
Co-evolving protein sites:
their identification using novel,

highly-parallel algorithms,
and their use in classifying

hazardous genetic mutations
A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Louise Knight

2017

Cardiff University
School of Computer Science &

Informatics

Declaration
This work has not previously been accepted in substance for any degree and
is not concurrently submitted in candidature for any degree.

Signed . (candidate)

Date .

Statement 1
This thesis is being submitted in partial fulfilment of the requirements for the
degree of PhD.

Signed . (candidate)

Date .

Statement 2
This thesis is the result of my own independent work/investigation, except
where otherwise stated. Other sources are acknowledged by explicit refer-
ences.

Signed . (candidate)

Date .

Statement 3
I hereby give consent for my thesis, if accepted, to be available for photo-
copying and for inter-library loan, and for the title and summary to be made
available to outside organisations.

Signed . (candidate)

Date .

1

Abstract

Algorithms for detecting molecular co-evolution have until now been ap-
plied only to individual protein families, but not to the human proteome.
Linked to this is the problem that performing the computations for identify-
ing co-evolving sites in the human proteome would take a prohibitively long
time using the serial algorithms already in use. In addition, co-evolving sites
have not been pursued as a possible way of classifying mutations according
to their likelihood to cause disease. The main contributions of this thesis
are as follows: identification of three suitable methods for detecting molecu-
lar co-evolution by comparing the performance of published state-of-the-art
methods on simulated data; implementation of these methods in the parallel
architecture CUDA, and evaluation of these methods’ performance in com-
parison to serial implementations of the same methods; and identification of
co-evolving sites across the entire human proteome, and analysis of these sites
according to what is already known about disease-causing mutations. Be-
yond demonstrating the effectiveness of CUDA for implementing molecular
co-evolution detection algorithms, we derive insights into techniques for effi-
cient implementation of algorithms in CUDA (particularly algorithms which
require tree-based structures, such as parametric methods), and our results
provide preliminary insights into the relationship between co-evolving sites
and mutation pathogenicity.

2

Acknowledgements

First I wish to thank my supervisors, Dr. Andrew Jones, Dr. Christine
Mumford, and Dr. Andrew Pocklington, for their invaluable advice and en-
couragement throughout my PhD, and also particularly towards the end, when
everything was coming together. I would like to express my gratitude for your
constructive feedback on the numerous drafts this thesis has gone through.
Again thank you for giving me this opportunity in the first place; it has been a
privilege to learn and to grow my knowledge and experience in this fascinat-
ing field.

There are many members of staff in the School of Computer Science &
Informatics that I have interacted with and who have helped me in various
ways over the years; thanks go to you all.

I must thank my fellow research students in the School, not just for the nu-
merous conversations about research, but also for providing a welcome dis-
traction when necessary. If I start naming all of you, I risk missing someone
out; there are truly too many of you to name.

I give thanks to my parents, John and Jean, for always encouraging me to go
as far as I can, not just in my PhD, but throughout my whole life. It is through
your constant support from the very beginning that I gained confidence in my
abilities, without which I would never have got this far; you have always been
my biggest cheerleaders. Thank you also for reminding me to take breaks
(and ensuring I actually take those breaks!). Really, there is more to thank
you for than I can actually write here; thank you.

Finally, thanks go to Ivan; although we unfortunately met when I had just
over 3 months to go until submission, you implicitly understood the impor-
tance of this work to me and gave me the time, space, and support to finish
everything up, for which I am very grateful.

i

Contents

List of Tables vii

List of Figures ix

1 Introduction 2
1.1 Overview . 2
1.2 Hypothesis . 4
1.3 Thesis contributions . 4
1.4 Thesis structure . 5
1.5 Summary . 6

2 Background 7
2.1 How proteins are made . 8
2.2 Mutations . 11

2.2.1 Gamma distribution to model mutation rate 11
2.2.2 Amino acid similarity matrices 12

2.3 Ancestry and phylogenetic trees 14
2.3.1 Phylogenetic trees 16
2.3.2 Homology . 17

2.4 Phylogeny representation and construction 17
2.4.1 Newick format . 17
2.4.2 ClustalW2 . 19

2.5 Ancestral sequence reconstruction 19
2.5.1 Fitch’s algorithm . 19
2.5.2 Maximum Likelihood 20

2.6 Multiple Sequence Alignments 21
2.6.1 FASTA . 22
2.6.2 PHYLIP . 23

2.7 Co-evolution . 24
2.7.1 Sources of randomness in correlation signal 26

2.8 Site conservation . 27
2.9 Parallel computing . 27
2.10 Complex brain disorders . 31

ii

2.11 Summary . 32

3 Literature Review 33
3.1 Non-parametric methods . 34

3.1.1 Mutual Information (MI) 34
3.1.2 Observed Minus Expected Squared (OMES) 37
3.1.3 Perturbation-based algorithms 38
3.1.4 McBASC . 39
3.1.5 PSICOV and DCA 40
3.1.6 Sequence divergence-based approximation 41

3.2 Parametric methods . 42
3.2.1 Maximum Likelihood Approximation 42
3.2.2 Tracking changes on branches 44
3.2.3 Bayesian Mutational Mapping 46

3.3 Discussion of methods for detecting molecular co-evolution . 47
3.3.1 Alphabet choice . 47
3.3.2 Parallelisation potential 48
3.3.3 Method comparison 48
3.3.4 Methods summary 52
3.3.5 Recommendations 55

3.4 Methods for removing background noise 57
3.4.1 Alignment curation 58
3.4.2 Correcting the null hypothesis/test statistic to account

for phylogeny . 58
3.4.3 Chosen method of background removal 59

3.5 Summary . 61

4 Data Collection 63
4.1 Databases . 63

4.1.1 Ensembl . 64
4.1.2 HomoloGene . 65
4.1.3 UCSC Genome Bioinformatics 65
4.1.4 Choice . 66

4.2 Data collection methodology 67
4.2.1 Alignment . 68
4.2.2 Data collected . 71

4.3 Summary . 71

5 Simulation 72
5.1 Simulation program . 72
5.2 Simulation parameters . 74

iii

5.2.1 Evolution model . 74
5.2.2 Alignment dimensions 74
5.2.3 Branch scale . 76
5.2.4 Gamma scale parameter 78
5.2.5 Co-evolving clusters 79
5.2.6 Amino acid frequencies 80

5.3 Iterations . 80
5.4 Summary . 81

6 Comparison of Serial Methods 82
6.1 Results-gathering approach 82
6.2 Choosing a Z-score type . 85
6.3 Analysing results per UAA threshold 87
6.4 Choosing a “lower” and a “higher” unique amino acid threshold 91
6.5 Choosing Z-score thresholds 92
6.6 Results by number of sequences 93

6.6.1 “Lower” threshold 94
6.6.2 “Higher” threshold 95

6.7 Results by alignment length 96
6.7.1 “Lower” threshold 96
6.7.2 “Higher” threshold 98

6.8 Results by rate variation parameter 99
6.8.1 “Lower” threshold 99
6.8.2 “Higher” threshold 100

6.9 Results by percentage of sites co-evolving 102
6.9.1 “Lower” threshold 103
6.9.2 “Higher” threshold 103

6.10 Combining methods . 104
6.11 Summary . 105

7 Parallelisation of Methods using CUDA 107
7.1 Approach taken to parallelisation 107

7.1.1 PlotCorr . 110
7.1.2 Waddell parametric methods 118

7.2 Full-program method times 122
7.2.1 Experimental set-up 122
7.2.2 Approach taken to timing 122
7.2.3 Timing results . 123

7.3 Cost/benefit analysis . 131
7.3.1 CPU-only system . 131
7.3.2 Raven . 131

iv

7.3.3 GeForce GTX 660 Ti 131
7.3.4 GeForce GTX Titan X 132
7.3.5 Larger alignments 132

7.4 Summary . 133

8 Application of Methods to Real Data 134
8.1 Alternative methods for classifying mutations 134

8.1.1 SIFT . 134
8.1.2 PolyPhen . 136

8.2 Real data analysis . 137
8.2.1 Amino acid frequencies 138
8.2.2 Introduction to the data 144
8.2.3 Data analysis introduction 145

8.3 Summary . 154

9 Conclusions 156
9.1 A suitable method for detecting molecular co-evolution 156
9.2 A tree representation suitable for single-pass CUDA algorithms157
9.3 Parallelisation of co-evolution detection methods 157
9.4 General guidelines for porting algorithms to CUDA 158

9.4.1 PlotCorr . 158
9.4.2 Parametric methods 158

9.5 Proteome-wide identification of potential co-evolving sites . . 159
9.6 Hypothesis . 160
9.7 Limitations . 161
9.8 Future work . 162

9.8.1 CUDA implementation decisions 162
9.8.2 Parallelising tree-based methods further 162
9.8.3 PlotCorr algorithm design improvements 163
9.8.4 Timing results . 163
9.8.5 Different biological applications 164
9.8.6 Extensions . 164
9.8.7 Different datasets . 164

9.9 Summary . 164

10 Bibliography 165

Appendices 188
A.1 Examples of using Z-score approaches 188

A.1.1 Shuffle . 188
A.1.2 Original values . 190

A.2 Co-evolving cluster choices 192

v

A.3 Statistical test choice for comparison of Z-score types 196
A.4 Which UAA threshold does each co-evolution detection method

perform best for? . 203
A.4.1 CAPS . 203
A.4.2 PlotCorr . 204
A.4.3 MI . 204
A.4.4 Waddell – Kappa . 205
A.4.5 Waddell – MI . 206

A.5 Choosing a “lower” UAA threshold 207
A.6 Results by number of sequences p-values 209

A.6.1 Comparing co-evolution detection methods 209
A.6.2 Comparing numbers of sequences 217

A.7 Results by alignment length p-values 223
A.7.1 Comparing co-evolution detection methods 223
A.7.2 Comparing alignment lengths 232

A.8 Results by rate variation parameter p-values 238
A.8.1 Comparing co-evolution detection methods 238
A.8.2 Comparing rate variation parameter values 247

A.9 Results by percentage of sites co-evolving p-values 253
A.9.1 Comparing co-evolution detection methods 253
A.9.2 Comparing percentages of sites co-evolving 271

A.10 Combining multiple co-evolution detection methods 292
A.11 Amino acid bias . 294

vi

List of Tables

3.1 The different methods for co-evolution detection. 55

6.1 p-values for the Wilcoxon sign-ranks test (the “Wilcoxon”
column) and the sign test (the “Sign” column) for compar-
isons between the sensitivities, specificities, and precisions,
comparing the results from the two Z-score types. We used
alternative=‘greater’, showing that we believe that the origi-
nal values Z-score type would outperform the shuffle Z-score
type. The Wilcoxon sign-ranks test was repeated for sensi-
tivities with alternative=“less”, and obtained the p-value of
2.2e-16. The sign test was repeated for precisions with al-
ternative=‘less’, and obtained the p-value of 0.1954. Further
explanation is given in the main text.

. 86
6.2 Average sensitivities, specificities, and precisions for the two

Z-score types. 86
6.3 The mean sensitivity and specificity values for the best Z-

score chosen for each method, for unique amino acid thresh-
old 2. 92

6.4 The mean sensitivity and specificity values for the best Z-
score chosen for each method, for unique amino acid thresh-
old 4. 92

6.5 Overall results for the combinations of different methods. . . . 105

7.1 Time spent on computation for each version of PlotCorr. Times
were calculated by summing all the time spent on functions. . 118

7.2 The number of “average-sized” jobs that could be run in a
28-day month, and the cost of doing so, for several hardware
options. We could not find a cost for the CPU used. 132

8.1 Correlations between the maximum Z-scores of each of the
co-evolution detection methods and the SIFT and PolyPhen
scores. 147

vii

1 The mean, median, and mode for each of the three groups of
differences (between original values Z-score results and shuf-
fle Z-score results). 202

2 The mean sensitivity, specificity, and precision values for CAPS
and PlotCorr, for unique amino acid threshold 2. 207

3 The mean sensitivity, specificity, and precision values for CAPS
and PlotCorr, for unique amino acid threshold 3. 207

viii

List of Figures

1.1 The steps involved in the completion of this thesis. Each step
is linked to the relevant chapter in the main body of the text. . 5

2.1 The structure of a DNA double helix. Image is in the Public
Domain [7]. 8

2.2 A table showing how every group of three RNA nucleotides
maps to an amino acid. “Stop” indicates a stop codon, which
signals that we should stop translation here. 9

2.3 The only difference between a DNA sequence and the corre-
sponding RNA sequence is the changing of T’s to U’s. Every
group of three RNA bases is used to make one amino acid. . . 9

2.4 Graphical representation of an α-helix. Image is in the Public
Domain [13]. 10

2.5 Graphical representation of a β-sheet. Image is in the Public
Domain [200]. 10

2.6 The probability density function of the Gamma distribution,
showing the distribution for different values of k and θ. Fig-
ure obtained from [11] (available under Creative Commons
license; see citation for details). 12

2.7 A tree showing how an array of species are related through
evolution. Image is available under the GNU Free Documen-
tation License [90]. 15

2.8 An example of a phylogenetic tree. 16
2.9 An example tree, represented by ((A : 2.5, B : 0.5) : D :

1.0, C : 2.5); in Newick format, created using the web appli-
cation Phylodendron [72]. 18

2.10 An example of how co-evolution may occur – see the main
text for explanation. 20

2.11 A toy MSA, where each of the characters is a nucleotide, ac-
cording to the alphabet mentioned previously. 21

ix

2.12 According to column 1 in Figure 2.11, a tree showing how the
characters at the leaf nodes (from that column of the align-
ment) may have evolved from a common ancestral character.
The lines pointing to different branches symbolise where a
mutation occurred. 22

2.13 An example of how a grid is divided into blocks, and blocks
into threads. The entire rectangle is the grid, and each large
square (number with large font and alternately shaded and un-
shaded) is a block. There are 10 blocks, numbered 0–9, and
these are arranged such that CUDA’s gridDim.x variable is
equal to 5 (the number of blocks in the x dimension), and the
gridDim.y is equal to 2 (the number of blocks in the y di-
mension). Each block has 4 threads such that blockDim.x
and blockDim.y both equal 2. 29

3.1 How perturbation-based algorithms generally work. (a) The
two columns of the MSA we are focusing on. (b) Setting
the constraint that the amino acid in the first column must be
an ‘A’, this is the resulting alignment that we would use for
calculations on this column pair. 38

4.1 This chapter covers the real data collection from the database
HomoloGene, and alignment of these sequences. 64

5.1 This chapter covers the derivation of simulation parameters
from a combination of information from the real data col-
lected in the previous chapter, and information from the lit-
erature, as well as the simulation process itself (shaded boxes). 73

5.2 A histogram showing the frequency of different “real data”
alignment lengths in terms of number of amino acids. Bin
size is 100. 75

5.3 A histogram showing the frequency of different “real data”
cluster sizes (i.e. number of sequences in the alignment). Bin
sizes are unique, so this is not technically a histogram, but this
was the easiest way to show the various sizes. 75

5.4 An example showing how a Percentage Identity Matrix (PIM)
can be constructed from an alignment. For example, the value
in the third cell in the first row is 0.33 because the sequences
in rows 0 and 2 have two characters identical (at positions 1
and 5) (2/6 = 1/3 = 0.33). 77

x

5.5 The probability density function of the Gamma distribution,
showing the distribution for different values of k (α) and θ

(β); see Section 2.2.1 for more details. Figure obtained from
[11] (available under Creative Commons license; see citation
for details). 79

6.1 This chapter covers the comparison of the co-evolution detec-
tion methods on simulated data (shaded box). 83

6.2 The process of analysis this chapter uses. 85
6.3 An alignment with two co-evolving groups (each with two

sites) highlighted in different colours. (The characters within
this toy alignment are quite random simply to illustrate the
different unique amino acid thresholds without showing too
many sequences.) . 87

6.4 Mean sensitivities and specificities for the original values Z-
score, for unique amino acid threshold 2. Different methods
are indicated by the differently shaped symbols, and differ-
ent Z-score thresholds are indicated by the different symbol
colours, as indicated in the legend. 88

6.5 Mean sensitivities and specificities for the original values Z-
score, for unique amino acid threshold 3. Different methods
are indicated by the differently shaped symbols, and differ-
ent Z-score thresholds are indicated by the different symbol
colours, as indicated in the legend. 89

6.6 Mean sensitivities and specificities for the original values Z-
score, for unique amino acid threshold 4. Different methods
are indicated by the differently shaped symbols, and differ-
ent Z-score thresholds are indicated by the different symbol
colours, as indicated in the legend. 89

6.7 Mean sensitivities and specificities for the original values Z-
score, for unique amino acid threshold 5. Different methods
are indicated by the differently shaped symbols, and differ-
ent Z-score thresholds are indicated by the different symbol
colours, as indicated in the legend. 90

6.8 Mean sensitivities and specificities for unique amino acid thresh-
old 2 (with Z-score type fixed to original values Z-score, and
each method’s Z-score threshold fixed as detailed in the text).
Results are broken down by number of sequences in the align-
ment. 94

xi

6.9 Results for unique amino acid threshold 4 (with Z-score type
fixed to original values Z-score, and each method’s Z-score
threshold fixed as detailed in the text). Results are broken
down by number of sequences in the alignment. 95

6.10 Results for unique amino acid threshold 2 (with Z-score type
fixed to original values Z-score, and each method’s Z-score
threshold fixed as detailed in the text). Results are broken
down by alignment length. 97

6.11 Results for unique amino acid threshold 4 (with Z-score type
fixed to original values Z-score, and each method’s Z-score
threshold fixed as detailed in the text). Results are broken
down by alignment length. 98

6.12 Results for unique amino acid threshold 2 (with Z-score type
fixed to original values Z-score, and each method’s Z-score
threshold fixed as detailed in the text). Results are broken
down by rate variation parameter. 99

6.13 Results for unique amino acid threshold 4 (with Z-score type
fixed to original values Z-score, and each method’s Z-score
threshold fixed as detailed in the text). Results are broken
down by rate variation parameter. 101

6.14 Histogram showing the percentages of sites co-evolving for
simulated data with unique amino acid threshold 2. 102

6.15 Histogram showing the percentages of sites co-evolving for
simulated data with unique amino acid threshold 4. 102

7.1 This chapter covers the parallelisation of the co-evolution de-
tection methods chosen in the previous chapter (shaded box). . 108

7.2 The functions involved in the PlotCorr method. 110
7.3 NSIGHT profiler information for Version 1 of the PlotCorr

code. 112
7.4 NSIGHT profiler information for Version 2 of the PlotCorr

code. 113
7.5 NSIGHT profiler information for Version 3 of the PlotCorr

code. 116
7.6 NSIGHT profiler information for Version 4 of the PlotCorr

code. 117
7.7 NSIGHT profiler information for Version 5 of the PlotCorr

code. 117
7.8 The functions involved in the Waddell – Kappa method. 118
7.9 The functions involved in the Waddell – MI method. 119
7.10 NSIGHT profiler information for the Waddell – Kappa code. . 121

xii

7.11 NSIGHT profiler information for the Waddell – MI code. . . . 121
7.12 PlotCorr whole-program times; each point is an individual

run; the alignment length is varied while the number of se-
quences is kept constant. 124

7.13 PlotCorr whole-program times; each point is an individual
run; the number of sequences is varied while the alignment
length is kept constant. 125

7.14 PlotCorr whole-program times; each point is an individual
run; the number of sequences is varied while the alignment
length is kept constant. These timings are for an increased
alignment length of 574. 125

7.15 Waddell – Kappa whole-program times; each point is an in-
dividual run; the alignment length is varied while the number
of sequences is kept constant. 126

7.16 Waddell – Kappa whole-program times; each point is an indi-
vidual run; the number of sequences is varied while the align-
ment length is kept constant. 128

7.17 Waddell – Kappa whole-program times; each point is an indi-
vidual run; the number of sequences is varied while the align-
ment length is kept constant. The base alignment length is
increased to 8792. 128

7.18 Waddell – MI whole-program times; each point is an individ-
ual run; the alignment length is varied while the number of
sequences is kept constant. 129

7.19 Waddell – MI whole-program times; each point is an individ-
ual run; the number of sequences is varied while the align-
ment length is kept constant. 130

7.20 Waddell – MI whole-program times; each point is an individ-
ual run; the number of sequences is varied while the align-
ment length is kept constant. The base alignment length is
increased to 8792. 130

8.1 This chapter covers analysis of the real data alignments us-
ing the parallel methods implemented in the previous chapter
(shaded box). 135

xiii

8.2 The frequencies (y axis) of the 20 amino acids (x axis) are
different between the co-evolving sites identified by PlotCorr
with a low unique amino acid threshold and all sites. Con-
served sites are not considered. The frequencies in all sites
are given by red bars, and then the frequencies in co-evolving
sites identified by PlotCorr with lower UAA threshold are
overlaid in green bars. This means that the dark green por-
tions are where the bars overlap, and the colour at the top of
the bars tells us which has the higher frequency. 139

8.3 The frequencies (y axis) of the 20 amino acids (x axis) are
different between the co-evolving sites identified by Waddell
– Kappa with a low unique amino acid threshold and all sites.
The rest of the description is the same as for Figure 8.2. 140

8.4 The frequencies (y axis) of the 20 amino acids (x axis) are
different between the co-evolving sites identified by Waddell
– MI with a low unique amino acid threshold and all sites.
The rest of the description is the same as for Figure 8.2. 140

8.5 The frequencies (y axis) of the 20 amino acids (x axis) are
different between the co-evolving sites identified by PlotCorr
with a high unique amino acid threshold and all sites. Con-
served sites are not considered. The frequencies in all sites
are given by red bars, and then the frequencies in co-evolving
sites identified by PlotCorr with higher UAA threshold are
overlaid in green bars. This means that the dark green por-
tions are where the bars overlap, and the colour at the top of
the bars tells us which has the higher frequency. 141

8.6 The frequencies (y axis) of the 20 amino acids (x axis) are
different between the co-evolving sites identified by Waddell
– Kappa with a high unique amino acid threshold and all sites.
The rest of the description is the same as for Figure 8.5. 142

8.7 The frequencies (y axis) of the 20 amino acids (x axis) are
different between the co-evolving sites identified by Waddell
– MI with a high unique amino acid threshold and all sites.
The rest of the description is the same as for Figure 8.5. 142

8.8 The frequencies (y axis) of the 20 amino acids (x axis) are
different between the conserved sites and all sites. The fre-
quencies in all sites are given by red bars, and then the fre-
quencies in conserved sites are overlaid in green bars. This
means that the dark green portions are where the bars over-
lap, and the colour at the top of the bars tells us which has the
higher frequency. 143

xiv

1 An example alignment. 188
2 The alignment shown in Figure 1, with each column shuffled

in place. 189
3 The alignment shown in Figure 2, with each column shuffled

in place. 189
4 Histogram of all sensitivities results. This distribution is clearly

not Normal. 196
5 Histogram of all specificities results. This distribution is clearly

not Normal. 197
6 Histogram of all precisions results. This distribution is clearly

not Normal. 198
7 Histogram of (original values Z-score sensitivities) - (shuffle

Z-score sensitivities) for all results. 199
8 Histogram of (original values Z-score specificities) - (shuffle

Z-score specificities) for all results. 200
9 Histogram of (original values Z-score precisions) - (shuffle

Z-score precisions) for all results. 201

xv

Acronyms

ALF Artificial Life Framework.

ANOVA Analysis Of Variance.

APC Average Product Correction.

APOD Assess, Parallelise, Optimise, Deploy.

ARCCA Advanced Research Computing at Cardiff.

BLAST Basic Local Alignment Search Tool.

BLOSUM Blocks Substitution Matrix.

BMM Bayesian Mutational Mapping.

CAPS Co-evolution Analysis using Protein Sequences.

CASP Critical Assessment of protein Structure Prediction.

CASS Course-grained Artificial Sequence Simulator.

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

DCA Direct-Coupling Analysis.

DI Direct Information.

DNA Deoxyribonucleic Acid.

ELSC Explicit Likelihood of Subset Co-variation.

EMBL European Molecular Biology Laboratory.

FASTA Fast-All.

GERP Genomic Evolutionary Rate Profiling.

xvi

GNU GNU’s Not Unix.

GPGPU General Purpose Graphics Processing Unit.

GPU Graphics Processing Unit.

JTT Jones-Taylor-Thornton.

McBASC McLachlan-Based Substitution Correlation.

MI Mutual Information.

ML Maximum Likelihood.

MLA Maximum Likelihood Approximation.

MSA Multiple Sequence Alignment.

MTREV Mitochondrial Reversible.

NCBI National Center for Biotechnology Information.

OMES Observed Minus Expected Squared.

PAM Point Accepted Mutation.

PHYLIP Phylogeny Inference Package.

PIM Percentage Identity Matrix.

PSIC Position-Specific Independent Counts.

PSICOV Protein Sparse Inverse Co-variance.

RNA Ribonucleic Acid.

SCA Statistical Coupling Analysis.

SIFT Sorting Intolerant From Tolerant.

SIMD Single Instruction Multiple Data.

SNP Single Nucleotide Polymorphism.

SPRT Swiss-Prot TrEMBL.

TCS Transitive Consistency Score.

TrEMBL Translation of EMBL nucleotide sequence database.

xvii

UAA Unique Amino Acids.

UCSC University of California, Santa Cruz.

UPGMA Unweighted Pair-Group Method with Arithmetic mean.

XML Extensible Markup Language.

1

Chapter 1

Introduction

Proteins are the building blocks of the body, coded for by genes. Changes
to genes (called mutations) can change the corresponding protein produced,
which could be associated with disease. There are several approaches to find-
ing mutations which could be associated with disease; one which has not
largely been pursued until this point is the idea of molecular co-evolution,
which is where these mutations are fixed at different positions within a pro-
tein, seemingly simultaneously. There has not been, at time of writing, a
method for detecting co-evolving sites which can be run in a feasible amount
of time on all human proteins, while also being a well-performing algorithm
from a biological point of view. This thesis shows that the programming lan-
guage CUDA in combination with NVIDIA graphics cards can be used to
perform this once-impossible task.

In this chapter we outline the background and hypothesis to the problem
we are working on, to be given in more detail in the next chapter. We then
introduce the thesis contributions, and the structure for the rest of this thesis.

1.1 Overview

DNA (Deoxyribonucleic Acid) is used to make RNA (Ribonucleic Acid)
in the process of transcription (more detail on this process is given in Chapter
2). Proteins are then made from RNA. Proteins have many uses in the body,
such as being messengers, antibodies, etc. In addition, the body itself is made
substantially from protein. Changes to the DNA for coding a particular pro-
tein can cause changes to the protein itself, such as altering its structure or
function. DNA, RNA, and protein sequences can all be represented as strings
of characters.

2

A Multiple Sequence Alignment (MSA) is the result of taking multiple pro-
tein sequences which are related (i.e. from related species) and aligning them
in such a way that we can see the similarities between them. When we look at
an alignment, we can sometimes observe patterns where, at the rows where a
particular amino acid (protein character) X appears at one column in the align-
ment, another amino acid Y (here we are using X and Y as place-holders)
appears in another column (within the same row/sequence). (At other rows
we could have cases where, whenever another amino acid A appears in the
first column, an amino acid B appears in the second.) When this happens for
a lot of rows within the alignment, it is called covariation. It is theorised that
covariation is caused by molecular co-evolution, which can be defined as ‘the
direct physical effect of one sequence position on the other’ [177, pp. 341].
Because of this, we can use multiple sequence alignments to find co-evolving
positions. Molecular co-evolution can occur in such a way that it allows the
evolution of new structures and functions within a particular protein, or to fix
“errors” which occur.

It is believed that co-evolving sites are important to a protein’s function and
structure because of the actual process behind co-evolution. Pairs, or groups,
of positions appear to evolve together, such that a change at one site can be
compensated for by one or more changes at other sites. If the initial change
did not alter the structure or function of the protein, then it would not need
to be “corrected” in such a way. If a site is important (regardless of whether
it is co-evolving with any other site or not), then changes at that site may
cause the protein’s function or structure to change, and it is this that can be
associated with disease. These changes are called mutations. There are plenty
of methods for predicting the possible pathogenicity1 of mutations in humans,
such as SIFT and PolyPhen (more detail on these appears in Chapter 8), but
these have not really focused on the concept of molecular co-evolution, or
amino acid covariation.

There have been several reviews of various methods for detecting molec-
ular co-evolution (and countless more papers introducing new methods), but
none of these have been applied, at the time of writing, to the entire human
proteome. We believe this is due, at least in part, to the fact that the algo-
rithms that have been developed for detecting molecular co-evolution thus
far are (relatively) slow. Here we take the problem and apply high perfor-
mance computing (HPC) to it. NVIDIA brand graphics cards are a relatively
inexpensive way of utilising the massive amounts of computing power now
available to us.

1If something is pathogenic, it causes disease.

3

The kind of parallelisation used in NVIDIA cards allows one to perform
the same computer instruction on lots of data at once; this means we could
search for co-evolving sites across a larger data set quicker than has been
done before. CUDA is the programming language used to manipulate data on
NVIDIA graphics cards. At the time of writing, only one paper has been iden-
tified [191] which uses graphics cards to identify co-evolving sites in a small
data set. Due to CUDA’s specific architecture, only certain kinds of problems
can be effectively mapped to CUDA. These are problems where the same set
of instructions is performed on large data sets, which means that work needs
to be done to map a sequential algorithm to the CUDA architecture. These are
all considerations that will be taken into account when choosing the method(s)
to implement using CUDA.

1.2 Hypothesis

It cannot be ignored that this thesis is inherently multi-disciplinary, with the
disciplines in question being Computer Science and Medicine. Due to this,
we have a two-part hypothesis:

Part 1: Until this point, it has not been possible to find co-evolving sites
in the entire human proteome in a feasible amount of time. We propose that
translating a method for detecting co-evolving sites onto the CUDA architec-
ture can allow us to solve this problem effectively. Part 2: Applying such a
method to the human proteome shall allow us to test the hypothesis: mea-
sures of co-evolution can be used to identify functionally important sites that
by their very nature cannot be found by looking at evolutionary conservation.

1.3 Thesis contributions

The contributions expected to be made through this thesis are:

• identification of a method (or a set of methods) for detecting molecular
co-evolution which is suitable for use on the human proteome

• identification of a novel method for allowing tree-based data structures
to be mapped to the CUDA architecture – this particular method is use-
ful for when the tree only needs to be parsed (read) once

• improved runtime performance of the chosen method(s) which allows
us to look at larger data sets than has been done before, in a “reason-
able” amount of time

4

Figure 1.1: The steps involved in the completion of this thesis. Each step is
linked to the relevant chapter in the main body of the text.

• make recommendations for how methods similar to those implemented
in this thesis may be parallelised

• identification of co-evolving sites across the entire human proteome,
and analysis of these sites according to what is already known about
disease-causing mutations

These expected contributions draw from the hypothesis set out above, and
have been designed in such a way that they allow us to test our hypothesis.
In Chapter 9, we shall iterate through these contributions and show how they
were fulfilled.

1.4 Thesis structure

Figure 1.1 shows the experimental approach used in this thesis. Within
each chapter, we shall show which boxes of the diagram are applicable. Now
we shall describe the contents of the rest of the chapters in this thesis and link
these to Figure 1.1:

• Chapter 2 introduces background knowledge essential to understanding
the rest of this thesis, in particular biological knowledge and an intro-
duction to parallel computing.

5

• Chapter 3 talks through the methods which already exist for detect-
ing molecular co-evolution, and compares them, detailing the choice of
methods for comparison.

• Chapter 4 details the data collection methodology used for collecting
real data (“Real data collection”) and for constructing alignments from
these sequences (“Sequence alignment”). The “real data” comprises
those alignments of proteins from the human proteome with sequences
from other, related, species, such that we can see the similarities be-
tween the proteins across the species. This data set is used later on in
the thesis to find co-evolving sites in the human proteome.

• Chapter 5 describes how parameters were taken from the real data col-
lected in the previous chapter and also from reading the literature (“De-
rive simulation parameters”), and these parameters are then used to sim-
ulate data sets (“Simulation”). The simulated data is used to compare a
set of co-evolution detection methods according to their performance in
Chapter 6. The reason why simulated data is used for this purpose rather
than real data is so that we can control a lot of the parameters that may
affect the performance of the methods being compared. In addition, we
shall know the “ground truth” concerning where the co-evolving sites
are. Simulation parameters are defined so that the simulated data is as
close as possible to the real data.

• Chapter 6 compares the methods chosen in Chapter 3 by their perfor-
mance on the simulated data (“Simulated data results”).

• The results of the previous chapter are used to pick methods for paral-
lelisation in Chapter 7 (“Parallel implementations”).

• Chapter 8 looks at the results of running the parallelised methods on the
real data set collected earlier (“Real data analysis”).

• Chapter 9 concludes the thesis, linking the thesis contributions to the
relevant chapters, and discusses this work’s limitations and future work.

1.5 Summary

In this chapter we introduced briefly the problem and hypothesis approached
in this thesis, as well as the thesis contributions and structure. In the next
chapter we shall give more detailed background information to the problem.

6

Chapter 2

Background

This chapter presents essential background information concerning con-
cepts used in the rest of the thesis. First we explain how proteins are made
from DNA and RNA, and how changes to DNA can cause changes to the cor-
responding protein, which may cause disease. After discussing how variation
in mutation rates among sites can be modelled and how some mutations can
be more “acceptable” than others, we introduce the concept of species, and of
phylogenetic trees, which attempt to explain how different species are related.
Phylogenetic trees are used directly in some co-evolution detection methods
(parametric methods), so we need a standard format for representing them so
that they can be read into a computer program (e.g. Newick format); we also
need to be able to construct phylogenetic trees from a set of sequences. Para-
metric co-evolution detection methods also require the ancestral sequences
(those protein sequences of the ancestors to the species that are alive today),
so we describe methods for reconstruction of ancestral sequences. All co-
evolution detection methods (parametric and non-parametric) use multiple se-
quence alignments (MSAs) as input, so these are defined, along with examples
of common alignment formats (e.g. FASTA (Fast-All), PHYLIP (Phylogeny
Inference Package)). Co-evolution itself is defined (methods for detecting
this in data are covered in the next chapter), along with another measure used
to find “important” positions within proteins, conservation. Parallel comput-
ing is then broadly described, along with the specific architecture that will be
used in this thesis, CUDA. The results of running the parallel co-evolution
detection methods on the human proteome shall be used to test hypotheses
concerning complex brain disorders, so in this chapter we finish with a brief
overview of the genetics of complex brain disorders.

7

Figure 2.1: The structure of a DNA double helix. Image is in the Public
Domain [7].

2.1 How proteins are made

This section describes the process by which proteins are produced. Pro-
teins have many important roles in the human body; they act as messengers,
antibodies, building blocks of the body itself, etc. The reader is referred to
[203] for more detail.

First we describe what DNA, RNA, and proteins are, and how they are
formed. We then describe the different levels of structure of a protein, and
how changes to a DNA sequence can cause disease.

DNA (Deoxyribonucleic Acid) can be thought of as a string of characters,
the allowed alphabet being the set {A,C,G, T} (A = Adenine, C = Cytosine,
G = Guanine, T = Thymine). DNA is used to make RNA (Ribonucleic Acid)
in the process of transcription. RNA can also be thought of as a string of char-
acters, where each T in DNA is replaced by a U (Uracil) during transcription.
The units used to make DNA (or RNA) are called nucleotides, and each has
different biological properties.

DNA molecules have a double helix structure (see Figure 2.1). They are
made up of two strands of DNA, which in this thesis we choose to call the
sense and antisense strand (other sources use the terms “coding” and “anti-
coding” but these can be confusing). The sense strand tells us what the result-
ing RNA molecule will look like after transcription (replacing Ts with Us).
The antisense strand is the one used in transcription. If the character in the

8

Figure 2.2: A table showing how every group of three RNA nucleotides maps
to an amino acid. “Stop” indicates a stop codon, which signals that we should
stop translation here.

sense strand is an A, the corresponding character in the antisense strand is a T
(and vice versa). C and G are also paired in this way. These complementary
base pairs are held together using hydrogen bonds.

Every group of three characters in the RNA string (called a codon) is trans-
lated to one amino acid, as seen in Figure 2.2. See Figure 2.3 for an example
of how DNA is used to make RNA, and how RNA is then used to make pro-
teins. The allowed alphabet of amino acids is the set {A, C, D, E, F , G,
H , I , K, L, M , N , P , Q, R, S, T , V , W , Y } (A = Alanine, C = Cysteine,
D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H

Figure 2.3: The only difference between a DNA sequence and the correspond-
ing RNA sequence is the changing of T’s to U’s. Every group of three RNA
bases is used to make one amino acid.

9

Figure 2.4: Graphical representation of an α-helix. Image is in the Public
Domain [13].

Figure 2.5: Graphical representation of a β-sheet. Image is in the Public
Domain [200].

= Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N
= Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T =
Threonine, V = Valine, W = Tryptophan, Y = Tyrosine). Each amino acid has
different biological properties.

Looking at the bigger picture, a genome can be thought of as the collection
of “instructions” to make a species (species are defined more thoroughly in
Section 2.3, but it is sufficient to say for now that humans, domestic cats, and
domestic dogs are examples of species). The gene is the unit of information in
a genome, and is made of DNA. A gene is made up not only of protein-coding

regions (those parts which code for a protein), but also non-coding regions,
which do not code for a protein, but have other uses, for example flagging
whether the gene’s sequence is going to be transcribed or not [21].

Proteins have different “levels” of structure. The string of amino acids is the
primary structure of a protein. This “string” will fold into a three-dimensional
structure (the tertiary structure). The tertiary structure is made up of smaller
subunits, called secondary structures. Although the tertiary (3D) structure
of a protein will inevitably differ between proteins, the secondary structures
that make up a protein can be found in many different proteins [203]. Two
of the main kinds of secondary structures are α-helices (Figure 2.4) and β-
sheets (Figure 2.5). The sequence of amino acids which make up a protein
influences that protein’s structure and function.

10

2.2 Mutations

Now that we know what happens in the construction of proteins when
things go right, we must consider what happens when things go wrong. A
mutation is a change to a base within a DNA sequence. Mutations in the DNA
sequence can cause changes to the corresponding amino acid sequence, due to
the fact that the amino acid sequence depends on the DNA sequence. Because
each amino acid has differing physicochemical properties, such changes could
change the protein’s structure or function, and because proteins have many
important roles in the body, these changes could be associated with disease.
For example, say we had a protein that gained a mutation, which caused the
corresponding amino acid to change from being one that is “large” (by some
definition) to one that is “small”. Because the amino acids in a protein affect
how that protein folds into its three-dimensional structure (and the way the
protein folds directly affects its function), this mutation could cause a change
in the structure of the corresponding protein, either making the folded protein
unstable, or changing or otherwise damaging that protein’s intended function.
Such a change could cause disease. On the other hand, mutations can actually
be beneficial; they could increase resistance to some hazard, for example. In
addition, it all depends on the perspective from which a mutation’s effect is
viewed – a bacterium that gained a mutation and hence became more resistant
to antibiotics is great for the bacterium, but bad for humans. Although we
take into account that indeed mutations could positively impact an organism,
in this thesis, we are concerned with those mutations which can cause disease
in humans specifically.

Other changes that can occur in DNA sequences through evolution include
insertions and deletions. Insertions are where a nucleotide/nucleotides are in-
serted into a DNA sequence, and deletions are where a nucleotide/nucleotides
are deleted from a DNA sequence.

Having introduced the concept of mutations, we now discuss how differ-
ences in the mutation rates of sites in a protein can be modelled using the
Gamma distribution, and then how substitution matrices describe whether, in
general, a particular mutation tends to be “accepted” or not.

2.2.1 Gamma distribution to model mutation rate

The mutation rate of a (nucleotide) site is the number of times that site
undergoes mutation per unit time. The mutation rate varies among different
sites; some sites will have a higher rate of mutation than others. To model this,

11

Figure 2.6: The probability density function of the Gamma distribution, show-
ing the distribution for different values of k and θ. Figure obtained from [11]
(available under Creative Commons license; see citation for details).

we can use the Gamma distribution [201]. This distribution has two param-
eters, α and β (in Figure 2.6, these parameters are given by k and θ, respec-
tively). Varying these parameters can give us different distribution shapes; for
example, for α (k) = 1.0, and β (θ) = 2.0, this tells us that most sites have low
mutation rates, and very few have high rates. The simulation program used in
this thesis, CS-PSeq-Gen, uses the continuous-rate Gamma distribution, and
only requires the specification of the α parameter. (This simulation program
is discussed further in Chapter 5.)

2.2.2 Amino acid similarity matrices

The book Understanding Bioinformatics [203] was used to produce a lot of
the information in this section.

Amino acid similarity matrices (otherwise known as substitution matri-
ces) are used by several of the methods detailed in Chapter 3. Each score
in an amino acid similarity matrix tells us the frequency of mutation from
one amino acid to another. Here we describe three types of substitution ma-
trices: 1) Point Accepted Mutations (PAM), 2) Blocks Substitution Matrix
(BLOSUM), and 3) the McLachlan matrix.

12

Point Accepted Mutation (PAM) matrices

These matrices were constructed by Dayhoff et al. [36]. These are ‘based
on the observed amino acid substitution frequencies in alignments of homol-
ogous protein sequences’ [203, p. 82]. The sequences used to make the PAM
matrices have a high sequence similarity. From the sequences a phylogenetic
tree was constructed, and this was used to work out the individual mutations
that had occurred between the sequences. The following ratio was then cal-
culated:

number of changes undergone by amino acid a
number of occurrences of a in the sequence set

(2.1)

From the ratios, the probability that each amino acid mutates into another
over some period of evolutionary time is calculated. The PAM matrix shows
the log value of these probabilities.

There are different versions of the PAM matrix, e.g. PAM250 is the PAM
matrix for a quantity of 250 PAM units (PAM stands for Point Accepted Muta-
tions; an accepted mutation is a mutation in the nucleotide sequence which is
preserved and can be passed on to future generations.) 250 PAM means that
‘250 mutations have been fixed on average per 100 residues; that is, many
residues have been subject to more than one mutation’ [203, p. 84].

BLOSUM matrices

BLOSUM matrices, BLOSUM standing for Blocks Substitution Matrix,
also depend on substitutions found in real data. These were constructed by
Henikoff and Henikoff [89]. The equation used to calculate values in the set
of BLOSUM matrices is:

s(a, b) =
1

λ
log

pab
fafb

(2.2)

[47, pp. 1035] a and b are two amino acids (so we complete this calcula-
tion for each possible pair), pab is the probability that we see a and b aligned
in real alignments, fa and fb are the frequency that we see amino acids a
and b in real alignments. Henikoff and Henikoff used their own BLOCKS
database to produce the frequencies used in the formula. λ is a value used
to ensure reasonable (whole) numbers in the matrix. The different “versions”
of this matrix were produced by using different sets of pairwise alignments.
So, BLOSUM62 uses a threshold of 62% sequence identity for the pairwise
alignments, for example.

13

McLachlan matrix

McLachlan’s matrix [120], like the PAM and BLOSUM series of matrices,
is constructed by looking at the substitutions between amino acids in real data
[182]. Unlike the PAM and BLOSUM matrices however, McLachlan’s matrix
uses integer scores [182]. Note: it has not been possible to find information
about this matrix from the original source, as it is behind a “paywall”. Ac-
cordingly, a secondary source (Tomii and Kanehisa [182]) was used for this
brief description.

Having discussed concepts relating to mutations, we move onto another
topic. We have alluded to the concept of species in Section 2.1; this is de-
scribed in more detail in the next section.

2.3 Ancestry and phylogenetic trees

As mentioned earlier in this chapter, examples of species include humans,
domestic cats, and domestic dogs. All species that exist, and have ever ex-
isted, are related by the so-called “tree of life”. We know that intuitively, a
fox is “more related” to a dog than it is to a human, but here we formally
define the concept of a species. ‘A biological species is a group of organisms
that can reproduce with one another in nature and produce fertile offspring.
Species are characterized by the fact that they are reproductively isolated from
other groups, which means that the organisms in one species are incapable of
reproducing with organisms in another species. . . . Species can also be de-
fined based on a shared evolutionary history and ancestry’ [127]. This last
statement should make sense within the context that foxes are more related to
dogs than humans. It is worth noting that a caveat of the definition quoted is
that it only really applies to organisms that reproduce sexually; the last phrase
in the quote (about definition of a species based on shared ancestry) is more
applicable generally.

But how do new species come about? There are several models [162]. One
of these is ‘ecological speciation’, which is how speciation might arise from
different populations of a species adapting to different ecological conditions
(environments) such that they become two separate species. Another involves
sexual selection. An example of this is how species from the Peromyscus
(deer mice) genus can produce fertile hybrids under lab conditions, ‘but rarely
produce hybrids in the wild, even when sympatric’ [179] (sympatric meaning
they live in similar areas geographically).

14

Figure 2.7: A tree showing how an array of species are related through evolu-
tion. Image is available under the GNU Free Documentation License [90].

15

Figure 2.8: An example of a phylogenetic tree.

Species are related to each other through the process of evolution. For
example, Figure 2.7 shows how a selection of species are related; it shows
that the bonobo and common chimpanzee shared a common ancestor (that is,
a common ancestral species, which no longer exists, is the parent ancestor of
two different species, the bonobo and the common chimpanzee. These two
species came about through a speciation event, such as we have described
above). The structure given in this figure is a phylogenetic tree, or phylogeny.
We describe phylogenies now in a little more detail.

2.3.1 Phylogenetic trees

A phylogenetic tree shows us how extant sequences – sequences that cur-
rently exist – evolved from their ancestors (see Figure 2.8 for an example).
The lines are called branches, and the small circles at the intersections or
ends of branches are called nodes. The nodes at the very top of the tree (num-
bered 1-5) are the tips, or leaves of the tree, and each represents an extant
sequence (in our case, we are working with protein sequences). Trees can be
drawn with either the leaves at the top or the bottom. The nodes at the inter-
sections of branches are internal nodes. At each point in the tree where an
internal node splits off into two branches some kind of divergence occurred
between sequences; for example, at node 8 two different sequences emerged.
A clade is a sub-tree within a whole tree, and it includes a particular node and

16

its descendants.

2.3.2 Homology

Now that we know how species can be related, we introduce the concept of
homology, and of homologous protein sequences, which can be categorised as
paralogous or orthologous. Two sequences are paralogues if they are within
the same species (as part of the same genome); that is, they occurred when
one gene duplicated within a genome (these two genes can then go on and
accumulate mutations, making them different). Such a duplication could hap-
pen during the process of meiosis, which is the cell division involved in the
production of eggs and sperm. During this process, there is a recombination
event, in which genes are swapped between homologous chromosomes (chro-
mosomes in a pair, one from the mother and the other from the father). If the
chromosomes are not lined up exactly, this can cause gene duplication.

On the other hand, two sequences are orthologues if they occur within dif-
ferent species, so they appear when a speciation event occurs. One ancestor
species produces two descendant species, each of which has its own copy of
a gene [109].

Now that we have discussed the ideas behind ancestry and relationships
between species, we now discuss how these relationships can be represented.

2.4 Phylogeny representation and construction

First we describe the Newick format, a text-based approach to describing a
phylogeny, and then discuss a method for reconstructing phylogenies.

2.4.1 Newick format

This is a format for the representation of trees; a set of brackets () encap-
sulates the children of the node represented by those brackets, and commas ,
separate the children of nodes. Nodes can be given labels, and branch lengths
are represented by a colon and then a number, either after a node name or
after a closing bracket, if that (internal) node has no name. So, for example,
((A : 2.5, B : 0.5) : D : 1.0, C : 2.5); represents the tree in Figure 2.9,
created using the web application Phylodendron [72] (we added the branch
lengths).

17

Figure 2.9: An example tree, represented by ((A : 2.5, B : 0.5) : D : 1.0, C :
2.5); in Newick format, created using the web application Phylodendron [72].

18

2.4.2 ClustalW2

ClustalW2 [107] is an alignment program (a program for building multiple
sequence alignments, which we define in Section 2.6) built upon the earlier
alignment program Clustal W [180]. This program has the option to find
the tree for a given alignment using the Unweighted Pair-Group Method with
Arithmetic mean (UPGMA) algorithm.

UPGMA [48] is a clustering algorithm; it works from the leaves up to find
where the branching events occur on our constructed phylogeny. It works by
first constructing a distance matrix between each pair of species, and then
it uses this matrix to construct the phylogeny. “Unweighted” means that all
of the distances in the matrix contribute equally to calculations, “pair-group”
means pairs of sequences (or pairs consisting of a single sequence with an
already-constructed group, or pairs of groups) are clustered, and “arithmetic
mean” means that the distances are calculated using the arithmetic mean. So
if, for example, we wish to calculate the distance between the group (A, B, C)
and the group (D, E), where A, B, C, D, and E are sequences (leaves in our
constructed tree) then we calculate the mean of the distances between (A and
D), (A and E), (B and D), (B and E), (C and D), and (C and E).

As mentioned previously, at each node in a tree there is a sequence. We
only know for certain the sequences at the leaves of a tree (as these are from
extant, or currently existing, species), but for some of the methods for detect-
ing molecular co-evolution we need to predict the ancestral sequences (those
at the internal nodes). To do so, we must use ancestral sequence reconstruc-
tion.

2.5 Ancestral sequence reconstruction

Given a set of (nucleotide or amino acid) sequences from a set of extant
species, ancestral sequence reconstruction aims to find the most probable se-
quences of the ancestors to those species, e.g. for the tree shown in Figure
2.10, we know what the characters at certain positions of a protein are for
the species at nodes 4–7, but we want to find out what would probably have
existed at those positions for the species at the nodes 1–3.

2.5.1 Fitch’s algorithm

Fitch’s parsimony algorithm [59] is one method which allows us to recon-
struct ancestral sequences. It assigns states (amino acid characters) to a tree

19

Figure 2.10: An example of how co-evolution may occur – see the main text
for explanation.

topology (given as input) so that the minimal number of mutations evolve the
given sequence data. This means that it is a Maximum Parsimony method.
This method assumes that we know the ancestral relationships between the
given sequences (the associated phylogenetic tree). We also assume that we
are dealing with orthologous sequences (from different species) and that we
are looking at a Markov Chain model of evolution, so that the probability
of a character mutating from one amino acid to another depends only on the
current state, and not on any previous states.

It should be noted that Fitch’s algorithm is intended for use with nucleotide
sequences, and naively mapping this to use amino acid (protein) sequences
instead would imply that any amino acid can change to any other with equal
probability, which is obviously not true (although we could change the model
to take into account the likelihood of “mutating” from one amino acid to an-
other).

2.5.2 Maximum Likelihood

Maximum Likelihood (ML) is another method for ancestral sequence re-
construction; it aims to work out the character at each of the nodes such that
the probability of the characters at the leaf nodes is maximised, given a tree
topology as input [98]. A likelihood calculation is carried out at each node of
the tree, iterating over all of the possible characters. We can look at each node
in turn to find the marginal likelihood, or at all of the nodes at once, to find
the joint likelihood. The joint likelihood is more computationally expensive
to calculate than the marginal likelihood, but is generally accepted to be more
accurate.

20

Figure 2.11: A toy MSA, where each of the characters is a nucleotide, accord-
ing to the alphabet mentioned previously.

We now describe the concept of multiple sequence alignments, which are
used as input for all of the methods we consider for detecting molecular co-
evolution.

2.6 Multiple Sequence Alignments

A multiple sequence alignment is the result of taking multiple (nucleotide
or protein) sequences from extant species and aligning them so that we can
visualise the similarities between them. The co-evolution detection methods
that shall be encountered within this thesis use protein sequences. An example
alignment is shown in Figure 2.11. There are two main categories of align-
ment algorithm; those that produce global alignments, and those that produce
local alignments. A global alignment is one which “[spans] all the nucleotides
or amino acids in the sequences that have been submitted for alignment” [203,
pp. 739]. A local alignment is “an alignment of the most similar regions of a
nucleotide or amino acid sequence ignoring other segments of the sequences”
[203, pp. 741], i.e. it is only for a small segment of the sequences, and does
not require every character of every sequence to be aligned. So, the funda-
mental difference between the two is whether they align the entirety of the
sequences, or only a subset of the characters in the sequences. A selection of
different alignment programs are described in Section 4.2.1, along with our
justification for why we chose to use the one we did.

In an alignment, each row’s values come from a different sequence, and
the general theory is that through aligning the sequences each column will
tell us how those sequences evolved – each character is inherited from an
ancestral character [112]. For example, if we had the nucleotide alignment
given in Figure 2.11, let it be that the four sequences in this alignment evolved
according to the tree structure shown in Figure 2.12, then we could say that

21

Figure 2.12: According to column 1 in Figure 2.11, a tree showing how the
characters at the leaf nodes (from that column of the alignment) may have
evolved from a common ancestral character. The lines pointing to different
branches symbolise where a mutation occurred.

sequence 0 corresponds to the left-most leaf of the tree, sequence 1 to the leaf
directly to the right of this, and so on. We could then say that the sequences
that the ancestors possessed could have had the characters given at the internal
nodes at position 1 of their respective sequences.

We can also have gaps in our alignment (represented by the dash - charac-
ter); these symbolise that either a character was deleted at that position in that
sequence, or it could mean that a character was inserted in another sequence
at that column.

There are several ways of formatting alignments. FASTA and PHYLIP,
which are commonly used, are described here.

2.6.1 FASTA

In a FASTA alignment (named after the FASTA, or Fast-All, program),
the information for each sequence is given sequentially. First, there is a line
starting with the > character, followed by the sequence name, and then on
subsequent lines is the associated sequence. For example:

>gi|2924948

MAAALRRGYKGLGFSFELTEQQKEFQTIARKFAREEIIPVAPDYDKSGEY

PFPLIKRAWELGLINTHIPESCGGLGLGTFDACLITEELAYGCTGVQTAI

EANSLGQMPVIIAGNDQQKKKYLGRMTEQLMMCAYCVTEPSAGSDV

>gi|1753489

------------QMSFELSDTQKEIQSHAIKFSKDVLVPNAAKFDKSGEF

22

PWEIVKQAHSLGFMNTIIPEKYGGPGLSNLDTALIVEALSYGCSGLQIAI

FGPSLAAAPICLSGTEEQKKKYLGMLAAEPIIASYCVTEPGAGSDV

>gi|6680618

MAAAFRRGCRGLGFSFELTEQQKEFQATARKFAREEIIPVAPEYDKSGEY

PFPLIKRAWELGLINAHIPESCGGLGLGTFDACLITEELAYGCTGVQTAI

EANSLGQMPVILAGNDQQKKKYLGRMTEQPMMCAYCVTEPSAGSDV

>gi|3901902

MTMLFNKVLRNGGFSFELTEQQKEFQEVARKFAREEIVPAAPSYDRSGEY

PFPLIKRAWELGLMNGHIPEDCGGMGLGIFDACLITEELAYGCTGVQTAI

EANSLGQMPVIIAGNDAQRKKYLGRMTEEPLMCAYCVTEPGAGSDV

2.6.2 PHYLIP

Another way of formatting an alignment is the PHYLIP format (named
after the PHYLIP, or Phylogeny Inference Package, program). The first line
contains the number of sequences and the length of the alignment. Here we
describe the sequential PHYLIP format; this means that, again, information
on each sequence is presented in turn. The first 10 characters of a line will be
the sequence name; the rest of that line will be the actual sequence; any lines
after this one will be the rest of the sequence, if necessary.

4 146

gi|2924948MAAALRRGYKGLGFSFELTEQQKEFQTIARKFAREEIIPV

APDYDKSGEYPFPLIKRAWELGLINTHIPESCGGLGLGTFDACLITEELA

YGCTGVQTAIEANSLGQMPVIIAGNDQQKKKYLGRMTEQLMMCAYCVTEP

SAGSDV

gi|1753489------------QMSFELSDTQKEIQSHAIKFSKDVLVPN

AAKFDKSGEFPWEIVKQAHSLGFMNTIIPEKYGGPGLSNLDTALIVEALS

YGCSGLQIAIFGPSLAAAPICLSGTEEQKKKYLGMLAAEPIIASYCVTEP

GAGSDV

gi|6680618MAAAFRRGCRGLGFSFELTEQQKEFQATARKFAREEIIPV

APEYDKSGEYPFPLIKRAWELGLINAHIPESCGGLGLGTFDACLITEELA

YGCTGVQTAIEANSLGQMPVILAGNDQQKKKYLGRMTEQPMMCAYCVTEP

SAGSDV

gi|3901902MTMLFNKVLRNGGFSFELTEQQKEFQEVARKFAREEIVPA

APSYDRSGEYPFPLIKRAWELGLMNGHIPEDCGGMGLGIFDACLITEELA

YGCTGVQTAIEANSLGQMPVIIAGNDAQRKKYLGRMTEEPLMCAYCVTEP

GAGSDV

We now describe co-evolution, and how it appears. Methods for detecting
co-evolution will be discussed in the next chapter.

