum lamination angle for a rank-1 laminate at a contrast of 100
when shear strains are not considered has already been determined to be 52.1◦

on table 4.8 which also lies in figure 4.11. Let us for example, consider the point
labelled ’v’. From this point, if the volume fraction of CB

R1 = 0.6 is maintained
as constant and lamination angle increased, the corresponding curve of λ (blue
dots) has a set of completely different values as compared to the curve starting
at ’v’ at constant θR1 = 54◦ with decreasing volume fraction (top to bottom).
If the change in lamination angle with changing volume fraction is observed as
presented in figure 4.11 it is evident that for range of 0.4 ≤ CB

R1 ≤ 0.6, which
represents 20% of the possible range of volume fraction, there is only a change in λ
of approximately 0.03. Whereas for the range 50◦ ≤ θR1 ≤ 54◦, which represents
approximately 4% of the possible range of angles taking into account symmetry,
there is a change of 0.09 which confirms the aforementioned prediction that θR1

presents a greater influence on λ. Once again the non-linear phenomenon present
at finite strain is evident from the numerous configurations possible.
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Figure 4.11: Microstructure perturbation of a rank-1 laminate presented showing longitudinal
stretch when volume fraction of the soft phase and lamination angle are optimised simultane-
ously for the ranges 0.4≤ CB

R1 ≤0.6 and 50◦ ≤ θR1 ≤ 54◦ at a contrast of 100 and applied
nominal electric field of 100 MV/m.
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4.3.2 Influence of increasing contrast on rank-2 laminates

Figure 4.12 displays the evolution of λ up to λmax with increasing applied nomi-
nal electric field for different contrasts and the corresponding configurations are
presented on table 4.9. Comparing this behaviour with that obtained for the
rank-1 laminate in figure 4.10(a), it is evident that the rank-2 laminates provide
a remarkable improvement in λmax from rank-1 laminates, in agreement with the
initial hypothesis of this study. Once again, each contrast appears to present a
different microstructural arrangement from the next. Let us begin with analysing
the microstructure evolution of the laminate corresponding with a contrast of 10.
What is initially evident when comparing tables 4.8 and 4.9 is that there is once
again no improvement in λmax from rank-1 to rank-2 laminates. This can be in-
ferred when realising that θR1 has not changed and the matrix phase is parallel to
the core in the rank-2 laminate. This means the rank-2 laminate configuration is
essentially identical to the rank-1 configuration presented earlier on table 4.8 and
the new homogeneous phase therefore provides no electromechanical influence on
the rank-2 laminate.

Curve µA/µB = εA/εB λmax CB
R1 θR1[

◦] CR1 θR2[
◦]

Yellow 10 1.02768 0.499 57.0 0.998 57.0
Red 100 1.10629 0.513 51.2 0.965 -1.0

Green 1000 1.85719 0.491 60.0 0.987 -9.0
Blue 10 000 2.19007 0.506 58.9 0.991 -13.0

Table 4.9: Rank-2 laminate configurations at contrasts of {10x, x = 1, 2..., 4} experiencing plane
strain with no shear strains considered. Corresponding laminate configurations are presented
in figure 4.12.

For a contrast of 100, with regards to volume fraction, the weighting of the
matrix in the rank-2 composite, i.e. CR1, has decreased significantly from the
contrast of 10, possibly influenced by the new orientation of the matrix due to
the drastic change in θR2. For a contrast of 1000, we observe non-monotonic
behaviour for the first time in figure 4.12. An inflexion point is observed which
drastically leads to a decrease in applied nominal electric field with increasing λ,
and then an increase at a second inflexion point up to λmax. This region in which
the inflexion points occur can be attributed to the presence of electromechanical
instability in the laminate due to the constraint Sav

12 6= 0. The fact that this elec-
tromechanical instability begins to be observed only at higher contrasts, which
then leads to a further improvement in λmax, implies an increase in response to
applied nominal electric field with increasing contrast for a rank-2 laminate. This
is confirmed when it is noticed that the presence of electromechanical instability
becomes more enhanced at the higher contrast of 10 000. The range between
inflexion points is much greater for a contrast of 10 000 implying an even more
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Figure 4.12: Influence of increasing applied nominal electric field on maximum longitudinal
stretch at contrasts of {10x, x = 1, 2..., 4} for rank-2 laminates experiencing plane strain with
no shear strain considered. Corresponding configurations are presented on table 4.9.

enhanced presence of instability. The fact this behaviour is due to electromechan-
ical instability can also be established if some curves are analysed concurrently.
For the range 0 MV/m ≤ ∆φ/H0 ≤ 88 MV/m, the curves for contrasts of 10,
1000 and 10 000 present a similar evolution up until the point at which insta-
bility is experienced. The lower contrast curve of 10 can be utilised to serve as
control curves for the higher contrast curves. It also appears that there may be
a specific contrast at which instability in rank-2 laminates is triggered. Also, up
to ∆φ/H0 =88 MV/m, one may consider that it would be beneficial to limit the
applied nominal electric field to this amount to limit electromechanical instabil-
ity but the non-linearity presented in section 4.2.3 should be kept in mind. such
that it is very possible that electromechanical instability exists at lower applied
electric fields as well.

Also note how in the vicinity of λ ≈ 1.05 and λ ≈ 1.4 on the electromechanical
loading paths of 1000 and 10 000, the curves are only just within the required limit
of 0 MV/m ≤ ∆φ/H0 ≤ 100 MV/m. Recall how in section 3.2 it was emphasised
that all points for each laminate must lie within the range presented. This means
that λ can in fact be increased when the rank-2 laminates are optimised at 100
MV/m however, points on the electromechanical loading path would then lie
outside of this aforementioned range. Therefore in the context of this study,
these configurations would not be ideal however it does emphasise the severe
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effect of electromechanical instability as well as the non-linear effect as will be
discussed in the section 4.3.3.

A note on microstructure sensitivity of Rank-2 laminates

Let us analyse the scenario relating to a contrast of 100 when shear strains are not
considered more closely. Figure 4.13 displays the perturbation of the two lami-
nation angles θR1 and θR2 for the optimum configuration when volume fraction is
maintained as on table 4.9. What is emphasised here is as that one cannot simply
maintain one lamination angle and perturb the other to attain λmax. Both lami-
nation angles are important, even though it is evident that the change in λ due to
θR1 is more rapid than due to θR2 for ranges of the same magnitude. Despite the
fact that some points share a similar λ, each individual point maintains its own
α, β̃, αR2, β̃R2 and phase pressures therefore these points are neither equivalent
nor reflections of each other along x2 as was the case for rank-1 laminates. The
same may be deduced when volume fractions are analysed in a similar manner,
as displayed in figure 4.14. As we have already established, in reality CR1 also
contains phase ”B.” Therefore this particular figure is representative of the inter-
action between the core and the matrix due to ”BR1” and ”BR2” already defined
in the rank-2 solution in section 3.3.2.
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Figure 4.13: Lamination angle of the anisotropic phase in the rank-2 laminate for the range
49◦ ≤ θR1 ≤ 53◦ shown against the lamination angle of the rank-2 laminate for the range
-2◦ ≤ θR1 ≤ 2◦ and corresponding values of longitudinal stretch obtained at a contrast of 100.
CB

R1 =0.513, CR1 =0.965.

What is evident for rank-1 laminates, and now also rank-2 laminates, is that
the lamination angles reach a configuration upon which they cannot present a
greater value for λ, thus dubbed λmax. Despite the curves presented referring
to a contrast of 100, this behaviour has been established thoroughly for rank-1
laminates in figure 4.10(b) and thus refers to all contrasts for rank-2 laminates.
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Figure 4.14: Volume fraction of the matrix in the rank-2 laminate for the range 0.49≤ CB
R1 ≤0.53

shown against the volume fraction of the core in the rank-2 laminate for the range 0.961≤
CB

R1 ≤0.966 and corresponding values of longitudinal stretch obtained at a contrast of 100.
θR1 = 51.2◦, θR2 = −1◦.

Therefore this implies that for θR1 and θR2 there are ”peaks” which in combi-
nation, in the form of figure 4.10(b), lead to a limit of maximum longitudinal
stretch. At contrasts of 1000 and 10 000 however, applied nominal electric field
leads to electromechanical interactions which, through electromechanical insta-
bility, enable an enhancement of longitudinal stretch to an absolute limit. This
also means that the laminate configuration can possibly be modified to enable
monotonic behaviour for these contrasts and this shall be investigated in the next
section.

4.3.3 Non-monotonic behaviour of rank-2 laminates

In order to thoroughly analyse the influence of microstructure configuration on
electromechanical instability, three curves are presented at a contrast of 1000
in figure 4.15. The first relates to optimisation relating to λmax with observ-
able electromechanical instability as on table 4.9, from here on titled N1. The
second relates to an example configuration that makes an attempt at reduction
of this instability to present the limit of strict-monotonic behaviour titled N2

and the third relates to an example configuration which provides a curve with-
out any inflexion-related behaviour to serve as comparison of the aforementioned
two curves and this is titled N3. These configurations are presented on table 4.10.

For all curves, the main parameter found to contribute to reducing the elec-
tromechanical instability on table 4.10 was found to be θR1 due to the fact it
presented the greatest variation of longitudinal stretch in section 4.3.2. What
is evident from these three curves is that in the process of laminate microstruc-
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ture optimisation, electromechanical instabilities need to be taken into account
such that a trade off between λmax and electromechanical instability needs to
be established. If one requires to use a configuration with no predictable in-
stabilities at this contrast, it is advisable to utilise a type of configuration sim-
ilar to that presented by N3 as the configuration corresponding to N2, despite
presenting monotonic behaviour, is at the limit of electromechanical instability.
One can therefore determine threshold4 configurations for λmax within the range
0 MV/M ≤ ∆φ/H0 ≤ 100 MV/m. However, it should be emphasised that curves
N2 and N3 present example configurations possible to present this behaviour as in
reality there are many different configurations that can be determined to present
this type of behaviour.

Curve λmax CB
R1 θR1[

◦] CR1 θR2[
◦]

N1 1.85719 0.491 60.0 0.987 -9.0
N2 1.40554 0.490 50.5 0.987 -14.9
N3 1.27908 0.489 47.0 0.987 -1.0

Table 4.10: Rank-2 laminate configurations determined for maximum longitudinal stretch at a
maximum applied nominal electric field of 100 MV/m and contrast of 1000. N1 - absolute λmax

with non-monotonic behaviour present for corresponding curve, N2 - controlled optimum to to
present the limit of monotonic behaviour and N3 - comparison curve where no instabilities are
observed. Corresponding curves are presented in figure 4.15.

For the same contrast of 1000, the applied nominal electric field at determi-
nation of λmax has now also been varied, similar to section 4.2.3. Configurations
corresponding to λmax determined at various applied nominal electric fields of 20
MV/m (N1Lg20), 50 MV/m (N1Lg50) and N1 at 100 MV/m are shown on table
4.11 and figure 4.16. At this contrast, we observe a modification in the concavity
of the curves for different applied nominal electric fields. Beginning with the
curve corresponding to N1Lg20 in the manner described in section 4.2.3, there
is monotonic behaviour. Monotonic behaviour is observed for the curves corre-
sponding to configurations determined for N1Lg50 and the already introduced N1.

As shown by the table 4.11, the configurations are vastly different if CB
R1, θR1

and θR2 specifically are analysed. There is a decrease in θR1 with decreasing ap-
plied nominal electric field from the configuration for 50 MV/m to the one for 100
MV/m, possibly due to θR2 increasing in a manner to become more horizontal. A
more horizontal homogeneous phase possibly leads to the creation of more con-
ductive pathways of the homogeneous phase of the rank-2 laminate. Comparing

4The threshold may be dependent on computational ability such that there is always the
possibility that a numerical search misses the global optimum. However in this study effort has
been made to establish these optimum configurations to the best of the author’s ability.
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Figure 4.15: Influence of increasing applied nominal electric field on longitudinal stretch at a
maximum applied nominal electric field of 100 MV/m and contrast of 1000 for rank-2 lami-
nates. N1 - absolute λmax with non-monotonic behaviour present for corresponding curve, N2 -
controlled optimum to to present the limit of monotonic behaviour and N3 - comparison curve
where no instabilities are observed. Laminate configurations are presented on table 4.10.

figures 4.15 and 4.16, it is evident that observable electromechanical instabilities
can be controlled through either reduction of θR1 or reduction of applied nominal
electric field when the microstructure is optimised.

λ CB
R1 θR1[

◦] CR1 θR2[
◦]

N1 1.85719 0.491 60.0 0.987 -9.0
N1Lg50 1.32895 0.512 50.0 0.994 -1.0
N1Lg20 1.19962 0.504 46.5 0.996 -0.4

Table 4.11: Rank-2 laminate configurations determined for maximum longitudinal stretch at
maximum increasing applied nominal electric fields of 20 MV/m (N1Lg20), 50 MV/m (N1Lg50)
and 100 MV/m (N1). Curves are presented in figure 4.16.

Other forms of instabilities that may occur in electro-elastic laminates have
been defined as macroscopic and microscopic instabilities as discussed by Lopez-
Pamies (2006), Bertoldi & Gei (2011) and Rudykh (2012). An observation of
these instabilities would bring to light some more interactions between the two
constituent phases with relation to the construction and layout of the composite
however, specific characterisation of these instabilities is beyond the scope of this
work.
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Figure 4.16: Influence of increasing applied nominal electric field on longitudinal stretch for
configurations determined for various applied nominal electric fields of 20 MV/m (N1Lg20), 50
MV/m (N1Lg50) and 100 MV/m (N1) at a contrast of 1000. Corresponding configurations are
presented on table 4.11.

4.3.4 Comparison between plane strain boundary-value
problems

Rank-1 laminates

This section shall be dedicated to comparing the two already presented boundary-
value problems with the aim of possibly exposing the influence of shear strain
on observable electromechanical instability. It is useful to begin first with rank-1
laminates briefly before proceeding to rank-2 laminates. Thus let us begin by
revisiting figures 4.2(b) and 4.10(b) where the same phenomena with increasing
lamination angle are observed in both boundary-value problems for 0 ≤ θR1 ≤ π.
The phenomenon apparent in this comparison is that a boundary-value problem
in which shear strain is accounted for results in a dampening of the fluctuation of
λ with varying θR1. This also means that when shear strains are not considered
a higher value of λmax is obtained than that previously observed if tables 4.2 and
4.8 are compared. Figure 4.17(b) displays the feature that when shear strains are
considered for a rank-1 laminate (R1LgS), the value for λmax at optimum laminate
configuration is lower than that experienced when shear strains are not consid-
ered (B1). This is confirmed by curve B2 which presents the same configuration
as for R1LgS but with no shear strains considered. It should be mentioned that
curve B1 is identical to the red curve in figure 4.10(a) while R1LgS corresponds
to the red curve in figure 4.2(a) and has also been defined earlier in section 4.2.1.



