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Summary 

 

Bacteria have long been known to inhabit decomposing wood, but much of their 

ecology remains unexplored. There are indications that bacterial communities are linked to 

interactions with fungi, which dominate the dead-wood environment. Manipulative field 

experiments were combined with meta-taxonomic DNA sequencing to examine fungal 

effects on bacterial communities, in wood precolonised by Vuilleminia comedens, Trametes 

versicolor or Hypholoma fasciculare. After one year in the field, H. fasciculare retained its 

territory in the wood and showed a significantly different bacterial community to the other 

treatments, where precolonisers did not retain territory. Bacterial communities were 

significantly correlated with developing fungal communities. Samples where cord-forming 

basidiomycetes were dominant showed a distinctive bacterial community. Bacterial 

community structure and richness was significantly associated with wood pH, but not with 

woodland site location. Over a shorter period of 12 weeks, fungal precolonisers significantly 

delayed bacterial colonisation. V. comedens and H. fasciculare were associated with distinct 

bacterial communities, but T. versicolor was not. In fungal-uncolonised wood, seasonal 

differences were apparent at 84 but not at 14 days. Bacterial communities were dominated 

by Proteobacteria, with Burkholderiaceae enriched in precolonised samples. Acidobacteria 

were a major component of the 1-yr samples, but not the earlier-stage samples. In contrast 

to previous studies, Actinobacteria were never abundant. Overall, there was strong evidence 

for fungal control of bacterial communities in decaying wood. 

 

Interactions between wood-decay fungi and three strains of fungal-migratory 

Paraburkholderia were examined in agar microcosms. Mycelial extension rates of eight fungi 

were unaffected by bacterial migration, but two strains of Phanerochaete were significantly 

inhibited. Bacteria were also introduced into pairwise competitive interactions between 

fungi. One Phanerochaete strain showed a significant reduction in competitive performance 

when inoculated with Paraburkholderia. The presence of bacteria made the outcomes of 

inter-fungal interactions more unpredictable, indicating bacteria can reciprocally influence 

fungal communities in decaying wood. 
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Chapter 1. General Introduction 

1.1 The decomposing wood environment 

 Decomposing wood is an essential part of forest ecosystems; the ecological lifetime 

of a tree far exceeds its biological lifespan. As wood decays, it provides habitat for many 

organisms, including invertebrates, bryophytes and birds (Stokland et al. 2012). This habitat 

is dominated and regulated by microbial communities, particularly wood-decay fungi. The 

complex lignocellulose structure of wood is recalcitrant to decay, and can be substantially 

decomposed only by a restricted set of basidiomycete and ascomycete fungi (de Boer et al. 

2005). Fungal activity releases nutrients and modifies the physical wood environment, 

making it amenable to colonisation by macro-organisms. The properties of the wood 

environment thus reflect the activities of these fungi: nutrient levels in the wood are altered 

by mycelial translocation, and the intensely competitive and territorial ecology of wood-

decay fungi induces complex spatial structure within the resource (Fig 1.1) (Boddy 2000; 

Watkinson et al. 2006). At a smaller scale, bacteria modify the structure of individual wood 

cells, both encountering and interacting with the fungal community (Greaves 1971). 

 Wood decay is not a single ecological process, but a dynamic process with multiple 

stages (Boddy 2001). In large trees, the heartwood is decomposed by specialist heart-rot 

fungi whilst the tree is still alive. Sapwood decay often also begins in the standing tree: dead 

branches are colonised by canopy fungi whilst still attached to the truck. Once wood falls to 

the forest floor, it becomes available to a new set of decomposers; this forest floor period is 

the best-characterised phase of wood decomposition. 

 Wood is a challenging environment to study: bulky, opaque and physically difficult 

to probe. For most purposes, destructive sampling is necessary, meaning that the same 

resource cannot be followed through time. However, wood also has advantages as a study 

system: it is robust, and relatively easy to resolve patterns in three dimensions. The versatile 

metabolism of wood-decay fungi means that they are exceptionally amenable to cultivation: 

decades of studies (e.g. Boddy et al. 1987) have shown that the dominant decay fungus can 

reliably be isolated from a visible territory. This allows a degree of experimental 

manipulation that is impossible in many microbial systems including the bacterial community 

of wood, much of which cannot be cultured (Folman et al. 2008). 

 

1.2 Wood-decay fungi 

 Wood decay fungi possess a fascinating and unusual biology: multicellular 

microorganisms, existing as distinct genetic individuals, which reach large macroscopic sizes.  
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Figure 1.1 Complex spatial structure within a decaying beech (Fagus sylvatica) trunk. Each 

area delimited by black pseudosclerotial plates represents the territory of a fungal individual. 

Regions stained dark brown are indicative of areas of high bacterial activity, known as 

bacterial wetwood. 

 

These individuals may fragment and reconnect innumerable times, discriminating self from 

non-self by somatic incompatibility loci (Boddy & Hiscox 2016). Quantifying them in terms of 

number of individuals (as for animals) or number of cells (as for many bacteria) is therefore 

invalid, and given the lack of a reliable way to estimate fungal biomass (Baldrian et al. 2013), 

the area of territory occupied is often the most meaningful proxy for fungal abundance. Fungi 

that rely on spores for dispersal are termed resource-unit-restricted, as the mycelium is 

bounded by its resource; in contrast, the mycelium of non-resource-unit-restricted fungi can 

spread beyond its current resource and forage for new ones (Boddy & Hiscox 2016). This 

ability means that the latter fungi are (theoretically) bounded in neither time nor space, but 

rather are able to survive and grow indefinitely.  

Beyond taxonomic classification, wood decay fungi are often most meaningfully 

categorised by their ecological strategies – especially when considering them in terms of 

functional activity and interactions with other organisms. The classic CSR (competitive, 

stress-tolerant, ruderal) framework has been usefully adapted to describe fungal 

communities (Boddy & Hiscox 2016). In particular, competition drives and shapes fungal 

community development through a series of direct, confrontational competitive interactions 
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(Boddy 2000). Among the most competitive fungi are the cord-formers (Boddy 1993). 

Mycelial cords are organised aggregations of hyphae protected by a rind, and they are an 

organ that enables a foraging life strategy. Cord-forming fungi are able to produce networks 

many metres wide across the forest floor, foraging for resources, gaining rapid access to 

newly-fallen wood, and redistributing cytoplasm and nutrients across their territory.  

 

1.3 The role of bacteria in the dead-wood environment 

 In contrast to wood-decay fungi, the bacterial community in decomposing wood has 

barely been described (Valásková et al. 2009; Sun et al. 2014; Kielak et al. 2016b; Rinta-Kanto 

et al. 2016), much less explored in functional terms (Hoppe et al. 2014). Chapter 2 

summarises the current state of knowledge on bacteria in wood. Bacterial wood 

decomposition has been observed both structurally and chemically (Greaves 1969; Brown & 

Chang 2014), but direct bacterial contributions to wood decay are considered negligible in 

oxic environments (Greaves 1971; Clausen 1996; de Boer et al. 2005). Historically, the 

limitations of culture-based techniques have frustrated attempts to understand bacterial 

communities  in wood (Murray & Woodward 2003). More recently, microcosm work 

indicates that bacteria are selected both by the wood environment and wood-decay fungi 

(Folman et al. 2008; Hervé et al. 2014). Bacteria potentially compete with fungi for nutrients 

in this oligotrophic environment, but conversely the two groups of organisms may interact 

synergistically, e.g. bacteria providing nitrogen by fixation, and fungi releasing carbon from 

the resource by enzymatic activity. Many studies point to Proteobacteria being the dominant 

phylum in wood, with Acidobacteria consistently also a major component (e.g. Folman et al. 

2008; Valásková et al. 2009; Sun et al. 2014; Hoppe et al. 2015; Kielak et al. 2016; Rinta-Kanto 

et al. 2016). 

The indications of non-random association between bacteria and fungi in wood 

suggest that bacteria should be considered with reference to fungi in the resource (Hoppe et 

al. 2014; Kielak et al. 2016b). A growing weight of evidence indicates the profound mutual 

implications of fungus-bacteria interactions across a range of environments (Partida-

Martinez & Hertweck 2005; Nazir et al. 2014; Partida-Martínez 2017). This reinvigorates the 

theory that bacteria influence the dead-wood environment via their interactions with wood-

decay fungi (Greaves 1971). At the same time there is a growing realisation that many 

eukaryotes exist in interdependent association with their microbiomes, and that the fungal 

microbiome is no exception (Partida-Martínez 2017; Schulz-Bohm et al. 2017). 
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1.4 Thesis aims 

Against this background, the study described in this thesis set out to explore 

interactions between fungal and bacterial communities in wood. Such a large topic cannot 

be exhausted in one thesis, so by necessity this work selected a few aspects on which to 

focus. Three overarching hypotheses have shaped the direction of the work: firstly, that 

bacterial community composition in decaying wood is dependent on the identity of the 

dominant fungus; secondly, that development of these communities is visible over time; and 

thirdly, that wood-decay fungi form intimate associations with specific bacteria, both 

beneficial and detrimental. 

Chapter 2 reviews the literature on bacteria in wood, focussing specifically on what 

information is available about their interactions with wood-decay fungi. The diversity, 

provenance and metabolic capabilities of wood-dwelling bacteria are considered first, before 

reviewing the types of potential interaction between bacteria and wood-decay fungi. A 

version of this chapter has been published in FEMS Microbiology Ecology (Johnston et al. 

2016). 

Chapter 3 explores a methodological issue uncovered during the course of the work: 

unwanted fungal co-amplification during bacterial qPCR on mixed DNA samples. In silico and 

in vitro analyses were used to elucidate the nature and extent of the issue. 

Chapter 4 examines direct fungal influence over bacterial communities in 

decomposing wood, by manipulating the fungal community in a field situation. It also tested 

for correlation between bacterial communities and the incoming fungal communities 

developing through succession. Fungal and bacterial communities were determined by 

marker gene sequencing. The experiment was conducted over multiple sites spread across 

the region, encompassing geographical variation. Co-varying factors such as wood pH and 

local soil pH were explored for their influence on the community relationship. 

Chapter 5 follows directly on by exploring fungal influences in the very earliest stages 

of bacterial wood colonisation, including the effects of an early-stage, primary colonising 

fungus. It also tracked inter- and intra-seasonal bacterial community development. 

Chapter 6 focusses in on a specific interaction: bacterial migration along the hyphae 

of wood-decay fungi. This study employed laboratory manipulation to assess the host range 

of three migratory strains of Paraburkholderia isolated from wood-decay fungi, and to 

quantify effects on the fungal hosts. Two specific host abilities were considered: mycelial 

extension rate (growth), and performance in inter-fungal competitive interactions. 
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Chapter 7 draws together the findings of the previous chapters, and considers some 

emerging themes. It points to future avenues to be explored with respect to fungus-bacteria 

interactions in decomposing wood. Finally, it summarises the overarching conclusions from 

the work as a whole. 
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Chapter 2. Bacteria in decomposing wood and their interactions with wood-decay fungi  

 

 

A version of this chapter has been published as: 

Johnston, S.R., Boddy, L. & Weightman, A.J. 2016. Bacteria in decomposing wood and their 

interactions with wood-decay fungi. FEMS Microbiology Ecology 92: fiw179. (DOI: 

10.1093/femsec/fiw179) 

 

 

2.1 Abstract 

The fungal community within dead wood has received considerable study, but far 

less attention has been paid to bacteria in the same habitat. Bacteria have long been known 

to inhabit decomposing wood, but much remains underexplored about their identity and 

ecology. Bacteria within the dead-wood environment must interact with wood-decay fungi, 

but again, very little is known about the form this takes; there are indications of both 

antagonistic and beneficial interactions within this fungal microbiome. Fungi are 

hypothesised to play an important role in shaping bacterial communities in wood, and 

conversely, bacteria may affect wood-decay fungi in a variety of ways. This literature review 

considers what is currently known about bacteria in wood and their interactions with fungi, 

and proposes possible associations based on examples from other habitats. It aims to identify 

key knowledge gaps and pressing questions for future research.  
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2.2. Introduction 

Globally, fallen wood stores more than 73 billion tonnes of carbon (Pan et al. 2011) 

and provides habitat for a wide range of saproxylic (i.e. dead-wood-inhabiting) organisms 

(Stokland et al. 2012). Understanding the rate, mechanisms and control of wood 

decomposition is of major ecological and economic importance, and the key to doing so lies 

in understanding the microbial communities that effect and regulate decomposition. Fungi 

are the dominant agents of wood decomposition, but it has long been known that bacteria 

also inhabit dead wood (Greaves 1971). There are indications of great bacterial diversity 

within wood (Zhang et al. 2008; Věýtrovsky et al. 2011; Sun et al. 2014; Hoppe et al. 2015), 

but bacteria are very poorly understood compared with fungi in the same environment. 

Wherever bacteria and fungi co-occur they must interact with and influence each other (Fig 

2.1), yet although wood-decay fungi are well-known for being highly competitive (Boddy 

2000) relatively little attention has been paid to the fungus-bacteria relationship (de Boer et 

al. 2005). Fungus-bacteria interactions have already been studied in other contexts for their 

importance in medicine, agriculture, and food and drink (Frey-Klett et al. 2011), but have 

been explored far less with respect to decomposition. The suite of bacteria that surround 

and interact with a fungus effectively constitute its microbiome, and as such, they must be 

considered together. The aim of this literature review is to synthesise the current state of 

knowledge about bacteria in wood and how they interact with wood-decay fungi, so as to 

identify key areas for future exploration. 

 

2.3. Diversity of bacterial communities in wood 

 Information on bacterial communities in decomposing wood is surprisingly scare, 

given how well saproxylic fungal communities have been studied. This disparity is doubtless 

partially due to the greater propensity of fungi to enter culture – there is a long history of 

successful isolation of fungal decay communities from wood (e.g. Boddy et al. 1987). In 

contrast, whilst there are studies that have looked at the culturable fraction of saproxylic 

bacteria (e.g. Murray & Woodward 2003; van der Wal et al. 2007), a large and variable 

proportion are unculturable (Folman et al. 2008). Culture-based studies can thus, at best, 

only indicate part of the bacterial community. Because the culturable proportion of total 

bacteria varies, plate counts can never be used for quantitative comparison in this context. 

For example, a microcosm experiment recorded that in the absence of wood-decay fungi, 

61% of bacteria colonising wood blocks could be cultured; when a white-rot fungus was 

introduced, the culturable proportion dropped to 1% (Folman et al. 2008). Unfortunately, 
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the limitations of culture-based surveys mean that much older literature in this field is of 

restricted usefulness. Whilst culture-based approaches can no longer be used for whole-

community characterisation, they remain highly useful for exploring specific relationships 

(e.g. Nazir et al. 2014). Culture-based studies have also succeeded in isolating new genera 

from dead wood, including members of the difficult-to-culture phylum Acidobacteria (e.g. 

Folman et al., 2008). The accessibility and high throughput of next-generation DNA 

sequencing and associated metagenomics opens the door to more comprehensive study of 

saproxylic bacterial communities. This review will therefore pay special attention to studies 

that have used molecular methods to assess bacterial diversity in wood (Table 2.1), drawing 

on culture-based studies as well where applicable. 

Bacterial diversity is far lower in wood than in soil (Hervé et al. 2014; Sun et al. 2014), 

and is highly influenced by the underlying soil type; nonetheless, there is a high level of intra-

site heterogeneity (Sun et al. 2014). The bacterial community varies dependent on the 

wood’s state of decay, with bacterial richness increasing as the wood decomposes (Hoppe et 

al. 2015). Heartwood and sapwood contain markedly different bacterial communities, but 

communities in heartwood are apparently more diverse (Zhang et al. 2008); nonetheless, 

bacteria may be more abundant in sapwood (Jeremic et al. 2004). There are indications that 

bacterial communities differ between tree species (Folman et al. 2008; Hoppe et al. 2014, 

2015; Prewitt et al. 2014). The water content, pH, and C:N ratio of the wood affect the 

bacterial community, as does the forest management regime (Hoppe et al. 2015). Bacterial 

abundance and richness is highest at advanced stages of wood decay, but does not show a 

clear pattern for phylum-level community composition (Kielak et al. 2016b; Rinta-Kanto et 

al. 2016). These studies offer a tantalising insight into saproxylic bacterial communities, but 

the field is still young and the conclusions are tentative. 

There are parallels between the microbial decomposer communities in wood and 

leaf litter. In leaf litter, bacterial and fungal communities show linked dynamics and both are 

also influenced by the same abiotic drivers of C:N ratio, nutrient availability, water content 

and pH (Purahong et al., 2016). In another study on deciduous leaf litter, fungi showed less 

dependence than bacteria on environmental variables, such as water availability and 

ambient temperature (Liu et al. 2016). However, it is very difficult to extrapolate results from 

one habitat or taxonomic group to another. For example, dominant tree identity is a major 

fungal community driver in both soil and litter, but less important for bacteria in litter and 

unimportant for bacteria in soil (Urbanová et al. 2015). 
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Figure 2.1 Potential fungus-bacteria interactions occurring in wood; not all have so far been 

observed. The interactions may be obligate (e.g. some endosymbioses) or facultative (e.g. 

predation). In many cases it is not clear whether a given interaction is beneficial to one, both 

or neither of the partners. The outcomes indicated may occur via more than one route: for 

example, fungi could receive fixed N by mutualism with diazotrophs, by lysing the bacteria, 

or by predating on nematodes etc. that had in turn predated on bacteria. (a) Whole-organism 

level interactions. (b) Molecular mechanisms of interaction; see main text for details of each. 
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Table 2.1 Marker gene-based studies of bacteria in wood, and the major phyla reported in each. 