23

2.7 Co-evolution

The first use of the term “co-evolution”, according to Pazos and Valencia
[147], was by Ehrlich and Raven in 1964 [49], who did a study on the relation-
ships between different families of butterflies and the plants they feed on. This
refers to co-evolution on a species level. In contrast, molecular co-evolution

describes such relationships on a genomic, or proteomic, level.

Molecular co-evolution (or correlated evolution) is where we have ‘the di-
rect physical effect of one sequence position on the other’ [177, pp. 341].
Mutations occur randomly, but they can be fixed in a population through the
process of natural selection. For example, if there were a mutation at one site
which somehow destabilised that protein’s structure or stopped the protein
from functioning properly, it could be compensated for by another mutation
at a different site (or multiple mutations individually at different sites), in
order to “neutralise” the first mutation. We should note here that mutations
occur randomly, and can be kept or lost depending on the effect they have on
the organism’s fitness. If a mutation has a positive effect on the organism’s
fitness, it will be more likely to be kept, but if it has a negative effect, then it
will be more likely to be lost [203].

Another example of co-evolution is where we have multiple sites which
“evolve together” (i.e. at which mutations are fixed) in order to alter some
aspect of the protein in a way which changes that protein’s function to allow
the organism to better adapt to its environment.

Molecular co-evolution has been detected in previous studies in order to
improve the quality of protein structure predictions, for example. Reviews
of these are given by Caporaso et al. [22], Codoñer et al. [31], and Ng and
Henikoff [133]. There are also plenty of individual papers which implement
various methods for detecting molecular co-evolution (a non-exhaustive list is
[1, 16, 17, 20, 24, 25, 28, 29, 30, 32, 40, 42, 44, 43, 45, 46, 56, 58, 65, 68, 69,
73, 74, 75, 76, 78, 84, 86, 95, 101, 104, 110, 114, 116, 121, 131, 134, 138, 141,
146, 147, 152, 153, 154, 156, 168, 175, 178, 181, 184, 189, 191, 193, 195]).

The co-evolution “signal” between two positions in a protein, denoted i and
j, can be divided into different parts (this assumes an additive model) [17, p.
1627]:

‘Cij = Cphylogeny + Cstructure + Cfunction + Cinteractions + Cstochastic’ (2.3)

24

What this equation means is that we can detect a pair of positions as co-
evolving due to the various components in the equation (each component con-
tributes to the overall signal). However, we are not equally interested in each
of these components. The components of the equation are defined:

Cstructure One substitution is compensated for by another in order to maintain the
protein’s structure (see the example earlier in this chapter of the sub-
stitution of a “large” amino acid for a smaller one) or to evolve new
structures – those positions co-evolving due to structure will be rela-
tively close in the 3D structure [24], although they may not be close in
the amino acid string (the primary structure)

Cfunction One substitution is compensated for by another in order to maintain the
protein’s function or to evolve new functions

Cphylogeny For orthologous genes (those which occur in different, related, species),
for example, mutations which are fixed in the sequences of ancestral
species can be propagated down to extant (currently existing) species.
This can mean that co-evolution can appear to be occurring between
sites when it is really deriving from the “relatedness” of the sequences

Cinteractions The three sources of co-evolution described above are not statistically
independent; Cinteractions accounts for this (this component can also be
related to interaction between different proteins [31])

Cstochastic Co-evolution caused by chance (and anything else not covered in the
above types of co-evolution)

Cij This is the co-evolution signal that we can observe between positions
i and j in a protein. When we look at this signal, we want to remove
certain types of co-evolution described above (e.g. Cphylogeny) to get to
the “truly” co-evolving sites.

It should be noted that molecular co-evolution is a biological process which
we cannot directly observe; to find it we must consider the concept of covari-
ation; this is where “some pairs of residues co-occur in multiple sequence
alignments more frequently than expected” [176, pp. 2456].

It is assumed that molecular co-evolution (which we cannot currently di-
rectly observe) causes covariation (which we can observe). We shall now
give an example of how we plan to use covariation to detect co-evolution;
see Figure 2.10. Imagine we have four extant (currently existing) species,
shown in the figure as 4, 5, 6, and 7, and that these are related according to

25

the tree shown (1, 2, 3 are ancestral species). (We are only concerned with
the same two positions in each protein string, and the characters that appear
at these positions, for the sake of this example.) Further imagine we can look
back in time and “see” all the mutations that occurred to a particular protein
within each species, as the ancestral species evolved over time into those we
have today. In the figure, the characters in curly braces represent two differ-
ent characters in that species’ protein string for the protein we are focusing
on. When a line points out from a branch between two species (nodes on the
graph), it shows where mutations become fixed at those positions. When we
are looking for molecular co-evolution, we are hoping to find such events as
can be seen on the branch from 1 to 3 – where a mutation becomes fixed in
one position, and then (in “response”) a mutation becomes fixed at another
position – this is what we think is causing covariation in the ensuing multiple
sequence alignment. In the rest of this thesis we use the terms “molecular
co-evolution” and “covariation” interchangeably.

2.7.1 Sources of randomness in correlation signal

As mentioned above, there is correlation between all pairs of sites within a
protein due to chance. The amount of this correlation depends on a number
of variables:

• Number of sequences in the alignment

• Number of species in the alignment (there can be multiple sequences
from a single species in an alignment), and how “related” these species
are (e.g. in Figure 2.10, we could say species 4 and 5 and more related
than 4 and 6)

• Alignment length – the number of random correlations increases as the
length increases

• Sequence conservation – the more conserved, the lower the number of
random correlations. If a position in an alignment is fully conserved,
it only contains one type of amino acid (one character only). Sequence
conservation depends on:

– the presence of functional domains, which ‘are distinct functional
and/or structural units in a protein’ [163, para. 1] and are con-
served; internal interactions between amino acids within a protein;
or the protein having a hydrophobic core (the amino acids which
make up the core tend to be more conserved than those not part of
the core) [113]

26

– the actual amino acids in a sequence – for example, the amino
acid methionine can only be coded for by the codon (group of
three characters) AUG, meaning a mutation to any of the bases
is going to cause a change to the corresponding amino acid. In
contrast, proline is coded for by four different codons (CCA, CCC,
CCG, CCT), meaning any change to the final nucleotide in the
codon will mean that the amino acid does not change. This means
that during the evolutionary process, prolines are more likely to be
retained than methionines in the protein sequence, increasing the
likelihood of this position being more conserved

– other factors which change the likelihood of particular bases to
mutate, e.g. local GC content (the percentage of bases which are
either G or C), the proximity and degree of genetic linkage1 to
other genes that are highly conserved

Co-evolving sites are thought to be important to a protein’s structure or
function, and we can find these by looking at multiple sequence alignments.
Another measure we can use from multiple sequence alignments to find im-
portant sites is conservation, which we describe now.

2.8 Site conservation

Taking the example in Figure 2.11, we say that column 2 is highly con-
served as it has little (or in this case, no) variation across the sequences. If
a site is highly conserved across sequences, then it is under strong negative
selection, and so that site is likely to be important to that particular protein’s
function. From this we can say that mutations at that site would probably be
hazardous to the protein’s function (if an amino acid changes to another with
very different chemical properties, for example).

Current bioinformatics algorithms take conservation into account when clas-
sifying mutations at a site according to their likely pathogenicity [105].

2.9 Parallel computing

This project will involve attempting to improve the runtime performance of
methods for detecting molecular co-evolution such that they can be applied
to much larger data sets than has been done previously (the human proteome,

1‘Linked genes sit close together on a chromosome, making them likely to be inherited
together’ [188, para. 1]

27

or all human proteins). The first step towards this goal is to decide which
approach to take in doing so, and which parallel architecture type to use. We
begin by reviewing a common classification for parallel architectures, Flynn’s
taxonomy, before outlining our reasons for choosing the architecture we did
(NVIDIA graphics cards) and then describing this particular architecture in
more detail.

Flynn’s taxonomy [64] is a well-used classification system for parallel ar-
chitectures. It is defined in terms of instruction streams and data streams. The
instruction stream is the series of instructions completed by the system, and
the data stream is the data that the system performs its instructions on. There
are four categories:

• Single Instruction, Single Data (SISD): the typical serial computer, it
performs one instruction on one piece of data, then once that has com-
pleted (and only then), it can perform another instruction on another
piece of data, and so on

• Single Instruction, Multiple Data (SIMD): the same instruction is per-
formed on lots of data at once, before moving onto the next instruction
(with another lot of data). This describes CUDA’s architecture, as well
as processor array architectures. ‘A processor array is a vector computer
implemented as a sequential computer connected to a set of identical,
synchronized processing elements capable of simultaneously perform-
ing the same operation on different data.’ [157, pp. 62]

• Multiple Instruction, Single Data (MISD): different instructions are per-
formed on the same piece of data at the same time; this is rarely used in
real systems

• Multiple Instruction, Multiple Data (MIMD): different instructions are
performed on different pieces of data; examples of this kind of system
are massively parallel processors (MPPs) (a type of system whereby
lots of microprocessors are connected together and work in parallel),
and clusters [118]

Of the different options available (supercomputers, clusters, graphics cards)
we chose to use graphics cards, for the reasons that they are relatively cheap
(in Chapter 7 we look at the costs of using GPUs versus supercomputers in
more detail), readily available to the average researcher (not all researchers
may have access to a supercomputer or a cluster), and also in the case of
NVIDIA GPUs particularly, they are easy to use if one knows how to program
in C. We shall now introduce GPUs, and the NVIDIA architecture.

28

Figure 2.13: An example of how a grid is divided into blocks, and blocks
into threads. The entire rectangle is the grid, and each large square (num-
ber with large font and alternately shaded and unshaded) is a block. There
are 10 blocks, numbered 0–9, and these are arranged such that CUDA’s
gridDim.x variable is equal to 5 (the number of blocks in the x dimension),
and the gridDim.y is equal to 2 (the number of blocks in the y dimension).
Each block has 4 threads such that blockDim.x and blockDim.y both
equal 2.

Graphics Processing Units, or GPUs, generally refer to the processing units
in graphics cards, although the terms “GPU” and “graphics card” do tend to be
used interchangeably, as we do here. They have always been commonly used
for rendering graphics, but in the year 2003 the term GPGPU (General Pur-
pose GPU) was coined [88] to represent the growing number of cases where
people were using GPUs to do more general computation on large amounts of
data.

NVIDIA is one designer of such generally programmable GPUs; the archi-
tecture of these graphics cards fits into the SIMD (Single Instruction Multiple
Data) class in Flynn’s taxonomy [64], which means that one instruction is car-
ried out on large amounts of data, before moving on to the next instruction.

NVIDIA graphics cards can be programmed using the programming lan-
guage CUDA (Compute Unified Device Architecture), which is like the lan-
guage C, but with some extensions for transferring data to and from the GPU,
and for executing programs (called kernels) on the GPU.

Work on the GPU is organised into grids, and each grid is composed of
blocks. Each block has threads, and each thread works on the code contained
within a kernel. (See Figure 2.13 for an example showing how a grid of blocks
of threads could be organised.) Each launch of a kernel (program) can specify
a different division of work into blocks, depending on the application.

29

For example, say we had the kernel incrementValues shown in List-
ing 2.1. This is a very simple kernel which takes an integer array in and
outputs another integer array, called out. Imagine our in array consists of
10 integers only (such an example would almost invariably be more efficient
to run on the CPU as normal, but we use this very trivial example for what it
is, an example). We decide we want to launch 2 blocks of threads, each block
having 5 threads, giving us 10 threads total (1 per element in the input array).
Each thread executes this kernel independently of the others. When the thread
gets to line 3, it substitutes into the equation its own values of blockIdx.x
and threadIdx.x. For example, the third thread in the second block would
have blockIdx.x equal to 1 (counting from 0) and threadIdx.x equal
to 2.2 The blockDim.x is, in this case, 5 (5 threads per block in the x di-
mension), and so the idx value for this thread equals 7. Line 4 reads in the
seventh value from the in array, adds 1 to it, and then outputs this into the
out array.

1 g l o b a l void i n c r e m e n t V a l u e s (i n t i n [] , i n t o u t
[]) {

2
3 i n t i d x = (b l o c k I d x . x ∗ blockDim . x) +

t h r e a d I d x . x ;
4 o u t [i d x] = i n [i d x] + 1 ;
5
6 }

Listing 2.1: An example CUDA kernel.

There is not only a hierarchy of threads in the CUDA architecture; there is
also a memory hierarchy. Each thread has its own local memory. Each thread
block has its own shared memory, accessible to all the threads in that block.
There is also global memory accessible to all threads in all blocks. The “more
local” the type of memory, the better the performance in reading from and
writing to that memory, so the thread-local memory has the best performance,
while global memory has the worst.

To the best of our knowledge, only one paper has previously been published
on a method for identifying co-evolving sites using CUDA; this is the paper
by Waechter et al. [191]. Although this is a good place to begin, we did not
want to use this implementation directly due to it being an implementation of

2The reason for the x at the end of blockIdx.x and threadIdx.x is that blocks can
be three-dimensional, and so can grids (here we have only a one-dimensional grid of blocks,
and one-dimensional blocks of threads).

30

Mutual Information, which is one of the more naive methods, and there are
other methods which can give better performance in detecting co-evolution
(we review the different categories of method in the next chapter).

2.10 Complex brain disorders

Later in this thesis, we shall evaluate the results of the proteome-wide anal-
ysis of co-evolving sites in the context of mutations associated with complex
brain disorders. The disorders we shall be focusing on are schizophrenia,
autism spectrum disorder, and intellectual disability (the Fromer et al. [66]
dataset, which we shall be using, is from individuals with these disorders).

The types of mutations contributing to schizophrenia and autism include
both common single nucleotide polymorphisms (SNPs) [55] and rare muta-
tions: single nucleotide variants (SNVs) and small insertions and deletions
(indels) [66], and copy number variants (CNVs), which are large insertions or
deletions to the genome [102, 151, 139].

There has been shown to be genetic overlap between psychiatric disorders,
in particular there are CNVs that can influence risk for schizophrenia, autism,
and intellectual disability, as well as developmental delay and attention deficit
hyperactivity disorder (ADHD) [139]. In addition to common genetic influ-
ences to these disorders, these disorders all tend to cause cognitive impair-
ments [142]. There is a significant amount of co-morbidity (having two disor-
ders at once) between schizophrenia and intellectual disability, and between
schizophrenia and autism. These disorders can all be placed on a gradient of
cognitive impairment, ordered from most severe to least: intellectual disabil-
ity, autism, ADHD, schizophrenia, bipolar disorder [142].

There is a lot of difficulty in working out which small, rare mutations
(SNVs and indels) contribute to disease. This is because there is not a large
increased burden of SNVs/indels in individuals with these disorders (so many
of the mutations they have may not contribute to their disorder). Also, the
effect sizes of these mutations are relatively modest [170], so we need a large
sample size to reliably identify mutations contributing to disease. We can try
and identify which mutations are more likely to be functionally damaging to
the gene/protein (and hence more likely to contribute to disease). Earlier in
this chapter we introduced the concept of conservation; this can be used to
infer the positions at which mutations may be damaging to protein function.
In addition, there are programs, such as SIFT [132] and PolyPhen [160] (dis-
cussed in more detail in Chapter 8) which can be used to classify mutations

31

as damaging or not. There is evidence that mutations that are predicted to be
damaging do contribute to disease [70, 171].

2.11 Summary

In this chapter we introduced first some basic biological concepts, includ-
ing what DNA, RNA, and proteins are and how they are made. We linked this
to the concept of ancestry, and discussed the concept of multiple sequence
alignments as the input we shall use in our methods for detecting co-evolution,
which we defined. Site conservation as another measure for finding sites im-
portant to a protein’s function was described. We then introduced GPUs as the
approach to improving the performance of these detection methods. The next
chapter is an overview of the literature surrounding molecular co-evolution
detection methods. We shall also choose which methods we wish to focus
on.

32

Chapter 3

Literature Review

This chapter provides an overview of the methods that are currently in use
for identifying molecular co-evolution, and is divided into sections based on
the general approach taken in each method. This classification was influenced
by that of Codoñer and Fares [31].

All of these methods use MSAs (Multiple Sequence Alignments) as in-
put; some also use other types of data; outputs are usually some kind of co-
evolution score telling us, for each pair of columns in the alignment, how
likely that pair is to be co-evolving.

All of the methods for detecting molecular co-evolution can be abstracted
into a general template, given below:

1. Find raw pairwise signal

2. Account for stochasticity (or randomness) (Cstochastic)

3. Account for sequence similarity/relatedness (phylogenetic signal –
Cphylogeny)

4. Find “clusters” of co-evolving sites

The two main types of method are non-parametric and parametric methods.
Non-parametric methods are different to parametric methods in that they do
not use information from a phylogenetic tree associated with the input MSA.
Parametric methods use information on the phylogenetic tree associated with
the MSA, and generally require that we make some assumptions about pa-
rameters such as the rate of evolution of positions, for example.

33

All of the methods we describe are performed on each pair of columns in an
alignment under the assumption that the result we obtain for columns i and j
is the same as for the pair of columns j and i. This means that for n columns,
we compute (n ∗ (n− 1))/2 comparisons.

3.1 Non-parametric methods

In this section we shall introduce categories of methods which do not use
phylogenetic tree information when detecting molecular co-evolution. These
are Mutual Information (MI), Observed Minus Expected Squared (OMES),
perturbation-based algorithms, McBASC (McLachlan-Based Substitution Cor-
relation), PSICOV (Protein Sparse Inverse Covariance) and DCA (Direct Cou-
pling Analysis), and Sequence Divergence-based Approximation. For each of
these categories of methods, we describe the basic idea behind that method,
as well as the advantages and disadvantages of that method from a theoretical
point of view in terms of how well it takes biological information into account.
Once we have considered each category individually, we shall compare these
methods according to studies already published.

3.1.1 Mutual Information (MI)

This category is arguably one of the most well-used types of method in
detecting co-evolving pairs. The basic method is taken from the Information
Theory defined by Shannon [167]. The Mutual Information (MI) equation is
given as:

MIij :=
∑
a,b∈A

pij(a, b)log2

(
pij(a, b)

pi(a)pj(b)

)
(3.1)

The equation as seen above is from a study by Waechter et al. [191, p. 50].
i and j are columns in the alignment, A is the alphabet of characters (in our
case, amino acids), and a and b are individual amino acids. pi(a) and pj(b)
are the probabilities of observing character a at position i and character b at
position j, respectively, and pij(a, b) is the probability of observing character
a at position i, and at the same time observing character b at position j. Other
studies which used this approach are: [103, 9, 10, 116, 73, 24].

Changing the idea of MI

Ackerman et al. [1] developed a class of methods, called “differential bi-
nary methods”, which use the original MI equation, but first translate the input

34

alignment into a binary matrix by putting, in each row, a 1 if there is a differ-
ence between the character present at the corresponding position in the MSA,
and the character present in the same column in the row above (and a 0 if
the characters are the same) – the first row of the matrix is set to all 0s. The
ordering of the sequences in the original MSA influences the resulting binary
MSA; these methods optimise the binary MSA such that there are the fewest
possible 1s. This gives us lower values of MI calculated from the binary ma-
trix, and exposes the motivation for developing these methods: ‘The overall
decrease in the average MI of the alignment allows for an easier identification
of concerted amino acid changes in sequences throughout the alignment by
reducing the entropy associated noise’ [1, para. 38]. The Mutual Information
matrix calculated from this binary matrix can be further processed accord-
ing to Gloor et al. [74], which gives us what is called the ZPX matrix. We
square this to get the ZPX2 matrix, and this result is named by Ackerman et
al. the dbZPX2 matrix (Differential Binary ZPX2; the version of the align-
ment which is represented in binary, described above, is called the differential
binary matrix). There are also two methods described by Ackerman et al.
which include information on the specific amino acids in the alignment (and
not just whether there is a difference between the character in this row and the
character immediately above); these are called dgbZPX2 and nbZPX2.

Burger and van Nimwegen [18] derived a statistic which has similarities
to MI, called logR. Their method actually includes phylogenetic information
(and is therefore a parametric method). They also incorporate the APC (Aver-
age Product Correction) (described below) to remove the influence of spurious
correlations that may appear because the sequences in the alignment are from
evolutionarily related species.

Normalisations

As mentioned in Section 2.7, the overall co-evolution “signal” that comes
from two alignment columns can be divided into components, some of which
we are not interested in (those components from the fact that the sequences
used in the alignment are related (Cphylogeny) as well as co-evolution signal
appearing by chance (Cstochastic)). Because we are not interested in these
components, which are essentially noise, we need to do our best to eliminate
them. One way of doing so is to “correct” the test statistic, through normal-
isation, for example. We now look at a few methods where the authors have
attempted to account for these background components through normalisa-
tion.

35

Martin et al. [116] looked at different MI-specific methods of normali-
sation, which involve dividing the MI equation by values involving entropy,
etc. (The MI equation can be defined in terms of the entropies of alignment
columns.) Merkl et al. [121], in their H2r method, used a U statistic (referring
to Press et al. [155]) which normalises MI by the summation of the individ-
ual entropies for the two columns we are looking at. Dunn et al. [42] also
described two normalisations of MI – the Average Product Correction (APC),
and the Average Sum Correction (ASC). Tillier and Lui [181] introduced the
entropy-weighted dependency ratio, which is another way of normalising MI.

Adding biological information

Gao et al. [69] took the Mutual Information equation and added an amino
acid background distribution (MIB’), and also information about amino acid
physicochemical properties (MIP’). Using information on the background dis-
tribution allows us to remove the influence of correlations caused by the se-
quences being evolutionarily related. Using an amino acid’s physicochemi-
cal properties would take into account how often amino acids from different
physicochemical “groups” appear together at different positions and would
allow us to work out when it is “acceptable” to replace an amino acid in one
group with another amino acid from a different group. In addition, for part of
their study, Atchley et al. [10] recoded the amino acids in the alignment by
whether they are hydrophobic, hydrophilic, or neutral, to see if co-evolving
pairs tended to have certain characteristics. They also looked for correlations
in terms of amino acid size.

Advantages

• Normalisations can be used to remove some of the background noise

• The original MI equation as seen in Equation 3.1 is easy to use and
understand; because it does not use biological information it could be
used as a sort of benchmark for the rest of the results to be compared
against

Disadvantages

• If we simply use the MI equation as seen in Equation 3.1, then we
are making no distinction between, for example, substituting D (a neg-
atively charged amino acid) for E (another negatively charged amino
acid) and substituting D for K (a positively charged amino acid)

• (Specific to the methods of Gao et al. [69] and Atchley et al. [10])
we would have to make a choice as to how we would categorise amino

36

acids according to physicochemical properties (the wrong assumptions
could give us an incorrect result)

3.1.2 Observed Minus Expected Squared (OMES)

This method of identifying co-evolving pairs was described by Kass and
Horovitz [99] and is basically equal to a χ2 test:

χ2(i, j) =
∑
n

(Nn,OBS −Nn,EX)
2/Nn,EX (3.2)

i and j are the two columns we are focusing on, n is equal to the number of
possible different pairs of amino acids there are in columns i and j (and each
value of n is equal to a different pair of amino acids X and Y , where X is
any of the amino acids which appear in column i, and Y is any of the amino
acids which appear in column j), Nn,OBS is the actual number of times we see
the pair X and Y at positions i and j, respectively, and Nn,EX is the expected
number of times we see the pair X and Y at positions i and j, respectively.
This is equal to NfX,ifY,j where N is the number of rows in the alignment,
fX,i is the frequency of X at position i, and fY,j is the frequency of Y at
position j. Noivirt et al. [135] also used the basic OMES equation for their
study.

A variation of this method was proposed by Fodor and Aldrich [65]. The
main equation was redefined as:

L∑
l

(Nobs −Nex)
2

Nvalid

(3.3)

so the bottom portion of the equation has been replaced with Nvalid, which is
the number of rows in the alignment, subtracting the number of rows with a
gap at either (or both) position(s). This equation was also used by Kowarsch
et al. [104].

Advantages

• This method is easy to understand, like Mutual Information, and is
fairly simple to compute

Disadvantages

• Like Mutual Information, this class of method does not consider the
actual meaning of the amino acids in the alignment, only viewing each
amino acid as a different character

37

Figure 3.1: How perturbation-based algorithms generally work. (a) The two
columns of the MSA we are focusing on. (b) Setting the constraint that the
amino acid in the first column must be an ‘A’, this is the resulting alignment
that we would use for calculations on this column pair.

3.1.3 Perturbation-based algorithms

An example of this class of algorithms is the paper by Dekker et al. [38].
Within this paper is an easy-to-follow example which explains how this class
of algorithms works in principle. Say we wanted to find the amount of co-
evolution between columns i and j. We start by placing a constraint on the
amino acids at column i (for example, i must contain a Y) such that we only
use those sequences which fulfil that constraint for that column. We can now
inspect the characters present at position j, and see if there is now a visible
bias toward certain characters at j, given that we are focusing on the subset of
the alignment with a Y at i. See Figure 3.1 for an example of how this might
work in practice.

One of the earlier examples of this type of algorithm (called Statistical
Coupling Analysis, or SCA) was by Lockless and Ranganathan [111]. This
method was also used by Suel et al. [175], and by Dekker et al. [38]. Halabi
et al. [84] used an updated version of this method.

Dekker et al. [38] came up with a different example of this class of al-
gorithms, called ELSC (Explicit Likelihood of Subset Co-variation), which
again looks at the effect of restricting the amino acid distribution at one posi-
tion on another position’s distribution, but uses a different statistic to measure
the effect this has.

38

Advantages

• Dekker et al. [38] said of the approach of Lockless and Ranganathan
[111] and Suel et al. [175]: ‘the overall strategy of this approach is
novel and potentially powerful because its central subsetting operation
allows the hypothesis-driven exploration of co-variation occurring in
response to freely chosen in silico evolutionary “perturbations”. For in-
stance, one may choose to subset the MSA according to physicochem-
ical classes of perturbations that are found experimentally to alter lig-
and binding, allosteric coupling or conformational equilibria’ [38, pp.
1565]. This means that we can explore what is driving the process of
co-evolution

Disadvantages

• Restricting the amino acid distribution at one position to consider the
amino acids now present at a second position, means that we are effec-
tively reducing the number of sequences in the alignment that we are
considering. This class of methods, therefore, requires a large align-
ment to begin with

3.1.4 McBASC

The McBASC (McLachlan-Based Substitution Correlation) category in-
volves looking at the differences in physicochemical properties between the
amino acids at the positions we are considering, whether from values calcu-
lated ourselves, or from a similarity matrix.

The method by Göbel et al. (called PlotCorr) [75] involves calculating a
distance matrix between the amino acids at each of the columns we are look-
ing at, and then comparing these distance matrices between the two positions
in a pair. Olmea and Valencia [141] added information to this method on
things such as conservation and apolar residues.

The method by Neher [131], unlike the study by Göbel et al. [75], takes into
account one individual physicochemical property (e.g. big/small, positively-
charged/negatively-charged, etc.) at a time.

The method by Codoñer and Fares [31] also uses similarity matrices.

39

Advantages

• These methods consider the physicochemical properties of the amino
acids in the alignment, unlike the other methods discussed up until this
point, which on the whole, only look at the statistical distribution of
amino acids at the site pair we are considering

Disadvantages

• With methods such as that of Neher [131], we need to choose the physic-
ochemical property to focus on, but we often do not know in advance
which components of molecular co-evolution (e.g. charge) shall be rep-
resented in the alignment we are considering. However, when using a
similarity matrix as our source of information about physicochemical
properties such as in the method by Göbel et al. [75], all of the infor-
mation regarding how similar the amino acids are is already encoded

3.1.5 PSICOV and DCA

PSICOV was developed by Jones et al. [96]. Independently, DCA was
developed by Morcos et al. [124] (see also Marks et al. [115]). We place these
two methods within the same category as they both use ‘a global statistical
model of the MSA’ [37, pp. 251].

PSICOV, or Protein Sparse Inverse Covariance [96], involves computing
the sparse inverse covariance matrix for the alignment used as input. (The co-
variance matrix is simply the matrix of covariances between pairs of columns
in the alignment.) The rationale behind this is that ‘assuming the sample co-
variance matrix can in fact be inverted, the inverse covariance matrix provides
information on the degree of direct coupling between pairs of sites in the given
MSA’ [96, pp. 185]. The method used to do so is called the graphical lasso
method.

DCA, or Direct-Coupling Analysis [124, 115], uses Direct Information,
which is a modified version of the Mutual Information equation. However,
unlike Mutual Information, this method requires solving equations to find the
value of P (dir)

ij (A,B) for each pair of amino acids A and B, which are used
in the place of the joint frequencies of A and B at columns i and j in the
alignment.

Advantages

• DCA weights frequencies of amino acids based on sequence similarity

40

Disadvantages

• The algorithms within these methods are substantially more intricate
than the other methods we have already described, and yet they do not
include measures of the physicochemical properties of the amino acids
in the input alignment

3.1.6 Sequence divergence-based approximation

Fares and Travers [56] developed a method using sequence divergence-
based approximation called CAPS (Coevolution Analysis using Protein Se-
quences). This method compares the variance of evolutionary rates between
two sites in an alignment, and corrects this variance for differences in diver-
gence time between sequences. We have many sequences in an alignment,
and these sequences may vary in the time each pair diverged; ‘a given align-
ment can include sequences whose pairwise distance is significantly divergent
from the mean pairwise distance’ [56, p. 11].

This method was originally classed as parametric in the classification de-
veloped by Codoñer and Fares [31] due to there existing an additional sub-
program which allows for an extra analysis of the data using information from
a phylogenetic tree.

Advantages

• This particular method, when using randomisation removes the impact
of Cstochastic. (This is done by simulating alignments, and testing them
according to the CAPS method, which gives us a null distribution which
we can then compare against the “real” data)

• Can find which components of co-evolution signal are due to phyloge-
netic signal by calculating correlations for entire alignment, and then
re-calculating the scores after removing parts of the phylogenetic tree
(which gives us sub-alignments of the whole alignment). If a pair of
co-evolving sites can be detected in the entire alignment but not for
a sub-alignment, then those sites are co-evolving simply because they
come from related sequences (optional)

• Can use information from the three-dimensional structure of proteins
(optional)

41

Disadvantages

• Affected by amount of divergence between pairs of amino acids in a
column

• Sensitivity affected by ‘a low number of sequences combined with a
high pairwise sequence divergence’ [56, pp. 13]

• ‘Assumes that the coevolutionary relationship between a pair of sites
remains constant through time’ [56, pp. 22]

3.2 Parametric methods

Parametric methods differ from non-parametric methods in that unlike non-
parametric methods, we require the phylogenetic tree showing the relation-
ships between the sequences in the input alignment. There are many dif-
ferent parametric methods in the literature, including those based on Maxi-
mum Likelihood Approximation, tracking changes on branches of the tree,
and Bayesian Mutational Mapping. The motivation for including such infor-
mation in these methods is that it can be argued that in order to distinguish
background co-evolution due to the phylogenetic relationships between se-
quences from “true” co-evolution, we must take account of the tree describing
the relationships between the sequences.

3.2.1 Maximum Likelihood Approximation

Maximum Likelihood Approximation (MLA) uses the Likelihood Ratio
test statistic to work out whether each pair of sites is more likely to be co-
evolving than not. This equation is given as [153, p. 190]:

LR = −2ln(LI/LD) (3.4)

LI is the maximum likelihood value obtained under the independent model
(where the two positions are not co-evolving), and LD is the maximum like-
lihood for the dependent model (where the two positions are co-evolving).
These are both calculated using information from the phylogenetic tree de-
scribing the relationships between the sequences.

The details of the Maximum Likelihood method of identifying co-evolving
pairs can be found in the papers by Felsenstein [57], Pollock et al. [153]
(which builds upon the earlier work by Felsenstein), and Pagel [143].

42

As mentioned above, we have an independent model, and a dependent
model. The independent model is defined by the parameters:

• λ, which is simply the rate at which changes occur from one character
to another

• πA and πa, which tell us how likely we are to see characters A and a,
respectively, at this column. A and a are actually “states” or categories,
so A could mean the amino acid is “large”, and a means it is “small” –
we need to put the amino acids into categories based on some property

These parameters are defined per column of the alignment, and can be used
to work out the probabilities that, for example, character i will change to
character j in time t. The model used is a Markov process model following
Felsenstein [57], which means that the likelihood of a character changing to
any other (or staying the same) does not depend on the “history” of characters
at that position.

The dependent model used is a special case of that developed by Pagel
[143], which uses the same parameters as above (of course, we need to define
these for each of the two columns separately), but the transition matrix is
defined differently; we now consider changes between the possible state pairs
{AB,Ab, aB, ab}, where AB, for example, means that the characters at both
positions are within the same category (both large amino acids, for example).
Along with the parameters in the models just described, a phylogenetic tree is
input into this method, and used to calculate the final Likelihood Ratio value.

Advantages

• We do not need to know the phylogenetic tree precisely; ‘as long as the
tree is approximately correct, the effects on parameter estimation can
be minimal’ [153, pp. 190] (i.e. the effect on the final results can be
minimal)

• We can use any partition of the amino acids into groups

Disadvantages

• The method may be limited to use with ‘moderately closely related pro-
tein families’ [153, p. 188] (although ‘moderately’ was not defined
here), but this should not prove a problem as we are looking for co-
evolution in homologous sequences

43

• We do not know which physicochemical properties may be driving co-
evolution for each particular protein (a problem for any method which
uses a reduced alphabet). However, we could say that we would use the
“full” alphabet instead of a “reduced” alphabet, which would naturally
increase the number of calculations we would need to perform

• There are dependencies between which calculations we do and when –
we need to perform calculations for the leaves of the tree first and work
through the internal nodes. This could be challenging to implement
in parallel (although methods of tree traversal have been developed in
CUDA)

3.2.2 Tracking changes on branches

The three methods within this category all find co-evolving sites by at-
tempting to work out where the mutations occurred on branches. We describe
these in the order in which they were published. None of these methods cite
each other, suggesting they were developed independently, but due to their
similarity, we have decided to place them in the same category. We describe
each of the three methods in turn, and then describe the advantages and dis-
advantages of this category of methods as a whole.

Fukami-Kobayashi et al. [68]

Fukami-Kobayashi et al. [68] decided to look specifically at node-leaf and
node-node comparisons, arguing that because such comparisons on a phylo-
genetic tree would involve fewer mutations (and hence a shorter total evolu-
tionary distance), we would be more likely to detect stronger co-evolutionary
signals that are less obscured by mutations at multiple sites. Like the study
by Pollock et al. [153], Fukami-Kobayashi et al. used a reduced alphabet
(e.g. placing amino acids into categories of positively-charged and negatively-
charged amino acids).

The ancestral sequences of the trees were computed using the Fitch par-
simony method [59]. For every branch in every tree, the authors checked to
see whether any charge-reversing amino acid substitutions happened with a
probability of at least 0.2, that is, for every branch, answering the question:
are the amino acids present at the nodes attached to that branch in different
“charge groups”? They then found all pairs of trees where, on the correspond-
ing branch on each tree, there was a charge reversal (positive to negative, or
vice versa). It was assumed that only pairs of positions that are close in space
in the 3D structure of the protein could actually be co-evolving.

44

This study largely focused on how co-evolution signals can be strength-
ened through comparing ancestral sequences with other ancestral sequences,
or by comparing ancestral sequences with extant ones. This is because the
shorter the evolutionary distance between two sequences, the fewer the ex-
pected number of mutations between those sequences, and the easier it would
be to identify mutations that are occurring as a result of compensatory covari-
ation.

Fleishman et al. [61]

The method of Fleishman et al. [61] quantifies the magnitude of the change
from the amino acid at the top of a branch, and that at the bottom. This is
done using the differences in polarity and volume between the amino acids
found at either end of a branch. Pearson’s correlation coefficient is calcu-
lated between these distances. After bootstrap sampling is used to repeat the
experiments, Principal Components Analysis is used to identify clusters of
co-evolving sites.

Waddell et al. [189]

The study by Waddell et al. [189] uses the detection of co-evolution as an
“intermediate step” towards solving the problem of finding protein-protein in-
teractions – this is to do with inter-molecular co-evolution, not intra-molecular
co-evolution, which we are interested in. However, in the Discussion section
of this paper, there is a suggested method which looks at individual positions
within a protein. After reconstructing a tree and ancestral sequences for the
input alignment, each branch is inspected in turn with the aim of identify-
ing where the mutations are likely to have occurred. Unlike the previously-
described methods, this method just looks for changes without paying atten-
tion to whether those changes make any difference to the physicochemical
properties of the amino acid at that position. These changes are coded in a bi-
nary matrix, where a 1 means that a change has occurred at a specific branch,
at a specific column of the alignment, and a 0 means such a change did not
occur. (If a change occurred it means that, given a branch, at a particular col-
umn, the character at that column in the sequences at either end of that branch
are different.)

After the binary matrix has been constructed, we may calculate either Mu-
tual Information or Cohen’s Kappa [33] for each pair of columns in that ma-
trix. Mutual Information is calculated as we have seen in the Mutual Infor-
mation equation previously (see Equation 3.1), except our “alphabet” consists
of only two states: 0 and 1. Cohen’s Kappa is a statistic used to measure the

45

amount of agreement between two annotators (in this case, between the two
columns we are looking at).

Advantages

• As described in the paper by Fukami-Kobayashi et al. [68], smaller
distances between sequences should mean more reliable results

• Fukami-Kobayashi et al.’s [68] and Fleishman et al.’s [61] methods al-
low one to account for the physicochemical properties of the amino
acids, whereas we could say that Waddell et al.’s [189] method does
not require the definition of a hypothesis as to where the co-evolution
originates from (e.g. charge, size)

• Fleishman et al.’s [61] method and Waddell et al.’s [189] method do not
require the 3D structure of the protein being examined

Disadvantages

• Each of the above-listed advantages can also be seen as disadvantages

• The Fitch parsimony algorithm used by Fukami-Kobayashi et al. [68]
is not intended for use with amino acid sequences, and if we were to
use this method, we would need to replace this algorithm with another
method adapted from the original, but designed for protein sequences

• The method by Fleishman et al. [61] depends on the mutation ma-
trix being used – the Miyata matrix, which was used in this particular
method, only takes into account polarity and volume; other matrices
that could be used could take into account frequencies of amino acids
in real data (for example, BLOSUM or PAM matrices)

• All of the methods in this category, like other parametric methods, de-
pend on the quality of the tree reconstruction method being used, and
also the ancestral sequence reconstruction method being used

3.2.3 Bayesian Mutational Mapping

The BMM (Bayesian Mutational Mapping) method by Dimmic et al. [40]
uses an approach based on phylogenetic trees and Bayes’ theorem to detect
co-evolution. It uses the following hypothesis: if two sites are co-evolving,
then a mutation at one site will influence the rate of substitution at the site that
it is co-evolving with. BMM allows us to choose which test statistic we use
to test our hypothesis (both parametric and non-parametric test statistics are

46

supported). It should be noted that in contrast to the other methods described
in this chapter, this method requires the use of nucleotide (DNA) sequences.

It should be noted that we were going to consider this as part of the compar-
ison of the performance of various co-evolution detection methods in Chapter
6, however we were not able to run the original program to allow for verifica-
tion of our results by comparison to the results from the original program, so
this method was abandoned.

Advantages

• By sampling over the respective distributions of the different parameters
we are using, we do not need to be concerned that, for example, we have
chosen the “correct” tree to use

• Have a selection of different test statistics to choose from

Disadvantages

• We make the assumption that nucleotides in a codon are independent
of each other (as mentioned above, this algorithm uses nucleotide se-
quences). This means that when we do the site simulation, we are not
using a true null model

• This method would probably be the most complex to implement in par-
allel

3.3 Discussion of methods for detecting molecu-
lar co-evolution

So far in this chapter we have given an overview of the main classes of
method for detecting molecular co-evolution. Here we first discuss the use of
different alphabets, and the parallelisation potential of the methods generally.
Then we compare the methods and decide which to implement in the next
chapter, in a biological performance comparison.

3.3.1 Alphabet choice

Of the methods discussed, most use a full alphabet, and a couple use a
binary alphabet, or some other alphabet where we put amino acids into cate-
gories based on physicochemical properties.

47

The study by Caporaso and colleagues [22] investigated the use of differ-
ent kinds of alphabets when identifying co-evolutionary signals. They found
that using the correct reduced alphabet (“reduced” being what we describe
as categories of physicochemical properties – the ‘correct’ one would be the
one which explains correctly why co-evolution is occurring, e.g. if it were to
preserve charge, we would choose an alphabet segregating amino acids based
on their charge) increases the power of analyses, but that using an alphabet
which does not represent well ‘the primary biochemical property subjected to
coevolutionary pressures by natural selection’ [22, para. 5] decreases power.
Considering we shall be using our algorithms for many different and diverse
proteins, and that we do not know the main driver for co-evolution for each of
these proteins ahead of time, it is wise to use a full alphabet for our analyses.

3.3.2 Parallelisation potential

To the best of our knowledge, only one parallel implementation of a method
for detecting co-evolving sites has been published. This is the Mutual Infor-
mation method of Waechter et al. [191]. Generally speaking, non-parametric
methods would be easier to implement for the CUDA architecture than para-
metric methods. This is due to the fact that array and matrix-like data struc-
tures are easier to process on the CUDA architecture than tree-like data struc-
tures, as the main operations of a CUDA graphics card relate to n-dimensional
arrays.

In the next section, we compare the methods to each other mostly from
the perspective of biological performance, although we will also consider the
parallelisation potential of each of the methods.

3.3.3 Method comparison

Before we begin a comparison of the different categories of method de-
scribed in the previous sections, we note that non-parametric methods have
been used overwhelmingly more than parametric methods in previous stud-
ies. This means that there are a lot of papers reviewing and comparing the
same few methods such as MI and McBASC, and fewer papers looking at
parametric methods. Each method’s name shall be the one given in the paper
being discussed, but there are some differences between authors, which we
shall note on a case-by-case basis. Also, sometimes the definitions of such
terms as sensitivity, specificity, and accuracy, do not seem to mean what we
expect them to mean, so we also give the definitions used by the authors.

48

Most of the comparison papers tend to give results in terms of the number
of correct predictions of co-evolving sites compared to a known 3D protein
structure. For ease of explanation, we refer to these studies as “predicted pairs
to structure comparisons”. Also, some of the papers analyse the results by
looking at each protein family individually, and ranking the correlation scores
from the highest-scoring pair to the lowest-scoring pair. They then consider
only the top 1 pair, then the top 2 scoring pairs, and so on, examining what
effect this has on accuracy, etc. We call these studies “rank-order studies”.

We now summarise the results of several review papers.

Fodor and Aldrich [65]

• compared MI [10], OMES [99], SCA [111], and McBASC [140]

• on a real data set of 224 protein families

• “predicted pairs to structure comparison” and “rank-order study”

• overall, McBASC and OMES had similar accuracy1, McBASC does
slightly better as the number of highest-scoring pairs that are considered
is increased

Dunn et al. [42]

• compared MI, MIr [116], MIp, MIa, OMES [65], and McBASC [65]

• on 83 protein families

• “predicted pairs to structure comparison” and “rank-order study”

• the best precision2 was obtained with MIp and MIa

• what is interesting here is the difference that normalising MI has on
results; without normalisation (as in the study by Fodor and Aldrich
[65]) McBASC appears to be the best method

1‘Accuracy is defined by CASP as the number of residue pairs correctly predicted within
8 [Angstroms] divided by the number of residue pairs submitted for evaluation.’ [65, pp. 218]
(CASP is a competition for protein structure prediction [187].)

2The statistic was described as ‘the fraction of pairs at each rank or higher that were in
contact in a representative structure’ [42, pp. 337], which we call precision.

49

Ackerman et al. [1]

• compared MI, ZPX [74], dbZPX2, dgbZPX2, nbZPX2 (these three hav-
ing been developed by the authors themselves) (ZPX, dbZPX2, dg-
bZPX2, and nbZPX2 are all different ways of normalising MI), logR
[18] (called B&vN by Jones et al. [96]), DCA [124, 115], OMES [65],
McBASC [65], ELSC [38], SCA (fodorSCA [38], and ramaSCA [84]),
and PSICOV [96]

• on simulated data generated by (their own) MSAvolve (Multiple Se-
quence Alignment (e)volve) simulation program, and then by the SIM-
PROT (Simulation of Protein sequences) program

• it was found in both cases that the best-performing methods were the
normalised MI methods (ZPX2, dbZPX2, dgbZPX2, nbZPX2), DCA
and logR

• a similar pattern was found in two data sets of real data (this was a “pre-
dicted pairs to structure comparison”), although PSICOV could only be
tested for the larger data set of real data – in this case, it performed
better than logR

• normalising MI makes a difference to the relative performance of the
methods

Jones et al. [96]

• compared their own method PSICOV, the same method without se-
quence weighting (sequence weighting meaning related sequences are
down-weighted relative to more unique sequences in the alignment)
(PSICOV - SW), MIp [42], MIp with sequence weighting (MIp + SW),
and the Bayesian method of Burger and van Nimwegen [18] (B&vN)
(called logR elsewhere)

• on 150 protein families

• “predicted pairs to structure comparison”

• the ordering of the different methods in terms of their average precision
is: PSICOV, PSICOV - SW, B&vN, MIp + SW, MIp

• the methods approach similar performance as we consider more and
more top-scoring pairs (“rank-order study”)

50

Fares and Travers [56]

• compared their own method, CAPS, MI [103] (this method was referred
to as MICK within the comparison), Dependency (a way of normalising
MI) [181], and lnLCorr (called Maximum Likelihood Approximation
elsewhere) [153]

• on simulated data

• the formulae that Favers and Travers gave for sensitivity and specificity
actually represent positive predictive value (precision), and negative
predictive value, respectively

• for ‘sensitivity’, CAPS performed a lot better than the other methods

• for ‘the percentage of true positive covariation pairs’ [56, pp. 14], the
performances of different methods can overlap for a given number of
sequences per alignment

• CAPS seems to have the most consistent performance overall

• CAPS also has the highest ‘specificity’ of the four methods

Fuchs et al. [67]

• compared McBASC (with two different substitution matrices, Miyata
and McLachlan, called McBASC-Miyata and McBASC-McLachlan)
[141], two versions of OMES (OMES-KASS [99], and OMES-FODOR
[65]), CORRMUT (which uses the same method as Fleishman et al.
[61]) [60], CAPS [56], MI [73], SCA [111], and ELSC [38]

• “predicted pair to structure comparison” and “rank-order study”

• on 14 membrane proteins (note that CORRMUT and CAPS could not
generate results for all 14 proteins), accuracy3 is (in order of high-
est to lowest, with the accuracy itself given in brackets): McBASC-
McLachlan (9), McBASC-Miyata, OMES-KASS (8), OMES-FODOR,
CORRMUT, CAPS, ELSC (7), MI (5), and SCA (3)

• on alignments of ‘experimentally determined transmembrane segments’
[67, pp. 3317], accuracies became: CAPS (12), McBASC-McLachlan,
ELSC (10), McBASC-Miyata, OMES-KASS (9), OMES-FODOR, MI
(8), CORRMUT (7), and SCA (3)

• CAPS, the McBASC methods, and the OMES methods seem to be the
best-performing, depending on which data source is used

3Defined as ‘fraction of correctly predicted contacts out of all correlations found’ [67, pp.
3315]

51

Gulyás-Kovács [83]

• to the best of our knowledge, this is the only paper which looks at
CoMap

• assumes that we already have some knowledge of pairs of positions that
are in contact in the 3D structure of a protein

• compared the methods CoMap and many variations on this [44, 43]
(these are related to [202, 168, 40]); MI [103], MIp [42], CAPS, and
CAPS-t [56]

• on an alignment of 553 sequences

• CoMap was the best method in terms of receiver operating characteris-
tic (ROC) curves, although the methods do not appear to have too much
difference in performance

• then including combinations of different optimisations such as align-
ment filtering, etc.

• for the different optimizations, CoMap is always the best, followed by
MIp, (and then CAPS and MI, which can overlap/have different orders)

• for a lower specificity value, MIp does better than CoMap for no opti-
mizations

3.3.4 Methods summary

We now summarise each method previously described in this chapter, along
with its advantages and disadvantages.

Mutual Information (MI)
Basic equation from Shannon’s Information Theory (i.e. is basically a
Computer Science method), takes into account frequencies of characters
at each position, and joint frequencies across the pair of positions
Easy to understand, attempts made to include information on physico-
chemical properties, can be normalised by components of the equation
such as joint entropy to improve performance
Makes no distinction between amino acids (treated as characters with
no meaning), taking into account physicochemical properties means de-
ciding which “component” of co-evolution is at work, which may differ
betweeen proteins and we probably do not know this for sure

52

Observed Minus Expected Squared (OMES)
Equal to χ2 statistical test, where we use information on the expected
and observed frequencies to calculate a statistic
Easy to understand
Does not use information on physicochemical properties

Perturbation-based methods
Consider only certain sequences in the alignment such that the amino
acid present in the first column is the same throughout. Calculate a
statistic based on what we see in the second column, given that the first
column is now effectively conserved
This method “makes sense” considering what we know about correlated
sites, and was designed for detecting co-evolution, unlike some other
non-parametric methods
Does not use information on physicochemical properties, only consid-
ering certain sequences based on the amino acids in one column can
severely restrict the number of sequences we are considering – a large
initial number of sequences is necessary

McLachlan-Based Substitution Correlation (McBASC)
Using the physicochemical distances between the amino acids within
each of the columns being considered, compute a distance matrix for
each column. A statistic is calculated using such distance matrices for
a pair of columns
Uses physicochemical properties of the amino acids, can choose which
substitution matrix to use as source of physicochemical information on
amino acids
Certain methods within this category depend on the user choosing
which physicochemical property they believe is “driving” the co-
evolution between pairs of positions, which would likely not be known
in advance

PSICOV (Protein Sparse Inverse Covariance) and DCA (Direct
Coupling Analysis)
These methods were placed within the same category due to the heavier
amount of statistical theory behind these methods. PSICOV relies on
the concept of a sparse inverse covariance matrix, whereas DCA uses
Direct Information, which is like Mutual Information, but finding the
joint frequencies of amino acids requires more calculations (they are
not just directly taken from the input alignment)
Behind these methods there is a lot of statistical theory that conceptually
“makes sense”

53

More complex, yet neither of these methods include information on the
physicochemical properties of the amino acids

Sequence Divergence-based Approximation
Compares the variance of evolutionary rates between two sites in an
MSA, correcting this variance for differences in divergence time be-
tween sequences
Can remove co-evolution signal due to randomness, can separate out
co-evolution due to sequences in MSA being related, optionally can use
information on three-dimensional structure
Affected by amount of divergence between pairs of amino acids in a
column, affected by ‘a low number of sequences combined with a high
pairwise sequence divergence’ [56, pp. 13], ‘assumes that the coevo-
lutionary relationship between a pair of sites remains constant through
time’ [56, pp. 22]

Maximum Likelihood Approximation (MLA)
Compares the likelihood of the real sequences evolving under a co-
evolutionary model, and under an independent model (with no co-
evolution between sites)
Makes sense from a biological point of view, do not need to know the
exact tree
Have to decide how to divide the amino acids into physicochemical-
related categories (probably will not know what property may be driving
co-evolution)

Tracking changes on branches
This category works as expected – it involves attempting to mark on the
phylogeny where the mutations probably occurred, and from this try to
look for co-evolving pairs
More reliable results (at least in theory) as we are looking at changes
along each branch independently of the others, rather than trying to look
for changes between two leaves in a tree, can decide which information
you want to include (different methods within this category can allow
for protein 3D structural information, physicochemical properties)
Methods depend on the quality of the tree reconstructed (and especially
on the quality of the ancestral sequence reconstruction algorithm)

Bayesian Mutational Mapping (BMM)
Testing the hypothesis that if two sites are co-evolving, a mutation at
one site will influence the rate of substitution of the other.
Can use different test statistics, iterate over lots of values of the different
parameters, so do not need to worry if these are correct

54

Assumes nucleotides in a column are independent – this is not true even
if the sites are not co-evolving

Table 3.1: The different methods for co-evolution detection.

Table 3.1 shows a comparison of the different methods we have described
according to different criteria.

3.3.5 Recommendations

According to a study by Clark and colleagues [30], there may not be one
“best” method for all proteins (from a biological perspective), due to vari-
ations in structure and evolutionary history. A study by Caporaso and col-
leagues [22] suggests that tree-aware (parametric) methods are not necessar-
ily better than tree-ignorant (non-parametric) methods, although they did only
test and compare these methods on two specific proteins. It is logical to think
that tree-aware methods would be better, due to their use of phylogenetic trees
to remove spurious signals due to shared ancestry.

Our choices regarding which non-parametric methods to use in our own
experiments were made as follows:

• The Mutual Information methods are readily parallelisable, as these
methods have been implemented in CUDA already. Using Z-scores
to evaluate the signal against the background would also be easy as this
just involves running the same calculations over and over. Including
biological information is relatively easy; the amino acid background
distribution and possible categorisations are freely available. We have
decided to use this method as-is, however, as a kind of benchmark
method, due to the fact that it is described and used so widely. We
chose this method instead of OMES as although they are both methods
which only account for frequencies of characters within columns of the
alignment, MI is much more widely used.

• We chose not to use one of the perturbation-based methods because
unless one has a large number of sequences, restricting the amino acids
at one position could give us only a very small number of sequences
to work with, if the column we are focusing on is highly variable, for
example. Also, looking further into the future, we are not sure if this
kind of method would be easily parallelised.

• We chose to use McBASC as although it is a relatively basic method,
it does include information on amino acid physicochemical properties

55

from a substitution matrix, such as PAM or BLOSUM. Its simplicity in
combination with this means it can be viewed as “one step up” from
Mutual Information.

• Although PSICOV and DCA seem very sophisticated in terms of the
statistical models they use, this sophistication means complexity in the
implementation, something which we believe would not be conducive
to parallelisation using CUDA.

• Because the algorithm in its associated paper and the manual are easy
to read, we think that the Sequence Divergence-based Approximation
algorithm would be relatively easy to implement; also it fares well in
comparison to other methods.

Now moving onto the parametric methods, here is how our choices were
made regarding which to include in our experiments:

• Maximum Likelihood Approximation (MLA) is not desirable due to the
fact that it uses a reduced alphabet, which would not be appropriate for
us, as we have discussed.

• The approach used in Bayesian Mutational Mapping is flexible in that
it allows us to use any test statistic we want. We did attempt an im-
plementation of this method. Unfortunately, we could not compare the
results of our implementation against the original implementation as
the original program would crash with any input other than the example
files provided by the author.

• The “Tracking changes on branches” category of methods is intuitive
in how it works; we chose to implement the previously-unimplemented
method by Waddell et al. [189] due to the fact that, unlike the methods
by Fukami-Kobayashi et al. [68] and Fleishman et al. [61], it does
not require the user to decide on the likely origin of the co-evolution
signal (such as amino acid size or charge) when running the method. We
wanted to choose at least one parametric method; the other parametric
methods were not appropriate, as discussed.

As a general point, when implementing an algorithm which requires an
ancestral sequence reconstruction, there are two main possibilities: Maxi-
mum Likelihood Approximation (MLA) and parsimony-based methods. The
study by Fukami-Kobayashi and colleagues [68] says that Fitch’s parsimony
method is not as good biologically, but quicker. MLA is the opposite (better
biologically but slow in comparison).

56

In the end we decided to pursue:

• the original Mutual Information equation (i.e. with no additions) (MI)
[191]

• the Sequence Divergence-based Approximation method (CAPS) [56]

• the McBASC method (PlotCorr) [75, 141]

• one of the “Tracking changes on branches” methods as two different
methods, henceforth called Waddell – MI and Waddell – Kappa, for the
two different test statistics we used with this method, as suggested in
the original paper [189]

To ensure a fair comparison, we decided to choose a type of background
noise removal to be used across all of the co-evolution detection methods;
now we shall overview the main categories of background noise removal, and
choose one.

3.4 Methods for removing background noise

Now that we have chosen the basic methods for detecting molecular co-
evolution that we shall be comparing, we must choose how we shall remove
the background noise from our co-evolution signal between pairs of columns.
As discussed previously, co-evolution has several components, some of which
appear due to factors such as having a limited number of sequences in the
alignment, the fact that the sequences are related to each other, and just due to
chance. Each of the co-evolution detection methods we have discussed in this
chapter had their own method for removing background noise, but we decided
to choose one method for noise removal that we would use across all of the
co-evolution detection methods. In this section we compare several of the
most common methods for noise removal, before deciding on one category of
method to use throughout.

Dutheil [45] gives several options for what we can do to remove the in-
fluence of the fact that the sequences are related (i.e. removing Cphylogeny):
doing nothing at all; alignment pre-processing (curation) before running our
methods; correcting for the influence of phylogeny in the null hypothesis of no
co-evolution; and correcting for the influence of phylogeny in the test statistic
itself. We ignore the first option (doing nothing). We shall now discuss the
other three options in more detail.