CHAPTER 4. BOUNDARY VALUE PROBLEMS IN PLANE STRAIN 51

Curve λmax ξ CB
R1 θR1[

◦]
B1 1.04505 0.5 52.1
B2 1.03369 0.5 60.9

R1LgS 1.02632 -0.00949 0.5 60.9

Table 4.12: Rank-1 laminate configurations obtained at a contrast of 100 and electric field of 100
MV/m. B1 relates to the optimum configuration when shear strains are not considered and B2

relates to the performance at vanishing in-plane tractions, this time without considering shear
stains. R1LgS has been defined earlier in section 4.2.1. Corresponding curves are presented in
figure 4.17.
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Figure 4.17: (a) Rank-1 laminate influence of increasing volume fraction on longitudinal stretch
and (b) influence of increasing applied nominal electric field on maximum longitudinal stretch.
Curve B1 relates to the optimum configuration when shear strains are not considered, B2 relates
to the performance at vanishing in-plane tractions, this time without considering shear strains.
R1LgS has been defined earlier in section 4.2.1. Corresponding configurations are presented on
table 4.12.

What is demonstrated by figure 4.10(a) is that for a rank-1 laminate, there
is a strong influence of lamination angle on the optimum laminate configuration
as well as the fact that when shear strains are not considered, higher values for
λmax are obtained. Gei et al. (2013) showed that at low electric field/charge, λ
will be very close to that computed in the plane strain boundary-value problem,
while diverging at higher electrical excitations. This is confirmed in figure 4.17(b)
where, at voltages less than 50 MV/m there is little difference in the curves corre-
sponding to λmax under different boundary conditions. Let us now investigate the
influence of volume fraction on the same two boundary conditions. A comparison
is presented in figure 4.17(a). It is useful to note that the influence of volume
fraction on longitudinal stretch is very similar when shear strains are considered
and when they are not, with the only difference being the magnitude of λmax.
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Rank-2 laminates

For rank-2 laminates, only specific contrasts shall be compared. The contrast of
100, despite not having presented any unique instability-related behaviour, will
be mentioned so as to provide a comparison with the contrast of 1000 at which
instability was observed, in a manner consistent with introducing N3 in section
4.3.3. Beginning with table 4.13 and figure 4.18(a) for the already determined
contrast of 100, the curves considered include that already obtained for plane
strain with shear strain considered which is exactly the same as the red curve in
figure 4.6 and R2LgS. C2 refers to a curve determined by immersing the laminate
configuration that is optimum in a boundary-value problem of absent shear strain
into an environment in which shear strains are considered. C3 is identical to the
red curve in figure 4.12, relating to a boundary-value problem of no shear strain
considered while C4 is identical to the red curve in figure 4.7 optimised for ξmax.

Curve Shear considered? λ ξ CB
R1 θR1[

◦] CR1 θR2[
◦]

R2LgS Yes 1.12405 0.11811 0.508 65.1 0.963 12.3
C2 Yes 1.10683 0.01528 0.513 51.2 0.965 -1.0
C3 No 1.10629 0.513 51.2 0.965 -1.0
C4 Yes 1.06172 0.26417 0.505 90.0 0.967 31.1

Table 4.13: Various Rank-2 laminate configurations and corresponding longitudinal stretch and
amount of shear at a contrast of 100 and applied nominal electric field of 100 MV/m. R2LgS
- optimum configuration when shear strains are considered, C2 - optimum configuration when
shear strains are not considered and resulting longitudinal stretch and amount of shear when
computed in an environment taking into account shear strain, C3 - optimum configuration when
shear strains are not considered and C4 - optimum configuration to obtain maximum amount
of shear and corresponding longitudinal stretch. Corresponding curves presented in figure 4.18.

Of the curves presented, it is evident that the boundary-value problem with
shear strain considered results in an increase in λmax and the microstructure con-
figurations related to R2LgS, C2 and C4 are completely dissimilar except for the
value of CR1 which have very small differences. This demonstrates some possible
relation between CR1 and contrast as the laminates all share the same contrast.
A larger value of λ in R2LgS and C2 is due to liberation of Sav

12 . As slight enhance-
ment of λmax is experienced even for configuration C2 from C3 this confirms this
injection of additional favourable conditions due to shear strain consideration. It
is also of note that at θR1 for C4 is 90◦ which reflects some sort of direct influence
of applied nominal electric field on deformation of the anisotropic phase. This
is logical if one considers that the stiff phase is less contributory to the overall
deformation of the laminate as discussed in section 4.2.2.

The rank-1 laminate behaviour presented in figure 4.3(b) can be compared
to the rank-2 laminate behaviour in figure 4.18(b). What rank-2 laminates now
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Figure 4.18: (a) Influence of increasing applied nominal electric field on longitudinal stretch
on laminate configurations R2LgS, C2 and C3 described on table 4.13. (b) Influence of applied
nominal electric field on shear angle on laminate configurations R2LgS and C4 described on
table 4.13.

provide is an increase in the soft, more compliant phase to maximise deformation
when shear strains are considered. This has presented itself in the form of an
improved value for corresponding λmax for C2 at the same configuration for C3.
It is noticeable that throughout a large range of applied nominal electric field
the performance of C2 is better than the performance of C3 in figure 4.18(b),
only showing minimal difference at ∆φ/H0 =100 MV/m such that the amount of
shear reflects an internal deformation which can only be observed through figure
4.18(b).

The phenomena described for a contrast of 100 is also experienced at a contrast
of 1000 in figure 4.19, where consideration of shear effects leads to an increased
value in λ of 16% in comparison to that previously experienced when shear is not
considered. This again confirms the fact that increasing contrast leads to am-
plified effects in a rank-2 laminate as λ increases from figure 4.18(a) to 4.19(a).
There are now interesting effects due to shear strain presented in figure 4.19(a)
for applied nominal electric field and 4.19(b) for amount of shear. Curve C5

relates to a configuration that presents λmax at a contrast of 1000 when shear
strains are considered, identical to the green curve in figure 4.6. C6 is identical
to the green curve in figure 4.7 relating to a configuration optimised for ξmax at a
contrast of 1000. Curves C7 and N1, in a manner analogous to that executed for
a contrast of 100 for C3 and C4, represent corresponding longitudinal stretches
for identical configurations when shear strains are considered, and when they are
not considered, respectively.

What is now unique at this contrast is the phenomenon observed with regards
to the inflexion point previously encountered for N1. A boundary-value problem
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Curve Shear considered? λ ξ CB
R1 θR1[

◦] CR1 θR2[
◦]

C5 Yes 2.47891 0.24845 0.498 70.0 0.990 -20.0
C6 Yes 1.92680 -0.95326 0.502 47.0 0.994 -44.0
C7 Yes 2.15951 -0.38556 0.491 60.0 0.987 -9.0
N1 No 1.85719 0.491 60.0 0.987 -9.0

Table 4.14: Various Rank-2 laminate configurations and corresponding longitudinal stretch and
amount of shear at a contrast of 1000 and applied nominal electric field of 100 MV/m. C5 -
optimum configuration for λmax when shear strains are considered, C6 - optimum configuration
for ξmax and corresponding longitudinal stretch, C7 - optimum configuration when shear strains
are not considered and resulting longitudinal stretch and amount of shear when computed in an
environment taking into account shear strain and N1 - optimum configuration for λmax when
shear strains are not considered. Corresponding curves presented in figure 4.19.
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Figure 4.19: (a) Influence of increasing applied nominal electric field on longitudinal stretch on
laminate configurations C5, C6 and C7, N1 described on table 4.13. (b) Influence of applied
nominal electric field on shear angle on laminate configurations C5, C6 and C7 described on
table 4.14.

taking into account shear strain not only provides an enhancement in λmax, but
also affects electromechanical stability of a rank-2 laminate as non-monotonic
behaviour is not present on C7 in figure 4.19(a) for the same configuration N1. It
seems when shear strains are not considered for a rank-2 laminate at a contrast
of 1000 (N1), a constrictive-type effect on λ is experienced in the laminate which
results in non-monotonic behaviour. When shear strains are considered for the
optimum configuration (C5), the laminate stretches minimally up until severe
enhancement of λ is first experienced. At this point of ∆φ/H0 ≈65 MV/m, the
deformation increases greatly up until λmax.

Configurations C5, C6 and C7 all begin with very small and positive shear
angles at lower applied nominal electric fields and then as the applied nominal
electric field is increased, C6 and C7 evolve towards the negative direction af-
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ter ∆φ/H0 ≈55 MV/m. With regards to C5, the behaviour presented in figure
4.19(b) presents a new perspective of what is happening inside the rank-2 lami-
nate in figure 4.19(a), thus ξ consideration can also be used as a tool to observe
laminate evolutionary behaviour when the electromechanical loading path is anal-
ysed. At ∆φ/H0 ≈55 MV/m for C5, while λ is increasing somewhat steadily, the
shear angle is increasing and then at ∆φ/H0 ≈75 MV/m, it begins to decrease
up until λmax. It should be noted that electromechanical instabilities may be
existent at lower applied nominal electric fields but in the figures presented, it is
only observable electromechanical instabilities that are discussed.

4.3.5 Current configuration of lamination angles for rank-
2 laminates

Rank-1 laminates at a contrast of 100

The lamination angles for rank-2 laminates have been shown to be unique to
each type of boundary-value problems determined and now that the optimum
configurations in the reference configurations have been determined, it would be
beneficial to understand the microstructural step-change evolution that lamina-
tion angles undergo when the applied nominal electric field is increased within the
material. Let us begin with our reference boundary-value problem, that of equal
shear and dielectric moduli at a contrast of 100. The input configuration has
already been presented in section 4.3.2 and the corresponding microstructural
evolution is now presented in this section. These configurations are presented
in figure 4.20 where the rank-2 laminate evolution begins at 0 MV/m with the
reference configuration already presented on table 4.9. As the applied nominal
electric field is increased, θR1 begins to decrease while θR2 increases. However,
θR1 decreases by a much larger value than the reflected increase of θR2. Reference
back to figure 4.9 is advised if one desires to generate a mental model of the pos-
sible lamination angle evolution taking place at any coincident points of applied
nominal electric field. What these evolutions reflect is the greater contribution
θR1 provides to the overall laminate deformation, as compared to θR2.

Rank-2 laminates at a contrast of 1000

Let us now consider the contrast of 1000 at which the unique behaviour and
inflexion point were encountered. It is useful to recap the three curves earlier
presented in section 4.3.3 such that we can complete the comparison that had
commenced in the aforementioned section. The description of the three curves
will be re-visited as follows. One, titled N1, with the optimisation relating to
λmax with clear instability, the second (N2) with an attempt at reduction of this
instability to present the limit of monotonic behaviour and a presented lower
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Figure 4.20: Current configuration with increasing applied nominal electric field at a contrast
of 100 of (a) anisotropic phase of and (b) homogeneous phase of a rank-2 laminate with no
shear strain considered.

corresponding λ and the third (N3), a curve presented at a configuration without
any inflexion-related behaviour to serve as comparison for N1 and N2.
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Figure 4.21: Current configuration with increasing applied nominal electric field at a contrast
of 1000 of (a) anisotropic phase and (b) homogeneous phase of a rank-2 laminate with no shear
strain considered.

The current lamination angles are shown in figure 4.21 and it is evident that
the reference configuration has some differences to the now current configuration
at certain applied nominal electric field values. What is apparent when consid-
ering the three curves together in figure 4.21(a) is that the greater the starting
value in θR1, the larger the range of applied nominal electric field in which θR1 is
near constant. A noticeable change in θR1 then begins to be observed on curves
N1, N2 and N3 at applied voltages of 98 MV/m, 30 MV/m and 10 MV/m, respec-
tively. This means that when the laminate is set to its optimum value for θR1,
it presents an ability to maintain this optimum configuration and only changes
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when the applied nominal electric field is sufficiently high. The magnitude of the
increase in θR2 from 0-100 MV/m for figure 4.21(b) is smaller than the magni-
tude in decrease of θR1 with increasing applied nominal electric field. This has
already been presented for our reference boundary-value problem with a contrast
of 100 in figure 4.20 and thus confirms this phenomenon. With regards to N2,
it is evident for both lamination angles that there is a specific electric field at
which the material continues to re-orientate without an increase in applied nomi-
nal electric field implying that the material is attempting to re-perturb itself due
to electromechanical instability.

It is also useful to present the evolution of λ with each of the lamination
angles presented so as to confirm if there is truly a non-linear effect as well as
understanding how this may vary with extreme presence, or minimisation of the
instability. This is now presented in figure 4.22 and the curves relating to N1 and
N2 show the non-linearity present due to their slight curvature with increasing
λ. While for N3, this effect is less enhanced due to the absence of the inflexion
earlier discussed. It is therefore evident that the closer one approaches optimum
laminate configuration at contrasts of 1000 and higher, greater care needs to
taken to consider instability due to the increased sensitivity of the material.
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Figure 4.22: Current configuration with increasing longitudinal stretch at a contrast of 1000 of
(a) anisotropic phase of and (b) homogeneous phase of a rank-2 laminate with no shear strain
considered.

4.3.6 Electric field macroscopic and microscopic contri-
butions in rank-2 laminates

We have already discussed how an applied nominal electric field in a rank-2 lami-
nate gives rise to deformation such that the lamination angles can be re-configured
to provide a microstructure for optimum performance. We shall take a closer look
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at the resulting influence of this electric field once the optimum configurations
have been determined. We have already defined the absolute values of electric
fields E0av and Eav in Chapter 3 and determined the weighted contribution in
each phase of the Lagrangian electric field E0av to provide equations [3.121,2].
Now it is possible to obtain the values for α and β̃ for a given configuration and
applied nominal electric field in the rank-2 laminate. It should be remembered
that the rank-1 laminate embedded in the rank-2 laminate has its own set of α
and β̃ values distinct from those of the holistic rank-2 laminate. This means that
the weighted contribution of electric field and electric displacement for phases
”AR1”, ”BR1” and ”BR2” can be determined in order to discover the influence of
homogenized macroscopic electric field on the microscopic response of the rank-2
laminate, in a manner analogous to table 4.2. Also, one cannot begin to discuss
the realistic electric field in a rank-2 laminate without considering the onset of
instabilities and their possible influence on the macroscopic and microscopic elec-
tric field magnification.

Despite the numerous step changes in complexity of the present boundary-
value problem, DeBotton (2005) notes that in the boundary-value problem of
a transversely isotropic sequentially coated laminate made out of stiff inclusions
and a softer matrix phase ( i.e. µa > µb ), the core layers at each lamination stage
are always stiffer than than the (dilute) layers of the matrix. This implies the
possibility that all the intermediate laminates within the composite are stable,
and consequently the possibility that the sequentially-coated laminate with the
stiffer inclusions is a stable material. When the inclusion phase is the softer one,
as is in this boundary-value problem, at each lamination stage the core layers
are softer than the (dilute) layers of the matrix phase. For an applied nominal
electric field of 100 MV/m, the absolute values of microscopic electric fields are
presented in figures 4.23 and 4.24 which also include boundary-value problems to
be investigated in the next chapter.