 

Study Wood species State of decay Location Marker 

gene 

Method Major bacterial phyla 

Folman et al., 

2008 

Fagus sylvatica  7-10 months’ colonisation Lab 16S rRNA DGGE and 

sequencing 

Beta-proteobacteria; Gamma-

proteobacteria; Acidobacteria; Bacilli 

Hervé et al., 

2014 

Fagus sylvatica Sawdust, 3-5 months’  

colonisation 

Lab 16S rRNA NGS amplicons Alpha-, Beta- and Gamma-

proteobacteria 

Hoppe et al., 

2014 

Fagus sylvatica, 

Picea abies 

Not reported Temperate woodland 

(Germany) 

nifH NGS amplicons Alpha-proteobacteria 

Hoppe et al., 

2015 

Fagus sylvatica, 

Picea abies 

Kahl (2012) decay class 1-4 (3-27 

yrs) 

Temperate woodland 

(Germany) 

16S rRNA NGS amplicons Alpha-proteobacteria; Actinobacteria; 

Acidobacteria 

Kielak et al., 

2016a 

Pinus sylvestris Classified as early, middle or late 

decay based on density 

Temperate woodland 

(The Netherlands) 

16S rRNA NGS amplicons Alpha-proteobacteria; Acidobacteria 

Rinta-Kanto et 

al., 2016 

Picea abies Range from ‘”recently dead” to 

“almost decomposed”  

(Mäkinen et al., 2006) 

Boreal forest (Finland) 16S rRNA NGS amplicons Alpha-proteobacteria; Acidobacteria 

Sun et al., 2014 Picea abies 2-4 months’  colonisation Boreal forest (Finland) 16S rRNA NGS amplicons Proteobacteria; Bacteroidetes;  

Acidobacteria; Actinobacteria 

Valásková et al., 

2009 

Betula sp., Fagus sylvatica, 

Quercus robur, Pinus 

sylvestris 

Reported only as “high” Temperate woodland 

(The Netherlands) 

16S rRNA Clone library Alpha-, Beta- and Gamma-

proteobacteria; Acidobacteria;  

Firmicutes 

Zhang et al., 

2008 

Keteleeria evelyniana Not reported Not reported; sub-

tropical? 

16S rRNA Clone library Alpha-, Beta-, Gamma- and Delta-

proteobacteria; Actinobacteria; 

Acidobacteria 
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In functional terms, (Greaves 1971) classified saproxylic bacteria into four groups 

based on their role in decomposition: bacteria that make wood more water-permeable 

without affecting its structural integrity; bacteria with (albeit limited) decomposition ability; 

bacteria that stimulate fungal decomposition; and bacteria that inhibit fungal 

decomposition. These classes maintain their relevance today, but present a challenge: how 

best to relate broad-scale, whole sample taxonomic information from sequencing to fine-

scale functional abilities. Even the bacteria amenable to culture can show vastly different 

properties depending on medium, etc. (Murray & Woodward 2003). Truly making sense of 

the bacterial communities in wood will depend upon linking their identity and function, even 

for species that can be cultivated. 

Any consideration of bacteria in wood should take into account the presence and 

identity of wood-decay fungi, as current evidence strongly indicates that they greatly 

influence the bacterial community (Folman et al. 2008; Sun et al. 2013; Hoppe et al. 2014). 

In the soil environment, areas under close fungal influence have distinctive bacterial 

communities (Warmink & van Elsas 2008). In Picea abies logs, fungal diversity correlated 

negatively with bacterial abundance, and there are indications that certain bacterial taxa co-

occur preferentially with particular fungi (Rinta-Kanto et al. 2016). Discerning ecologically 

realistic patterns is challenging, due to the huge number of potentially significant variables; 

for example, the effects of fungal inoculation on bacteria alter over time (Sun et al. 2013). It 

is also virtually impossible to establish fungus-free bacterial controls when inoculating wood 

from soil (de Boer et al. 2010). 

Fungi profoundly influence the wood physical environment by lowering the pH, 

excreting metabolites such as oxalic acid and translocating nitrogen and phosphorus into the 

resource (Watkinson et al. 2006; de Boer et al. 2010; Rudnick et al. 2015). It should be noted 

that whilst translocation increases the bulk N and P content of the wood, they are contained 

within hyphae and only available to bacteria that can access the hyphal contents. 

Experimental evidence shows that dead mycelium also provides a rich and largely labile 

nutrient source which supports a distinct bacterial community (Brabcová et al. 2016). 

However, in the environment fungi recycle cytoplasm from senescent hyphae to other parts 

of the mycelium, so not all of these nutrients are available to other decomposers (Watkinson 

et al. 2006). 

Wood-decay fungi have repeatedly been associated with Burkholderiaceae (Seigle-

Murandi et al. 1996; Lim et al. 2003; Yara et al. 2006; Folman et al. 2008; Valásková et al. 

2009; Sato et al. 2010; Hervé et al. 2014; Prewitt et al. 2014; Sun et al. 2014). A widespread 
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and versatile family of bacteria, it crops up alongside fungi with remarkable regularity, and 

not only in wood (de Boer et al. 2005; Frey-Klett et al. 2011). Moreover, there are indications 

of close, specialized associations between fungi and the genus Burkholderia (including the 

recently-defined Paraburkholderia) involving collaborative pathogenicity (Partida-Martinez 

& Hertweck 2005); intimate mycelial associations (Lim et al. 2003); endosymbiosis (Sato et 

al. 2010); co-migration and detoxification of antimicrobials (Nazir et al. 2014); and 

successional persistence (Hervé et al. 2014). An analysis of global soil microbiota found 

significant co-occurrence between Burkholderia/Paraburkholderia and fungi (Stopnisek et al. 

2015). The same study also analysed the proteome of Paraburkholderia glathei when grown 

alone or with fungi, and found that when fungi were present the bacteria expressed fewer 

proteins associated with starvation, but upregulated stress responses, suggesting that the 

bacteria gained nutrients from the fungus but experienced antibiosis and/or unfavourable 

chemical conditions (Stopnisek et al. 2015). 

It has been suggested (Greaves 1971; Frey-Klett et al. 2011) that bacterial activity in 

the earliest stages of decay renders the wood more accessible to fungi. Whilst bacteria may 

detoxify certain compounds inhibitory to fungi, notably in treated wood (Greaves 1971; 

Clausen 1996) experiments using fresh, sterile wood show that fungi are competent wood 

decayers in the absence of bacterial conditioning (e.g. Hiscox et al. 2010). Similarly, although 

it is sometimes suggested that bacteria are the earliest colonists of dead wood, there is little 

evidence on whether or not that is the case (van der Wal et al. 2007). Given that wood-decay 

fungal propagules are latently present in functional wood (Parfitt et al. 2010), for this to hold 

true bacteria would likewise have to be latently present, and/or colonise wood very rapidly 

once conditions were favourable.  

 

2.4. Bacterial colonisation of wood 

 The provenance of saproxylic bacteria communities and their means of colonisation 

are largely unknown. Bacteria have limited motility and are unable to cross air voids, 

meaning that colonisation is likely to be slow without some means of carriage into the wood. 

Essentially, bacteria in a woody resource have four possible points of origin: the soil; the air; 

the wood itself; and fungi or other organisms colonising the wood. The relative importance 

of these sources is likely to vary under different conditions; the bacterial community in 

attached dead branches is probably very different from that in wood on the forest floor. 
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2.4.1. Edaphic and atmospheric sources of bacteria  

Soil represents a rich source of potential colonists for wood in ground contact, and 

the underlying assumption of many studies is that it is the main point of origin for bacteria 

in wood (e.g. van der Wal et al. 2007; Folman et al. 2008; Hervé et al. 2014). These show that 

a subset of soil bacteria are competent to colonise wood, but do not indicate to what extent 

this occurs under natural conditions. Underlying soil type was a good predictor of bacterial 

assemblage in experimental wood blocks (Sun et al. 2014), which suggests either an edaphic 

origin of saproxylic bacteria, or an indirect influence of soil: for example, via an altered fungal 

community. 

 Movement via airborne spores and other propagules is a major means of bacterial 

dispersal, which has led to the widespread view that all bacteria are, or have the potential to 

be, ubiquitous: a view that has since been challenged (Green & Bohannan 2006). 

Nevertheless, the air could represent another means for bacteria to arrive at decomposing 

wood. In woodlands, rainfall creates bio-aerosols of bacteria and fungal spores, presumably 

contributing to their dispersal (Huffman et al. 2013). An experiment on bacteria in woodland 

pools indicated that the community composition was not dispersal limited, suggesting that 

airborne dispersal is effective at least across local scales (Bell 2010). 

2.4.2 Bacterial endophytes  

As mentioned above, wood-decay fungi exist in living trees as latent propagules 

which spread as mycelia when the branch or trunk is no longer functional in water 

conduction (Parfitt et al. 2010). Scanning electron microscopy indicates that at least some, if 

not all, living trees also host abundant bacterial endophytes in their wood (Jeremic et al. 

2004). However, there is very little literature on bacterial endophytes in wood, and the 

identity of these endophytes is as yet uncertain. 

2.4.3 Bacteria co-colonisation with other organisms  

Paraburkholderia terrae BS001 has been shown to migrate across soil with wood-

decay fungi, including the aggregated mycelial cords of Phanerochaete velutina (Nazir et al. 

2014). This demonstrates active bacterial movement, as the apical growth of fungal hyphae 

rules out the possibility of passive carriage. P. velutina had a lower bacterial ‘carrying 

capacity’ than several other fungi, suggesting that cords may be less conducive to migration 

than are fine hyphae. The presence of P. terrae BS001 can also facilitate the movement of 

other bacteria which would otherwise not be competent to migrate along hyphae (Warmink 

et al. 2011). Independent hyphal migration has also been observed for several other 

members of the Burkholderiaceae and strains of Dyella japonica (Warmink & van Elsas 2009; 
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Nazir et al. 2012). It has been suggested that other fungus-associated bacteria such as 

Collimonas may share this migratory ability (Leveau et al. 2010). Such behaviour raises the 

possibility that when fungi colonise a resource, they bring a suite of bacterial travelling 

companions. In this manner, saproxylic bacteria could use foraging fungal mycelium as a 

conduit to new resources. 

Other saproxylic organisms, particularly invertebrates, may transfer bacteria from 

one woody resource to another. Bark beetles can carry bacteria phoretically (Mercado et al. 

2014), and introduce them into trees during the construction of galleries. This has also been 

suggested as a source of nitrogen-fixing bacteria in wood (Griffiths et al. 1993). 

 

2.5. Wetwood 

 The presence of bacteria in living trees is most obvious in bacterial wetwood. 

Wetwood, also known as wet-heartwood or watermark, is a condition where the heartwood 

of a living tree becomes saturated and discoloured. This change may be accompanied by 

blocked vessels, gas build up, and the presence of a fetid liquid. The term refers to a suite of 

phenomena, probably with multiple causal agents but broadly similar manifestations, 

making it hard to disentangle the exact role bacteria play. Whilst in some tree species (e.g. 

Salix sachalinensis) wetwood is a serious disease, spreading to sapwood and ultimately killing 

the tree (Sakamoto & Sano 2000), in others it seems to be an almost-ubiquitous part of 

maturation (e.g. Ulmus americana) (Murdoch & Campana 1983). Wetwood is often 

attributed to bacterial activity, but there is no clear evidence whether this is true for this 

latter form, where there are no apparent ill-effects to the tree: it could equally be caused by 

physical processes, and bacteria secondarily colonise and modify the habitat. 

 Wetwood is frequently associated with the presence of anaerobic, methanogenic, 

pectinolytic prokaryotes, which could account for many of the observed symptoms (Schink 

et al. 1981a). Although wetwood can form around the site of fungal infections, within the 

wetwood itself fungi are likely to be excluded by low O2 concentrations, large amounts of 

organic acids and inhibitory metabolites (Worrall & Parmeter 1983). If fungi are indeed 

absent from wetwood, it represents an almost unique wood habitat in this respect. 

 

2.6. Bacterial metabolism in wood 

2.6.1 Bacterial nitrogen fixation in wood 

 It has long been recognised that dead wood plays host to nitrogen-fixing 

(diazotrophic) bacteria, which provide an independent source of nitrogen to the system 
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(Cornaby & Waide 1973; Sharp & Millbank 1973). Many studies have focussed on coniferous 

forests of the Pacific Northwest, and used acetylene reduction as a measure of nitrogenase 

activity (reviewed by Son 2001). Interpretation and comparison of these results requires 

caution, as the exact methodology used varies; acetylene reduction has been criticised for 

its sensitivity to experimental parameters (Giller 1987), although the effects may not be as 

serious as suggested (Son 2001). Additionally, the conversion factor used to calculate N-

fixation from acetylene reduction is not consistent (Son 2001; Brunner & Kimmins 2003), and 

there is evidence to suggest that the true conversion rate may vary between sample types 

(Hicks et al. 2003b). In light of these difficulties, acetylene reduction should perhaps be 

regarded as semi-quantitative, suitable for comparison within but not between studies. 

The picture that emerges of N-fixation in dead wood suggests a highly dynamic 

process, influenced by many factors (Hicks et al. 2003a). Wood water content is consistently 

positively correlated with N-fixation (Larsen et al. 1978; Jurgensen et al. 1984; Brunner & 

Kimmins 2003; Hicks et al. 2003a), possibly because it creates better microhabitats for the 

anaerobic/microaerophilic diazotrophs (Spano et al. 1982; Hicks et al. 2003b). The optimum 

temperature for fixation is 30°C (Hicks et al. 2003b), which may explain higher N-fixing 

activity in summer than in winter (Jurgensen et al. 1984; Sollins et al. 1987). The 

requirements for high temperature and high moisture suggest an interplay of factors that 

determine seasonal fixation patterns (Hicks et al. 2003b). The effect of tree species on 

fixation is unclear, with multiple authors reporting significant differences between species 

(Jurgensen et al. 1989; Griffiths et al. 1993; Hoppe et al. 2014), and others reporting none 

(Sollins et al. 1987; Hicks et al. 2003a). Nitrogen fixation in forest ecosystems is likely to be 

limited by the availability of molybdenum, which is necessary for nitrogenase synthesis, and 

possibly also by other micronutrients (Silvester 1989). 

Nitrogen fixation increases as decay proceeds (Larsen et al. 1978; Spano et al. 1982; 

Jurgensen et al. 1984), although two studies found that fixation peaked before dropping off 

in the most advanced stage of decay, perhaps because the latter studies included more 

decayed wood than the former (Hicks et al. 2003a). An experiment using a finer resolution 

time-series over 6 years revealed considerable variation within the overall increase in N 

fixation (Griffiths et al. 1993). In the very early stages of decay, N fixation will be limited by 

the rate at which diazotrophs can colonise the resource. If nitrogen-fixing bacteria rely on 

carbon from fungal activity (see Section 2.7.1), they may also experience a growth lag whilst 

fungi colonise and start to decompose the wood. Diazotrophic activity is higher in sapwood 

than in heartwood, and higher again in bark; low fixation has been recorded in heartwood, 
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possibly because it is the fraction most refractory to decomposition (Griffiths et al. 1993; 

Brunner & Kimmins 2003; Hicks et al. 2003b) and often contains inhibitory extractives. 

The identity of the saproxylic diazotrophs is underexplored, but Clostridium and 

Klebsiella have been cultured (Spano et al. 1982). A survey of nifH nitrogenase genes in 

decaying wood indicated Rhizobiales was the predominant identifiable order, with 

Rhodocyclales, Pseudomonadales, Rhodospirillales, Sphingomonadales and Burkholderiales 

also present; however, most of the saproxylic nifH variants could not be matched to known 

bacteria (Hoppe et al. 2014). These bacterial orders have also been identified previously in 

16S rRNA gene surveys of decaying wood (Folman et al. 2008; Valásková et al. 2009). 

2.6.2 Bacterial wood decomposition 

Bacteria are well known to be capable of cellulose decomposition, although their 

contribution to overall wood decay is restricted by small size and limited movement (Greaves 

1971; Clausen 1996) unlike fungi with mycelial growth (de Boer et al. 2005). Various bacteria 

from woodland soil possess enzymes involved in the breakdown of cellulose/ cellulose 

products, including members of the Acidobacteria, a common phylum in dead wood (Lladó 

et al. 2015; Table 2.1). Some cellulolytic bacteria apparently use new, uncharacterised means 

of metabolising cellulose without expressing the usual enzymes (López-Mondéjar et al. 

2016). Certain bacteria in wood break down pectin (Schink et al. 1981b; Clausen 1996), 

although in some cases this may be a strategy to access cellulose (Lynd et al. 2002). Evidence 

has emerged of bacteria with lignin-decomposing abilities, albeit to a lesser extent than fungi 

(Bugg et al. 2011; Brown & Chang 2014). An actinobacterium, Amycolatopsis sp. 75iv2, can 

use lignin as a sole carbon source (Brown & Chang 2014). Previously-unknown ligninolytic 

bacterial enzyme systems have been found, unlike those deployed by fungi, and 

environmental metagenomics may reveal more (Brown & Chang 2014). Lignin-model 

compounds are frequently used to screen for activity, and whilst they may not be fully 

representative, there is also evidence of bacterial depolymerisation of natural lignin 

(Salvachúa et al. 2015). 

Many bacteria are thought to favour easily accessible, low molecular weight 

compounds present during early decay, or released by fungal activity (de Boer & van der Wal 

2008). Under such a scenario, it would be expected that bacteria would be most numerous 

at the start of decay, and would be displaced by fungi as the latter become established and 

the most labile components are used up (Clausen 1996). Conversely, the absolute number of 

bacteria may be maintained or even increase, but shift towards bacteria adapted to fungal 

co-existence, living on the products of fungal decomposition. Fungi may affect bacterial 
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decomposition in other ways, too: for example, in vitro a forest soil bacterium, Clostridium 

phytofermentans, lyses fungal hyphae to increase its own cellulose decomposition, 

presumably due to acquisition of fungal nutrients (Tolonen et al. 2015). 