57

3.4.1 Alignment curation

This basically involves processing the alignments somehow in advance of
running the co-evolution detection methods, with the aim to remove as much
of the background phylogenetic signal as possible before even running the
methods.

3.4.2 Correcting the null hypothesis/test statistic to account
for phylogeny

The approaches “correcting the null hypothesis to account for phylogeny”
and “correcting the test statistic to account for phylogeny” are somewhat
linked; in particular, many of the examples given in the paper by Dutheil
[45] have methods whose approach to removing background noise corrects
both the null hypothesis and the test statistic, so we present these together.
These approaches can be further split into three categories of approach: non-
parametric bootstrapping, parametric boostrapping, and Z-scores. We shall
give a couple of examples of methods from each of these categories to illus-
trate how they work generally.

Non-parametric bootstrapping

Bootstrapping involves using the input alignment to build, or simulate, new
alignments. Non-parametric bootstrapping means that we do not use any pa-
rameters to build the new alignments. This can mean we do something as
simple as “shuffling” the alignment. For example, Caporaso et al. [22] shuf-
fled the columns around (changed the ordering of the columns in the align-
ment) to build “new alignments”. In this case, these shuffled alignments were
used as examples of alignments where there should be no co-evolution due
to structure (Cstructure). Another example of a non-parametric boostrapping
approach is that used by Waechter et al. [191], where they again shuffled their
alignments, but this time they did the shuffling on a per-column basis, mean-
ing they mixed up the characters within a column, while keeping the columns
themselves in their respective positions.

Parametric bootstrapping

This uses bootstrapping, but also includes parameters too. For example,
Wollenberg and Atchley [199] used a phylogenetic tree constructed from the
real data in combination with a substitution matrix to generate new data sets.
The correlation values (MI in this case) were used to generate separate distri-
butions of the correlation values for the real data, and for the simulated data.

58

The idea is that the simulated data should only have noise derived from the
sequences being related, and chance. The simulated data distribution was then
used to derive a threshold MI value above which, for the real data, the authors
would determine that the correlation may be biologically significant.

Z-scores

Z-scores give, for a given value, how far away that value is from the mean,
in units of standard deviations. The equation is:

Z =
x′ − x
σ(x)

(3.5)

We have a set of values, x. The mean of the values is given by x, and the
standard deviation is σ(x). An individual value in this set is given by x′.

3.4.3 Chosen method of background removal

We have decided to use Z-scores to remove the background noise due to the
fact that Z-scores can be used in conjunction with non-parametric bootstrap-
ping, as we shall discuss below in more detail. We decided against parametric
bootstrapping as we wished to keep non-parametric methods non-parametric;
parametric bootstrapping requires the reconstruction of a phylogenetic tree for
the input data, which defeats the purpose of using non-parametric methods in
the first place. We now discuss our Z-score methods in a lot more detail.

The use of Z-scores for background noise removal is what unifies all five of
the co-evolution detection methods to be compared. There are two approaches
to calculating the Z-score. We call these the shuffle method and the original
values method. The shuffle method uses information from the columns we are
looking at to remove background noise, whereas the original values method
uses information from the entire alignment whenever we want to calculate the
correlation of any pair of positions.

The original values Z-score approach can be found in several papers (for ex-
ample, [73] and [42]). The shuffle method was found in the paper by Waechter
et al. [191]. We aim to see what difference each of these Z-score approaches
would make to the results. We believe that the original values Z-score method
would be better than the shuffle Z-score method because, rather than just re-
moving background correlation within a column (which the shuffle Z-score
aims to do), we are removing the background from the rest of the alignment.
That said, these two methods have not, to our knowledge, been compared ex-

59

perimentally, which we shall do in Chapter 6. We now discuss each of these
Z-score approaches in more detail.

Shuffle

We shall describe how this approach would work for Mutual Information
(MI), but note that the general method is also the same for CAPS and PlotCorr.
We then describe the amendments that need to be made so that this approach
can work for the parametric methods Waddell – MI and Waddell – Kappa.

This method involves shuffling all of the characters in each column of
the input alignment in place, and then re-calculating the MI for each pair of
columns (this approach uses non-parametric bootstrapping). Repeating these
two steps some number of times (we used 100), we can use the mean and
standard deviation for the shuffled MI scores to calculate the Z-score for the
actual MI value:

Zi,j =
xi,j − shuffled xi,j
σ(shuffled xi,j)

(3.6)

shuffled xi,j and σ(shuffled xi,j) are the mean and standard deviation, re-
spectively, of the MI (or other correlation statistic) values calculated for col-
umn pair i and j for the shuffled versions of the alignment. xi,j is the corre-
lation value for that pair i and j before we did any shuffling at all (i.e. for the
original alignment). An example using the shuffle Z-score approach is given
in Appendix A.1.

The shuffling of each column in place removes background noise from the
overall correlation between positions by breaking the associations between
amino acids within a sequence.

As mentioned above, the only difference between the non-parametric and
the parametric methods for this Z-score approach is in how the matrices are
shuffled. In the parametric methods, instead of calculating statistics based
on our alignment directly we are working with binary matrices. Shuffling
these in the way described above would eliminate the meaning of the matrices
themselves. This is because each cell in the matrix tells us whether there is a
difference between the sequences at either end of a branch of the phylogenetic
tree, this tree representing the relationships between the sequences in the input
alignment. Shuffling the columns of the binary matrix would mean that the
totals for each row of the matrix would change.

60

Because of this, we have a different method of shuffling the matrix. The
algorithm for permuting the matrix was adapted from code given in FMc’s
answer on a StackOverflow question [172]; we adapted the code from Perl to
C++ (code on StackOverflow is available under the Creative Commons CC
BY-SA license). This binary matrix shuffling code works by first picking one
value in the entire matrix to be inverted (1 to 0 or 0 to 1). This upsets the row
and column totals, so it then fixes the totals by making further changes to the
matrix. This allows us to keep the row and column totals of the binary matrix
constant.

To determine whether one call to this randomisation function would be
enough, we looked at the correlation between the original matrix and each of
the generated matrices, for several examples. For each example alignment,
we generated 1000 shuffled alignments for the non-parametric methods, and
1000 of the corresponding binary matrices for the parametric methods, and
measured the amount of correlation between each new matrix and the original
matrix. From this we found that shuffling the matrix once was enough.

Original values

There is an alternative way to calculate the Z-scores, and this was found
in a couple of papers [73, 42]. This approach involves using the original
values of whichever test statistic we have calculated for every pair of columns.
We calculate the mean and standard deviation of these values, and can then
straight away calculate the Z-scores for each pair of columns. An example
using the original values Z-score approach is given in Appendix A.1.

This type of Z-score removes background noise from the overall correla-
tion by finding a mean correlation for all possible pairs (which we take to be
the background noise), and removing this (subtracting it) from an individual
pair’s correlation value.

We have decided to compare the original values and shuffle Z-score types in
the next chapter; although we have said we believe the original values Z-score
would perform better than the shuffle Z-score, this has not, to our knowledge,
been shown experimentally yet.

3.5 Summary

In this chapter we have compared different categories of co-evolution de-
tection method, and also different approaches toward removing background

61

noise. We have chosen the methods to implement, which we shall compare
on simulated data. We wish to ensure that our simulated data is similar to the
real data we shall be using our methods on in the future, so in the next chapter
we discuss data collection.

62

Chapter 4

Data Collection

We wish to compare the methods we selected in the previous chapter ac-
cording to how well they can detect co-evolving sites within alignments. We
could use real data to do this, but we do not know for certain where the true
co-evolving sites are; indeed, sites which are correlated (i.e. which have char-
acter pairs which occur more often in a pair of columns than expected by
chance) are only hypothesized to have occurred due to molecular co-evolution
[176]. Because of this, we wish to simulate our test data, simulating the effects
of co-evolution, so that we know for certain where the truly co-evolving sites
are and can evaluate our algorithms’ performance in identifying these sites
(without false negatives or false positives). Before we can do that, though, we
must ensure that the data we are simulating is similar to the real data we shall
apply our methods to; in this chapter we shall detail how we gathered that
real data. We want multiple sequence alignments of human sequences with
sequences from other species. In the next chapter, we will derive simulation
parameters from this data. This ensures that our simulated data emulates the
important characteristics defining real data. In Chapter 8, we will analyse the
real data to identify co-evolving sites.

This chapter starts by describing the choice of database for the data collec-
tion, and then the methodology used to obtain the data itself. The steps this
chapter covers are shown in Figure 4.1.

4.1 Databases

Before actually collecting the data, we need to choose which database
to use. In this section, we first review some of the possible databases we
could use, and shall then detail the reasons for our choice. For each of these
databases, we detail how it approaches constructing the relationships between
proteins.

63

Figure 4.1: This chapter covers the real data collection from the database
HomoloGene, and alignment of these sequences.

4.1.1 Ensembl

The Ensembl database stores genome sequences from 86 vertebrate species
[52] from a variety of sources [63]. It is managed by the European Bioinfor-
matics Institute and the Wellcome Trust Sanger Institute [51]. The method
Ensembl uses to find the ancestral (homology) relationships is given below,
summarised from their webpage on the topic [54]:

1. Take all gene sequences stored in the Ensembl database. Find a trans-
lation of each gene sequence 1.

2. Use BLAST to find which sequences are related to each other based
on how they look. BLAST (Basic Local Alignment Search Tool) is a
tool used to search a database for sequences similar to a provided query
sequence.

3. Generate clusters of gene sequences based on similarity relationships
found in the previous step.

4. Split particularly large clusters (ones with>400 sequences) into smaller
ones.

1A translation is where we take the DNA sequence, and then turn it into the appropriate
protein sequence. This is as opposed to beginning with protein sequences obtained through
experimental means.

64

5. Build a multiple sequence alignment of each cluster.

6. Build a phylogenetic tree for each alignment.

7. Use each phylogenetic tree to find orthology and paralogy relationships
(between and within species, respectively) between pairs of genes.

8. Give each GeneTree an ID.

4.1.2 HomoloGene

HomoloGene is a database of homology relationships between protein se-
quences managed by the NCBI (National Center for Biotechnology Informa-
tion) [130]. There are 21 species, of a mixture of vertebrates and invertebrates,
represented in this database. The method for constructing the homology re-
lationships, summarised from NCBI’s webpage on the build procedure [129],
is:

1. Compare protein sequences using BLAST.

2. Build a tree from sequence similarity.

3. Use the tree to put sequences into groups, beginning at the leaves of the
tree and working towards the root.

4. Map protein alignments back to their corresponding DNA sequences.

5. Calculate distance metrics for the sequences generated from the previ-
ous step.

6. Match sequences using synteny where applicable 2.

7. Match up any remaining sequences.

8. Find orthologous and paralogous relationships using set criteria.

4.1.3 UCSC Genome Bioinformatics

UCSC Genome Bioinformatics is managed by the University of California,
Santa Cruz. When we visited this website in late 2014, we found the set of
multiple sequence alignments of seven vertebrate species (including human)
for the protein coding sequences of their genomes (since then alignments with
more species have been added).

2Synteny is ‘a term used to describe the state of two or more genes being present on the
same chromosome, though not necessarily [inherited together].’ [128]

65

The multiple sequence alignments were constructed as follows [185]:

1. Use LASTZ to generate pairwise alignments between each of the six
non-human species and human

• LASTZ is the newer form of BLASTZ; the only difference is that
bugs encountered in BLASTZ have been fixed in LASTZ [23]

• The version of BLASTZ used by UCSC derives ultimately from
Gapped BLAST, which extends the original BLAST to allow the
construction of alignments containing gaps [6]. A separate im-
plementation of this program formed the original BLASTZ [166]
– the main difference between this and Gapped BLAST is that it
‘essentially guarantees that computer memory will never be a con-
straining resource’ [166, pp. 585]. Some further improvements to
the algorithm used gave the version of BLASTZ that UCSC uses
[165].

2. Link pairwise alignments into chains; a chain is ‘an ordered sequence
of traditional pairwise nucleotide alignments (“blocks”) separated by
larger gaps, some of which may be simultaneous gaps in both species’
[100, pp. 11485]

3. Each chain is given a score in a similar way to how alignments are
given scores, and the chains are ordered based on their scores, from
maximum to minimum. Chains are taken from this ordered list in turn
and arranged on the genome, giving us a “net”

4. Pairwise alignments produced (we assume in the following step) are
aligned together to produce multiple sequence alignments

4.1.4 Choice

First we shall analyse some of the similarities and differences between
the databases just described (Ensembl, HomoloGene, UCSC), and then detail
why we chose to use the database we did. The first major difference between
each database is the number of species represented in each; Ensembl has 86
vertebrate species, HomoloGene has 21 of a mixture of vertebrates and in-
vertebrates, and UCSC has 7 vertebrate species. 7 is quite a small number in
comparison with the others, so we do not consider UCSC as a possibility (af-
ter time of writing, it should be noted that the number of species in alignments
produced did increase).

66

Comparing the methodologies used to construct the datasets within En-
sembl and HomoloGene, it is apparent that these methods are quite simi-
lar. One difference is that Ensembl translates gene sequences into protein
sequences, while HomoloGene begins with protein sequences and later back-
translates to gene sequences. Both methods begin by using BLAST to find
relationships between sequences, and then construct either clusters (Ensembl)
or a tree (HomoloGene) based on these relationships. Ensembl does not use
any further distance metrics (it just finds homology relationships using a tree
constructed from the clusters), whereas HomoloGene uses the concept of syn-
teny and distance metrics to find the relationships. Both databases produce
orthology and paralogy relationships between the sequences as the final out-
put.

We have decided to use HomoloGene as our database of choice – it has a
balance of enough species and also uses more criteria for finding homology
relationships than Ensembl does. This does not necessarily mean that the
relationships are “more reliable”, but for the sake of making an initial choice
on which database to use, it is sufficient.

4.2 Data collection methodology

We shall now outline how we collected the “real” data from HomoloGene,
and then how we made our alignments.

HomoloGene provides us with clusters, each one containing a set of homol-
ogous sequences from evolutionarily related species. We wanted to generate
alignments for the clusters which contained at least one human sequence. This
is the method we used to do so:

1. For each HomoloGene cluster ID (only including clusters which have
at least one human protein/gene):

(a) Retrieve the HomoloGene-made protein sequence alignment for
that cluster.

(The next steps are necessary due to the fact that HomoloGene is
updated less frequently than the other databases run by NCBI, and
the sequences used to construct the HomoloGene alignment may
have been updated, or deleted (from NCBI’s Protein database),
since the alignment retrieved in the previous step was constructed.)

(b) For each protein ID in that alignment:

67

i. Retrieve the XML file for that protein from NCBI’s Protein
database.

ii. Check the status of the protein in the XML file we just re-
trieved. There are three possible statuses: live, replaced, and
suppressed.

• Live: we do not need to do anything further; if the ID is
live then that means it is still in use. Use the sequence
from the HomoloGene alignment for this protein.

• Replaced: look up (in the same XML file) which ID this
one has been replaced with, and retrieve the protein se-
quence for the new ID.

• Suppressed: this means it has been removed, so we need
to go back and look at the gene ID associated with that
protein; we can retrieve this by obtaining a slightly differ-
ent type of XML file, and looking for the associated gene
ID. Once we have the gene ID, we need to check if that
gene ID is live. If so, continue. If not, we either find the
gene ID it has been replaced with or skip this sequence
altogether if we cannot find a replacement.

• Assuming we have some gene ID to look at for a new pro-
tein sequence, we then check whether our original protein
ID had any identical proteins associated with it. If so,
check these against the protein IDs associated with our
gene ID; if there is a match, use that sequence from that
protein ID. If there is not a match or there are not any
identical proteins to begin with, then pick the first protein
ID available to us, and retrieve the protein sequence from
that. If there are no protein IDs for our gene ID, skip this.

(c) Use T-Coffee’s M-Coffee feature (described below) to align the
sequences [136], and then filter out columns with a threshold of 4,
as this is the default value used by the M-Coffee server [26].

4.2.1 Alignment

We were originally going to align our sequences using some alignment
program, and then (with the recommendation of Richard Emes, Professor of
Bioinformatics at Nottingham University (personal communication, 23rd Oc-
tober 2015)), we were going to use Jalview [194] to check each position in the
alignment generated for its quality – aligning amino acids so that they appear
in the same column of a multiple sequence alignment implies that these char-

68

acters descended from an ancestral character [112], but when the sequences
we are aligning are of different lengths, we may have several different pos-
sibilities for how to align those sequences [108]. When we inspected the
Jalview program, we noted that it offered several different multiple sequence
alignment programs, all in the class of progressive aligners, which means they
cluster together pairs of sequences (as well as the resulting pairwise align-
ments with other sequences) according to relatedness, and align progressively,
rather than aligning the entire group of sequences in one go [112]. All of these
were described in the review by Löytynoja [112, pp. 215] as follows:

• T-Coffee: ‘Original consistency-based progressive aligner; meta-aligner’
[112, pp. 215] – consistency-based aligners use an objective function
which attempts to find the alignment between two sequences, A and B,
which has the maximum consistency value when we look at ‘A and B’s
independent alignment to outgroup sequences C, D, E, etc.’ [112, pp.
218]

• ProbCons: ‘Probabilistic variant of the consistency algorithm; amino-
acid sequences only’ [112, pp. 215] – such probabilistic variants com-
pare the alignment of A and B against all possible alignments, weight-
ing them using their posterior probabilities

• MUSCLE: ‘Fast progressive aligner with iteration and refinement’ [112,
pp. 215] – ‘iteration and refinement’ means we go through an itera-
tive process whereby we split our initial alignment produced into two
smaller alignments and then re-align them together; ‘if this alignment
is better than the previous one, it is accepted and the process continues’
[112, pp. 218]

• MAFFT: ‘Fast progressive aligner with iteration and refinement using
consistency score’ [112, pp. 215]

• ClustalW: ‘Classical progressive aligner’ [112, pp. 215]

From this list of alignment programs we decided to investigate T-Coffee, its
sister program M-Coffee, as well as Clustal Omega as we had come across this
program frequently before. The quality score used by T-Coffee and M-Coffee
(and Coffee’s other “flavours”) is called TCS. One of the weaknesses of other
scoring methods is ‘their reliance on sequence identity and their tendency to
exclude phylogenetically informative sites containing too many indels’ [27].

Clustal Omega [169] uses a progressive alignment approach, and uses a
relatively fast method mBed to produce the guide tree for the alignment. The

69

alignments are then made using HHalign. Clustal Omega performed well at
being able to find alignments when compared to T-Coffee in benchmark tests,
but worked out to be a lot slower (e.g. the second benchmark took under half
an hour to complete in Clustal Omega, and about 2 days in T-Coffee) [169].

It should be noted that the paper introducing and outlining T-Coffee [136]
was published 11 years before that for Clustal Omega [169]; as such, the
comparisons made in the former paper are to older versions of Clustal.

M-Coffee (where the “M” stands for “meta”) takes T-Coffee’s original con-
cept of combining lots of alignments from a library and extends it to combin-
ing 15 alignments from different alignment programs. In the paper introduc-
ing this method, it was found to be an improvement on the individual methods
whose alignments provided information to M-Coffee [192]. However, it is not
necessary to include the results from all 15 considered alignment programs in
order for M-Coffee to work well. In fact, it is recommended that this is not
done, as it only works well as long as relatively dissimilar methods are in-
cluded in the consensus. It proposes a set of eight methods to combine using
M-Coffee, but also says that all fifteen can be included as long as you apply a
weighting to each method.

According to Pais et al. [144], consistency-based multiple sequence align-
ment programs, like T-Coffee, generally produce better results than other
types of programs. Unfortunately, at time of writing, we could not find any
independent (i.e. not by the authors) review paper which included M-Coffee
in the comparison.

M-Coffee was chosen as the alignment program because it includes infor-
mation from several methods.

Even after alignment, it was necessary to consider whether all positions in
the alignment had been aligned correctly. For this, the TCS (Transitive Con-
sistency Score) [27] was used; this is built-in to T-Coffee and therefore easy
to use in conjunction with that program. This was chosen because TCS ‘man-
ages to bring all [alignment] methods at a comparable level of accuracy’ [27,
pp. 1627]. The Filtered TCS method was chosen, which uses the ColumnTCS
measure to filter out columns less than some pre-specified threshold. Com-
pared to alternative methods such as GUIDANCE (Guide tree based Align-
ment Confidence) and HoT (Heads or Tails), TCS was found to be better at
identifying correctly aligned characters in an alignment. The TCS column
threshold of 4 was used as this is the default used in the TCS web server [26].

70

4.2.2 Data collected

Now that we have described the methodology used to collect the data, we
shall briefly describe the nature of the data collected. 17479 alignments were
constructed, with the following characteristics:

• Minimum number of sequences = 2

• Maximum number of sequences = 80

• Mean number of sequences ≈ 6

• Median number of sequences = 6

• Mode number of sequences = 5

• Minimum alignment length = 51

• Maximum alignment length = 8792

• Mean alignment length ≈ 574

• Median alignment length = 429

• Mode alignment length = 312

4.3 Summary

In this chapter we compared several databases for protein sequences, and
described how we constructed our data set of “real” data using our chosen
database, HomoloGene, and also how we created alignments from these se-
quences. In the next chapter we derive parameters from this data set for use
in our simulations, and conduct the simulations themselves.

71

Chapter 5

Simulation

In the previous chapter, we collected real data from HomoloGene. We shall
now use it to derive parameters for our simulation, such that the resultant
simulated data is as close as possible to the real data. As detailed earlier,
the correlation signal observed between pairs/groups of sites is made up of
several components, some of which we are less interested in (for example, the
correlation due to phylogenetic background, Cphylogeny, and the correlation
due to randomness, Cstochastic). Our aim was to test our algorithms according
to how well they could reduce the effect of these two background signals,
while detecting (what appears to be) the “true” co-evolution signal. “Real”
data would not be effective for this purpose because most of the time we do
not know for certain which effects can be attributed to which signals. Also,
we very rarely know for certain where the “real” co-evolving sites are. To
overcome this, we decided to generate simulated data so that we know for
certain where the co-evolving sites are in our data.

This chapter first details the simulation program chosen, and then the pro-
cess of deriving the necessary parameters for the simulation. The steps this
chapter covers are shown in Figure 5.1.

5.1 Simulation program

In this section we compare several programs for simulating protein se-
quences, and give the reasons for our choice of program.

We identified several papers where the authors developed their own method
of simulating alignments with co-evolving sites [181, 65, 116, 56], but we did
not use these due to the reasons outlined below:

• Tillier and Lui [181] – relatively small number of co-evolving sites used
(a constant number, 10, was used for all alignment sizes (40 - 320 rows

72

Figure 5.1: This chapter covers the derivation of simulation parameters from a
combination of information from the real data collected in the previous chap-
ter, and information from the literature, as well as the simulation process itself
(shaded boxes).

and 50 - 500 columns)), and we wanted to vary this across different
alignment sizes

• Fodor and Aldrich [65] – the alignments it produces are only 2 columns
wide, whereas we want to use both large and small alignments, to see
what effect this has on the results obtained

• Martin et al. [116] – like the method of Tillier and Lui, it used a constant
number of co-evolving sites, and it also used a constant number of rows
and columns in the alignment

• Fares and Travers [56] – same reason as for Martin et al. [116]

We then decided to investigate several programs implemented solely for the
purpose of simulating molecular co-evolution (as opposed to being developed
for the authors of a paper to use once for their study and therefore possibly
tied to the kind of data they were trying to simulate). We began by visiting the
NIH’s Genetic Simulation Resources website [126] and used their compari-
son tool to filter out programs which simulated protein sequences; this gave
us ALF [35], CASS [79], CS-PSeq-Gen [183], EvolveAGene [85], FLUX
SIMULATOR [82], indel-Seq-Gen [174], Indelible [62], ProteinEvolver [8],

73

Rose [173], Seq-Gen [159], and Simprot [145]. We had also already, indepen-
dently found out about the program MSAvolve [1], so we added this to the list
to compare. Out of all of these, only CS-PSeq-Gen and MSAvolve actually
simulate molecular co-evolution. Of these two, we decided on CS-PSeq-Gen
[183] as we were encouraged by the fact that it was based on PSeq-Gen [80],
a program which we understand to be widely-used in the simulation of protein
sequences. PSeq-Gen simply evolves protein sequences according to a given
phylogenetic tree input, but CS-PSeq-Gen expands on this by allowing for the
random generation, or user specification, of clusters of correlated sites in the
protein sequence.

Having chosen our simulation program, we now need to choose the values
that each of the CS-PSeq-Gen parameters shall take in our simulations.

5.2 Simulation parameters

We shall now look at the CS-PSeq-Gen simulation parameters, describing
each and detailing how we chose the values of each parameter to use. To work
out biologically plausible values for these parameters, we consulted various
studies which had used the PSeq-Gen program. In cases where consulting the
literature did not provide conclusive suggestions, we did experiments to work
out the values to use. We also, of course, looked at the data collected in the
previous chapter.

5.2.1 Evolution model

PAM, JTT (Jones-Taylor-Thornton, after the authors) and MTREV (Mito-
chondrial Reversible) are the evolution models offered by the program. PAM
was described in Section 2.2.2. The method for constructing the JTT similar-
ity matrix is very similar to that used to construct PAM, the main difference
being some approximations are made in order to speed up the construction
itself [97]. MTREV [2] used proteins encoded in mitochondrial DNA (as op-
posed to nuclear DNA) to construct the substitution matrix using a maximum
likelihood method. All but one of the papers which used PSeq-Gen that we
consulted chose to only use JTT [5, 125, 198, 93, 87], so we only use JTT too.

5.2.2 Alignment dimensions

The size of the alignment produced is affected by two different parameters:
the alignment length and the tree (the number of leaves in the tree specifies
the number of sequences in the alignment).

74

Figure 5.2: A histogram showing the frequency of different “real data” align-
ment lengths in terms of number of amino acids. Bin size is 100.

Figure 5.3: A histogram showing the frequency of different “real data” cluster
sizes (i.e. number of sequences in the alignment). Bin sizes are unique, so
this is not technically a histogram, but this was the easiest way to show the
various sizes.

Wanting our programs to be usable for “real” data in the future, we looked
toward the real data we collected for ideas. Details of the methods for obtain-
ing this data can be found in Chapter 4.

We constructed histograms for the lengths of the HomoloGene alignments
we had constructed (Figure 5.2), and for the number of sequences in those
alignments (Figure 5.3). For the alignment length histogram, we can see that
the real data alignments tend to be fairly short; using this alignment for guid-
ance, we chose to simulate alignments with lengths 50, 600, and 1200. Also,
for the number of sequences histogram, the values tend to also be small in real
data. We could have chosen 2 as a number of sequences to be simulated, but
we felt this would not give enough information, so we began at 6 sequences,
and also simulated alignments with 10 and 22 sequences.

75

CS-PSeq-Gen requires a tree, so that it can simulate the evolution of se-
quences down the tree (this is in Newick format, described in Section 2.4.1).
For each of the real data alignments, we constructed a phylogenetic tree using
ClustalW2 (described in Section 2.4.2). We used the following command:

clustalw2 -infile="${words[0]}_dir/

${words[0]}${words[1]}.txt.fa" -tree

-clustering=upgma

From the set of trees constructed from the real data, we chose one with 6
leaves, one with 10, and another with 22. These would be the trees we would
pass to CS-PSeq-Gen for our simulations.

The branch lengths of the trees constructed are measured as ‘the number of
substitutions as a proportion of the length of the alignment (excluding gaps)’
[50]. However, CS-PSeq-Gen assumes branch lengths are equal to ‘the num-
ber of substitutions observed along branches’ [81], i.e. it is an absolute value,
whereas ClustalW2 gives branch lengths as a value relative to the length of
the alignment we gave it. This means that before we can run our simulations,
we must work out the appropriate branch scale parameters to use.

5.2.3 Branch scale

Given the tree we are using to generate our data, we can apply a branch
scaling factor to this tree. This factor is multiplied with each branch length to
get the new, scaled, branch length, which serves to increase the branch lengths
if the factor is > 1, or decrease the branch lengths if the factor is < 1.

We needed to work out a branch scale factor for each combination of tree
(number of sequences) and alignment length. We did so by comparing the
Percentage Identity Matrix (PIM) obtained for each alignment from which
we derived the tree against the matrix obtained for an alignment simulated
using that tree (and a particular alignment length). (The Percentage Identity
Matrix for an alignment is a matrix where each value denotes, for a different
pair of sequences within that alignment, the percentage of characters within
those two sequences that are equal. An example is given in Figure 5.4.) The
general format of our comparison method is given below:

1. Given a set of simulated alignments generated from a particular tree,
ensure these are in FASTA alignment format (CS-PSeq-Gen generates
alignments in PHYLIP format, so conversion is usually necessary)

76

Figure 5.4: An example showing how a Percentage Identity Matrix (PIM) can
be constructed from an alignment. For example, the value in the third cell in
the first row is 0.33 because the sequences in rows 0 and 2 have two characters
identical (at positions 1 and 5) (2/6 = 1/3 = 0.33).

2. Use a program such as ClustalW2 to obtain the Percentage Identity
Matrix (PIM) for each alignment, and for the original alignment from
which the tree for simulation was generated

3. Use R1 to perform a Wilcoxon rank sum test to compare each simulated
alignment’s PIM with the original alignment’s PIM

4. Average p-values over length, or branch scale, whichever parameter we
are interested in measuring the effect of

We iterate over the above process for different values of the branch scale
factor, and choose the one which yields the maximum average p-value. In
the Wilcoxon rank sum test performed, the null hypothesis we are testing is
that the two groups being compared (the two Percentage Identity Matrices)
are the same, and the alternative hypothesis is that these groups are different.
A p-value less than some threshold (usually 0.05) tells us that we can reject
the null hypothesis (and so we have reason to believe the two groups are
different). Here, we reverse this definition, and hypothesise that the higher
the p-value, the more likely the two groups (in our case, the PIM values for
the simulated alignment and the real alignment) are to be similar. This is why
we are looking for large p-values. (It should be noted that the p-value does not

1R is a programming language for performing statistical analyses [158]

77

actually denote the strength of the relationship, but for the sake of obtaining
good values of the branch scale parameter, we ignore this.)

Completing this process, we obtained the following branch scale factors for
each combination of alignment length (l) and number of sequences (s):

• s = 6, l = 50: 43

• s = 6, l = 600: 460

• s = 6, l = 1200: 940

• s = 10, l = 50: 29

• s = 10, l = 600: 390

• s = 10, l = 1200: 720

• s = 22, l = 50: 35

• s = 22, l = 600: 370

• s = 22, l = 1200: 750

5.2.4 Gamma scale parameter

This parameter influences the amount of mutation rate variation between
positions in the alignment generated – a value of α less than or equal to 1 pro-
duces a distribution that is L-shaped (so most positions have a low mutation
rate, and a small number have a relatively high mutation rate), whereas a value
greater than 1 produces a distribution which is more Normal-like (so most
positions have some median mutation rate, with smaller numbers of positions
having particularly high or low mutation rates) [201]. (Figure 5.5 shows how
this distribution looks for different values of α.)

We varied the value of this parameter as we cannot say whether rates differ
significantly or not in real life – ‘substitution rate variation exists among sites
in almost all genes or proteins, with the possible exception of some pseudo-
genes or “junk” DNA’ [201, pp. 367]. We looked towards the literature for
suggestions as to possible values to use:

• [125] used α = 1 and did not say why

• [87] used α = 1 and 100 to model among site rate variation

• [198] used α = 1, suitable for the data they were going to use

• [41] used α = 0.7 and did not say why

78

Figure 5.5: The probability density function of the Gamma distribution, show-
ing the distribution for different values of k (α) and θ (β); see Section 2.2.1 for
more details. Figure obtained from [11] (available under Creative Commons
license; see citation for details).

Considering we wanted to vary the amount of mutation rate variation, and
also taking into account how the distribution changes shape depending on the
value of α, we chose three values for our simulations: 1, 100, and no value
(which means there is no rate variation between sites).

5.2.5 Co-evolving clusters

As far as the size of co-evolving clusters and number of clusters is con-
cerned, most of the methods used in the papers consulted simply detect pairs
[1, 17, 20, 22, 28, 29, 30, 32, 40, 42, 44, 45, 56, 58, 65, 68, 69, 95, 114,
131, 143, 153, 168, 181, 193, 195]. A good selection of other papers also
detect larger groups of co-evolving sites; the values used by these are given in
Appendix A.2.

To decide which values to use, we picked a minimum, “average”, and max-
imum value of the number of clusters and sites per cluster to use based on
information from the literature. We chose to have 1, 8, and 44 clusters, and
then 2, 13, and 67 sites per cluster (as well as an extra, random, number of
sites per cluster which means that the simulation program chooses the number
of sites per cluster in between 2 and 67 randomly; in this case, the number of

79

sites per cluster can differ between clusters).

5.2.6 Amino acid frequencies

We also needed to consider how the sequence at the root of the tree is
generated by the simulation program. We did so by looking at the code for
the simulation program itself, since the original paper [183] did not give the
detail we needed. The program has an array, freq, whose values are amino
acid frequencies according to Dayhoff [36] divided by the sum of all of the
frequencies. It then has an array, addFreq, calculated as follows:

• addFreq[0] = freq[0]

• addFreq[i] = addFreq[i− 1] + freq[i]

Each amino acid of the root sequence is chosen by generating a random
number between 0 and 1, starting at the beginning of addFreq, and incre-
menting the index into addFreq as long as the value of addFreq[i] is less
than the random number generated. Wherever we stop incrementing (when
addFreq[i] is at least as big as the random number), that index tells us which
amino acid to choose.

In the end we decided to simply use the default Dayhoff frequencies as
they are programmed into CS-PSeq-Gen because those are taken from a large
amount of real data (‘71 groups of closely related proteins’ [36, pp. 345]).
(In reality, CS-PSeq-Gen has made a small change to the frequencies being
used – they have changed the frequency of K from 0.081 to 0.080 in order
to achieve a total sum of exactly 1, rather than 1.001, but this is only a small
change.)

5.3 Iterations

The parameters chosen are:

• Evolution model: JTT

• Alignment length: 50, 600, 1200

• Number of sequences per alignment: 6, 10, 22

• Gamma scale parameter: none, 1, 100

• Number of co-evolving clusters: 1, 8, 44

• Co-evolving sites per cluster: 2, 13, 67, random (between 2 and 67)

80

We were able to collect results for 100 iterations per set of parameters;
by this we mean, we simulated one hundred alignments for each set of pa-
rameters, and generated results for each method, for every single alignment
generated. As a more general comment on the data generated that we used
for collecting results, CS-PSeq-Gen can actually produce “co-evolving sites”
which are in reality, fully conserved, i.e. not co-evolving at all. Because of
this, we needed to filter through the results in order to only count those whose
co-evolving sites are actually co-evolving (not conserved). This meant that
some alignments’ results were not able to be used. We used a total of 5510
alignments in our analysis.

5.4 Summary

In this chapter we first described how we chose our simulation program,
CS-PSeq-Gen, from the possibilities available to us. Simulated data is prefer-
able over real data for comparing the co-evolution detection methods as we
can say for certain where the co-evolving sites are in simulated data, and we
can also constrain the parameters of the simulation such that the resulting
data emulates the real data. The simulation parameters were also chosen in
this chapter. The evolution model, gamma scale parameters, and co-evolving
clusters were chosen using information from the literature. The alignment di-
mensions were chosen looking at the dimensions of the real data alignments
constructed in the previous chapter. The branch scale parameters were cho-
sen using experimentation. Now that we have simulated the data necessary to
compare the co-evolution detection methods, we can move forward with the
comparison itself, detailed in the next chapter.

81

Chapter 6

Comparison of Serial Methods

At the end of Chapter 3 we chose the five methods that we shall be com-
paring in the current chapter. In Chapter 4 we collected real data (the box
labelled “Real data collection” in Figure 6.1), which was used to inform the
parameters for the simulation, which we described in Chapter 5, as well as the
rationale for these choices (the boxes labelled “Derive simulation parameters”
and “Simulation” in Figure 6.1). It is this simulated data that we shall be using
to evaluate each of the co-evolution detection methods in the comparison.

This chapter describes the results of the comparison of five methods for de-
tecting molecular co-evolution (CAPS, PlotCorr, Mutual Information, Wad-
dell – Mutual Information, and Waddell – Kappa), using the simulated data
generated in the previous chapter. We then make recommendations as to
which method(s) to parallelise. The steps this chapter covers are shown in
Figure 6.1. We begin by giving an overview of the general process of gath-
ering the results, and show the results themselves. At the end of this chapter
we draw together our findings for the various methods considered in order to
identify the most suitable methods for the parallelisation described in the next
chapter.

6.1 Results-gathering approach

First we shall outline the approach used to gather the results from the sim-
ulated data. As discussed before, we used simulated data because with real
data we cannot be sure where the truly co-evolving sites are; however we can
control this in simulated data, allowing for a fairer comparison.

As discussed in Chapter 3, we decided to compare two approaches to cal-
culating Z-scores for our results. The aim of Z-scores is to remove the effect

82

Figure 6.1: This chapter covers the comparison of the co-evolution detection
methods on simulated data (shaded box).

of background noise from the correlation values. As a reminder, the Z-score
equation is given by:

Z =
x′ − x
σ(x)

(6.1)

where x′ is a correlation value for a pair of columns in the input alignment.
x is the mean, and σ(x) the standard deviation, of either (i) the correlation
values for all pairs of columns (for the original values Z-score), or (ii) the
correlation values for this pair of columns after shuffling the characters within
the columns in place (for the shuffled Z-score). Once we have generated a
Z-score for each pair of positions (according to a particular method such as
CAPS, PlotCorr, etc.) we need to choose a Z-score threshold. The pairs of co-
evolving sites generated by each method consist of those pairs with a Z-score
greater than some threshold. We chose Z-score thresholds of 0–3 inclusive
(integers only) after looking at the Z-scores we obtained and the statistics for
those results for a small amount of data (we describe the statistics below).
Note that here we are talking about the classification of the sites, which may
be different to the ground truth of whether that pair of sites is co-evolving or
not. The following table illustrates this:

83

Classified as
co-evolving

Classified as
not co-evolving

Truly
co-evolving

True positive (tp) False negative
(fn)

Truly
not co-evolving

False positive (fp) True negative (tn)

For each of the Z-scores generated for each pair of sites (and given a cho-
sen Z-score threshold), we can categorise that Z-score as a true positive, true
negative, false positive, or false negative, according to whether that pair is
actually co-evolving and whether it was classified as such.

There are statistics we can use to summarise the counts of true positives,
true negatives, etc. that we have for a particular combination of Z-score type,
threshold, method, and input alignment. The ones we decided to focus on are:

• Sensitivity = tp
tp+fn

; i.e. that method’s ability to classify truly co-
evolving sites as such

• Specificity = tn
tn+fp

; i.e. that method’s ability to classify truly not co-
evolving sites as such

• Precision = tp
tp+fp

; i.e. given that a pair of sites has been classed as
co-evolving, how likely is it that they are actually co-evolving?

For each combination of Z-score type (shuffle and original values), thresh-
old (0, 1, 2, 3), method (CAPS, PlotCorr, MI, Waddell – MI and Waddell –
Kappa), and alignment, we calculated the sensitivity, specificity, and preci-
sion. It should be noted that the simulation program used, CS-PSeq-Gen, can
define certain sites as co-evolving when these may not be detected as such by
the detection methods. For a pair of sites to be classified as co-evolving by the
detection methods, they need to have accumulated mutations during sequence
evolution – the more mutations that have occurred, the easier co-evolution is
to detect. Conserved sites will never be detected as co-evolving, so we only
consider those sites defined as co-evolving by CS-PSeq-Gen that are also not
conserved.

A diagram showing the process we shall be following within this chapter
is shown in Figure 6.2. We shall begin by establishing which of the two ap-
proaches to calculating Z-scores gives us better performance, and then “fix-
ing” this such that we only present results using this approach (‘Choose Z-
score type (original values or shuffle)’). As mentioned above, conserved sites

84

Figure 6.2: The process of analysis this chapter uses.

cannot be classified as co-evolving, but certain methods may give better per-
formance for higher (more unique amino acids) or lower (fewer unique amino
acids) diversity within a column of the alignment. To investigate this, we
choose a “lower” and a “higher” unique amino acid threshold and fix these
for the rest of the chapter (“Choose a ‘lower’ and ‘higher’ unique amino acid
threshold (UAA)”). The choice of Z-score threshold also influences the per-
formance of the methods compared, so for each combination of unique amino
acid threshold and co-evolution detection method, the Z-score threshold yield-
ing the best performance is chosen (“Choose Z-score threshold for (UAA,
method) pair”). These three steps are undertaken to ease the presentation of
the results. We can then analyse the results while we vary other parameters,
and finally use this analysis to inform the choice of co-evolution detection
methods for parallelisation (“Choose methods for parallelisation”).

In the next section we shall “fix” the Z-score type, and the Z-score thresh-
old(s), so that we do not have to show all 4 Z-score thresholds for both Z-score
types.

6.2 Choosing a Z-score type

As was mentioned above, we want to “fix” the values of some parameters
so that we do not need to show all of the results for all of the parameters,
to make it easier to present the results. First we shall choose which is the
better-performing Z-score approach, original values or shuffle. Once we have
established which is the best of the two, we shall only present the results
gathered using that Z-score approach for the rest of this chapter.

As a reminder, the original values Z-score approach uses the mean and
standard deviation of the correlation values for all pairs in the alignment in
the calculations. In contrast, the shuffle Z-score approach shuffles the two

85

Statistic Wilcoxon Sign
Sensitivities 1 6.087e-05
Specificities <2.2e-16 <2.2e-16
Precisions 1.552e-14 0.9034

Table 6.1: p-values for the Wilcoxon sign-ranks test (the “Wilcoxon”
column) and the sign test (the “Sign” column) for comparisons between the
sensitivities, specificities, and precisions, comparing the results from the
two Z-score types. We used alternative=‘greater’, showing that we believe
that the original values Z-score type would outperform the shuffle Z-score
type. The Wilcoxon sign-ranks test was repeated for sensitivities with
alternative=“less”, and obtained the p-value of 2.2e-16. The sign test was
repeated for precisions with alternative=‘less’, and obtained the p-value of
0.1954. Further explanation is given in the main text.

Statistic (mean) Original values Z-score Shuffle Z-score
Sensitivities 0.7444162 0.7809325
Specificities 0.9151887 0.6808495
Precisions 0.07606378 0.07018549

Table 6.2: Average sensitivities, specificities, and precisions for the two Z-
score types.

columns in a pair in place, mixing up the characters within each column, be-
fore re-calculating the correlation for that pair. This is repeated some number
of times, and then the mean and standard deviation of these correlation values
after shuffling are used in the Z-score calculations. (See Appendix A.1 for an
example using each of these Z-score approaches.)

To work out which is the better approach to calculating Z-scores, we shall
compare the sensitivities, specificities, and precisions obtained for all of the
alignments, for each of the two Z-score types.

We want to compare the set of original values Z-score sensitivities to the
set of shuffle Z-score sensitivities, and the same for the specificities and preci-
sions, to establish which Z-score type gives us the better results. The sensitiv-
ities, specificities, and precisions sets are all non-Normal, meaning we must
use a non-parametric test. Our data comfortably satisfies the assumptions of
the Wilcoxon signed-ranks test, except for one assumption, that is, the dif-
ferences between the two groups (sensitivities for the original values Z-score,
sensitivities for the shuffle Z-score, for example) should be symmetrical. If
this were true, then we could use the Wilcoxon signed-ranks test; if not, we
would need to use the sign test. Because it is inconclusive whether the differ-
ences are symmetrical or not, we have calculated the p-values for both tests.
(More detail is given in Appendix A.3.)

86

Figure 6.3: An alignment with two co-evolving groups (each with two sites)
highlighted in different colours. (The characters within this toy alignment are
quite random simply to illustrate the different unique amino acid thresholds
without showing too many sequences.)

The Z-score methods differed significantly for 5 out of a total of 6 tests
performed (2-sided tests), with the original values Z-score outperforming the
shuffle Z-score on 4 of the comparisons (see Table 6.1). We therefore chose
to use the original values Z-score.

Now that we can “fix” the Z-score type to the original values Z-score type
(we only consider this Z-score type’s results from now on), we shall look at
the overall effect that the amount of conservation in a column has on each
detection method’s results.

6.3 Analysing results per UAA threshold

First it should be noted that it became apparent that CS-PSeq-Gen can pro-
duce groups of positions which are defined by the program as co-evolving, but
which are not identifiable as such, due to at least one of the columns within the
group having only one unique amino acid. Identifiable co-evolving sites are
those with at least 2 unique amino acids (UAA) within the alignment column.
Because of this, when calculating the sensitivities, specificities, and preci-
sions, we effectively re-classified those “co-evolving” sites that were actually
fully conserved as not co-evolving.

Each co-evolution detection method could be influenced by the number of
amino acids in the columns being examined, so in this section we establish,
for each method, whether that method performs better with a higher or lower
diversity of amino acids in the alignment columns (this relates to the idea of
conservation, which we discuss in more detail now).

87

Figure 6.4: Mean sensitivities and specificities for the original values Z-score,
for unique amino acid threshold 2. Different methods are indicated by the
differently shaped symbols, and different Z-score thresholds are indicated by
the different symbol colours, as indicated in the legend.

We wanted to investigate what influence conservation has on the results, so
we introduce the concept of a unique amino acid threshold. This is a threshold
number of unique amino acids in a column that we set such that any sites with
less than that number of unique amino acids are classed as non-co-evolving
during the analysis. For example, within the alignment given in Figure 6.3
there are two co-evolving clusters, indicated by the two groups of different-
coloured columns. Setting the threshold number of unique amino acids to
3, both pairs of columns will be considered co-evolving; the first, second,
fourth, and fifth columns all have at least 3 unique amino acids. However,
setting the threshold to 5, only the second group (consisting of the fourth and
fifth columns) would be classed as truly co-evolving. The greater the number
of unique amino acids within a column, the more information that is available
for identifying co-evolving sites.

We shall now analyse results while varying the unique amino acid thresh-
old. We only consider results from the original values Z-score type, having
established in the previous section that this is the better-performing of the two
Z-score methods.

It is worth making the point that for all co-evolution detection methods,
the following is true: as the Z-score threshold increases, specificity increases
(a higher threshold means that sites that are not co-evolving would be more

88

Figure 6.5: Mean sensitivities and specificities for the original values Z-score,
for unique amino acid threshold 3. Different methods are indicated by the
differently shaped symbols, and different Z-score thresholds are indicated by
the different symbol colours, as indicated in the legend.

Figure 6.6: Mean sensitivities and specificities for the original values Z-score,
for unique amino acid threshold 4. Different methods are indicated by the
differently shaped symbols, and different Z-score thresholds are indicated by
the different symbol colours, as indicated in the legend.

89

Figure 6.7: Mean sensitivities and specificities for the original values Z-score,
for unique amino acid threshold 5. Different methods are indicated by the
differently shaped symbols, and different Z-score thresholds are indicated by
the different symbol colours, as indicated in the legend.

likely to be classed as such) but sensitivity decreases (as a stricter criterion
will inevitably mean some true positives are missed), as is to be expected.

First it shall be investigated how different methods perform with varying
unique amino acid thresholds. For each method, and for each Z-score thresh-
old, the best-performing UAA threshold was chosen. (See Figure 6.4, Figure
6.5, Figure 6.6, and Figure 6.7 for the average results for each UAA thresh-
old.) CAPS and PlotCorr always perform best with the lowest unique amino
acid threshold (2), whereas the other three methods vary depending on the Z-
score threshold chosen. For these methods, the best UAA threshold tends to
increase as the Z-score threshold chosen increases, although in many cases it
can be seen that results are very close between thresholds. If we examine all
points available for sensitivity, specificity, and precision (the latter not plotted
on the graphs for simplicity), we can again see that certain methods perform
best with certain UAA thresholds. The UAA thresholds which allow the best
performance for each co-evolution detection method were established using
the Wilcoxon rank-sum test. These trends are summarised (see Appendix A.4
for the full list of p-values):

• CAPS – to improve the precisions and sensitivities, a lower UAA is
better, for specificities a higher UAA is better

• PlotCorr – for precisions and specificities a lower UAA is better, for

90

sensitivities there is no such pattern

• MI – for precisions and specificities a lower UAA is better, for sensitiv-
ities a higher UAA is better

• Waddell – Kappa/Waddell – MI – for precisions and specificities a
lower UAA is better, for sensitivities a higher UAA is better

Overall, for all the methods but CAPS, we obtain better results with less
diversity per column (a lower UAA threshold) for precisions and specificities,
and more diversity improves the sensitivities. This makes sense intuitively,
because Mutual Information for example tends to give higher scores to po-
sitions with a higher entropy (which translates to a higher number of unique
amino acids). This means that having a higher number of unique amino acids
increases the chance of detecting a pair accidentally, whereas lowering the
number of unique amino acids increases the likelihood of categorising the
true negatives correctly. In the case of CAPS, however, the opposite is true
for sensitivities and specificities.

We can see that some methods perform better with a lower unique amino
acid threshold, whereas others perform better with a higher unique amino
acid threshold. To account for this, and to make it easier to look at individual
parameters such as alignment size without having to also consider all unique
amino acid thresholds, we shall choose a “lower” and a “higher” unique amino
acid threshold.

6.4 Choosing a “lower” and a “higher” unique
amino acid threshold

To choose an appropriate “lower” and “higher” unique amino acid thresh-
old, we shall look at the number of co-evolving blocks (“clusters”/“groups”)
that each unique amino acid threshold gives us to consider, so that we can
choose thresholds that give us enough information. The “lower” threshold
will be either 2 or 3, and the “higher” threshold will be either 4 or 5. As
the unique amino acid threshold is increased, there are inevitably fewer co-
evolving groups we can look at, but we want to find out how large this de-
crease is. If the drop between the number of blocks for threshold 2 and thresh-
old 3 is too large, for example, we would choose threshold 2 as the “lower”
threshold, even though a threshold of 3 gives us more information to work
with (through a greater diversity of amino acid characters).

91

Method Best Z-score
threshold

Sensitivity Specificity

CAPS 1 0.716941 0.887772
PlotCorr 2 0.874779 0.960892
MI 1 0.703377 0.894003
Waddell – MI 0 0.865331 0.863097
Waddell – Kappa 3 0.726281 0.983680

Table 6.3: The mean sensitivity and specificity values for the best Z-score
chosen for each method, for unique amino acid threshold 2.

Method Best Z-score
threshold

Mean sensitiv-
ity

Mean speci-
ficity

CAPS 1 0.478902 0.862558
PlotCorr 2 0.834128 0.950833
MI 1 0.969237 0.840161
Waddell – MI 3 0.859651 0.977096
Waddell – Kappa 3 0.810084 0.982038

Table 6.4: The mean sensitivity and specificity values for the best Z-score
chosen for each method, for unique amino acid threshold 4.

The number of co-evolving groups for each threshold are:

• 2: 20640 (from 5510 alignments)

• 3: 5893 (from 1938 alignments)

• 4: 1589 (from 759 alignments)

• 5: 385 (from 273 alignments)

For the “higher” threshold, we shall just choose 4 because of the fairly
large difference (between 4 and 5) in the number of blocks this gives us to
analyse. For the “lower” threshold, it is not so obvious which threshold to
choose as there are a lot of co-evolving blocks for both 2 and 3, so we consider
that the best methods for “lower” thresholds are CAPS and PlotCorr, and
compare the results for these thresholds to see where they perform better.
(See Appendix A.5 for this comparison.) We have chosen threshold 2 as our
“lower” threshold.

6.5 Choosing Z-score thresholds

Having now “fixed” the definitions of “lower” and “higher” unique amino
acid thresholds, we must choose the best Z-score threshold for each com-
bination of unique amino acid threshold and co-evolution detection method.
We do so to, again, make the presentation of the results easier, as showing

92

the results for all 4 Z-score thresholds (0–3) would become confusing when
we start considering all the different values of other parameters too, such as
alignment length.

The best Z-score thresholds are chosen by inspecting the graphs within Fig-
ures 6.4 and 6.6; starting from the cell on the graph’s grid which encompasses
those points with both sensitivity and specificity >= 0.8, look for points for
the co-evolution detection method of interest. If there are no points for this
method, inspect the cell to the left of this one; repeat until there is at least one
point for this method in the cell we are inspecting. For example, for UAA
threshold 2, for CAPS, there is no square-shaped point within the sensitivity
and specificity >= 0.8 cell, so we look to the left, and find a point for Z-score
threshold 1 within the cell for sensitivity between 0.6 and 0.8, specificity >=
0.8. This is the chosen Z-score for CAPS here. If there are multiple points
within the cell we are inspecting, as in the case for Waddell – Kappa for UAA
threshold 2 (4 points within the cell for sensitivity between 0.6 and 0.8, speci-
ficity >= 0.8), we prefer a higher specificity over sensitivity (so we would
choose Z-score threshold 3).

For the “lower” unique amino acid threshold (equal to 2), the best Z-score
threshold for each method is as follows: CAPS, 1; PlotCorr, 2; MI, 1; Waddell
– MI, 0; Waddell – Kappa, 3 (see Table 6.3). For the “higher” unique amino
acid threshold (equal to 4), the best Z-score threshold for each method is as
follows: CAPS, 1; PlotCorr, 2; MI, 1; Waddell – MI, 3; Waddell – Kappa, 3.
The only method for which there is a difference in the best Z-score threshold
between the two amino acid thresholds is for Waddell – MI (see Table 6.4).

At this point, we have fixed the Z-score type (original values), the unique
amino acid thresholds (“lower” = 2, “higher” = 4), and the Z-score thresholds
(for each unique amino acid threshold and co-evolution detection method).
These values are set for the rest of this chapter. Now we can break down the
results in terms of other parameters, such as the number of sequences in the
alignment, alignment length, rate variation parameter, and percentage of sites
that are co-evolving, and see what effect the values of these parameters have
on results.

6.6 Results by number of sequences

We first break down the results according to the number of sequences in the
input alignment. There were three values of this parameter in the simulations:

93

Figure 6.8: Mean sensitivities and specificities for unique amino acid thresh-
old 2 (with Z-score type fixed to original values Z-score, and each method’s
Z-score threshold fixed as detailed in the text). Results are broken down by
number of sequences in the alignment.

6, 10, and 22. We shall now analyse the results for each unique amino acid
threshold. All of the p-values for all tests performed are in Appendix A.6.

6.6.1 “Lower” threshold

For the “lower” unique amino acid threshold (= 2), we see the average
results shown in Figure 6.8. Averages are shown simply to aid understanding;
statistical tests, the results of which are discussed below, are run on all data
points.

To ensure the reliability of these results, statistical tests were performed
comparing the performance of each pair of co-evolution detection methods.
After confirming that the data sets were all non-Normal, both the two-sided
Wilcoxon signed-rank test and the two-sided Sign test were performed (the
latter in case the data was not symmetrically distributed). The p-values from
both tests were examined for each comparison, and in the case where the
two tests disagreed, the actual data distributions were examined to determine
which test’s result was preferred. Once the differences were confirmed, one-
tailed tests were performed to confirm exactly which method had the better
performance in each pair. This method was used throughout this chapter for
the statistical tests. (When comparing groups where these groups were not
the same size, we would use the unpaired version of this test, the Wilcoxon

94

Figure 6.9: Results for unique amino acid threshold 4 (with Z-score type
fixed to original values Z-score, and each method’s Z-score threshold fixed as
detailed in the text). Results are broken down by number of sequences in the
alignment.

rank-sum test.) From this statistical testing, it was found that overall, each
method’s performance relative to the others is constant across different num-
bers of sequences, except in the cases of comparing CAPS and Waddell – MI,
and of comparing MI and Waddell – MI. It was found that overall, regardless
of the number of sequences in the alignment, Waddell – Kappa and PlotCorr
are the best-performing methods. Which methods perform next-best depends
on the number of sequences.

Examining the problem the “opposite way around”, i.e. examining which
numbers of sequences each method performs best for, CAPS, PlotCorr, and
MI all perform best for a smaller number of sequences. In contrast, the para-
metric methods perform best for different numbers of sequences depending
on which statistic (sensitivity, specificity, or precision) you wish to maximise.
Preferring larger specificities and precisions overall, for Waddell – Kappa
specifically, having 22 sequences gives the best performance overall, and for
Waddell – MI, having 6 sequences gives the best performance, maximising
both statistics as much as possible.

6.6.2 “Higher” threshold

For the “higher” unique amino acid threshold (= 4), we see the average
results shown in Figure 6.9. Averages are shown simply to aid understanding;

95

statistical tests, the results of which are discussed below, are run on all data
points.