As shown in figure 4.23, an applied nominal electric field of 100 MV/m pro-
duces a maximum absolute value of microscopic electric field in the soft phase of
the core at a magnification of approximately 15. This alludes the fact that the
working applied nominal electric electric field is several times higher than that
was being considered throughout the text5. Also displayed in figure 4.23 are the
microscopic electric fields in each of the phases throughout the rank-2 laminate,
with figure 4.24 displaying the corresponding electric fields in the anisotropic
phase. The non-linear effects reveal the fact that even an applied nominal elec-
tric field of 100 MV/m leads in actuality to an absolute value of macroscopic
electric field of 110 MV/m in plane strain with no shear strain considered. In

5Rudykh et al. (2011) obtained similar behaviour and obtained a ten-fold enhancement in
electromechanical coupling
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Figure 4.23: Absolute values of applied electric field and corresponding microscopic phase
electric fields in rank-2 laminates for various boundary conditions at a contrast of 100.
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order to explain this behaviour is useful to re-visit the set of equations [3.12] in
Chapter 2, this time in terms of the rank-2 material. The electric field in each
phase is amplified by the corresponding value of β̃ at the specific point of λmax
i.e. the magnitude of the electric field in the isotropic layers is proportional to the
applied field divided by their volume fraction. It has already been established
that the electric field is continuous along the interface which implies a severe
magnification of the soft phase within the material. This is also witnessed in the
embedded rank-1 material whose microscopic electric fields are presented in figure
4.24 such that the soft phase will always present the largest value of microscopic
electric field in either the rank-1 or rank-2 material. Also, the rank-1 layers are
composed of alternating stiff and soft sub-layers such that their compliant mode
corresponds to a shear of the soft sub-layers with rotation of the stiffer ones, as
already presented when the rank-1 lamination angle evolved by a greater amount
than that of the laminated soft homogeneous phase in the rank-2 laminate in sec-
tion 4.3.5. In order to obtain a maximum microscopic electric field of 100 MV/m
in plane strain with no shear strain considered, it was found that the required
applied nominal electric field is 6.95 MV/m.

4.4 Conclusions

In this chapter, it has been presented that:

• The homogeneous actuation in large strain was 6% greater than in small
strain while a 12% improvement in λmax from the homogeneous actuation
was obtained in large strain, similar to results by Tian et al. (2012) in small
strain.

• For rank-1 laminates, when shear strains are considered in a plane strain
environment, the value for λmax at optimum laminate configuration is lower
than when shear strains are not considered.

• Considering the volume fraction of rank-1 laminates, the distribution of
CA
R1 and CB

R1 is equal (0.5) for all boundary conditions investigated, leading
to symmetrical behaviour at approximately π/2 for λ.

• For rank-2 laminates, comparison of Tian et al. (2012) small strain results
with those obtained in large strain show a 20% improvement in λmax for
optimum configurations in small strain compared to those in large strain.

• The optimum configuration obtained by Tian et al. (2012) in small strain,
when solved in large strain, presented a 12% improvement in λmax.

• When the two plane strain boundary value problems were compared, namely
plane strain with shear strain considered and plane strain without shear
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strain considered, it was found that the same configuration obtained when
no shear strains were considered presented a higher λmax when shear strains
were considered by 16% for a contrast of 1000.

• The current electric field of the soft homogeneous phase in the rank-2 lam-
inate at a contrast of 100 reflected the greatest enhancement among all the
phases of the factor of 15 in terms of the absolute values.



Chapter 5

Boundary value problems in a
three-dimensional environment

5.1 Introduction

In continuation to this study, this chapter will investigate the micro-structural
behaviour in a three-dimensional environment with vanishing in-plane tractions
and also with shear strains present. This will enable a comparison to be carried
out between plane strain results with those that will be obtained in a fully three-
dimensional environment for both rank-1 and rank-2 laminates. The presence
of electromechanical instability will be highlighted and an attempt to present
a type of configuration to reduce this instability, will be executed demonstra-
bly with regards to microstructure optimisation so as to lay the foundation for
characterising this instability in future work.

5.2 Tri-axial stretch without shear strain con-

sideration

5.2.1 Initial optimisation: rank-1 laminates

Let us maintain the free conditions in the plane strain problems already en-
countered given such that Sav

11 = 0 and Sav
22 = 0 but in a scenario in which the

stretches in all three directions are considered. The deformation gradient for this
three-dimensional boundary-value problem is given as follows

F av =

 λ1 0 0
0 λ2 0
0 0 1

λ1λ2

 , [5.1]

62
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with λ1λ2λ3 = 1 and Sav
33 = 0 implying that the principal strain directions are

all now free to deform macroscopically in a manner similar to the homogeneous
example presented in section 2.6.1. As already described, λ1 refers to the longi-
tudinal stretch and now λ2 refers to the perpendicular stretch with λ3 relating
to the transverse or out-of-plane stretch. Let us begin with a rank-1 laminate
and consider the influence of the lamination angle as executed in figure 4.10(b)
in section 4.3 for a volume fraction whereby CB

R1 = 0.5. Figure 5.1 shows the
variation of longitudinal, perpendicular and transverse stretch with lamination
angle for a rank-1 laminate for the range 40◦ ≤ θR1 ≤ 250◦. The maximum value
of λ1 is found to correspond with the minimum value of λ2 while the symmetry
discussed in section 4.3 in figure 4.10(b) is reflected once again in figure 5.1. The
first peak of the λ1 curve occurs at θR1 = 52◦, the middle peak at θR1 = 128◦

while the third peak occurs at θR1 = 232◦. At θR1 = 142.5◦, the λ1 curve reaches
a minimum as well as at θR1 = 217.5◦ and these points correspond with maximum
values of λ for the λ2 curve. In this range, the maximum value of λ3 occurs at
θR1 = 90◦ while the minimum occurs at θR1 = 180◦. The periodic behaviour of
the curves in figure 5.1 is modified by the liberation of the transverse traction
which accounts for the shift in the lamination angles at which maximum longi-
tudinal stretch occurs, such that symmetry does occur exactly at π/2 instances
as observed in plane strain.
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Figure 5.1: Influence of evolving lamination angle on longitudinal stretch (blue curve), per-
pendicular stretch (purple curve) and transverse stretch (yellow curve) at a contrast of 100.
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At the point at which λ3 is minimum, it is the direction in which the largest
value of stretch in any direction is experienced. This means that this point corre-
sponds with the worst overall behaviour of the rank-1 laminate when optimisation
for longitudinal stretch is not considered. This is due to the fact that the direc-
tion of the applied nominal electric field is now acting at an angle of 90◦ to the
phases in the laminate. The optimum configuration for this contrast of 100 is
therefore when θR1 = 52◦ and it was also found that volume fraction is optimum
when CB

R1 = 0.5. Despite the fact that the maximum value of λ1 coincides with
the minimum value of λ2, it should be noted that the rates of deformation are
not identical. The rate at which λ1 is increasing with increasing lamination angle
is far greater than the rate at which θR2 is decreasing, due to the presence of λ3.
This can be confirmed if one considers the difference between λ1 for the points
at θR1 = 52◦ and θR1 = 90◦ which is 0.025, and the corresponding difference for
λ2 for the same two points which is 0.017.
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Figure 5.2: (a) Influence of increasing applied nominal electric field on longitudinal stretch
(blue curve), perpendicular stretch (purple curve) and transverse stretch (yellow curve) at a
contrast of 100 for a rank-1 laminate. (b) Rank-1 laminate longitudinal stretch (blue curve)
compared with curve B1 in section 4.3 at a contrast of 100.

The influence of applied nominal electric field on the three stretches is pre-
sented in figure 5.2(a). Comparing this with figure 4.10(a), particularly, the curve
for a contrast of 100, it can be argued that for a rank-1 laminate the longitudi-
nal stretch in the presented three dimensional boundary-value problem i.e. λ1
can possibly be used to approximate λ in the plane-strain boundary-value prob-
lem and vice versa due to the minimal deformation in the λ3 direction. This is
displayed in figure 5.2(b) where the difference between λmax for the plane strain
boundary-value problem named B1 in section 4.3 and λ1 for the three-dimensional
boundary-value problem is less than 1%. It is clear that when transitioning from
boundary-value problems in plane strain to a three dimensional boundary-value
problem where no shear strains are considered, there is no change in the optimum
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θR1 and CB
R1. There is however, a decrease in longitudinal strain from the plane

strain environment due to λ3.

5.2.2 Influence of increasing contrast on rank-1 laminates

The effect of varying applied nominal electric field on the stretches in the three
directions for a three-dimensional boundary-value problem for all contrasts inves-
tigated in this study are presented in figures 5.3, 5.4(a) and 5.4(b). As already
indicated for a contrast of 100, there are maximum and minimum responses as-
sociated with λ1 and λ2, with λ2 ≤ λ1 at all instances as presented by table 5.1.
Non-linear effects are observed in figure 5.4(b) whereby the contrast of 10 000
presents a greater transverse stretch than the contrast of 1000. Also for these two
contrasts, the curves for λ1 in figure 5.3 provide near identical values for λ up
until ∆φ/H0 = 70 MV/m. This behaviour is also observed for the corresponding
λ2 curves such that λ3 curves enable better observation of the behaviour between
these two contrasts. As discovered in plane strain, it is also found that the volume
fraction presents no variation with increasing contrast, with CB

R1 =0.5 providing
the maximum value for λ1.

As already discussed for plane strain in figure 4.10(b), the influence of lamina-
tion angle on a constant applied nominal electric field of 100 MV/m for varying
contrasts is presented in figures 5.5 and 5.6. For λ1, we observe a small difference
in the curves corresponding to contrasts of 1000 and 10 000 as in plane strain.
When optimising for λ1 as we have carried out, an increase in contrasts leads
to an increase in possible maximum achievable longitudinal stretch while volume
fraction remains constant. Periodic behaviour in a rank-1 laminate is also present
once again in figures 5.5 and 5.6(a) confirming observations in plane strain in fig-
ure 4.10(b) for rank-1 laminates.

Curve µA/µB = εA/εB λ1 λ2 λ3 CB
R1 θR1[

◦]
Yellow 10 1.02205 0.96646 1.01238 0.5 55.7

Red 100 1.04086 0.95143 1.00979 0.5 52.0
Green 1000 1.07534 0.92138 1.00929 0.5 51.0
Blue 10 000 1.10356 0.89769 1.00944 0.5 51.4

Table 5.1: Rank-1 laminate configurations for a three dimensional boundary-value problem with
no shear strain considered at contrasts of {10x, x = 1, 2..., 4} and corresponding longitudinal,
perpendicular and transverse stretch determined at an applied nominal electric field of 100
MV/m. Configurations are presented in figures 5.3, 5.4(a) and 5.4(b).
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Figure 5.3: Influence of applied nominal electric field on maximum longitudinal stretch at
contrasts of {10x, x = 1, 2..., 4} for rank-1 laminates relating to a three dimensional boundary-
value problem with no shear strains. Configurations are presented on table 5.1.
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Figure 5.4: Influence of applied nominal electric field on (a) Perpendicular stretch and (b)
transverse stretch at contrasts of {10x, x = 1, 2..., 4} for rank-1 laminates relating to a three
dimensional boundary-value problem with no shear strains. Configurations are presented on
table 5.1.
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Figure 5.5: Influence of lamination angle on maximum longitudinal stretch at contrasts of
{10x, x = 1, 2..., 4} for rank-1 laminates relating to a three dimensional boundary-value prob-
lem with no shear strains. Dotted line refers to a soft material such that the actuation is
homogeneous. Configurations are presented on table 5.1.
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Figure 5.6: Influence of lamination angle on (a) Perpendicular stretch and (b) transverse
stretch at contrasts of {10x, x = 1, 2..., 4} for rank-1 laminates relating to a three dimen-
sional boundary-value problem with no shear strains. Dotted line refers to a soft material such
that the actuation is homogeneous. Configurations are presented on table 5.1.
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5.2.3 Initial optimisation: rank-2 laminates

For a rank-2 laminate, we will execute a similar initial approach as completed for
the rank-1 equivalent in section 5.2.1. Figure 5.7(a) displays the influence of in-
creasing electric field on maximum longitudinal stretch at a contrast of 100 which
has an optimum configuration with θR1 = 51.2◦, θR2 = −1◦, CB

R1 = 0.501 and
CR1 = 0.965. Figure 5.7(b) shows a comparison between the red curve in figure
4.12 for a contrast of 100 in plane strain, which is also curve C3 from section 4.3.4,
and the λ1 curve in figure 5.7(a). As evident, there is only a 0.14% difference in the
values corresponding with λmax for these two boundary-value problems. There-
fore as in the rank-1 boundary-value problem, using the method of lamination
presented in this study, the overall stretch in a plane strain boundary-value prob-
lem can be used to approximate the longitudinal stretch in a three-dimensional
boundary-value problem for rank-2 laminates when shear is not considered. This
can be attributed to the minimal change in transverse stretch which implies that
the perturbation of the laminate longitudinally is in a manner analogous to the
plain strain boundary-value problem.
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Figure 5.7: (a) Influence of increasing applied nominal electric field on longitudinal stretch
(blue curve), perpendicular stretch (purple curve) and transverse stretch (yellow curve) at a
contrast of 100 for a rank-2 laminate. (b) Rank-2 laminate in a three-dimensional boundary-
value problem (blue curve) compared with curve C3 from section 4.3.4 for increasing applied
nominal electric field and corresponding longitudinal strain at a contrast of 100.

The variation of θR1 and θR2 with λ1, λ2 and λ3 is also presented in figure 5.8
for the optimum configuration at a contrast of 100. Once again the occurrence
of maximum λ1 at the minimum value of λ2 is found to be present with λ3 main-
taining near-constant behaviour throughout the range presented. For θR2 = −1◦

in figure 5.8(a), it is presented that there is symmetry due to the fact that the
lamination angle of the rank-2 laminate is almost zero, implying a near horizontal
position of the soft homogeneous phase. For θR1 = 51.2◦ in figure 5.8(b), varying
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θR2 for optimum configuration at a contrast of 100 reveals the non-linear nature
of this investigation in a new manner. At θR2 = −51.2◦ and θR2 = 51.2◦, the
rank-2 lamination angles are exactly parallel to each other such that the configu-
ration is that of a rank-1 laminate. This is illustrated by the appearance of near
constant λ in figure 5.8(b) at points near these aforementioned values.
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Figure 5.8: Influence of evolving (a) lamination angle of embedded rank-1 in rank-2 laminate
for the range 0◦ ≤ θR1 ≤ 180◦ and (b) rank-2 lamination angle for the range −90◦ ≤ θR2 ≤ 90◦

on longitudinal stretch (blue curve), perpendicular stretch (purple curve) and transverse stretch
(yellow curve) at a contrast of 100.