Again, work on forest soils and leaf litter can offer clues as to the roles of fungi and 

bacteria in complex polymer decomposition. Acidobacteria from a forest soil showed a range 

of enzymatic abilities, including the capacity to break down chitin (a fungal cell wall 

component) and cellobiose (a cellulose breakdown product) (Lladó et al. 2015). Importantly, 

the dominant taxa in terms of DNA abundance do not necessarily match the most active taxa 

based on RNA transcripts (Žifčáková et al. 2016). Fungal and bacterial biomass in soil does 

not vary greatly between seasons, but their patterns of transcription activity do show strong 

seasonal effects (Žifčáková et al. 2016).There is evidence for some degree of functional 

redundancy in litter-decomposing communities (Purahong et al. 2015). 

Mixed communities of bacteria show greater decomposition ability in wood than 

individual species (Schmidt & Liese 1994), which implies that bacterial contributions to wood 

decomposition may have been underestimated. Nonetheless, total bacterial decomposition 

is likely to remain negligible compared to fungi, due to the latter’s size and superior access 

to material: factors which would also allow fungi to decompose wood at a faster rate. One 

situation in which bacteria do play a major role in wood decomposition is in wet/waterlogged 

wood such as cooling towers and archaeological structures; the low oxygen concentrations 

under these conditions are inhibitory to most fungi, leaving bacteria as major agents of 

decomposition (Kim & Singh 2000). A fluid-filled environment is also far more conducive to 

bacterial movement (facilitating colonisation) than a dry material. Bacterial wood 

decomposition is usually slow and incomplete, and thus wooden artefacts can be preserved 

for centuries under these conditions (Björdal 2012).  

Bacterial wood decomposition is often described based on the physical patterns 

produced in the wood ultrastructure, and is can be grouped into four main types (reviewed 

Greaves 1971; Clausen 1996; Kim & Singh 2000). These categories are based on the 

morphology of wood substratum following decay, rather than the taxonomic affiliations of 

the bacteria involved. ‘Tunnelling’ bacteria decay a convoluted path inside the cell walls (Kim 

& Singh 2000), which they may enter via pit chambers (Greaves 1969). They can act on all 

components of the cell wall and may be able to degrade/modify lignin, at least to some 

extent (Kim & Singh 2000). ‘Erosion’ bacteria create depressions in the wall from inside the 

lumen, which follow the path of cellulose microfibrils; they rarely affect the middle lamella, 

and probably lack the ability to degrade lignin (Greaves 1969; Kim & Singh 2000). ‘Pitting’ 
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bacteria produce small, shallow indentations (Greaves 1971); the term is somewhat 

confusing, given that bacteria often are associated with pits connecting cells. ‘Cavitation’ 

bacteria cause diamond-shaped cavities inside cell walls, possibly involving the production 

of diffusible enzymes (Kim & Singh 2000). Bacteria are often associated with pits between 

wood cells, and decomposition activity in these areas can greatly increase the permeability 

of the wood (Greaves 1969). 

 

2.7. Bacterial-fungal community interactions 

2.7.1 Community competition and co-operation  

It is not difficult to envisage why fungal-bacterial co-existence in wood could lead to 

conflict. Both may compete for the same substrates; bacteria may remove the products of 

fungal extracellular enzyme decomposition (effectively microbial kleptoparasitism); and 

either group may regard the other as a food resource. Certainly wood-decay fungi have an 

arsenal of competitive strategies capable of deployment (Boddy 2000). Bacteria described as 

closely associated with Phanerochaete chrysosporium were all proficient at utilising lignin 

breakdown products in vitro, supporting the idea that they gained nutrition from fungal 

activity (Seigle-Murandi et al. 1996). 

Studies show that the introduction of Hypholoma fasciculare can alter the 

abundance and community composition of bacteria within wood (Folman et al. 2008; de 

Boer et al. 2010), and rapid pH change has been suggested as a possible mechanism (de Boer 

et al. 2010). Whether this is representative of a natural situation is uncertain: bacteria were 

very abundant in more decayed H. fasciculare-colonised wood in a field scenario, which could 

be due to bacterial recovery over time, or the proliferation of fungus-tolerant bacteria 

(Valásková et al. 2009). Inoculation with Phlebiopsis gigantea lowered bacterial species 

richness in stumps after 12 months, although the effect had disappeared by 6 years post-

inoculation (Sun et al. 2013). It is possible that direct fungal-bacterial competition occurs in 

wood similar to that observed in soil, where experimental inhibition of bacteria results in 

accelerated fungal growth indicative of competitive release (Rousk et al. 2008; Rousk et al. 

2010). Intriguingly, the competitive outcome appears to depend on the ambient pH: fungi 

prevail at low pH, bacteria at higher pH (Rousk et al. 2010). This is salient in light of the major 

pH modification – typically lowering – that fungi effect in wood (de Boer et al. 2010). 

There is much in vitro evidence for antagonism amongst saproxylic micro-organisms, 

both of fungi against bacteria (Janes et al. 2006; Popova et al. 2009) and of bacteria against 

fungi (Murray & Woodward 2003; de Boer et al. 2007; Caldeira et al. 2008; Boaisha 2012). 
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This is not necessarily evidence for antagonism in situ, given that the effect can depend on 

the culture medium (Murray & Woodward 2003; Boaisha 2012). In addition, soil bacteria 

with little or no anti-fungal activity on their own (Pedobacter sp. and Pseudomonas sp.) can 

show considerable fungal inhibition when in combination, either as a collaborative effort or 

a by-product of antagonism towards each other (de Boer et al. 2007).  

Conclusive evidence of fungal-bacterial mutualism requires demonstration of a 

benefit to both partners. Although this has been demonstrated in a variety of habitats (Frey-

Klett et al. 2011), there is a shortage of clear examples in terrestrial dead-wood. There are 

reports of basidiomycetes gaining more biomass and decaying wood faster in the presence 

of yeasts and nitrogen-fixing bacteria than in their absence (Blanchette & Shaw 1978). 

Moreover, SEM revealed close physical association between the mycelial fungi, yeasts and 

bacteria (Blanchette & Shaw 1978). H. fasciculare and Resinicium bicolor decompose wood 

significantly faster in the presence of bacteria than alone; Heterobasidion annosum displayed 

the same effect only if bacteria were added after the fungus had become established 

(Murray & Woodward 2003). However, in other instances, bacteria had no effect on H. 

fasciculare decomposition (Weißhaupt et al. 2013). Such variability could be influenced by 

bacterial community composition, fungal intra-specific variation, or environmental 

conditions. Increased decomposition may be attributable to bacterial nutrient provision (e.g. 

vitamin production (Ghignone et al. 2012) or N-fixation), or up-regulation of fungal enzymes 

due to the removal of breakdown products (Murray & Woodward 2003; de Boer et al. 2005). 

Whilst the latter scenario would represent facilitation in ecosystem process terms, the 

benefit to the fungus is questionable, depending on whether faster decomposition translates 

to increased fungal growth, or simply to decreased efficiency due to bacterial consumption 

of breakdown products. This could be particularly disadvantageous to fungi with an 

ecological strategy that involves slowly decomposing wood over a long period, as with some 

xylariacious ascomycetes (Boddy et al. 1989). 

There are examples of bacterial-fungal interactions that benefit at least one party 

with (currently) no evidence of harm to the other, suggesting at least a commensal 

association. There is also in vitro evidence for growth enhancement, which should be 

regarded with the same caveats as in vitro antagonism. For example, a bacterium of the 

Burkholderia cepacia complex, isolated from a Pleurotus ostreatus fruit body, showed 

increased growth in the presence of P. ostreatus mycelium (Yara et al. 2006). A 

Curtobacterium sp. from dead wood promoted growth of Stereum sp. – although it was the 

only one out of 24 culturable strains to do so (Kamei et al. 2012). Notably, Streptomyces from 
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woodland soil showed negative or neutral influences on mycorrhizal and pathogenic fungi, 

yet all consistently and markedly promoted growth of the white-rot fungus Phanerochaete 

chrysosporium; it may be salient that none of these Streptomyces strains showed ligninolytic 

activity themselves (Bontemps et al. 2013). 

The fungal-migratory bacterium Paraburkholderia terrae BS001 (see Section 2.4.3) 

has been demonstrated to protect a (non-wood-decay) fungus from inhibition by the 

fungicide cycloheximide or metabolites from the antagonistic bacterium Pseudomonas 

fluorescens CHA0 (Nazir et al. 2014). This raises the possibility of a true mutualism, whereby 

P. terrae BS001 gains access to resources and in return affords protection to its fungal host. 

The level of protection depended on the identity of the fungus, and, for reasons unknown, 

the timing of bacterial arrival (Nazir et al. 2014). 

2.7.2 Bacterial endosymbiosis and intimate hyphal associations 

 Bacteria co-exist endosymbiotically with arbuscular mycorrhizal fungi (Bonfante & 

Anca 2009), but such an association has yet to be conclusively demonstrated for wood-decay 

fungi. It is likely that bacteria do occur within the hyphae of wood-decay fungi, as they have 

also been found inside ectomycorrhizal hyphae (Bertaux et al. 2005), plant-pathogenic fungi 

(Partida-Martinez & Hertweck 2005), a range of endophytic fungi (Hoffman & Arnold 2010) 

and the soil saprotroph Mortierella elongata (Sato et al. 2010). Intrahyphal existence does 

not necessarily indicate true endosymbiosis, which implies active interaction between living 

cells (Lumini et al. 2006). Rather, bacteria may enter compromised or senescent hyphae 

opportunistically and without vertical transmission (de Boer et al. 2005; Lumini et al. 2006). 

This distinction is not always made clearly in the literature on fungal ‘endosymbionts’, nor is 

it always recognised that bacteria may associate intimately but extracellularly with 

mycelium. 

 Where true endosymbiosis does occur, the extent of its implications are illustrated 

by the well-characterised association between the plant-pathogenic fungus Rhizopus 

microsporus and its bacterial endosymbiont, Paraburkholderia rhizoxinica (Partida-Martinez 

& Hertweck 2005). The toxin rhizoxin forms a key part of R. microsporus pathogenicity, yet 

is synthesised not by the fungus but by the bacteria within it. Vertical transmission of the 

bacteria is guaranteed, as R. microsporus has lost the ability to sporulate in the absence of P. 

rhizoxinica (Partida-Martinez et al. 2007b). P. rhizoxinica is also highly competent to colonise 

R. microsporus hyphae from the outside by localised chitinase activity that does not cause 

fungal lysis (Moebius et al. 2014). Colonisation relies on both the type II and type III secretion 

systems (Lackner et al. 2011a; Moebius et al. 2014). Pertinently, these secretion systems 
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have been implicated in other fungus-bacteria interactions (Nazir et al. 2017), such as 

mycorrhiza formation, described as the ‘helper bacteria effect’ (Cusano et al. 2011); 

mycophagy (Mela et al. 2012); co-migration (Warmink & van Elsas 2009; Nazir et al. 2012; 

Nazir et al. 2013; Nazir et al. 2014; Haq et al. 2016; Yang et al. 2016); and an undefined 

bacteria-fungus association (Warmink & van Elsas 2008).  

 Aside from true endosymbiosis, there is evidence that wood-decay fungi form 

intimate mycelial associations with bacteria (Seigle-Murandi et al. 1996; Lim et al. 2003; Yara 

et al. 2006). For example, bacteria have been observed to co-exist with ten strains of 

Phanerochaete chrysosporium (Seigle-Murandi et al. 1996), although Janse et al. (1997) 

failed to isolate bacteria from five strains of the same fungus, including one described by 

Seigle-Murandi et al. (1996). Thirty-two other wood-rot fungi tested negative, but where 

bacteria were present on P. chrysosporium, pure cultures of the fungus could not be 

established even from conidiospores, suggesting that bacteria may be within the hyphae and 

vertically transmitted (Seigle-Murandi et al. 1996). Similarly, Paraburkholderia sordidicola 

was isolated from two strains of Phanerochaete sordida, and bacteria-free fungal cultures 

could not be established (Lim et al. 2003). 

2.7.3 Mycophagy and predation 

From mycelial associations, it is a small step to bacterial mycophagy (fungus-eating): 

the active utilisation of living fungal matter for bacterial growth (Leveau & Preston 2008). 

Given that bacteria are smaller than fungi, and do not kill the entire host organism, bacterial 

mycophagy is more analogous to parasitism than predation. There is also potential for 

mutualistic mycophagy, where bacteria ‘pay their way’ by provision of specific nutrients or 

degrading toxins (Leveau & Preston 2008). Endosymbiosis can be regarded as a specialised 

form of mycophagy (Leveau & Preston 2008).  

An increasing body of evidence suggests that glycerol is a favoured carbon source for 

many mycophagous bacteria, although so far none of this evidence is derived directly from 

wood. In liquid culture Paraburkholderia terrae BS001 stimulates glycerol release by the 

fungus Lyophyllum sp. strain Karsten, and the glycerol is apparently consumed by the 

bacteria (Nazir et al. 2013). Whilst this ability has not yet been tested in an ecologically 

realistic situation, the P. terrae BS001 genome encodes glycerol transporters that are unique 

among the Paraburkholderia, possibly linked to its fungus-associated lifestyle (Haq et al. 

2014). Paraburkholderia rhizoxinica, the Rhizopus endosymbiont, likewise possesses genes 

involved in glycerol metabolism and can utilise glycerol as a carbon source (Partida-Martinez 

et al. 2007a; Lackner et al. 2011b). The mycophagous bacterium Collimonas fungivorans is 
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also capable of metabolising glycerol (de Boer et al. 2004). In several 

Burkholderia/Paraburkholderia species, glycerol induces production of antibiotics, including 

the antifungal pyrrolnitrin (Depoorter et al. 2016). 

True mycophagy can be difficult to demonstrate, as many bacteria may feed 

saprotrophically on dead hyphae or passively on fungal exudates, whilst others may lyse 

hyphae for reasons other than nutrition (Leveau & Preston 2008). Evidence for mycophagy 

in wood is limited. A strain of Streptomyces violaceusniger isolated from bark inhibited fungi 

by endochitinase production, but only after being ‘conditioned’ by exposure to chitin (a 

major component of fungal cell walls) (Shekhar et al. 2006). This is an example of probable 

mycophagy where it has not yet been demonstrated that the bacteria fulfil the criterion of 

using fungal material for growth. Bacteria closely related to the mycophagous Collimonas 

fungivorans have been found on mycelial cords of the white-rot fungus R. bicolor (Folman et 

al. 2008). Collimonas is able to use fungal hyphae as a sole carbon source, and apparently 

uses the fungal exudate oxalic acid as a signal molecule to locate hyphae (Rudnick et al. 

2015). The abundance of Collimonas cells has been observed to be higher in forest soils than 

in either grassland or ex-arable soils (Höppener-Ogawa et al. 2007). The further observation 

that collimonads can alter the fungal community composition in soil microcosms indicates 

their potentially far-reaching importance (Höppener-Ogawa et al. 2009).  

 Conversely, there is also evidence for wood-decay fungi feeding on bacteria; for 

example, the physical disappearance of bacteria cells following fungal inoculation, and/or 

the appearance of bacterial nutrients in mycelium under starvation conditions (Folman et al. 

2008; Weißhaupt et al. 2011). Wood decay fungi have been observed to lyse bacterial 

colonies in culture, including consumption of the bacteria that were decomposing dead 

nematodes (Tsuneda & Thorn 1994). Again, such associations could be mutualistic if the 

fungus, despite consuming some bacterial cells, provided bacteria with nutrition and/or 

habitat. This seems to be the case for the soil saprotroph Morchella crassipes, which showed 

reciprocal carbon exchange with Pseudomonas putida but lysed some of the bacteria to feed 

the nutrient-intensive process of sclerotia formation: a situation that has been described, 

controversially, as fungal farming of bacteria (Pion et al. 2013).  

 

2.8. Conclusions and future perspectives 

Despite the many gaps in our knowledge of wood-dwelling bacteria, a picture 

emerges of a diverse and dynamic community, intimately linked to their physical habitat and 

the fungi they share it with. The complexity of these potential interactions, and the 
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challenges associated with wood as a study system, mean that gaining a clear understanding 

of this environment will require the assembly of many ‘jigsaw pieces’ of information. The 

ultimate goal in researching fungus-bacteria interactions in wood is a functional 

understanding of how fungi and prokaryotes interact, in terms of outcome for each partner, 

mechanisms of interaction, and effects on the process of wood breakdown. Before such 

questions can be addressed, it is first necessary to ascertain which organisms are present 

and their activities within the dead-wood environment. Outstanding questions include: 

- What is the origin of bacteria in wood; how and over what time-scale does colonisation 

occur? 

- What are the major biotic and abiotic determinants of bacterial communities, and by 

what mechanisms do these operate? 

- Are interactions with fungi predominantly beneficial or antagonistic? Does one partner 

consistently benefit at the expense of the other? 

- How, and to what extent, do bacteria influence ecosystem-level flows of carbon and 

nitrogen in the context of dead wood? 

 

One of the major features that emerges with regard to fungal-prokaryote 

interactions is just how hard it can be, in any given case, to distinguish the exact identity of 

the association. If fungal growth increases in the presence of a bacterium (or vice versa), is it 

mutualism, commensalism or parasitism? Do we truly see mycophagy rather than 

saprotrophy, endosymbiosis rather than opportunism? When fungi alter the bacterial 

community, are they selecting for their specific symbionts or simply unable to out-compete 

the remaining bacteria – or a mixture of the two? Such associations can be deceptively hard 

to disentangle.  

Happily, a suite of methods is coming of age that will hopefully assist in answering 

such questions. Metagenomics gives a snapshot not just of the taxonomic identities of the 

community, but also of their genomic potential (although it still has limited ability to marry 

the two). Metatranscriptomics and metaproteomics offer insight into which of these 

potential abilities are realised in a particular situation. Metabolomics explores the complete 

metabolic signature of a microbial community under given conditions. At the same time, new 

culture methods offer hope for isolating key community players, allowing physiological 

characterisation and manipulative experiments (Ling et al. 2015; Oberhardt et al. 2015; 

Kielak et al. 2016a). Each of these techniques comes with associated limitations, pitfalls and 
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benefits, and it will require judicious use of these approaches, combined with appropriate 

statistical and mathematical methods, to pick apart fungal-prokaryote associations.  