Again, statistical tests were performed, comparing the performance of each
pair of co-evolution detection methods using all results. From this statistical
testing, it was found that overall, each method’s performance relative to the
others is constant across different numbers of sequences, except in the cases of
comparing CAPS and MI, and of comparing Waddell – Kappa and Waddell
– MI. It was found that the parametric methods are the best overall; which
one exactly is better depends on the number of sequences in the alignment.
PlotCorr is the next best-performing method, and then CAPS is the worst (for
6 sequences it performs equally to MI).

Examining the problem the “opposite way around”, i.e. examining which
numbers of sequences each method performs best for, CAPS, PlotCorr, and
MI perform best for smaller numbers of sequences. However, overall, both
of the parametric methods individually perform with around the same perfor-
mance for all 3 numbers of sequences.

Overall, Waddell – Kappa is the best-performing method across both unique
amino acid thresholds.

6.7 Results by alignment length

Now we break down the results according to the alignment length (number
of columns). The values of this parameter used in the simulations were 50,
600, and 1200. We shall now look at the effects of varying this parameter
on the results obtained for the two unique amino acid thresholds. All of the
p-values for all tests performed are in Appendix A.7.

6.7.1 “Lower” threshold

For the “lower” unique amino acid threshold (= 2), we see the average
results shown in Figure 6.10.

From statistical testing using all data points, it was found that overall, each
method’s performance relative to the others is constant across different align-
ment lengths. Using the results of the pairwise statistical comparisons, an
ordering can be made of the methods in terms of overall performance: Wad-
dell – Kappa, PlotCorr, MI, Waddell – MI, CAPS.

96

Figure 6.10: Results for unique amino acid threshold 2 (with Z-score type
fixed to original values Z-score, and each method’s Z-score threshold fixed as
detailed in the text). Results are broken down by alignment length.

Using the same kind of statistical testing to work out which alignment
lengths each method performs best for, it is difficult to find patterns that de-
scribe which alignment lengths each method performs best for; there appear
to be differences between the performances for different lengths for certain
methods, but these differ depending on the test statistic (sensitivity, specificity,
precision) that is being considered. These effects could be due to chance, but
it is interesting to note that the Z-score for a pair of positions depends not
only on the correlation calculated for that pair (whether that be CAPS, MI,
etc.) but also on the correlations calculated for all the other pairs of positions
in the alignment being considered, so maybe having more or fewer correla-
tions accounted for in the mean and standard deviation for a Z-score calcula-
tion will have an effect. For all of the methods, we are able to obtain higher
precision values for smaller alignment lengths. For Waddell – Kappa, higher
sensitivities can be obtained with a longer alignment.

For Waddell – Kappa, it can be seen that as the alignment length increases,
the number of true positives increases, and the number of false negatives de-
creases – this could explain the increase in sensitivity. For all methods, the
ratio of true positives to false positives decreases as the alignment length is
increased, which explains the decrease in precision.

97

Figure 6.11: Results for unique amino acid threshold 4 (with Z-score type
fixed to original values Z-score, and each method’s Z-score threshold fixed as
detailed in the text). Results are broken down by alignment length.

6.7.2 “Higher” threshold

For the “higher” unique amino acid threshold (= 4), we see the results
shown in Figure 6.11.

As with the “lower” unique amino acid threshold, the relationships between
pairs of methods in terms of their relative performance is constant regardless
of the alignment length being considered. An ordering can be made, once
again, to show the performance between all of the methods: Waddell – Kappa,
Waddell – MI, PlotCorr, MI, CAPS.

Again, observing the performances for each method individually on differ-
ent alignment lengths, we see that no patterns can really be derived. For all
methods, the ratio of true positives to false positives decreases as the align-
ment length is increased, which explains a decrease in precision. There are
larger specificities for a decrease in alignment length for Waddell – MI only;
the ratio of true negatives to false positives decreases as the alignment length
increases.

Looking at the relative performance of the methods, comparing results be-
tween the “lower” and “higher” UAA thresholds, the only real difference we
see is that Waddell – MI’s performance is increased for a higher UAA thresh-
old. Overall, Waddell – Kappa performs the best over both UAA thresholds.

98

Figure 6.12: Results for unique amino acid threshold 2 (with Z-score type
fixed to original values Z-score, and each method’s Z-score threshold fixed as
detailed in the text). Results are broken down by rate variation parameter.

6.8 Results by rate variation parameter

Now we break down the results according to the value of the rate varia-
tion parameter, α. The α parameter to the Gamma distribution influences the
amount of variation between the rates of mutation of the different columns
(the higher the rate of mutation, the more likely that a column will be chosen
to mutate by the simulation program). We used two values of α: 1, which
means the distribution is L-shaped, so many sites have low rates of mutation
and a smaller number have higher rates, and 100, which means the Gamma
distribution looks more Normal, so most sites have an intermediate rate of
mutation, while a smaller number have much higher or lower values. We also
ran simulations with no Gamma distribution (called “none” on the graphs),
which means that all columns have the same rate of mutation. We shall now
look at the effects of varying this parameter on the results obtained for the two
unique amino acid thresholds. All of the p-values for all tests performed are
in Appendix A.8.

6.8.1 “Lower” threshold

For the “lower” unique amino acid threshold (= 2), we see the average
results shown in Figure 6.12. It should be noted straight away that all of the
points on the graph have sensitivity of at least 0.6, and specificity of at least
0.8, so there does not appear to be much spread over all rate variations and
methods.

99

Performing statistical tests between all methods for each rate variation pa-
rameter value (no rate variation, 1, 100), each method’s performance relative
to every other method is constant, regardless of whether there is any rate vari-
ation, and the shape of the rate variation if so. This means that none of the
methods are impacted by the type of rate variation. From these comparisons,
we can, once again, come up with an ordering of the methods according to
their overall performance in comparison to all the other methods. This or-
dering is: Waddell – Kappa, PlotCorr, MI, Waddell – MI, CAPS. Although
there is some difference in each method’s performance for different statistics
(sensitivity, specificity, precision) depending on the rate variation parameter,
this parameter does not make a difference to the overall performance.

We then examine the problem the “opposite way around”, i.e. attempt to
work out which rate variation parameter values each method performs best
for. Doing so it can often be found that for a co-evolution detection method,
the pair of rate variation values being compared (none, 1, 100) only differ on
one statistic (sensitivity, specificity, precision). In this case, the two rate vari-
ation values are said to produce approximately the same results – this makes
explaining the results easier. PlotCorr and Waddell – Kappa have the same
performance regardless of the amount of mutation rate variation among the
sites. MI and Waddell – MI perform best for the rate variation parameter 1
(most sites having a low substitution rate, and a smaller number of sites hav-
ing a higher rate), then no rate variation, then for parameter 100 (a Normal-
like distribution) they have the worst performance. This makes a lot of sense
as Mutual Information gives columns with a higher number of mutations a
higher score – it “rewards” sites with high entropy. If most sites have a low
substitution rate, then it makes sense that it would be easiest to pick out the
sites with the higher rate, as these are the ones that are more likely to be co-
evolving. On the other hand, if most sites have similar mutation rates, then it
would make the task of detecting co-evolving sites more difficult. CAPS per-
forms best for rate variation parameter 1, like for MI and Waddell – MI, but
it performs approximately the same for no rate variation as for rate variation
parameter 100.

6.8.2 “Higher” threshold

For the “higher” unique amino acid threshold (= 4), we see the average
results shown in Figure 6.13. Overall, there is much more of a spread in
the performance of the different methods over different values of the Gamma
parameter, as seen on the graph.

100

Figure 6.13: Results for unique amino acid threshold 4 (with Z-score type
fixed to original values Z-score, and each method’s Z-score threshold fixed as
detailed in the text). Results are broken down by rate variation parameter.

Again performing statistical comparisons between all pairs of methods, we
can derive an ordering to the methods according to their overall performance
in comparison to the others. The ordering found was: Waddell – Kappa,
Waddell – MI, PlotCorr, MI, CAPS. This time, Waddell – MI performs better
with a higher number of unique amino acids.

Once again examining the problem in terms of working out which rate vari-
ation parameter values each method performs best for, PlotCorr and Waddell –
Kappa, as with the “lower” unique amino acid threshold, have approximately
the same performance for each of the rate variation parameter values. For
CAPS, the order of performance is now parameter value 1, then 100, then no
rate variation. This means that having a rate variation parameter of 100 now
gives better performance than having no rate variation at all. For MI, having
rate variation parameter 1 still performs the best, but having no rate variation
now gives similar performance to having rate variation parameter 100. For
Waddell – MI, all three values of the rate variation parameter now give ap-
proximately the same performance. This is likely due to the fact that having
a higher threshold UAA value means that more sites will have a higher amino
acid diversity anyway, giving better performance to a method like MI which
gives higher scores to positions with high entropy (equal to a higher number
of unique amino acids).

101

Figure 6.14: Histogram showing the percentages of sites co-evolving for sim-
ulated data with unique amino acid threshold 2.

Figure 6.15: Histogram showing the percentages of sites co-evolving for sim-
ulated data with unique amino acid threshold 4.

Overall, we find that PlotCorr and Waddell – Kappa are less influenced by
the amount of rate variation, which is good because we do not actually know
how much rate variation a protein may have in real data.

6.9 Results by percentage of sites co-evolving

Finally, we look at the results from the perspective of the percentage of sites
in the alignment that are co-evolving, calculated as (columns co-evolving in
the alignment/total number of columns in the alignment) * 100. To choose
the bins that the percentages were placed into for the sake of the comparison,
we inspected the distributions of percentages in the simulated alignments, for
UAA thresholds 2 (Figure 6.14) and 4 (Figure 6.15) respectively. From do-
ing so it was apparent that bins of width 5% were appropriate, and after a

102

certain number (35% for UAA 2, and 15% for UAA 4) the rest of the per-
centages were put in a final bin, when it became known that only a few cases
would satisfy this largest bin. All of the p-values for all tests performed are in
Appendix A.9.

6.9.1 “Lower” threshold

For the “lower” unique amino acid threshold (= 2), it is difficult to plot
all results on one graph, so we just go straight to the results of statistical
comparisons.

Again, statistical testing was used to work out which methods perform the
best for each parameter value (percentage bin). The bins that the results were
placed in are: 0–5%, 5–10%, 10–15%, 15–20%, 20–25%, 25–30%, 30–35%,
> 35%. Each pair of co-evolution detection methods was compared in terms
of their results to find the best-performing in each pair. From these compar-
isons it is possible to create an ordering of the methods for each percentage
bin. It should be noted that for most percentage bins, the ordering is exactly
the same, i.e. most of the time, the methods which perform the best for one
percentage bin, perform the best for most others. The only methods whose
performance relative to the other methods was different based on which per-
centage bin is being considered are MI and Waddell – MI. For the percentage
bins 0–5%, 5–10% and 10–15%, the relative ordering of the methods based
on performance (from best-performing overall to worst) is: Waddell – Kappa,
PlotCorr, MI, Waddell – MI, CAPS. For 15–20%, 20–25%, 30–35%, and >
35%, Waddell – MI and MI swap positions (Waddell – MI performs better
than MI). For 25–30%, MI and Waddell – MI perform approximately the
same.

Examining the problem the “opposite way around” i.e. finding which per-
centage bins each method performs best for, it is apparent that this depends
on the statistic being examined (sensitivity, specificity, or precision). It is,
however, interesting to note where certain methods perform best for smaller
percentage bins. This occurs in the cases of all sensitivities except for MI, for
PlotCorr precisions, and for Waddell – MI specificities.

6.9.2 “Higher” threshold

For the “higher” unique amino acid threshold (= 4), it is difficult to plot
all results on one graph, so we just go straight to the results of statistical
comparisons.

103

Again, comparing the performance of each pair of co-evolution detection
methods to determine an overall order to the methods, we find that the relative
performance of the methods is the same almost throughout. For 0–5%, 5–
10%, and > 15% bins, the order is given by: Waddell – Kappa, Waddell –
MI, PlotCorr, MI, CAPS. For the 10–15% bin, Waddell – MI performs better
than Waddell – Kappa. The rest of the overall performances are the same.

Examining the problem the “opposite way around”, i.e. finding the percent-
age bins that the methods perform best for, there appear to be more obvious
rules than for UAA threshold 2. In particular, for all methods, larger percent-
age bins give better performance for precisions and specificities, and smaller
percentage bins give better performance for sensitivities. Having better per-
formance for larger bins for precisions makes sense as this implies a larger
number of true positives are being detected. Also, having better performance
for smaller bins for sensitivities makes sense in that this implies fewer false
negatives in the equation, but the specificities pattern (improved performance
for larger bins) is not as we would expect. Generally, all of the methods are
affected by the percentage of co-evolving sites although not in the way we
would expect.

The differences between UAA 2 and UAA 4 in terms of method perfor-
mance is that Waddell – MI performs better for the “higher” UAA thresh-
old; this is likely due to the method’s use of Mutual Information, which gives
higher MI scores to sites with a higher diversity of amino acids. Also, for both
UAA thresholds, all methods are somewhat affected by the percentage of co-
evolving sites present. This is as we would expect. The parametric methods
and PlotCorr perform the best across both unique amino acid thresholds.

6.10 Combining methods

In the previous sections we found that the best-performing methods were
PlotCorr, Waddell – MI, and Waddell – Kappa. We shall now investigate
what happens when we combine these methods in different ways in an at-
tempt to improve the overall performance. We shall use the results we have
already generated for our simulated data, but taking a different approach to-
wards counting the number of true positives, true negatives, etc. We refer
the reader to Appendix A.10 for an example illustrating how the process of
method combination works.

Table 6.5 shows the average sensitivity, specificity, and precision for dif-
ferent combinations of the methods. Comparing each possible combination

104

Combination Low threshold High threshold
PlotCorr, Waddell – MI, Waddell –
Kappa
Sensitivity 0.697848 0.715937
Specificity 0.988185 0.990221
Precision 0.185273 0.100020
PlotCorr, Waddell – MI
Sensitivity 0.800805 0.749168
Specificity 0.970537 0.988413
Precision 0.120532 0.089835
PlotCorr, Waddell – Kappa
Sensitivity 0.697848 0.718135
Specificity 0.988185 0.988703
Precision 0.185273 0.088870

Table 6.5: Overall results for the combinations of different methods.

of the three methods against the five individual methods compared within
this chapter (CAPS, PlotCorr, MI, Waddell – Kappa, Waddell – MI), for both
unique amino acid thresholds it is always the case that the combination is
better than the individual methods in terms of precision, while the individual
methods are better than the combinations for specificities. For sensitivities,
each individual method is better than the combinations, except for Waddell –
Kappa in the case of the “lower” unique amino acid threshold, and CAPS in
the case of the “higher” unique amino acid threshold. We conclude that it is
ample to use the individual methods themselves.

6.11 Summary

Overall, we have found that the original values Z-score type is the preferred
approach; however you look at the results it excels over the shuffle Z-score
type. This is very interesting as the original values Z-score requires fewer cal-
culations. However it does use information from the entirety of the alignment,
while the shuffle Z-score does not; the original values Z-score approach com-
pares the result at one pair of positions to the average at all pairs of positions.

In this chapter, we considered the effect of varying different simulation
parameters (number of sequences per alignment, alignment length, rate vari-
ation parameter, percentage of sites co-evolving). Whichever parameter was
being varied, we found that overall, PlotCorr and the two parametric methods
performed the best.

The methods we have chosen to implement are PlotCorr and the two para-
metric methods. We did not want to pick between the two parametric methods

105

and decided to just implement both because there is enough in common be-
tween the two methods such that it would require little effort to build both
statistics into a single parallel implementation.

We have found that it is ample to consider the co-evolution detection meth-
ods individually, as opposed to combining them, so we continue to consider
them individually from now on.

In this chapter we compared all of our methods, and concluded that Plot-
Corr and the two parametric methods (Waddell – MI and Waddell – Kappa)
are worth pursuing. We shall implement these methods in parallel in the next
chapter.

106

Chapter 7

Parallelisation of Methods using
CUDA

In the previous chapter the methods with the best performance in terms of
their ability to detect molecular co-evolution were found; these are PlotCorr
and the two parametric (Waddell – MI and Waddell – Kappa) methods. In
this chapter we shall detail the parallelisation of these methods. The step this
chapter covers is shown in Figure 7.1. We begin by describing the APOD
(Assess, Parallelise, Optimise, Deploy) cycle, which was used to inform the
parallelisation of the code. We shall then describe the experimental set-up
used to measure the execution times of our implementations, and compare the
running times of these (the implementations being achieved in serial on the
CPU, and in parallel on two CUDA-enabled graphics cards: a GTX 660 Ti and
a Titan X). Finally, we give a cost/benefit analysis of the two graphics cards
alongside a CPU-only system and a supercomputer in terms of an “average”,
and “large”, co-evolution detection task.

7.1 Approach taken to parallelisation

In Section 2.9, we introduced the CUDA architecture and the reasons for
wanting to develop new parallel implementations of methods for detecting
molecular co-evolution. Briefly, until this point it has been impractical to
analyse the entire human proteome to detect co-evolving sites due to the pro-
hibitive amount of time this would take – this is the motivation for increasing
the performance of methods for co-evolution detection. In this section we
shall detail the APOD approach used toward parallelising the chosen meth-
ods. This general methodology can be used when improving any parallel
code, although the details given later are particular to the exact set-up used
(developing on a Windows PC with Visual Studio, using CUDA to implement
each method).

107

Figure 7.1: This chapter covers the parallelisation of the co-evolution detec-
tion methods chosen in the previous chapter (shaded box).

APOD stands for Assess, Parallelise, Optimise, Deploy [14], and although
it originated at NVIDIA (the company which created the CUDA program-
ming language and architecture), it can feasibly be applied to any architecture
where the parallelism arises through the use of a parallel programming lan-
guage. We shall now describe the activities performed at each stage.

Assess The code is studied (often in an automated manner, such as by us-
ing a profiling tool), and the code’s bottlenecks are identified. According to
Bradley [14], we need to take into account which type of scaling we wish to
focus on, strong or weak. Strong scaling ‘is a measure of how, for a given
problem size, performance changes as more processors are added to the sys-
tem’ [14, para. 6]. In contrast, weak scaling ‘is a measure of how the perfor-
mance per unit of work changes as more processors are added’ [14, para. 6].
Strong scaling therefore means fixing the problem size, and improving on the
performance of solving the problem given that fixed problem size, and weak
scaling is about increasing the problem size as increased processing power
becomes available [119]. For this thesis, the appropriate type of scaling is
strong scaling – it has always (in recent times) been possible (at least in the-
ory) to calculate the likely co-evolving sites within the human proteome, but
this would have taken a prohibitively long time. CUDA is a potentially cost-
effective means of achieving the necessary performance increase that could
allow us to solve this problem in a reasonable amount of time, and it is the

108

technology that we use here.

Parallelise Having identified the bottlenecks in the previous stage, the next
step is to parallelise the parts of the code where the bottlenecks occur.

Optimise This stage involves repeating parts of the Assess stage; the goal
now is to ensure the parallel code implemented in the previous stage is as
fast as possible. We can profile our parallel code after applying various op-
timisations, such as changing the type of memory used (global versus shared
memory), and use the results of profiling to improve.

Deploy Moving updates to code from development to production-ready ap-
plications is something not relevant to this project, but would be relevant to a
commercial project.

Normally the cycle begins when the code is still serial, so the most time-
consuming parts are identified and then improved through parallelisation, be-
fore moving onto parallelising other parts of the code as necessary. However,
we already had a good idea of where improvements to the code could be
made, so we began from the outset with implementing each method in CUDA
as much as possible. We did this because of the general rule that moving data
between the PC and the GPU is time-consuming, so running code on the GPU
(in parallel) can result in better overall performance if doing so means avoid-
ing data transfer, even if that computation would have better performance in
a serial implementation.

Now that we have described the APOD cycle generally, we shall detail how
the CUDA implementations were carried out, with reference to the cycle.

As mentioned previously, we started by parallelising the code as much as
possible. This meant beginning at the Assess stage with basic parallel imple-
mentations of the methods. In order to improve on the first basic versions, we
used Visual Studio’s NSIGHT profiler, which shows how much time is being
spent on each method, allowing one to focus on the bottlenecks in the code.
After identifying the bottlenecks from the timeline provided by NSIGHT, we
picked the function(s) which were taking the longest, and improved on these,
before timing the code again and repeating the cycle.

We shall now introduce, for each of the methods implemented, the various
functions each method uses, and then list the ways in which we took advan-
tage of CUDA’s architecture to improve the performance of each method.

109

Figure 7.2: The functions involved in the PlotCorr method.

7.1.1 PlotCorr

First, for each function within the PlotCorr algorithm, we shall briefly de-
scribe what this function does (Figure 7.2 shows how these functions fit to-
gether to make the overall PlotCorr method). Then, more detail will be given
on how the APOD cycle was used to improve the performance of the PlotCorr
method overall.

Method descriptions

First we calculate the distance matrix for each column of the alignment.
The values within each distance matrix are taken from a substitution matrix
such as PAM or BLOSUM, so, for example, if we were to calculate the dis-
tance matrix for the third column in the alignment, then the value in the first
column, in the second row of this distance matrix would be found by looking
at the third column of the alignment, and picking out the amino acids at the
first and second rows of the alignment. We then look up the value for the
similarity between these amino acids in a substitution matrix such as PAM or
BLOSUM, described in Chapter 2, and this is the value used in the distance
matrix.

For each distance matrix just calculated, calculate the mean and standard
deviation (SD) of the values within each matrix.

Calculate the correlation for each pair of positions in the alignment.

Calculate the mean and standard deviation of the correlations calculated
in the previous step.

Calculate the Z-score for each pair of positions in the alignment.

Each of the statements in bold corresponds to one or more functions in the
code, and can be thought of as one coherent piece of the puzzle.

110

Application of APOD

In the previous section, the various steps which make up the PlotCorr
method were briefly described. In this section, more detail will be given on
how the APOD cycle was used to parallelise PlotCorr. Each “version” that
the code went through shall be discussed.

Version 1 The initial implementation of PlotCorr sought to parallelise as
much code as possible in a relatively naive fashion. This would then be im-
proved upon in subsequent versions.

The version of the distance matrix calculation code used in this initial iter-
ation was retained for all further versions of PlotCorr. A thread is allocated to
each column in the alignment, so each thread inspects the characters within
its column and constructs a distance matrix.

When it comes to calculating the mean and standard deviation of a set of
values, there are several approaches. In this case, we wish to calculate the
mean and standard deviation of the values within each distance matrix. For
this first version of the code, the two-pass method was used. It is called this
because the mean is calculated in one pass-through of the data, and then the
standard deviation is calculated in a second pass-through of the data. The
equation used to calculate the mean should be easily recognisable:

x =

∑n
i=1 xi
n

(7.1)

where x is the mean of all values, and xi is the ith item in the list of n items.
Knowing the mean, the standard deviation can be calculated using:

σ(x) =

√∑n
i=1(xi − x)2

n
(7.2)

A separate function was used to calculate the means and the standard devi-
ations. For each of these functions, only one thread is used (these CUDA
functions are essentially serial).

Moving onto calculating the correlations themselves (the approach to doing
so being particular to PlotCorr), each thread calculates the correlation for a
different pair of positions within the alignment.

The mean and standard deviation of all of the correlation values is com-
pleted in one method (this only needs to be done once for all of the correla-
tion values, as opposed to the distance matrix mean/SD calculations, which

111

Figure 7.3: NSIGHT profiler information for Version 1 of the PlotCorr code.

are completed for each distance matrix individually), hence why a different
approach was taken. For this version of the code, the naive one-pass method
was used. This method only requires one pass-through of the data to calculate
both the mean and standard deviation. At each step, we take the current inte-
ger, add it to a sum, and then square it and add it to another sum. The sum of
the values is divided by the number of values to obtain the mean, and the sum
of the squared values is divided by the number of values, and then the square
root is taken of this sum, to obtain the standard deviation.

Finally, the Z-score is calculated for each pair of columns; the implemen-
tation of the function for completing this calculation is the same as that used
in every version of the PlotCorr code. Each thread calculates a Z-score using
the equation:

Zij =
(xij − x)

σ
(7.3)

We subtract the mean of the correlations from each individual correlation
value, and then divide by the standard deviation of the correlations. Having
already calculated the mean and standard deviation, we only need to do the
subtraction and division, which can be easily done in parallel on an element-
by-element basis.

Profiling Version 1 in NSIGHT within Visual Studio, we found that most
time was spent calculating the mean and standard deviation of the correlations
(see Figure 7.3). Before improving upon this function specifically, however,
we changed the functions that perform calculations on pairs of columns so that
they only worked on those pairs i, j where i < j, which eliminates repeated
calculations.

112

Figure 7.4: NSIGHT profiler information for Version 2 of the PlotCorr code.

Version 2 In this version, the functions that performed calculations on pairs
of columns (the calculation of correlations, calculating the mean and standard
deviation of correlations) were changed so that they only performed their cal-
culations on (length * (length - 1))/2 position pairs (where length is the num-
ber of columns in the alignment). This is equal to only calculating the corre-
lation value for pairs i, j where i < j. Upon profiling the resulting code in
NSIGHT, the time was still mostly being spent on calculating the mean and
standard deviation of the correlations (see Figure 7.4), and so this was focused
on in the next code iteration.

Version 3 The function to calculate the mean and standard deviation of the
correlations was replaced with a two-pass approach:

1. Calculate the mean of the correlations, x, by summing the values using
reduction (a parallel algorithm, explained below), and then dividing the
result by the number of correlations

2. Calculate, for each correlation x, the value of (x− x)2. This can easily
be done in parallel

3. Calculate the mean of the squared differences just calculated, using the
same reduction algorithm used in Step 1

4. Take the square root of the mean from Step 3 to find the standard devi-
ation of all the correlation values

The algorithm for reduction, used in steps 1 and 3 above, takes a set of el-
ements and a binary associative operator as input, and returns the result of
performing that operator on those inputs [197]. “Binary” means the operator
performs the operation on two elements. “Associative” means the result of
performing the operator on the two inputs is the same, regardless of the order
in which those elements are presented. For example, given an input array:

113

[27, 29, 66, 11, 8, 52, 71, 53, 26, 69]

The result of performing the binary associative operator addition on this array
is 412, which is just the result of adding all the elements together. What is
crucial is this can be done in parallel.

1 g l o b a l void r e d u c t i o n e x p l i c i t l o o p (f l o a t ∗ d ou t
, c o n s t f l o a t ∗ d i n , s i z e t N) {

2
3 e x t er n s h a r e d f l o a t s P a r t i a l s R e d u c t i o n

[] ;
4 f l o a t sum = 0 . 0 f ;
5 c o n s t i n t t i d = t h r e a d I d x . x ;
6 f o r (s i z e t i = (b l o c k I d x . x ∗ blockDim . x) +

t i d ; i < N; i += blockDim . x ∗ gridDim . x) {
7 sum += d i n [i] ;
8 }
9 s P a r t i a l s R e d u c t i o n [t i d] = sum ;

10 s y n c t h r e a d s () ;
11
12 f o r (i n t a c t i v e T h r e a d s = blockDim . x >> 1 ;

a c t i v e T h r e a d s ; a c t i v e T h r e a d s >>= 1) {
13 i f (t i d < a c t i v e T h r e a d s) {
14 s P a r t i a l s R e d u c t i o n [t i d] +=

s P a r t i a l s R e d u c t i o n [t i d + a c t i v e T h r e a d s] ;
15 }
16 s y n c t h r e a d s () ;
17 }
18
19 i f (t i d == 0) {
20 d o u t [b l o c k I d x . x] =

s P a r t i a l s R e d u c t i o n [0] ;
21 }
22
23 }
24
25
26 void r e d u c t i o n (f l o a t ∗ d ou t , f l o a t ∗ d i n t e r m e d i a t e ,

c o n s t f l o a t ∗ d i n , s i z e t N, i n t numBlocks , i n t
numThreads) {

27

114

28 unsigned i n t s h a r e d S i z e = numThreads ∗
s i z e o f (i n t) ;

29 r e d u c t i o n e x p l i c i t l o o p <<<numBlocks ,
numThreads , s h a r e d S i z e >>>(d i n t e r m e d i a t e , d i n , N
) ;

30 gpuEr rchk (c u d a P e e k A t L a s t E r r o r ()) ;
31 gpuEr rchk (c u d a D e v i c e S y n c h r o n i z e ()) ;
32 r e d u c t i o n e x p l i c i t l o o p <<<1,numThreads ,

s h a r e d S i z e >>>(d ou t , d i n t e r m e d i a t e , numBlocks) ;
33 gpuEr rchk (c u d a P e e k A t L a s t E r r o r ()) ;
34 gpuEr rchk (c u d a D e v i c e S y n c h r o n i z e ()) ;
35
36 }

Listing 7.1: Reduction code

Listing 7.1 shows the code for the two functions relevant to this step. This
code was released with ‘The CUDA handbook’ [197] under the 2-clause BSD
licence – we have made some changes to this code, mostly reformatting and
variable renaming.

The reduction function is called first, where we work out the amount
of shared memory we need. We then call the reduction explicitloop

function, which creates a shared memory array, sPartialsReduction,
of the same size as the shared memory allocation which was calculated in
the reduction function. The for loop in line 6 moves over the data (the
d in array), in chunks of size blockDim.x * gridDim.x, which al-
lows for values of N larger than the number of threads we have running. Once
we have performed the sum in the for loop, we store this sum at the posi-
tion represented by our thread index in sPartialsReduction. The next
for loop in this function (line 12) starts with the activeThreads vari-
able, but with its value bit-shifted once to the right (equal to dividing it by
2). Within the for loop itself, we check whether the thread ID is less than
activeThreads; if so, we add to the value at the position represented by
our thread index in sPartialsReduction, the value within the same ar-
ray, activeThreads values away. This means that in each iteration of the
loop, we add a value closer and closer to our own in terms of index. When we
complete the loop, the thread with index 0 sets the output value for our block
to the final result.

In the reduction function, we perform reduction explicitloop

once, check for errors and synchronise, and perform the reduction once more

115

Figure 7.5: NSIGHT profiler information for Version 3 of the PlotCorr code.

on our block of intermediate values obtained from the first run (and check for
errors and synchronise). After this function is performed, we then divide our
final value by N to get the mean.

Profiling version 3 of the code (see Figure 7.5), most of the time is now
spent calculating the means and standard deviations of the distance matrices,
addressed in the next code version.

Version 4 In this version, we change the approach used for calculating the
means and standard deviations of the distance matrices. First, we should note
that the naive one-pass method (used originally for calculating the mean and
standard deviation of the correlations) has a tendency to accumulate rounding
errors when performed on a computer with very large numbers (and lots of
numbers) – when a much smaller number is added to a very large number
on a computer, the smaller number can appear to be “lost” in the final result.
With this in mind, Welford’s one-pass method [196] was chosen. It works
recursively in order to calculate both the mean and the standard deviation in
one pass. The pseudocode for this method is given below:

mean_current = array[0]

sum_current = 0

count = 1

for i = 1 to (array length - 1) {

count++

mean_previous = mean_current

mean_current = mean_previous +

(array[i] - mean_previous)/count

116

Figure 7.6: NSIGHT profiler information for Version 4 of the PlotCorr code.

Figure 7.7: NSIGHT profiler information for Version 5 of the PlotCorr code.

sum_previous = sum_current

sum_current = sum_previous

+ (array[i] - mean_previous) * sum_previous

+ (array[i] - mean_current)

}

mean = mean_current

standardDeviation = sqrt(sum_current/count)

Each iteration depends on the one before. This method cannot be easily bro-
ken down and parallelised with each thread working on a small piece of the
puzzle. However, as we wish to calculate the mean and standard deviation of
each of the distance matrices, we can perform this method for each distance
matrix in parallel with the others.

Profiling this code, we found that the function for calculating the correla-
tions was now taking the most time (see Figure 7.6); this is addressed in the
next, final code version.

117

Version Time (seconds)
1 0.160675
2 0.174797
3 0.038742
4 0.000962
5 0.000443

Table 7.1: Time spent on computation for each version of PlotCorr. Times
were calculated by summing all the time spent on functions.

Figure 7.8: The functions involved in the Waddell – Kappa method.

Version 5 This final version of PlotCorr improves upon the correlations cal-
culation function. As part of this calculation, we work out the average of the
differences in distance matrix values; in the previous version of this code, all
distance matrix values are examined; in the improved version, only half are
examined, and the resulting sum is doubled to get the final sum used to calcu-
late the average (the distance matrix is symmetric). In addition, as described
in Section 2.9, where data is stored impacts the performance of accessing that
data. With this in mind, we found improved performance by storing those
pieces of data we needed to access multiple times in local variables (automatic
variables stored in registers), and then accessing these variables directly. (All
data is passed to the method in global memory, which has much lower perfor-
mance than local variables.) Profiling the code a final time, we see the times
given in Figure 7.7.

In this section we described how the PlotCorr method was parallelised in
CUDA. Table 7.1 shows the time spent on computation in each version of the
code. We shall now describe how the parametric methods were parallelised.

7.1.2 Waddell parametric methods

First, for each function within the Waddell – Kappa and Waddell – MI
algorithms, we shall briefly describe what this function does (Figure 7.8 and
Figure 7.9 show how these functions fit together to make the overall Waddell
– Kappa and Waddell – MI methods). Then, more detail will be given on
how the APOD cycle was used to improve the performance of these methods

118

Figure 7.9: The functions involved in the Waddell – MI method.

overall. (The two parametric methods are described together as they share a
lot of functions in common, as can be seen in Figure 7.8 and Figure 7.9.)

Method descriptions

The first step of both the Waddell – Kappa and Waddell – MI methods is
to read in the input tree and sequences into data structures usable by
the program. Bearing in mind that the next step of these methods depends
on inspecting each branch (connection between nodes) independently of the
others, we decided to create a “flat” tree data structure to represent the infor-
mation, instead of the classic tree data structure. (This “classic” data structure
involves node objects being connected by links.) The input Newick file (a text
file describing the structure of the tree) is read into three arrays: child1s[],
child2s[], and seqs[]. The child1s[] and child2s[] arrays tell
us, for element i, which children derive from that node (if there are any). The
seqs[] array tells us the sequence at each node.

Taking the arrays child1s[], child2s[], and seqs[], we work out
“where” the mutations took place on the branches of the tree. This involves
inspecting the branches leading from each node in turn, and if, for example,
at the beginning (top) of a branch there is a character A, and at the bottom
of the branch is a different character B, we place a 1 in the binary matrix in
the row corresponding to this branch, and the column corresponding to this
position in the alignment. If the two characters are the same, we put a 0 in
that position. This step is performed for both Waddell – MI and Waddell –
Kappa.

There are two types of correlation we can calculate for our binary matrix
(this is where the Waddell – Kappa and Waddell – MI differ).

Cohen’s Kappa is a measure of the amount of inter-annotator agreement
[33]. In our case, we are calculating, for each pair of columns in the binary
matrix, the amount of “agreement” between the pairs of columns in that ma-

119

trix, i.e. how many times does a 0 or 1 appear in both columns in the same
row (“agreements”), versus how many times we see a 0 in one column and a
1 in another (“disagreements”).

The method of calculating Mutual Information (as an alternative to Co-
hen’s Kappa) is identical to that given in Section 3.1.1, but the “alphabet”
used, instead of being the 20 amino acid alphabet, is simply the set {0, 1}.
First we calculate the one point probability for both of the characters at each
of the columns (telling us how often 0 and 1 appear in each column). We then
calculate the Mutual Information of each pair of columns in the alignment.

Finally, Z-scores are calculated for each of the pairs of columns as de-
scribed for PlotCorr.

Each of the statements in bold corresponds to one or more functions in the
code, and can be thought of as one coherent piece of the puzzle.

Application of APOD

In the previous section, the various functions which make up the Waddell
– Kappa and Waddell – MI methods were briefly described. In this section,
more detail will be given on how the APOD cycle was used to parallelise
these two methods. It should be noted that the code for Waddell – Kappa
and Waddell – MI did not iterate through code versions like PlotCorr did, due
in part to the fact that the finalised Z-score code developed for PlotCorr was
utilised for the parametric methods from their first versions. This meant that
only one version of each method was developed.

Waddell – Kappa version 1 As with PlotCorr, the parametric versions were
implemented in parallel as much as possible initially. Reading the input files
into the appropriate data structures was done in serial. Tree traversal is the
process of moving around a tree data structure which consists of nodes and
connections between nodes. Methods have been developed in the past which
aim to improve the performance of the traversal of tree data structures in par-
allel (this task is not normally well-adapted to parallel architectures). We did
not consider such methods for our implementation due to the fact that we only
need to traverse the tree once (inspecting each branch once).

Next we need to construct a binary matrix which captures the mutation in-
formation on the branches and allows for the calculation of correlations in the
next step. For each node, the thread checks, for each of its (up to 2) children

120

Figure 7.10: NSIGHT profiler information for the Waddell – Kappa code.

Figure 7.11: NSIGHT profiler information for the Waddell – MI code.

whether each of the characters in the current node equal the characters in the
corresponding positions of the children, putting a 1 or 0 in the binary matrix
as applicable.

Calculating the Kappa correlations themselves, the code is parallel over
pairs of columns; that is, the correlation for each pair of columns is calculated
by a different thread. Like with PlotCorr, the value of Cohen’s Kappa for two
positions i and j is equal to the Cohen’s Kappa for j and i, so we use arrays
of indices to keep track of the pair that each thread is calculating Kappa for.

Finally, the code for calculating Z-scores is the same as that used for Plot-
Corr.

The information produced from profiling the code can be seen in Figure
7.10.

Waddell – MI version 1 The code for all methods except the correlations is
the same as that for Waddell – Kappa. For the Waddell – MI code, each thread
calculates the one point probabilities for its own column. Also, like with
our PlotCorr correlations code (and our Waddell – Kappa code), we use two
arrays, index1 and index2, to work out which pair of columns we want

121

this thread to work on for the MI values, so that we can focus on computing
only the correlations necessary. The information produced from profiling the
code can be seen in Figure 7.11.

7.2 Full-program method times

In the previous section the approach used to parallelise the methods was
described, as well as how this approach was applied. In this section, the
experimental set-up used, and the approach taken for timing the methods,
will be described. Then the results of timing the methods in serial (C++), in
CUDA C on a NVIDIA GeForce GTX 660 Ti, and a NVIDIA GeForce Titan
X (Pascal) will be presented.

7.2.1 Experimental set-up

Serial For the serial timings, we used a desktop computer running Linux
Ubuntu 16.04.3, with an Intel Core i7-3770T CPU (2.50 GHz) CPU. The com-
piler used was g++ (the version given as gcc version 5.4.0 20160609 (Ubuntu
5.4.0-6ubuntu1 16.04.4)).

Parallel For the parallel timings, we used two separate desktop PCs; both
of these were running Linux Ubuntu 16.04.3. The first had a NVIDIA GTX
660 Ti, the other a Titan X (Pascal). The version of CUDA in both cases is
7.5, and the driver installed in both cases is 370.28.

7.2.2 Approach taken to timing

We took whole-program times using clock gettime() with the argu-
ment specifying a monotonic clock [39]. We chose to use this timing method
because if we use it to take a time at one point in the program, and then again
later on, it is guaranteed that the second time will not be less than the first
(this is the monotonic characteristic). The monotonic clock is also unaffected
by alterations/corrections to the real-time clock. We used this for the CUDA
implementation as well as the serial one because the total time of the CUDA
code depends on serial code, and we wanted to keep the method used for
timing consistent between the different implementations.

The alignment size parameters were varied as follows:

• Keeping the alignment length constant (at 64), vary the number of se-
quences with the values 2, 10, 18, 25, 33, 41, 49, 57, 64, 73, 80

122

• Keeping the number of sequences constant (at 2), vary alignment length
with the values 51, 925, 1799, 2673, 3547, 4422, 5296, 6170, 7044,
7918, 8792

The maximum and minimum values of the alignment lengths and number
of sequences varied correspond to the real data’s maximum and minimum
alignment size parameters. The constant value of alignment length was cho-
sen by simply identifying the alignment with 80 sequences, and using that
length (the alignments with 2, 10, 18, etc. sequences were constructed by
removing sequences from the alignment with 80 sequences). A similar ap-
proach was used for keeping the number of sequences constant (the alignment
with length 8792 had 2 sequences).

7.2.3 Timing results

We present the results of each co-evolution detection method separately,
on each hardware set-up (CPU, GTX 660 Ti, Titan X), varying the alignment
length and number of sequences individually.

PlotCorr

Varying the alignment length, all three sets of hardware timings (CPU,
GTX 660 Ti, and Titan X) are plotted in Figure 7.12. Surprisingly we can
see that overall, the Titan X has the worst performance initially, but that at the
longest alignment length, the serial implementation takes as much time as the
GTX 660 Ti.

Varying the number of sequences (see Figure 7.13), we see that, again the
Titan X seems to give the worst performance, and serial the best, but just from
observing the slopes of the different methods on the graph, it is plausible that
the CPU implementation may overall have the worst performance. Indeed,
repeating the timing experiments with a longer base alignment length (574),
we obtain the results in Figure 7.14. For the smallest numbers of sequences,
serial is best, but for the overwhelming majority of numbers of sequences,
the two parallel implementations take the shortest amount of time. We also
see that there is some overlap between the GTX 660 Ti and the Titan X times
obtained. We can easily see that the serial implementation is most affected by
the number of sequences in the alignment.

123

Figure 7.12: PlotCorr whole-program times; each point is an individual run;
the alignment length is varied while the number of sequences is kept constant.

124

Figure 7.13: PlotCorr whole-program times; each point is an individual run;
the number of sequences is varied while the alignment length is kept constant.

Figure 7.14: PlotCorr whole-program times; each point is an individual run;
the number of sequences is varied while the alignment length is kept constant.
These timings are for an increased alignment length of 574.

125

Figure 7.15: Waddell – Kappa whole-program times; each point is an individ-
ual run; the alignment length is varied while the number of sequences is kept
constant.

126

Waddell – Kappa

Varying the alignment length, Figure 7.15 shows outright that the serial
method has the worst performance, and that there is some overlap between the
GTX 660 Ti and the Titan X times for the longest alignment length. The serial
implementation is therefore affected the worst by an increase in alignment
length.

Varying the number of sequences, the graph for all three hardware set-ups is
shown in Figure 7.16. We can see that the serial implementation performs the
best, but when we increase the alignment length to 8792, we can see that the
serial implementation performs worst, and there is some overlap between the
two sets of parallel times (see Figure 7.17). Again, the serial implementation
is worst affected.

Waddell – MI

Varying the length, we see a similar pattern to that seen with Waddell –
Kappa (see Figure 7.18), where the serial implementation is obviously the
worst-performing, and there is overlap between the GTX 660 Ti and the Titan
X.

Varying the number of sequences, the graph showing the timings for all
three hardware set-ups is within Figure 7.19. It is as we saw for Waddell
– Kappa. Increasing the base alignment length to 8792, we can see that not
only does the serial implementation perform the worst, there is, again, overlap
between the times on the two graphics cards.

Overall, we find that for sufficiently large data sets, the GTX 660 Ti and the
Titan X perform similarly, and the serial implementation performs the worst.
We believe we need sufficiently large datasets to see this effect due to the
overhead required to run programs in parallel – data needs to first be copied
to the GPU, and also copied back after computation has been completed (we
included these timings in the analysis). Also, it should be noted that PlotCorr
does not require such long alignments as the two parametric methods in order
for the parallel methods to perform the best. Generally, the serial implementa-
tion seems to be more affected by alignment size parameters than the parallel
methods.

Now that we have shown the overall timing results, we perform a cost/ben-
efit analysis between these hardware systems and a supercomputer.

127

Figure 7.16: Waddell – Kappa whole-program times; each point is an individ-
ual run; the number of sequences is varied while the alignment length is kept
constant.

Figure 7.17: Waddell – Kappa whole-program times; each point is an individ-
ual run; the number of sequences is varied while the alignment length is kept
constant. The base alignment length is increased to 8792.

128

Figure 7.18: Waddell – MI whole-program times; each point is an individual
run; the alignment length is varied while the number of sequences is kept
constant.

129

Figure 7.19: Waddell – MI whole-program times; each point is an individual
run; the number of sequences is varied while the alignment length is kept
constant.

Figure 7.20: Waddell – MI whole-program times; each point is an individual
run; the number of sequences is varied while the alignment length is kept
constant. The base alignment length is increased to 8792.

130

7.3 Cost/benefit analysis

In this section, we compare the use of a CPU-only system, a supercomputer
(Raven), as well as the two graphics cards used, in terms of a cost-benefit
analysis. We compare the number of “average-sized jobs” that could be run in
a 28-day month, defining these jobs as running PlotCorr on an alignment of 6
sequences with an alignment length of 574 (the average number of sequences
and average alignment length for the real data set). We then repeat these
calculations for a larger alignment, finding that this gives better performance
on the GPUs, and confirming that large-enough alignments are necessary for
running a job in parallel to be worth doing.

7.3.1 CPU-only system

The CPU used is an Intel Core i7-3770T CPU (2.50 GHz) CPU. The aver-
age time taken to run an “average-sized job” is 0.1242865473 seconds, which
allows a maximum of 2419200 / 0.1242865473 ≈ 19464697 jobs in a 28-day
month.

7.3.2 Raven

Raven is ARCCA (Advanced Research Computing Cardiff)’s supercom-
puter. For the purposes of our project, we ran our serial code on the serial
nodes. It costs (in August 2017) 2 pence per CPU core hour to run code on
a serial node. Always running code on one core, this equates to 2p per hour.
Each user has the ability to run a maximum of 20 jobs at any one time. The
average time taken to run an “average-sized job” is 0.3142269054 seconds,
which equates to 2419200 / 0.3142269054 ≈ 7698895 jobs on a single se-
rial node, or 153977900 total jobs using the maximum 20 consecutive jobs
available to the average Raven user. To run 20 consecutive “average-sized”
jobs constantly throughout a 28-day month (running another job once one is
completed) would cost 20 jobs * (24 hours * 28 days) * £0.02 = £268.80.

7.3.3 GeForce GTX 660 Ti

Around a month before this was purchased in 2013, its price was listed
on one website as £174.79 [164]. It has since (officially) been discontinued,
although at time of writing we managed to find the graphics card being sold
by a limited number of e-retailers (prices listed include VAT):

• Produced by MSI; GTX 660 Ti Power Edition £230.39 [149]

• Produced By Zotac; GTX 660 Ti £199.19 [150]

131

Hardware Jobs Cost
CPU 19,464,697 unknown

Raven 153,977,900 £268.80
GTX 660 Ti 5,696,638 £211.19

Titan X 3,401,378 £1099

Table 7.2: The number of “average-sized” jobs that could be run in a 28-day
month, and the cost of doing so, for several hardware options. We could not
find a cost for the CPU used.

• Produced by Gigabyte; GTX 660 Ti £203.99 [148]

We take the price of this graphics card to be a one-off cost, i.e. the price
cost of this method is (an average of) £211.19.

The average time taken to run an “average-sized job” is 0.4246715045 sec-
onds, which allows a maximum of 2419200 / 0.4246715045 ≈ 5696638 jobs
in a 28-day month.

7.3.4 GeForce GTX Titan X

This graphics card was purchased a matter of weeks after its release; it cost
£1099 [137].

The average time taken to run an “average-sized job” is 0.711240972 sec-
onds, which allows a maximum of 2419200 / 0.711240972 ≈ 3401378 jobs
in a 28-day month.

Table 7.2 summarises the findings of the initial cost/benefit analysis using
“average-sized” jobs. What is interesting to note is that Raven can run the
largest number of jobs for the second-cheapest price, and the Titan X is the
most expensive option, while running the smallest number of jobs in a month.

7.3.5 Larger alignments

As was found earlier within this chapter, larger alignments can show that
the parallel implementations perform better overall than smaller ones, so we
re-run the calculations for an alignment with 80 sequences, and of length
1536. The findings of this cost/benefit analysis are summarised below:

• CPU = 111.308 seconds – maximum of 2419200 / 111.308 ≈ 21734
jobs

• Raven = 215.766 seconds – maximum of (2419200 / 215.766) * 20 ≈
224242 jobs

132

• GTX 660 Ti = 4.371733089 seconds – maximum of 2419200 / 4.371733089
≈ 553373 jobs

• Titan X = 1.659154726 seconds – maximum of 2419200 / 1.659154726
≈ 1458091 jobs

For larger alignments, what is interesting to note is that Raven takes longer
to run one job than the CPU does; it only achieves better performance through
virtue of being able to run 20 jobs consecutively. Overall, the Titan X can run
67 times as many jobs as on a CPU-only system, or 6.5 times as many as on
Raven. To run as many jobs on Raven as the Titan X can run in a month, it
would take 215.766 seconds * 1458091 jobs = 314606462.706 seconds, which
is 5243441.0451 minutes, or 87390.684085 hours (130 months or almost 11
years). It is not necessary to run costing calculations here; the Titan X clearly
works out better for larger alignments.

One caveat to this cost/benefit analysis is that only a subset of alignments
of proteins within the human proteome will be this large, but at the same time,
this analysis shows how, as more and more sequences become available, the
improved performance of GPUs can be harnessed.

7.4 Summary

In this chapter the approach used to parallelise the three co-evolution detec-
tion methods (PlotCorr, Waddell – Kappa, and Waddell – MI) was described,
and the results of timing these methods were presented. It was found that,
as expected, the parallelised methods performed better than the serial meth-
ods, as long as sufficiently large alignments were used. In addition, a gen-
eral cost/benefit analysis was presented, comparing the graphics cards used
against a supercomputer and a CPU-only system, showing that graphics cards
provide a better deal in the long-run.

133

Chapter 8

Application of Methods to Real
Data

In the previous chapter, we discussed how we parallelised PlotCorr and the
two parametric methods using CUDA. We also compared the performance of
these CUDA implementations to serial implementations of the same meth-
ods. As discussed previously, before parallelisation it would have taken a
prohibitively long time to run (serial) co-evolution detection methods on the
entire human proteome. Through the process of parallelisation we can now
perform an analysis of the entire human proteome to find co-evolving sites,
which we shall present in this chapter.

First we shall overview some of the alternative methods for identifying
sites important to a protein’s function, at which mutations are more likely to
be deleterious. Then we shall detail the results of the analysis of our real
data, using the parallel versions of PlotCorr, Waddell – MI, and Waddell –
Kappa, comparing these methods to the alternatives already in use. The step
this chapter covers is shown in Figure 8.1.

8.1 Alternative methods for classifying mutations

In this section we shall overview methods for classifying mutations as dam-
aging or benign. The ones we shall focus on are SIFT and PolyPhen, as these
are widely used in the field [123].

8.1.1 SIFT

SIFT, which Sorts Intolerant From Tolerant mutations, works by calculat-
ing the probability of each possible mutation at every position in an input
alignment. If the calculated probability of a mutation is greater than a given

134

Figure 8.1: This chapter covers analysis of the real data alignments using the
parallel methods implemented in the previous chapter (shaded box).

threshold, it is classified as tolerated; if not, then it is classified as not tol-
erated [132]. SIFT’s calculations take into account the frequencies of amino
acids in each column of an alignment, as well as how conserved the column
is; the more conserved a column is, the less likely it should be able to tolerate
mutations.

A version of SIFT called SIFT Indel [92] allows the user to predict whether
insertions or deletions (of a multiple of 3 nucleotides in length) are tolerated
or not. This program takes into account the physicochemical properties of the
amino acids that are being inserted/deleted, whether the amino acids are in a
particular type of secondary structure, as well as other characteristics of the
data. The three classification rules found to predict most training mutations
were to do with whether or not the insertion/deletion occurs in a Pfam func-
tional domain1, whether it is a repeat or not, resides in a disordered region (a
region of the protein without a defined three-dimensional structure [12]), or if
the position to the left of the insertion/deletion is conserved or not.

SIFT Indel was originally developed to classify frame-shifting insertion-
s/deletions (i.e. those which are not divisible by three, and therefore com-
pletely change the amino acid sequence following the mutation by shifting the

1Pfam is a protein database; a functional domain is a distinct unit within the protein re-
sponsible for a particular function [163]

135

start position of subsequent codons) [91]. An example is that of the gene se-
quence ACGTCGGAG changing to ATCGGAG; when before, the first amino
acid came from the codon ACG (T), it is now ATC (I). The original version
of SIFT Indel found four features that gave the best performance; these were
to do with the number of conserved nucleotides and the location of the inser-
tion/deletion (indel) in the gene.

8.1.2 PolyPhen

PolyPhen, which stands for Polymorphism Phenotyping, is a web server
for classifying non-synonymous SNPs (Single Nucleotide Polymorphisms,
where there are multiple common variants of a single nucleotide present in
a population) in coding sequences as to whether they are deleterious or not
[160]. The input taken is a protein sequence (or an ID linking to the protein
in the SWALL database (this was also called SPTR (Swall) [15], and appears
to have been simply the complete database constituting the union of the sepa-
rate Swiss-Prot and TrEMBL sequence databases [53] (now wholly contained
within UniProt [186])), and the two amino acid variants characterising the
polymorphism (i.e. the two variants of an amino acid present in a population,
at a particular position in the proteome). It should be noted that a polymor-
phism refers to a common variant, whereas in this thesis, we are primarily
interested in rare variants.

PolyPhen obtains annotation information from the Feature Table of the
SWALL database, and also uses various programs to predict whether the
amino acid variant occurs in a transmembrane region, a coiled coil region
(these are simply specific types of structures or regions within a protein), etc.
It then obtains sequences that are ancestrally related to the input sequences
(homologues), and runs the PSIC (Position-Specific Independent Counts) pro-
gram on these sequences to calculate the profile matrix. The values within the
profile matrix are ‘logarithmic ratios of the likelihood of a given amino acid
occurring at a particular position to the likelihood of this amino acid occur-
ring at any position’ [3, pp. 25]. The difference between the PSIC scores of
the two amino acid variants is calculated, and if this difference is particularly
large, this means that the substitution in question is rarely, if ever, seen in the
protein being considered. Different values related to secondary structure, etc.
are then calculated/obtained. Contacts are found in the 3D structure of the
protein, between the position we are focussing on and: ligands, subunits of
the protein we are looking at, and other important positions.

136

The three types of data collected in the previous step (feature information,
profile matrix, secondary structure information) are used in the following step,
which involves following a set of rules to obtain a prediction as to whether
the amino acid variant is deleterious or not. The rules relate to things such as
whether the site is known to be important to function, relatively close in space
to the active site, etc., and the variant is classified as either damaging, be-
nign, or N/A. The rules were chosen based on a comparison of proposed rules
on datasets of mutations associated with disease, nsSNPs (non-synonymous
SNPs, or SNPs that cause a change to the corresponding amino acid) and sub-
stitutions between human sequences and orthologous sequences from mam-
mals closely evolutionarily related to humans.

In the paper by Adzhubei et al. [4] PolyPhen-2 was introduced. In this up-
dated version of the program, there are different features, a different approach
to creating alignments, and a different way of classifying the amino acid vari-
ant (a naive Bayes classifier, based on Bayes’ Theorem, is now used). There
are two versions of PolyPhen-2, depending on which dataset it was trained
on. The version trained on a dataset called HumVar should be used for dis-
tinguishing between those mutations that have large effects on health from
normal human variation, while the version trained on HumDiv is meant to
be used on rare variations at genomic positions associated with complex dis-
eases.

Now that we have reviewed SIFT and PolyPhen, we shall now consider the
analysis of the results of performing the co-evolution detection methods on
the entire human proteome.

8.2 Real data analysis

Having run the final parallel PlotCorr and Waddell programs on the real
data collected previously (a set of alignments constructed from the proteins in
the human proteome along with related species), we have a set of results for
the PlotCorr algorithm, a set of results for Waddell – MI, and a set of results
for Waddell – Kappa. In this section, we begin by reviewing the bias towards
certain amino acids in the dataset. We then introduce the Fromer et al. [66]
dataset, which we shall also be using, list the hypotheses we shall be testing,
and actually test them.

137

8.2.1 Amino acid frequencies

We begin by investigating whether certain amino acids are more likely to
appear at co-evolving sites than others. Figure 8.2, Figure 8.3, and Figure 8.4
show the frequencies of each amino acid in all sites (red bars) with the fre-
quencies in predicted co-evolving sites (overlaid in green bars) for PlotCorr,
Waddell – Kappa, and Waddell – MI, respectively, with a low unique amino
acid (UAA) threshold. It is interesting to note that in all three cases, most
of the amino acid frequencies in co-evolving sites are significantly different
at the 0.05 level (indicated by an asterisk above the appropriate bar) to the
frequencies in all sites. For each of the graphs, each of the amino acids was
tested by running a logistic regression using the model:

status ∼ amino acid (8.1)

where “status” is a binary value based on whether the position is co-evolving/
fully conserved or not, and “amino acid” is a binary value based on whether
the appropriate amino acid at this position is the amino acid X or not (where X
is one of the 20 amino acids; we run one analysis per amino acid). Across all
6 scores, occurrences of amino acids A and N are statistically significantly in-
creased in predicted co-evolving sites relative to all sites, and L is statistically
significantly decreased in predicted co-evolving sites relative to all sites.