Figures 5.8(a) and 5.8(b) collectively show that for a rank-2 laminate, the
lamination angle of the rank-1 anisotropic phase embedded in the rank-2 laminate
has a greater influence on the optimisation of λ1, as compared to the lamination
angle of the rank-2 laminate. A reason for this is that the anisotropic phase, as
observed for rank-2 laminates so far, occupies a greater proportion of the rank-2
laminate in terms of volume fraction (i.e. CR1 = 0.965) and combining this with
the fluctuation of the electric field due to the anisotropy means that when this
lamination angle is perturbed a greater fluctuation in λmax would be observed.
The lamination angle of the rank-2 laminate can rather be described as having
an effect on the electromechanical stability as can be observed by its influence
on the unpredictable fluctuation of λ in figure 5.8(b). However the contribution
of θR2 due to the enhancement of the rank-2 longitudinal stretch should not be
entirely neglected as holistically, it is the combination of the four factors relating
to the rank-2 laminate discussed in section 3.3.2 that are key to the performance
enhancement of rank-2 laminates.
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5.2.4 Influence of increasing contrast on rank-2 laminates

Non-monotonic behaviour of rank-2 laminates in 3D

We have already established the trade-off required between minimising observ-
able electromechanical instability and maximising λmax in section 4.3.4 and this
trade-off shall now be presented for a three-dimensional boundary-value prob-
lem. The effect of increasing applied nominal electric field on λ is presented in
figures 5.9 and 5.10 for each direction of stretch. For λ1, the presented behaviour
can be compared to that observed for longitudinal stretch in figure 4.12. Two
new directions in which this electromechanical instability can be observed are
now present i.e. λ2 and λ3. At contrasts of 1000 and 10 000, electromechanical
instability is observed in the three directions, with the transverse direction also
presenting the specific point at which this is triggered in figure 5.9. This implies
that for higher contrasts, there is a set electric field which triggers observable
electromechanical instability in rank-2 laminates such that the transverse stretch
becomes a transverse shrinking when electromechanical instability is triggered.
For contrasts of 10 and 100, it is clear that no electromechanical instabilities
are observable once again, with a steady increase in λ with increasing applied
nominal electric field also evident. One observation on table 5.2 with regards to
CR1 is that it is increasing with increasing contrast while θR2 is becoming more
negative with increasing contrast.

Now considering figure 5.9(a) and 4.12, it is evident that for contrasts of 1000
and 10 000, one value of applied nominal electric field can provide more than one
corresponding value of λ, this then implies that the Newton-Raphson method
may present some difficulty when applied nominal electric field is used as the
independent variable. In section 4.3.2 it was emphasised how the electromechan-
ical loading path for these contrasts produced curves only just within the range
between 0 and 100 MV/m. Thus for rank-2 laminate optimisation it is advisable
to utilise a two-step method of first determining the optimum configuration at
the applied nominal electric field required, and only then, having established the
corresponding λmax, using this as a guideline for visualising the electromechani-
cal loading path using λ as the independent variable to ensure this path also lies
within a specific range.



CHAPTER 5. BOUNDARY VALUE PROBLEMS IN 3D 71

Curve µA/µB = εA/εB λ1 λ2 λ3 CB
R1 θR1[

◦] CR1 θR2[
◦]

Yellow 10 1.02245 0.96828 1.01009 0.554 53.5 0.875 5.1
Red 100 1.10494 0.90007 1.00551 0.501 51.2 0.965 -1.0

Green 1000 1.85543 0.53601 1.00550 0.493 60.0 0.987 -9.0
Blue 10 000 2.00846 0.49706 1.00167 0.509 57.0 0.993 -9.0

Table 5.2: Rank-2 laminate configurations for a three dimensional boundary-value problem with
no shear strain considered at contrasts of {10x, x = 1, 2..., 4} and corresponding longitudinal,
perpendicular and transverse stretch determined at an applied nominal electric field of 100
MV/m. Configurations are presented in figures 5.9 and 5.10.
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Figure 5.9: Influence of lamination angle on (a) maximum longitudinal stretch and (b) per-
pendicular stretch at contrasts of {10x, x = 1, 2..., 4} for rank-2 laminates relating to a three
dimensional boundary-value problem with no shear strains. Configurations are presented on
table 5.2.
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Figure 5.10: Influence of lamination angle on corresponding transverse stretch at contrasts of
{10x, x = 1, 2..., 4} for rank-2 laminates relating to a three dimensional boundary-value problem
with no shear strains considered. Blue curve is enhanced with corresponding configurations
presented on table 5.2.
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An optimisation for strict monotonic behaviour

In a manner analogous to that executed in section 4.3.3, an attempt shall be made
at optimising the rank-2 laminates presented in figures 5.9 and 5.10 in order to de-
termine example configurations which present the limit of monotonic behaviour.
We have already established in section 5.2.3 that θR1 contributes to greater fluc-
tuation of λmax when perturbed as compared to θR2. Using this observed stronger
influence of θR1, it was discovered that θR1 presented the most influential change
on the presence of monotonic behaviour for the range of applied nominal electric
field up to 100 MV/m, as also presented earlier in section 4.3.3. Thus in order to
produce a configuration that presents strict monotonic behaviour, this discovery
was applied by maintaining all other parameters to those on table 5.2 and strictly
perturbing θR1 initially then visualising the electromechanical loading path be-
fore optimising the remaining parameters. The configurations corresponding to
types of geometries at the limit of monotonic behaviour are presented on table
5.3. During this process, we have already presented the absolute maximum lon-
gitudinal stretch and the corresponding configurations such that it is not vital to
emphasise or discuss other parameters as this would reflect a ”sub-optimum” con-
figuration which we are not concerned with. This section merely focuses on which
of the four variables mentioned in section 3.3.2 provides the greatest weighting
with regards to the trade-off required between λmax and stability so as to present
sample configurations in a three-dimensional environment, as already performed
in plane strain. It is obvious that an infinite number of configurations are possible
if one only requires to observe monotonic behaviour.

Curve µA/µB = εA/εB λ1 λ2 λ3 CB
R1 θR1[

◦] CR1 θR2[
◦]

Yellow 10 1.02245 0.96828 1.01009 0.554 53.5 0.875 5.1
Red 100 1.10494 0.90007 1.00551 0.501 51.2 0.965 -1.0

Green 1000 1.45765 0.69390 1.00312 0.507 52.0 0.985 -8.0
Blue 10 000 1.51682 0.65872 1.00085 0.506 49.3 0.993 -12.0

Table 5.3: Rank-2 laminate configurations for figures 5.11(a), 5.11(b) and 5.12 at contrasts of
{10x, x = 1, 2..., 4} for rank-2 laminates relating to a three dimensional boundary-value problem
with no shear strains considered for sample geometries at the limit of monotonic behaviour.

The curves relating to the limit of monotonic behaviour are presented in fig-
ures 5.11 and 5.12 in the same manner as that performed for the rank-2 optimum
configurations. What is initially evident is that the longitudinal stretch has de-
creased due to the reduction in angle of the anisotropic phase, in agreement with
figure 5.8(a) and 4.15. Mention has already been made of an inflexion point
at higher contrasts for the optimum configurations but in figure 5.12 the trans-
verse stretch reveals the exact point at which the concavity of curves changes
for configurations which present the limit of monotonic behaviour. This point
can be described as relating to a point in the evolution of the laminate at which
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Figure 5.11: Influence of applied nominal electric field for rank-2 laminates on (a) maximum
longitudinal stretch and (b) perpendicular stretch at contrasts of {10x, x = 1, 2..., 4} for rank-
2 laminates relating to a three dimensional boundary-value problem with no shear strains
considered for strict monotonic behaviour.
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Figure 5.12: Influence of applied nominal electric field on transverse stretch at contrasts of
{10x, x = 1, 2..., 4} for rank-2 laminates relating to a three dimensional boundary-value problem
with no shear strains considered showing showing the position at which electromechanical
instability is triggered at contrasts of 1000 and higher.
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λ increases greatly as applied nominal electric field is increased. For contrasts
of 1000 and 10 000, the corresponding points lie when ∆φ/H0 =46 MV/m and
∆φ/H0 =24 MV/m respectively. This demonstrates that when considering tri-
axial stretch, λ3 provides crucial information towards the overall behaviour of
rank-2 laminates that cannot be obtained under plane strain.

5.3 Tri-axial stretch with in-plane vanishing trac-

tions

5.3.1 Influence of increasing contrast on rank-1 laminates

Having already considered laminates in a three-dimensional configuration as well
as laminates with vanishing in-plane tractions, let us now consider laminates
whose behaviour is characterised by both of these phenomena, combined. The
expected deformation gradient is therefore given as

F av =

 λ1 ξλ2 0
0 λ2 0
0 0 1

λ1λ2

 , [5.2]

where all of the following conditions are enforced

Sav
11 = 0, Sav

12 = 0, Sav
22 = 0, Sav

33 = 0. [5.3]

The assignment of λ1, λ2 and λ3 applies in the same manner as that earlier utilised
in this chapter. The optimum configurations for rank-1 laminates are presented
on table 5.4, which can be compared with table 4.2. Stretch λmax has decreased
from the plane strain boundary-value problem while ξ has increased. The libera-
tion of the perpendicular and transverse stretch has allowed for deformation to be
experienced in these directions such that the amount of shear has increased. For
the soft material such that the actuation is homogeneous, λ1 = λ3, confirming
the assumptions made in the example boundary-value problem in section 2.6.1.
With increasing contrast, the effects of λ1 are enhanced as also shown in figure
5.13. One condition however, remains immutable, acting as further confirmation
of already presented results. The optimum volume fraction is 0.5 at all investi-
gated contrasts. The lamination angle has changed only slightly with increasing
contrast implying that, once one determines the optimum lamination angle at
any contrast where the ratio of the shear and dielectric moduli are equal, this
can be assumed to be optimum at all contrasts for rank-1 laminates under the
same conditions. Also comparing figures 5.14 and 5.4, when shear strains are
considered there is evidently little to no variation in λ2 with increasing contrast.
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Curve µA/µB = εA/εB λ1 λ2 λ3 ξ CB
R1 θR1[

◦]
Black Homogeneous 1.01610 0.96857 1.01610 0
Yellow 10 1.01951 0.96876 1.0125 -0.00968 0.5 56.1

Red 100 1.02097 0.96885 1.01095 -0.01388 0.5 56.0
Green 1000 1.02115 0.96885 1.01077 -0.01437 0.5 56.0
Blue 10 000 1.02117 0.96886 1.01075 -0.01443 0.5 56.0

Table 5.4: Rank-1 laminate configurations for a three dimensional boundary-value problem
with shear strain considered at contrasts of {10x, x = 1, 2..., 4} and corresponding amount of
shear and longitudinal, perpendicular and transverse stretch determined at an applied nominal
electric field of 100 MV/m. Dotted line refers to a soft material such that the actuation is
homogeneous. Corresponding curves are in figures 5.13, 5.14(a) and 5.14(b).
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Figure 5.13: Influence of applied nominal electric field on maximum longitudinal stretch at
contrasts of {10x, x = 1, 2..., 4} for rank-1 laminates relating to a three dimensional boundary-
value problem with shear strains considered. Dotted line refers to a soft material such that the
actuation is homogeneous. Configurations are presented on table 5.4.
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Figure 5.14: Influence of applied nominal electric field on (a) perpendicular stretch and (b)
transverse stretch at contrasts of {10x, x = 1, 2..., 4} for rank-1 laminates relating to a three di-
mensional boundary-value problem with shear strains considered. Configurations are presented
on table 5.4.



CHAPTER 5. BOUNDARY VALUE PROBLEMS IN 3D 76

The influence of lamination angle on λmax is also presented in figures 5.15 and
5.16 and the evolution presented is similar to that already presented in figures
5.5 and 5.6. What is interesting however is that the homogeneous value of λ3 is
greater than at all other contrasts. The value given for ξ for a soft material such
that the actuation is homogeneous hints as to why this is so as it is evident that
there is no shear experienced such that considerable stretch in proportion to the
other directions is shifted to the transverse direction. There is also a dampening
of fluctuation of λ1 and λ2 observed in comparison to figures 5.5 and 5.6. This
dampening can also be observed if one compares the figures 4.2(b) and 4.10(b).
Thus for rank-1 laminates, vanishing in-plane tractions lead to a reduction in
maximum attainable longitudinal stretch, as well as dampening in the fluctua-
tion of λ for a range of θR1 angles.
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Figure 5.15: Influence of lamination angle on maximum longitudinal stretch at contrasts of
10x, x = 1, 2..., 5 for rank-1 laminates relating to a three dimensional boundary-value problem
with shear strains considered. Dotted line refers to a soft material such that the actuation is
homogeneous. Configurations are presented on table 5.4.

The presence of ξ likewise drives an optimisation process for ξmax which will
be compared to the plane strain boundary-value problem. Let us therefore de-
termine rank-1 laminate configurations for maximum amount of shear in a three
dimensional boundary-value problem with shear strain considered. Table 5.5 and
figure 5.17 display the results of this optimisation process, showing behaviour
comparable to that on table 4.3 and figure 4.4. The optimum lamination an-
gle has increased by 0.1◦ for each corresponding configuration from the plane
strain boundary value problem with shear strains considered. It is also observed
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Figure 5.16: Influence of lamination angle on (a) perpendicular stretch and (b) transverse
stretch at contrasts of {10x, x = 1, 2..., 4} for rank-1 laminates relating to a three dimensional
boundary-value problem with shear strains considered. Configurations are presented on table
5.4.

that once again the shear at contrasts above 100 shows only infinitesimal change,
while CB

R1 is optimum at 0.5 at all contrasts in figure 5.17(b) similar to all rank-1
boundary-value problems investigated so far.

Curve µA/µB = εA/εB ξmax λ1 λ2 λ3 CB
R1 θR1[

◦]
Homogeneous 0 1.01610 0.96857 1.0161

Yellow 10 -0.02047 1.01391 0.97862 1.00784 0.5 30.9
Red 100 -0.02988 1.01307 0.98271 1.00446 0.5 31.0

Green 1000 -0.02976 1.01297 0.98320 1.00407 0.5 31.0
Blue 10 000 -0.02998 1.01296 0.98325 1.00403 0.5 31.0

Table 5.5: Rank-1 laminate configurations optimised for maximum amount of shear for a three
dimensional boundary-value problem with shear strain considered at contrasts of {10x, x =
1, 2..., 4} and corresponding longitudinal, perpendicular and transverse stretch determined at
an applied nominal electric field of 100 MV/m. Corresponding curves are in figures 5.17(a) and
5.17(b).

5.3.2 Influence of increasing contrast on rank-2 laminates

Moving on to the more intricate problem regarding rank-2 laminates, the opti-
mum configurations are presented on table 5.6 and the corresponding figures 5.18
and 5.19. What is immediately evident are the very high values of λmax for con-
trasts of 1000 and 10 000. Compare this with the enhancement experienced for
rank-2 laminates for the plane strain boundary-value problem with shear strains
considered on table 4.6. It is evident that boundary conditions which take into
account shear strain for rank-2 laminates provide a significant enhancement of
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Figure 5.17: (a) Influence of increasing applied nominal electric field on Shear angle and (b)
influence of volume fraction on shear angle for a three dimensional boundary-value problem with
shear strain considered at contrasts of {10x, x = 1, 2..., 4} for rank-1 laminates. Corresponding
configurations are presented on table 5.5.

λmax from their rank-1 equivalents.