The overwhelming conclusion regarding the current state of knowledge is that, 

despite the work already done on saproxylic bacteria and their interactions with fungi, we 

have still barely scratched the surface. Results can be disparate or even contradictory 

depending on the environmental conditions, identity of the organisms involved, or methods 

employed, frustrating the chance of drawing together a robust theoretical framework. With 

so much ground still to cover, the microbiota of dead wood remains a lively and under-

explored area of ecological research, but one that is likely to be highly rewarding and will be 

furthered by deployment of modern genomic and post-genomic approaches.
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Chapter 3. Bacterial qPCR primers co-amplify fungi 

 

 

3.1 Abstract  

 Quantitative PCR (qPCR) depends on primer specificity in order to draw meaningful 

conclusions. Universal 16S rRNA gene bacterial primers used for qPCR and other applications 

were screened in silico against a fungal database and found to match perfectly against 

sequences therein. Two pairs of qPCR primers were also tested in vitro on mixed bacterial 

and fungal DNA; both amplified fungal DNA, sometimes to the exclusion of a bacterial 

product. These results demonstrate that universal bacterial primers targeting 16S rRNA gene 

sequences are not specific in samples with a high fungal abundance. They underline the 

importance of validating primer specificity in a given environment before use.   
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3.2 Introduction 

Molecular methods have revolutionised the field of microbial ecology, enabling 

studies to move beyond the culturable fraction and encompass the so-called ‘microbial dark 

matter’ (Solden et al. 2016). Consequently, traditionally challenging environments and 

communities have become amenable to study, such as the bacterial component of dead-

wood microbiota (Rinta-Kanto et al. 2016). Explicitly recognising the assumptions and 

limitations of these powerful tools is an ongoing challenge (e.g. Orgiazzi et al. 2015). 

Quantitative PCR (qPCR) is a widely used and valuable tool in microbial ecology. It 

uses a fluorescent reporter to quantify the accumulation of amplicons during a PCR: either a 

dye that intercalates with double-stranded DNA, or a probe that fluoresces when bound to 

an amplicon. By monitoring the fluorescent signal, the progress of the reaction can be 

followed in real time. Extrapolating this information back in time produces an estimate of 

how many copies of the target region were present in the starting material. However, qPCR 

has frequently suffered from use of poor methodology, and a lack of transparency in 

reporting of methods (Bustin et al. 2009; Bustin et al. 2013). The introduction of the MIQE 

guidelines (Minimum Information for publication of Quantitative real-time PCR Experiments) 

has increased awareness of the importance of proper method validation and reporting, but 

the majority of papers still do not adhere to the guidelines (Bustin et al. 2013). Primer 

specificity is of critical importance as, unlike in endpoint PCR, the amplicons are not subject 

to identification methods such as DGGE or sequencing.  

One common use for qPCR is quantifying total bacterial abundance in mixed 

microbial samples. To that end, a multiplicity of universal bacterial primers, mostly targeting 

the 16S rRNA gene, is used to capture diversity. An idealised set of universal bacterial primers 

would amplify all bacterial taxa whilst excluding archaea and eukaryotes. However, there are 

reports of universal bacterial primers co-amplifying eukaryotic DNA when it is present in 

large quantities (e.g. in host tissue samples) (Huws et al. 2007; Galkiewicz & Kellogg 2008). 

Here, evidence is presented that commonly-used universal 16S rRNA gene bacterial also 

amplify fungal DNA and, therefore, may not be reliable in quantifying bacteria in 

environments where fungi are relatively abundant. 

 

3.3 Materials and methods 

Nine commonly-used universal bacterial 16S primer sets (Table 3.1) were screened 

in silico using Primer-BLAST (Ye et al. 2012) implemented in R by the package primerTree (R 

Development Core Team 2011; Hester 2016), with database ‘refseq representative genomes’ 
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and organism ‘Fungi’ (NCBI Resource Coordinators 2016; O’Leary et al. 2016). These primer 

sets are used for a variety of applications, including amplicon sequencing, DGGE and qPCR. 

Where primers included degeneracies, all possible forward and reverse combinations were 

screened. To confirm that the results were supported in vitro, primer set 519F-907R 

(Schwieger & Tebbe 1998) was selected for further testing.  

Fungal DNA was extracted from pure cultures of Hypholoma fasciculare, Trametes 

versicolor and Vuilleminia comedens (Cardiff University Culture Collection). Mixed-

community DNA was obtained from soil samples taken from three locations in the Cardiff 

University grounds: flowerbed, lawn and under a tree (Quercus sp.). Finally, to represent a 

fungus-rich environment, DNA was obtained from Fagus sylvatica wood colonised with the 

above wood decay basidiomycetes and field-exposed for 1 yr (Hiscox et al. 2016; Chapter 4). 

DNA was extracted from all samples using the PowerSoil® kit (MO BIO, Carlsbad, USA), 

incorporating a bead-beating step (3 x 20 sec at 4 m sec-1 in a MP FastPrep®-24 bead beater). 

PCR with fungal primers gITS7F-ITS4R (targeting the internal transcribed spacer 

region of the rRNA gene; Ihrmark et al. 2012) revealed very low fungal DNA content in the 

soil extractions. PCR with bacterial primers was conducted in 50 µl reactions containing 1 µl 

DNA, 400 nM each primer (MWG Eurofins, Ebersberg, Germany), 5 µg BSA (Promega, WI, 

USA), 0.025 U µl-1 Taq polymerase (PCR Biosystems, London, UK) in supplied buffer, amplified 

in a Dyad DNA Engine Peltier thermal cycler (Bio Rad, Herts, UK) for 95°C for 5 min, 30 x [95°C 

for 30 s, 55°C for 1 min, 72°C for 1 min], and then 72°C for 7 min. To confirm that the bands 

in fungus-only samples derived from non-specific amplification rather than hyphal-

associated bacteria, these bands were cut out, purified with the QIAQuick gel extraction kit 

(Qiagen, Hilden, Germany), and Sanger sequenced by MWG Eurofins.  

To try to quantify thresholds for non-specific amplification, dilution series were 

prepared for DNA from H. fasiculare DNA and the flowerbed soil DNA; three ‘gradient’ series 

were then prepared and amplified with the universal bacterial 16S rRNA gene primer sets 

519F-907R (Schwieger & Tebbe 1998) and 338F-518R (Fierer et al. 2005). In gradient one, 

fungal DNA decreased from 2.9 µg ml-1 to 2.9 x 10-7 µg ml-1 in tenfold dilution increments, 

whilst bacterial DNA remained constant at 25.8 µg ml-1. In gradient two, bacterial DNA 

decreased from 25.8 µg ml-1 to 2.58 x 10-6 µg ml-1 in tenfold dilution increments, whilst fungal 

DNA remained constant at 2.9 x 10-2 µg ml-1. In gradient three, fungal DNA decreased whilst 

bacterial DNA increased according to the above dilution series. Products were analysed by   
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Table 3.1 Universal bacterial primer pairs used in the Primer-BLAST against the fungal 

database. 

* N.B. The exact sequences from Walters et al. (2016) are given as they appear in the Earth 

Microbiome Project official protocol, and differ slightly from the originals given in Caporaso 

et al. (2011). 

  

Primer 

set 

Source Sequence Notable use 

27F-

1492R 

Weisburg et al. 1991 AGAGTTTGATCCTGGCTCAG 

TACCTTGTTACGACTT 

Very widely used universal 

bacterial primers 

27F-

534R 

Shakya et al. 2013 AGAGTTTGATYMTGGCTCAG 

TYACCGCGGCTGCTGG 

Captured a mock community 

better than other primers 

(Shakya et al. 2013) 

338F-

518R 

Fierer et al. 2005 ACTCCTACGGGAGGCAGCAG 

ATTACCGCGGCTGCTGG 

Used to quantify bacteria in 

fungus-decayed wood (Rinta-

Kanto et al. 2016) 

357F-

518R 

Muyzer et al. 1993 CCTACGGGAGGCAGCAG 

ATTACCGCGGCTGCTGG 

 

357F-

926R 

Jumpstart Consortium 

Human Microbiome 

Project (HMP) 2012 

CCTACGGGAGGCAGCAG 

CCGTCAATTCMTTTRAGT 

Human Microbiome Project 

515F-

806R* 

Caporaso et al. 2011/ 

Walters et al. 2016 

GTGYCAGCMGCCGCGGTAA 

GGACTACNVGGGTWTCTAAT 

Earth Microbiome Project 

519F-

907R 

Schwieger and Tebbe 

1998 

CAGCAGCCGCGGTAATAC 

CCGTCAATTCCTTTGAGTTT 

 

968F-

1378R 

Heuer et al. 1999 AACGCGAAGAACCTTACC 

CGGTGTGTACAAGGCCCGGGAACG 

 

1048F-

1175R 

Maeda et al. 2003 GTGSTGCAYGGYTGTCGTCA 

ACGTCRTCCMCACCTTCCTC 

Recommended for coverage 

(Horz et al. 2005) 
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Figure 3.1 Distribution of the number of mismatches for each of the primer sets in Table 

3.1 when searched against the fungal database. The top 25 hits were considered from each 

search; therefore, total hits for degenerate primer sets = 25 * number of possible 

combinations. 
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electrophoresis on a 1.2% agarose gel with Sybr®Safe dye (ThermoFisher, Waltham, MA, 

USA) for 40 min at 90 V. 

 

3.4 Results and Discussion 

BLAST screening showed that every one of the 16S rRNA gene primer pairs under 

consideration hit against at least one fungus with no mismatches (Fig 3.1). Four individual 

primers from these pairs (338F, 357F, 518R and 907R) were also screened by Huws et al. 

(2007), who likewise identified perfect hits against fungal sequences. Particularly notable are 

the 338F-518R primers, which have been described as fungal-exclusive (Fierer et al. 2005). 

The discrepancy probably arises because Fierer et al. (2005) tested the primers with soil 

samples, which typically have a relatively low fungal content, and sequenced only 20-25 

clones. For 27F-1492R, similar non-target amplification has been seen from coral (Galkiewicz 

& Kellogg 2008). Across the range of primers tested, hits occurred both against mitochondrial 

and genomic fungal DNA. The results presented here are not exhaustive, as the number of 

alignments returned was restricted to 25 and additional search criteria were applied. Also, 

the database resources are evolving; over time, new records may be added and existing 

records may be revised. The analysis presented here reflects content available for query on 

5th January 2017. 

One possible source of perfect matches is bacterial contamination of some fungal 

genomes in the database (Laurence et al. 2014). If this were the case, a discrete cluster of 

hits would be expected with no mismatches, and all other hits with a large number of 

mismatches. Contrary to this, there was a continuous distribution of mismatches for most 

primer sets (Fig 3.1), suggesting that genome contamination alone is not sufficient to explain 

these results. Fungi represented multiple phyla, with both yeast and mycelial lifestyles. Just 

considering hits with ≤ 2 mismatches, 28 fungal species were represented, and increasing 

this up to 10 mismatches hit 177 species. 

All samples tested showed a PCR product when amplified with 519F-907R; the fungal 

cultures produced a band of approximately 600 base pairs, larger than the approximately 

400 base pair band in the bacterial samples (Fig 3.2a). Both bands were present in the wood 

samples. Sequencing of bands from the fungal samples, and using BLASTn to search against 

the NCBI database, returned sequences from Hypholoma sp., Trametes versicolor and 

Vuilleminia comedens; this confirmed that these products are derived from the fungi. Fungi 

are notoriously unreliable qPCR targets due to their polynucleate cells and dynamic 
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movement of nuclei in the mycelium, ruling out the possibility of using a correction factor to 

compensate (Baldrian et al. 2013). 

The results of the admixture gradients showed that, under these conditions, 519F-

907R were specific for bacteria when the ratio of bacterial : fungal DNA was ≥ 1000:1. At 

ratios between 1000:1 and 1:1, dual bands were produced, and whenever fungal DNA was 

in excess, the bacterial product disappeared (Fig 3.2b). The 338F-518R primers produced a 

bacterial product slightly larger than 200 base pairs and a fungal product slightly smaller than 

200 base pairs. This fungal product was present at all the concentrations tested, and 

excluded the bacterial products at bacterial : fungal ratios ≤ 1:1 (Fig 3.2c). The first three 

lanes in gradient three (1:106-1:102) had a second band, but this appears to be an artefact 

present when fungal DNA is in a large excess (c.f. positive control). 

One way to improve primer specificity for qPCR might be to use reporter probes 

rather than an intercalating dye. Given the extent of non-specific amplification at high 

fungus : bacteria ratios, it is dubious whether probes would be sufficient to deal with the 

problem. Even so, it remains an avenue for exploration, particularly if the target samples 

were close to the threshold.  

The results presented here indicate that many common bacterial primers are also 

capable of amplifying fungal DNA. If fungal abundance is low, even a few mismatched bases 

may prevent noticeable amplification, but higher fungal presence or perfect matches to the 

primers will result in amplification. Therefore, primers may be specific for bacteria in one 

environment but not another.  

For many applications, modest amounts of co-amplification are tolerable but for 

qPCR, target specificity is essential. These findings suggest that universal 16S rRNA gene 

based primers for qPCR are not reliable in samples containing a relatively high abundance of 

fungi, and underline the importance of checking the specificity of qPCR primers for each 

environment under investigation. 

In conclusion, many universal bacterial primers also closely match fungal sequences. 

This can result in non-target amplification in samples with a high proportion of fungal DNA, 

sometimes even to the exclusion of a bacterial product. Therefore, prior to qPCR in mixed-

community samples, primers should be carefully checked by running products on a gel and 

comparing to both bacterial and fungal positive controls. 
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Figure 3.2 Gel electrophoresis of PCR testing. (a) Amplicon products from the 519F-907R 

primer set (Schwieger & Tebbe 1998). Lanes 1&2 H. fasciculare; 3&4 T. versicolor; 5&6 V. 

comedens; 7&8 rhizosphere soil; 9&10 lawn soil; 11&12 flowerbed soil. Lanes 13-24 

contain the same samples at a 1:10 dilution. Lane 25 is an extraction kit negative control. 

Lanes 26-37 contain wood samples with mixed fungal and bacterial colonisation. Lane 38 

is the positive control (Escherichia coli), lane 39 the negative. Ladder is Hyperladder 1Kb 

(Bioline, London, UK). (b) Three concentration gradients of fungal and bacterial (soil) DNA 

amplified with the 519F-907R primer set. In gradient one (lanes 1-8), fungal DNA 

decreases, whilst bacterial DNA remains constant. In gradient two (lanes 2-16), bacterial 

DNA decreases, whilst fungal DNA remains constant. In gradient three (lanes 17-24), 

fungal DNA decreases whilst bacterial DNA increases. Lane 25 is the fungal positive 

control (H. fasciculare), lane 26 the bacterial positive control (E. coli), and lane 27 the 

negative control. (c) Concentration gradients as in (b), amplified with the 338F-518R 

primer set. 
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Chapter 4. Highly competitive fungi manipulate bacterial communities in decomposing 

wood 

 

 

4.1 Abstract 

 The bacterial communities in decomposing wood are receiving increased attention, 

but their interactions with wood-decay fungi are poorly understood. This study is the first to 

examine bacterial communities in wood in a field context whilst experimentally manipulating 

the fungi initially present. Proteobacteria and Acidobacteria were proportionally dominant, 

as in previous studies. Pre-colonising wood with decay fungi had a clear effect on the 

bacterial community, apparently via direct fungal influence; the bacterial and fungal 

communities present at the time of collection were strongly correlated with each other. Site 

was less important than fungal influence in determining bacterial communities. Wood pH 

was also a strong bacterial predictor, but was itself under considerable fungal influence. 

Certain bacterial families showed directional responses against the trend of the bacterial 

community as a whole. 
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4.2 Introduction 

Wood-decay fungi are the major terrestrial agents of wood decomposition, and 

known for their highly territorial and competitive ecological strategies (Boddy 2000; Boddy 

et al. 2017). Despite the extensive literature on inter-fungal interactions, very little is known 

about how they interact with bacteria in wood (de Boer et al. 2005). The interactions 

between fungi and bacteria in dead wood are likely to have ramifications for ecosystem 

processes, particularly the rate of wood decomposition. Given that different fungi 

decompose wood at very different rates, anything that affects fungal community 

composition will have knock-on impacts on the regulation of this nutrient source (Crowther 

et al. 2011). Although direct bacterial contributions to decomposition are likely to be modest, 

bacteria could potentially have a far greater indirect effect on decomposition rates by 

consuming the breakdown products of fungal enzymatic activity, thus preventing enzyme 

down-regulation via feedback inhibition (de Boer et al. 2005; Johnston et al. 2016). 

It is only with the rise of high-throughput sequencing that accurate bacterial surveys 

have become possible, as the culturable fraction of dead-wood-inhabiting bacteria can be as 

low as 1% (Folman et al. 2008). The surveys performed so far indicate a diverse suite of 

bacteria within decomposing wood (Zhang et al. 2008; Hoppe et al. 2014; Sun et al. 2014; 

Hoppe et al. 2015; Kielak et al. 2016; Rinta-Kanto et al. 2016). Many physical properties of 

wood, such as pH, state of decay, moisture content and C:N ratio, influence the bacterial 

community composition (Hoppe et al. 2015). Each of these can be altered by fungi activity, 

varying depending on species. This underlines the direct and indirect influence that fungi 

could exert over bacteria in wood. Microcosm studies already indicate that wood-decay fungi 

modify bacterial communities within their resource (Folman et al. 2008; Hervé et al. 2014), 

and there is evidence that certain bacterial and fungal taxa associate non-randomly in the 

field (Hoppe et al. 2014; Kielak et al. 2016).  