The same can be seen for the higher UAA threshold (see Figure 8.5, Fig-
ure 8.6, and Figure 8.7 for PlotCorr, Waddell – Kappa, and Waddell – MI
respectively.)

Now looking at conserved sites only, we find that there is still some dis-
parity between the amino acids in all sites, and those in conserved sites (see
Figure 8.8). Like with the co-evolving sites, most of the amino acids show sig-
nificant differences in the frequencies being considered. What is interesting
to note here is that the amino acids whose frequencies in detected co-evolving
sites were consistently different to the frequencies in all sites show the op-
posite trend in conserved sites. For example, L is statistically significantly
decreased in predicted co-evolving sites relative to all sites (across all 6 mea-
sures), but for conserved sites, L is significantly increased relative to all sites.

All of the p-values for the logarithmic model between co-evolution or con-
servation and amino acids can be found in Appendix A.11.

138

Figure 8.2: The frequencies (y axis) of the 20 amino acids (x axis) are dif-
ferent between the co-evolving sites identified by PlotCorr with a low unique
amino acid threshold and all sites. Conserved sites are not considered. The
frequencies in all sites are given by red bars, and then the frequencies in co-
evolving sites identified by PlotCorr with lower UAA threshold are overlaid
in green bars. This means that the dark green portions are where the bars
overlap, and the colour at the top of the bars tells us which has the higher
frequency.

139

Figure 8.3: The frequencies (y axis) of the 20 amino acids (x axis) are differ-
ent between the co-evolving sites identified by Waddell – Kappa with a low
unique amino acid threshold and all sites. The rest of the description is the
same as for Figure 8.2.

Figure 8.4: The frequencies (y axis) of the 20 amino acids (x axis) are dif-
ferent between the co-evolving sites identified by Waddell – MI with a low
unique amino acid threshold and all sites. The rest of the description is the
same as for Figure 8.2.

140

Figure 8.5: The frequencies (y axis) of the 20 amino acids (x axis) are differ-
ent between the co-evolving sites identified by PlotCorr with a high unique
amino acid threshold and all sites. Conserved sites are not considered. The
frequencies in all sites are given by red bars, and then the frequencies in co-
evolving sites identified by PlotCorr with higher UAA threshold are overlaid
in green bars. This means that the dark green portions are where the bars
overlap, and the colour at the top of the bars tells us which has the higher
frequency.

141

Figure 8.6: The frequencies (y axis) of the 20 amino acids (x axis) are differ-
ent between the co-evolving sites identified by Waddell – Kappa with a high
unique amino acid threshold and all sites. The rest of the description is the
same as for Figure 8.5.

Figure 8.7: The frequencies (y axis) of the 20 amino acids (x axis) are dif-
ferent between the co-evolving sites identified by Waddell – MI with a high
unique amino acid threshold and all sites. The rest of the description is the
same as for Figure 8.5.

142

Figure 8.8: The frequencies (y axis) of the 20 amino acids (x axis) are dif-
ferent between the conserved sites and all sites. The frequencies in all sites
are given by red bars, and then the frequencies in conserved sites are overlaid
in green bars. This means that the dark green portions are where the bars
overlap, and the colour at the top of the bars tells us which has the higher
frequency.

143

8.2.2 Introduction to the data

As a reminder to the reader, the real data set collected in Chapter 4 consists
of a set of multiple sequence alignments, each alignment being constructed
from a particular human protein, along with homologous sequences from
other species. In addition to this dataset, we also obtained a set of mutations
present in cases (individuals with autism, intellectual disability, or schizophre-
nia) and controls from the Fromer et al. study [66]. The dataset consisted of
data from an exome-sequencing study in cases with schizophrenia (gener-
ated specifically for that study), plus data from other studies of cases with
schizophrenia, autism, and intellectual disability, as well as controls. There
were a total of 2161 cases and 731 controls. The cases can be divided into
1043 with autism spectrum disorder, 151 with intellectual disability, and 967
with schizophrenia. The mutations in this data set are divided into silent (syn-
onymous) and missense (non-synonymous) mutations. There are 681 mis-
sense and 223 silent mutations for the cases dataset, and 193 missense and
70 silent mutations for the controls dataset. All of the mutations in the entire
dataset are de novo mutations; mutations present in the individual, but not in
their parents. Contained within this dataset are SIFT and PolyPhen2 scores
(the variant which used the HumDiv dataset) for all mutations. The main
findings of the Fromer et al. study were:

1. There was not an increased rate of de novo mutations in cases compared
to controls

2. Disease-causing mutations were enriched (over-represented) in genes
relating to synaptic function (synapses are the points where impulses
are passed between neurons [122])

3. There is commonality in the genes hit by loss-of-function mutations in
the schizophrenia dataset and in autism spectrum disorder, and between
schizophrenia and intellectual disability

In terms of severity of brain functional impairment (roughly speaking), in-
tellectual disability (ID) is associated with more impairment than autism spec-
trum disorder (ASD), which has more impairment than schizophrenia (SCZ).
Another finding of the Fromer et al. study, separate to these but relevant
to the present thesis, is as follows. In terms of the ratio of the number of
loss-of-function mutations (the most deleterious class of mutation, in terms
of protein function) to number of missense mutations in the schizophrenia,
autism spectrum disorder, and intellectual disability cases as separate groups,
the largest ratio is for intellectual disability, then autism spectrum disorder,

144

then schizophrenia. This same order was found when looking at conservation
scores of non-synonymous mutations.

Now that we have introduced the data we are working with, we shall intro-
duce the hypotheses that we shall test using this data.

8.2.3 Data analysis introduction

This is a preliminary investigation into the hypothesis: measures of co-
evolution can be used to identify functionally important sites that by their
very nature cannot be found by looking at evolutionary conservation. We
expect to find that:

1. Co-evolution score is negatively correlated with site conservation.

2. Since SIFT and PolyPhen use conservation as one of the measures
informing predicted mutation severity, there should be positive corre-
lation between SIFT/PolyPhen mutation severity predictions and site
conservation. Consequently, this should be reflected in a relationship
between co-evolution scores and SIFT/PolyPhen.

If co-evolution measures do indeed identify functional sites, then this may
potentially be reflected in:

3. Non-synonymous (NS) mutations contributing to disease occurring at
sites with higher co-evolution scores than:

(a) Silent mutations

(b) NS mutations that do not contribute to disease

4. Difference in NS mutation co-evolution scores between disorders, pos-
sibly reflecting differences in disease severity. As was detailed above,
in the Fromer et al. [66] study, the burden of loss-of-function muta-
tions was greatest in intellectual disability, followed by autism spec-
trum disorder, and then schizophrenia. This means we might expect to
see the burden of less deleterious mutations in the opposite order, so
schizophrenia, then autism spectrum disorder, then intellectual disabil-
ity, with this possibly reflected in co-evolution scores.

We shall now test each of these hypotheses in turn.

145

Co-evolution scores and conservation

As discussed earlier in this chapter, SIFT and PolyPhen are two methods
for classifying mutations as disease-causing or otherwise. SIFT scores <=
0.05 are interpreted as damaging (D), whereas scores higher than 0.05 are
interpreted as tolerated (T) [105]. In contrast, for PolyPhen, smaller values
are interpreted as benign, and larger values as damaging. In PolyPhen, there
are three possible predictions: probably damaging, possibly damaging, and
benign [3]. To work out which classification applies, threshold false positive
rates are used. (These are separate to the actual PolyPhen scores.) For the
PolyPhen score considered in this thesis (that which uses the HumDiv data),
the threshold pair is 5% and 10%. The false positive rate (FPR) corresponding
to a mutation’s posterior probability score is compared against each of the
thresholds in the pair. If the FPR is less than or equal to the first threshold
(5%), the mutation is predicted to be probably damaging. If the FPR is less
than or equal to the second threshold (10%), then the mutation is predicted
to be possibly damaging. If the FPR is above the second threshold, then the
mutation is predicted to be benign.

One measure that both SIFT and PolyPhen take into account is site con-
servation (if a site is fully conserved, then that means that there is only one
unique amino acid at that site). The conservation score used in the Fromer et
al. dataset is GERP RS, taken from the GERP program [34].

We compare the three co-evolution detection methods PlotCorr, Waddell
– Kappa, and Waddell – MI to the GERP conservation score. We do so by
calculating the correlations between the maximum Z-score (for each detection
method) at each mutation’s position with the GERP conservation score for
that position:

• PlotCorr = -0.2759158

• Waddell – Kappa = -0.2598922

• Waddell – MI = -0.3205067

All of the relationships between each of the co-evolution detection methods
and conservation are negative, meaning that as there is an increase in conser-
vation, there is a decrease in co-evolution score generally, as we predicted in
the hypothesis ‘Co-evolution score is negatively correlated with site conser-
vation’.

146

Co-evolution detection method SIFT PolyPhen
PlotCorr 0.3201025 -0.3814595

Waddell – Kappa 0.3213145 -0.3724969
Waddell – MI 0.345617 -0.3997778

Table 8.1: Correlations between the maximum Z-scores of each of the co-
evolution detection methods and the SIFT and PolyPhen scores.

SIFT/PolyPhen and co-evolution scores

As mentioned above, both SIFT and PolyPhen use conservation to calcu-
late their scores. Consequently, there is likely to be some degree of correlation
between the amount of conservation at a site, and the SIFT/PolyPhen scores
at that site. The correlation between GERP RS and the SIFT score for all of
the mutations in the Fromer et al. dataset is -0.329917, and for GERP RS
and PolyPhen’s HDIV score (that which uses the HumDiv dataset, henceforth
just called the ‘PolyPhen score’), the correlation is 0.4055978. Although both
the SIFT and PolyPhen scores are reasonably correlated with the GERP con-
servation score, there does appear to be more going into the SIFT/PolyPhen
scores than just conservation, as we would expect from the description of the
scores earlier in this chapter. The correlations for both SIFT and PolyPhen
are in the predicted direction; increased conservation means a mutation is pre-
dicted to be more damaging. This confirms the hypothesis ‘Since SIFT and
PolyPhen use conservation as one of the measures informing predicted mu-
tation severity, there should be positive correlation between SIFT/PolyPhen
mutation severity predictions and site conservation’.

Now we shall calculate the correlations between the co-evolution detection
methods and SIFT and PolyPhen scores. The correlations are presented in
Table 8.1.

All of the correlations indicate that mutations at sites with greater evi-
dence for co-evolution tend to be classified as more benign by both SIFT
and PolyPhen. This is as we expected in the hypothesis ‘this [relationship be-
tween SIFT/PolyPhen and conservation] should be reflected in a relationship
between co-evolution scores and SIFT/PolyPhen’.

Co-evolution scores of non-synonymous mutations

We now test whether (a) conservation, (b) SIFT/PolyPhen, and (c) co-
evolution scores, can predict whether mutations are synonymous (silent) or
non-synonymous (missense). We begin by defining a baseline model, given

147

by:

mutation type ∼ amino acid frequency + probability of non-synonymous
(8.2)

against which further models are compared. The “mutation type” is a binary
variable equal to 1 if the mutation is non-synonymous, and 0 if it is syn-
onymous; “amino acid frequency” is the frequency of the amino acid at that
position in all sites in our real data dataset (for human sequences); “probabil-
ity of non-synonymous” is the probability that a mutation to that amino acid
would be non-synonymous (would change the amino acid to something else).
Other models are compared against this baseline using ANOVA, and all of the
models fitted are logistic regression models, due to the fact that the variable
being predicted is binary.

Running this analysis on the cases dataset only, the models we shall fit to
test whether (a) conservation, (b) SIFT/PolyPhen, and (c) co-evolution scores,
can predict whether mutations are synonymous or non-synonymous are:

mutation type ∼ amino acid frequency + probability of non-synonymous

+ GERP RS

Conservation model (8.3)

mutation type ∼ amino acid frequency + probability of non-synonymous

+ SIFT SCORE + PHEN2 HDIV SCORE

SIFT/PolyPhen model (8.4)

mutation type ∼ amino acid frequency + probability of non-synonymous

+ plotcorr low + plotcorr z + waddellkappa high + waddellkappa low

+ waddellkappa z + waddellmi high + waddellmi low + waddellmi z

Co-evolution model (8.5)

respectively. GERP RS, SIFT SCORE and PHEN2 HDIV SCORE are the
GERP (conservation), SIFT, and PolyPhen scores, respectively. For the co-
evolution model, the detection method scores ending with “ low” or “ high”

148

are binary variables, equal to 1 if the site was detected as co-evolving (and 0
if it was not) by that method with a low or high unique amino acid threshold,
respectively. Those co-evolution detection method scores ending with “ z” are
equal to the maximum Z-score calculated at that position (paired with some
other position) for that detection method. PlotCorr with the higher unique
amino acid threshold did not identify any sites in the cases dataset as co-
evolving, which is why “plotcorr high” does not appear in the above model.

Comparing each of the three models against the baseline model using the
ANOVA (Analysis Of Variance) test, we obtain the p-values:

Model p-value

Conservation 0.009306
SIFT/PolyPhen 1
Co-evolution 1

These have been corrected for 3 tests, according to the Bonferroni correc-
tion (which corrects for multiple tests). We can clearly see that the model
which includes conservation is the only one of the three which is significantly
different to the baseline.

As a further, exploratory analysis, we can compare a series of smaller mod-
els to the baseline model as before. We wish to do this because, as we saw
previously, there is correlation between the different scores, and we want to
see if any one score is having a significant effect. All of these smaller models
have the format:

mutation type ∼ amino acid frequency + probability of non-synonymous

+ [score] (8.6)

where “[score]” can be one of SIFT, PolyPhen, or one of the co-evolution
scores. Again using the cases dataset, we compare each of these models to
the baseline, and obtain the following p-values:

149

Score p-value

SIFT SCORE 0.3731
PHEN2 HDIV SCORE 0.2876

plotcorr low 0.1798
plotcorr z 0.5749

waddellkappa high 0.7445
waddellkappa low 0.5611

waddellkappa z 0.6383
waddellmi high 0.2938
waddellmi low 0.55

waddellmi z 0.7372

We can see that none of the p-values is significant, and this is even before
applying a Bonferroni correction. This means that none of the scores (except
conservation, as we saw earlier) can predict whether mutations are synony-
mous or non-synonymous in the cases dataset.

Now, we investigate whether non-synonymous mutations contributing to
disease occur at sites with higher (a) conservation, (b) SIFT/PolyPhen, or (c)
co-evolution scores than non-synonymous mutations that do not contribute to
disease. To do so, we again begin with a baseline model:

case or control ∼ amino acid frequency + probability of non-synonymous
(8.7)

where “case or control” is a binary variable, equal to 1 if this is a case, and 0
if a control. We only consider non-synonymous mutations here. We compare
the following three models to this baseline:

case or control ∼ amino acid frequency + probability of non-synonymous

+ GERP RS (8.8)

case or control ∼ amino acid frequency + probability of non-synonymous

+ SIFT SCORE + PHEN2 HDIV SCORE (8.9)

150

case or control ∼ amino acid frequency + probability of non-synonymous

+ plotcorr high + plotcorr low + plotcorr z + waddellkappa high

+ waddellkappa low + waddellkappa z + waddellmi high + waddellmi low

+ waddellmi z (8.10)

The only differences between these models and the models fitted previously
is that the “mutation type” is replaced with “case or control”. The (corrected)
p-values that result from the ANOVA comparison of each of these models to
the baseline are:

Model p-value

Conservation 0.5418
SIFT/PolyPhen 1
Co-evolution 0.9618

None of these are statistically significant. Again, we look at the models
which include each individual score, so each model has the format:

case or control ∼ amino acid frequency + probability of non-synonymous

+ [score] (8.11)

and the p-values obtained for the comparison of each of these models against
the baseline are:

Score p-value

SIFT SCORE 0.5959
PHEN2 HDIV SCORE 0.1745

plotcorr high 0.08008
plotcorr low 0.8114

plotcorr z 0.2986
waddellkappa high 0.7447
waddellkappa low 0.6809

waddellkappa z 0.2917
waddellmi high 0.9538
waddellmi low 0.7415

waddellmi z 0.577

151

Even before applying the Bonferroni correction to account for multiple test-
ing, none of the scores are able to distinguish non-synonymous mutations be-
tween the cases and controls datasets.

Comparison between diseases

We finally compare the scores of disorders (AUT = autism spectrum disor-
der, ID = intellectual disability, SCZ = schizophrenia) to see whether certain
disorders have higher scores than others. For each of these comparisons, we
use the Wilcoxon rank-sum test to first calculate whether there is a difference
between the two groups (two-tailed test), and then, if there is a difference, we
compare the groups again with a one-tailed test to find the direction of the
difference.

The p-values for all comparisons, corrected for 9 tests (3 disease compar-
isons× 3 sets of scores) for the two-tailed tests are summarised in the follow-
ing table:

Comparison GERP SIFT/PolyPhen Co-evolution

AUT and ID 1 1 1
AUT and SCZ 1 1 0.00013374
ID and SCZ 0.29232 1 0.013113

For conservation, we compared the GERP scores between each pair of dis-
orders. No differences were found between any of the pairs of psychiatric
disorders when the p-values were corrected for multiple testing (before cor-
rection, there appears to be a difference between ID and SCZ). This is in
contrast to what was found in the Fromer et al. [66] paper, where conser-
vation scores were found to be different between disorders. This is due to
the fact that this thesis only uses non-synonymous mutations; in the Fromer
et al. study, loss of function and splice mutations were also used, and they
almost certainly contributed to the differences found between the disorders
being compared.

For SIFT/PolyPhen, we compared the union of all SIFT and PolyPhen
scores for autism to all of the SIFT and PolyPhen scores for intellectual dis-
ability, etc. None of the comparisons are statistically significant (and they
were not before correcting the p-values either).

Finally, we compared the Z-score co-evolution measures (plotcorr z, wad-
dellkappa z, and waddellmi z together) between pairs of disorders. We can

152

see differences between autism and schizophrenia, and between intellectual
disability and schizophrenia. We now perform one-tailed tests to find the
direction of the differences. For autism and schizophrenia, schizophrenia’s
Z-scores are larger than autism’s (p-value = 7.431e-06), and for intellectual
disability and schizophrenia, schizophrenia’s Z-score’s are larger than intel-
lectual disability’s (p-value = 0.0007285). This aligns with the hypothesis we
set at the beginning, although we did not find differences between autism and
intellectual disability.

Again, we present a secondary analysis looking at the scores individually.
Comparing SIFT scores between the three diseases, it is found that muta-
tions from schizophrenia cases have higher scores than mutations associated
with intellectual disability (p-value = 0.01153). This means that mutations
associated with schizophrenia would be more likely to be predicted as toler-
ant than mutations associated with intellectual disability. This, again, makes
sense in the context of the Fromer et al. study, in that mutations that generally
speaking, are associated with less severity of brain functional impairment, are
tolerated more (intellectual disability tends to cause more severe impairment
than schizophrenia). However, this p-value would not survive correcting for
multiple tests (new p-value = 0.41508).

For PolyPhen, mutations associated with autism spectrum disorder and in-
tellectual disability each have higher scores than those scores for mutations
associated with schizophrenia (p-values 0.001075 and 0.004953 respectively).
This means that mutations associated with autism spectrum disorder will be
more likely to be predicted as damaging than schizophrenia, and mutations
associated with intellectual disability will be more likely to be predicted as
damaging than schizophrenia as well. This, again, makes sense in the context
of the Fromer et al. study. Although the p-value for the intellectual disability
and schizophrenia comparison would not survive correcting for multiple tests
(new p-value = 0.178308), the one for autism and schizophrenia would (new
p-value = 0.0387).

For the co-evolution detection methods, it is found that schizophrenia has
higher scores than autism spectrum disorder for:

• binary PlotCorr with lower unique amino acid threshold (p-value =
0.008359)

• binary Waddell – Kappa with lower unique amino acid threshold (p-
value = 0.005275)

153

• binary Waddell – MI with lower unique amino acid threshold (p-value
= 0.02473)

• PlotCorr with maximum Z-scores (p-value = 0.005463)

• Waddell – Kappa with maximum Z-scores (p-value = 0.001971)

• Waddell – MI with maximum Z-scores (p-value = 0.005645)

and also schizophrenia has higher scores than intellectual disability for:

• binary PlotCorr with lower unique amino acid threshold (p-value =
0.01864)

• PlotCorr with maximum Z-scores (p-value = 0.01993)

• Waddell – MI with maximum Z-scores (p-value = 0.01731)

however, none of these would survive correction for multiple testing. Earlier
in this chapter, we predicted we might expect to see the burden of less deleteri-
ous mutations in the opposite order to that seen in loss-of-function mutations,
so schizophrenia, then autism spectrum disorder, then intellectual disability,
with this possibly reflected in co-evolution scores. Indeed, we can see this
pattern between schizophrenia and autism, and between schizophrenia and in-
tellectual disability, but not between autism and intellectual disability. These
patterns can be seen on the level of all Z-scores (from all three co-evolution
detection methods) but not on the scale of any one individual method.

8.3 Summary

In this chapter we began with an overview of SIFT and PolyPhen, two
alternative methods for categorising mutations as damaging/benign. We then
combined the results of our proteome-wide analysis of co-evolving sites with
the Fromer et al. [66] mutation dataset to produce the following findings:

1. Co-evolution score is negatively correlated with site conservation.

2. There is positive correlation between SIFT/PolyPhen mutation severity
predictions and site conservation. This was also reflected in a relation-
ship between co-evolution scores and SIFT/PolyPhen.

3. Non-synonymous mutations contributing to disease do not occur at sites
with higher co-evolution scores than silent mutations, nor do they have
higher scores than non-synonymous mutations not contributing to dis-
ease. The same results were found when looking at SIFT and PolyPhen
scores. However, conservation scores can distinguish between non-
synonymous and synonymous mutations in cases.

154

4. The co-evolution detection methods do tend to give different scores
to mutations associated with different psychiatric disorders. In par-
ticular, schizophrenia had higher scores than autism, and schizophre-
nia also had higher scores than intellectual disability. This aligns with
our hypothesis that ‘we might expect to see the burden of less delete-
rious mutations in the . . . order [of] schizophrenia, then autism spec-
trum disorder, then intellectual disability’, although differences were
not found between autism and intellectual disability. It should be noted
that this is based on the assumption that altering protein function (“gain-
of-function” mutations, potentially detected by the co-evolution score)
is less deleterious (in general) to cellular function than loss-of-function.
This is not necessarily the case, but the fact that a fairly robust differ-
ence is seen between schizophrenia and the other (more severe) disor-
ders might suggest that it holds. We can see these patterns when looking
at all maximum Z-scores for the three co-evolution detection methods,
but not when looking at any one score individually (after correction for
multiple testing).

155

Chapter 9

Conclusions

In this chapter we draw together the findings of this thesis in order to
show how the contributions outlined at the beginning of this thesis have been
achieved. We relate these contributions back to the thesis hypothesis, and
consider the extent to which the thesis findings demonstrate the hypothesis.
The present research has some limitations, and we conclude the chapter by
identifying them and discussing how they could be addressed in future work.

9.1 A suitable method for detecting molecular co-
evolution

This section relates to the contribution ‘identification of a method (or a set
of methods) for detecting molecular co-evolution which is suitable for use on
the human proteome’.

Having reviewed the literature broadly in Chapter 3, in Chapter 6, we com-
pared five co-evolution detection methods (CAPS, PlotCorr, MI, Waddell –
Kappa, and Waddell – MI) on their performance on simulated data. (The
parameters chosen for these simulations and the reasoning behind this were
detailed in Chapter 5.) Simulated data was chosen for this purpose so that we
could know for certain where the truly co-evolving sites are. To our knowl-
edge, this set of methods has not been compared before, and in particular,
Waddell – Kappa and Waddell – MI are previously-unimplemented methods,
appearing simply as suggestions in the paper by Waddell et al. [189].

The results of this comparison were that, broadly speaking, PlotCorr and
the two parametric methods (Waddell – Kappa and Waddell – MI) were the
best-performing overall on the data simulated. Because the simulated data
was designed to be similar to a real data set collected in Chapter 4, these

156

methods are also most appropriate for a proteome-wide study of molecular
co-evolution.

9.2 A tree representation suitable for single-pass
CUDA algorithms

This section relates to the contribution ‘identification of a novel method for
allowing tree-based data structures to be mapped to the CUDA architecture
– this particular method is useful for when the tree only needs to be parsed
(read) once’.

The two parametric methods chosen to be implemented in parallel, Wad-
dell – Kappa and Waddell – MI, both require a binary matrix to be constructed
which details the mutations which occurred on a tree describing the relation-
ships between the input protein sequences. In order to construct this, it is
necessary to inspect every branch on the tree exactly once. Although there
are already algorithms for parsing a phylogenetic tree in parallel, using such a
method would only make sense if we needed to parse the tree multiple times.

With this in mind, we devised a way of storing all necessary information
about a tree in three arrays: one for the first children of a node, one for the
second children of a node, and one for the sequence associated with that node.
(We have not seen this done before.) This assumes a binary tree (one with 0,
1, or 2 children per node). Using this format of storing tree information, one
can more easily access, and use, information about each branch in the tree in
parallel with the others. This is further described in Chapter 7.

9.3 Parallelisation of co-evolution detection meth-
ods

This section relates to the contribution ‘improved runtime performance of
the chosen method(s) which allows us to look at larger data sets than has been
done before, in a “reasonable” amount of time’.

In Chapter 7, a comparison was made of the serial and parallel versions of
PlotCorr, Waddell – Kappa, and Waddell – MI (the parallelised versions being
run on two different graphics cards, the GTX 660 Ti and the Titan X). From
this comparison, it was found that often, relatively large alignments were nec-
essary for the parallel implementations to perform better than the serial ones,

157

but that overall, the parallel implementations have a better cost/benefit perfor-
mance. In particular, the Titan X GPU can run 6.5 times as many PlotCorr
“large alignment” jobs in a month as the Raven supercomputer.

9.4 General guidelines for porting algorithms to
CUDA

This section relates to the contribution ‘make recommendations for how
methods similar to those implemented in this thesis may be parallelised’.

9.4.1 PlotCorr

PlotCorr, as discussed previously, is a non-parametric method; that is, it
does not use phylogenetic trees to inform its interpretation of the correlation
between pairs of columns in an alignment. Also, its constituent steps map
themselves well to functions which perform the same calculation on lots of
different data items. This characteristic means that this method easily maps
to CUDA, and can be re-imagined with minimal effort as a CUDA implemen-
tation.

In general, any method which calculates the set of values in a matrix for
some input (and does the same set of calculations for each input) can be ported
well to CUDA. This may imply that there is no good way to port parametric
methods (those which use non-matrix, or tree-like, data structures) but this is
not the case if we can find a way of representing the tree in another format,
as described in the previous section. More generally, success in porting algo-
rithms to CUDA will often hinge upon developing a novel insight involving
transformation of a data structure into some matrix form and identifying a
way in which a sequential algorithm can be modified into one or a small num-
ber of steps, each of which can be performed simultaneously on the entire
data structure.

9.4.2 Parametric methods

These methods use phylogenetic trees as a source of information when cal-
culating the correlations between pairs of sites in an alignment. For each
function within a method, we must consider whether it is worth parallelising
this function. When looking at a non-parametric method such as PlotCorr,
it is easy to say that all of the steps will benefit from parallelisation (given
a moderately large input), but with a parametric method, tree traversal is a
step that cannot be as obviously mapped to CUDA. There are papers which

158

give methods for traversing a tree in parallel [19, 117, 77], but these assume
that this is an operation we wish to do many times, whereas in our parametric
methods, we only wish to do this once (and only to extract the information
within the tree into a form we can more easily work with). With this in mind,
we decided to keep this part of the operation in serial code form, and to paral-
lelise the rest of the method, as these steps are more obviously parallelisable
in CUDA. In particular, we devised a way (described above) of inspecting the
branches of a phylogenetic tree in parallel.

9.5 Proteome-wide identification of potential co-
evolving sites

This section relates to the contribution ‘identification of co-evolving sites
across the entire human proteome, and analysis of these sites according to
what is already known about disease-causing mutations’.

In Chapter 8 we examined the results of running the co-evolution detection
methods on the real data set collected in Chapter 4. We also used a data set
of mutations from cases and controls from the study by Fromer et al. [66].
There were four main threads of investigation we wanted to follow; here are
the results of these, as given in the summary for that chapter:

1. Co-evolution score is negatively correlated with site conservation.

2. There is positive correlation between SIFT/PolyPhen mutation severity
predictions and site conservation. This was also reflected in a relation-
ship between co-evolution scores and SIFT/PolyPhen.

3. Non-synonymous mutations contributing to disease do not occur at sites
with higher co-evolution scores than silent mutations, nor do they have
higher scores than non-synonymous mutations not contributing to dis-
ease. The same results were found when looking at SIFT and PolyPhen
scores. However, conservation scores can distinguish between non-
synonymous and synonymous mutations in cases.

4. The co-evolution detection methods do tend to give different scores
to mutations associated with different psychiatric disorders. In par-
ticular, schizophrenia had higher scores than autism, and schizophre-
nia also had higher scores than intellectual disability. This aligns with
our hypothesis that ‘we might expect to see the burden of less delete-
rious mutations in the . . . order [of] schizophrenia, then autism spec-
trum disorder, then intellectual disability’, although differences were

159

not found between autism and intellectual disability. It should be noted
that this is based on the assumption that altering protein function (“gain-
of-function” mutations, potentially detected by the co-evolution score)
is less deleterious (in general) to cellular function than loss-of-function.
This is not necessarily the case, but the fact that a fairly robust differ-
ence is seen between schizophrenia and the other (more severe) disor-
ders might suggest that it holds. We can see these patterns when looking
at all maximum Z-scores for the three co-evolution detection methods,
but not when looking at any one score individually (after correction for
multiple testing).

9.6 Hypothesis

So far in this chapter we have linked the contributions set out in Chapter 1
to the work done in this thesis. These contributions were designed as aims to
achieve to allow us to test the hypothesis set out. The hypothesis was:

‘Part 1: Until this point, it has not been possible to find co-evolving sites
in the entire human proteome in a feasible amount of time. We propose that
translating a method for detecting co-evolving sites onto the CUDA architec-
ture can allow us to solve this problem effectively. Part 2: Applying such a
method to the human proteome shall allow us to test the hypothesis: mea-
sures of co-evolution can be used to identify functionally important sites that
by their very nature cannot be found by looking at evolutionary conservation.’

The Computer Science part of the hypothesis, and the Medicine part of the
hypothesis, are inherently interlinked due to the interdisciplinary nature of this
work. However, it is possible to check the validity of these parts separately.
For the first, that ‘translating a method for detecting co-evolving sites onto the
CUDA architecture can allow us to solve this problem effectively’, we have
proved this – in Chapter 7, we showed that implementing the PlotCorr, Wad-
dell – Kappa, and Waddell – MI methods on the CUDA architecture allowed
us to achieve an increase in performance overall. For the second part, that ‘the
results of applying co-evolution detection methods to the human proteome
may help to identify disease-causing mutations’, we showed that although
the co-evolution scores could not distinguish between non-synonymous and
synonymous mutations in cases, or between non-synonymous mutations in
cases and controls, co-evolution detection methods are able to highlight the
gradient of severity between psychiatric diseases. Schizophrenia mutations
had higher co-evolution scores than autism, and also higher scores than in-

160

tellectual disability. Intellectual disability tends to be associated with the
most severe brain functional impairment of the three, followed by autism,
and then schizophrenia. The co-evolution scores show this order. Generally,
the preliminary evidence presented in Chapter 8 (particularly the comparison
of psychiatric disorders) suggests that the co-evolution methods can be used
to identify functionally relevant sites at which mutations are more likely to be
deleterious (or at least have some discernible effect).

Having shown how this thesis fulfils the contributions and tests the hy-
pothesis set out at the beginning of the thesis, we now move on to detail the
limitations of this thesis.

9.7 Limitations

In this section, we detail the limitations of this work.

To our knowledge, no co-evolution detection method more complex than
Mutual Information has been implemented in CUDA previously, and we have
demonstrated that it is possible to achieve substantial speed-up in a cost-
effective manner by implementing these methods in CUDA. However, when
implementing these parallelised methods, there came a point when we needed
to stop the cycle of analysing the performance of the various functions of each
method and removing bottlenecks. We have given suggestions in the next sec-
tion for ways that the CUDA implementations could be further improved, but
of course there may be further considerations that we could not have pre-
dicted. In addition, there is always a trade-off between the effort required to
implement improvements and the improvements to efficiency that would be
gained from those improvements.

When timing the various versions of PlotCorr using NSIGHT with Visual
Studio, it was not possible to find an automated method of obtaining multiple
timing “runs” at once. This was a limitation of developing the code in Win-
dows, as it may be possible to perform multiple timing iterations in the Linux
version of NSIGHT.

Finally, the analyses performed in Chapter 8 were preliminary; given more
time we could have performed more thorough analyses of the results found;
this is reserved for future work.

161

The limitations we have discussed here could be added to, according to the
future work (anything we did not have time to do could be perceived as a
limitation of this work). We list proposals for future work now.

9.8 Future work

In this section we shall detail suggestions for future work which build upon
the novelty of the current work. Firstly we discuss practical considerations.

9.8.1 CUDA implementation decisions

When working out the mean and standard deviation of the correlations for
our methods (whether these “correlations” are from PlotCorr or the Waddell
parametric methods), we use reduction to work out the sum of the correlation
values (for the mean), and of the

(correlation− mean of correlations)2 (9.1)

values (for the standard deviation). There do exist more complex versions
of this general method [197], but due to time constraints, these could not be
pursued.

The implementations of the PlotCorr and Waddell parametric methods were
not necessarily optimal, and the main purpose was to develop CUDA imple-
mentations of at least adequate efficiency (especially in the case of the para-
metric methods, where no actual implementations, serial or otherwise, had
been done before). We have presented in this thesis considerations to bear in
mind when implementing methods of this kind in CUDA, but there may be
other considerations that we have not encountered here, that could be used to
improve the performance of the methods further.

9.8.2 Parallelising tree-based methods further

Due to the way that the Waddell parametric methods work, although we
can access information from each branch of the tree in parallel, if a node has
two children, for example, two threads could attempt to access sequence data
from the parent node simultaneously, causing reduced performance. In the
future, it may be possible to resolve this problem.

162

9.8.3 PlotCorr algorithm design improvements

In the current implementation of the PlotCorr algorithm, we do not pay any
attention to whether or not the alignment columns each thread is working on
are conserved or not. If an alignment column is conserved, then when we get
to the point of calculating the correlation between that alignment column and
any other, we check to see whether the multiplied standard deviation of both
of the columns is equal to 0. Fully conserved columns will always have a
standard deviation equal to 0, and so we are wasting computation on calcu-
lating the distance matrix, the mean and standard deviation of this, etc., when
we could simply inspect the columns and pick out only those which are not
fully conserved. To reduce the number of operations we would need to com-
plete overall, we could simply filter out only those non-conserved alignment
columns, using a parallel algorithm such as compact, for example. The only
difficulty which would remain is keeping some kind of mapping between the
indices in the original (unfiltered) alignment, and the indices of the filtered
alignment.

Another point to consider with PlotCorr is that there could be a bottleneck
to this method in the form of multiple threads attempting to read the same cell
of the substitution matrix, even though each thread calculates each distance
matrix as a whole. This could happen if, for example, two columns in the
alignment share two of the same amino acids. For example, if column 1
and column 2 both contained the amino acids D and E, then at some point
the thread responsible for column 1 and the thread responsible for column 2
would each have to access the cell in the substitution matrix for amino acids
D and E. (Assuming D and E appear in the two columns in the same order.)
This could cause both threads to try to read from the same memory address at
the same time. Improvements to stop this from happening could move in the
direction of giving each thread block its own copy of the substitution matrix.
Although this would not eliminate the possibility of clashes completely (there
would be a clash if two threads in the same block attempted to access the same
cell in the substitution matrix at the same time), it could reduce the likelihood
of these clashes happening. This could also improve the overall performance
as reads from shared memory (where the shared matrix would be stored) are
faster than from global memory (where the substitution matrix is currently
stored).

9.8.4 Timing results

In this thesis, we only considered full-program times of the serial and paral-
lel implementations when comparing these; in the future, more time could be

163

spent analysing the various functions of each of the implementations and see-
ing how these could be improved further. In addition, a practical (as opposed
to purely theoretical) investigation of alternative platforms, such as Amazon
Web Services, could be performed.

Now we describe future work in terms of the biological side of this thesis.

9.8.5 Different biological applications

In this project, the focus was on intra-molecular co-evolution, i.e. co-
evolution between positions within a protein. A future application could be to
use our CUDA programs to look at inter-molecular co-evolution (co-evolution
between positions in different proteins).

9.8.6 Extensions

One way we could further analyse the results on the real data set is that,
given the set of Z-scores associated with pairs of positions in an alignment,
we could cluster these according to high/low correlation to work out networks
of co-evolving sites. This could elucidate more information on how different
parts of a protein work together.

9.8.7 Different datasets

A different real data dataset, such as one from the UCSC website, could
have been chosen; this would give us different results and perhaps differing
conclusions could be drawn.

9.9 Summary

In this thesis we have shown that it is possible to use CUDA to perform
cost-effective, large-scale analyses of molecular sequences in order to identify
potentially co-evolving sites. These techniques have the potential to make an
impact in the understanding of psychiatric disorders such as schizophrenia,
autism, and intellectual disability, and potential treatments.

164

Chapter 10

Bibliography

[1] Sharon H. Ackerman, Elisabeth R. Tillier, and Domenico L. Gatti. Ac-
curate simulation and detection of coevolution signals in multiple se-
quence alignments. PloS one, 7(10):e47108, 2012.

[2] Jun Adachi and Masami Hasegawa. Model of Amino Acid Substitution
in Proteins Encoded by Mitochondrial DNA. Journal of molecular

evolution, 42(4):459–468, 1996.

[3] Ivan Adzhubei, Daniel M. Jordan, and Shamil R. Sunyaev. Predicting
Functional Effect of Human Missense Mutations Using PolyPhen-2.
Current Protocols in Human Genetics, (SUPPL.76), 2013.

[4] Ivan A. Adzhubei, Steffen Schmidt, Leonid Peshkin, Vasily E. Ra-
mensky, Anna Gerasimova, Peer Bork, Alexey S. Kondrashov, and
Shamil R. Sunyaev. A method and server for predicting damaging mis-
sense mutations. Nature methods, 7(4):248–249, 2010.

[5] Robin G. Allaby and Mathew Woodwark. Phylogenomic Analysis Re-
veals Extensive Phylogenetic Mosaicism in the Human GPCR Super-
family. Evolutionary Bioinformatics, 3:357–370, 2007.

[6] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

[7] ‘Apers0n’. DNA Double Helix. https://commons.

wikimedia.org/wiki/File:DNA_Double_Helix.png.
Derivative work. Original work released by National Human Genome
Research Institute at URL https://www.genome.gov/dmd/

img.cfm?node=Photos/Graphics&id=85329. This is in the
Public Domain. Accessed on 19/08/16.

165

https://commons.wikimedia.org/wiki/File:DNA_Double_Helix.png
https://commons.wikimedia.org/wiki/File:DNA_Double_Helix.png
https://www.genome.gov/dmd/img.cfm?node=Photos/Graphics&id=85329
https://www.genome.gov/dmd/img.cfm?node=Photos/Graphics&id=85329

[8] Miguel Arenas, Helena G. Dos Santos, David Posada, and Ugo Bas-
tolla. Protein evolution along phylogenetic histories under structurally
constrained substitution models. Bioinformatics (Oxford, England),
29(23):3020–8, 2013.

[9] William R. Atchley, Werner Terhalle, and Andreas Dress. Positional
Dependence, Cliques, and Predictive Motifs in the bHLH Protein Do-
main. Journal of Molecular Evolution, 48(5):501–516, 1999.

[10] William R. Atchley, Kurt R. Wollenberg, Walter M. Fitch, Werner Ter-
halle, and Andreas W. Dress. Correlations Among Amino Acid Sites
in bHLH Protein Domains: An Information Theoretic Analysis. Mol

Biol Evol, 17(1):164–178, 2000.

[11] ‘Autopilot’. Probability density plots of gamma distributions. https:
//en.wikipedia.org/wiki/Gamma_distribution#

/media/File:Gamma_distribution_pdf.svg. Deriva-
tive work. Original work by ‘MarkSweep and ‘Cburnett’.
Accessed on 08/08/16. Licensed under the Creative Com-
mons Attribution-Share Alike 3.0 Unported licence, found at
https://creativecommons.org/licenses/by-sa/3.0/legalcode (human-
readable version at https://creativecommons.org/licenses/by-
sa/3.0/deed.en).

[12] M. Madan Babu. The contribution of intrinsically disordered regions to
protein function, cellular complexity, and human disease. Biochemical

Society Transactions, 44(5):1185–1200, 2016.

[13] ‘Bilou’. blue Alpha Helix Section. https://commons.

wikimedia.org/wiki/File:AlphaHelixSection_

(blue).svg. Accessed on 04/11/16. This is in the Public Domain.

[14] Thomas Bradley. Assess, Parallelize, Optimize, Deploy. https:

//devblogs.nvidia.com/parallelforall/assess-

parallelize-optimize-deploy/. [Online; accessed 2016-
10-12].

[15] Catherine Brooksbank, Evelyn Camon, Midori A. Harris, Michele Ma-
grane, Maria Jesus Martin, Nicola Mulder, Claire O’Donovan, Helen
Parkinson, Mary Ann Tuli, Rolf Apweiler, Ewan Birney, Alvis Brazma,
Kim Henrick, Rodrigo Lopez, Guenter Stoesser, Peter Stoehr, and Gra-
ham Cameron. The European Bioinformatics Institute’s data resources.
Nucleic Acids Research, 31(1):43–50, 2003.

166

https://en.wikipedia.org/wiki/Gamma_distribution#/media/File:Gamma_distribution_pdf.svg
https://en.wikipedia.org/wiki/Gamma_distribution#/media/File:Gamma_distribution_pdf.svg
https://en.wikipedia.org/wiki/Gamma_distribution#/media/File:Gamma_distribution_pdf.svg
https://commons.wikimedia.org/wiki/File:AlphaHelixSection_(blue).svg
https://commons.wikimedia.org/wiki/File:AlphaHelixSection_(blue).svg
https://commons.wikimedia.org/wiki/File:AlphaHelixSection_(blue).svg
https://devblogs.nvidia.com/parallelforall/assess-parallelize-optimize-deploy/
https://devblogs.nvidia.com/parallelforall/assess-parallelize-optimize-deploy/
https://devblogs.nvidia.com/parallelforall/assess-parallelize-optimize-deploy/

[16] Christopher A. Brown and Kevin S. Brown. Validation of coevolving
residue algorithms via pipeline sensitivity analysis: ELSC and OMES
and ZNMI, oh my! PloS one, 5(6):e10779, 2010.

[17] Michael J. Buck and William R. Atchley. Networks of Coevolving
Sites in Structural and Functional Domains of Serpin Proteins. Molec-

ular Biology and Evolution, 22(7):1627–1634, 2005.

[18] Lukas Burger and Erik van Nimwegen. Disentangling Direct from In-
direct Co-Evolution of Residues in Protein Alignments. PLoS Compu-

tational Biology, 6(1), 2010.

[19] Martin Burtscher and Keshav Pingali. An Efficient CUDA Imple-
mentation of the Tree-Based Barnes Hut n-Body Algorithm. In Wen-
Mei W. Hwu, editor, GPU Computing Gems Emerald Edition, pages
75–92. Morgan Kaufmann, 2011.

[20] Cristina Marino Buslje, Javier Santos, Jose Maria Delfino, and Morten
Nielsen. Correction for phylogeny, small number of observations and
data redundancy improves the identification of coevolving amino acid
pairs using mutual information. Bioinformatics (Oxford, England),
25(9):1125–31, 2009.

[21] Ewen Callaway. ’Junk’ DNA gets credit for making us who we are.
https://www.newscientist.com/article/dn18680-

junk-dna-gets-credit-for-making-us-who-we-

are/?full=true{&}print=true. [Online; accessed 2016-08-
16].

[22] J. Gregory Caporaso, Sandra Smit, Brett C. Easton, Lawrence Hunter,
Gavin A. Huttley, and Rob Knight. Detecting coevolution without phy-
logenetic trees? Tree-ignorant metrics of coevolution perform as well
as tree-aware metrics. BMC Evolutionary Biology, 8:327, 2008.

[23] Center for Comparative Genomics and Bioinformatics (Pennsylvania
State University). BLASTZ is Obsolete. http://www.bx.psu.

edu/miller{_}lab/dist/blastz{_}is{_}obsolete.

html. [Online; accessed 2016-08-17].

[24] Saikat Chakrabarti and Anna R. Panchenko. Coevolution in defining
the functional specificity. Proteins, 75(1):231–40, 2009.

[25] Saikat Chakrabarti and Anna R. Panchenko. Structural and functional
roles of coevolved sites in proteins. PloS one, 5(1):e8591, 2010.

167

https://www.newscientist.com/article/dn18680-junk-dna-gets-credit-for-making-us-who-we-are/?full=true{&}print=true
https://www.newscientist.com/article/dn18680-junk-dna-gets-credit-for-making-us-who-we-are/?full=true{&}print=true
https://www.newscientist.com/article/dn18680-junk-dna-gets-credit-for-making-us-who-we-are/?full=true{&}print=true
http://www.bx.psu.edu/miller{_}lab/dist/blastz{_}is{_}obsolete.html
http://www.bx.psu.edu/miller{_}lab/dist/blastz{_}is{_}obsolete.html
http://www.bx.psu.edu/miller{_}lab/dist/blastz{_}is{_}obsolete.html

[26] Jia-Ming Chang, Paolo Di Tommaso, Vincent Lefort, Olivier Gascuel,
and Cedric Notredame. TCS: a web server for multiple sequence align-
ment evaluation and phylogenetic reconstruction. Nucleic acids re-

search, 43(W1):W3–6, 2015.

[27] Jia-Ming Chang, Paolo Di Tommaso, and Cedric Notredame. TCS:
A New Multiple Sequence Alignment Reliability Measure to Estimate
Alignment Accuracy and Improve Phylogenetic Tree Reconstruction.
Molecular Biology and Evolution, 31(6):1625–1637, 2014.

[28] Gareth Chelvanayagam, Andreas Eggenschwiler, Lukas Knecht, Gas-
ton H. Gonnet, and Steven A. Benner. An analysis of simultaneous
variation in protein structures. Protein engineering, 10(4):307–16,
1997.

[29] Sun Shim Choi, Weimin Li, and Bruce T Lahn. Robust signals of
coevolution of interacting residues in mammalian proteomes identified
by phylogeny-aided structural analysis. Nature genetics, 37(12):1367–
71, 2005.

[30] Greg W. Clark, Sharon H. Ackerman, Elisabeth R. Tillier, and
Domenico L. Gatti. Multidimensional mutual information methods
for the analysis of covariation in multiple sequence alignments. BMC

Bioinformatics, 15(1):157, 2014.

[31] Francisco M. Codoñer and Mario A. Fares. Why Should We Care
About Molecular Coevolution? Evolutionary Bioinformatics Online,
4:29–38, 2008.

[32] Francisco M. Codoñer, Mario A. Fares, and Elena F. Santiago. Adap-
tive Covariation between the Coat and Movement Proteins of Prunus
Necrotic Ringspot Virus. Journal of virology, 80(12):5833–40, 2006.

[33] Jacob Cohen. A coefficient of agreement for nominal scales. Educa-

tional and Psychological Measurement, 20(1):37–46, 1960.

[34] Gregory M. Cooper, Eric A. Stone, George Asimenos, Eric D. Green,
Serafim Batzoglou, and Arend Sidow. Distribution and intensity
of constraint in mammalian genomic sequence. Genome Research,
15(7):901–913, 2005.

[35] Daniel A. Dalquen, Maria Anisimova, Gaston H. Gonnet, and
Christophe Dessimoz. ALF–A Simulation Framework for Genome
Evolution. Molecular biology and evolution, 29(4):1115–23, 2012.

168

[36] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. 22 A Model of Evolu-
tionary Change in Proteins. In Atlas of Protein Sequence and Structure,
pages 345–352. 1978.

[37] David de Juan, Florencio Pazos, and Alfonso Valencia. Emerging
methods in protein co-evolution. Nature reviews. Genetics, 14(4):249–
61, 2013.

[38] John P. Dekker, Anthony Fodor, Richard W. Aldrich, and Gary Yellen.
A perturbation-based method for calculating explicit likelihood of evo-
lutionary co-variance in multiple sequence alignments. Bioinformatics,
20(10):1565–1572, 2004.

[39] Die.net. clock gettime(3) - Linux max page. https://linux.

die.net/man/3/clock{_}gettime.

[40] Matthew W. Dimmic, Melissa J. Hubisz, Carlos D. Bustamante, and
Rasmus Nielsen. Detecting coevolving amino acid sites using Bayesian
mutational mapping. Bioinformatics (Oxford, England), 21(Suppl
1):i126–i135, 2005.

[41] Emmanuel J. P. Douzery, Elizabeth A. Snell, Eric Bapteste, Frédéric
Delsuc, and Hervé Philippe. The timing of eukaryotic evolution: Does
a relaxed molecular clock reconcile proteins and fossils? Proceedings

of the National Academy of Sciences of the United States of America,
101(43):15386–15391, 2004.

[42] S. D. Dunn, L. M. Wahl, and G. B. Gloor. Mutual information without
the influence of phylogeny or entropy dramatically improves residue
contact prediction. Bioinformatics (Oxford, England), 24(3):333–40,
2008.

[43] Julien Dutheil and Nicolas Galtier. Detecting groups of coevolving
positions in a molecule: a clustering approach. BMC evolutionary bi-

ology, 7:242, 2007.

[44] Julien Dutheil, Tal Pupko, Alain Jean-Marie, and Nicolas Galtier.
A model-based approach for detecting coevolving positions in a
molecule. Molecular biology and evolution, 22(9):1919–28, 2005.

[45] Julien Y. Dutheil. Detecting coevolving positions in a molecule:
why and how to account for phylogeny. Briefings in Bioinformatics,
13(2):228–243, 2012.

169

https://linux.die.net/man/3/clock{_}gettime
https://linux.die.net/man/3/clock{_}gettime

[46] B. C. Easton, A. V. Isaev, G. A. Huttley, and P. Maxwell. A proba-
bilistic method to identify compensatory substitutions for pathogenic
mutations. In David Sankoff, Lusheng Wang, and Francis Chin, ed-
itors, Proceedings of the 5th Asia-Pacific Bioinformatics Conference,

volume 5 of Advances in Bioinformatics and Computational Biology,
pages 195–205, Hong Kong, 2007. Imperial College Press.

[47] Sean R. Eddy. Where did the BLOSUM62 alignment score matrix
come from? Nature biotechnology, 22(8):1035–6, 2004.

[48] R. J. Edwards and J. D. Parker. UPGMA Worked Ex-
ample. http://www.southampton.ac.uk/{˜}re1u06/

teaching/upgma/. [Online; accessed 2016-10-14].

[49] Paul R. Ehrlich and Peter H. Raven. Butterflies and Plants: A Study in
Coevolution. Evolution, 18(4):586–608, 1964.

[50] EMBL-EBI. EMBL-EBI:: Help:: Tools:: ClustalW2 Phy-
logeny FAQ. http://www.ebi.ac.uk/Tools/phylogeny/

clustalw2{_}phylogeny/help/faq.html. [Online; ac-
cessed 2016-07-13].

[51] EMBL-EBI. Help & Documentation. http://www.ensembl.

org/info/index.html. [Online; accessed 2017-06-05].

[52] EMBL-EBI. Species List. http://www.ensembl.org/info/

about/species.html. [Online; accessed 2017-06-05].

[53] EMBL-EBI. UniProtKB/TrEMBL Release Notes: Release 24, June
2003. http://www.ebi.ac.uk/uniprot/TrEMBLdocs/

trembl{_}release{_}notes{_}24.html. [Online; accessed
2017-04-25].

[54] Ensembl. Protein trees and orthologies. http://www.ensembl.
org/info/genome/compara/homology{_}method.html.
[Online; accessed 2014-07-09].

[55] Chiara Fabbri and Alessandro Serretti. Role of 108 schizophrenia-
associated loci in modulating psychopathological dimensions in
schizophrenia and bipolar disorder. American Journal of Medical Ge-

netics Part B: Neuropsychiatric Genetics, 174(7):757–764, 2017.

[56] Mario A. Fares and Simon A. A. Travers. A Novel Method for De-
tecting Intramolecular Coevolution: Adding a Further Dimension to
Selective Constraints Analyses. Genetics, 173(1):9–23, 2006.

170

http://www.southampton.ac.uk/{~}re1u06/teaching/upgma/
http://www.southampton.ac.uk/{~}re1u06/teaching/upgma/
http://www.ebi.ac.uk/Tools/phylogeny/clustalw2{_}phylogeny/help/faq.html
http://www.ebi.ac.uk/Tools/phylogeny/clustalw2{_}phylogeny/help/faq.html
http://www.ensembl.org/info/index.html
http://www.ensembl.org/info/index.html
http://www.ensembl.org/info/about/species.html
http://www.ensembl.org/info/about/species.html
http://www.ebi.ac.uk/uniprot/TrEMBLdocs/trembl{_}release{_}notes{_}24.html
http://www.ebi.ac.uk/uniprot/TrEMBLdocs/trembl{_}release{_}notes{_}24.html
http://www.ensembl.org/info/genome/compara/homology{_}method.html
http://www.ensembl.org/info/genome/compara/homology{_}method.html

[57] Joseph Felsenstein. Evolutionary Trees from DNA Sequences: A
Maximum Likelihood Approach. Journal of Molecular Evolution,
17(6):368–376, 1981.

[58] Andrew D. Fernandes and Gregory B. Gloor. Mutual information is
critically dependent on prior assumptions: would the correct estimate
of mutual information please identify itself? Bioinformatics (Oxford,

England), 26(9):1135–9, 2010.

[59] Walter M. Fitch. Toward Defining the Course of Evolution: Minimum
Change for a Specific Tree Topology. Systematic Biology, 20(4):406–
416, 1971.

[60] Sarel J. Fleishman, Vinzenz M. Unger, Mark Yeager, and Nir Ben-Tal.
A Calpha Model for the Transmembrane alpha Helices of Gap Junction
Intercellular Channels. Molecular Cell, 15(6):879–888, 2004.

[61] Sarel J. Fleishman, Ofer Yifrach, and Nir Ben-Tal. An Evolu-
tionarily Conserved Network of Amino Acids Mediates Gating in
Voltage-dependent Potassium Channels. Journal of Molecular Biol-

ogy, 340(2):307–318, 2004.

[62] William Fletcher and Ziheng Yang. INDELible: A Flexible Simulator
of Biological Sequence Evolution. Molecular biology and evolution,
26(8):1879–88, 2009.

[63] Paul Flicek, M. Ridwan Amode, Daniel Barrell, Kathryn Beal, Kon-
stantinos Billis, Simon Brent, Denise Carvalho-Silva, Peter Clapham,
Guy Coates, Stephen Fitzgerald, Laurent Gil, Carlos Garcı́a Girón, Leo
Gordon, Thibaut Hourlier, Sarah Hunt, Nathan Johnson, Thomas Juet-
temann, Andreas K. Kähäri, Stephen Keenan, Eugene Kulesha, Fer-
gal J. Martin, Thomas Maurel, William M. McLaren, Daniel N. Mur-
phy, Rishi Nag, Bert Overduin, Miguel Pignatelli, Bethan Pritchard,
Emily Pritchard, Harpreet S. Riat, Magali Ruffier, Daniel Sheppard,
Kieron Taylor, Anja Thormann, Stephen J. Trevanion, Alessandro
Vullo, Steven P. Wilder, Mark Wilson, Amonida Zadissa, Bronwen L.
Aken, Ewan Birney, Fiona Cunningham, Jennifer Harrow, Javier Her-
rero, Tim J P Hubbard, Rhoda Kinsella, Matthieu Muffato, Anne
Parker, Giulietta Spudich, Andy Yates, Daniel R. Zerbino, and Stephen
M. J. Searle. Ensembl 2014. Nucleic Acids Research, 42(D1):749–755,
2014.

[64] Michael J. Flynn. Some Computer Organizations and Their Effective-
ness. IEEE Transactions on Computers, C-21(9):948–960, 1972.

171

[65] Anthony A. Fodor and Richard W. Aldrich. Influence of Conserva-
tion on Calculations of Amino Acid Covariance in Multiple Sequence
Alignments. Proteins, 56(2):211–21, 2004.