On figure 5.19(a), the curve relating to λ2 presents a similar evolution the its
corresponding λ1 curve, as would be expected by now. However with regards to
λ3, some new non-linear performance is observed. Unexpectedly, λ3 correspond-
ing to a contrast of 10 000 shows the largest value, while the new behaviour is
such that the curve relating to a contrast of 10 presents the second largest value
for λ3 at ∆φ/H0 =100 MV/m. What this reveals is a higher out of plane stretch
occurring at a contrast of 10 000 than a contrast of 10 due to the much higher
amount of shear.

Curve µA/µB = εA/εB λmax λ2 λ3 ξ CB
R1 θR1[

◦] CR1 θR2[
◦]

Yellow 10 1.02231 0.96866 1.00982 0.00039 0.562 55.4 0.824 5.5
Red 100 1.12312 0.88476 1.00726 0.11421 0.508 64.4 0.964 11.0

Green 1000 2.32532 0.42543 1.01086 1.53061 0.501 85.0 0.986 25.0
Blue 10 000 7.30968 0.13508 1.01307 6.23386 0.496 90.0 0.99 47.0

Table 5.6: Rank-2 laminate configurations for a three dimensional boundary-value problem
with shear strain considered at contrasts of {10x, x = 1, 2..., 4} and corresponding amount of
shear and longitudinal, perpendicular and transverse stretch determined at an applied nominal
electric field of 100 MV/m. Corresponding curves are in figures 5.18, 5.19(a) and 5.19(b).

Table 5.7 and figure 5.20 display the resulting curves for ξmax optimisation
with notice taken of the fact that the shear angle has been limited to not go
beyond -40◦ in figure 5.20, in a manner analogous to figure 4.7. This is due to an
attempt to reduce the effect of shear strain as earlier described in section 4.2.4 as
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Figure 5.18: Influence of lamination angle on maximum longitudinal stretch at contrasts of
{10x, x = 1, 2..., 4} for rank-2 laminates relating to a three dimensional boundary-value prob-
lem with shear strains considered. Sub-image displays the full curve at a contrast of 10 000.
Configurations are presented on table 5.6.
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Figure 5.19: Influence of lamination angle on (a) perpendicular stretch and (b) transverse
stretch at contrasts of {10x, x = 1, 2..., 4} for rank-2 laminates relating to a three dimensional
boundary-value problem with shear strains considered. Configurations are presented on table
5.6.

high shear strains imply high shear forces present at interfaces possibly leading
to failure of the composite. Thus, despite the fact that in both plane strain and
three-dimensional problems with in-plane vanishing tractions the improvement
of λmax is highly favourable, it is crucial that a trade-off between λmax and ξ is
accomplished in microstructure optimisation. It is therefore possible that opti-
misation in terms of ξ can be used to minimise shear strains as well as determine
contrasts which provide acceptable shear strains. Comparing figure 5.20 with
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figure 4.7, the curves show some similarities in terms of varying orientation with
contrast, however at contrasts of 10 and 1000 the overall inclinations of the rank-2
laminate have become negative. This can be attributed to the additional out of
plane behaviour now possible in a three-dimensional environment as compared
to the plane strain problem in figure 4.7. This also explains the difference in
curvature in plane strain in figure 4.7 and three-dimensions in figure 5.20 at a
contrast of 1000. This further enforces the fact that a three-dimensional environ-
ment contributes to improved electromechanical stability of rank-2 laminates by
liberating the transverse direction in which the laminate may reorient itself with
increased electrical excitation.

Curve µA/µB = εA/εB ξmax λ1 λ2 λ3 CB
R1 θR1[

◦] CR1 θR2[
◦]

Yellow 10 -0.02047 1.01382 0.97873 1.00781 0.499 30.9 0.998 30.9
Red 100 0.27005 1.06063 0.93437 1.00906 0.505 90.0 0.965 34.1

Green 1000 1.98480 2.3142 0.42733 1.01118 0.505 90.0 0.987 23.0
Blue 10 000 -21.35195 7.07379 0.13997 1.00999 0.499 59.0 0.993 -90.0

Table 5.7: Rank-2 laminate configurations optimised for maximum amount of shear for a three
dimensional boundary-value problem with shear strain considered at contrasts of {10x, x =
1, 2..., 4} and corresponding longitudinal, perpendicular and transverse stretch determined at
an applied nominal electric field of 100 MV/m. Corresponding curves within the range -
40◦ ≤ γ ≤ 40◦ are presented in figure 5.20.
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Figure 5.20: Influence of increasing applied nominal electric field on Shear angle and for
a three dimensional boundary-value problem with shear strain considered at contrasts of
{10x, x = 1, 2..., 4} for rank-2 laminates limited to the range -40◦ ≤ γ ≤ 40◦. Correspond-
ing configurations are presented on table 5.5.
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5.4 Comparison between three-dimensional bound-

ary value problems for rank-2 laminates

In a manner analogous to that executed in section 4.3.4, A comparison of the
influence of shear strains on three-dimensional behaviour shall be executed. The
configurations can be described as follows, curves titled Q1 relate to a configura-
tion that provides λmax where λ1 = λmax at a contrast of 1000 when shear strains
are considered, identical to the green curves in figures 5.18 and 5.19. Curves titled
Q2 relate to a configuration optimised for ξmax at a contrast of 1000, identical to
the green curve in figure 5.20. Curves Q3 and Q4, in a manner analogous to that
executed for contrasts of 100 and 1000 in section 4.3.4, represent corresponding
stretches for identical configurations when shear strains are considered, and when
they are not considered, respectively. Curves presented for Q4 are identical to
the green curves presented in section 5.2.4 in figures 5.9 and 5.10. Due to the
three-dimensional environment, it is now possible to compare the influence of
shear for perpendicular and transverse stretch as well.

Curve λ1 λ2 λ3 ξ CB
R1 θR1[

◦] CR1 θR2[
◦]

Q1 2.32532 0.42543 1.01086 1.53061 0.501 85.0 0.986 25.0
Q2 2.3142 0.42733 1.01118 1.98480 0.505 90.0 0.987 23.0
Q3 2.16782 0.45798 1.00723 -0.40509 0.493 60.0 0.987 -9.0
Q4 1.85543 0.53601 1.00550 0.493 60.0 0.987 -9.0

Table 5.8: Various Rank-2 laminate configurations and corresponding longitudinal stretch and
amount of shear at a contrast of 1000 and applied nominal electric field of 100 MV/m. Q1 -
optimum configuration when shear strains are considered, Q2 - optimum configuration to obtain
maximum amount of shear and corresponding longitudinal stretch, Q3 - optimum configuration
when shear strains are not considered and resulting longitudinal stretch and amount of shear
when computed in an environment taking into account shear strain and Q4 - optimum config-
uration when shear strains are not considered. Corresponding curves presented in figures 5.21
and 5.22.

From Q4 to Q3 an enhancement of longitudinal strain was obtained of 17%,
which can be compared to the improvement obtained in section 4.3.4 in a plane-
strain environment. Likewise, the elimination of non-monotonic behaviour was
also observed from Q4 to Q3 confirming the fact that in terms of longitudinal
stretch, the observable electromechanical instability can be reduced by consid-
ering shear strains. It should also be noted that a greater transverse stretch
was obtained for Q2 than for Q1 for a greater amount of shear in figure 5.22(a),
implying that the transverse direction may more than likely be able to provide
information relating to the behaviour of a rank-2 laminate in terms of shear
strain. On figure 5.22, It is evident that this particular contrast presents a bias
towards positive shear inclination. However this performance presents a maxi-
mum amount of shear for both Q1 and Q2 outside of the range of -40◦ ≤ γ ≤ 40◦
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Figure 5.21: (a) Influence of increasing applied nominal electric field on (a) longitudinal stretch
and (b) perpendicular stretch for laminate configurations Q1, Q2, Q3 and Q4 described on table
5.8.
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Figure 5.22: (a) Influence of increasing applied nominal electric field on transverse stretch for
laminate configurations Q1, Q2, Q3 and Q4 presented on table 5.8. (b) Influence of applied
nominal electric field on shear angle for laminate configurations Q1, Q2 and Q3 presented on
table 5.8.

previously mentioned in section 5.3.2. The difference between Q3 and Q2 in figure
5.22 completely illustrates the possibility of accomplishing a trade-off between λ
and ξ when perturbing the microstructure of rank-2 laminates.

Another way these curves can be interpreted is to compare figures 5.22 and
4.19 in order to illustrate the ability of a three-dimensional environment to con-
tribute to the electromechanical stability of rank-2 laminates. Configuration C5

in figure 4.18(b) and Q1 in figure 5.22(b) illustrate that non-monotonic behaviour
can also be eliminated in terms of the shear angle evolution. These configura-
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tions, as it should be emphasised, relate to λmax therefore there has been no
attempt to optimise ξ in any manner for C5 and Q1. Also, C7 in figure 4.18(b)
and Q3 in figure 5.22(b) reflect similar curvature. This indicates that when tran-
sitioning from a constrained environment with no shear strains considered, to a
liberated environment where shear strains are considered, electromechanical in-
stability may manifest itself in the shear angle evolution of rank-2 laminates due
to the change in concavity of Q3 and C7. This therefore means that even at low
shear angles, there may be shear forces at the interfaces between phases due to
the presence of electromechanical instability.

5.5 Conclusions

In this chapter it has been presented that

• Longitudinal stretch λ1 in tri-axial strain can be used to approximate λmax
in plane strain for both rank-1 and rank-2 laminates.

• The rate of change of stretch with increasing applied nominal electric field
of λ1 is greater than the rate of change of stretch of perpendicular stretch,
λ2.

• When transitioning from boundary-value problems without shear strain
considered to those with shear strain considered for rank-1 laminates, damp-
ening of λ with varying θR1 is present.

• The angle θR1 is more dominant in determination of the optimum configu-
ration that provides λmax compared to θR2.

• At higher contrasts, shear angles are unsuitably high at λmax such that
a trade-off needs to be established between λ and ξ when optimising the
microstructure of rank-2 laminates.

• When three-dimensional boundary value problems where compared with
each other, a 17% enhancement of λmax was obtained for the same config-
uration from tri-axial stretch with no shear strain considered to tri-axial
stretch with shear strain considered at a contrast of 1000.



Chapter 6

Holistic design parameter
optimisation

6.1 Introduction

So far, we have analysed the effective behaviour of rank-1 and rank-2 laminates
with equal ratios of shear and dielectric moduli in the two phases. It has been
presented that for the boundary-value problems in this study, an increase in con-
trast results in an increase in maximum attainable longitudinal stretch and shear
strain from that of the previous contrast. This leaves one to wonder whether or
not a material with unequal shear and dielectric ratios would provide enhance-
ment in the same manner and if so, what the response would be for such a
laminate under the presented boundary conditions. Therefore this chapter shall
be dedicated to exactly this enquiry, followed by presenting the current configu-
ration of the rank-2 laminates and phase electric fields of rank-2 laminates with
these unequal ratios. This will then enable the development of a prescription for
laminate design with the aim of establishing a framework for future studies.

6.2 Material with unequal shear and dielectric

ratios

6.2.1 Initial optimisation: rank-1 and rank-2 laminates

Consider now, rank-1 and rank-2 laminates composed of materials ”A” and ”B”
resembling soft actuators presented in figures 3.1 and 3.2, with proportions of
shear and dielectric moduli presented in table 6.1.

In this arrangement, the shear modulus of the softer phase has been decreased
to establish a softer material whose ratio of shear to dielectric moduli are not

84
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µA µB εA εB

103 MPa 0.1 MPa 103ε0 10 ε0

Table 6.1: Shear and dielectric parameters of the stiff and less dielectric phase ”A” and the
softer, more dielectric phase ”B” for a rank-1 and rank-2 laminate.
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Figure 6.1: Influence of increasing applied nominal electric field on maximum longitudinal
stretch in plane strain with no shear strain considered at an applied nominal electric field of
20 MV/m for (a) homogeneous phase (black dashed line) and rank-1 laminate (blue curve) and
(b) close up of rank-1 laminate. Corresponding λ values at ∆φ/H0 =20 MV/m are presented
on table 6.2.

equal. In the context of the contrasts presented in section 4.1, the dielectric ratio
is 100 and the shear ratio is 10 000. The proportions of the shear and dielec-
tric moduli can be likened to real world materials with material ”A” referring
to a contrast similar to that presented as poly(vinylidene fluoride) (PVDF) with
BaTiO3 nanowires, synthesized by Choi et al. (2016), while material ”B” can
be representative of a silicone-based material as presented by Skov et al. (2016).
These ratios will initially be applied to rank-1 and rank-2 laminates with a de-
formation gradient and boundary conditions presented in section 4.3 such that
the laminates are experiencing plane strain with no shear strains considered.

Figure 6.1(a) displays the homogeneous actuation of the soft phase of a rank-1
laminate with increasing applied nominal electric field with λ as the dependent
variable. What is immediately apparent is that after ∆φ/H0 = 34 MV/m, stiffen-
ing of the rank-1 laminate occurs while the homogeneous curve presents opposite
behaviour in the form of infinite compliance. In order to provide favourable and
optimum laminate configurations for the rank-2 laminate it would therefore be
unwise to optimise the laminate at applied nominal electric fields higher than 34
MV/m. It should also be noted that behaviour of a similar nature was obtained
by Gei et al. (2013) for higher applied nominal electric fields, thus confirming
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these results. The fact that a rank-1 curve of this nature can be obtained when
the stiffer phase is laminated with the homogeneous soft phase reveals the elec-
tromechanical coupling effect of a 2-phase laminate. Thus the applied nominal
electric field, for purposes of investigating this set of shear and dielectric moduli,
will be limited to 20 MV/m in order to ensure the behaviour experienced is in
a region where electrical excitation presents a satisfactory electromechanical re-
sponse.

The configurations providing λmax for a rank-1 and rank-2 laminate are pre-
sented in table 6.2 and figure 6.2. With regards to the three curves in figure 6.2,
λmax has improved from the homogeneous value to the rank-1 and then further
improved for the rank-2 laminate which is consistent with the general idea regard-
ing this study. The rank-2 laminate in particular presents a remarkable variation
in the evolution of the curve for λ with increasing applied nominal electric field.
A drastic change in the gradient of the rank-2 curve is observed in the region
9 MV/m ≤ ∆φ/H0 ≤ 14 MV/m. This behaviour is observed at a relatively low
applied nominal electric field of 20 MV/m which can be attributed to the reduc-
tion in shear modulus of the softer phase ”B” for the same dielectric modulus,
increasing the electrical influence of this particular material.

What is also peculiar is the corresponding value of applied nominal electric
field at which this behaviour begins to occur. If the stiffening in figure 6.1(b)
occurred near 34 MV/m then one would expect that limiting this applied nominal
electric field to 20MV/m would mean that only steady increase of λ would be
observed. The reason why this variation in concavity occurs at this particular
value of applied nominal electric field is most likely due to the fact that this
region (9 MV/m ≤ ∆φ/H0 ≤ 14 MV/m) in figure 6.2 corresponds to the first
observable difference in values for λ between the rank-2, rank-1 and a soft ma-
terial such that the actuation is homogeneous as applied nominal electric field is
increased. In the range 0 MV/m ≤ ∆φ/H0 ≤ 9 MV/m, the corresponding values
of λ in figure 6.2, indicated by the curvature, for the three curves are almost
indistinguishable and only after this region is when the corresponding configura-
tion of each composite begins to present an influence in the amplification of λ. A
sharp increase in the curve corresponding to the rank-2 laminate is then observed
at ∆φ/H0 =13 MV/m. This also means that, despite limiting applied nominal
electric field to 20MV/m, the electrical excitation needs to be sufficiently high
for a rank-2 laminate configuration to perform better than its rank-1 equivalent.