Bacterial diversity in wood appears to be highly heterogeneous within and between 

sites (Sun et al. 2014; Hoppe et al. 2015). Soil type (Sun et al. 2014), and the surrounding 

forest management regime (Hoppe et al. 2015) are important predictors of inter-site 

variability. At the landscape scale, pH is the major driver of soil bacterial communities and 

bacterial richness increases as pH does (Fierer & Jackson 2006; Griffiths et al. 2011). If, as is 

usually assumed, soil is the primary source of wood-inhabiting bacteria, then local soil pH 

would be expected to constrain the pool of potential colonists. Bacteria entering the wood 

would undergo a second round of selection by pH, as wood usually represents an acidic 

environment and many wood-decay fungi dramatically lower the pH of their environment 
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(de Boer et al. 2010). Under this scenario, it would be expected that bacterial diversity in 

wood would be negatively correlated with wood pH, and that this effect would be most 

obvious at sites with a high soil pH (where there is a more diverse pool of colonists). 

Fungal decomposition of wood is a dynamic process, carried out by a successional 

series of fungi. Each fungus has a particular chemical signature of decomposition (Schilling 

et al. 2015), and also varies idiosyncratically in its ability to hold territory against invaders 

(Boddy 2000; Boddy et al. 2017; Hiscox et al. 2017). These factors lead to priority effects in 

wood: distinctive patterns of successor species dictated by the identity of former colonists 

(Hiscox et al., 2015; Hiscox et al. 2016). It may be more meaningful to think of bacteria 

associating with a particular fungal community, rather than a particular fungus, with that 

community shaped by both the currently dominant fungus, and a succession of predecessors. 

There is also the possibility that priority effects operate on bacteria directly as well, due to 

the biochemical legacy of fungi that have been replaced. 

This study surveyed the bacterial community in decomposing wood at six UK 

woodland sites, with explicit reference to the fungi present. It tests three predictions: (1) 

that the bacterial community would vary depending on the identity of the original fungal 

colonist; (2) that the bacterial community would be significantly correlated with the identity 

of the fungal community present at time of sampling; and (3) that there would be inter-site 

differences in the bacterial community. In addition to testing these formal hypotheses, 

exploratory analysis was conducted to further characterise the drivers of bacterial 

community composition.  

 

Table 4.1 Fungal species used to colonise disks.  

All fungi are white-rot wood decay basidiomycetes from the Cardiff University Culture 

Collection. 

Name Strain Family Ecological strategy Acronym 

Hypholoma fasiculare HfDD3 Strophariaceae Late stage  

secondary/ tertiary 

colonist; cord former 

Hf 

Trametes versicolor TvCCJH1 Polyporaceae Early-mid stage 

secondary colonist 

Tv 

Vuilleminia comedens VcWVJH1 Corticiaceae Primary colonist Vc 
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4.3 Materials and Methods 

4.3.1 Overview 

Wood disks were lab-colonised with wood-decay fungi, and exposed for 1 yr on the 

floor at six woodland sites across the southern UK. After collection, bacterial and fungal 

communities were characterised by amplicon sequencing. The fungal analysis has been 

published elsewhere (Hiscox et al. 2016), and is only dealt with here insofar as it pertains to 

the bacterial data. 

4.3.2 Field experiment 

 Branches from beech trees (Fagus sylvatica) were felled and cut into sections approx. 

2 cm thick and 10-20 cm diameter. Wood disks were frozen after cutting, and sterilised by 

autoclaving three times in a 72-hr period. Disks were colonised for 3 months by single wood-

decay fungi (Table 4.1) on 0.5% malt agar (5 g l-1 malt, 15 g l-1 agar no. 2, LabM, UK) in 400 ml 

plastic tubs (Cater4you, UK). 25% of disks were kept sterile and frozen at -20°C as 

uncolonised controls. In autumn 2012, disks were scraped free of surface mycelium, and 

disks colonised by each of the three fungal species, with uncolonised controls, (9 replicates) 

were placed on the forest floor at random positions on a grid at each of six sites across the 

southern UK (Table 4.2). All field sites were situated in mixed deciduous woodland containing 

predominantly F. sylvatica but were otherwise unmatched, in order to encompass greater 

site diversity. 

 Disks were collected after 1 yr (autumn 2013) and transported back to the lab 

individually in sealed plastic bags. A soil sample was taken directly below each disk for pH 

analysis. Each disk was surface-sterilised with 10% household bleach, before drilling with a 

sterile drill bit at random points spaced evenly across the face of the disk. Swarf was flash-

frozen in liquid N2 and stored at -80°C. At six points on each face of the disk, chips of wood 

were removed aseptically and re-isolated onto 2% malt agar to assess pre-coloniser 

persistence. DNA was extracted from 0.3 g swarf using the MoBio PowerSoil® kit (Carlsbad, 

CA USA), replacing the vortex step with 3 x 20 s bead-beating at 4 m s-1 in a MP FastPrep®-

24. For each disk, 0.5 g from a second aliquot of swarf was added to 5 ml distilled water and 

mechanically shaken for one hr; pH was measured using a Hanna Instruments pH20 pH 

meter. Soil pH readings were taken by the same method.  

4.3.3 Molecular analysis 

 Joint fungal-bacterial community analysis was performed on four disks per 

treatment per site, with the exception of disks initially colonised with H. fasciculare at Bagley. 
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In this case, replicates were lost during the field exposure (probably due to mammal activity), 

and the treatment had to be excluded from the analysis.  

The fungal ITS2 region was amplified using gITS7 (GTGARTCATCGARTCTTG) and ITS4 

(CCTCCGCTTATTGATATGC); the ITS4 reverse primer was modified to incorporate 8-base 

identification tags (HPLC-purified, Integrated DNA Technologies, Inc, Belgium) (Ihrmark et al., 

2012). PCRs were carried out in 50 µl reactions (2.5 µl template, 300 nM tagged ITS4, 500 

nM gITS7, 0.025 U HS Taq polymerase (PCRBiosystems, UK), 10 µl supplied buffer) in a Dyad 

DNA Engine Peltier thermal cycler. The initial incubation was 5 min at 94°C; followed by 22–

30 × (30 s at 94°C; 30 s at 56°C; 30 s at 72°C) and 7 min at 72°C Triplicate PCRs per sample 

were pooled equimolarly based on image analysis using ImageJ software (Rasband, 1997-

2014), purified with the QIAQuick gel extraction kit (Qiagen, Hilden, Germany), and 

quantified with the Quant-iT PicoGreen dsDNA assay kit (Life Technologies Ltd, UK). Samples 

were sequenced on a Roche 454 GS FLX+ (Hoffman La-Roche Ltd., Germany) by the NERC 

Biomolecular Analysis Facility, Centre for Genomic Research, Liverpool, UK. 

 PCR and sequencing of the bacterial 16S rRNA gene region from the same samples 

was carried out by the Institute of Applied Biotechnologies, Prague, Czech Republic. 

Triplicate PCRs were performed using primers S-D-Bact-0341-b-S-17 

(CCTACGGGNGGCWGCAG) and S-D-Bact-0785-a-A-21 (GACTACHVGGGTATCTAATCC) 

(Klindworth et al. 2013), and the products pooled. This primer pair targets the V3-V4 region 

of the 16S rRNA gene, and shows excellent taxonomic coverage (Klindworth et al. 2013). 

Samples were sequenced on an Illumina MiSeq (v3, 2 x 300 base-pair reads) (Illumina, Inc., 

San Diego, USA) with Nextera XT assay chemistry. 

4.3.4 Sequence analysis 

Fungal sequence data were processed as described in Hiscox et al. (2016). For 

bacterial sequences, paired-end reads were joined and demultiplexed. The sequences were 

filtered to retain only those with complete, error-free primer regions, and the primers and 

barcodes were removed. USEARCH v9.0.2132 (Edgar 2010) was used to exclude sequences 

with less than 400 base pairs or more than two expected errors, before downstream analysis 

with QIIME (Caporaso et al. 2010). Chimeric sequences were identified in QIIME using 

USEARCH 61 and removed. Sequences were clustered into operational taxonomic units 

(OTUs) by open reference picking against the Greengenes 16S rRNA gene database (DeSantis 

et al. 2006) at 97% sequence similarity. Singletons (OTUs occurring only once) were removed 

at this stage. To check for fungal sequence contamination, OTU picking was repeated against 

the SILVA_119 16S/18S rRNA gene database (Pruesse et al. 2007; Quast et al. 2013). No 
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sequences were assigned to fungi, so the Greengenes OTUs were used for subsequent 

analysis. Relative abundance plots were produced in QIIME with 

summarize_taxa_through_plots.py. Fungal sequence data are archived at NCBI SRA 

(accession no. SRP052547). Bacteria sequence data are archived at the European Nucleotide 

Archive (ENA) under accession number PRJEB22364. 

4.3.5 Statistical analysis 

Analysis was performed in R (R Development Core Team 2011) using RStudio 

(RStudio Team 2016) and packages dplyr (Wickham & Francois 2016), ggplot2 (Wickham 

2009), metacoder  (Foster 2016) and vegan (Oksanen et al. 2016). All R code to reproduce 

the analyses is available in Appendix 2 as an R markdown file (Protocol S4.1; Allaire et al. 

2016).  

The nature of sequencing technology means that raw amplicon data vary hugely in 

sequence numbers (creating unequal sample sizes). This is normally dealt with by rarefying 

(randomly subsampling data to an equal numbers of observations). The practice has come 

under valid criticism, but lacks robust alternatives (McMurdie & Holmes 2014; Weiss et al. 

2017). After careful data exploration, it was decided not to rarefy the current dataset, for 

the following reasons. (1) Sequencing depth did not co-vary with any of the factors of 

interest. (2) NMDS of the bacterial data revealed that variation due to sequencing depth 

could be separated out on a single axis, independently of other predictors. (3) For OTU 

richness assessment, modelling and residual-based analysis provide a more robust and 

explicit way to deal with sequencing depth. (4) Where abundances were required for plotting 

or Procrustes analysis, proportions were used in place of raw read counts. Amplicon data are 

inherently compositional, so proportions simply scale the data to make it comparable (Lovell 

et al. 2010). 

4.3.6 Community analysis 

Permutation ANOVA (PERMANOVA; 999 permutations) was used on a Bray-Curtis 

distance matrix for formal significance testing of pre-coloniser and site effects (Anderson 

2001). Owing to the lack of post hoc tests for PERMANOVA, the dataset was then broken 

down into pairwise combinations and PERMANOVA run separately on each (Hiscox et al. 

2016). Pairwise tests were conducted for species differences between sites (not site 

differences between species) to limit the number of tests. P-values for the pairwise tests 

were subjected to the Benjamini-Hochberg false discovery rate (FDR) correction for multiple 

testing (Benjamini & Hochberg 1995). 



40 

Table 4.2 Sites used in the experiment.  

Name County Grid reference 

(lat., long.) 

Tree species present Predominant local soil 

type  

Soil pH Ground cover  

%              Species 

Gwaelod-y-

garth 

Cardiff 51.535784,  

-3.277605 

F. sylvatica, Quercus sp., Ilex 

aquifolium 

Freely draining, slightly 

acid but base-rich soil 

4.70 <5 Fern, sedge, bramble 

Usk Monmouthshire 51.672524,  

-2.953690 

Predominantly F. sylvatica, 

some Fraxinus excelsior, 

Castanea sativa and Acer 

psuedoplatanus 

Freely-draining, slightly 

acid, loamy soil 

4.68 <5 Woodrush, fern, ivy 

Tintern Monmouthshire 51.711529,  

-2.684246 

Predominantly Quercus sp, 

some F. sylvatica and  

I. aquifolium 

Freely-draining, slightly 

acid, loamy soil 

5.67 95 Bluebells, bramble, ferns, 

sedge 

Whitestone Monmouthshire 51.725378,  

-2.690553 

F. sylvatica, Quercus sp,  

A. psuedoplatanus 

Freely-draining, slightly 

acid, loamy soil 

4.95 75 Bluebells, ivy, ferns, 

bramble, ivy, wood 

anemone 

Wytham Oxfordshire 51.768902,  

-1.344022 

Predominantly F. sylvatica, 

some Corylus avellana 

Shallow lime-rich soil over 

chalk or limestone 

6.58 <5 Sedge, moss 

Bagley Oxfordshire 51.720134,  

-1.266750 

F. sylvatica, C. avellana, I. 

aquifolium 

Slowly permeable, 

seasonally wet, acid loamy 

and clayey soil 

4.52 25 Fern, bramble, sedge 

All sites were wooded, with F. sylvatica present. This table is adapted from Hiscox et al. (2016). Soil type information from Cranfield University 2015. 

The Soils Guide. Available: www.landis.org.uk. Cranfield University, UK. Last accessed 09/06/2015 
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To relate the whole bacterial and fungal communities to each other, Procrustes 

analysis was used to superimpose the two OTU tables (999 permutations). Subsequently, the 

Procrustean association metric (PAM) was extracted and regressed individually against pre-

coloniser, site, wood pH and soil pH using one-way ANOVAs (Lisboa et al. 2014). The response 

variable was natural log-transformed to meet parametric assumptions. 

The bacterial community composition between samples was visualised using non-

metric dimensional scaling (NMDS) on a Bray-Curtis distance matrix. Given that 

overdispersion in the data can introduce artefacts in distance metrics (Warton et al. 2012), 

the ordination was validated by qualitative comparison with principal components analysis 

using a Hellinger transformation for compositional data (Fig S4.1). To compare community 

composition simultaneously at multiple taxonomic levels, heat trees were plotted for the 

different treatments (Foster et al. 2017). The taxonomic composition of the samples is 

displayed in a tree format, with node size and colour dictated by the relative abundance of 

each taxon. 

4.3.7 Richness 

OTU richness was strongly correlated with sequencing depth in the raw data. To 

correct for this without discarding data by rarefying, a linear model was run with sequencing 

depth as the sole predictor. The response variable was natural log-transformed to meet 

parametric assumptions. Back-transformed residuals were calculated and plotted instead of 

the raw data, to control for sequence depth. To further characterise drivers of richness, a 

general linear model was run with sequencing depth, pre-coloniser, site, wood pH and soil 

pH as predictors. The response variable was again ln-transformed. Coefficients from the 

model were extracted and back-transformed to quantify the relative importance of the 

different predictors.  

4.3.8 Exploration of selected taxa 

 OTUs from three bacterial families (Acetobacteraceae, Acidobacteriaceae and 

Burkholderiaceae) were selected for further exploration based on their apparent association 

with fungal pre-colonisers. OTU richness within each of these families was modelled by the 

same process as for overall richness (see above), with the exception that no data 

transformation was necessary. 
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Figure 4.1 Relationships between predictors of the bacterial community. (a) wood pH 

broken down by pre-coloniser identity; (b) soil pH broken down by pre-coloniser identity; 

(c) wood pH broken down by site of origin; (d) soil pH broken down by site of origin; (e) 

relationship between wood pH and soil pH; and (f) the proportion of reads assigned to 

basidiomycetes on each site (N.B. the Hf treatment was absent at Bagley). Notches on 

boxplots represent 95% confidence intervals; where these extend beyond the quartiles, 

‘hinges’ appear on the plot. Abbreviations are control (C), Vulleminia comedens (Vc), 

Trametes versicolor (Tv), Hypholoma fasciculare (Hf). 



43 

4.3.9 Relationships between predictors 

The relationships between abiotic factors, and between the fungal community and 

abiotic factors, were explored graphically. Because wood-decay fungi are known to 

manipulate pH, one-way ANOVAs were used to assess how much of the variation in wood 

pH could be attributed to past or current fungal activity.  

 

4.4 Results 

4.4.1 Preliminary analysis of sequencing data 

Of the bacterial paired-end reads, 2 710 316 passed quality filtering and were 

grouped into 7 380 OTUs. One sample (a T. versicolor pre-colonised disk from Tintern) was 

excluded from subsequent analysis due to concerns that it had been mislabelled. 

4.4.2 Relationships between predictors 

 Soil pH varied strongly between sites. Wood pH also varied (to a lesser extent) 

between pre-colonisers and sites, but there was no relationship between wood pH and soil 

pH (Fig 4.1). Pre-coloniser identity explained 8.5% of the variation in wood pH, whereas the 

genus of the dominant fungal OTU at time of sampling explained 65.5% (adjusted R2, one-

way ANOVA). 

4.4.3 Pre-coloniser and site effects on bacterial community composition 

Axis 1 of the NMDS separated samples by pre-coloniser (specifically, H. fasciculare 

samples clustered separately to other treatments), indicating this was the most important 

source of variation (Fig 4.2a). The second axis was explained by sequencing depth (Fig S4.2). 

There was little patterning by site, other than limited clustering of samples from the Usk site 

(Fig 4.2b). Neither soil pH nor wood pH showed a clear pattern in the NMDS (Fig 4.2c-d). 

The overall PERMANOVA revealed highly significant effects of pre-coloniser and site, 

and a highly significant interaction between them (F14,68 = 1.793, P = 0.001). None of the 

pairwise tests were significant at P = 0.05 after FDR correction, but most of the results closest 

to significance separated H. fasciculare samples from other treatments at Tintern, Usk, 

Whitestone and Wytham sites (Table 4.3, Fig S4.3). 
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Figure 4.2 NMDS ordination of the bacterial community in fungus-colonised wood disks. Points 

are coloured by (a) pre-coloniser identity; (b) site of origin; (c) gradient of wood pH; (d) gradient 

of soil pH; (e) pre-coloniser persistence (colour dictated by identity, transparency by persistence); 

(f) genus of the dominant fungal OTU (only genera with three or more records are shown); (g) 

relative proportions of ascomycete and basidiomycete reads; and (h) whether the dominant 

fungal OTU belonged to a cord-forming genus (transparency dictated by % of disk held by the 

dominant OTU). Abbreviations are control (C), V. comedens (Vc), T. versicolor (Tv), H. fasciculare 

(Hf). 
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Figure 4.3 Taxonomic composition of the bacterial community in fungus-colonised wood 

disks, broken down by treatment. Stacked bar charts of family relative abundance are 

presented alongside heat trees. Node colour and size on the heat trees represent relative 

abundance for that taxon; relative read abundance is on an arbitrary scale where each 

sample sums to 100. OTUs unassigned at the Domain/Kingdom level are excluded for ease of 

visualisation. 