[66] Menachem Fromer, Andrew J. Pocklington, David H. Kavanagh,
Hywel J. Williams, Sarah Dwyer, Padhraig Gormley, Lyudmila
Georgieva, Elliott Rees, Priit Palta, Douglas M. Ruderfer, Noa Car-
rera, Isla Humphreys, Jessica S. Johnson, Panos Roussos, Douglas D.
Barker, Eric Banks, Vihra Milanova, Seth G. Grant, Eilis Hannon,
Samuel A. Rose, Kimberly Chambert, Milind Mahajan, Edward M.
Scolnick, Jennifer L. Moran, George Kirov, Aarno Palotie, Steven A.
McCarroll, Peter Holmans, Pamela Sklar, Michael J. Owen, Shaun M.
Purcell, and Michael C. O’Donovan. De novo mutations in schizophre-
nia implicate synaptic networks. Nature, 506(7487):179–184, 2014.

[67] Angelika Fuchs, Antonio J. Martin-Galiano, Matan Kalman, Sarel
Fleishman, Nir Ben-Tal, and Dmitrij Frishman. Co-evolving residues
in membrane proteins. Bioinformatics, 23(24):3312–3319, 2007.

[68] K. Fukami-Kobayashi, D. R. Schreiber, and S. A. Benner. Detect-
ing Compensatory Covariation Signals in Protein Evolution Using
Reconstructed Ancestral Sequences. Journal of Molecular Biology,
319(3):729–743, 2002.

[69] Hongyun Gao, Yongchao Dou, Jialiang Yang, and Jun Wang. New
methods to measure residues coevolution in proteins. BMC Bioinfor-

matics, 12(1):206, 2011.

[70] Giulio Genovese, Menachem Fromer, Eli A Stahl, Douglas M Ruder-
fer, Kimberly Chambert, Mikael Landén, Jennifer L Moran, Shaun M
Purcell, Pamela Sklar, Patrick F Sullivan, Christina M Hultman, and
Steven A McCarroll. Increased burden of ultra-rare protein-altering
variants among 4,877 individuals with schizophrenia. Nature Neuro-

science, 19(11):1433–1441, 2016.

[71] Asghar Ghasemi and Saleh Zahediasl. Normality Tests for Statistical
Analysis: A Guide for Non-Statisticians. International Journal of En-

docrinology and Metabolism, 10(2):486–489, 2012.

[72] D. G. Gilbert. Phylodendron - Phylogenetic tree printer. http:

//iubio.bio.indiana.edu/treeapp/treeprint-

form.html.

172

http://iubio.bio.indiana.edu/treeapp/treeprint-form.html
http://iubio.bio.indiana.edu/treeapp/treeprint-form.html
http://iubio.bio.indiana.edu/treeapp/treeprint-form.html

[73] Gregory B. Gloor, Louise C. Martin, Lindi M. Wahl, and Stanley D.
Dunn. Mutual Information in Protein Multiple Sequence Align-
ments Reveals Two Classes of Coevolving Positions. Biochemistry,
44(19):7156–65, 2005.

[74] Gregory B. Gloor, Gaurav Tyagi, Dana M. Abrassart, Andrew J.
Kingston, Andrew D. Fernandes, Stanley D. Dunn, and Christopher J.
Brandl. Functionally compensating coevolving positions are neither
homoplasic nor conserved in clades. Molecular biology and evolution,
27(5):1181–91, 2010.

[75] Ulrike Göbel, Chris Sander, Reinhard Schneider, and Alfonso Valen-
cia. Correlated Mutations and Residue Contacts in Proteins. Proteins:

Structure, Function, and Genetics, 18(4):309–317, 1994.

[76] Chern-Sing Goh, Andrew A. Bogan, Marcin Joachimiak, Dirk Walther,
and Fred E. Cohen. Co-evolution of proteins with their interaction
partners. Journal of molecular biology, 299(2):283–93, 2000.

[77] Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. General Trans-
formations for GPU Execution of Tree Traversals. Proceedings of the

International Conference for High Performance Computing, Network-

ing, Storage and Analysis on - SC ’13, pages 1–12, 2013.

[78] Rodrigo Gouveia-Oliveira and Anders G. Pedersen. Finding coevolv-
ing amino acid residues using row and column weighting of mutual
information and multi-dimensional amino acid representation. Algo-

rithms for molecular biology : AMB, 2:12, 2007.

[79] Johan A. Grahnen and David A. Liberles. CASS: Protein sequence
simulation with explicit genotype-phenotype mapping. Trends in Evo-

lutionary Biology, 4(1):47–49, 2012.

[80] Nicholas C. Grassly, Jun Adachi, and Andrew Rambaut. PSeq-Gen: an
application for the Monte Carlo simulation of protein sequence evo-
lution along phylogenetic trees. Computer applications in the bio-

sciences, 13(5):559–560, 1997.

[81] Nicholas C. Grassly, Jun Adachi, Andrew Rambaut, and P. Tuffery. CS-
PSeq-Gen. http://bioserv.rpbs.univ-paris-diderot.
fr/software/CS-PSeq-Gen/, 2002.

[82] Thasso Griebel, Benedikt Zacher, Paolo Ribeca, Emanuele Raineri,
Vincent Lacroix, Roderic Guigó, and Michael Sammeth. Modelling

173

http://bioserv.rpbs.univ-paris-diderot.fr/software/CS-PSeq-Gen/
http://bioserv.rpbs.univ-paris-diderot.fr/software/CS-PSeq-Gen/

and simulating generic RNA-Seq experiments with the flux simulator.
Nucleic acids research, 40(20):10073–83, 2012.

[83] Attila Gulyás-Kovács. Integrated Analysis of Residue Coevolution and
Protein Structure in ABC Transporters. PLoS ONE, 7(5):e36546, 2012.

[84] Najeeb Halabi, Olivier Rivoire, Stanislas Leibler, and Rama Ran-
ganathan. Protein Sectors: Evolutionary Units of Three-Dimensional
Structure. Cell, 138(4):774–786, 2009.

[85] Barry G. Hall. Simulating DNA Coding Sequence Evolution with
EvolveAGene 3. Molecular biology and evolution, 25(4):688–95,
2008.

[86] Nicholas Hamilton, Kevin Burrage, Mark A. Ragan, and Thomas Hu-
ber. Protein Contact Prediction Using Patterns of Correlation. Proteins:

Structure, Function, and Bioinformatics, 56(4):679–684, 2004.

[87] Dehua Hang, Eric Torng, Charles Ofria, and Thomas M. Schmidt. The
effect of natural selection on the performance of maximum parsimony.
BMC Evolutionary Biology, 7:94, 2007.

[88] Mark Jason Harris. Real-Time Cloud Simulation and Rendering. PhD
thesis, University of North Carolina, 2003.

[89] Steven Henikoff and Jorja G. Henikoff. Amino acid substitution ma-
trices from protein blocks. Proceedings of the National Academy of

Sciences of the United States of America, 89(22):10915–9, 1992.

[90] Fred’ ‘Hsu. The Ancestors Tale Mammals cladogram.
https://commons.wikimedia.org/wiki/File:

The_Ancestors_Tale_Mammals_cladogram.png. Ac-
cessed on 06/04/17. Licensed under the GNU Free Documentation
License, found at https://www.gnu.org/licenses/fdl.html.

[91] Jing Hu and Pauline C. Ng. Predicting the effects of frameshifting
indels. Genome Biology, 13(2):R9, 2012.

[92] Jing Hu and Pauline C. Ng. SIFT Indel: Predictions for the Func-
tional Effects of Amino Acid Insertions/Deletions in Proteins. PloS

one, 8(10):e77940, 2013.

[93] Yuji Inagaki, Christian Blouin, Edward Susko, and Andrew J. Roger.
Assessing functional divergence in EF-1α and its paralogs in eukary-
otes and archaebacteria. Nucleic Acids Research, 31(14):4227–4237,
2003.

174

https://commons.wikimedia.org/wiki/File:The_Ancestors_Tale_Mammals_cladogram.png
https://commons.wikimedia.org/wiki/File:The_Ancestors_Tale_Mammals_cladogram.png

[94] UCLA Institute for Digital Research and Education. What statisti-
cal analysis should I use? http://www.ats.ucla.edu/stat/

mult{_}pkg/whatstat/. [Online; accessed 2017-04-04].

[95] Chan-Seok Jeong and Dongsup Kim. Reliable and robust detection of
coevolving protein residues. Protein engineering, design & selection :

PEDS, 25(11):705–13, 2012.

[96] David T. Jones, Daniel W. A. Buchan, Domenico Cozzetto, and Mas-
similiano Pontil. PSICOV: precise structural contact prediction using
sparse inverse covariance estimation on large multiple sequence align-
ments. Bioinformatics, 28(2):184–190, 2012.

[97] David T. Jones, William R. Taylor, and Janet M. Thornton. The rapid
generation of mutation data matrices from protein sequences. Com-

puter Applications in the Biosciences, 8(3):275–282, 1992.

[98] Jeffrey B. Joy, Richard H. Liang, Rosemary M. McCloskey, T. Nguyen,
and Art F. Y. Poon. Ancestral Reconstruction. PLoS Computational

Biology, 12(7):1–20, 2016.

[99] Itamar Kass and Amnon Horovitz. Mapping Pathways of Allosteric
Communication in GroEL by Analysis of Correlated Mutations. Pro-

teins: Structure, Function and Genetics, 48(4):611–617, 2002.

[100] W. James Kent, Robert Baertsch, Angie Hinrichs, Webb Miller, and
David Haussler. Evolution’s cauldron: Duplication, deletion, and
rearrangement in the mouse and human genomes. Proceedings of

the National Academy of Sciences of the United States of America,
100(20):11484–11489, 2003.

[101] Wan K. Kim, Dan M. Bolser, and Jong H. Park. Large-scale co-
evolution analysis of protein structural interlogues using the global pro-
tein structural interactome map (PSIMAP). Bioinformatics (Oxford,

England), 20(7):1138–1150, 2004.

[102] G Kirov, A J Pocklington, P Holmans, D Ivanov, M Ikeda, D Rud-
erfer, J Moran, K Chambert, D Toncheva, L Georgieva, D Grozeva,
M Fjodorova, R Wollerton, E Rees, I Nikolov, L N van de Lagemaat,
À Bayés, E Fernandez, P I Olason, Y Böttcher, N H Komiyama, M O
Collins, J Choudhary, K Stefansson, H Stefansson, S G N Grant, S Pur-
cell, P Sklar, M C O’Donovan, and M J Owen. De novo CNV anal-
ysis implicates specific abnormalities of postsynaptic signalling com-
plexes in the pathogenesis of schizophrenia. Molecular Psychiatry,
17(2):142–153, 2012.

175

http://www.ats.ucla.edu/stat/mult{_}pkg/whatstat/
http://www.ats.ucla.edu/stat/mult{_}pkg/whatstat/

[103] Bette T. M. Korber, Robert M. Farber, David H. Wolpert, and Alan S.
Lapedes. Covariation of mutations in the V3 loop of human immunod-
eficiency virus type 1 envelope protein: An information theoretic anal-
ysis. Proceedings of the National Academy of Sciences of the United

States of America, 90(15):7176–7180, 1993.

[104] Andreas Kowarsch, Angelika Fuchs, Dmitrij Frishman, and Philipp
Pagel. Correlated mutations: a hallmark of phenotypic amino acid
substitutions. PLoS computational biology, 6(9):e1000923, 2010.

[105] Prateek Kumar, Steven Henikoff, and Pauline C. Ng. Predicting the
effects of coding non-synonymous variants on protein function using
the SIFT algorithm. Nature Protocols, 4(7):1073–1081, 2009.

[106] Laerd Statistics. Wilcoxon Signed-Rank Test using SPSS
Statistics. https://statistics.laerd.com/spss-

tutorials/wilcoxon-signed-rank-test-using-

spss-statistics.php.

[107] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcget-
tigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez,
J. D. Thompson, T. J. Gibson, and D. G. Higgins. Clustal W and Clustal
X version 2.0. Bioinformatics, 23(21):2947–2948, 2007.

[108] Michael S. Y. Lee. Unalignable sequences and molecular evolution.
Trends in Ecology and Evolution, 16(12):681–685, 2001.

[109] Christopher Lewis. Definition of Homolog, Ortholog and
Paralog. http://homepage.usask.ca/{˜}ctl271/857/

def{_}homolog.shtml.

[110] Juntao Liu, Xiaoyun Duan, Jianyang Sun, Yanbin Yin, Guojun Li,
Lushan Wang, and Bingqiang Liu. Bi-Factor Analysis Based on Noise-
Reduction (BIFANR): A New Algorithm for Detecting Coevolving
Amino Acid Sites in Proteins. PloS one, 8(11):e79764, 2013.

[111] Steve W. Lockless and Rama Ranganathan. Evolutionarily Conserved
Pathways of Energetic Connectivity in Protein Families. Science,
286(5438):295–299, 1999.

[112] Ari Löytynoja. Alignment Methods: Strategies, Challenges, Bench-
marking, and Comparative Overview. In Maria Anisimova, editor, Evo-

lutionary Genomics, volume 855, pages 203–235. Humana Press, New
York, 1 edition, 2012.

176

https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php
http://homepage.usask.ca/{~}ctl271/857/def{_}homolog.shtml
http://homepage.usask.ca/{~}ctl271/857/def{_}homolog.shtml

[113] Bob MacCallum. Sequence conservation. http://www.sbc.su.
se/{˜}maccallr/thesis/node112.html. [Online; accessed
2017-01-05].

[114] Wenzhi Mao, Cihan Kaya, Anindita Dutta, Amnon Horovitz, and
Ivet Bahar. Comparative study of the effectiveness and limitations of
current methods for detecting sequence coevolution. Bioinformatics,
31(12):1929–1937, 2015.

[115] Debora S. Marks, Lucy J. Colwell, Robert Sheridan, Thomas A. Hopf,
Andrea Pagnani, Riccardo Zecchina, and Chris Sander. Protein 3D
structure computed from evolutionary sequence variation. PLoS ONE,
6(12), 2011.

[116] L. C. Martin, G. B. Gloor, S. D. Dunn, and L. M. Wahl. Using infor-
mation theory to search for co-evolving residues in proteins. Bioinfor-

matics (Oxford, England), 21(22):4116–24, 2005.

[117] Wellington S. Martins, Thiago F. Rangel, Divino C. S. Lucas, Elias B.
Ferreira, and Edson N. Caceres. Phylogenetic Distance Computation
Using CUDA. In Advances in Bioinformatics and Computational Bi-

ology, pages 168–178. 2012.

[118] Timothy Mattson. How to sound like a Parallel Programming Expert
Part 2: Parallel hardware. https://software.intel.com/

en-us/articles/how-to-sound-like-a-parallel-

programming-expert-part-2-parallel-hardware.
[Online; accessed 2017-02-27].

[119] Michael McCool, Arch Robison, and James Reinders. Amdahl’s
Law vs. Gustafson-Barsis’ Law. http://www.drdobbs.

com/parallel/amdahls-law-vs-gustafson-barsis-

law/240162980. [Online; accessed 2016-10-12].

[120] A.D. McLachlan. Tests for comparing related amino-acid sequences.
Cytochrome c and cytochrome c551. Journal of molecular biology,
61(2):409–424, 1971.

[121] Rainer Merkl and Matthias Zwick. H2r: Identification of evolutionary
important residues by means of an entropy based analysis of multiple
sequence alignments. BMC Bioinformatics, 9:151, 2008.

[122] Merriam-Webster. synapse. https://www.merriam-webster.
com/dictionary/synapse. [Online; accessed 2017-09-25].

177

http://www.sbc.su.se/{~}maccallr/thesis/node112.html
http://www.sbc.su.se/{~}maccallr/thesis/node112.html
https://software.intel.com/en-us/articles/how-to-sound-like-a-parallel-programming-expert-part-2-parallel-hardware
https://software.intel.com/en-us/articles/how-to-sound-like-a-parallel-programming-expert-part-2-parallel-hardware
https://software.intel.com/en-us/articles/how-to-sound-like-a-parallel-programming-expert-part-2-parallel-hardware
http://www.drdobbs.com/parallel/amdahls-law-vs-gustafson-barsis-law/240162980
http://www.drdobbs.com/parallel/amdahls-law-vs-gustafson-barsis-law/240162980
http://www.drdobbs.com/parallel/amdahls-law-vs-gustafson-barsis-law/240162980
https://www.merriam-webster.com/dictionary/synapse
https://www.merriam-webster.com/dictionary/synapse

[123] Lisa A. Miosge, Matthew A. Field, Yovina Sontani, Vicky Cho, Si-
mon Johnson, Anna Palkova, Bhavani Balakishnan, Rong Liang, Yafei
Zhang, Stephen Lyon, Bruce Beutler, Belinda Whittle, Edward M.
Bertram, Anselm Enders, Christopher C. Goodnow, and T. Daniel An-
drews. Comparison of predicted and actual consequences of missense
mutations. Proceedings of the National Academy of Sciences of the

United States of America, 112(37):E5189–98, 2015.

[124] Faruck Morcos, Andrea Pagnani, Bryan Lunt, Arianna Bertolino, Deb-
ora S. Marks, Chris Sander, Riccardo Zecchina, José N. Onuchic, Ter-
ence Hwa, and Martin Weigt. Direct-coupling analysis of residue co-
evolution captures native contacts across many protein families. Pro-

ceedings of the National Academy of Sciences of the United States of

America, 108(49):E1293–301, 2011.

[125] David A. Morrison. How to Summarize Estimates of Ancestral Diver-
gence Times. Evolutionary Bioinformatics, 4:75–95, 2008.

[126] National Institutes of Health. Genetic Simulation Resources
Home. https://popmodels.cancercontrol.cancer.

gov/gsr/.

[127] Nature Education. species. http://www.nature.com/

scitable/definition/species-312. [Online; accessed
2016-11-07].

[128] Nature Education. synteny — Learn Science at Scitable. http://

www.nature.com/scitable/definition/synteny-137.
[Online; accessed 2014-07-09].

[129] NCBI. Build procedure -. http://www.ncbi.nlm.nih.gov/

homologene/build-procedure/.

[130] NCBI. Home - HomoloGene - NCBI. http://www.ncbi.nlm.

nih.gov/homologene.

[131] Erwin Neher. How frequent are correlated changes in families of pro-
tein sequences? Proceedings of the National Academy of Sciences of

the United States of America, 91(1):98–102, 1994.

[132] Pauline C. Ng and Steven Henikoff. Predicting deleterious amino acid
substitutions. Genome research, 11(5):863–74, 2001.

[133] Pauline C. Ng and Steven Henikoff. Predicting the Effects of Amino
Acid Substitutions on Protein Function. Annual Review of Genomics

and Human Genetics, 7:61–80, 2006.

178

https://popmodels.cancercontrol.cancer.gov/gsr/
https://popmodels.cancercontrol.cancer.gov/gsr/
http://www.nature.com/scitable/definition/species-312
http://www.nature.com/scitable/definition/species-312
http://www.nature.com/scitable/definition/synteny-137
http://www.nature.com/scitable/definition/synteny-137
http://www.ncbi.nlm.nih.gov/homologene/build-procedure/
http://www.ncbi.nlm.nih.gov/homologene/build-procedure/
http://www.ncbi.nlm.nih.gov/homologene
http://www.ncbi.nlm.nih.gov/homologene

[134] R Nielsen and Z Yang. Likelihood models for detecting positively se-
lected amino acid sites and applications to the HIV-1 envelope gene.
Genetics, 148(3):929–36, 1998.

[135] Orly Noivirt, Miriam Eisenstein, and Amnon Horovitz. Detection and
reduction of evolutionary noise in correlated mutation analysis. Protein

Engineering, Design and Selection, 18(5):247–253, 2005.

[136] Cédric Notredame, Desmond G. Higgins, and Jaap Heringa. T-Coffee:
A Novel Method for Fast and Accurate Multiple Sequence Alignment.
Journal of Molecular Biology, 302(1):205–217, 2000.

[137] NVIDIA. NVIDIA TITAN X Graphics Card with Pascal
— GeForce. http://www.geforce.co.uk/hardware/

10series/titan-x/. [Online; accessed 2016-10-14].

[138] David Ochoa, David Juan, Alfonso Valencia, and Florencio Pazos. De-
tection of significant protein co-evolution. Bioinformatics (Oxford,

England), pages 1–8, 2015.

[139] Michael Conlon O’Donovan and Michael John Owen. The implica-
tions of the shared genetics of psychiatric disorders. Nature Medicine,
22(11):1214–1219, 2016.

[140] Osvaldo Olmea, Burkhard Rost, and Alfonso Valencia. Effective Use
of Sequence Correlation and Conservation in Fold Recognition. Jour-

nal of molecular biology, 293(5):1221–39, 1999.

[141] Osvaldo Olmea and Alfonso Valencia. Improving contact predictions
by the combination of correlated mutations and other sources of se-
quence information. Folding & Design, 2(3):S25–S32, 1997.

[142] Michael J. Owen, Michael C. O’Donovan, Anita Thapar, and Nicholas
Craddock. Neurodevelopmental hypothesis of schizophrenia. The

British Journal of Psychiatry, 198(3):173–175, 2011.

[143] Mark Pagel. Detecting Correlated Evolution on Phylogenies: A Gen-
eral Method for the Comparative Analysis of Discrete Characters. Pro-

ceedings: Biological Sciences, 255(1342):37–45, 1994.

[144] Fabiano Sviatopolk-Mirsky Pais, Patrı́cia De Cássia Ruy, Guilherme
Oliveira, and Roney Santos Coimbra. Assessing the efficiency of mul-
tiple sequence alignment programs. Algorithms for Molecular Biology,
9(4), 2014.

179

http://www.geforce.co.uk/hardware/10series/titan-x/
http://www.geforce.co.uk/hardware/10series/titan-x/

[145] Andy Pang, Andrew D. Smith, Paulo A. S. Nuin, and Elisabeth R. M.
Tillier. SIMPROT: Using an empirically determined indel distribution
in simulations of protein evolution. BMC bioinformatics, 6:236, 2005.

[146] Florencio Pazos and Alfonso Valencia. Similarity of phylogenetic
trees as indicator of protein-protein interaction. Protein engineering,
14(9):609–614, 2001.

[147] Florencio Pazos and Alfonso Valencia. Protein co-evolution, co-
adaptation and interactions. The EMBO journal, 27(20):2648–55,
2008.

[148] PCUpgrade. Gigabyte Nvidia GTX 660 Ti Windforce2X 2GB
GDDR5 Dual Link DVI HDMI Display Port PCI-E Retail
Graphics Card [accessed through the Internet Archive]. http:

//web.archive.org/web/20160804092219/http:

//www.pcupgrade.co.uk/productdetails.asp?

productid=11186{&}categoryid=538. [Online; accessed
2016-08-04].

[149] PCUpgrade. MSI Nvidia GTX 660 Ti Power Edition 2GB
GDDR5 Dual DVI HDMI DisplayPort PCI-E Retail Graph-
ics Card [accessed through the Internet Archive]. http:

//web.archive.org/web/20160804092014/http:

//www.pcupgrade.co.uk/productdetails.asp?

productid=11187{&}categoryid=538. [Online; accessed
2016-08-04].

[150] PCUpgrade. Zotac Nvidia GTX 660 Ti 2048MB GDDR5
Dual link DVI HDMI DisplayPort PCI-E Retail Graph-
ics Card [accessed through the Internet Archive]. http:

//web.archive.org/web/20160804092140/http:

//www.pcupgrade.co.uk/productdetails.asp?

productid=11189{&}categoryid=538. [Online; accessed
2016-08-04].

[151] Dalila Pinto, Elsa Delaby, Daniele Merico, Mafalda Barbosa, Alison
Merikangas, Lambertus Klei, Bhooma Thiruvahindrapuram, Xiao Xu,
Robert Ziman, Zhuozhi Wang, Jacob A.S. Vorstman, Ann Thomp-
son, Regina Regan, Marion Pilorge, Giovanna Pellecchia, Alistair T.
Pagnamenta, Bárbara Oliveira, Christian R. Marshall, Tiago R. Ma-
galhaes, Jennifer K. Lowe, Jennifer L. Howe, Anthony J. Griswold,
John Gilbert, Eftichia Duketis, Beth A. Dombroski, Maretha V. De

180

http://web.archive.org/web/20160804092219/http://www.pcupgrade.co.uk/productdetails.asp?productid=11186{&}categoryid=538
http://web.archive.org/web/20160804092219/http://www.pcupgrade.co.uk/productdetails.asp?productid=11186{&}categoryid=538
http://web.archive.org/web/20160804092219/http://www.pcupgrade.co.uk/productdetails.asp?productid=11186{&}categoryid=538
http://web.archive.org/web/20160804092219/http://www.pcupgrade.co.uk/productdetails.asp?productid=11186{&}categoryid=538
http://web.archive.org/web/20160804092014/http://www.pcupgrade.co.uk/productdetails.asp?productid=11187{&}categoryid=538
http://web.archive.org/web/20160804092014/http://www.pcupgrade.co.uk/productdetails.asp?productid=11187{&}categoryid=538
http://web.archive.org/web/20160804092014/http://www.pcupgrade.co.uk/productdetails.asp?productid=11187{&}categoryid=538
http://web.archive.org/web/20160804092014/http://www.pcupgrade.co.uk/productdetails.asp?productid=11187{&}categoryid=538
http://web.archive.org/web/20160804092140/http://www.pcupgrade.co.uk/productdetails.asp?productid=11189{&}categoryid=538
http://web.archive.org/web/20160804092140/http://www.pcupgrade.co.uk/productdetails.asp?productid=11189{&}categoryid=538
http://web.archive.org/web/20160804092140/http://www.pcupgrade.co.uk/productdetails.asp?productid=11189{&}categoryid=538
http://web.archive.org/web/20160804092140/http://www.pcupgrade.co.uk/productdetails.asp?productid=11189{&}categoryid=538

Jonge, Michael Cuccaro, Emily L. Crawford, Catarina T. Correia, Ju-
dith Conroy, Inês C. Conceição, Andreas G. Chiocchetti, Jillian P.
Casey, Guiqing Cai, Christelle Cabrol, Nadia Bolshakova, Elena Bac-
chelli, Richard Anney, Steven Gallinger, Michelle Cotterchio, Graham
Casey, Lonnie Zwaigenbaum, Kerstin Wittemeyer, Kirsty Wing, Si-
mon Wallace, Herman Van Engeland, Ana Tryfon, Susanne Thom-
son, Latha Soorya, Bernadette Rogé, Wendy Roberts, Fritz Poustka,
Susana Mouga, Nancy Minshew, L. Alison McInnes, Susan G. Mc-
Grew, Catherine Lord, Marion Leboyer, Ann S. Le Couteur, Alexan-
der Kolevzon, Patricia Jiménez González, Suma Jacob, Richard Holt,
Stephen Guter, Jonathan Green, Andrew Green, Christopher Gillberg,
Bridget A. Fernandez, Frederico Duque, Richard Delorme, Geraldine
Dawson, Pauline Chaste, Cátia Café, Sean Brennan, Thomas Bourg-
eron, Patrick F. Bolton, Sven Bölte, Raphael Bernier, Gillian Baird,
Anthony J. Bailey, Evdokia Anagnostou, Joana Almeida, Ellen M. Wi-
jsman, Veronica J. Vieland, Astrid M. Vicente, Gerard D. Schellen-
berg, Margaret Pericak-Vance, Andrew D. Paterson, Jeremy R. Parr,
Guiomar Oliveira, John I. Nurnberger, Anthony P. Monaco, Elena
Maestrini, Sabine M. Klauck, Hakon Hakonarson, Jonathan L. Haines,
Daniel H. Geschwind, Christine M. Freitag, Susan E. Folstein, Sean
Ennis, Hilary Coon, Agatino Battaglia, Peter Szatmari, James S. Sut-
cliffe, Joachim Hallmayer, Michael Gill, Edwin H. Cook, Joseph D.
Buxbaum, Bernie Devlin, Louise Gallagher, Catalina Betancur, and
Stephen W. Scherer. Convergence of genes and cellular pathways dys-
regulated in autism spectrum disorders. American Journal of Human

Genetics, 94(5):677–694, 2014.

[152] D. D. Pollock and W. R. Taylor. Effectiveness of correlation analysis in
identifying protein residues undergoing correlated evolution. Protein

engineering, 10(6):647–657, 1997.

[153] David D. Pollock, William R. Taylor, and Nick Goldman. Coevolv-
ing Protein Residues: Maximum Likelihood Identification and Rela-
tionship to Structure. Journal of Molecular Biology, 287(1):187–198,
1999.

[154] David D. Pollock, Grant Thiltgen, and Richard A. Goldstein. Amino
acid coevolution induces an evolutionary Stokes shift. Proceedings

of the National Academy of Sciences of the United States of America,
109(21):E1352–E1359, 2012.

181

[155] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C. Cambridge University
Press, Cambridge, 2nd editio edition, 1992.

[156] L Pritchard, P Bladon, J M O Mitchell, and M J Dufton. Evaluation
of a novel method for the identification of coevolving protein residues.
Protein engineering, 14(8):549–55, 2001.

[157] Michael J. Quinn. Parallel Computing: Theory and Practice. McGraw-
Hill, New York, 2 edition, 1994.

[158] R Core Team. R: A Language and Environment for Statistical Com-
puting. https://www.r-project.org/, 2016.

[159] Andrew Rambaut and Nicholas C. Grassly. Seq-Gen: an application for
the Monte Carlo simulation of DNA sequence evolution along phyloge-
netic trees. Computer applications in the biosciences, 13(3):235–238,
1997.

[160] Vasily Ramensky, Peer Bork, and Shamil Sunyaev. Human non-
synonymous SNPs: server and survey. Nucleic acids research,
30(17):3894–3900, 2002.

[161] Nornadiah Mohd Razali and Yap Bee Wah. Power comparisons of
Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling
tests. Journal of Statistical Modeling and Analytics, 2(1):21–33, 2011.

[162] Rebecca J. Safran and Patrik Nosil. Speciation: The Origin of New
Species. http://www.nature.com/scitable/knowledge/
library/speciation-the-origin-of-new-species-

26230527. [Online; accessed 2016-11-04].

[163] Amaia Sangrador. What are protein domains? https:

//www.ebi.ac.uk/training/online/course/

introduction-protein-classification-ebi/

protein-classification/what-are-protein-

domains. [Online; accessed 2017-05-15].

[164] Scan. MSI GeForce GTX 660 Ti Overclocked NVIDIA Graph-
ics Card - 2GB [accessed through the Internet Archive]. http:

//web.archive.org/web/20130919080957/http:

//www.scan.co.uk/products/2gb-msi-gtx-660-

ti-oc-28nm-pcie-30-(x16)-6008mhz-gddr5-gpu-

941mhz-boost-1019mhz-cores-1344. [Online; accessed
2013-09-19].

182

https://www.r-project.org/
http://www.nature.com/scitable/knowledge/library/speciation-the-origin-of-new-species-26230527
http://www.nature.com/scitable/knowledge/library/speciation-the-origin-of-new-species-26230527
http://www.nature.com/scitable/knowledge/library/speciation-the-origin-of-new-species-26230527
https://www.ebi.ac.uk/training/online/course/introduction-protein-classification-ebi/protein-classification/what-are-protein-domains
https://www.ebi.ac.uk/training/online/course/introduction-protein-classification-ebi/protein-classification/what-are-protein-domains
https://www.ebi.ac.uk/training/online/course/introduction-protein-classification-ebi/protein-classification/what-are-protein-domains
https://www.ebi.ac.uk/training/online/course/introduction-protein-classification-ebi/protein-classification/what-are-protein-domains
https://www.ebi.ac.uk/training/online/course/introduction-protein-classification-ebi/protein-classification/what-are-protein-domains
http://web.archive.org/web/20130919080957/http://www.scan.co.uk/products/2gb-msi-gtx-660-ti-oc-28nm-pcie-30-(x16)-6008mhz-gddr5-gpu-941mhz-boost-1019mhz-cores-1344
http://web.archive.org/web/20130919080957/http://www.scan.co.uk/products/2gb-msi-gtx-660-ti-oc-28nm-pcie-30-(x16)-6008mhz-gddr5-gpu-941mhz-boost-1019mhz-cores-1344
http://web.archive.org/web/20130919080957/http://www.scan.co.uk/products/2gb-msi-gtx-660-ti-oc-28nm-pcie-30-(x16)-6008mhz-gddr5-gpu-941mhz-boost-1019mhz-cores-1344
http://web.archive.org/web/20130919080957/http://www.scan.co.uk/products/2gb-msi-gtx-660-ti-oc-28nm-pcie-30-(x16)-6008mhz-gddr5-gpu-941mhz-boost-1019mhz-cores-1344
http://web.archive.org/web/20130919080957/http://www.scan.co.uk/products/2gb-msi-gtx-660-ti-oc-28nm-pcie-30-(x16)-6008mhz-gddr5-gpu-941mhz-boost-1019mhz-cores-1344

[165] Scott Schwartz, W. James Kent, Arian Smit, Zheng Zhang, Robert
Baertsch, Ross C. Hardison, David Haussler, and Webb Miller.
Human-Mouse Alignments with BLASTZ. Genome Research,
13(1):103–107, 2003.

[166] Scott Schwartz, Zheng Zhang, Kelly A. Frazer, Arian Smit, Cathy
Riemer, John Bouck, Richard Gibbs, Ross Hardison, and Webb Miller.
PipMaker–A Web Server for Aligning Two Genomic DNA Sequences.
Genome Research, 10(4):577–586, 2000.

[167] C. E. Shannon. A Mathematical Theory of Communication. The Bell

System Technical Journal, 27:379–423, 1948.

[168] I. N. Shindyalov, N. A. Kolchanov, and C. Sander. Can three-
dimensional contacts in protein structures be predicted by analysis of
correlated mutations? Protein engineering, 7(3):349–58, 1994.

[169] Fabian Sievers, Andreas Wilm, David Dineen, Toby J. Gibson, Kevin
Karplus, Weizhong Li, Rodrigo Lopez, Hamish McWilliam, Michael
Remmert, Johannes Soding, Julie D. Thompson, and Desmond G. Hig-
gins. Fast, scalable generation of high-quality protein multiple se-
quence alignments using Clustal Omega. Molecular Systems Biology,
7(1):539–539, 2011.

[170] Tarjinder Singh, Mitja I Kurki, David Curtis, Shaun M Purcell, Lucy
Crooks, Jeremy McRae, Jaana Suvisaari, Himanshu Chheda, Dou-
glas Blackwood, Gerome Breen, Olli Pietiläinen, Sebastian S Gerety,
Muhammad Ayub, Moira Blyth, Trevor Cole, David Collier, Eve L
Coomber, Nick Craddock, Mark J Daly, John Danesh, Marta Di-
Forti, Alison Foster, Nelson B Freimer, Daniel Geschwind, Mandy
Johnstone, Shelagh Joss, Georg Kirov, Jarmo Körkkö, Outi Kuis-
min, Peter Holmans, Christina M Hultman, Conrad Iyegbe, Jouko
Lönnqvist, Minna Männikkö, Steve A McCarroll, Peter McGuffin, An-
drew M McIntosh, Andrew McQuillin, Jukka S Moilanen, Carmel
Moore, Robin M Murray, Ruth Newbury-Ecob, Willem Ouwehand,
Tiina Paunio, Elena Prigmore, Elliott Rees, David Roberts, Jennifer
Sambrook, Pamela Sklar, David St Clair, Juha Veijola, James T R Wal-
ters, Hywel Williams, Patrick F Sullivan, Matthew E Hurles, Michael C
O’Donovan, Aarno Palotie, Michael J Owen, and Jeffrey C Bar-
rett. Rare loss-of-function variants in SETD1A are associated with
schizophrenia and developmental disorders. Nature Neuroscience,
19(4):571–577, 2016.

183

[171] Tarjinder Singh, James T R Walters, Mandy Johnstone, David Cur-
tis, Jaana Suvisaari, Minna Torniainen, Elliott Rees, Conrad Iyegbe,
Douglas Blackwood, Andrew M McIntosh, Georg Kirov, Daniel
Geschwind, Robin M Murray, Marta Di Forti, Elvira Bramon, Michael
Gandal, Christina M Hultman, Pamela Sklar, Aarno Palotie, Patrick F
Sullivan, Michael C O’Donovan, Michael J Owen, and Jeffrey C Bar-
rett. The contribution of rare variants to risk of schizophrenia in in-
dividuals with and without intellectual disability. Nature Genetics,
49(8):1167–1173, 2017.

[172] Stack Exchange. random - Randomize matrix in perl, keep-
ing row and column totals the same - Stack Overflow.
http://stackoverflow.com/questions/2133268/

randomize-matrix-in-perl-keeping-row-and-

column-totals-the-same. [Online; accessed 2016-03-30].

[173] Jens Stoye, Dirk Evers, and Folker Meyer. Rose: generating sequence
families. Bioinformatics (Oxford, England), 14(2):157–163, 1998.

[174] Cory L. Strope, Kevin Abel, Stephen D. Scott, and Etsuko N.
Moriyama. Biological Sequence Simulation for Testing Complex Evo-
lutionary Hypotheses: indel-Seq-Gen version 2.0. Molecular biology

and evolution, 26(11):2581–93, 2009.

[175] Gürol M. Süel, Steve W. Lockless, Mark A. Wall, and Rama Ran-
ganathan. Evolutionarily conserved networks of residues mediate
allosteric communication in proteins. Nature structural biology,
10(1):59–69, 2003.

[176] David Talavera, Simon C. Lovell, and Simon Whelan. Covariation Is
a Poor Measure of Molecular Coevolution. Molecular Biology and

Evolution, 32(9):2456–2468, 2015.

[177] William R. Taylor and Kerr Hatrick. Compensating changes in pro-
tein multiple sequence alignments. Protein engineering, 7(3):341–348,
1994.

[178] Tiberiu Teileanu, Lucy J. Colwell, and Stanislas Leibler. Protein Sec-
tors: Statistical Coupling Analysis versus Conservation. PLOS Com-

putational Biology, 11:e1004091, 2015.

[179] The Hoekstra Lab. Sexual Selection and Speciation. http:

//hoekstra.oeb.harvard.edu/projects-sexual-

selection. [Online; accessed 2016-11-07].

184

http://stackoverflow.com/questions/2133268/randomize-matrix-in-perl-keeping-row-and-column-totals-the-same
http://stackoverflow.com/questions/2133268/randomize-matrix-in-perl-keeping-row-and-column-totals-the-same
http://stackoverflow.com/questions/2133268/randomize-matrix-in-perl-keeping-row-and-column-totals-the-same
http://hoekstra.oeb.harvard.edu/projects-sexual-selection
http://hoekstra.oeb.harvard.edu/projects-sexual-selection
http://hoekstra.oeb.harvard.edu/projects-sexual-selection

[180] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson.
CLUSTAL W: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic acids research,
22(22):4673–80, 1994.

[181] Elisabeth R. M. Tillier and Thomas W. H. Lui. Using multiple inter-
dependency to separate functional from phylogenetic correlations in
protein alignments. Bioinformatics (Oxford, England), 19(6):750–755,
2003.

[182] Kentaro Tomii and Minoru Kanehisa. Analysis of amino acid indices
and mutation matrices for sequence comparison and structure predic-
tion of proteins. ”Protein Engineering, Design and Selection”, 9(l):27–
36, 1996.

[183] P. Tufféry. CS-PSeq-Gen: Simulating the evolution of protein sequence
under constraints. Bioinformatics (Oxford, England), 18(7):1015–
1016, 2002.

[184] Pierre Tuffery and Pierre Darlu. Exploring a phylogenetic approach for
the detection of correlated substitutions in proteins. Molecular biology

and evolution, 17(11):1753–9, 2000.

[185] UCSC. Cons 7 Verts Track Settings. http://genome.

ucsc.edu/cgi-bin/hgTrackUi?db=hg38{%}5C{&}g=

cons7way.

[186] UniProt Consortium. About UniProt. http://www.uniprot.

org/help/about. [Online; accessed 2017-04-25].

[187] Davis University of California. Protein Structure Prediction Center.
http://predictioncenter.org/. [Online; accessed 2017-
04-13].

[188] University of Utah. Genetic Linkage. http://learn.genetics.
utah.edu/content/pigeons/geneticlinkage/.

[189] Peter J. Waddell, Hirohisa Kishino, and Rissa Ota. Phylogenetic
Methodology for Detecting Protein Interactions. Molecular Biology

and Evolution, 24(3):650–659, 2007.

[190] Michael Waechter, Kathrin Jaeger, Daniel Thuerck, Stephanie Weiss-
graeber, Sven Widmer, Michael Goesele, and Kay Hamacher. Using

185

http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38{%}5C{&}g=cons7way
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38{%}5C{&}g=cons7way
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38{%}5C{&}g=cons7way
http://www.uniprot.org/help/about
http://www.uniprot.org/help/about
http://predictioncenter.org/
http://learn.genetics.utah.edu/content/pigeons/geneticlinkage/
http://learn.genetics.utah.edu/content/pigeons/geneticlinkage/

graphics processing units to investigate molecular coevolution. Con-

currency and Computation: Practice and Experience, 26(6):1278–
1296, 2014.

[191] Michael Waechter, Kathrin Jaeger, Stephanie Weissgraeber, Sven Wid-
mer, Michael Goesele, and Kay Hamacher. Information-Theoretic
Analysis of Molecular (Co)Evolution Using Graphics Processing
Units. In ECMLS ’12 Proceedings of the 3rd international workshop

on Emerging computational methods for the life sciences, pages 49–58,
2012.

[192] Iain M. Wallace, Orla O’Sullivan, Desmond G. Higgins, and Cedric
Notredame. M-Coffee: combining multiple sequence alignment meth-
ods with T-Coffee. Nucleic Acids Research, 34(6):1692–1699, 2006.

[193] Zhengyuan O. Wang and David D. Pollock. Coevolutionary patterns
in cytochrome c oxidase subunit I depend on structural and functional
context. Journal of molecular evolution, 65(5):485–95, 2007.

[194] Andrew M. Waterhouse, James B. Procter, David M. A. Martin,
Michèle Clamp, and Geoffrey J. Barton. Jalview Version 2–a multiple
sequence alignment editor and analysis workbench. Bioinformatics,
25(9):1189–1191, 2009.

[195] Philipp Weil, Franziska Hoffgaard, and Kay Hamacher. Estimating
sufficient statistics in co-evolutionary analysis by mutual information.
Computational biology and chemistry, 33(6):440–4, 2009.

[196] B. P. Welford. Note on a Method for Calculating Corrected Sums of
Squares and Products. Technometrics, 4(3):419–420, 1962.

[197] Nicholas Wilt. The CUDA handbook: a comprehensive guide to GPU

programming. Addison-Wesley, Boston, 2013.

[198] Yuri I. Wolf, Igor B. Rogozin, and Eugene V. Koonin. Coelomata and
Not Ecdysozoa: Evidence from Genome-Wide Phylogenetic Analysis.
Genome Research, 14(1):29–36, 2004.

[199] Kurt R. Wollenberg and William R. Atchley. Separation of phyloge-
netic and functional associations in biological sequences by using the
parametric bootstrap. Proceedings of the National Academy of Sciences

of the United States of America, 97(7):3288–3291, 2000.

[200] ‘Xenonblast’. Cartoon representation of the Beta-meander motif.
https://commons.wikimedia.org/wiki/File:Beta-

186

https://commons.wikimedia.org/wiki/File:Beta-meander1.png
https://commons.wikimedia.org/wiki/File:Beta-meander1.png

meander1.png. Accessed on 04/11/16. This is in the Public
Domain.

[201] Ziheng Yang. Among-site rate variation and its impact on phylogenetic
analyses. Trends in Ecology & Evolution, 11(9):367–372, 1996.

[202] Chen-Hsiang Yeang and David Haussler. Detecting Coevolution in and
among Protein Domains. PLoS Computational Biology, 3(11):2122–
2134, 2007.

[203] Marketa Zvelebil and Jeremy O. Baum. Understanding Bioinformatics.
Garland Science, New York, 2008.

187

https://commons.wikimedia.org/wiki/File:Beta-meander1.png
https://commons.wikimedia.org/wiki/File:Beta-meander1.png

Appendices

A.1 Examples of using Z-score approaches

Here we give an example of calculating a Z-score using the two Z-score
approaches: the shuffle Z-score approach and the original values Z-score ap-
proach. The alignment we shall be using is shown in Figure 1.

A.1.1 Shuffle

We want to calculate the Z-score for the pair of columns 2 and 5. First we
calculate the correlation value (this could be any correlation value; here we
choose Mutual Information (MI)), which works out as 1.5.

Next we shuffle every column in the alignment in place, to obtain the
alignment shown in Figure 2. We then calculate the Mutual Information for
columns 2 and 5 again, which works out as 1.

Shuffling the alignment a final time (in this example, we only shuffle the
columns twice to show how the approach works), we obtain the alignment in
Figure 3. The Mutual Information for columns 2 and 5 this time is 1.5.

Figure 1: An example alignment.

188

Figure 2: The alignment shown in Figure 1, with each column shuffled in
place.

Figure 3: The alignment shown in Figure 2, with each column shuffled in
place.

189

Now that we have decided to stop shuffling and re-calculating, we calculate
the mean and standard deviation of the shuffle MI values. The mean of 1 and
1.5 is 1.25, and the standard deviation is 0.25. The Z-score for the pair 2 and
5 is:

Z2,5 =
1.5− 1.25

0.25
= 1 (1)

The 1.5 in the calculation is the original value of the MI for positions 2 and
5 before shuffling, the 1.25 is the mean of the MI values after shuffling, and
the 0.25 is the standard deviation of the MI values after shuffling.

A.1.2 Original values

We want to calculate the Z-score for the pair of columns 2 and 5. To do
so, we actually need to calculate the correlation values (Mutual Information
in this case) for all pairs of positions. These are:

• MI0,1 = 1.5

• MI0,2 = 1.5

• MI0,3 = 1.5

• MI0,4 = 1.5

• MI0,5 = 1.5

• MI1,2 = 1

• MI1,3 = 1

• MI1,4 = 1

• MI1,5 = 1

• MI2,3 = 1.5

• MI2,4 = 1

• MI2,5 = 1.5

• MI3,4 = 1.5

• MI3,5 = 1

• MI4,5 = 1.5

190

We calculate the mean and the standard deviation of all the correlation val-
ues, which works out as 1.3 and 0.2449 respectively. The Z-score for positions
2 and 5 can now be calculated as:

Z2,5 =
1.5− 1.3

0.2449
= 0.8167 (2)

The 1.5 in the equation is the correlation calculated for the pair 2 and 5,
the 1.3 is the mean of all of the correlations, and the 0.2449 is the standard
deviation of all of the correlations.

191

A.2 Co-evolving cluster choices

To decide the group sizes and number of groups of co-evolving sites to
use in our simulations, we considered the co-evolving groups detected in real
data. A summary of all papers considered (in note form) is below:

• [16]: three proteins (or families) studied:

– PDZ: three clusters of size 2, three clusters of size 3, one cluster
of size 4, one cluster of size 5

– CS: 26 clusters of size 2, 11 clusters of size 3, five clusters of size
4, one cluster of size 5, one cluster of size 9

– GPCR: 16 clusters of size 2, three clusters of size 3, two clusters
of size 4, two clusters of size 5, one cluster of size 10

• [24]: pairs technically, but they were interested in the number of po-
sitions each position was “connected” to, and categorised the number
of connections into two bins, <= 10 and > 10; Figure 6 shows the
connections for three protein families:

– Maf Ham1: 87 connections between 15 sites (number of connec-
tions taken from text)

– Pterin binding enzymes: 15 sites

– LacI/PurR: 25 sites

• [25]: pairs that can make networks. Figures 3 and 6 show examples for
seven protein families:

– GlnRS catalytic domain: one cluster of size 10

– Ferritin-like diiron-carboxylate protein domain: one cluster of size
7

– YjgF YER057c UK114 family: two clusters of size 2, one cluster
of size 3, one cluster of size 4

– CAP family of transcription factors: four clusters of size 2, one
cluster of size 5

– Hedgehog/intein domains: three clusters of size 2, one cluster of
size 8

– Phosphoglycerate kinase: 10 clusters of size 2, four clusters of
size 3

– PAL and HAL domain: three clusters of size 2, one cluster of size
7, one cluster of size 27

192

• [43]: pairs and groups of up to 10; for three data sets:

– Myoglobin data set: six clusters of size 2, three clusters of size 3,
four clusters of size 4, two clusters of size 5, two clusters of size 7

– SRK data set: seven clusters of size 2, two clusters of size 3, one
cluster of size 4, one cluster of size 5, one cluster of size 6, one
cluster of size 7, one cluster of size 9

– MAP data set: 30 clusters of size 2, seven clusters of size 3, two
clusters of size 4, one cluster of size 5, three clusters of size 9

• [46]: mostly pairs; one group of three (one site has two predicted com-
pensatory sites)

• [73]: mention of residues with Z-scores over a threshold of 4 with three
or more other residues (but no more detail than that). Network of 16
connected together in Figure 4; cannot obtain file with grouped residues
(not available via Wayback Machine)

• [74]: pairs but groups also. Groups are five segments: 27-29 (3 residues),
70-72 (3 residues), 80-82 (3 residues), 122-124 (3 residues), and 144-
149 (6 residues); these are contiguous sections (e.g. 3 residues in a line)
due to how they looked at the pairwise values using a sliding window

• [75]: one cluster of 7 sites given as an example

• [84]: sectors across five protein families:

– S1A: two clusters of size 20, one cluster of size 25

– PDZ: one cluster of size 6, one cluster of size 10

– PAS: one cluster of size 10, one cluster of size 17

– SH2: one cluster of size 12, one cluster of size 13, one cluster of
size 17

– SH3: one cluster of size 5, one cluster of size 6

• [104]: there are groups; degree of individual sites can go up to about
100 (but most do not get this far) – smaller degrees tend to have higher
frequencies (Figure 7)

• [110]: sectors across four protein families:

– S1A: one cluster of size 22, one cluster of size 23, one cluster of
size 25

– PDZ: one cluster of size 6, one cluster of size 12

193

– Hsp70/110: one cluster of size 11, one cluster of size 14

– G protein: one cluster of size 26, one cluster of size 67

• [116]: pairs only, but also positions that had high Z-scores with more
than one other position (no further detail than that)

• [121]: each position k is given a score, conn(k), which tells us how
many residues k is in a high-scoring pair with. For example, for the
protein with PFAM entry PF01053, conn(388) = 10. The 10 positions
that contribute to this conn value are:

– conn(267) = 1 or 2

– conn(299) = 1 or 2

– conn(86) = 3 or 4

– conn(308) = 3 or 4

– conn(402) = 3 or 4

– conn(305) = 5 or 6

– conn(386) = 5 or 6

– conn(391) = 5 or 6

– conn(393) = 5 or 6

– conn(268) = 7 or 8

(Not sure whether this was just done as an experiment.)

– Filtering PF00018 (which contains 3506 sequences) using default
filter values (to give us 471 sequences), gives us the following
conn(k) values >= 2: nine of conn(k) = 2, two of conn(k) = 3,
two of conn(k) = 4, two of conn(k) = 5, one of conn(k) = 6, one of
conn(k) = 7, and one of conn(k) = 13

– For the ATP synthase unit of E. coli we get conn(k) up to 5, 6, 7,
and 13

– For an MSA of globin sequences compiled previously, 32 posi-
tions are predicted to be in a network; in this study, nine positions
had conn(k) >= 4; only three predictions were in agreement with
the previous study

– For TrpA largest value was 8, same for TrpB. For TrpB, five po-
sitions had conn(k) >= 4. TrpD had a conn(k) = 11, and five
positions had conn(k) >= 4

194

– For 1QGN, we had some conn(k) values 4, 5 (four of these), 8,
and 10

– (The following is from the supplementary information)

– PF000026: two of conn(k) = 5, one of conn(k) = 6

– PF000067: two of conn(k) = 5, one of conn(k) = 8, two of conn(k)
= 9

– PF00068: four of conn(k) = 5, two of conn(k) = 6, one of conn(k)
= 9

– PF000089: two of conn(k) = 5, one of conn(k) = 7, one of conn(k)
= 13

– PF00141: three of conn(k) = 5, two of conn(k) = 6, one of conn(k)
= 8, three of conn(k) = 9, one of conn(k) = 10

– PF00248: four of conn(k) = 5, one of conn(k) = 6

– PF00331: two of conn(k) = 5, one of conn(k) = 7

– PF00550: one of conn(k) = 5, one of conn(k) = 6, one of conn(k)
= 11, one of conn(k) = 14

– PF00557: four of conn(k) = 4, one of conn(k) = 6, one of conn(k)
= 7, one of conn(k) = 9

– PF05199: one of conn(k) = 9, one of conn(k) = 13

• [141]: mentions “contact networks”, but does not seem to give any ex-
amples of these

• [178] two protein (families?):

– PDZ: one cluster of 21 positions

– Dihydrofolate reductase: one cluster of 14 positions (I think?)

• [191]: 2-point MI (pairs) and 3-point MI (groups of three) are investi-
gated; they do not go into detail as to how many of these they found
though

• [190]: like the above, does not go into detail

195

Histogram of sensitivities_all

sensitivities_all

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

60
00

0
10

00
00

Figure 4: Histogram of all sensitivities results. This distribution is clearly not
Normal.

A.3 Statistical test choice for comparison of Z-
score types

To work out the type of statistical test we can use to compare the different
groups of data (original values Z-score type sensitivities with shuffle Z-score
type sensitivities, etc.), we must decide if our data is Normal or non-Normal.
Visualising our data as a series of histograms (see Figure 4, Figure 5, and Fig-
ure 6 respectively), we see that all three data sets (sensitivities, specificities,
and precisions) are not Normal.

It is good practice to not simply rely on such graphical representations of
the distributions, but to also use normality tests to “prove” that the data is Nor-
mal or not Normal. Ghasemi and Zahediasl [71] recommended the Shapiro-
Wilk test, and this test was also proved to have the highest power overall
by Razali and Wah [161] (when comparing Shapiro-Wilk to Kolmogorov-
Smirnov, Lilliefors, and Anderson-Darling). However, we cannot use the
Shapiro-Wilk test in R when the sample size is greater than 5000, which is

196

Histogram of specificities_all

specificities_all

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Figure 5: Histogram of all specificities results. This distribution is clearly not
Normal.

197

Histogram of precisions_all

precisions_all

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
0

10
00

00
15

00
00

Figure 6: Histogram of all precisions results. This distribution is clearly not
Normal.

198

Histogram of sensitivities_diff

sensitivities_diff

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

00
0

30
00

0
50

00
0

70
00

0

Figure 7: Histogram of (original values Z-score sensitivities) - (shuffle Z-
score sensitivities) for all results.

the case for these data sets. Therefore we decided to use Anderson-Darling,
as it consistently came second in the ranking of the four normality tests being
compared by Razali and Wah [161]. This test can be found in the nortest
package in R with the function ad.test(). Running this test for each of
the data sets of all sensitivities, all specificities, and all precisions, we obtain
the p-value < 2.2 e-16 in all cases, which means that as we suspected, none
of these distributions are Normal.

Now that we have shown that the datasets are all non-Normal, we know
that we need to use a non-parametric test to compare the groups. To help us
decide which statistic to use, we refer to a table compiled by UCLA designed
for such a purpose [94]. Let us start with comparing the sensitivities for the
original values Z-score type against the sensitivities for the shuffle Z-score
type (we would use the same test for the specificities and precisions). There
is one dependent variable (sensitivity), and one independent variable (Z-score
type). The Z-score type can be split into two categories (called ‘levels’ in
UCLA’s table). These can be thought of as matched groups, as although the

199

Histogram of specificities_diff

specificities_diff

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Figure 8: Histogram of (original values Z-score specificities) - (shuffle Z-
score specificities) for all results.

200

Histogram of precisions_diff

precisions_diff

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Figure 9: Histogram of (original values Z-score precisions) - (shuffle Z-score
precisions) for all results.

201

Dataset Mean Median Mode Symmetrical?
Sensitivities −0.0365 0 0 Could be
Specificities 0.2343 0.0082 0 Probably not
Precisions 0.0059 0 0 Probably

Table 1: The mean, median, and mode for each of the three groups of differ-
ences (between original values Z-score results and shuffle Z-score results).

two types of Z-score method are separate, the two groups we are comparing
are the results of using two different Z-score methods on the same data set.
The dependent variable is a continuous value (sensitivity), which fits into the
‘ordinal or interval’ category, giving us the Wilcoxon signed-ranks test. But,
if we refer to [106], there are three assumptions we must satisfy in order to use
this test. The first two relate to the type of data for the dependent and inde-
pendent variables, and have already been established. The third assumption
means that the differences between the two groups of points, when plotted,
should look symmetrical. To establish whether this was true or not, we plot-
ted the differences for each of the three groups (see Figure 7, Figure 8, and
Figure 9).