It is useful now to retrace the procedure executed in order to highlight the
electromechanical enhancement that occurs when the shear and dielectric moduli
are not equal. A soft material such that the actuation is homogeneous (figure 6.1)
presented infinite compliance at approximately ∆φ/H0 = 34 MV/m. Secondly,
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Curve λmax CB
R1 θR1[

◦] CR1 θR2[
◦]

R1 1.19792 0.5 59.1
R2 1.64039 0.51 57.0 0.939 -13.0

homogeneous 1.11543

Table 6.2: Laminate configurations and corresponding maximum longitudinal stretch using
contrasts presented on table 6.1 for a boundary-value problem of plain strain with no shear
strains considered at an applied nominal electric field of 20 MV/m. Corresponding curves are
presented in figure 6.2.
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Figure 6.2: Influence of increasing applied nominal electric field on longitudinal stretch for
rank-1, rank-2 and homogeneous softer material using contrasts presented on table 6.1 for
a boundary-value problem of plain strain with no shear strains considered. Corresponding
configurations are presented on table 6.2.

a rank-1 laminate, which is essentially the homogeneous soft phase, with a stiff
phase now included at a weighted fraction of approximately half of the material,
presented stiffening at approximately the same amount of applied nominal electric
field. Then finally, we further only slightly reduce this stiff phase (CA

R1 = 0.49)
when optimizing the rank-2 laminate on table 6.2 and observe indistinguishable
behaviour at electrical excitations below 9 MV/m. The conclusion of this evolu-
tion when considering the three volume fractions of the rank-2 laminate on table
6.2, is that a stiff phase is not only required in order to provide a favourable con-
trast for electrical excitation, but it also contributes to the overall stability of both
rank-1 and rank-2 laminates when shear and dielectric ratios are equal as well as
unequal. This enhanced electromechanical stability then enables deformation to
occur at sufficiently high electrical excitations to provide an enhancement in the
longitudinal stretch of rank-1 and rank-2 laminates. It should also be considered
that in terms of volume fractions, phase ”BR2” is very small (CB

R2 = 1 − CR1)
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but its addition to the rank-1 laminate greatly improves the influence of applied
nominal electric field in figure 6.2. Thus the influence of θR1, θR2, C

B
R1 and CR1

is ever more present for rank-1 and rank-2 laminates whose shear and dielectric
ratios are unequal.

6.2.2 A comparison between all boundary-value problems:
rank-1 laminates

For rank-1 laminates, all four boundary-value problems previously studied will
now be applied and compared. The shear and dielectric ratios presented on table
6.1 will be maintained. The applied nominal electric field will also be limited
to 20 MV/m. The configurations obtained and the boundary-value problem for
each are presented on table 6.3 and figures 6.3 and 6.4. With regards to plane
strain, it is evident that λmax is greater when shear strains are not considered
in a manner consistent with that already presented earlier in section 4.3.4. The
same phenomenon is observed for the three-dimensional equivalent boundary-
value problems which is more than enough confirmation that if shear strains are
not taken into account for rank-1 laminates then λmax will be greater.

What is also important to note for these contrasts is that λmax for a boundary-
value problem of plane strain with no shear considered presents the largest value
of λmax throughout the whole study. This answers the initially posed argument in
this chapter that a rank-1 laminate whose materials have unequal ratios of shear
and dielectric moduli provides better enhancement of longitudinal stretch than
contrasts where the ratios of contrasts and dielectric ratios are equal. Another
observation is that the optimum volume fraction of the soft phase for all rank-1
laminates presented is 0.5 where there are equal amounts between hard and soft
material in rank-1 laminates. This is similar to all other rank-1 laminates pre-
sented in this study.

Curve Case λmax λ2 λ3 ξ CB
R1 θR1[

◦]
Blue Plane Strain 1.19792 0.5 59.1

Yellow Plane strain with Shear strain 1.12836 -0.04661 0.5 63.0
Red 3D 1.19258 0.79132 1.05965 0.5 60.3

Green 3D with Shear strain 1.11592 0.83964 1.06727 -0.05776 0.5 63.0
Black Homogeneous 1.11543

Table 6.3: Rank-1 laminate configurations and corresponding maximum longitudinal stretch us-
ing contrasts presented on table 6.1 for various boundary-value problems at an applied nominal
electric field of 20 MV/m. Corresponding curves are presented in figures 6.3 and 6.4.

A distinct working range is observed of the lamination angle of the rank-1
laminate on table 6.3 of 59◦ ≤ θR1 ≤ 63◦ for all boundary-value problems with
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Figure 6.3: Influence of applied nominal electric field on longitudinal stretch for rank-1 lami-
nates under various boundary-value problems at an applied nominal electric field of 20 MV/m.
Corresponding configurations are presented on table 6.3.
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Figure 6.4: Influence of increasing applied nominal electric field on corresponding (a) perpen-
dicular stretch and (b) transverse stretch at an applied nominal electric field of 20 MV/m for
rank-1 laminates sharing a three-dimensional environment. Green curves refer to a boundary-
value problem when shear strains are considered and red to a boundary-value problem when
shear strains are not considered. Corresponding configurations are presented on table 6.3.

the exact same optimum lamination angle observed for boundary-value prob-
lems where shear strains are considered in plane strain and three-dimensional
environments. It is useful to discuss which boundary-value problem that would
provide the most optimum as well as realistic behaviour for possible application.
The boundary-value problems relating to plane strain provide an unrealistic be-
haviour as in reality, there would always be three dimensions to consider, despite
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the fact that the boundary-value problem of plane strain with no shear strain con-
sidered provides the highest value of λmax. This leaves the two boundary-value
problems solved in a three dimensional environment, where it is evident that the
boundary-value problem that does not take into account vanishing tractions in
this environment provides the optimum performance. Indeed, a concern may now
be that a more realistic representation of the composite would be to take into
account shear in order to limit any high shear strains as established for figure
5.20 in section 5.3.2. However, as evident from the values for shear given on
table 6.3, the shear angle in three-dimensions with shear strain considered only
reaches -3◦ implying that the shear forces at the interfaces between the phases for
a rank-1 laminate are relatively small. Amount of shear or ξmax optimisation was
also performed so as to fully justify this point. Maximum shear angles obtained
were -7.4◦ for a boundary-value problem of plane strain with in-plane vanishing
tractions and -7.8◦ for a boundary-value problem of tri-axial stretch with vanish-
ing in-plane tractions. The implication of this is that for a rank-1 laminate it is
possible that the amount of shear experienced in a plane strain environment is
very close to that experienced in a three-dimensional environment. This is con-
firmed by comparing tables 4.3 and 5.5 which present shear optimisation results
for the previous rank-1 laminates optimised when the shear and dielectric ratios
were equal. This means that for rank-1 laminates not only can the longitudinal
stretch plane strain be used to approximate that experienced in tri-axial stretch,
but also the amount of shear can be approximated in a likewise manner.

One point to be mindful of is the fact that the value of θR1, when the config-
urations laminates relating to the yellow curve and green curve on table 6.3 and
figure 6.4(a) are optimised for ξmax, is not the same as previously presented on
tables 4.3 and 5.5. Angle θR1 at ξmax for plane strain with shear strain considered
was found to be 34.1◦ while that for tri-axial stretch with shear strain considered
was found to be 35.7◦. These values are important due to the fact that for all
contrasts previously investigated whose ratios of shear to dielectric moduli were
equal, θR1 values at ξmax were observed to be almost identical at all contrasts as
displayed on tables 4.3 and 5.5. It is therefore apparent that a laminate with un-
equal shear and dielectric ratios reveals a new non-linear effect when performing
optimisation for ξmax. Thus the parameters influencing optimisation of rank-1
laminates when materials have unequal shear and dielectric ratios lead to en-
hanced non-linear effects. One subtlety that may be easily overlooked is the fact
when the curves relating to tri-axial stretch with shear considered (Green curve)
and homogeneous curve are compared in figure 6.3, it is noticed that at values
below E0av = 20 MV/m the homogeneous curve presents better response than
the rank-1 laminate. The homogeneous curve only starts to present the lowest
value for λ only at 20 MV/m when λ = λmax and possibly if the applied nominal
electric field were to be increased past this point.
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6.2.3 A comparison between all boundary-value problems:
rank-2 laminates

Rank-2 laminates shall now be optimised in a manner analogous to that per-
formed for rank-1 laminates. The results are presented on table 6.4 with corre-
sponding curves presented in figures 6.5 and 6.6. The curves relating to shear
strain not being taken into account present an inflexion point similar to that expe-
rienced for contrasts of 1000 and 10 000 in figures 4.12 and 5.9(a). This suggests
that this behaviour is common to all contrasts which have either a shear modulus
or a dielectric modulus above a certain threshold. The curve relating to tri-axial
stretch with shear considered (green) presents the highest value for λmax. For
the curve relating to plain strain with shear strains considered (yellow) it should
be noted that the amount of shear experienced corresponds to a shear angle of
-53◦. In the context of laminate interface interaction, this value is unsuitably
high as large shear angles would be unfavourable while for tri-axial stretch with
shear strains considered, a more acceptable amount of shear of -2◦ is experienced.

Curve Case λmax λ2 λ3 ξ CB
R1 θR1[

◦] CR1 θR2[
◦]

Blue 2D only 1.79682 0.497 60.0 0.948 -21.0
Yellow 2D + Shear 1.75878 -1.329 0.520 92.0 0.944 14.0

Red 3D only 1.66166 0.57433 1.04816 0.499 58.0 0.979 -29.0
Green 3D + Shear 1.84828 0.51655 1.04742 -0.029146 0.517 59.0 0.957 -32.0

Table 6.4: Rank 2-laminate configurations and corresponding maximum longitudinal stretch us-
ing contrasts presented on table 6.1 for various boundary-value problems at an applied nominal
electric field of 20 MV/m. Corresponding curves are presented in figures 6.5 and 6.6.
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Figure 6.5: Influence of increasing applied nominal electric field on maximum longitudinal
stretch at an applied nominal electric field of 20 MV/m for rank-2 laminates sharing a three-
dimensional environment. Corresponding configurations are presented on table 6.4.
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Figure 6.6: Influence of increasing applied nominal electric field on corresponding (a) perpen-
dicular stretch and (b) transverse stretch at an applied nominal electric field of 20 MV/m for
rank-2 laminates sharing a three-dimensional environment. Green curves refer to a boundary-
value problem when shear strains are considered and red to a boundary-value problem when
shear strains are not considered. Corresponding configurations are presented on table 6.4.

When comparing rank-1 and rank-2 laminate behaviour for each boundary-
value problem, the boundary-value problem relating to tri-axial stretch with shear
strains considered (yellow) transitions from presenting the lowest value for λmax
on table 6.3 for rank-1 laminates to the highest value for λmax among the pre-
sented rank-2 laminates. The injection of a matrix phase of soft material appears
to present a profound contribution to the enhancement of longitudinal strain as
well as shear strains. This is confirmed by the fact that both CB

R1 and CR1 are
quite high for this configuration in comparison to other rank-2 laminates on this
table implying a strong influence of the increased soft phase.

With regards to the two-dimensional boundary-value problems, for the first
time a boundary value problem with shear strains considered results in a reduc-
tion in λmax. Compare this with observations made in section 4.3.4 as well as by
comparing tables 4.6 and 5.2. What this implies is a strong influence of the reduc-
tion of the shear modulus of material ”B” such that the high shear angle observed
in plane strain affects laminate performance. This is precisely what was being
implied in figure 4.7 when only angles up to ±40◦ were presented. However this
is only experienced in plane strain as the configurations in a three-dimensional
environment on table 6.4 reflect an enhancement in λmax due to the consideration
of shear strains, with surprisingly convenient low shear angle. Using only λmax
for comparison, it is possible to speculate where the range of values presented for
these unequal ratios would lie on the spectrum of results presented in chapters 4
and 5. The range would most likely lie between 100≤ µA/µB = εA/εB ≤10 000
however it is clear that establishing unequal ratios of shear to dielectric moduli
presents improved performance for both rank-1 and rank-2 laminates and would
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be the best design framework to establish for rank-1 and rank-2 laminate opti-
misation.

6.2.4 Current configuration of lamination angles of rank-2
laminates

In a manner similar to that executed in section 4.3.5, it is useful to determine the
current configuration of lamination angles for the new combination of materials
being investigated in this chapter. In order to accomplish this, the curves earlier
presented in figure 6.5 will be presented in their current configuration with focus
solely on longitudinal strain. The focus will be limited to longitudinal strain
so as to provide comparison with all the various boundary-value problems. The
current configurations of lamination angles for rank-2 laminates whose shear and
dielectric ratios are not equal are now presented in figures 6.7 and 6.8, starting
at the configurations presented on table 6.4 when ∆φ/H0 =0 MV/m. What is
immediately apparent for the evolution of lamination angle with applied nominal
electric field in figures 6.7(a) and 6.8(a) is that as applied nominal electric field
is increased, there is little deformation up until electromechanical instability is
experienced for boundary-value problems with no shear strains considered. With
regards to θR1, the value decreases at all boundary-value problems implying a
clockwise rotation of the anisotropic phase. On figure 6.8(a), θR2 shows an in-
crease for all boundary-value problems except for the plane-strain boundary-value
problem where shear strains are not considered, which presents a decrease in θR2.

Collectively, θR2 angles for all boundary-value problems may appear to be
converging to a common angle however this is not the case when one considers
the evolution of the longitudinal stretch with both angles in figures 6.7(b) and
6.8(b). The evolutions show that each rank-2 laminate follows its own unique
pathway for θR1 and θR2. The current configuration can be considered to develop
as a result of numerous variables and not strictly the input lamination angles as
the figures may imply. Therefore the presence of electromechanical instability due
to the lamination angles is confirmed due to the fact that there are no inflexion
points if λ is presented as the independent variable in figures 6.7(b) and 6.8(b).
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Figure 6.7: Current configuration of presenting (a) influence of increasing electric field on θR1

and (b) influence of increasing longitudinal stretch on θR1 for all rank-2 laminate of unequal
shear and dielectric ratios with input configurations presented on table 6.4. Colours also refer
to table 6.4.
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Figure 6.8: Current configuration of presenting (a) influence of increasing electric field on θR1

and (b) influence of increasing longitudinal stretch on θR1 for all rank-2 laminates investigated
of unequal shear and dielectric ratios with input configurations presented on table 6.4. Colours
also refer to table 6.4.