46 

 

Figure 4.4 Taxonomic composition of the bacterial community in fungus-colonised wood 

disks, broken down by site. Node colour and size represent relative abundance for that 

taxon. Relative read abundance is on an arbitrary scale where each sample sums to 100. 

OTUs unassigned at the Domain/Kingdom level are excluded for ease of visualisation. 
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Table 4.3 Adjusted P-values from pairwise PERMANOVA comparisons of bacterial community 

composition. 

Comparison Bagley Garth Tintern Usk Whitestone Wytham 

Control-Vc 0.064 0.064 0.092 0.711 0.291 0.064 

Control-Tv 0.092 0.064 0.064 0.257 0.064 0.073 

Control-Hf - 0.112 0.064 0.064 0.064 0.064 

Vc-Tv 0.064 0.092 0.323 0.323 0.308 0.221 

Vc-Hf - 0.128 0.064 0.064 0.064 0.064 

Tv-Hf - 0.088 0.064 0.064 0.064 0.064 

All numbers are given to three decimal places. Values in italics should be regarded with 

caution, as the between-group dispersions were unequal for those subsets of the data. Values 

in bold are those closest to significance. 

 

Proteobacteria were dominant in all treatments (Fig 4.3). The overall bacterial 

community showed notable similarity between V. comedens and H. fasciculare disks. Both 

showed enrichment in Acetobacteraceae and Acidobacteriaceae relative to the other 

treatments (Fig 4.3). All three pre-coloniser treatments were enriched in Burkholderiaceae, 

and showed a decrease in Actinobacteria and a slight reduction in Firmicutes. Also 

noteworthy was the prominence of Chitinophagaceae in all treatments. A number of taxa 

also showed difference in relative abundance between sites (Fig 4.4): Bagley had 

proportionately more Acidobacteria and fewer Gamma-proteobacteria than the other sites, 

whilst Garth was the only site where Firmicutes were prominent. Most sites showed 

reciprocal abundance between Enterobacteriaceae and Xanthomonadaceae.  

4.4.4 Fungal community effects on bacterial community composition 

 Of all the fungal pre-colonisers, only H. fasciculare could still consistently be re-

isolated after 1 yr (Fig 4.2e). A diverse range of fungi colonised the disks; considering just the 

dominant OTU within each disk, 18 identifiable genera were represented across the 

experiment, of which nine were dominant in three or more disks each (Fig 4.2f). The relative 

proportion of ascomycetes versus basidiomycetes within each disk did not produce a 

discernible pattern in the bacterial community (Fig 4.2g). The clearest separation in bacterial 

communities arose between samples with a dominant fungal OTU belonging to a genus of 

known cord-formers, compared to those where the dominant OTU was not a cord-forming 

species (Fig 4.2h). 
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Procrustes analysis produced a correlation of 0.571 between bacterial and fungal 

communities (Procrustes sum of squares = 0.674, P = 0.001). Of the residual variance in 

bacterial-fungal occurrence (Fig 4.5), 5.0% was explained by pre-coloniser identity, 15.7% by 

site and 11.8% by wood pH (adjusted R2, one-way ANOVAs). Soil pH had no explanatory 

power in fungal-bacterial co-occurrence.  

4.4.5 Drivers of bacterial richness 

Bacterial OTU richness was higher in the control than in pre-colonised disks (Fig 4.6a; 

Table 4.4). The only site to show a marked difference in bacterial richness was Usk, which 

had on average fewer bacterial OTUs than the other sites (Fig 4.6b). There was an upward 

trend in richness with increasing wood pH, but no effect of soil pH (Fig 4.6c-d). Soil pH had a 

model coefficient of 1.0981, and wood pH of 1.395, i.e. a one-unit increase in soil pH 

corresponded to a 10% increase in OTU richness, compared to a 39% increase in richness for 

Figure 4.5 Procustean association metric (PAM) between the fungal and bacterial 

communities. PAM shows the residual variation plotted against (a) pre-coloniser identity; 

(b) site of origin; (c) wood pH (coloured by pre-coloniser); and (d) soil pH (coloured by 

site). Individual data points are overlaid on boxplots. Notches on boxplots represent 95% 

confidence intervals; where these extend beyond the quartiles, ‘hinges’ appear on the 

plot. Abbreviations are control (C), V. comedens (Vc), T. versicolor (Tv), H. fasciculare (Hf), 

Whitestone (WS). 
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the same change in wood pH (Table 4.4). Therefore, when other factors were controlled for, 

wood pH was almost four times as important as soil pH in dictating bacterial richness. 

Bacterial richness was lower in basidiomycete-dominated disks compared to ascomycete-

dominated disks (Fig 4.6e), and decreased substantially when the dominant fungal OTU 

belonged to a cord-forming genus (Fig 4.6f).  

4.4.6 Focus on taxa of interest 

 Burkholderiaceae showed an increased OTU richness and relative abundance in the 

pre-colonised samples compared to the control (Fig 4.3; Fig 4.7a). Acidobacteriaceae showed 

the same pattern, but only for the V. comedens and H. fasciculare pre-colonised samples (Fig 

4.7d). Acetobacteraceae was notable for its dramatic increase in H. fasciculare pre-colonised 

samples (Fig 4.7g). Richness for each of these families varied slightly and idiosyncratically 

between sites (Fig 4.8). All three showed a distinct negative trend with increasing wood and 

soil pH, although wood pH was twice as important as soil pH for Acidobacteriaceae and four 

times as important for Burkholderiaceae (Fig 4.7; Table 4.4). Statistical modelling showed 

that the pre-coloniser relationships for each family held true even when pH was controlled 

for (Table 4.4). None of these three bacterial families showed any trend based on the relative 

proportion of basidiomycetes in the disk, but all had higher richness when the dominant 

fungal OTU was a cord-former (Fig 4.9). 

 

4.5 Discussion 

This is the first study to examine fungus-bacteria associations in wood whilst 

experimentally manipulating the fungal colonisers in the field. It revealed that the bacterial 

community is dependent on the ecological strategy of the dominant fungus, with 

competitive secondary colonisers reducing bacterial diversity and driving community shifts. 

This controlling effect of the dominant fungus was a more important determinant than either 

resource history or geographical location. The strong effect of wood pH hints that pH 

manipulation may be a key means by which wood-decay fungi exert their influence. 

Forest soils are dominated by Acidobacteria, Actinobacteria, Proteobacteria and 

Bacteroidetes (Lladó et al. 2017). The relative dominance of Proteobacteria and 

Acidobacteria in the present study is consistent with previous studies of bacteria in wood 

(Rinta-Kanto et al. 2016; Chapter 2). Firmicutes were poorly represented in the wood and 

particularly in the fungal-pre-colonised samples, perhaps because they are more associated 

with mineral rather than organic soil horizons (Lladó et al. 2017). However, Hoppe et al. 

(2015) found both Firmicutes and Actinobacteria were noticeable components of wood-   



50 

Table 4.4 Estimates from general linear models on OTU richness. 

Coefficient Overall 

richness 

Burkholderiaceae Acidobacteriaceae Acetobacteraceae 

Control-Vc 0.896‡ 12.8 9.34 0.754 

Control-Tv 0.831‡ 14.3 -4.67 -2.61 

Control-Hf 0.776‡ 13.6 10.5 3.85 

Vc-Tv 0.928‡ 1.44 -14.0 -3.36 

Vc-Hf 0.866‡ 0.814 1.21 3.10 

Tv-Hf 0.933‡ -0.627 15.2 6.46 

Bagley-Garth 0.933‡ -17.7 -0.725 7.16 

Bagley-Tintern 1.118‡ -10.7 3.52 6.04 

Bagley-Usk 0.801‡ -10.4 -2.73 4.66 

Bagley-

Whitestone 

1.0978‡ -15.1 -3.19 3.74 

Bagley-

Wytham 

0.967‡ -9.89 4.03 8.01 

Garth-Tintern 1.199‡ 7.00 4.24 -1.12 

Garth-Usk 0.859‡ 7.27 -2.01 -2.51 

Garth-

Whitestone 

1.177‡ 2.52 -2.47 -3.42 

Garth-Wytham 1.0371‡ 7.75 4.76 0.846 

Tintern-Usk 0.716‡ 0.275 -6.25 -1.39 

Tintern-

Whitestone 

0.982‡ -4.48 6.71 -2.30 

Tintern-

Wytham 

0.865‡ 0.758 0.516 1.97 

Usk-

Whitestone 

1.371‡ -4.75 -0.462 -0.911 

Usk-Wytham 1.208‡ 0.483 6.76 3.35 

Whitestone-

Wytham 

0.881‡ 5.23 7.23 4.27 

Wood pH 1.395‡ -16.8 -11.3 -4.52 

Soil pH 1.0981‡ -3.60 -5.67 -4.51 

Sequencing 

depth 

1.0000176‡ 0.000526 0.000495 0.000312 
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For the overall richness model, estimates were obtained by backtransforming coefficients 

from the model (marked ‡). Values represent the ratios of geometric means when moving 

between levels (categorical predictors, i.e. Vc has 89.6% richness of the control) or for a one 

unit increase in the predictor (continuous predictors, i.e. a one-unit increase in wood pH 

corresponds to a 39.5% increase in OTUs). The individual family models did not require 

transformation, so each estimate simply represents the average increase in OTU numbers 

between levels (categorical predictors) or the average increase in OTU numbers for a one-

unit increase in the predictor (continuous predictors). All numbers are given to three 

significant figures.  
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Figure 4.6 Overall bacterial OTU richness in fungus-colonised wood disks. Residuals from 

a model to correct for sequencing depth (the y-scale is therefore arbitrary), broken down 

by (a) pre-coloniser identity; (b) site of origin; (c) wood pH (coloured by pre-coloniser); 

(d) soil pH (coloured by site); (e) relative proportions of ascomycete and basidiomycete 

reads; and (f) whether the dominant fungal OTU belonged to a cord-forming genus. 

Individual data points are overlaid on boxplots. Notches on boxplots represent 95% 

confidence intervals; where these extend beyond the quartiles, ‘hinges’ appear on the 

plot. Abbreviations are control (C), V. comedens (Vc), T. versicolor (Tv), H. fasciculare (Hf), 

Whitestone (WS), cord-former (CF). 
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Figure 4.7 OTU richness for selected bacterial families in fungus-colonised wood disks. 

Residuals from models to correct for sequencing depth (the y-scale is therefore arbitrary). (a) 

Burkholderiaceae broken down by pre-coloniser identity; (b) Burkholderiaceae broken down 

by wood pH (coloured by pre-coloniser); (c) Burkholderiaceae broken down by soil pH 

(coloured by site); (d)-(f) Acidobacteriaceae broken down by the same predictors; and (g)-(i) 

Acetobacteraceae broken down by the same predictors. Notches on boxplots represent 95% 

confidence intervals; where these extend beyond the quartiles, ‘hinges’ appear on the plot. 

Abbreviations are control (C), V. comedens (Vc), T. versicolor (Tv), H. fasciculare (Hf). 
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inhabiting taxa. The low abundance of Actinobacteria in the present study is indicative of the 

differences between soil and wood communities. Their absence may be related to their 

preference for higher-pH environments (Lladó et al. 2017). Among the Bacteroidetes 

present, Chitinophagaceae was a major component: given the abundance of chitin in fungal 

cell walls, this hints at bacterial predation or decomposition of fungal biomass. 

4.5.1 Fungal community composition is more important than resource history 

The fungal and bacterial communities within the wood showed a strong correlation, 

explaining nearly 60% of the covariance between them. Significant co-occurrence patterns 

between fungi and bacteria have previously been observed in decomposing wood (Hoppe et 

al. 2014; Rinta-Kanto et al. 2016). Of the three possible explanations (fungi dictate bacteria; 

bacteria dictate fungi; both are dictated by the same environmental factors), all are likely to 

operate to a greater or lesser degree. This study addressed the first by manipulating the 

fungus initially present. H. fasciculare remained in the disks across the whole study period, 

so correlation with the bacterial community could only be fungus-driven. By retaining its 

territory for the whole year, H. fasciculare also had the longest opportunity to select bacteria. 

The results confirmed that bacterial selection by H. fasciculare occurs not only in the lab 

(Folman et al. 2008; de Boer et al. 2010) but also in the field. The other pre-coloniser fungi 

were competitively replaced over the course of the experiment, and the bacterial 

communities for these treatments could not be separated from each other or the control 

disks. This indicates that it is the fungi currently present that shape the bacterial community, 

rather than the resource history. This nonetheless leaves room for a more subtle effect of 

previous colonisers, as they can influence the path of subsequent succession via priority 

effects (Hiscox et al. 2015; Hiscox et al. 2016).  

One possibility is that only extremely combative fungi have the capacity to determine 

the bacterial community; this cannot be addressed at present as the only pre-coloniser to 

retain its territory was the cord-forming H. fasciculare. Chapter 5, carried out over a shorter 

time span, addresses this problem by including wood where less combative pre-colonisers 

are still present at the time of collection. 

4.5.2 Fungal succession simplifies the bacterial community 

 All pre-coloniser treatments reduced bacterial OTU richness relative to the control: 

the later the successional position of the pre-coloniser, the greater the reduction in richness. 

It is important to note that after a year in the field the control disks were completely 
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colonised by fungi, but at an earlier stage of fungal community development than the pre-

colonised disks. Wood-decay fungi have been previously observed to reduce the number and 

diversity of bacteria in their resource (Folman et al. 2008). This simplification of the overall 

bacterial community occurred concurrently with enrichment of ‘fungus-tolerant’ bacteria 

such as Burkholderiaceae. Surveys of naturally-decaying wood have found that bacterial 

richness and abundance increased with decay stage (Sun et al. 2014; Hoppe et al. 2015; 

Rinta-Kanto et al. 2016; Kielak et al. 2016). There are two possible explanations as to why 

richness may increase with decay, despite fungal succession (presumably) occurring with 

colonisation by progressively more competitive fungi: firstly, environmental factors (e.g. 

water content, which tends to increase with decay) may counteract the negative effects of 

fungal activity; secondly, some of the above studies may have included wood at a very late  

  

Figure 4.8 OTU richness for selected bacterial 

families in fungus-colonised wood disks, 

broken down by site. Residuals from models 

to correct for sequencing depth (the y-scale is 

therefore arbitrary). (a) Burkholderiaceae; (b) 

Acidobacteriaceae; (c) Acetobacteraceae. 

Notches on boxplots represent 95% 

confidence intervals. Abbreviations are 

Bagley (B), Garth (G), Tintern (T), Usk (U), 

Whitestone (WS) and Wytham (Wy). 
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Figure 4.9 OTU richness for selected bacterial families in fungus-colonised wood disks in 

relation to the fungi present. Residuals from models to correct for sequencing depth (the y-

scale is therefore arbitrary). (a) Burkholderiaceae broken down by the relative proportions 

of ascomycete and basidiomycete reads; (b) Burkholderiaceae broken down by whether the 

dominant fungal OTU belonged to a cord-forming genus; (c)-(d) Acidobacteriaceae broken 

down by the same predictors; and (d)-(f) Acetobacteraceae broken down by the same 

predictors. Notches on boxplots represent 95% confidence intervals. Abbreviations are 

control (C), V. comedens (Vc), T. versicolor (Tv), H. fasciculare (Hf), Whitestone (WS), cord-

former (CF). 
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stage of decay, when the highly competitive fungi have been replaced by stress-tolerant 

species (Boddy & Hiscox 2016). 

4.5.3 Fungal ecology is more important than identity 

The clearest separation between bacterial communities was driven by the ecological 

strategy of the dominant fungus. The ability to form mycelial cords is peculiar to certain wood 

decay basidiomycetes, and is often associated with high competitive ability and a late 

secondary position in the successional hierarchy (Boddy 1993). Therefore, it is unsurprising 

that cord-forming fungi are adept at manipulating the bacterial community. More surprising 

is that this trait appears to be more important than the identity of the fungus concerned. 

Even at the phylum level, there was no clear effect of fungal taxonomy on bacterial 

community composition. It has been suggested that wood-inhabiting bacteria respond to 

abiotic changes in wood (proximate cause) rather than fungi directly (ultimate cause) (Kielak 

et al. 2016). The cord-formers had a greater chance to produce a discernible effect, because 

they generally occupied more of the disk and so had a greater influence over the sampling 

unit. This territory effect was not in itself sufficient to explain the separation in bacterial 

communities. However, it underlines the importance of single-species dominance in fungal 

communities within a woody resource.  

4.5.4 pH is an important means of fungal resource control 

 Wood pH was an important determinant of bacterial richness, but in turn, was itself 

heavily influenced by the identity of the dominant fungus in the wood. This supports the idea 

that pH is an important means by which fungi control the wood environment, and specifically 

the bacterial community within it (de Boer et al. 2010). Counterintuitively, there was a 

negative relationship between PAM values and wood pH, suggesting that at low pH there is 

less concordance between bacterial and fungal communities. This is likely due to the 

influence of fungal richness, which was negatively correlated with PAM: the disks containing 

the most competitive fungi tended to have lowest pH, lowest fungal and bacterial richness, 

and therefore fewer OTUs to be correlated. 

4.5.5 Site is a less important determinant than fungal influences 

 Whilst sites did not show a clear clustering on the ordination plot, site nonetheless 

showed significant influence as a predictor. This may have been mediated by an altered 

fungal community between sites, leading to an altered pattern of succession (Hiscox et al. 