We also calculated the mean, median, and mode for each of the three groups
of differences (in a symmetrical distribution, we would expect these values
to be equal). We obtained the results shown in Table 1. For the symmet-
rical distributions, we can use the Wilcoxon signed-rank test (with alterna-
tive=“greater”, meaning we expect the original values Z-score to do better
than the shuffle Z-score), but for the non-symmetrical distributions, we must
instead use the sign test [106]. Because the sensitivities differences, for ex-
ample, are inconclusive as to whether they are symmetrical or not, we decided
to go ahead and calculate the result of both tests for all groups.

202

A.4 Which UAA threshold does each co-evolution
detection method perform best for?

Here we provide the p-values for the (one-sided) Wilcoxon rank-sum test
calculations between each UAA threshold, for each co-evolution detection
method. The inequality signs are used to show which UAA threshold per-
formed better than the other; for example, for CAPS precisions, UAA thresh-
old 2 > 3, which means that for CAPS, we achieved higher precisions over-
all for UAA threshold 2 than for threshold 3. If the p-value is listed as “no
difference”, then this means that the p-value for the two-sided test was not
significant.

A.4.1 CAPS

Precisions

UAA thresholds p-value

2 > 3 0.00

2 > 4 0.00

2 > 5 1.80 · 10−156

3 > 4 2.39 · 10−38

3 > 5 2.65 · 10−32

4 > 5 0.00

Sensitivities

UAA thresholds p-value

2 > 3 4.56 · 10−161

2 > 4 2.76 · 10−129

2 > 5 4.18 · 10−56

3 > 4 3.82 · 10−10

3 > 5 3.66 · 10−07

4 and 5 no difference

Specificities

UAA thresholds p-value

2 < 3 1.66 · 10−08

2 < 4 2.99 · 10−16

2 < 5 1.99 · 10−09

3 < 4 0.00

3 < 5 0.00

4 and 5 no difference

203

A.4.2 PlotCorr

Precisions

UAA thresholds p-value

2 > 3 5.85 · 10−182

2 > 4 4.51 · 10−265

2 > 5 1.62 · 10−162

3 > 4 7.90 · 10−56

3 > 5 9.66 · 10−63

4 > 5 1.07 · 10−09

Sensitivities

UAA thresholds p-value

2 > 3 1.40 · 10−38

2 > 4 1.18 · 10−08

2 and 5 no difference
3 < 4 0.00

3 < 5 1.10 · 10−07

4 < 5 0.00

Specificities

UAA thresholds p-value

2 > 3 5.46 · 10−94

2 > 4 6.18 · 10−94

2 > 5 3.05 · 10−44

3 > 4 2.00 · 10−10

3 > 5 1.08 · 10−07

4 and 5 no difference

A.4.3 MI

Precisions

UAA thresholds p-value

2 > 3 4.96 · 10−55

2 > 4 1.76 · 10−25

2 > 5 5.21 · 10−11

3 and 4 no difference
3 and 5 no difference
4 and 5 no difference

204

Sensitivities

UAA thresholds p-value

2 and 3 no difference
2 < 4 1.26 · 10−62

2 < 5 3.13 · 10−94

3 < 4 2.25 · 10−53

3 < 5 8.05 · 10−91

4 < 5 4.09 · 10−29

Specificities

UAA thresholds p-value

2 > 3 1.04 · 10−47

2 > 4 2.00 · 10−44

2 > 5 1.67 · 10−21

3 > 4 3.11 · 10−05

3 > 5 0.00

4 and 5 no difference

A.4.4 Waddell – Kappa

Precisions

UAA thresholds p-value

2 > 3 8.87 · 10−107

2 > 4 5.76 · 10−163

2 > 5 2.38 · 10−114

3 > 4 5.01 · 10−42

3 > 5 3.54 · 10−58

4 > 5 1.25 · 10−12

Sensitivities

UAA thresholds p-value

2 < 3 0.00

2 < 4 2.98 · 10−283

2 < 5 5.69 · 10−137

3 < 4 1.77 · 10−32

3 < 5 1.16 · 10−31

4 < 5 3.65 · 10−06

205

Specificities

UAA thresholds p-value

2 > 3 3.05 · 10−228

2 > 4 4.49 · 10−234

2 > 5 2.39 · 10−111

3 > 4 2.79 · 10−24

3 > 5 1.25 · 10−17

4 and 5 no difference

A.4.5 Waddell – MI

Precisions

UAA thresholds p-value

2 > 3 2.98 · 10−100

2 > 4 2.89 · 10−128

2 > 5 2.37 · 10−96

3 > 4 1.12 · 10−21

3 > 5 2.78 · 10−38

4 > 5 3.08 · 10−11

Sensitivities

UAA thresholds p-value

2 < 3 9.48 · 10−98

2 < 4 1.68 · 10−227

2 < 5 1.24 · 10−122

3 < 4 2.77 · 10−67

3 < 5 2.99 · 10−55

4 < 5 2.01 · 10−08

Specificities

UAA thresholds p-value

2 > 3 1.58 · 10−169

2 > 4 8.21 · 10−171

2 > 5 2.12 · 10−79

3 > 4 1.50 · 10−16

3 > 5 4.62 · 10−12

4 and 5 no difference

206

Sensitivity Specificity Precision
Z = 0
CAPS 0.9378 0.6979 0.0329

PlotCorr 0.9375 0.8071 0.0540
Z = 1
CAPS 0.7169 0.8878 0.0392

PlotCorr 0.9150 0.9036 0.0741
Z = 2
CAPS 0.5168 0.9679 0.0379

PlotCorr 0.8748 0.9609 0.1157
Z = 3
CAPS 0.4385 0.9824 0.0297

PlotCorr 0.7513 0.9839 0.1351

Table 2: The mean sensitivity, specificity, and precision values for CAPS and
PlotCorr, for unique amino acid threshold 2.

Sensitivity Specificity Precision
Z = 0
CAPS 0.9582 0.5486 0.0105

PlotCorr 0.9807 0.7086 0.0168
Z = 1
CAPS 0.5357 0.8662 0.0115

PlotCorr 0.9272 0.8646 0.0322
Z = 2
CAPS 0.2386 0.9815 0.0052

PlotCorr 0.8337 0.9540 0.0687
Z = 3
CAPS 0.1779 0.9916 0.0026

PlotCorr 0.5592 0.9865 0.0641

Table 3: The mean sensitivity, specificity, and precision values for CAPS and
PlotCorr, for unique amino acid threshold 3.

A.5 Choosing a “lower” UAA threshold

There are a large number of co-evolving blocks for both unique amino acid
thresholds 2 and 3, so to choose which to use for our “lower” UAA (Unique
Amino Acid) threshold, we shall compare the performance of CAPS and Plot-
Corr at each (these two methods perform the best at lower thresholds).

We group the sensitivities, specificities, and precisions for the CAPS and
PlotCorr methods for the original values Z-score and Z-score thresholds 0, 1,
2, and 3, separately for unique amino acid thresholds 2 and 3 (so we have two
sets of sensitivities, two of specificities, and two for precisions). The test we
shall use is the Wilcoxon rank sum test (“Wilcoxon-Mann-Whitney”); this is
the same as the Wilcoxon signed-rank test but for use with unpaired data.

207

From looking at the means in Table 2 and Table 3, it appears that the re-
sults for unique amino acid 2 threshold are better than those for the thresh-
old 3 (again, we are more interested in the performance in terms of speci-
ficity and precision values). Using the Wilcoxon rank sum test with alterna-
tive=“greater”, the p-values obtained are all significant (p-value < 2.2e − 16

for sensitivity and precision, p-value = 1.466e−14 for specificity). This means
that the results for unique amino acid threshold 2 are indeed better than for
unique amino acid threshold 3.

208

A.6 Results by number of sequences p-values

Here we present the p-values of the one-sided Wilcoxon signed-rank and
Sign tests for the results when examining the number of sequences in an align-
ment. If “no difference” is present in one column, then that means that no
difference was found between the groups for that test. If “no difference” is
present in both columns, then the initial one-sided test was not able to estab-
lish a difference between the two groups being compared. The values in the
tables are set to show 2 decimal places, so ‘0.00’ is likely to be a number not
small enough to be displayed as X · 10−Y.

A.6.1 Comparing co-evolution detection methods

In this section, we compare the performance of pairs of methods for each
number of sequences, for the “lower” and “higher” unique amino acid thresh-
olds.

“Lower” UAA threshold

6 sequences

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 8.62 · 10−200 0.00

MI > CAPS 1.05 · 10−142 1.31 · 10−222

Waddell – Kappa > CAPS 8.40 · 10−152 2.15 · 10−189

CAPS > Waddell – MI 4.94 · 10−52 1.11 · 10−16

PlotCorr > MI 3.14 · 10−199 2.22 · 10−16

Waddell – Kappa > Plot-
Corr

5.05 · 10−48 1.57 · 10−69

PlotCorr > Waddell – MI 1.85 · 10−198 1.11 · 10−16

Waddell – Kappa > MI 1.34 · 10−133 1.57 · 10−171

MI > Waddell – MI 8.19 · 10−171 2.22 · 10−16

Waddell – Kappa > Wad-
dell – MI

3.66 · 10−157 2.22 · 10−16

209

Sensitivities

Methods Wilcoxon p-value Sign p-value

CAPS and PlotCorr no difference no difference
MI > CAPS 0.02 5.58 · 10−06

CAPS > Waddell – Kappa 6.66 · 10−111 −2.22 · 10−16

CAPS and Waddell – MI no difference no difference
MI > PlotCorr 1.80 · 10−13 8.47 · 10−22

PlotCorr > Waddell –
Kappa

1.11 · 10−109 −2.22 · 10−16

PlotCorr and Waddell –
MI

no difference no difference

MI > Waddell – Kappa 2.46 · 10−113 −2.22 · 10−16

MI > Waddell – MI 1.01 · 10−09 5.73 · 10−06

Waddell – MI>Waddell –
Kappa

3.13 · 10−103 1.84 · 10−186

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 7.82 · 10−205 0.00

MI > CAPS 2.07 · 10−183 2.14 · 10−228

Waddell – Kappa > CAPS 3.97 · 10−205 0.00

CAPS > Waddell – MI 9.06 · 10−53 1.11 · 10−16

PlotCorr > MI 8.00 · 10−204 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

9.02 · 10−202 0.00

PlotCorr > Waddell – MI 4.47 · 10−200 1.11 · 10−16

Waddell – Kappa > MI 3.97 · 10−205 0.00

MI > Waddell – MI 1.96 · 10−149 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

2.60 · 10−204 1.11 · 10−16

210

10 sequences

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 5.72 · 10−228 0.00

MI > CAPS 3.09 · 10−54 3.22 · 10−99

Waddell – Kappa > CAPS 1.12 · 10−209 1.72 · 10−312

CAPS and Waddell – MI no difference no difference
PlotCorr > MI 2.25 · 10−239 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

6.76 · 10−104 2.01 · 10−173

PlotCorr > Waddell – MI 1.25 · 10−200 1.11 · 10−16

Waddell – Kappa > MI 1.52 · 10−203 1.07 · 10−299

MI > Waddell – MI 2.09 · 10−75 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

8.15 · 10−225 1.11 · 10−16

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS no difference 0.00

MI > CAPS 4.61 · 10−10 3.36 · 10−19

CAPS > Waddell – Kappa 6.77 · 10−113 0.00

CAPS > Waddell – MI 1.54 · 10−46 0.00

MI > PlotCorr 7.64 · 10−26 2.24 · 10−44

PlotCorr > Waddell –
Kappa

3.13 · 10−113 −2.22 · 10−16

PlotCorr > Waddell – MI 9.30 · 10−40 0.00

MI > Waddell – Kappa 1.66 · 10−121 −2.22 · 10−16

MI > Waddell – MI 1.82 · 10−57 0.00

Waddell – MI>Waddell –
Kappa

1.65 · 10−65 3.17 · 10−117

211

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.46 · 10−246 0.00

MI > CAPS 2.14 · 10−136 8.88 · 10−96

Waddell – Kappa > CAPS 4.54 · 10−250 0.00

Waddell – MI > CAPS 5.22 · 10−30 7.43 · 10−05

PlotCorr > MI 2.64 · 10−249 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

2.95 · 10−247 0.00

PlotCorr > Waddell – MI 8.60 · 10−216 1.11 · 10−16

Waddell – Kappa > MI 4.04 · 10−250 0.00

MI > Waddell – MI 8.21 · 10−19 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

1.81 · 10−249 1.11 · 10−16

22 sequences

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 0.00 0.00

MI > CAPS 3.39 · 10−28 8.71 · 10−46

Waddell – Kappa > CAPS 0.00 0.00

Waddell – MI > CAPS 4.19 · 10−204 0.00

PlotCorr > MI 0.00 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

0.00 0.00

PlotCorr > Waddell – MI 0.00 1.11 · 10−16

Waddell – Kappa > MI 0.00 0.00

Waddell – MI > MI 7.52 · 10−90 4.93 · 10−107

Waddell – Kappa > Wad-
dell – MI

0.00 2.22 · 10−16

212

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 8.09 · 10−218 4.94 · 10−198

CAPS > MI 0.00 8.01 · 10−05

Waddell – Kappa > CAPS 6.34 · 10−113 9.23 · 10−56

Waddell – MI > CAPS 4.03 · 10−210 8.79 · 10−170

PlotCorr > MI 6.36 · 10−262 1.11 · 10−16

PlotCorr > Waddell –
Kappa

6.53 · 10−66 1.11 · 10−16

Waddell – MI > PlotCorr 1.86 · 10−13 1.29 · 10−21

Waddell – Kappa > MI 6.67 · 10−156 1.22 · 10−154

Waddell – MI > MI 3.10 · 10−281 0.00

Waddell – MI>Waddell –
Kappa

1.01 · 10−164 2.99 · 10−300

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 3.71 · 10−197 1.20 · 10−41

MI > CAPS no difference 6.56 · 10−13

Waddell – Kappa > CAPS 8.24 · 10−222 1.80 · 10−48

CAPS > Waddell – MI 6.31 · 10−57 0.01

PlotCorr > MI 0.00 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

0.00 0.00

PlotCorr > Waddell – MI 0.00 1.11 · 10−16

Waddell – Kappa > MI 0.00 0.00

MI > Waddell – MI 0.00 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

0.00 1.11 · 10−16

213

“Higher” UAA threshold

6 sequences

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 0.00 0.00

CAPS and MI no difference no difference
Waddell – Kappa > CAPS 0.00 0.00

Waddell – MI > CAPS 0.00 0.00

PlotCorr > MI 0.00 0.00

Waddell – Kappa > Plot-
Corr

0.00 0.00

Waddell – MI > PlotCorr 0.00 0.00

Waddell – Kappa > MI 0.00 0.00

Waddell – MI > MI 0.00 0.00

Waddell – Kappa and
Waddell – MI

no difference no difference

Sensitivities – no differences

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 0.01 0.00

CAPS and MI no difference no difference
Waddell – Kappa > CAPS 0.00 0.00

Waddell – MI > CAPS 0.00 0.00

PlotCorr > MI 0.01 0.00

Waddell – Kappa > Plot-
Corr

0.00 0.00

Waddell – MI > PlotCorr 0.00 0.00

Waddell – Kappa > MI 0.00 0.00

Waddell – MI > MI 0.00 0.00

Waddell – Kappa and
Waddell – MI

no difference no difference

214

10 sequences

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 7.63 · 10−06 7.63 · 10−06

MI > CAPS 0.00 0.00

Waddell – Kappa > CAPS 7.63 · 10−06 7.63 · 10−06

Waddell – MI > CAPS 7.63 · 10−06 7.63 · 10−06

PlotCorr > MI 7.63 · 10−06 7.63 · 10−06

Waddell – Kappa > Plot-
Corr

7.63 · 10−06 7.63 · 10−06

Waddell – MI > PlotCorr 0.00 0.00

Waddell – Kappa > MI 7.63 · 10−06 7.63 · 10−06

Waddell – MI > MI 7.63 · 10−06 7.63 · 10−06

Waddell – MI>Waddell –
Kappa

0.03 0.01

Sensitivities – no differences

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 7.63 · 10−06 7.63 · 10−06

MI > CAPS 3.81 · 10−05 0.00

Waddell – Kappa > CAPS 7.63 · 10−06 7.63 · 10−06

Waddell – MI > CAPS 7.63 · 10−06 7.63 · 10−06

PlotCorr > MI 7.63 · 10−06 7.63 · 10−06

Waddell – Kappa > Plot-
Corr

7.63 · 10−06 7.63 · 10−06

Waddell – MI > PlotCorr 7.63 · 10−06 7.63 · 10−06

Waddell – Kappa > MI 7.63 · 10−06 7.63 · 10−06

Waddell – MI > MI 7.63 · 10−06 7.63 · 10−06

Waddell – MI>Waddell –
Kappa

0.01 0.00

215

22 sequences

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.30 · 10−102 5.11 · 10−162

MI > CAPS 6.72 · 10−104 1.70 · 10−175

Waddell – Kappa > CAPS 8.02 · 10−105 7.89 · 10−167

Waddell – MI > CAPS 2.65 · 10−110 8.90 · 10−180

PlotCorr > MI 4.74 · 10−92 0.00

Waddell – Kappa > Plot-
Corr

1.55 · 10−89 6.78 · 10−143

Waddell – MI > PlotCorr 2.00 · 10−87 6.58 · 10−144

Waddell – Kappa > MI 4.55 · 10−99 1.59 · 10−137

Waddell – MI > MI 4.68 · 10−107 2.51 · 10−165

Waddell – Kappa > Wad-
dell – MI

6.76 · 10−29 0.00

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 9.40 · 10−49 2.46 · 10−41

MI > CAPS 2.83 · 10−79 4.25 · 10−118

Waddell – Kappa > CAPS 6.24 · 10−47 2.55 · 10−38

Waddell – MI > CAPS 5.83 · 10−56 2.93 · 10−46

MI > PlotCorr 4.23 · 10−41 1.01 · 10−68

PlotCorr and Waddell –
Kappa

no difference no difference

PlotCorr and Waddell –
MI

no difference no difference

MI > Waddell – Kappa 1.99 · 10−35 0.00

MI > Waddell – MI 3.47 · 10−26 0.00

Waddell – MI>Waddell –
Kappa

2.40 · 10−15 5.56 · 10−21

216

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.63 · 10−41 0.00

CAPS and MI no difference no difference
Waddell – Kappa > CAPS 1.47 · 10−45 0.00

Waddell – MI > CAPS 4.85 · 10−45 0.00

PlotCorr > MI 4.20 · 10−122 0.00

Waddell – Kappa > Plot-
Corr

4.07 · 10−122 1.11 · 10−221

Waddell – MI > PlotCorr 1.02 · 10−121 4.45 · 10−203

Waddell – Kappa > MI 4.07 · 10−122 1.11 · 10−221

Waddell – MI > MI 4.07 · 10−122 1.11 · 10−221

Waddell – Kappa > Wad-
dell – MI

1.21 · 10−67 0.00

A.6.2 Comparing numbers of sequences

In this section, we compare the performance of each method for differ-
ent numbers of sequences, for the “lower” and “higher” unique amino acid
thresholds.

“Lower” UAA threshold

CAPS

Precisions

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
6 > 22 3.09 · 10−101

10 > 22 1.87 · 10−120

Sensitivities

Numbers of sequences Wilcoxon p-value

6 > 10 2.26 · 10−18

6 > 22 0.00

10 > 22 0.00

217

Specificities

Numbers of sequences Wilcoxon p-value

6 > 10 5.51 · 10−09

6 > 22 5.98 · 10−16

10 > 22 9.49 · 10−17

PlotCorr

Precisions – no differences

Sensitivities

Numbers of sequences Wilcoxon p-value

6 > 10 1.22 · 10−09

6 > 22 5.14 · 10−171

10 > 22 4.43 · 10−146

Specificities

Numbers of sequences Wilcoxon p-value

6 > 10 3.41 · 10−47

6 > 22 4.15 · 10−196

10 > 22 9.23 · 10−71

MI

Precisions

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
6 > 22 5.13 · 10−116

10 > 22 8.09 · 10−121

Sensitivities

Numbers of sequences Wilcoxon p-value

6 > 10 2.95 · 10−10

6 > 22 0.00

10 > 22 0.00

218

Specificities

Numbers of sequences Wilcoxon p-value

6 > 10 2.35 · 10−59

6 > 22 0.00

10 > 22 0.00

Waddell – Kappa

Precisions

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
22 > 6 1.25 · 10−18

22 > 10 2.94 · 10−14

Sensitivities

Numbers of sequences Wilcoxon p-value

10 > 6 5.45 · 10−05

6 > 22 0.00

10 > 22 6.29 · 10−19

Specificities

Numbers of sequences Wilcoxon p-value

6 > 10 9.65 · 10−35

6 > 22 0.01

22 > 10 1.33 · 10−36

Waddell – MI

Precisions

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
6 > 22 5.88 · 10−07

10 > 22 6.70 · 10−09

219

Sensitivities

Numbers of sequences Wilcoxon p-value

6 > 10 1.31 · 10−51

6 > 22 3.57 · 10−138

10 > 22 1.08 · 10−27

Specificities

Numbers of sequences Wilcoxon p-value

10 > 6 0.01

6 > 22 0.00

10 > 22 0.00

“Higher” UAA threshold

CAPS

Precisions

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
6 > 22 0.00

10 > 22 0.00

Sensitivities

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
6 > 22 0.00

10 > 22 2.81 · 10−06

Specificities – no differences

PlotCorr

Precisions – no differences

220

Sensitivities

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
6 > 22 0.01

10 > 22 0.01

Specificities

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
6 > 22 0.00

10 > 22 0.00

MI

Precisions – no differences

Sensitivities – no differences

Specificities

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
6 > 22 2.74 · 10−06

10 > 22 6.70 · 10−12

Waddell – Kappa

Precisions – no differences

Sensitivities – no differences

Specificities

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
6 and 22 no difference
22 > 10 0.01

221

Waddell – MI

Precisions – no differences

Sensitivities – no differences

Specificities

Numbers of sequences Wilcoxon p-value

6 and 10 no difference
6 > 22 0.00

10 and 22 no difference

222

A.7 Results by alignment length p-values

Here we present the p-values of the one-sided Wilcoxon signed-rank and
Sign tests for the results when examining the alignment length. If “no dif-
ference” is present in one column, then that means that no difference was
found between the groups for that test. If “no difference” is present in both
columns, then the initial one-sided test was not able to establish a difference
between the two groups being compared. The values in the tables are set to
show 2 decimal places, so ‘0.00’ is likely to be a number not small enough to
be displayed as X · 10−Y.

A.7.1 Comparing co-evolution detection methods

In this section, we compare the performance of pairs of methods for each
alignment length, for the “lower” and “higher” unique amino acid thresholds.

“Lower” UAA threshold

Length 50

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 0.00 0.00

MI > CAPS 2.63 · 10−36 2.53 · 10−40

Waddell – Kappa > CAPS 0.00 0.00

Waddell – MI > CAPS 8.58 · 10−24 9.69 · 10−25

PlotCorr > MI 0.00 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

1.46 · 10−224 2.86 · 10−233

PlotCorr > Waddell – MI 0.00 1.11 · 10−16

Waddell – Kappa > MI 0.00 0.00

MI > Waddell – MI 6.04 · 10−07 3.56 · 10−09

Waddell – Kappa > Wad-
dell – MI

0.00 0.00

223

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 3.81 · 10−101 1.73 · 10−126

CAPS > MI 0.00 0.00

CAPS > Waddell – Kappa 1.84 · 10−06 1.85 · 10−07

Waddell – MI > CAPS 1.79 · 10−40 2.87 · 10−29

PlotCorr > MI 8.38 · 10−107 1.11 · 10−16

PlotCorr > Waddell –
Kappa

2.95 · 10−140 2.22 · 10−16

PlotCorr > Waddell – MI 8.04 · 10−10 0.01

MI and Waddell – Kappa no difference no difference
Waddell – MI > MI 7.75 · 10−57 8.14 · 10−59

Waddell – MI>Waddell –
Kappa

9.29 · 10−131 9.83 · 10−237

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.22 · 10−302 8.61 · 10−296

MI > CAPS 1.41 · 10−34 2.54 · 10−66

Waddell – Kappa > CAPS 0.00 0.00

CAPS > Waddell – MI 2.58 · 10−05 5.70 · 10−05

PlotCorr > MI 0.00 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

0.00 0.00

PlotCorr > Waddell – MI 0.00 1.11 · 10−16

Waddell – Kappa > MI 0.00 0.00

MI > Waddell – MI 6.05 · 10−269 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

0.00 2.22 · 10−16

224

Length 600

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 7.33 · 10−223 0.00

MI > CAPS 2.75 · 10−103 6.76 · 10−135

Waddell – Kappa > CAPS 4.06 · 10−221 0.00

Waddell – MI > CAPS 4.96 · 10−23 3.64 · 10−21

PlotCorr > MI 4.24 · 10−223 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

4.03 · 10−168 3.72 · 10−237

PlotCorr > Waddell – MI 2.73 · 10−213 1.11 · 10−16

Waddell – Kappa > MI 1.05 · 10−220 0.00

MI > Waddell – MI 1.49 · 10−17 1.01 · 10−12

Waddell – Kappa > Wad-
dell – MI

1.35 · 10−221 1.11 · 10−16

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.60 · 10−33 6.97 · 10−23

MI > CAPS no difference 0.00

CAPS > Waddell – Kappa 0.00 1.11 · 10−16

Waddell – MI > CAPS 9.95 · 10−30 1.27 · 10−18

PlotCorr > MI 4.46 · 10−47 1.55 · 10−15

PlotCorr > Waddell –
Kappa

4.72 · 10−95 0.00

Waddell – MI > PlotCorr 0.02 0.00

MI > Waddell – Kappa 0.01 2.22 · 10−16

Waddell – MI > MI 8.39 · 10−45 4.52 · 10−27

Waddell – MI>Waddell –
Kappa

5.25 · 10−112 5.10 · 10−203

225

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 9.27 · 10−89 2.09 · 10−128

MI > CAPS 2.33 · 10−23 1.62 · 10−60

Waddell – Kappa > CAPS 9.20 · 10−142 2.09 · 10−128

CAPS > Waddell – MI no difference 1.90 · 10−06

PlotCorr > MI 4.08 · 10−232 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

6.39 · 10−232 0.00

PlotCorr > Waddell – MI 2.16 · 10−227 1.11 · 10−16

Waddell – Kappa > MI 1.63 · 10−232 0.00

MI > Waddell – MI 2.87 · 10−130 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

1.63 · 10−232 1.11 · 10−16

Length 1200

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.23 · 10−233 0.00

MI > CAPS 2.19 · 10−136 1.52 · 10−186

Waddell – Kappa > CAPS 3.40 · 10−234 0.00

Waddell – MI > CAPS 1.49 · 10−50 2.98 · 10−26

PlotCorr > MI 2.58 · 10−233 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

1.95 · 10−204 1.33 · 10−286

PlotCorr > Waddell – MI 5.16 · 10−234 1.11 · 10−16

Waddell – Kappa > MI 5.41 · 10−234 0.00

MI > Waddell – MI 1.01 · 10−07 2.36 · 10−06

Waddell – Kappa > Wad-
dell – MI

4.01 · 10−234 1.11 · 10−16

226

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 3.04 · 10−54 4.66 · 10−40

MI > CAPS no difference 0.02

CAPS > Waddell – Kappa no difference 0.02

Waddell – MI > CAPS 6.75 · 10−47 7.24 · 10−32

PlotCorr > MI 1.52 · 10−84 −2.22 · 10−16

PlotCorr > Waddell –
Kappa

1.33 · 10−63 0.00

Waddell – MI > PlotCorr 0.03 8.22 · 10−05

Waddell – Kappa > MI 3.24 · 10−16 0.00

Waddell – MI > MI 7.69 · 10−76 5.73 · 10−70

Waddell – MI>Waddell –
Kappa

5.95 · 10−91 3.47 · 10−164

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.86 · 10−82 2.97 · 10−84

MI > CAPS 1.80 · 10−12 2.03 · 10−81

Waddell – Kappa > CAPS 1.32 · 10−180 2.97 · 10−84

CAPS > Waddell – MI 9.85 · 10−07 6.83 · 10−11

PlotCorr > MI 2.20 · 10−238 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

2.20 · 10−238 0.00

PlotCorr > Waddell – MI 2.48 · 10−238 1.11 · 10−16

Waddell – Kappa > MI 2.20 · 10−238 0.00

MI > Waddell – MI 8.35 · 10−207 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

2.20 · 10−238 1.11 · 10−16

227

“Higher” UAA threshold

Length 50

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 6.59 · 10−57 3.00 · 10−67

MI > CAPS 3.52 · 10−51 3.53 · 10−72

Waddell – Kappa > CAPS 5.75 · 10−57 1.20 · 10−68

Waddell – MI > CAPS 2.07 · 10−59 1.70 · 10−78

PlotCorr > MI 1.11 · 10−56 0.00

Waddell – Kappa > Plot-
Corr

4.23 · 10−44 1.91 · 10−57

Waddell – MI > PlotCorr 1.38 · 10−38 3.77 · 10−56

Waddell – Kappa > MI 1.72 · 10−57 1.21 · 10−54

Waddell – MI > MI 8.41 · 10−59 1.58 · 10−71

Waddell – Kappa > Wad-
dell – MI

8.40 · 10−21 −2.22 · 10−16

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 8.31 · 10−17 7.50 · 10−22

MI > CAPS 3.07 · 10−36 3.68 · 10−55

Waddell – Kappa > CAPS 3.61 · 10−14 4.56 · 10−16

Waddell – MI > CAPS 6.06 · 10−20 2.84 · 10−22

MI > PlotCorr 2.45 · 10−17 3.89 · 10−25

PlotCorr > Waddell –
Kappa

0.02 2.69 · 10−05

PlotCorr and Waddell –
MI

no difference no difference

MI > Waddell – Kappa 2.83 · 10−18 0.00

MI > Waddell – MI 7.24 · 10−13 1.11 · 10−16

Waddell – MI>Waddell –
Kappa

4.64 · 10−08 2.55 · 10−09

228

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.36 · 10−34 2.77 · 10−09

CAPS and MI no difference no difference
Waddell – Kappa > CAPS 2.07 · 10−37 5.73 · 10−11

Waddell – MI > CAPS 1.03 · 10−36 5.11 · 10−10

PlotCorr > MI 2.32 · 10−62 0.00

Waddell – Kappa > Plot-
Corr

2.32 · 10−62 1.66 · 10−111

Waddell – MI > PlotCorr 9.87 · 10−62 2.57 · 10−95

Waddell – Kappa > MI 2.32 · 10−62 1.66 · 10−111

Waddell – MI > MI 2.32 · 10−62 1.66 · 10−111

Waddell – Kappa > Wad-
dell – MI

5.66 · 10−41 0.00

Length 600

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 9.93 · 10−32 5.37 · 10−51

MI > CAPS 4.51 · 10−32 1.50 · 10−53

Waddell – Kappa > CAPS 4.44 · 10−32 8.16 · 10−56

Waddell – MI > CAPS 4.44 · 10−32 8.16 · 10−56

PlotCorr > MI 1.38 · 10−30 0.00

Waddell – Kappa > Plot-
Corr

4.13 · 10−32 3.59 · 10−47

Waddell – MI > PlotCorr 4.93 · 10−32 1.08 · 10−45

Waddell – Kappa > MI 2.30 · 10−32 2.15 · 10−50

Waddell – MI > MI 2.19 · 10−32 3.51 · 10−52

Waddell – Kappa > Wad-
dell – MI

0.02 7.12 · 10−05

229

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.49 · 10−12 8.24 · 10−06

MI > CAPS 5.90 · 10−19 2.25 · 10−25

Waddell – Kappa > CAPS 9.55 · 10−14 1.34 · 10−06

Waddell – MI > CAPS 2.98 · 10−14 7.41 · 10−07

MI > PlotCorr 9.90 · 10−13 5.23 · 10−21

PlotCorr and Waddell –
Kappa

no difference no difference

PlotCorr and Waddell –
MI

no difference no difference

MI > Waddell – Kappa 2.36 · 10−09 1.44 · 10−15

MI > Waddell – MI 2.82 · 10−08 6.89 · 10−14

Waddell – MI>Waddell –
Kappa

0.00 7.25 · 10−05

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.03 · 10−11 0.02

MI > CAPS no difference 0.02

Waddell – Kappa > CAPS 1.26 · 10−14 0.02

Waddell – MI > CAPS 1.33 · 10−14 0.02

PlotCorr > MI 1.71 · 10−32 0.00

Waddell – Kappa > Plot-
Corr

1.43 · 10−32 1.02 · 10−56

Waddell – MI > PlotCorr 1.43 · 10−32 1.02 · 10−56

Waddell – Kappa > MI 1.43 · 10−32 1.02 · 10−56

Waddell – MI > MI 1.43 · 10−32 1.02 · 10−56

Waddell – Kappa > Wad-
dell – MI

8.03 · 10−07 4.69 · 10−07

230

Length 1200

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.56 · 10−34 4.95 · 10−58

MI > CAPS 1.60 · 10−35 3.89 · 10−62

Waddell – Kappa > CAPS 2.28 · 10−34 9.86 · 10−58

Waddell – MI > CAPS 3.45 · 10−35 3.16 · 10−59

PlotCorr > MI 2.97 · 10−35 0.00

Waddell – Kappa > Plot-
Corr

1.27 · 10−34 8.30 · 10−52

Waddell – MI > PlotCorr 5.42 · 10−35 1.08 · 10−55

Waddell – Kappa > MI 2.12 · 10−35 3.00 · 10−47

Waddell – MI > MI 1.27 · 10−35 1.42 · 10−54

Waddell – Kappa > Wad-
dell – MI

1.27 · 10−13 1.25 · 10−12

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 5.70 · 10−23 1.02 · 10−17

MI > CAPS 2.54 · 10−28 2.01 · 10−40

Waddell – Kappa > CAPS 3.68 · 10−23 1.99 · 10−18

Waddell – MI > CAPS 1.67 · 10−24 8.46 · 10−20

MI > PlotCorr 5.73 · 10−17 7.81 · 10−27

PlotCorr and Waddell –
Kappa

no difference no difference

Waddell – MI > PlotCorr 0.02 0.01

MI > Waddell – Kappa 1.51 · 10−12 0.00

MI > Waddell – MI 1.08 · 10−09 1.97 · 10−14

Waddell – MI>Waddell –
Kappa

1.94 · 10−06 2.31 · 10−07

231

Specificities

Methods Wilcoxon p-value Sign p-value

CAPS > PlotCorr no difference 0.00

CAPS > MI 0.01 0.00

CAPS > Waddell – Kappa no difference 0.00

CAPS > Waddell – MI no difference 0.00

PlotCorr > MI 1.10 · 10−35 0.00

Waddell – Kappa > Plot-
Corr

1.10 · 10−35 1.94 · 10−62

Waddell – MI > PlotCorr 1.10 · 10−35 1.94 · 10−62

Waddell – Kappa > MI 1.10 · 10−35 1.94 · 10−62

Waddell – MI > MI 1.10 · 10−35 1.94 · 10−62

Waddell – Kappa > Wad-
dell – MI

2.49 · 10−25 0.00

A.7.2 Comparing alignment lengths

In this section, we compare the performance of each method for different
alignment lengths, for the “lower” and “higher” unique amino acid thresholds.

“Lower” UAA threshold

CAPS

Precisions

Methods Wilcoxon p-value

50 > 600 5.98 · 10−20

50 > 1200 5.76 · 10−165

600 > 1200 5.70 · 10−48

Sensitivities

Methods Wilcoxon p-value

50 and 600 no difference
50 and 1200 no difference
600 > 1200 0.02

232

Specificities

Methods Wilcoxon p-value

600 > 50 2.66 · 10−42

1200 > 50 5.81 · 10−19

600 > 1200 0.00

PlotCorr

Precisions

Methods Wilcoxon p-value

50 > 600 1.09 · 10−60

50 > 1200 1.07 · 10−270

600 > 1200 1.55 · 10−63

Sensitivities

Methods Wilcoxon p-value

50 > 600 0.01

50 > 1200 0.01

600 and 1200 no difference

Specificities

Methods Wilcoxon p-value

600 > 50 5.81 · 10−11

50 > 1200 8.46 · 10−10

600 > 1200 1.11 · 10−23

MI

Precisions

Methods Wilcoxon p-value

50 > 600 8.66 · 10−08

50 > 1200 2.66 · 10−108

600 > 1200 2.16 · 10−53

233

Sensitivities

Methods Wilcoxon p-value

600 > 50 2.57 · 10−07

50 and 1200 no difference
600 > 1200 0.00

Specificities

Methods Wilcoxon p-value

600 > 50 1.14 · 10−71

1200 > 50 3.53 · 10−20

600 > 1200 2.24 · 10−21

Waddell – Kappa

Precisions

Methods Wilcoxon p-value

50 > 600 1.77 · 10−43

50 > 1200 6.96 · 10−204

600 > 1200 9.66 · 10−59

Sensitivities

Methods Wilcoxon p-value

600 > 50 4.11 · 10−06

1200 > 50 8.93 · 10−16

1200 > 600 3.89 · 10−06

Specificities

Methods Wilcoxon p-value

600 > 50 0.01

50 > 1200 1.21 · 10−26

600 > 1200 1.61 · 10−26

234

Waddell – MI

Precisions

Methods Wilcoxon p-value

50 > 600 7.82 · 10−43

50 > 1200 1.72 · 10−263

600 > 1200 2.72 · 10−67

Sensitivities

Methods Wilcoxon p-value

600 > 50 6.49 · 10−09

1200 > 50 1.06 · 10−06

600 and 1200 no difference

Specificities

Methods Wilcoxon p-value

600 > 50 7.66 · 10−76

1200 > 50 3.60 · 10−13

600 > 1200 3.48 · 10−32

“Upper” UAA threshold

CAPS

Precisions

Methods Wilcoxon p-value

50 > 600 7.20 · 10−06

50 > 1200 4.51 · 10−16

600 > 1200 1.01 · 10−08

Sensitivities

Methods Wilcoxon p-value

50 and 600 no difference
50 > 1200 0.00

600 > 1200 0.00

235

Specificities

Methods Wilcoxon p-value

50 and 600 no difference
1200 > 50 0.00

1200 > 600 0.01

PlotCorr

Precisions

Methods Wilcoxon p-value

50 > 600 2.74 · 10−32

50 > 1200 2.57 · 10−47

600 > 1200 2.25 · 10−11

Sensitivities – no differences

Specificities

Methods Wilcoxon p-value

50 > 600 5.53 · 10−12

50 > 1200 1.66 · 10−12

600 and 1200 no difference

MI

Precisions

Methods Wilcoxon p-value

50 > 600 7.42 · 10−41

50 > 1200 2.23 · 10−73

600 > 1200 1.29 · 10−12

Sensitivities – no differences

Specificities

Methods Wilcoxon p-value

600 > 50 6.38 · 10−11

1200 > 50 0.00

600 > 1200 0.00

236

Waddell – Kappa

Precisions

Methods Wilcoxon p-value

50 > 600 1.00 · 10−37

50 > 1200 4.54 · 10−50

600 > 1200 3.61 · 10−11

Sensitivities

Methods Wilcoxon p-value

600 > 50 0.00

50 and 1200 no difference
600 and 1200 no difference

Specificities

Methods Wilcoxon p-value

50 > 600 9.79 · 10−29

50 > 1200 7.90 · 10−22

1200 > 600 0.01

Waddell – MI

Precisions

Methods Wilcoxon p-value

50 > 600 7.34 · 10−41

50 > 1200 1.99 · 10−62

600 > 1200 6.17 · 10−12

Sensitivities – no differences

Specificities

Methods Wilcoxon p-value

50 > 600 3.65 · 10−15

50 > 1200 2.83 · 10−24

600 > 1200 0.01

237

A.8 Results by rate variation parameter p-values

Here we present the p-values of the one-sided Wilcoxon signed-rank and
Sign tests for the results when examining the rate variation parameter. If “no
difference” is present in one column, then that means that no difference was
found between the groups for that test. If “no difference” is present in both
columns, then the initial one-sided test was not able to establish a difference
between the two groups being compared. The values in the tables are set to
show 2 decimal places, so ‘0.00’ is likely to be a number not small enough to
be displayed as X · 10−Y.

A.8.1 Comparing co-evolution detection methods

In this section, we compare the performance of pairs of methods for each
rate variation parameter value, for the “lower” and “higher” unique amino
acid thresholds.

“Lower” UAA threshold

Value 1

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 4.28 · 10−259 0.00

MI > CAPS 9.16 · 10−37 1.14 · 10−50

Waddell – Kappa > CAPS 9.04 · 10−234 0.00

Waddell – MI > CAPS 5.42 · 10−08 9.48 · 10−09

PlotCorr > MI 2.90 · 10−265 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

2.87 · 10−156 4.87 · 10−228

PlotCorr > Waddell – MI 3.08 · 10−257 1.11 · 10−16

Waddell – Kappa > MI 4.63 · 10−229 0.00

MI > Waddell – MI 5.06 · 10−21 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

3.18 · 10−241 1.11 · 10−16

238

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.44 · 10−08 4.38 · 10−08

CAPS > MI 2.67 · 10−50 −2.22 · 10−16

CAPS > Waddell – Kappa 8.22 · 10−58 1.11 · 10−16

CAPS and Waddell – MI no difference no difference
PlotCorr > MI 2.80 · 10−74 −2.22 · 10−16

PlotCorr > Waddell –
Kappa

2.12 · 10−97 0.00

PlotCorr > Waddell – MI 2.40 · 10−07 0.01

MI > Waddell – Kappa no difference 0.01

Waddell – MI > MI 1.92 · 10−44 2.41 · 10−38

Waddell – MI>Waddell –
Kappa

8.18 · 10−93 1.70 · 10−167

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 4.11 · 10−254 0.00

MI > CAPS 4.88 · 10−194 3.61 · 10−215

Waddell – Kappa > CAPS 4.33 · 10−273 0.00

Waddell – MI > CAPS 2.47 · 10−64 7.30 · 10−14

PlotCorr > MI 2.25 · 10−279 0.00

Waddell – Kappa > Plot-
Corr

1.01 · 10−278 0.00

PlotCorr > Waddell – MI 3.21 · 10−276 0.00

Waddell – Kappa > MI 6.00 · 10−280 0.00

MI > Waddell – MI 1.12 · 10−202 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

6.00 · 10−280 1.11 · 10−16

239

Value 100

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 3.16 · 10−275 0.00

MI > CAPS 2.15 · 10−52 7.18 · 10−95

Waddell – Kappa > CAPS 2.46 · 10−249 0.00

Waddell – MI > CAPS 1.48 · 10−31 7.47 · 10−31

PlotCorr > MI 8.69 · 10−280 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

9.84 · 10−170 2.11 · 10−243

PlotCorr > Waddell – MI 6.63 · 10−263 1.11 · 10−16

Waddell – Kappa > MI 1.15 · 10−244 0.00

MI > Waddell – MI 0.00 0.02

Waddell – Kappa > Wad-
dell – MI

1.20 · 10−251 1.11 · 10−16

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 8.36 · 10−91 1.53 · 10−87

MI > CAPS no difference 0.00

CAPS and Waddell –
Kappa

no difference no difference

Waddell – MI > CAPS 2.25 · 10−61 4.80 · 10−41

PlotCorr > MI 4.60 · 10−94 0.00

PlotCorr > Waddell –
Kappa

4.50 · 10−94 0.00

PlotCorr and Waddell –
MI

no difference no difference

MI and Waddell – Kappa no difference no difference
Waddell – MI > MI 2.66 · 10−67 4.01 · 10−58

Waddell – MI>Waddell –
Kappa

1.93 · 10−102 2.94 · 10−185

240

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 6.19 · 10−118 9.24 · 10−106

MI > CAPS 0.04 2.81 · 10−33

Waddell – Kappa > CAPS 2.68 · 10−204 4.96 · 10−115

CAPS > Waddell – MI 3.25 · 10−21 0.00

PlotCorr > MI 3.97 · 10−294 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

7.88 · 10−293 0.00

PlotCorr > Waddell – MI 1.84 · 10−287 0.00

Waddell – Kappa > MI 6.07 · 10−295 0.00

MI > Waddell – MI 8.24 · 10−191 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

1.87 · 10−294 1.11 · 10−16

Value none

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.68 · 10−306 0.00

MI > CAPS 2.65 · 10−94 4.11 · 10−156

Waddell – Kappa > CAPS 4.62 · 10−293 0.00

Waddell – MI > CAPS 1.51 · 10−43 2.24 · 10−36

PlotCorr > MI 3.41 · 10−306 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

2.85 · 10−189 1.21 · 10−251

PlotCorr > Waddell – MI 1.34 · 10−281 2.22 · 10−16

Waddell – Kappa > MI 1.46 · 10−281 0.00

MI > Waddell – MI 1.14 · 10−07 2.65 · 10−07

Waddell – Kappa > Wad-
dell – MI

2.09 · 10−293 2.22 · 10−16

241

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 4.26 · 10−106 2.19 · 10−100

MI > CAPS 2.25 · 10−17 5.48 · 10−21

CAPS and Waddell –
Kappa

no difference no difference

Waddell – MI > CAPS 3.71 · 10−82 2.34 · 10−61

PlotCorr > MI 6.54 · 10−73 0.00

PlotCorr > Waddell –
Kappa

7.74 · 10−107 1.11 · 10−16

Waddell – MI > PlotCorr 0.03 6.30 · 10−09

MI > Waddell – Kappa no difference 3.80 · 10−05

Waddell – MI > MI 6.31 · 10−58 3.26 · 10−53

Waddell – MI>Waddell –
Kappa

3.70 · 10−138 3.49 · 10−251

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 8.79 · 10−120 1.26 · 10−96

MI > CAPS no difference 9.95 · 10−26

Waddell – Kappa > CAPS 3.63 · 10−221 8.57 · 10−108

CAPS > Waddell – MI 7.61 · 10−40 1.11 · 10−16

PlotCorr > MI 0.00 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

0.00 0.00

PlotCorr > Waddell – MI 0.00 2.22 · 10−16

Waddell – Kappa > MI 0.00 0.00

MI > Waddell – MI 5.75 · 10−212 2.22 · 10−16

Waddell – Kappa > Wad-
dell – MI

0.00 1.11 · 10−16

242

“Higher” UAA threshold

Value 1

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 8.18 · 10−32 6.93 · 10−45

MI > CAPS 1.76 · 10−36 3.04 · 10−60

Waddell – Kappa > CAPS 4.69 · 10−36 1.33 · 10−54

Waddell – MI > CAPS 5.11 · 10−36 1.33 · 10−54

PlotCorr > MI 3.65 · 10−29 0.00

Waddell – Kappa > Plot-
Corr

1.05 · 10−33 5.21 · 10−56

Waddell – MI > PlotCorr 1.62 · 10−30 1.50 · 10−50

Waddell – Kappa > MI 5.01 · 10−36 1.03 · 10−55

Waddell – MI > MI 6.35 · 10−36 1.03 · 10−55

Waddell – Kappa > Wad-
dell – MI

2.77 · 10−07 1.22 · 10−08

Sensitivities

Methods Wilcoxon p-value Sign p-value

CAPS and PlotCorr no difference no difference
MI > CAPS 3.96 · 10−09 1.58 · 10−12

CAPS and Waddell –
Kappa

no difference no difference

CAPS and Waddell – MI no difference no difference
MI > PlotCorr 1.07 · 10−13 2.61 · 10−22

PlotCorr and Waddell –
Kappa

no difference no difference

PlotCorr and Waddell –
MI

no difference no difference

MI > Waddell – Kappa 1.19 · 10−10 0.00

MI > Waddell – MI 1.73 · 10−10 2.22 · 10−16

Waddell – Kappa and
Waddell – MI

no difference no difference

243

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 4.05 · 10−38 5.78 · 10−46

MI > CAPS 2.59 · 10−26 1.02 · 10−39

Waddell – Kappa > CAPS 3.56 · 10−39 5.78 · 10−46

Waddell – MI > CAPS 3.56 · 10−39 5.78 · 10−46

PlotCorr > MI 6.85 · 10−40 0.00

Waddell – Kappa > Plot-
Corr

6.02 · 10−40 2.90 · 10−70

Waddell – MI > PlotCorr 6.02 · 10−40 2.90 · 10−70

Waddell – Kappa > MI 6.02 · 10−40 2.90 · 10−70

Waddell – MI > MI 6.02 · 10−40 2.90 · 10−70

Waddell – Kappa > Wad-
dell – MI

6.96 · 10−09 3.06 · 10−08

Value 100

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 5.25 · 10−32 1.58 · 10−52

MI > CAPS 1.59 · 10−27 2.10 · 10−46

Waddell – Kappa > CAPS 5.35 · 10−30 2.04 · 10−47

Waddell – MI > CAPS 6.80 · 10−32 4.26 · 10−52

PlotCorr > MI 5.49 · 10−32 0.00

Waddell – Kappa > Plot-
Corr

4.35 · 10−24 9.90 · 10−39

Waddell – MI > PlotCorr 1.03 · 10−22 2.29 · 10−40

Waddell – Kappa > MI 2.16 · 10−30 6.59 · 10−41

Waddell – MI > MI 5.60 · 10−32 1.06 · 10−49

Waddell – Kappa > Wad-
dell – MI

2.62 · 10−15 0.00

244

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.03 · 10−21 1.97 · 10−23

MI > CAPS 3.95 · 10−28 5.09 · 10−41

Waddell – Kappa > CAPS 4.40 · 10−20 3.86 · 10−20

Waddell – MI > CAPS 1.07 · 10−22 2.73 · 10−23

MI > PlotCorr 5.72 · 10−11 1.32 · 10−17

PlotCorr and Waddell –
Kappa

no difference no difference

PlotCorr and Waddell –
MI

no difference no difference

MI > Waddell – Kappa 6.70 · 10−09 2.44 · 10−13

MI > Waddell – MI 1.92 · 10−06 6.42 · 10−10

Waddell – MI>Waddell –
Kappa

4.95 · 10−05 2.00 · 10−05

Specificities

Methods Wilcoxon p-value Sign p-value

CAPS and PlotCorr no difference no difference
CAPS > MI 2.61 · 10−10 0.01

CAPS and Waddell –
Kappa

no difference no difference

CAPS and Waddell – MI no difference no difference
PlotCorr > MI 5.15 · 10−36 0.00

Waddell – Kappa > Plot-
Corr

5.15 · 10−36 4.86 · 10−63

Waddell – MI > PlotCorr 1.01 · 10−35 1.42 · 10−56

Waddell – Kappa > MI 5.15 · 10−36 4.86 · 10−63

Waddell – MI > MI 5.15 · 10−36 4.86 · 10−63

Waddell – Kappa > Wad-
dell – MI

7.40 · 10−26 0.00

245

Value none

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 6.50 · 10−47 1.52 · 10−76

MI > CAPS 7.09 · 10−47 2.58 · 10−76

Waddell – Kappa > CAPS 4.99 · 10−47 5.51 · 10−75

Waddell – MI > CAPS 1.37 · 10−50 1.13 · 10−83

PlotCorr > MI 2.37 · 10−39 −2.22 · 10−16

Waddell – Kappa > Plot-
Corr

3.11 · 10−40 3.07 · 10−59

Waddell – MI > PlotCorr 7.75 · 10−42 5.65 · 10−62

Waddell – Kappa > MI 2.60 · 10−41 1.06 · 10−52

Waddell – MI > MI 1.21 · 10−47 3.70 · 10−70

Waddell – Kappa > Wad-
dell – MI

5.06 · 10−11 1.39 · 10−12

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.52 · 10−33 1.16 · 10−38

MI > CAPS 1.67 · 10−46 8.25 · 10−69

Waddell – Kappa > CAPS 1.11 · 10−31 2.93 · 10−34

Waddell – MI > CAPS 3.15 · 10−38 5.70 · 10−42

MI > PlotCorr 5.76 · 10−21 9.30 · 10−33

PlotCorr > Waddell –
Kappa

0.01 0.01

PlotCorr and Waddell –
MI

no difference no difference

MI > Waddell – Kappa 1.42 · 10−20 0.00

MI > Waddell – MI 1.42 · 10−13 0.00

Waddell – MI>Waddell –
Kappa

7.45 · 10−13 1.36 · 10−20

246

Specificities

Methods Wilcoxon p-value Sign p-value

CAPS > PlotCorr no difference 3.87 · 10−07

CAPS > MI 1.56 · 10−23 7.67 · 10−14

CAPS > Waddell – Kappa no difference 7.18 · 10−06

CAPS > Waddell – MI no difference 1.54 · 10−06

PlotCorr > MI 1.12 · 10−54 0.00

Waddell – Kappa > Plot-
Corr

1.12 · 10−54 2.34 · 10−97

Waddell – MI > PlotCorr 1.83 · 10−54 6.55 · 10−87

Waddell – Kappa > MI 1.12 · 10−54 2.34 · 10−97

Waddell – MI > MI 1.12 · 10−54 2.34 · 10−97

Waddell – Kappa > Wad-
dell – MI

3.23 · 10−36 0.00

A.8.2 Comparing rate variation parameter values

In this section, we compare the performance of each method for different
rate variation parameter values, for the “lower” and “higher” unique amino
acid thresholds.

“Lower” UAA threshold

CAPS

Precisions

Methods Wilcoxon p-value

1 > none 3.69 · 10−22

none and 100 no difference
1 > 100 2.87 · 10−23

Sensitivities

Methods Wilcoxon p-value

1 > none 2.85 · 10−46

100 > none 0.02

1 > 100 1.29 · 10−31

247

Specificities

Methods Wilcoxon p-value

none > 1 6.76 · 10−59

none and 100 no difference
100 > 1 5.73 · 10−45

PlotCorr

Precisions – no differences

Sensitivities

Methods Wilcoxon p-value

1 > none 6.35 · 10−09

100 > none 2.30 · 10−05

1 and 100 no difference

Specificities

Methods Wilcoxon p-value

none > 1 4.77 · 10−06

none and 100 no difference
100 > 1 0.00

MI

Precisions

Methods Wilcoxon p-value

none and 1 no difference
none > 100 0.00

1 > 100 8.19 · 10−07

Sensitivities

Methods Wilcoxon p-value

none and 1 no difference
none and 100 no difference

1 > 100 0.00

248

Specificities

Methods Wilcoxon p-value

1 > none 1.23 · 10−23

none and 100 no difference
1 > 100 3.21 · 10−23

Waddell – Kappa

Precisions

Methods Wilcoxon p-value

none and 1 no difference
none > 100 0.02

1 and 100 no difference

Sensitivities

Methods Wilcoxon p-value

1 > none 0.00

100 > none 9.46 · 10−05

1 and 100 no difference

Specificities

Methods Wilcoxon p-value

none > 1 3.54 · 10−07

none and 100 no difference
100 > 1 2.99 · 10−06

Waddell – MI

Precisions

Methods Wilcoxon p-value

none and 1 no difference
none > 100 0.00

1 > 100 0.00

249

Sensitivities – no differences

Specificities

Methods Wilcoxon p-value

1 > none 2.79 · 10−29

none and 100 no difference
1 > 100 1.39 · 10−25

“Upper” UAA threshold

CAPS

Precisions

Methods Wilcoxon p-value

1 > none 3.40 · 10−28

100 > none 0.00

1 > 100 7.42 · 10−13

Sensitivities

Methods Wilcoxon p-value

1 > none 4.31 · 10−42

100 > none 0.00

1 > 100 4.52 · 10−26

Specificities

Methods Wilcoxon p-value

none > 1 8.49 · 10−45

none > 100 0.01

100 > 1 1.65 · 10−27

250

PlotCorr

Precisions – no differences

Sensitivities

Methods Wilcoxon p-value

1 > none 0.00

100 > none 0.00

1 and 100 no difference

Specificities

Methods Wilcoxon p-value

none > 1 2.58 · 10−27

none > 100 0.00

100 > 1 8.20 · 10−17

MI

Precisions

Methods Wilcoxon p-value

none and 1 no difference
none > 100 0.01

1 > 100 0.01

Sensitivities

Methods Wilcoxon p-value

1 > none 0.00

100 > none 0.01

1 and 100 no difference

Specificities

Methods Wilcoxon p-value

1 > none 9.09 · 10−17

none and 100 no difference
1 > 100 4.41 · 10−11

251

Waddell – Kappa

Precisions – no differences

Sensitivities

Methods Wilcoxon p-value

1 > none 3.13 · 10−07

100 > none 4.09 · 10−05

1 and 100 no difference

Specificities

Methods Wilcoxon p-value

none > 1 7.89 · 10−22

none > 100 0.00

100 > 1 7.31 · 10−13

Waddell – MI

Precisions

Methods Wilcoxon p-value

none and 1 no difference
none > 100 0.00

1 and 100 no difference

Sensitivities

Methods Wilcoxon p-value

1 > none 0.02

100 > none 0.00

1 and 100 no difference

Specificities

Methods Wilcoxon p-value

none > 1 0.00

none > 100 0.00

1 and 100 no difference

252

A.9 Results by percentage of sites co-evolving p-
values

Here we present the p-values of the one-sided Wilcoxon signed-rank and
Sign tests for the results when examining the percentage of sites co-evolving.
If “no difference” is present in one column, then that means that no difference
was found between the groups for that test. If “no difference” is present in
both columns, then the initial one-sided test was not able to establish a differ-
ence between the two groups being compared. The values in the tables are set
to show 2 decimal places, so ‘0.00’ is likely to be a number not small enough
to be displayed as X · 10−Y.