6.2.5 Electric field microscopic and macroscopic distribu-
tions for unequal dielectric and shear moduli

Now that the lamination angles in the current configuration have been presented,
it is also useful, in a likewise manner to section 4.3.6, to compare and contrast
the actual electric fields experienced in terms of their absolute values in all three
phases in rank-2 laminates whose shear and dielectric moduli are unequal. A
comparison will be made with the boundary-value problem of equal dielectric
and shear moduli at a contrast of 100 presented earlier in figures 4.23 and 4.24.
Previously an enhancement of a factor of 15 had been experienced and as now
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presented in figures 6.9 and 6.10, enhancement of the soft phase in the matrix is
of a factor 20 is experienced and maximum for the case of tri-axial stretch with
no shear strain considered. This increase in enhancement can be attributed to
the change in contrast of shear modulus of the soft phase presented on table 6.1.
The boundary-value problem wiht maximum enhancement of the soft phase is
surprisingly the one that reflects the lowest value of λmax of the four presented
on table 6.4. The value of CR1 is high such that the resulting value of EB

R2 is
also high if one considers equation [3.222]. Thus it is logical that the laminate
with the the highest amount of CR1 will have the greatest amount of strain en-
hancement. This enhancement highlights the electromechanical coupling present
throughout this study. The more dielectric soft phase allows electrical excitation
such that the jump in phases leads to a direct correlation between the applied
nominal electric field and enhancement of this soft phase through the constant β̃
as explained in section 4.3.6.

Comparing the soft phases in the entirety of the rank-2 laminate i.e. EB
R1

and EB
R2 absolute values in figures 6.9 and 6.10, the plain strain boundary-value

problem with shear strain considered presents the lowest enhancement of the
four boundary-value problems in figure 6.10. Despite the corresponding configu-
ration presenting a large amount of CB

R1, the orientation of the anisotropic phase
whereby θR1 = 92◦ means that this near vertical arrangement may not be ideal
for electromechanical interactions. It is therefore evident that there is a pro-
nounced influence of boundary-value problems on the absolute values of electric
field enhancement for the soft phase due to the optimal laminate configuration.
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Figure 6.9: Absolute values of applied electric field and corresponding microscopic phase electric
fields presented as absolute values in rank-2 laminates for all rank-2 laminates investigated of
unequal shear and dielectric ratios with input configurations presented on table 6.4.
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Figure 6.10: Absolute values of applied electric field and corresponding microscopic phase
electric fields presented as absolute values in rank-1 anisotropic phases embedded in rank-2
laminates for all rank-2 laminates investigated of unequal shear and dielectric ratios with input
configurations presented on table 6.4.
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6.3 Design optimisation using material contrast:

a prescription for laminate design

By this section, it should now be apparent that there is crucial requirement for
laminate optimisation while taking into account both the presence of instability
and shear strains when utilising rank-1 and rank-2 laminates whose dielectric
and shear moduli are equal as well as unequal for actuation. At this juncture,
we are now in a position to put forth a recommendation for strategies to em-
ploy in rank-1 and rank-2 sequentially laminated composite design by enlisting
all the observations presented throughout this text. This section, in particu-
lar, is involved in establishing a designer’s perspective as opposed to a rigorous,
scientific, optimisation methodology in order to provide a recommendation for
the possible combination of contrasts that would be optimum when designing
rank-1 and rank-2 laminates. This idea has already been presented in part when
laminates of unequal shear and dielectric moduli were presented earlier in this
chapter. Optimising the contrast will therefore involve selecting a set of specific
parameters to maintain as constant when perturbing the shear and dielectric
moduli.

6.3.1 Rank-1 laminate contrast optimisation

As expected, we begin with rank-1 laminates in hope of advancing to possible
rank-2 laminate contrast optimisation. It should be noted however, that the term
”contrast optimisation” is used loosely due to the already presented numerous
non-linear effects such that a non-linear influence when contrasts are perturbed
is now most certainly expected. Thus the contrast optimisation results only rep-
resent an example optimisation process. In order to determine a logical starting
point, we shall recap some of the observations already made in earlier sections.
It may be useful to re-visit the configurations on tables 4.2, 4.8, 5.1, 5.4 and 6.3
before proceeding further.

For rank-1 laminates, it has been indisputably determined that the optimum
volume fraction, for laminates whose shear and dielectric ratios are equal, that
the amount of stiff phase and soft phase required at the optimum configuration
are equal. There is also little to no change in the lamination angle with increas-
ing contrast for materials whose shear and dielectric moduli are equal. When
shear is considered in both plane strain and three-dimensional environments, the
same predictions are valid only considering the fact that lamination angles for
λmax and ξmax differ. Taking into account the stiffening for the rank-1 laminate
with unequal shear and dielectric moduli encountered in figure 6.1, the applied
nominal electric field in this section shall be limited to 20 MV/m. Amounts of
stiff and soft phase in this new rank-1 laminate shall be maintained as equal (i.e.
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0.5) and the selected lamination angle in plane strain shall be 50◦ in an effort to
consider an angle within an acceptable range of all different boundary conditions
presented. The contrast shall be optimised in a plane strain environment where
shear strains are not considered, similar to section 4.3, which also contributes to
selecting the lamination angle to be 50◦. The aim of selecting this boundary-value
problem is to consider the boundary-value problem which presented the most se-
vere effect of electromechanical instabilities such that if contrast optimisation is
possible under these conditions, then it would likely be possible for boundary-
value problems with less restriction on the laminates ability to deform, such as
in three dimensions or when shear strains are considered. The parameters are
summarised on table 6.5.

E0av [MV/m] CB
R1 θR1[

◦]
20 0.500 50.0

Table 6.5: Rank-1 laminate parameters for contrast optimisation attempt.

The initial contrast optimisation attempt was carried out for the ranges of
10≤ εA/εB ≤ 1000 for the dielectric ratio and 10 ≤ µA/µB ≤ 1000 for the shear
ratio. The results of this optimisation are presented in figure 6.11 and it is evident
that, for the parameters on table 6.5, the initial ranges in which high λ values
can be expected are when εA ≥ 1000 and 10 ≤ µA ≤ 100. This should come as no
surprise as we have already established that there is an amplification of the elec-
tric field component in the soft phase, enabled by the dielectric ratio in section
6.2.5. The dielectric constant (or permittivity) ε is independent of the deforma-
tion such that the shear modulus is the parameter that limits the deformation of
the material. This stretch is more present in the soft phase according to table 4.2
therefore the dielectric modulus will be higher than the shear modulus for maxi-
mum deformation. Using this new established range for the shear and dielectric
moduli, a secondary optimisation for the ranges of 1000≤ εA/εB ≤ 10 000 for the
dielectric ratio and 0 ≤ µA/µB ≤ 100 for the shear ratio is presented in figure
6.12. The limit of this study of a contrast of 10 000 for either shear or dielectric
moduli will also be applied in this case. It is therefore observed that λ continues
to increase with increasing dielectric ratio for the parameters on table 6.5 until
the limit of this study is reached that of a contrast of 10 000. Therefore for the
parameters on table 6.5, a new contrast has been established of a dielectric ratio
of 10 000 and a shear modulus of 10.
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Figure 6.11: Example contrast optimisation search for the ranges 10 ≤ εA/εB ≤ 1000 and
10 ≤ µA/µB ≤ 1000 for a rank-1 laminate in a plane strain environment with no shear strains
considered at an applied nominal electric field of 20 MV/m. CB

R1 =0.5, θR1 = 50◦. Each point
represents a unique combination of contrasts.
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Figure 6.12: Example contrast optimisation for the ranges 1000 ≤ εA/εB ≤ 10000 and
10 ≤ µA/µB ≤ 100 for a rank-1 laminate in a plane strain environment with no shear strains
considered up to the limit of this study at an applied nominal electric field of 20 MV/m.
CB

R1 =0.5, θR1 = 50◦. Each point represents a unique combination of contrasts.

6.3.2 Rank-2 laminate contrast optimisation

The same process shall be applied to rank-2 laminates, beginning with making
an effort to select values for volume fractions and lamination angles representing
a large proportion of those obtained for different boundary conditions. In a man-
ner analogous to the previous section, re-visiting tables 4.6, 4.7, 4.9, 5.2, 5.6 and
6.4 is beneficial before proceeding. The volume fraction of the anisotropic phase
shall be set at 0.99 while that of the softer phase in the core at 0.5, where both
have been determined by an approximation from results on the aforementioned
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tables. As has been obtained for rank-2 laminates, θR1 is in the range 50-60◦ for
this boundary-value problem therefore it shall be set to 55◦. According to the
enhancement of electric field presented in section 6.2.5, θR2 will be set to near
horizontal at 10◦. This is due to the fact that throughout all the tables 4.6, 4.7,
4.9, 5.2, 5.6 and 6.4, there is an average difference between θR1 and θR2 of approx-
imately 45◦ for each configuration. Therefore now starting at the configuration
on table 6.5 and as we have increased θR1, it is recommended to set θR2 to 10◦ i.e.
a counter-clockwise rotation from horizontal by the same amount as θR1. These
parameters are summarised on table 6.6.

E0av [MV/m] CB
R1 θR1[

◦] CR1 θR2[
◦]

20 0.500 55.0 0.990 10.0

Table 6.6: Rank 2-laminate parameters for contrast optimisation attempt.

This optimisation was performed in a manner similar to the rank-1 starting at
the ranges of 10≤ εA/εB ≤ 1000 for the dielectric ratio and 10 ≤ µA/µB ≤ 1000
for the shear ratio. Similar to the rank-1 contrast optimisation, for the param-
eters on table 6.6 the initial range in which high λ values can be expected is
when εA ≥ 1000 and 10 ≤ µA ≤ 100 in figure 6.13. The optimisation was then
carried out up to a dielectric ratio of 10 000. It should be noted that, owing
to the non-linear nature of this optimisation process, great care was taken when
determining values for λ such that optimisation was performed in stages up until
figure 6.14 which presents the final optimisation carried out for the ranges of 8
000≤ εA/εB ≤ 10 000 for the dielectric ratio and 0 ≤ µA/µB ≤ 200 for the shear
ratio. Thus a high dielectric modulus and low shear modulus are required for
high λ values for the configuration presented on table 6.6. These values for λ
for a rank-2 laminate, however are not necessarily higher than for the previously
introduced rank-1 laminate which reflects the non-linear nature of this investi-
gation. Minimising the ranges of contrast optimisation would be advisable for
future work due to the fact that in this case there has been one configuration
defined for an extremely large range of contrasts.

It may now appear tempting to optimise the rank-1 and rank-2 configurations
on tables 6.5 and 6.6 and optimum contrasts so as to determine λmax, but this
may prove to be naive. These new contrasts determined are under the influence
of non-linear effects such that they only represent a myriad of contrast combi-
nations possible when one maintains a set of parameters as performed on tables
6.5 and 6.6. What is evident here is that if the lamination angle, volume fraction
and applied nominal electric field are kept constant, it is possible to determine
the contrast combinations that would provide a better value for λ. An example
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Figure 6.13: Contrast optimisation search for a rank-2 laminate in a plane strain environment
with no shear strains considered. CB

R1 =0.5, CR1 =0.99, θR1 = 55◦, θR2 = 10◦. Each point
represents a unique combination of contrasts.
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Figure 6.14: Contrast optimisation search for a rank-2 laminate in a plane strain environment
with no shear strains considered. CB

R1 =0.5, CR1 =0.99, θR1 = 55◦, θR2 = 10◦. Each point
represents a unique combination of contrasts.

of how this phenomenon may be used to one’s advantage is as follows. Consider
the configurations for contrasts of 1000 and 10 000 when shear and dielectric
moduli are equal on table 4.6. For these rank-2 laminates, it is evident that λmax
improves greatly from a contrast of 1000 to 10 000 however, ξ also presents itself
as unsuitably high. Using a designer’s mindset, as stated at the beginning of this
chapter, it is possible that there is a contrast between 1000 and 10 000 that may
present a large enough enhancement of λmax, while simultaneously minimising
the shear angle or ξ. Thus, using target values for λ and ξ in the same manner
as that executed on table 6.6, it is possible to determine contrasts for shear and
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dielectric moduli that would maximise λ while minimising ξ between contrasts
of 1000 and 10 000. Even if a sub-par value for λ is obtained, optimisation of
the lamination angles and volume fractions could then be performed as a way of
”tuning” the laminate to any required configuration. It is therefore pertinent to
refer to the contrasts presented on tables 6.5 and 6.6 as ”sample” configurations
as the possibilities that rank-2 laminates present when one considers contrast
optimisation are in-fact, infinite.

Of course one would now wonder why this contrast optimisation would not
have been more ideal if executed at the beginning of this entire study in chapter
4 so as to provide an even more exhaustive coverage of rank-1 and rank-2 lam-
inates. However, it should be noted that in order to even execute this so called
”contrast optimisation”, a general framework of suitable working ranges for all
aspects of rank-2 laminates had to first be established such that the assigned
initial lamination angles, volume fractions and applied nominal electric field on
tables 6.5 and 6.6 would be in a region which provides the greatest probability of
generating accurate values. Therefore, a prescription for rank-1 and rank-2 lam-
inate design has thus been presented as an alternative method for approaching
rank-1 and rank-2 laminate optimisation.

6.4 Conclusions

In this chapter, it has been presented that:

• Despite limiting applied nominal electric field to 20MV/m, the electrical
excitation needs to be sufficiently high for a rank-2 laminate configuration
to perform better than its rank-1 equivalent.

• A stiff phase is not only required in order to provide a favourable contrast for
electrical excitation, but it also contributes to the overall stability of both
rank-1 and rank-2 laminates when shear and dielectric ratios are equal as
well as unequal.

• Rank-1 and rank-2 laminates whose shear and dielectric moduli are unequal
provide enhanced performance in terms of λmax in comparison to laminates
with equal shear and dielectric moduli.

• Electric field enhancement of the soft phase in the matrix of a factor 20 is
experienced and maximum for the case of tri-axial stretch with no shear
strain considered
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• For rank-1 and rank-2 laminates, the initial ranges in which high λ values
can be expected are when 1000 ≤ εA/εB ≤ 10000 for the dielectric ratio
and 10 ≤ µA/µB ≤ 100 for the shear ratio.

• If the lamination angle, volume fraction and applied nominal electric field
are kept constant, it is possible to determine the contrast combinations that
would provide a better value for λ.



Chapter 7

Conclusion

This study has been conducted in the realm of hyper-electroelasticity whereby
rank-1 and rank-2 composites are characterized by a Lagrangian description of
kinematics. We have begun with a description of finite elasticity and then pre-
sented fundamentals of electroelasticity for Neo-Hookean energy. The lamination
procedure explained is that of a stiff, high dielectric phase laminated with a softer,
low dielectric phase with electromechanical coupling due to Maxwell stress. As-
sumptions have been made for the sake of this study and rank-1 and rank-2
homogenized solutions based on the electric fields were then developed. In the
context of this work, we initially followed the works of Tian et al. (2012) which
related to small strain. These works were then applied to large strain using the
methods of lamination introduced by Gei et al. (2013). Four parameters have
been classified as ultimately leading to the microstructure optimisation of rank-2
laminates, namely the volume fraction of the soft phase in the core (CB

R1), the
volume fraction of the core in the composite (CR1), the lamination angle of the
rank-1 laminate (θR1) and the lamination angle of the rank-2 laminate (θR2).