2016). Support for this explanation comes from the clear separation between pre-coloniser 

treatments at Wytham, where Hiscox et al. (2016) found the most distinct fungal successor 

communities following each pre-coloniser. The Usk site showed differences to the other 
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sites, both in its tendency to form a cluster in the ordination, and in its markedly lower 

bacterial richness. This is most likely due to the localised dominance of Megacollybia 

platyphylla, a highly competitive cord-forming basidiomycete, which left its ‘signature’ on 

the bacterial community at the whole site. Given that site explained 16% of the residual 

variation in fungal-bacterial community correlation, the inter-kingdom relationship may be 

influenced by location (although confidence intervals overlapped for all sites). 

4.5.6 Patterns in taxa 

The three bacterial families selected for further exploration all showed responses 

different to and often opposing the behaviour of the community as a whole, underlining the 

value of exploring individual taxa (Warton 2008). Of particular note is that all three decreased 

in richness with increasing pH; this is contrary to the usual pattern for soil bacteria, which 

are competitively disadvantaged compared to fungi at low pH (Rousk et al. 2010), and 

indicates that these taxa are adapted both to fungal presence and to environments more 

amenable to fungal growth. It is possible that pH operates a two-stage filter on bacterial 

colonisation of wood: soil pH constrains the pool of colonists available to enter the resource, 

and wood pH constrains which of those are then capable of colonising the resource. This was 

not visible at the whole-community level, but did apply for these families.  

Burkholderiaceae are outstanding among bacteria for their ability to form fungal 

associations (Johnston et al. 2016; Chapter 2), and in the pre-colonised wood they were 

markedly and consistently higher both in richness and relative abundance compared to in 

the controls. This affinity for co-occurring with fungi may be mediated partially by their 

tolerance for low pH environments (Stopnisek et al. 2015); within soil, Burkholderia are most 

plentiful in slightly acidic environments around pH5-6, but are still abundant in soils of pH 3-

4, more similar to wood decay environments (Stopnisek et al. 2014).  Acidobacteriaceae are 

a relatively newly-described and underexplored group of heterotrophic soil bacteria (Kielak 

et al. 2016). The present study agrees with the limited pre-existing knowledge of this family, 

in that they show an affinity for low pH, low nutrient environments. At least some forest soil 

Acidobacteria have the capacity to metabolise chitin and the cellulose breakdown product, 

cellobiose (Lladó et al. 2015). It has been suggested that members of the phylum 

Acidobacteria are K-strategists (Kielak et al. 2016), which may make them well-suited to the 

low-nutrient environment in dead wood. Acetobacteraceae are also known for their acid 

tolerance and ability to metabolise a range of low-molecular weight carbon sources 

(Mamlouk & Gullo 2013). Intriguingly, given the low nitrogen content of wood, this family 

includes some diazotrophs (Reis & Teixeira 2015). 
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4.5.7 Conclusions 

Overall, this study underlines the importance of wood-decay fungi in controlling the 

dead-wood environment. In territory held by a highly competitive fungus, the bacterial 

community shifts towards acid-tolerant, metabolically versatile taxa adapted to the fungal 

environment. This study demonstrates for the first time that fungi drive bacterial 

communities in the field. This relationship is particularly pronounced when the dominant 

fungus is a cord-former. Several bacterial families, notably Burkholderiaceae, show a marked 

positive association with fungal-colonised wood. 
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Chapter 5. Fungal control of early-stage bacterial community development in 

decomposing wood 

 

 

5.1 Abstract 

 The earliest stages of bacterial wood colonisation have received little attention, 

particularly with respect to how the colonisation process may be affected by the presence of 

wood-decay fungi. This study examined the bacterial community in wood that had been 

incubated in the field for 14 or 84 days, in the presence and absence of three fungal pre-

colonisers (Vuilleminia comedens, Trametes versicolor and Hypholoma fasciculare). All three 

fungal species significantly delayed bacterial colonisation of the wood. V. comedens and H. 

fasciculare also reduced bacterial OTU richness and altered bacterial community 

composition, increasing the relative abundance of Burkholderiales and reducing the 

proportion of Enterobacteriaceae and Bacteroidetes. Wood that had not been pre-colonised 

showed seasonal differences between autumn and spring, but these only became apparent 

after 84 days. Archaea were also detected in nearly a third of samples, but with no apparent 

pattern and always at low abundances. 
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5.2 Introduction 

Wood-decay fungi follow a well-characterised successional path, from the R (ruderal) 

and S (stress-tolerant) species present during early decay, through a series of increasingly 

competitive decomposer species (Boddy 2001). At the very latest stages of decay, these 

highly competitive fungi are in turn often replaced by stress-tolerant species. Bacterial 

succession in wood is much less well understood, although there have been a number of 

correlative studies determining the bacterial community in wood of different decay classes 

(Hoppe et al. 2015; Rinta-Kanto et al. 2016; Kielak et al. 2016b). The very earliest stages of 

wood colonisation by bacteria have rarely been examined (Sun et al. 2014). 

Bacteria are often said to be the earliest colonisers of wood, influencing which fungi 

can subsequently establish (Greaves 1971; de Boer & van der Wal 2008; Sun et al. 2014), but 

it is likely that bacteria colonising wood almost always encounter a fungal community that 

has already developed. Wood-decay fungi are latently present in functional sapwood, and 

rapidly colonise wood once the water content drops to a favourable level (Boddy 2001). 

Consequently, fungal decay begins in the canopy, and wood is usually well colonised before 

it falls to the forest floor. Whilst bacterial saprotrophs may likewise live endophytically in 

wood, a large component of the bacterial community in dead wood probably originates from 

soil (Chapter 2), and thus the bacteria are secondary colonisers. There is evidence that wood-

decay fungi exert active selection over bacteria, raising the possibility that fungi act as 

‘gatekeepers’ for which bacteria may enter a resource (Chapter 4). The time-scales over 

which this operates are unknown (Chapter 2). 

In a study in which wood pre-colonised by specific fungi decayed on the forest floor 

(Chapter 4), distinct bacterial communities were associated with cord-forming 

basidiomycete fungi, which are highly competitive late-secondary colonisers. However, of 

the original fungal pre-colonisers, only one retained its territory over the 1-yr duration of the 

experiment; the rest were replaced by other fungi through natural succession. This meant 

that, although bacteria were often correlated with particular fungi, whether the relationship 

was causative largely could not be determined. It is an open question as to whether non-

cord-forming, less competitive fungi are also able to manipulate bacterial communities. 

These less competitive, earlier-stage colonisers are typical of the fungal community bacteria 

would encounter in newly-fallen wood. 

In addition to biotic determinants, microbial communities are highly influenced by 

seasonal variation and accordingly show distinct patterns of community composition and 

activity (López-Mondéjar et al. 2015; Žifčáková et al. 2016). Seasonality is particularly 
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pronounced in temperate climates, where water availability, temperature and daylight are 

highly influenced by the time of year. Little is known of seasonal effects on bacteria in wood, 

but there are indications that season may be important: a model of nitrogen fixation in wood 

predicted considerable seasonal changes, with different abiotic factors becoming limiting at 

different times of year (Hicks et al. 2003a). Forest litter and soil also show seasonal 

differences in bacteria : fungus ratios, functional activity and horizon-specific bacterial 

community composition (López-Mondéjar et al. 2015; Žifčáková et al. 2016). 

The present study investigates the influence of fungal pre-colonisation and season 

on bacterial community composition in decomposing wood, during the very earliest stages 

of colonisation. A manipulative field experiment was designed to examine bacterial 

colonisation of wood pre-colonised with fungi, in both spring and autumn. Four predictions 

were tested: (1) the fungal species within the wood would alter both the diversity and 

composition of the bacterial community, with competitive fungi hosting a less diverse 

bacteria community; (2) this effect would become increasingly apparent over time; (3) the 

fungal influence would be most prominent in the autumn, when many fungi are active; and 

(4) within-season variability would be evident within the bacterial community, but that this 

stochastic variation would be secondary to the fungal and seasonal effects above. 

5.3 Materials and Methods 

5.3.1 Overview 

 Wood blocks were colonised with wood-decay fungi in the laboratory and then 

placed on the forest floor for 14-84 days to allow bacterial colonisation. The experiment was 

repeated at three starting dates in both spring and autumn, i.e. 6 times. Bacterial 

communities were then characterised by amplicon sequencing. 

5.3.2 Field experiment 

Blocks of kiln-dried beech wood (Fagus sylvatica; 3 x 3 x 3 cm) were sterilised by 

triple autoclaving, leaving at least 24 hrs between runs. The sterilised blocks were sealed in 

1000 ml plastic tubs (Cater4you, UK) containing a base covering of malt agar colonised by 

either Hypholoma fasciculare (HfGTWV2), Trametes versicolor (TvAW-HxFP) or Vuilleminia 

comedens (VcWVJH1). Blocks were left to colonise for a minimum of 3 months in the dark at 

20°C. 25% of blocks were kept sterile as controls, and stored at -20°C until placed in the field. 

Before being placed in the field, each block was scraped free of surface mycelium, 

and paired with another colonised by the same fungus with vessel ends touching. Control 

(uncolonised) blocks were likewise paired with each other. Pairs were held together with 

plastic-coated wire (Fig S5.1). Blocks were placed in a random-position grid in mixed 
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woodland, with F. sylvatica the dominant species (Whitestone Woods, Tintern, lat. 51.72 

long. -2.69). Blocks were set out in 2015, at 2-week intervals on three dates in spring (4th 

May, 18th May and 1st June) and three dates in autumn (15th Oct, 29th Oct and 12th Nov). Set-

outs were staggered within seasons in order to capture stochastic variability in time, creating 

three ‘sets’ per season. Each 2 x 2 m grid square contained two block pairings of each 

treatment, secured with a tent peg through a loop in the wire. Half the samples from each 

square were collected after 2 weeks, and the remainder after 12 weeks (4 replicates per 

treatment per time point). Blocks were returned to the lab and processed within a few hours 

of collection. Each block was split into quarters with a sterile chisel, wrapped in sterile foil 

and flash-frozen in liquid N2 for storage at -80°C. One quarter of each block was left unfrozen 

for fungal re-isolation to determine pre-coloniser persistence: four small chips were 

removed from the interior of each block (i.e. 8 per 2-block sample) under aseptic conditions 

and isolated onto 2% malt agar. Outgrowing mycelium was identified as pre-coloniser or non-

pre-coloniser by morphology. 

5.3.3 Molecular analysis 

Frozen blocks were drilled with a 4 mm bit under aseptic conditions to create swarf 

for DNA extraction. 0.3-0.5 g swarf from each block was immediately added to a PowerSoil® 

bead tube and re-frozen at -20°C. Extraction negative controls were performed by running 

the drill over an open tube. DNA was extracted following the MoBio PowerSoil® kit protocol 

(Carlsbad, CA USA), with the vortex step replaced by 3 x 20 sec in a MP FastPrep®-24 bead 

beater at 4 m sec-1. 

The presence of bacterial DNA was verified by PCR with primers 27F 

(AGAGTTTGATCMTGGCTCAG) (Weisburg et al. 1991) and 907R (CCGTCAATTCCTTTGAGTTT) 

(Lane et al. 1985). Each 50 µl reaction contained 1 µl DNA extraction, 200 nM each primer 

(MWG Eurofins, Ebersberg, Germany), 5 µg BSA (Promega, WI, USA) and 0.025 U µl-1 Taq 

polymerase (PCR Biosystems, London, UK) in 10 µl supplied buffer. Amplification was 

performed in a Dyad DNA Engine Peltier thermal cycler (Bio Rad, Herts, UK) (95°C for 2 min, 

35 x [94°C for 30 s, 52°C for 30 s, 72°C for 1.5 min] increasing by 1 s cycle-1, 72°C for 5 min). 

Samples that failed to amplify were retested at 1:10 and 1:100 dilutions to ascertain that the 

reaction was not affected by inhibitors. 

For samples that successfully amplified, PCR and sequencing of the bacterial 16S 

rRNA gene region were performed by the Earlham Institute (Norwich, UK). Each sample was 

amplified in duplicate for 30 cycles with primers 515F (GTGCCAGCMGCCGCGGTAA) and 806R 

(GGACTACHVGGGTWTCTAAT) (Caporaso et al. 2011; Kozich et al. 2013) and the products 
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pooled. This primer pair targets the V4 region of the 16S rRNA gene and is widely used for 

environmental community characterisation, notably in the Earth Microbiome Project 

(Caporaso et al. 2011; Walters et al. 2016). Amplicons were sequenced on an Illumina MiSeq 

(v2, 2 x 250 bp) with Nextera XT assay chemistry.  

5.3.4 Sequence analysis 

Paired-end reads were merged using QIIME 1.9.1 (Caporaso et al. 2010). Low-quality 

sequences were removed with USEARCH v9.0.2132 (1 max expected error, minimum length 

250 bases) (Edgar 2010). Chimeras were identified and removed using USEARCH 61 

implemented in QIIME. A number of over-length sequences were still present after chimera 

removal, so any sequences longer than 257 bases were removed prior to open reference 

OTU picking at 97% similarity against the Greengenes 16S rRNA gene database (DeSantis et 

al. 2006). Singleton OTUs (i.e. those containing only one sequence) were excluded. To check 

for fungal amplification, OTU picking was repeated again the SILVA_119 16S/18S rRNA gene 

database (Pruesse et al. 2007; Quast et al. 2013). No fungal sequences were detected, so the 

Greengenes OTUs were used for subsequent analysis. Sequences are archived at the 

European Nucleotide Archive (ENA) under accession number PRJEB87091. 

5.3.5 Statistical analysis 

All analysis was performed in R (R Development Core Team 2011) using RStudio 

(RStudio Team 2016) and packages dplyr (Wickham & Francois 2016), lsmeans (Lenth 2016), 

MASS (Venables & Ripley 2002), metacoder  (Foster 2016) and vegan (Oksanen et al. 2016). 

All R code to reproduce the analyses is available in Appendix 3 as an R markdown file 

(Protocol S4.1; Allaire et al. 2016). 

A Bernoulli GLM (conditional log-log link) was used to model the presence/absence 

of bacteria in the samples versus season, pre-coloniser and time in the field. Bacteria were 

counted as present if the original DNA extraction produced a visible amplification product 

after 35 cycles. 

Although the experimental design was fully crossed, the variable success in bacterial 

amplification meant that many treatments were absent from the sequencing dataset or had 

<3 replicates. Therefore, it was decided to break the data into subsets which were analysed 

separately to test particular hypotheses. Although this approach is not ideal as it increases 

the number of models run, it was considered preferable to attempting a single, highly 

imbalanced and nested model. Only the control samples contained sufficient replicates to 

test the effects of season and length of time in the field; therefore, the ‘time’ subset 

consisted of all control samples, in both spring and autumn, at 14 and 84 days. Each of the 
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pre-coloniser treatments could only be analysed at 84 days and in one season: for T. 

versicolor and H. fasciculare that season was spring, whilst for V comedens it was autumn. 

Given that the time dataset showed significant differences between seasons (see results), 

pre-colonised samples from different seasons were not combined. T. versicolor and H. 

fasciculare were compared to 84-day control samples from the spring (‘spring’ subset), and 

V comedens to 84-day control samples from the autumn (‘autumn’ subset). The autumn 

subset was the only dataset where comparison could be made between three different set-

outs. Sequencing data was not rarefied prior to analysis for the reasons discussed in Chapter 

4. In the current dataset, depth was not homoscedastic among predictors, but it was 

nonetheless deemed better to take this into account explicitly during the analysis rather than 

implicitly by rarefying.  

Hypotheses pertaining to bacterial community composition were tested by 

permutation ANOVA (PERMANOVA; 999 permutations) on a Bray-Curtis distance matrix 

(Anderson 2001). Post hoc tests were approximated by subsetting the dataset into pairwise 

combinations and running PERMANOVA on each (Hiscox et al. 2016). In this instance, no P-

adjustment was performed due to the limited number of comparisons involved. The time 

dataset was analysed with sequencing depth as a continuous predictor and season, day and 

the season : day interaction as categorical predictors. Pairwise comparisons tested for a 

difference between seasons at 14 days and at 84 days, as dispersions were equal for these 

comparisons but not vice versa. The spring and autumn dataset analyses contained depth 

and pre-coloniser as predictors; the autumn dataset also included set and the pre-coloniser : 

set interaction. 

To visualise community differences, the data were ordinated using 4 axes of non-

metric dimensional scaling (NMDS) on a Bray-Curtis distance matrix. Sequencing depth could 

be isolated on axis 2 (Fig S5.2a). To check for artefacts introduced by overdispersion (Warton 

et al. 2012), qualitative comparison was made with principal components analysis using a 

Hellinger transformation for compositional data (Fig S5.3). The taxonomic composition of 

each treatment was also visualised down to family level using heat trees (Foster et al. 2017). 

Differences in OTU richness were modelled using negative binomial generalised 

linear models, to account for overdispersion in the data. A square root link was added for 

the time model to improve parametric assumptions. The model for each subset contained 

the same predictors as the PERMANOVA. Where interactions were included, likelihood ratio 

tests were used to assess their overall significance. To plot richness whilst controlling for the 

influence of sequencing depth, the square-root transformed richness values were regressed 
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against sequencing depth. The residuals were back-transformed and plotted in the place of 

raw richness values. 

 

 

Table 5.1 Results of Bernoulli GLM on the presence of detectable bacteria in fungus-

colonised wood. 

 Coefficient Std. error z Pr(>|z|) 

Intercept 0.539 0.293 1.84 0.066 

Season: spring -0.398 0.286 -1.39 0.164 

Species: Hf -3.59 0.682 -5.26 <0.001 

Species: Tv -4.38 0.738 -5.94 <0.001 

Species: Vc -3.03 0.655 -4.62 <0.001 

Day: 84 2.81 0.609 4.61 <0.001 

Null deviance: 252.89 on 187 degrees of freedom; residual deviance: 140.48 on 182 degrees 

of freedom; R2=0.555. Reference levels are autumn for season; control for species; and day 

14 for day. Pre-colonisers are V. comedens (Vc), T. versicolor (Tv) and H. fasciculare (Hf). All 

numbers are given to three significant figures. Significant differences are shown in bold. 