A.9.1 Comparing co-evolution detection methods

In this section, we compare the performance of pairs of methods for each
percentage of sites co-evolving, for the “lower” and “higher” unique amino
acid thresholds.

“Lower” UAA threshold

0–5%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 0.00 0.00

MI > CAPS 6.81 · 10−95 4.85 · 10−174

Waddell – Kappa > CAPS 0.00 0.00

Waddell – MI > CAPS 2.09 · 10−05 1.28 · 10−08

PlotCorr > MI 0.00 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

3.77 · 10−244 0.00

PlotCorr > Waddell – MI 0.00 2.22 · 10−16

Waddell – Kappa > MI 0.00 0.00

MI > Waddell – MI 1.13 · 10−70 2.22 · 10−16

Waddell – Kappa > Wad-
dell – MI

0.00 1.11 · 10−16

253

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 3.37 · 10−83 5.35 · 10−62

CAPS and MI no difference no difference
CAPS > Waddell – Kappa no difference 0.00

Waddell – MI > CAPS 4.76 · 10−80 3.75 · 10−61

PlotCorr > MI 9.96 · 10−87 0.00

PlotCorr > Waddell –
Kappa

4.39 · 10−92 1.11 · 10−16

Waddell – MI > PlotCorr 4.11 · 10−05 9.12 · 10−07

MI and Waddell – Kappa no difference no difference
Waddell – MI > MI 2.95 · 10−87 3.71 · 10−87

Waddell – MI>Waddell –
Kappa

5.83 · 10−128 5.15 · 10−231

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 3.69 · 10−175 8.53 · 10−206

MI > CAPS 8.50 · 10−17 1.63 · 10−72

Waddell – Kappa > CAPS 0.00 1.95 · 10−220

CAPS > Waddell – MI 2.13 · 10−31 1.11 · 10−16

PlotCorr > MI 0.00 2.22 · 10−16

Waddell – Kappa > Plot-
Corr

0.00 0.00

PlotCorr > Waddell – MI 0.00 1.11 · 10−16

Waddell – Kappa > MI 0.00 0.00

MI > Waddell – MI 0.00 1.11 · 10−16

Waddell – Kappa > Wad-
dell – MI

0.00 1.11 · 10−16

254

5–10%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.04 · 10−134 1.33 · 10−225

MI > CAPS 6.10 · 10−40 3.81 · 10−49

Waddell – Kappa > CAPS 5.81 · 10−132 2.97 · 10−198

Waddell – MI > CAPS 0.01 2.07 · 10−05

PlotCorr > MI 2.44 · 10−135 0.00

Waddell – Kappa > Plot-
Corr

2.63 · 10−91 6.97 · 10−115

PlotCorr > Waddell – MI 3.36 · 10−129 0.00

Waddell – Kappa > MI 1.35 · 10−129 8.65 · 10−195

MI > Waddell – MI 1.44 · 10−26 5.26 · 10−10

Waddell – Kappa > Wad-
dell – MI

2.78 · 10−134 0.00

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.29 · 10−24 1.31 · 10−17

MI > CAPS no difference 0.02

CAPS > Waddell – Kappa no difference 1.31 · 10−10

Waddell – MI > CAPS 3.10 · 10−19 1.29 · 10−16

PlotCorr > MI 2.01 · 10−38 0.00

PlotCorr > Waddell –
Kappa

1.15 · 10−51 −2.22 · 10−16

Waddell – MI > PlotCorr no difference 6.75 · 10−06

MI > Waddell – Kappa no difference 0.00

Waddell – MI > MI 1.39 · 10−28 4.89 · 10−27

Waddell – MI>Waddell –
Kappa

3.47 · 10−61 4.26 · 10−109

255

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.23 · 10−65 5.15 · 10−96

MI > CAPS 6.62 · 10−22 1.48 · 10−38

Waddell – Kappa > CAPS 4.94 · 10−111 1.88 · 10−99

CAPS > Waddell – MI no difference 5.13 · 10−05

PlotCorr > MI 8.45 · 10−137 −2.22 · 10−16

Waddell – Kappa > Plot-
Corr

1.05 · 10−136 4.91 · 10−235

PlotCorr > Waddell – MI 5.80 · 10−132 0.00

Waddell – Kappa > MI 1.88 · 10−137 5.59 · 10−250

MI > Waddell – MI 1.06 · 10−88 0.00

Waddell – Kappa > Wad-
dell – MI

3.99 · 10−137 0.00

10–15%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.66 · 10−88 3.10 · 10−138

MI > CAPS 6.28 · 10−25 1.36 · 10−26

Waddell – Kappa > CAPS 2.21 · 10−87 4.82 · 10−130

Waddell – MI > CAPS 0.00 7.55 · 10−05

PlotCorr > MI 6.24 · 10−88 0.00

Waddell – Kappa > Plot-
Corr

9.16 · 10−54 6.97 · 10−61

PlotCorr > Waddell – MI 3.22 · 10−83 0.00

Waddell – Kappa > MI 1.79 · 10−86 9.83 · 10−120

MI > Waddell – MI 6.11 · 10−11 0.00

Waddell – Kappa > Wad-
dell – MI

9.37 · 10−89 0.00

256

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.45 · 10−15 5.31 · 10−14

CAPS and MI no difference no difference
CAPS > Waddell – Kappa 9.08 · 10−07 0.00

CAPS and Waddell – MI no difference no difference
PlotCorr > MI 2.04 · 10−29 0.00

PlotCorr > Waddell –
Kappa

2.41 · 10−40 0.00

PlotCorr > Waddell – MI 1.17 · 10−06 0.01

MI > Waddell – Kappa no difference 5.54 · 10−05

Waddell – MI > MI 7.98 · 10−13 3.79 · 10−09

Waddell – MI>Waddell –
Kappa

5.05 · 10−38 1.19 · 10−66

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.13 · 10−64 2.07 · 10−84

MI > CAPS 2.03 · 10−29 5.41 · 10−49

Waddell – Kappa > CAPS 1.84 · 10−80 3.61 · 10−88

Waddell – MI > CAPS 1.87 · 10−07 0.00

PlotCorr > MI 1.78 · 10−89 0.00

Waddell – Kappa > Plot-
Corr

2.51 · 10−88 1.80 · 10−137

PlotCorr > Waddell – MI 1.07 · 10−83 0.00

Waddell – Kappa > MI 8.40 · 10−90 4.45 · 10−162

MI > Waddell – MI 2.79 · 10−48 0.00

Waddell – Kappa > Wad-
dell – MI

8.40 · 10−90 0.00

257

15–20%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.76 · 10−72 2.41 · 10−123

MI > CAPS 1.68 · 10−06 2.23 · 10−06

Waddell – Kappa > CAPS 4.40 · 10−72 2.21 · 10−119

Waddell – MI > CAPS 8.30 · 10−21 5.85 · 10−29

PlotCorr > MI 2.52 · 10−72 0.00

Waddell – Kappa > Plot-
Corr

4.72 · 10−57 8.70 · 10−73

PlotCorr > Waddell – MI 2.76 · 10−69 −2.22 · 10−16

Waddell – Kappa > MI 9.30 · 10−72 9.57 · 10−116

Waddell – MI > MI 1.27 · 10−05 2.61 · 10−11

Waddell – Kappa > Wad-
dell – MI

7.00 · 10−72 0.00

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.96 · 10−20 3.51 · 10−20

CAPS > MI 1.92 · 10−14 1.25 · 10−08

CAPS > Waddell – Kappa no difference 0.01

Waddell – MI > CAPS 8.72 · 10−07 5.30 · 10−07

PlotCorr > MI 8.61 · 10−41 0.00

PlotCorr > Waddell –
Kappa

4.86 · 10−24 0.00

PlotCorr and Waddell –
MI

no difference no difference

Waddell – Kappa > MI 1.13 · 10−10 3.60 · 10−05

Waddell – MI > MI 3.29 · 10−25 4.15 · 10−23

Waddell – MI>Waddell –
Kappa

5.68 · 10−30 6.68 · 10−52

258

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.20 · 10−64 8.22 · 10−78

MI > CAPS 7.62 · 10−29 2.15 · 10−48

Waddell – Kappa > CAPS 1.99 · 10−70 5.58 · 10−81

Waddell – MI > CAPS 7.78 · 10−16 8.34 · 10−15

PlotCorr > MI 1.72 · 10−72 −2.22 · 10−16

Waddell – Kappa > Plot-
Corr

2.50 · 10−72 4.78 · 10−123

PlotCorr > Waddell – MI 1.01 · 10−70 0.00

Waddell – Kappa > MI 1.18 · 10−72 1.80 · 10−130

MI > Waddell – MI 5.84 · 10−41 0.00

Waddell – Kappa > Wad-
dell – MI

2.50 · 10−72 0.00

20–25%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 4.22 · 10−36 1.22 · 10−58

MI > CAPS 3.00 · 10−09 6.37 · 10−09

Waddell – Kappa > CAPS 5.58 · 10−37 1.73 · 10−60

Waddell – MI > CAPS 1.29 · 10−22 2.47 · 10−33

PlotCorr > MI 7.92 · 10−37 0.00

Waddell – Kappa > Plot-
Corr

3.01 · 10−35 1.20 · 10−46

PlotCorr > Waddell – MI 1.31 · 10−35 0.00

Waddell – Kappa > MI 8.50 · 10−37 2.41 · 10−58

Waddell – MI > MI 1.77 · 10−05 1.04 · 10−08

Waddell – Kappa > Wad-
dell – MI

3.99 · 10−37 0.00

259

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.05 · 10−14 2.77 · 10−12

CAPS and MI no difference no difference
CAPS and Waddell –
Kappa

no difference no difference

Waddell – MI > CAPS 1.02 · 10−15 5.23 · 10−14

PlotCorr > MI 1.54 · 10−20 5.88 · 10−15

PlotCorr > Waddell –
Kappa

1.11 · 10−16 1.35 · 10−13

Waddell – MI > PlotCorr 2.28 · 10−05 4.48 · 10−06

Waddell – Kappa > MI 3.17 · 10−06 0.02

Waddell – MI > MI 1.23 · 10−21 9.79 · 10−20

Waddell – MI>Waddell –
Kappa

9.96 · 10−24 1.84 · 10−40

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 5.67 · 10−29 8.80 · 10−25

MI > CAPS 2.04 · 10−05 1.13 · 10−13

Waddell – Kappa > CAPS 2.38 · 10−33 1.70 · 10−25

Waddell – MI > CAPS no difference 0.02

PlotCorr > MI 3.67 · 10−37 0.00

Waddell – Kappa > Plot-
Corr

3.88 · 10−37 8.74 · 10−61

PlotCorr > Waddell – MI 1.49 · 10−36 0.00

Waddell – Kappa > MI 3.67 · 10−37 3.80 · 10−65

MI > Waddell – MI 2.08 · 10−29 0.00

Waddell – Kappa > Wad-
dell – MI

3.67 · 10−37 0.00

260

25–30%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.72 · 10−75 1.55 · 10−133

MI > CAPS 1.93 · 10−10 5.22 · 10−17

Waddell – Kappa > CAPS 1.11 · 10−74 5.90 · 10−122

Waddell – MI > CAPS 3.49 · 10−20 1.78 · 10−24

PlotCorr > MI 4.10 · 10−75 0.00

Waddell – Kappa > Plot-
Corr

9.07 · 10−33 5.89 · 10−29

PlotCorr > Waddell – MI 2.77 · 10−75 0.00

Waddell – Kappa > MI 1.20 · 10−71 6.72 · 10−105

MI and Waddell – MI no difference no difference
Waddell – Kappa > Wad-
dell – MI

6.63 · 10−72 0.00

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 3.28 · 10−44 6.50 · 10−54

MI > CAPS no difference 0.00

CAPS > Waddell – Kappa 7.11 · 10−07 1.34 · 10−05

CAPS and Waddell – MI no difference no difference
PlotCorr > MI 5.60 · 10−21 2.26 · 10−10

PlotCorr > Waddell –
Kappa

1.58 · 10−66 −2.22 · 10−16

PlotCorr > Waddell – MI 2.41 · 10−19 4.54 · 10−08

MI > Waddell – Kappa 1.32 · 10−09 1.28 · 10−05

Waddell – MI > MI 0.00 0.00

Waddell – MI>Waddell –
Kappa

1.09 · 10−36 3.04 · 10−64

261

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 8.12 · 10−57 1.63 · 10−30

MI > CAPS no difference 8.03 · 10−06

Waddell – Kappa > CAPS 5.71 · 10−62 1.61 · 10−42

CAPS and Waddell – MI no difference no difference
PlotCorr > MI 9.28 · 10−76 0.00

Waddell – Kappa > Plot-
Corr

2.49 · 10−73 6.38 · 10−114

PlotCorr > Waddell – MI 3.00 · 10−73 0.00

Waddell – Kappa > MI 9.28 · 10−76 3.44 · 10−136

MI > Waddell – MI 7.47 · 10−35 0.00

Waddell – Kappa > Wad-
dell – MI

4.18 · 10−75 0.00

30–35%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 6.19 · 10−18 6.31 · 10−30

MI > CAPS 1.02 · 10−12 1.04 · 10−13

Waddell – Kappa > CAPS 6.18 · 10−18 6.31 · 10−30

Waddell – MI > CAPS 4.24 · 10−13 9.16 · 10−15

PlotCorr > MI 7.94 · 10−18 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

2.34 · 10−17 3.00 · 10−26

PlotCorr > Waddell – MI 1.08 · 10−17 1.11 · 10−16

Waddell – Kappa > MI 6.19 · 10−18 6.31 · 10−30

Waddell – MI > MI 0.01 0.00

Waddell – Kappa > Wad-
dell – MI

6.38 · 10−18 1.11 · 10−16

262

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 9.01 · 10−13 2.74 · 10−11

MI > CAPS 1.80 · 10−05 0.00

CAPS and Waddell –
Kappa

no difference no difference

Waddell – MI > CAPS 1.13 · 10−09 0.00

PlotCorr > MI 4.88 · 10−12 2.83 · 10−07

PlotCorr > Waddell –
Kappa

2.19 · 10−08 4.31 · 10−09

PlotCorr and Waddell –
MI

no difference no difference

MI and Waddell – Kappa no difference no difference
Waddell – MI > MI 1.87 · 10−10 2.47 · 10−06

Waddell – MI>Waddell –
Kappa

6.72 · 10−14 2.12 · 10−22

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.47 · 10−08 0.00

CAPS and MI no difference no difference
Waddell – Kappa > CAPS 1.26 · 10−10 0.00

CAPS and Waddell – MI no difference no difference
PlotCorr > MI 6.58 · 10−18 1.11 · 10−16

Waddell – Kappa > Plot-
Corr

6.37 · 10−18 6.18 · 10−28

PlotCorr > Waddell – MI 1.72 · 10−17 1.11 · 10−16

Waddell – Kappa > MI 6.18 · 10−18 6.31 · 10−30

MI > Waddell – MI 8.78 · 10−13 5.77 · 10−10

Waddell – Kappa > Wad-
dell – MI

6.18 · 10−18 1.11 · 10−16

263

>35%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.78 · 10−15 1.78 · 10−15

MI > CAPS 1.78 · 10−15 1.78 · 10−15

Waddell – Kappa > CAPS 1.78 · 10−15 1.78 · 10−15

Waddell – MI > CAPS 1.78 · 10−15 1.78 · 10−15

PlotCorr > MI 1.78 · 10−15 1.67 · 10−15

Waddell – Kappa > Plot-
Corr

1.78 · 10−15 1.78 · 10−15

PlotCorr > Waddell – MI 6.88 · 10−09 2.86 · 10−08

Waddell – Kappa > MI 1.78 · 10−15 1.78 · 10−15

Waddell – MI > MI 8.06 · 10−11 2.18 · 10−12

Waddell – Kappa > Wad-
dell – MI

1.78 · 10−15 1.67 · 10−15

Sensitivities

Methods Wilcoxon p-value Sign p-value

CAPS and PlotCorr no difference no difference
CAPS and MI no difference no difference
CAPS > Waddell – Kappa no difference 0.00

CAPS and Waddell – MI no difference no difference
PlotCorr and MI no difference no difference
PlotCorr > Waddell –
Kappa

3.07 · 10−06 1.92 · 10−05

PlotCorr and Waddell –
MI

no difference no difference

MI > Waddell – Kappa no difference 0.02

MI and Waddell – MI no difference no difference
Waddell – MI>Waddell –
Kappa

3.94 · 10−09 5.68 · 10−14

264

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.36 · 10−08 4.63 · 10−06

MI > CAPS 0.01 4.63 · 10−06

Waddell – Kappa > CAPS 2.99 · 10−11 4.63 · 10−06

Waddell – MI > CAPS 0.01 4.63 · 10−06

PlotCorr > MI 1.78 · 10−15 1.67 · 10−15

Waddell – Kappa > Plot-
Corr

1.78 · 10−15 1.78 · 10−15

PlotCorr > Waddell – MI 2.52 · 10−10 2.86 · 10−08

Waddell – Kappa > MI 1.78 · 10−15 1.78 · 10−15

Waddell – MI > MI 0.01 0.00

Waddell – Kappa > Wad-
dell – MI

1.78 · 10−15 1.67 · 10−15

“Higher” UAA threshold

0–5%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.76 · 10−71 7.39 · 10−116

MI > CAPS 6.13 · 10−79 2.72 · 10−137

Waddell – Kappa > CAPS 3.08 · 10−76 2.94 · 10−123

Waddell – MI > CAPS 6.63 · 10−82 2.59 · 10−134

PlotCorr > MI 8.84 · 10−62 −2.22 · 10−16

Waddell – Kappa > Plot-
Corr

5.63 · 10−72 2.13 · 10−113

Waddell – MI > PlotCorr 4.59 · 10−80 1.66 · 10−127

Waddell – Kappa > MI 7.03 · 10−69 4.29 · 10−98

Waddell – MI > MI 1.89 · 10−80 1.57 · 10−125

Waddell – Kappa > Wad-
dell – MI

1.01 · 10−26 0.00

265

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 8.66 · 10−31 2.26 · 10−25

MI > CAPS 3.68 · 10−56 3.03 · 10−75

Waddell – Kappa > CAPS 1.27 · 10−34 4.79 · 10−28

Waddell – MI > CAPS 7.45 · 10−42 2.51 · 10−34

MI > PlotCorr 1.09 · 10−25 6.23 · 10−43

PlotCorr and Waddell –
Kappa

no difference no difference

Waddell – MI > PlotCorr 1.46 · 10−05 5.81 · 10−05

MI > Waddell – Kappa 8.16 · 10−19 0.00

MI > Waddell – MI 4.12 · 10−12 −2.22 · 10−16

Waddell – MI>Waddell –
Kappa

1.72 · 10−11 5.95 · 10−14

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.10 · 10−32 0.00

CAPS and MI no difference no difference
Waddell – Kappa > CAPS 1.19 · 10−39 0.00

Waddell – MI > CAPS 2.04 · 10−39 0.00

PlotCorr > MI 3.44 · 10−95 0.00

Waddell – Kappa > Plot-
Corr

3.44 · 10−95 5.18 · 10−172

Waddell – MI > PlotCorr 5.45 · 10−95 3.16 · 10−164

Waddell – Kappa > MI 3.44 · 10−95 5.18 · 10−172

Waddell – MI > MI 3.44 · 10−95 5.18 · 10−172

Waddell – Kappa > Wad-
dell – MI

1.02 · 10−62 0.00

266

5–10%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.32 · 10−17 2.52 · 10−29

MI > CAPS 2.74 · 10−17 8.40 · 10−23

Waddell – Kappa > CAPS 1.93 · 10−17 5.05 · 10−29

Waddell – MI > CAPS 1.93 · 10−17 5.05 · 10−29

PlotCorr > MI 2.06 · 10−15 0.00

Waddell – Kappa > Plot-
Corr

3.53 · 10−17 1.15 · 10−25

Waddell – MI > PlotCorr 1.57 · 10−16 3.61 · 10−24

Waddell – Kappa > MI 2.62 · 10−17 1.86 · 10−24

Waddell – MI > MI 2.24 · 10−17 1.86 · 10−24

Waddell – Kappa > Wad-
dell – MI

0.00 0.00

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 1.16 · 10−10 7.07 · 10−09

MI > CAPS 7.48 · 10−14 3.05 · 10−20

Waddell – Kappa > CAPS 1.12 · 10−09 5.21 · 10−07

Waddell – MI > CAPS 3.75 · 10−11 1.15 · 10−08

MI > PlotCorr 8.71 · 10−09 5.89 · 10−13

PlotCorr and Waddell –
Kappa

no difference no difference

PlotCorr and Waddell –
MI

no difference no difference

MI > Waddell – Kappa 9.20 · 10−08 1.85 · 10−11

MI > Waddell – MI 5.02 · 10−06 5.24 · 10−09

Waddell – MI>Waddell –
Kappa

0.00 3.05 · 10−05

267

Specificities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.89 · 10−09 0.01

CAPS and MI no difference no difference
Waddell – Kappa > CAPS 6.33 · 10−10 0.01

Waddell – MI > CAPS 6.33 · 10−10 0.01

PlotCorr > MI 9.33 · 10−18 0.00

Waddell – Kappa > Plot-
Corr

9.03 · 10−18 1.26 · 10−29

Waddell – MI > PlotCorr 9.63 · 10−18 1.22 · 10−27

Waddell – Kappa > MI 9.04 · 10−18 1.26 · 10−29

Waddell – MI > MI 9.04 · 10−18 1.26 · 10−29

Waddell – Kappa > Wad-
dell – MI

6.51 · 10−06 7.31 · 10−08

10–15%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.73 · 10−08 1.82 · 10−12

MI > CAPS 4.66 · 10−07 7.28 · 10−11

Waddell – Kappa > CAPS 4.35 · 10−08 1.42 · 10−09

Waddell – MI > CAPS 4.02 · 10−08 7.28 · 10−11

PlotCorr > MI 1.82 · 10−12 1.82 · 10−12

Waddell – Kappa > Plot-
Corr

1.84 · 10−06 1.80 · 10−08

Waddell – MI > PlotCorr 7.81 · 10−07 1.21 · 10−06

Waddell – Kappa > MI 3.77 · 10−10 7.28 · 10−11

Waddell – MI > MI 1.82 · 10−12 1.82 · 10−12

Waddell – Kappa and
Waddell – MI

no difference no difference

268

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 6.36 · 10−06 0.00

MI > CAPS 6.74 · 10−07 1.86 · 10−09

Waddell – Kappa > CAPS 0.00 0.01

Waddell – MI > CAPS 6.97 · 10−05 0.00

MI > PlotCorr 0.00 3.30 · 10−05

PlotCorr and Waddell –
Kappa

no difference no difference

PlotCorr and Waddell –
MI

no difference no difference

MI > Waddell – Kappa 2.69 · 10−05 7.75 · 10−07

MI > Waddell – MI 0.00 0.00

Waddell – MI>Waddell –
Kappa

0.04 0.02

Specificities

Methods Wilcoxon p-value Sign p-value

CAPS and PlotCorr no difference no difference
CAPS and MI no difference no difference
CAPS and Waddell –
Kappa

no difference no difference

CAPS and Waddell – MI no difference no difference
PlotCorr > MI 2.73 · 10−08 1.82 · 10−12

Waddell – Kappa > Plot-
Corr

2.73 · 10−08 1.82 · 10−12

Waddell – MI > PlotCorr 2.95 · 10−08 7.28 · 10−11

Waddell – Kappa > MI 2.73 · 10−08 1.82 · 10−12

Waddell – MI > MI 2.73 · 10−08 1.82 · 10−12

Waddell – Kappa and
Waddell – MI

no difference no difference

269

>15%

Precisions

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 5.69 · 10−11 2.78 · 10−17

MI > CAPS 2.74 · 10−10 7.71 · 10−13

Waddell – Kappa > CAPS 5.69 · 10−11 2.78 · 10−17

Waddell – MI > CAPS 5.69 · 10−11 2.78 · 10−17

PlotCorr > MI 5.69 · 10−11 −2.22 · 10−16

Waddell – Kappa > Plot-
Corr

8.41 · 10−07 4.03 · 10−08

Waddell – MI > PlotCorr 0.01 0.00

Waddell – Kappa > MI 5.69 · 10−11 2.78 · 10−17

Waddell – MI > MI 1.52 · 10−10 4.28 · 10−14

Waddell – Kappa > Wad-
dell – MI

3.34 · 10−06 9.90 · 10−05

Sensitivities

Methods Wilcoxon p-value Sign p-value

PlotCorr > CAPS 2.99 · 10−09 6.10 · 10−07

MI > CAPS 8.96 · 10−11 1.11 · 10−16

Waddell – Kappa > CAPS 0.01 0.00

Waddell – MI > CAPS 0.01 0.00

MI > PlotCorr 4.21 · 10−09 2.56 · 10−12

PlotCorr > Waddell –
Kappa

3.11 · 10−08 3.53 · 10−11

PlotCorr > Waddell – MI 7.17 · 10−08 1.18 · 10−07

MI > Waddell – Kappa 1.78 · 10−10 5.55 · 10−16

MI > Waddell – MI 1.79 · 10−10 5.55 · 10−16

Waddell – Kappa and
Waddell – MI

no difference no difference

270

Specificities

Methods Wilcoxon p-value Sign p-value

CAPS and PlotCorr no difference no difference
CAPS > MI 9.47 · 10−05 0.00

CAPS and Waddell –
Kappa

no difference no difference

CAPS and Waddell – MI no difference no difference
PlotCorr > MI 5.69 · 10−11 −2.22 · 10−16

Waddell – Kappa > Plot-
Corr

5.69 · 10−11 2.78 · 10−17

Waddell – MI > PlotCorr 2.22 · 10−10 7.71 · 10−13

Waddell – Kappa > MI 5.69 · 10−11 2.78 · 10−17

Waddell – MI > MI 5.69 · 10−11 2.78 · 10−17

Waddell – Kappa > Wad-
dell – MI

1.13 · 10−05 2.85 · 10−05

A.9.2 Comparing percentages of sites co-evolving

In this section, we compare the performance of each method for different
percentages of sites co-evolving, for the “lower” and “higher” unique amino
acid thresholds.

271

“Lower” UAA threshold

CAPS

Precisions

Methods Wilcoxon p-value

10 > 5 1.06 · 10−110

15 > 5 3.93 · 10−124

20 > 5 9.19 · 10−101

25 > 5 9.58 · 10−44

30 > 5 1.11 · 10−84

35 > 5 4.06 · 10−08

greater than 35 > 5 9.04 · 10−15

15 > 10 1.76 · 10−13

20 > 10 1.77 · 10−05

25 > 10 0.00

30 > 10 3.70 · 10−36

10 and 35 no difference
greater than 35 > 10 1.01 · 10−05

15 > 20 0.01

15 and 25 no difference
30 > 15 1.41 · 10−15

15 > 35 0.00

15 and greater than 35 no difference
20 and 25 no difference
20 and 35 no difference

greater than 35 > 20 0.02

30 > 25 2.61 · 10−10

25 and 35 no difference
25 and greater than 35 no difference

30 > 35 2.73 · 10−10

30 > greater than 35 0.00

greater than 35 > 35 0.01

272

Sensitivities

Methods Wilcoxon p-value

5 and 10 no difference
5 and 15 no difference
5 > 20 3.87 · 10−12

5 > 25 9.58 · 10−19

5 > 30 1.53 · 10−19

5 > 35 1.89 · 10−17

5 > greater than 35 1.70 · 10−08

10 and 15 no difference
10 > 20 2.57 · 10−13

10 > 25 2.88 · 10−21

10 > 30 4.40 · 10−20

10 > 35 9.05 · 10−19

10 > greater than 35 1.95 · 10−09

15 > 20 2.70 · 10−11

15 > 25 3.98 · 10−19

15 > 30 6.38 · 10−18

15 > 35 4.05 · 10−17

15 > greater than 35 1.11 · 10−07

20 > 25 8.77 · 10−05

20 > 30 0.00

20 > 35 5.13 · 10−06

20 and greater than 35 no difference
25 and 30 no difference
25 and 35 no difference

25 and greater than 35 no difference
30 > 35 0.01

30 and greater than 35 no difference
35 and greater than 35 no difference

273

Specificities

Methods Wilcoxon p-value

5 > 10 0.00

5 > 15 8.12 · 10−15

5 > 20 1.26 · 10−54

5 > 25 1.40 · 10−15

5 > 30 9.09 · 10−18

5 and 35 no difference
5 > greater than 35 0.00

10 > 15 5.08 · 10−06

10 > 20 6.19 · 10−30

10 > 25 9.59 · 10−09

10 > 30 6.00 · 10−07

10 and 35 no difference
10 > greater than 35 0.00

15 > 20 3.44 · 10−13

15 > 25 0.00

15 and 30 no difference
35 > 15 0.00

15 and greater than 35 no difference
25 > 20 0.01

30 > 20 1.78 · 10−14

35 > 20 1.29 · 10−11

greater than 35 > 20 0.00

30 > 25 0.00

35 > 25 7.13 · 10−06

greater than 35 > 25 0.02

35 > 30 0.00

30 and greater than 35 no difference
35 and greater than 35 no difference

274

PlotCorr

Precisions

Methods Wilcoxon p-value

10 > 5 1.17 · 10−213

15 > 5 2.85 · 10−205

20 > 5 9.26 · 10−200

25 > 5 1.50 · 10−111

30 > 5 8.12 · 10−248

35 > 5 9.80 · 10−60

greater than 35 > 5 5.73 · 10−32

15 > 10 4.57 · 10−28

20 > 10 1.18 · 10−35

25 > 10 6.53 · 10−45

30 > 10 3.75 · 10−158

35 > 10 2.52 · 10−28

greater than 35 > 10 2.53 · 10−15

15 and 20 no difference
25 > 15 1.80 · 10−09

30 > 15 1.55 · 10−96

35 > 15 5.11 · 10−05

greater than 35 > 15 0.00

25 > 20 2.99 · 10−09

30 > 20 9.72 · 10−96

35 > 20 1.70 · 10−05

greater than 35 > 20 0.00

30 > 25 7.41 · 10−45

25 and 35 no difference
25 and greater than 35 no difference

30 > 35 4.48 · 10−23

30 > greater than 35 3.25 · 10−15

35 and greater than 35 no difference

275

Sensitivities

Methods Wilcoxon p-value

5 > 10 0.00

5 > 15 0.00

5 > 20 4.20 · 10−25

5 > 25 1.58 · 10−29

5 > 30 6.70 · 10−20

5 > 35 3.86 · 10−14

5 > greater than 35 2.36 · 10−20

10 and 15 no difference
10 > 20 2.53 · 10−13

10 > 25 3.92 · 10−20

10 > 30 7.77 · 10−10

10 > 35 3.72 · 10−09

10 > greater than 35 1.38 · 10−14

15 > 20 5.19 · 10−11

15 > 25 1.29 · 10−17

15 > 30 6.21 · 10−08

15 > 35 3.09 · 10−08

15 > greater than 35 5.61 · 10−13

20 > 25 0.00

20 and 30 no difference
20 and 35 no difference

20 > greater than 35 0.01

30 > 25 1.57 · 10−06

35 > 25 0.00

25 and greater than 35 no difference
30 and 35 no difference

30 > greater than 35 0.00

35 > greater than 35 0.01

276

Specificities

Methods Wilcoxon p-value

5 and 10 no difference
5 > 15 0.01

5 > 20 1.66 · 10−13

5 and 25 no difference
30 > 5 7.50 · 10−62

35 > 5 0.02

5 and greater than 35 no difference
10 and 15 no difference
10 > 20 2.77 · 10−07

10 and 25 no difference
30 > 10 6.67 · 10−44

10 and 35 no difference
10 and greater than 35 no difference

15 > 20 0.00

15 and 25 no difference
30 > 15 4.56 · 10−34

35 > 15 0.01

15 and greater than 35 no difference
25 > 20 6.44 · 10−07

30 > 20 1.52 · 10−59

35 > 20 1.58 · 10−07

greater than 35 > 20 0.01

30 > 25 7.03 · 10−22

25 and 35 no difference
25 and greater than 35 no difference

30 > 35 1.96 · 10−11

30 > greater than 35 4.07 · 10−11

35 and greater than 35 no difference

277

MI

Precisions

Methods Wilcoxon p-value

10 > 5 2.91 · 10−127

15 > 5 3.02 · 10−99

20 > 5 3.96 · 10−68

25 > 5 5.48 · 10−64

30 > 5 3.46 · 10−71

35 > 5 2.56 · 10−46

greater than 35 > 5 1.35 · 10−28

15 > 10 3.81 · 10−07

10 and 20 no difference
25 > 10 6.22 · 10−05

30 > 10 2.49 · 10−22

35 > 10 5.01 · 10−06

greater than 35 > 10 4.65 · 10−11

15 > 20 0.00

15 and 25 no difference
30 > 15 6.79 · 10−11

15 and 35 no difference
greater than 35 > 15 0.00

25 > 20 0.00

30 > 20 1.20 · 10−18

35 > 20 2.16 · 10−07

greater than 35 > 20 1.20 · 10−08

30 > 25 8.07 · 10−06

35 > 25 0.02

greater than 35 > 25 0.00

30 > 35 0.02

30 and greater than 35 no difference
greater than 35 > 35 0.01

278

Sensitivities

Methods Wilcoxon p-value

5 and 10 no difference
5 and 15 no difference
5 > 20 2.15 · 10−26

5 > 25 1.82 · 10−20

5 > 30 3.81 · 10−15

5 > 35 1.74 · 10−06

5 > greater than 35 3.85 · 10−05

10 and 15 no difference
10 > 20 6.11 · 10−23

10 > 25 4.80 · 10−20

10 > 30 6.88 · 10−12

10 > 35 9.13 · 10−06

10 > greater than 35 0.00

15 > 20 4.71 · 10−14

15 > 25 3.75 · 10−13

15 > 30 1.33 · 10−06

15 > 35 0.00

15 > greater than 35 0.01

20 and 25 no difference
30 > 20 0.01

35 > 20 0.00

greater than 35 > 20 0.00

30 > 25 0.00

35 > 25 4.55 · 10−05

greater than 35 > 25 4.88 · 10−06

30 and 35 no difference
30 and greater than 35 no difference
greater than 35 > 35 0.02

279

Specificities

Methods Wilcoxon p-value

10 > 5 0.00

5 and 15 no difference
5 > 20 2.04 · 10−22

5 > 25 2.81 · 10−13

5 > 30 4.24 · 10−22

5 > 35 0.00

5 and greater than 35 no difference
10 > 15 0.02

10 > 20 6.32 · 10−26

10 > 25 7.18 · 10−17

10 > 30 1.74 · 10−25

10 > 35 1.56 · 10−06

10 and greater than 35 no difference
15 > 20 5.22 · 10−16

15 > 25 1.02 · 10−12

15 > 30 1.26 · 10−13

15 > 35 6.46 · 10−05

15 and greater than 35 no difference
20 and 25 no difference
20 and 30 no difference
20 and 35 no difference

greater than 35 > 20 5.28 · 10−09

30 > 25 0.00

25 and 35 no difference
greater than 35 > 25 4.20 · 10−08

30 and 35 no difference
greater than 35 > 30 1.59 · 10−08

greater than 35 > 35 0.00

280

Waddell – Kappa

Precisions

Methods Wilcoxon p-value

10 > 5 5.14 · 10−202

15 > 5 4.00 · 10−208

20 > 5 1.65 · 10−209

25 > 5 1.37 · 10−115

30 > 5 9.18 · 10−234

35 > 5 3.88 · 10−61

greater than 35 > 5 2.15 · 10−32

15 > 10 6.83 · 10−35

20 > 10 2.21 · 10−61

25 > 10 7.08 · 10−61

30 > 10 6.07 · 10−155

35 > 10 1.56 · 10−39

greater than 35 > 10 4.09 · 10−19

20 > 15 1.96 · 10−05

25 > 15 9.46 · 10−20

30 > 15 2.64 · 10−96

35 > 15 4.26 · 10−15

greater than 35 > 15 5.06 · 10−05

25 > 20 3.82 · 10−12

30 > 20 8.29 · 10−80

35 > 20 9.65 · 10−10

greater than 35 > 20 0.01

30 > 25 7.59 · 10−30

25 and 35 no difference
25 > greater than 35 0.00

30 > 35 5.73 · 10−17

30 > greater than 35 8.43 · 10−13

35 > greater than 35 0.00

281

Sensitivities

Methods Wilcoxon p-value

5 > 10 8.61 · 10−06

5 > 15 2.07 · 10−13

5 > 20 6.20 · 10−19

5 > 25 4.91 · 10−14

5 > 30 2.52 · 10−77

5 > 35 3.79 · 10−05

5 > greater than 35 0.00

10 > 15 7.19 · 10−05

10 > 20 2.12 · 10−10

10 > 25 3.38 · 10−09

10 > 30 1.97 · 10−73

10 and 35 no difference
10 and greater than 35 no difference

15 > 20 0.01

15 > 25 0.00

15 > 30 4.45 · 10−43

35 > 15 0.02

greater than 35 > 15 0.02

20 and 25 no difference
20 > 30 8.86 · 10−29

35 > 20 4.61 · 10−05

greater than 35 > 20 0.00

25 > 30 4.12 · 10−12

35 > 25 5.72 · 10−05

greater than 35 > 25 0.00

35 > 30 5.53 · 10−30

greater than 35 > 30 2.62 · 10−19

35 and greater than 35 no difference

282

Specificities

Methods Wilcoxon p-value

5 and 10 no difference
5 and 15 no difference
20 > 5 0.00

25 > 5 4.17 · 10−21

30 > 5 2.13 · 10−82

35 > 5 2.18 · 10−13

5 and greater than 35 no difference
10 and 15 no difference
20 > 10 0.00

25 > 10 7.44 · 10−19

30 > 10 8.47 · 10−64

35 > 10 5.04 · 10−13

10 and greater than 35 no difference
15 and 20 no difference
25 > 15 5.05 · 10−12

30 > 15 1.83 · 10−45

35 > 15 4.37 · 10−09

15 and greater than 35 no difference
25 > 20 1.67 · 10−10

30 > 20 1.24 · 10−41

35 > 20 2.63 · 10−09

20 and greater than 35 no difference
30 > 25 6.29 · 10−11

25 and 35 no difference
25 > greater than 35 2.27 · 10−05

30 > 35 1.48 · 10−05

30 > greater than 35 1.81 · 10−09

35 > greater than 35 2.96 · 10−05

283

Waddell – MI

Precisions

Methods Wilcoxon p-value

10 > 5 5.64 · 10−210

15 > 5 2.69 · 10−205

20 > 5 1.46 · 10−191

25 > 5 1 0.00 · 10−111

30 > 5 9.16 · 10−245

35 > 5 6.65 · 10−57

greater than 35 > 5 8.26 · 10−32

15 > 10 2.10 · 10−23

20 > 10 2.16 · 10−22

25 > 10 2.80 · 10−27

30 > 10 1.96 · 10−130

35 > 10 6.67 · 10−15

greater than 35 > 10 6.44 · 10−18

15 and 20 no difference
25 > 15 0.00

30 > 15 2.91 · 10−69

15 and 35 no difference
greater than 35 > 15 6.52 · 10−08

25 > 20 1.31 · 10−06

30 > 20 5.12 · 10−78

35 > 20 0.00

greater than 35 > 20 7.61 · 10−10

30 > 25 1.44 · 10−27

25 and 35 no difference
greater than 35 > 25 0.00

30 > 35 3.42 · 10−14

30 > greater than 35 2.44 · 10−06

greater than 35 > 35 0.00

284

Sensitivities

Methods Wilcoxon p-value

5 > 10 0.00

5 > 15 3.16 · 10−18

5 > 20 1.50 · 10−55

5 > 25 2.93 · 10−26

5 > 30 7.16 · 10−122

5 > 35 3.82 · 10−10

5 > greater than 35 3.78 · 10−25

10 > 15 7.84 · 10−07

10 > 20 2.70 · 10−29

10 > 25 6.53 · 10−15

10 > 30 2.83 · 10−70

10 > 35 3.80 · 10−05

10 > greater than 35 3.20 · 10−16

15 > 20 5.49 · 10−08

15 > 25 0.00

15 > 30 6.00 · 10−30

15 and 35 no difference
15 > greater than 35 4.13 · 10−05

20 and 25 no difference
20 > 30 3.56 · 10−10

35 > 20 2.73 · 10−06

20 and greater than 35 no difference
25 > 30 4.97 · 10−12

35 > 25 0.00

25 and greater than 35 no difference
35 > 30 1.53 · 10−17

greater than 35 > 30 8.59 · 10−06

35 > greater than 35 1.31 · 10−05

285

Specificities

Methods Wilcoxon p-value

10 > 5 8.18 · 10−07

15 > 5 0.00

5 > 20 1.61 · 10−07

5 > 25 2.58 · 10−08

5 > 30 4.74 · 10−10

5 > 35 0.00

greater than 35 > 5 1.34 · 10−08

10 and 15 no difference
10 > 20 6.24 · 10−16

10 > 25 8.45 · 10−16

10 > 30 1.48 · 10−19

10 > 35 8.82 · 10−08

greater than 35 > 10 1.43 · 10−06

15 > 20 5.41 · 10−13

15 > 25 6.40 · 10−15

15 > 30 3.40 · 10−16

15 > 35 1.01 · 10−07

greater than 35 > 15 2.69 · 10−05

20 > 25 0.00

20 and 30 no difference
20 > 35 0.01

greater than 35 > 20 1.15 · 10−11

25 and 30 no difference
25 and 35 no difference

greater than 35 > 25 7.03 · 10−12

30 and 35 no difference
greater than 35 > 30 1.47 · 10−12

greater than 35 > 35 4.83 · 10−07

286

“Upper” UAA threshold

CAPS

Precisions

Methods Wilcoxon p-value

10 > 5 1.88 · 10−05

15 > 5 0.01

greater than 15 > 5 0.00

10 and 15 no difference
greater than 15 > 10 0.02

15 and greater than 15 no difference

Sensitivities

Methods Wilcoxon p-value

5 and 10 no difference
5 and 15 no difference

5 > greater than 15 0.00

10 and 15 no difference
10 > greater than 15 0.01

15 and greater than 15 no difference

Specificities

Methods Wilcoxon p-value

5 and 10 no difference
5 and 15 no difference

greater than 15 > 5 0.01

10 and 15 no difference
greater than 15 > 10 0.01

15 and greater than 15 no difference

287

PlotCorr

Precisions

Methods Wilcoxon p-value

10 > 5 1.25 · 10−35

15 > 5 4.25 · 10−24

greater than 15 > 5 7.73 · 10−35

15 > 10 4.21 · 10−07

greater than 15 > 10 2.41 · 10−22

greater than 15 > 15 1.22 · 10−11

Sensitivities

Methods Wilcoxon p-value

5 > 10 0.00

5 > 15 0.02

5 > greater than 15 2.08 · 10−10

10 and 15 no difference
10 > greater than 15 0.00

15 > greater than 15 0.00

Specificities

Methods Wilcoxon p-value

5 and 10 no difference
15 > 5 0.02

greater than 15 > 5 1.75 · 10−21

10 and 15 no difference
greater than 15 > 10 1.77 · 10−13

greater than 15 > 15 9.80 · 10−08

288

MI

Precisions

Methods Wilcoxon p-value

10 > 5 8.63 · 10−40

15 > 5 5.49 · 10−25

greater than 15 > 5 9.19 · 10−35

15 > 10 1.89 · 10−10

greater than 15 > 10 1.34 · 10−22

greater than 15 > 15 1.64 · 10−13

Sensitivities

Methods Wilcoxon p-value

5 and 10 no difference
5 and 15 no difference

5 > greater than 15 0.00

10 and 15 no difference
10 and greater than 15 no difference
15 and greater than 15 no difference

Specificities

Methods Wilcoxon p-value

5 and 10 no difference
5 and 15 no difference

greater than 15 > 5 1.61 · 10−06

10 and 15 no difference
greater than 15 > 10 0.00

greater than 15 > 15 0.00

289

Waddell – Kappa

Precisions

Methods Wilcoxon p-value

10 > 5 3.78 · 10−30

15 > 5 4.99 · 10−20

greater than 15 > 5 2.17 · 10−34

15 > 10 0.00

greater than 15 > 10 7.52 · 10−21

greater than 15 > 15 5.85 · 10−11

Sensitivities

Methods Wilcoxon p-value

5 > 10 0.00

5 > 15 5.20 · 10−05

5 > greater than 15 1.43 · 10−23

10 and 15 no difference
10 > greater than 15 3.27 · 10−13

15 > greater than 15 5.44 · 10−06

Specificities

Methods Wilcoxon p-value

10 > 5 0.02

15 > 5 0.01

greater than 15 > 5 7.95 · 10−22

10 and 15 no difference
greater than 15 > 10 1.01 · 10−12

greater than 15 > 15 8.04 · 10−07

290

Waddell – MI

Precisions

Methods Wilcoxon p-value

10 > 5 5.97 · 10−33

15 > 5 3.67 · 10−25

greater than 15 > 5 9.54 · 10−35

15 > 10 1.16 · 10−07

greater than 15 > 10 8.74 · 10−22

greater than 15 > 15 5.89 · 10−10

Sensitivities

Methods Wilcoxon p-value

5 > 10 0.00

5 > 15 4.46 · 10−05

5 > greater than 15 7.91 · 10−34

10 and 15 no difference
10 > greater than 15 3.52 · 10−16

15 > greater than 15 3.62 · 10−08

Specificities

Methods Wilcoxon p-value

10 > 5 8.30 · 10−07

15 > 5 7.83 · 10−11

greater than 15 > 5 1.27 · 10−27

15 > 10 6.07 · 10−05

greater than 15 > 10 1.65 · 10−16

greater than 15 > 15 3.19 · 10−06

291

A.10 Combining multiple co-evolution detection
methods

We show an example of combining the results of PlotCorr, Waddell – MI,
and Waddell – Kappa. Say we are looking at unique amino acid threshold 2,
and we consider an alignment with 4 columns (numbering will begin from 0),
for which the results are:

• 0 and 1:

– PlotCorr: -1.86

– Waddell – MI: 3.80

– Waddell – Kappa: 8.02

• 0 and 2:

– PlotCorr: -2.09

– Waddell – MI: 6.52

– Waddell – Kappa: -9.19

• 0 and 3:

– PlotCorr: 8.63

– Waddell – MI: -4.77

– Waddell – Kappa: -8.49

• 1 and 2:

– PlotCorr: -2.42

– Waddell – MI: 5.56

– Waddell – Kappa: 0.04

• 1 and 3:

– PlotCorr: 2.95

– Waddell – MI: 3.23

– Waddell – Kappa: 8.06

• 2 and 3:

– PlotCorr: 0.44

– Waddell – MI: -5.09

– Waddell – Kappa: 1.89

292

Let us say that the truly co-evolving pairs are: (0, 1), (1, 3), and (2, 3). Each
of these pairs could be counted as either a true positive, or a false negative.
Each of the non-co-evolving pairs (that is, (0, 2), (0, 3), and (1, 2)) could be
counted as either a true negative, or a false positive.

For pair (0, 1), we count this as positive (a true positive, in this case) if the
following three conditions are met: the PlotCorr score is >= 2, the Waddell
– MI score is >= 0, and the Waddell – Kappa score is >= 3. If at least one
of these conditions is violated, then the pair is classified is negative (a false
negative, in this case). The PlotCorr condition is violated, as its score is -1.86,
so this pair is counted as a false positive. Truly negative sites (such as (0,2))
are counted as negative (true negatives) if they do not satisfy at least one of
the conditions about the individual scores defined above (i.e. their PlotCorr
score is < 2, etc.). They are classed as a false positive if they do satisfy all
three conditions.

We obtain the following counts for the above pairs:

• True positives: 1 ((1, 3))

• True negatives: 3 ((0, 2), (0, 3), (1, 2))

• False positives: 0

• False negatives: 2 ((0, 1), (2, 3))

The sensitivity, specificity, and precision statistics can now be calculated as
normal.

293

A.11 Amino acid bias

All of the p-values have been corrected for the number of tests performed
(140 = (2 for each co-evolution detection method + conservation) * 20 amino
acids), according to a Bonferroni correction. The values in the tables are set
to show 2 decimal places, so ‘0.00’ is likely to be a number not small enough
to be displayed as X · 10−Y.

p-values for PlotCorr, with a lower unique amino acid threshold:

Amino acid p-value

A 6.62 · 10−189

C 3.07 · 10−120

D 0.25

E 9.43 · 10−46

F 0.27

G 2.14 · 10−146

H 1.00

I 1.22 · 10−201

K 0.00

L 0.00

M 1.00

N 0.00

P 2.63 · 10−45

Q 0.00

R 6.69 · 10−14

S 0.00

T 7.31 · 10−47

V 1.15 · 10−292

W 1.30 · 10−144

Y 0.00

294

p-values for Waddell – Kappa, with a lower unique amino acid threshold:

Amino acid p-value

A 3.57 · 10−191

C 2.11 · 10−175

D 1.00

E 3.45 · 10−29

F 1.00

G 0.00

H 6.41 · 10−20

I 0.00

K 9.21 · 10−15

L 0.00

M 0.00

N 3.97 · 10−100

P 0.00

Q 1.07 · 10−13

R 6.44 · 10−20

S 0.00

T 6.59 · 10−168

V 0.00

W 0.00

Y 1.00

295

p-values for Waddell – MI, with a lower unique amino acid threshold:

Amino acid p-value

A 0.00

C 6.75 · 10−228

D 0.34

E 2.05 · 10−47

F 1.84 · 10−25

G 0.00

H 1.60 · 10−44

I 0.00

K 0.01

L 2.80 · 10−133

M 5.28 · 10−30

N 6.00 · 10−185

P 0.00

Q 2.20 · 10−37

R 1.28 · 10−34

S 0.00

T 0.00

V 0.00

W 0.00

Y 1.02 · 10−27

296

p-values for PlotCorr, with a higher unique amino acid threshold:

Amino acid p-value

A 0.00

C 0.04

D 0.09

E 0.00

F 0.00

G 1.00

H 1.20 · 10−13

I 0.02

K 1.00

L 2.11 · 10−36

M 0.00

N 0.00

P 1.00

Q 1.00

R 1.00

S 1.00

T 3.16 · 10−26

V 1.00

W 1.00

Y 0.00

297

p-values for Waddell – Kappa, with a higher unique amino acid threshold:

Amino acid p-value

A 2.98 · 10−38

C 1.00

D 0.00

E 1.00

F 7.65 · 10−49

G 0.00

H 1.16 · 10−15

I 1.17 · 10−32

K 1.45 · 10−14

L 9.34 · 10−73

M 8.22 · 10−25

N 1.97 · 10−20

P 0.00

Q 5.98 · 10−30

R 1.00

S 1.00

T 7.68 · 10−65

V 1.00

W 0.00

Y 7.90 · 10−22

298

p-values for Waddell – MI, with a higher unique amino acid threshold:

Amino acid p-value

A 4.10 · 10−64

C 0.00

D 5.56 · 10−40

E 1.00

F 3.70 · 10−142

G 5.98 · 10−185

H 2.38 · 10−177

I 2.08 · 10−65

K 2.85 · 10−120

L 3.48 · 10−294

M 7.95 · 10−64

N 1.36 · 10−141

P 1.74 · 10−275

Q 0.00

R 0.00

S 1.00

T 2.15 · 10−261

V 0.00

W 3.72 · 10−22

Y 6.43 · 10−49

299

p-values for fully conserved sites:

Amino acid p-value

A 0.00

C 0.00

D 2.78 · 10−103

E 6.06 · 10−98

F 0.00

G 0.00

H 5.67 · 10−111

I 0.00

K 0.02

L 0.00

M 0.00

N 0.00

P 0.00

Q 0.00

R 3.72 · 10−79

S 0.00

T 0.00

V 0.00

W 0.00

Y 0.00

300

	List of Tables
	List of Figures
	Introduction
	Overview
	Hypothesis
	Thesis contributions
	Thesis structure
	Summary

	Background
	How proteins are made
	Mutations
	Gamma distribution to model mutation rate
	Amino acid similarity matrices

	Ancestry and phylogenetic trees
	Phylogenetic trees
	Homology

	Phylogeny representation and construction
	Newick format
	ClustalW2

	Ancestral sequence reconstruction
	Fitch's algorithm
	Maximum Likelihood

	Multiple Sequence Alignments
	FASTA
	PHYLIP

	Co-evolution
	Sources of randomness in correlation signal

	Site conservation
	Parallel computing
	Complex brain disorders
	Summary

	Literature Review
	Non-parametric methods
	Mutual Information (MI)
	Observed Minus Expected Squared (OMES)
	Perturbation-based algorithms
	McBASC
	PSICOV and DCA
	Sequence divergence-based approximation

	Parametric methods
	Maximum Likelihood Approximation
	Tracking changes on branches
	Bayesian Mutational Mapping

	Discussion of methods for detecting molecular co-evolution
	Alphabet choice
	Parallelisation potential
	Method comparison
	Methods summary
	Recommendations

	Methods for removing background noise
	Alignment curation
	Correcting the null hypothesis/test statistic to account for phylogeny
	Chosen method of background removal

	Summary

	Data Collection
	Databases
	Ensembl
	HomoloGene
	UCSC Genome Bioinformatics
	Choice

	Data collection methodology
	Alignment
	Data collected

	Summary

	Simulation
	Simulation program
	Simulation parameters
	Evolution model
	Alignment dimensions
	Branch scale
	Gamma scale parameter
	Co-evolving clusters
	Amino acid frequencies

	Iterations
	Summary

	Comparison of Serial Methods
	Results-gathering approach
	Choosing a Z-score type
	Analysing results per UAA threshold
	Choosing a ``lower'' and a ``higher'' unique amino acid threshold
	Choosing Z-score thresholds
	Results by number of sequences
	``Lower'' threshold
	``Higher'' threshold

	Results by alignment length
	``Lower'' threshold
	``Higher'' threshold

	Results by rate variation parameter
	``Lower'' threshold
	``Higher'' threshold

	Results by percentage of sites co-evolving
	``Lower'' threshold
	``Higher'' threshold

	Combining methods
	Summary

	Parallelisation of Methods using CUDA
	Approach taken to parallelisation
	PlotCorr
	Waddell parametric methods

	Full-program method times
	Experimental set-up
	Approach taken to timing
	Timing results

	Cost/benefit analysis
	CPU-only system
	Raven
	GeForce GTX 660 Ti
	GeForce GTX Titan X
	Larger alignments

	Summary

	Application of Methods to Real Data
	Alternative methods for classifying mutations
	SIFT
	PolyPhen

	Real data analysis
	Amino acid frequencies
	Introduction to the data
	Data analysis introduction

	Summary

	Conclusions
	A suitable method for detecting molecular co-evolution
	A tree representation suitable for single-pass CUDA algorithms
	Parallelisation of co-evolution detection methods
	General guidelines for porting algorithms to CUDA
	PlotCorr
	Parametric methods

	Proteome-wide identification of potential co-evolving sites
	Hypothesis
	Limitations
	Future work
	CUDA implementation decisions
	Parallelising tree-based methods further
	PlotCorr algorithm design improvements
	Timing results
	Different biological applications
	Extensions
	Different datasets

	Summary

	Bibliography
	Appendices
	Examples of using Z-score approaches
	Shuffle
	Original values

	Co-evolving cluster choices
	Statistical test choice for comparison of Z-score types
	Which UAA threshold does each co-evolution detection method perform best for?
	CAPS
	PlotCorr
	MI
	Waddell – Kappa
	Waddell – MI

	Choosing a ``lower'' UAA threshold
	Results by number of sequences p-values
	Comparing co-evolution detection methods
	Comparing numbers of sequences

	Results by alignment length p-values
	Comparing co-evolution detection methods
	Comparing alignment lengths

	Results by rate variation parameter p-values
	Comparing co-evolution detection methods
	Comparing rate variation parameter values

	Results by percentage of sites co-evolving p-values
	Comparing co-evolution detection methods
	Comparing percentages of sites co-evolving

	Combining multiple co-evolution detection methods
	Amino acid bias