For rank-1 laminates, the study commenced by comparing results obtained by
Tian et al. (2012) in small strain with those obtained using the homogenized so-
lutions in large strain when the ratios of shear and dielectric moduli of the phases
was equal to provide a contrast of 100. The contrast of 100 was selected as the
reference contrast for any initial optimisation presented in the study. The two
sets of results provided the foundation of significant enhancement of longitudi-
nal strain as well as non-linear effects present in large strain. The homogeneous
actuation in large strain was 6% greater than in small strain while a 12% im-
provement in λmax from the homogeneous actuation was obtained in large strain,
similar to results by Tian et al. (2012) in small strain. It was also evident for all
rank-1 laminates that there is a symmetry of approximately π/2, depending on
the boundary conditions applied. When shear strains were considered in a plane
strain environment, the value for λmax at optimum laminate configuration was
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lower than when shear strains were not considered for rank-1 laminates. This
was evident when comparisons between the two boundary-value problems were
made for rank-1 laminates. Considering the volume fraction of rank-1 laminates,
the distribution of CA

R1 and CB
R1 was equal (0.5) at all boundary conditions inves-

tigated when the shear and dielectric moduli were equal.

It was also evident that an increase in contrast led to an amplification in
the response of rank-1 laminates through various angles as well as for maximum
longitudinal stretch. This was attributed to the increase in contrast providing
a more efficient interaction of the electric field with the electromechanical cou-
pling effect. It was useful to note that in plane strain, while the no shear strain
considered boundary-value problem showed a curvilinear decrease in λmax with
increasing CB

R1, the boundary-value problem where shear strains were accounted
for presented a more rapid decrease in λmax. Also, the lamination angle corre-
sponding with λmax was not the same as the lamination angle corresponding to
ξmax at an applied nominal electric field of 100 MV/m for rank-1 laminates. It
was also presented that for rank-1 laminates in plane strain with no shear strain
considered, the absolute value of the phase electric field in the softer phase is
much higher than that for the stiffer phase such that the deformation of a rank-
1 laminate is dominated by the soft phase. The equal amounts of stiff and soft
phase, along with the lack of change of optimum lamination angle with increasing
contrast, also enforced this fact that the soft phase is dominant in the deforma-
tion of rank-1 laminates.

It was clear that when transitioning from boundary-value problems relating
to plane strain to those in a three dimensional boundary-value problem, there
was little change in the optimum θR1 and no change in optimum CB

R1. To con-
firm if the equal weighting of stiff to soft phases applies to all rank-1 laminates
regardless of contrast, it would be advisable to optimise rank-1 laminates with
ratios of shear to dielectric moduli opposite to those presented at the beginning
of chapter 6 in a manner analogous to section 6.2.2. It was also argued that for a
rank-1 laminate, the longitudinal stretch in a three dimensional boundary-value
problem i.e. λ1 can be used to approximate λ in a plane strain boundary-value
problem and vice versa. The rate of change in stretch with increasing applied
nominal electric field of λ1 was also found to be greater than the rate of change
in stretch of perpendicular stretch, λ2. For a three-dimensional boundary-value
problem that does not consider shear strain, an increase in contrast past 100 did
not seem to induce any further notable transverse stretch, i.e. λ3 in rank-1 lam-
inates. As also observed in the plane strain solution, there was a slight decrease
in the optimum lamination angle with increasing contrast.

When the applied nominal electric field was varied with shear strain con-
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sidered in a three dimensional environment, there was little difference in λmax
at increasing contrasts for rank-1 laminates. The influence of lamination angle
on λmax remained unassailable revealing the ferocity of performance-enhancing
influence of lamination angle on maximum longitudinal stretch in a rank-1 lam-
inate. Consideration of shear strains meant that the electromechanical coupling
phenomenon was greatly reduced when shear strains were considered. In terms of
the magnitude of shear stresses, it was also determined that they are very small
in a three-dimensional boundary-value problem where shear strains are consid-
ered. When transitioning from boundary-value problems without shear strain
considered to those with shear strain considered for rank-1 laminates, dampen-
ing of λ with varying θR1 was also observed. Rank-1 laminates, in the context
of microstructure optimisation, are crucial in providing a baseline enhancement
which will enable a better understanding of the severe non-linear nature of rank-2
laminates.

For rank-2 laminates, the initial optimisation at a contrast of 100 was car-
ried out for plane strain with shear strain considered. Comparison of Tian et al.
(2012) small strain results with those obtained in large strain led to a 20% im-
provement in λmax being obtained for optimum configurations in small strain
compared to those in large strain. The optimum configuration obtained by Tian
et al. (2012) in small strain, when solved in large strain, presented a 12% im-
provement in λ. When all contrasts were compared for optimum configurations
presented in large strain with those obtained in small strain by Tian et al. (2012)
for plane strain with shear strain considered, significant enhancement of λmax
was achieved, enforcing the non-linear nature of this study. It was also presented
that the rank-2 laminate configuration can be optimised for maximum amount
of shear as a method of understanding if high shear strains may affect phase
interface interactions, possibly leading to composite failure. The volume fraction
of the anisotropic phase was also found to present the greatest influence on shear
angle and λ.

When shear strains were not considered in plane strain for rank-2 laminates, a
lower λ was obtained compared to when shear strains were considered. However,
there was observed electromechanical instability at contrasts of 1000 and 10 000.
Microstructure perturbation in order to reduce the observable electromechanical
instability was presented for example configurations. It was also found that a
reduction in applied nominal electric field could be performed to achieve this
effect in addition. This then helped to enforce the fact that there exists a differ-
ent optimum configuration at each different value of operational applied nominal
electric field for rank-2 laminates. It was found that when θR1 was parallel to
θR2 when shear strains were not considered, λmax values were the same due to
the the fact that the rank-2 laminate configuration was in a manner similar to



CHAPTER 7. CONCLUSION 107

the rank-1 configuration. There was also no change in the volume fraction of the
soft phase in the core i.e. CB

R1 from that of the rank-1 laminate which further
confirmed the behaviour. Also for a laminate that was at very low contrasts at
which the dielectric and shear moduli were equal, there was little increase in λmax
for a rank-2 laminate as opposed to a rank-1 laminate for actuation purposes.

When the two plane strain boundary value problems were compared, namely
plane strain with shear strain considered and plane strain without shear strain
considered, it was found that the same configuration obtained when no shear
strains were considered presented a higher λ when shear strains were consid-
ered by 16% for a contrast of 1000. Also, for a configuration that presents non-
monotonic behaviour when shear strains are not considered, monotonic behaviour
can be obtained when shear strains are considered implying a vanishing in observ-
able electromechanical instability. Having determined optimum configurations,
the current configuration of a rank-2 laminate when applied electric field was
increased revealed that θR1 reflects greater change in current angle and again
electromechanical instability was reflected in the current state of the laminate.
The electric field of the soft homogeneous phase in the rank-2 laminate at a con-
trast of 100 reflected the greatest enhancement among all the phases of the factor
of 15 in terms of the absolute values. This enhancement was found to be of a
factor of 20 for a laminate whose shear and dielectric moduli were not equal for a
three-dimensional case with no shear strains considered. This was due to the fact
that the magnitude of the electric fields in the isotropic layers is proportional to
the applied electric field divided by their volume fraction. It was found that in
order to obtain a maximum electric field in any phase of 100 MV/m when the
ratios of shear and dielectric moduli were equal at a contrast of 100, the required
applied nominal electric field was found to be 6.95 MV/m.

In a three-dimensional environment, it was also found that λ1 can be used
to approximate λ in plane strain. It was again discovered, through lamination
angle perturbation, that θR1 is more dominant in λmax determination compared
to θR2. Electromechanical instabilities were also observed when shear strains
were not considered in a three-dimensional environment. All contrasts from 10
to 10 000 were also presented for example configurations which illustrated the
limit of strict monotonic behaviour. When shear strains were considered in a
three-dimensional environment, there was a reduction in λmax up to contrast of
1000 in comparison to the plane strain equivalent problem which was attributed
to the presence of the transverse stretch. An increase in contrast also resulted in
an increase in ξmax in agreement with plane strain results. It was conclusively de-
termined in this section that at higher contrasts, shear angles are unsuitably high
at λmax such that a trade-off needs to be established between λ and ξ when op-
timising the microstructure of rank-2 laminates. Lastly when three-dimensional
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boundary value problems were compared with each other, a 17% enhancement
of λ was obtained for the same configuration from tri-axial stretch with no shear
strain considered to tri-axial stretch with shear strain considered at a contrast of
1000. This confirmed enhancement of λ occurs in both plane strain and three-
dimensional boundary-value problems.

The influence of non-linear effects and microstructure sensitivity exposed in
chapters 4 and 5 should be re-iterated as the contrast optimisation executed in
chapter 6 represents only a very small region in the vastness of strategies available
for laminate optimisation. The number of combinations possible if one consid-
ers lamination angles, volume fractions, amount of applied nominal electric field,
direction of applied nominal electric field, method of lamination as well as con-
trast of laminating materials are possibly infinite. This should then be followed
up by consideration of the trade-off required between λ, ξ and electromechanical
instability. This study has thus provided exhaustive coverage of only a particular
combination of all these aforementioned variables and therefore there is no claim
here that this optimisation strategy is inviolable. If anything, this study demon-
strates the multitude of design approaches possible in finite strain with only a
slight undertone of electromechanical instabilities occurring in rank-2 laminated
composites when shear strains are not considered in plane strain and tri-axial
stretch. The investigation of the electromechanical instabilities and their classifi-
cation would represent a separate study altogether and is recommended as future
work. As a starting point, chapter 6 would be recommended as a foundation
for advancement in complexity of laminate microstructure optimisation for a tar-
geted performance for rank-2 or higher rank laminates.

As presented in sections 4.3.6 and 6.2.5, the amount of applied nominal elec-
tric field considered in this study has proven to be considerably high in terms
of absolute values of the phase electric fields actually experienced. A different
approach would be to reduce this applied nominal electric field in order to achieve
a specific target electric field in a specific phase of the laminate. However, this
approach is not as straightforward as the statement suggests as simply reduc-
ing the electric field may seem trivial in execution but in reality the boundary
conditions as well as the contrast also contribute to the non-linear effect. This
means that a new type of behaviour would possibly occur if too many parameters
are perturbed in comparison to this study. Also, reducing the applied nominal
electric field also has its limits as the nominal applied electric field should be
sufficiently high enough to justify optimising rank-1 and rank-2 laminates. This
is because at low applied nominal electric fields, there may be only very little
difference in λmax between rank-1 and rank-2 laminates as discussed in section
6.2.1 such that there would be no justification for optimising the microstructure
in such a case.
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The jump conditions presented in chapter 3 also contribute to electric field
enhancement through the method of lamination such that if this method is to
be altered it may present a significant influence on electric field enhancement in
the three phases through the jump conditions and the new homogenized solution
in terms of the electric field. The method of lamination can be thus considered
in future work in terms of considering three materials in the rank-2 laminate as
opposed to two, with an expectation that results obtained in such a study would
be vastly different to those experienced in this study. In the context of the ho-
mogenised solution, the electric displacement has been of little to no mention in
this study and this may be another aspect of future study. One can also imagine
that in reality, material shear and dielectric moduli would not be exactly of values
presented in this study therefore one could begin by selection of a set of different
contrasts representative of real world materials and then proceed to optimise the
laminates with the aid of chapter 6.

The Newton-Raphson method has presented some difficulty when applied
nominal electric field is used as the independent variable. It is well known that
this method depends on the initial estimation such that when electromechanical
instability is present in the form of non-monotonic behaviour, it is possible to
not obtain all true points on the desired electromechanical loading path. If one
considers the number of equations and parameters to be solved simultaneously
discussed in section 3.3.2, it means that each parameter requires an accurate
initial estimation, with the number of parameters increasing for the more com-
plex boundary-value problems. Therefore, it would be recommended to consider
an exploration of various numerical methods possible for providing accurate and
precise solutions on the corresponding electromechanical loading path. In section
4.3.2, it was also emphasised how the electromechanical loading path for contrasts
of 1000 and 10 000 produced curves only just within the range 0 ≤ ∆φ/H0 ≤ 100
MV/m. Thus for rank-2 laminate optimisation another method of applying the
Newton-Raphson method would be to utilise a two-step method of first deter-
mining the optimum configuration at the applied nominal electric field required,
and only then, having established the corresponding λmax, using this as a guide-
line for visualising the electromechanical loading path using λ as the independent
variable to ensure this path also lies within the selected range.

In the context of prioritising the parameters defined in this study, the lam-
ination angles of rank-1 and rank-2 laminates have been determined to provide
the greatest weighting of all the optimisation parameters as they present a pro-
found influence on the longitudinal stretch and electromechanical stability. Of
course, the combination of lamination angles and volume fractions for rank-2
laminates is ultimately what influences maximum longitudinal stretch but the
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main observation presented in this text is that the lamination angles provide a
more dominant influence on the maximum longitudinal stretch, amount of shear
and electromechanical stability of rank-2 laminates. Mention has also been made
of shear strains as they have been observed through a comparison of boundary-
value problems where shear strains are considered and when shear strains are not
considered.

Another possible future region of study would be to illuminate in more de-
tail the influence of ξmax optimisation on programming rank-2 laminates. Indeed
the shear angle has been found to increase with increasing contrast up to an
unfavourable extent which may not be suitable for laminate performance. How-
ever, if the contrast and amount of applied nominal electric field are modified one
may find a suitable region which would provide lower shear strains for a suitably
high maximum longitudinal stretch. Mention can be made to section 6.3.2 as
an example of such a case where shear modulus of the soft phase was low and
dielectric modulus of the soft phase high such that one may expect phase pres-
sures and shear stresses to be low. The high shear strains may even be found to
be influential on the electromechanical stability of laminates as well. For lami-
nates of equal shear and dielectric moduli, there has also proven to be a specific
contrast at which electromechanical instability is present such that if one desires
to determine the contrast at which this instability is triggered a further study
may be executed in this manner. However this could prove severely challenging
due to the non-linear nature of rank-2 laminates, as illustrated when laminates
composed of materials of unequal shear and dielectric moduli were investigated.

This study was limited to ratios of shear and dielectric moduli up to 10 000
and mention should be made that this limit was merely selected as initial results
were being compared to previous authors but the region of contrast investigation
is unrestricted. Although, there may be no use going past such a ratio of mod-
uli as this may not represent currently available real-world materials, which is
ultimately what one hopes this study would eventually achieve. It may not be
clear, also, if some of the rank-2 configurations obtained in this study relate to
a realistic type of microstructure. For example, a lamination angle in the rank-2
laminate of -1◦ may prove to be difficult to manufacture. However this study,
ultimately, has shown that for whichever parameter that cannot be greatly mod-
ified, one can optimise all other parameters for improved laminate performance.
One hopes that an advancement in areas such as 3D printing or more modern
methods could aid in solving this problem and over time may lead to a widespread
application of dielectric composite actuators.
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