 

 

 

Figure 5.1 Detection probability of bacterial presence (measured by PCR amplification) in 

fungus-colonised wood blocks incubated in the field, separated by: (a) season of incubation; 

(b) pre-coloniser identity; or (c) length of time in field. Pre-colonisers were V. comedens (Vc), 

T. versicolor (Tv), H. fasciculare (Hf) or uncolonised controls (C).  
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Figure 5.2 Persistence of fungal pre-colonisers in field-incubated wood blocks after (a) 14 

days or (b) 84 days. Persistence was measured as the % of the 8 isolation points per sample 

where the pre-coloniser could be successfully re-isolated. Individual data points are overlaid 

on boxplots. Data were only available for the autumn samples. Pre-colonisers were V. 

comedens (Vc), T. versicolor (Tv), H. fasciculare (Hf) or uncolonised controls (C). Each boxplot 

represents 10-12 replicates.  
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Figure 5.3 Species accumulation (rarefaction) curves for bacterial OTUs in fungus-colonised 

wood blocks. Curves are coloured by the identity of the fungal pre-coloniser: V. comedens 

(Vc), T. versicolor (Tv), H. fasciculare (Hf) or uncolonised controls (C). 
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5.4 Results 

5.4.1 Patterns in bacterial presence/absence 

 Bacteria were amplified from 75 out of 188 original DNA extractions. Detectable 

bacterial presence was significantly less common in pre-colonised wood samples than in 

controls, and in 14-day exposures compared to 84 days (Fig 5.1; Table 5.1; Table S5.1). 

Season had no effect on the probability of bacterial detection. All the fungal pre-colonisers 

decreased the likelihood of bacterial presence, but T. versicolor had the largest negative 

effect, followed by H. fasciculare and then V. comedens. All fungal pre-colonisers retained a 

strong presence in the wood blocks as determined by re-isolation (Fig 5.2), although V. 

comedens was starting to lose territory by 84 days (Fig 5.2b). Isolations from the control 

blocks displayed a mixture of fungi and bacteria in all samples. 

5.4.2 Preliminary analysis of sequence data 

 7 561 110 reads passed quality filtering, and were grouped into 15 830 OTUs. The 

three extraction kit negative controls retained 3, 5 and 6 reads, respectively, so were 

excluded from further analysis. One 84-day T. versicolor pre-colonised sample from the 

spring yielded only 7 reads, and one 84-day V. comedens pre-colonised sample from the 

spring yielded only 507 reads; both were also excluded. All remaining samples contained 

more than 3 700 reads. There was no clustering by extraction kit lot number (Fig S5.1b). 

Rarefaction curves showed that OTU diversity almost saturated for many of the samples, 

particularly those pre-colonised with H. fasciculare or V. comedens (Fig 5.3). 15 251 OTUs 

were assigned to Bacteria, 19 to Archaea and 560 were unassigned at the Domain/Kingdom 

level. Although subsequent analysis refers to ‘bacteria’ for simplicity, all OTUs were included.  

5.4.3 Presence of Archaea in wood 

 Archaea were detected in 20 wood block samples (30%), apparently distributed 

randomly across treatments. Archaeal reads never accounted for more than 0.8% of the read 

counts for any given sample. 13 of the 19 archaeal OTUs were Euryarchaeota, and of these 

6 were Methanomicrobia and a further 6 were Methanobacteria. However, the most 

abundant archaeal OTU, both in read counts and number of observations, was assigned to 

the Parvarchaeota. 
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Figure 5.4 NMDS ordination of the bacterial community in fungus-colonised wood blocks. 

Points are coloured by: (a) fungal pre-coloniser V. comedens (Vc), T. versicolor (Tv), H. 

fasciculare (Hf) or uncolonised controls (C); (b) season of field incubation; (c) length of time 

in field; or (d) set-out date. In (a), 95% confidence ellipses are shown for each pre-coloniser 

(solid lines), and for H. fasciculare excluding one outlying point (dashed line).  
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Figure 5.5 Overall bacterial OTU richness in fungus-colonised wood blocks. Residuals from a 

model to correct for sequencing depth (the y-scale is therefore arbitrary), broken down by: 

(a) pre-coloniser identity (V. comedens (Vc), T. versicolor (Tv), H. fasciculare (Hf) or 

uncolonised controls (C)), coloured by season; (b) season of field incubation, coloured by 

length of time in the field; (c) control samples only, split by season of field incubation, 

coloured by length of time in the field; (d) length of time in the field, coloured by pre-

coloniser; (e) set-out date, coloured by pre-coloniser (1-3 represent autumn set-outs, 4-6 are 

spring). Individual data points are overlaid on boxplots. Notches on boxplots represent 95% 

confidence intervals; where these extend beyond the quartiles, ‘hinges’ appear on the plot.  
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5.4.4 Temporal effects on the bacterial community development in wood 

 Comparisons between time points could only be made among the control samples 

(Fig 5.4). PERMANOVA showed a significant interaction between season and length of time 

in the field. Pairwise comparisons revealed that the seasons were significantly different at 

84 days (F=18.3, term R2= 0.515, P=0.001), but not at 14 days (F=1.25, term R2=0.051, 

P=0.202) (Fig 5.4b,c). OTU richness likewise had a significant interaction between season and 

field duration (LR=7.14, Pr=0.008); richness was higher at 84 days than at 14 days in the 

spring, but not in the autumn (Fig 5.5b-d). 

Proteobacteria dominated at all time points. Pseudomonadaceae were dominant in 

the 14-day samples, along with Burkholderiales (particularly Oxalobacteraceae) (Fig 5.6). The 

84-day samples were enriched in Bacteroidetes, particularly in the spring, whilst the autumn 

samples were heavily dominated by Enterobacteriaceae. The spring 84-day samples showed 

increased abundance of Alpha-proteobacteria and Actinobacteria. 

5.4.5 Fungal effects on the bacterial community 

 Comparisons between the bacterial communities in the control wood blocks and 

those pre-colonised by T. versicolor or H. fasciculare could only be made among the 84-day 

spring samples, while comparison between V. comedens pre-colonised wood and the 

controls could only be made among the 84-day autumn samples. PERMANOVA showed a 

significant difference between wood with different pre-coloniser treatments in both subsets 

(F=2.73, term R2=0.199, P=0.003 for the spring data, F=18.5, term R2=0.401, P=0.001 for the 

autumn data) (Fig 5.4a). Pairwise comparisons among the spring dataset revealed a 

significant difference between the bacterial community in T. versicolor and H. fasciculare 

pre-colonised wood (F=3.18, term R2=0.251, P=0.001), but neither the bacterial community 

associated with T. versicolor (F=0.815, term R2=0.05, P=0.507) nor the bacterial community 

associated with H. fasciculare (F=1.426, term R2=0.067, P=0.200) was significantly different 

from that in the controls. The autumn dataset revealed no significant influence of set-out 

date (set), nor any interaction between wood block set-out date and pre-coloniser (Fig 5.4e).  

 Bacterial OTU richness in the spring samples was significantly lower in H. fasciculare 

pre-colonised blocks than in the controls (z14,17=-2.46, Pr(>|z|)=0.014), but there was no 

difference in bacterial community richness between T. versicolor pre-colonised samples and 

the controls (z14,17=1.26, Pr(>|z|)=0.207) (Fig 5.5a). In the autumn samples, there was a 

significant interaction between pre-coloniser species and set-out date (LR=8.94, Pr=0.011) 

(Fig 5.5e). OTU richness in V. comedens pre-colonised wood was significantly lower than the 
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controls in sets 1 and 3, but not in set 2; the set 2 controls were also significantly different 

from the controls in sets 1 and 3 (Table 5.2).  

 H. fasciculare and V. comedens pre-colonised wood blocks were both enriched in 

Burkholderiales, particularly Burkholderiaceae, compared with the controls (Fig 5.7). T. 

versicolor pre-colonised wood showed little difference in bacterial community composition 

to the controls, apart from a slight reduction in Beta-proteobacteria and Bacteroidetes. The 

relative abundance of Acidobacteria showed little variation across any of the treatments.  

 

Table 5.2 Post-hoc comparisons of bacterial OTU richness between wood blocks colonised 

with V. comedens (Vc) and control blocks, at 84 days across three set-outs staggered 2 weeks 

apart.  

Contrast Coefficient Std. error z P 

Set 1 control   Set 2 control  0.348 0.106 3.28 0.013 

Set 3 control 0.043 0.097 0.439 0.998 

Set 1 Vc 0.706 0.098 7.24 <0.001 

Set 2 Vc 0.606 0.099 6.11 <0.001 

Set 3 Vc 0.645 0.108 5.99 <0.001 

Set 2 control  

 

Set 3 control -0.305 0.100 -3.06 0.027 

Set 1 Vc 0.359 0.100 3.57 0.005 

Set 2 Vc 0.258 0.100 2.57 0.104 

Set 3 Vc 0.297 0.102 2.92 0.042 

Set 3 control  Set 1 Vc 0.664 0.093 7.17 <0.001 

Set 2 Vc 0.563 0.093 6.08 <0.001 

Set 3 Vc 0.602 0.096 6.30 <0.001 

Set 1 Vc  Set 2 Vc -0.101 0.093 -1.08 0.890 

Set 3 Vc -0.062 0.096 -0.639 0.988 

Set 2 Vc Set 3 Vc 0.039 0.095 0.412 0.999 

Comparisons are derived from a negative binomial general linear model. Results are given on 

the log (not the response) scale. P value adjustment: Tukey method for comparing a family 

of 6 estimates. All numbers are given to three significant figures. Significant differences are 

shown in bold. 
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Figure 5.6 Bacterial community composition in control wood blocks (without fungal pre-

colonisation), broken down by season and length of time in the field. Node colour and size 

on the heat trees represent relative abundance for that taxon; relative read abundance is on 

an arbitrary scale where each sample sums to 100. OTUs assigned to Archaea or unassigned 

at the Domain/Kingdom level are excluded for ease of visualisation. 
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Figure 5.7 Bacterial community composition in fungus-colonised and control wood blocks, 

broken down by pre-coloniser treatment and season. T. versicolor and H. fasciculare could 

only be analysed in the spring, V. comedens only in the autumn. All samples were incubated 

in the field for 84 days. Node colour and size on the heat trees represent relative abundance 

for that taxon; relative read abundance is on an arbitrary scale where each sample sums to 

100. OTUs assigned to Archaea or unassigned at the Domain/Kingdom level are excluded for 

ease of visualisation.  
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5.5 Discussion 

 This study demonstrates, for the first time, that wood-decay fungi not only alter 

bacterial communities but also significantly delay their establishment within wood. When 

bacteria do colonise the wood, some fungi also affect community composition in a species-

specific manner. This study also provides the first indications of the timescale over which the 

earliest stages of bacterial colonisation operate in wood arriving on the forest floor. 

5.5.1 Wood-decay fungi can exclude bacteria from their resource 

 Detectable bacteria were strikingly higher in the control samples than pre-colonised 

samples. In most of the pre-colonised wood samples, bacteria had not colonised to a 

detectable level after 14 days, and detection remained patchy even at 84 days. By contrast, 

bacteria were consistently present in the controls, albeit at low levels. This indicates that 

wood-decay fungi can delay bacterial colonisation, probably due to the selection pressure 

that they exert over the bacterial community (Folman et al. 2008; Hervé et al. 2014; Chapter 

4). Negative PCR results do not necessarily indicate that bacteria were truly absent but rather 

that they were too scarce to detect, as bacteria were obtained by isolation from samples that 

were negative by PCR. The control samples were not fungus-free, but the fungal colonisers 

were poorly established, with high representation of fast-growing, R-selected, non-

lignocellulytic fungi rather than wood decayers. Folman et al. (2008) also reported difficulty 

in obtaining 16S rRNA gene PCR products from fungus-colonised wood in microcosms, 

although with no effect of increasing time. This was corroborated with microscopy and plate 

counts, which demonstrated that the fungi reduced both the number of bacterial cells 

present in the wood and the proportion which could be obtained by cultivation (Folman et 

al. 2008). 

5.5.2 Primary colonising fungi manipulate bacterial communities 

 The distinct bacterial community in V. comedens pre-colonised wood blocks showed 

that primary colonising, early-decay fungi can nonetheless influence which bacteria can 

establish. This was not consistent with the suggestion in Chapter 4 that only highly 

competitive cord-forming fungi select bacteria, and raises the question why distinct bacterial 

communities were not apparently associated with the less competitive fungi in the results 

reported in Chapter 4. One possibility is that cord-forming fungi all select for similar bacteria, 

whilst less competitive fungi have more varied bacterial communities. A more likely 

explanation is that fungal influence on bacterial community development is linked to the 

length of time that the fungus occupies the resource. Highly competitive fungi can hold a 

resource for a long time and clearly establish their influence over it, whereas a resource that 
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frequently changes fungal coloniser is likely to exhibit a patchwork of legacy effects (Hiscox 

et al. 2015; Leopold et al. 2017). 

In the present study, the effects of pre-colonisation by the highly competitive cord-

former H. fasciculare did not significantly alter bacterial communities compared to the 

control, but this was probably due to the influence of one outlier, as all the other H. 

fasciculare samples formed a tight cluster (Fig 5.5a). Despite differences in their competitive 

ability, pre-colonisation by V. comedens and H. fasciculare reduced the observed bacterial 

community OTU richness to a similar extent. Given that T. versicolor was the fungus that 

most successfully prevented bacteria colonisation, it is surprising that the bacterial 

community associated with it was not different in richness or structure compared to the 

controls. One possible explanation is that it reflects the mechanism of bacterial exclusion. T. 

versicolor forms dense, rubbery mycelium around the outside of wood blocks. Although T. 

versicolor also produces a wide range of enzymes (Hiscox et al. 2010), if it mainly excluded 

bacteria via a physical, rather than chemical, barrier, this may explain why there was less 

discrimination between taxa.  

 The difference between control and pre-colonised wood samples demonstrated the 

important distinction between fresh and canopy-decayed wood, with several important 

implications. Firstly, experiments using sterile, undecayed wood to study bacterial 

colonisation should recognise that this represents a very small subset of wood naturally 

reaching the forest floor. Secondly, senescent wood from unmanaged forests will follow a 

different path of bacterial colonisation than wood from felled trees and branches, typical of 

wood inputs in commercial forestry. Lower bacterial diversity and altered community 

composition have been recorded for F. sylvatica logs in comparisons of managed and 

unmanaged forests (Hoppe et al. 2015). Different successional paths have also been 

observed for fungal communities in fresh and pre-colonised wood, although very early decay 

ascomycetes complicate the situation (Hiscox et al. 2015; Hiscox et al. 2016). 

Flattening of the rarefaction curves for pre-colonised samples indicated that the 

bacterial community was comprehensively sampled, and further evidences community 

simplification in the presence of fungi. This agrees with previous observations of reduced 

bacterial diversity in wood and soil environments under fungal influence (Chapter 4; 

Boersma et al. 2009). Hervé et al. (2014) recorded completely saturated bacterial rarefaction 

curves for wood even in the absence of fungi, but it is likely that their microcosms exerted 

selection effects on the bacterial community. Sun et al. (2014) reported highly unsaturated 

bacterial communities after 2 and 4 months of wood decay, but this discrepancy is likely 
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because that study did not investigate pre-colonised wood, and had far lower read numbers 

than the present study. 

5.5.3 The early-colonising bacterial community differs from later stage communities 

 The timescale of bacterial wood colonisation is poorly explored (Sun et al. 2013; Sun 

et al. 2014; Hervé et al. 2014). After 14 days bacteria could be detected throughout a 3 cm 

cube of fresh sapwood, indicating that they were able to colonise wood rapidly under 

favourable conditions. Although overall bacterial OTU richness appeared to decrease at 84 

days, this was driven by the inclusion of low-diversity pre-colonised blocks among the 84-day 

samples. In fresh pinewood, bacterial richness and diversity increased between 2 and 4 

months, suggesting that not all the available niches had been occupied within that time 

frame (Sun et al. 2014). In contrast, a microcosm experiment found no effect of time or 

fungal colonisation on bacterial richness, and limited effects on community composition 

(Hervé et al. 2014). This likely reflects the somewhat artificial experimental set-up, where 

time was not measured on replicates of increasing age, but rather by repeated sub-culturing 

of the developing community. 

 Psuedomonadaceae declined through time in both seasons. A decrease in the 

relative abundance of pseudomonads has also been observed over longer times (Sun et al. 

2013; Sun et al. 2014; Kielak et al. 2016b). They were replaced by Enterobacteriaceae and 

Sphingobacteriaceae in autumn and spring, respectively. Enterobacteriaceae are known to 

inhabit decaying sapwood (Zhang et al. 2008), and some members possess lignocellulytic 

enzymes (Bugg et al. 2011). Sphingobacteria have also been previously reported in wood 

(Sun et al. 2013; Sun et al. 2014) and are known to associate with fungi (Warmink & van Elsas 

2009; Pent et al. 2017). 

 Comparing the present samples to wood pre-colonised by the same fungi but 

allowed to decay in the field for a year (Chapter 4) revealed Burkholderiales were important 

members of both early and established communities. In contrast, there was a large 

difference in the relative abundance of Acidobacteria. This phylum was one of the largest 

components of the bacterial community in the one-year samples, yet a minor constituent in 

the early-decay community, suggesting a slow rate of colonisation. In concordance with this, 

Acidobacteria increased in relative abundance in decomposing wood over a timescale of 2-4 

months (Sun et al. 2014), and between 1 and 6 years, before decreasing again by year 13 

(Sun et al. 2013). However, Hoppe et al. (2015) recorded no difference in the relative 

abundance of Acidobacteria in logs across multiple decay classes. 
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5.5.4 Seasonal influences are dependent on stage of bacterial community succession 

Regrettably, the scarcity of bacteria-positive samples meant that prediction 3 

(greater fungal influence in the autumn) could not be tested. However, the control samples 

revealed seasonal differences independent of the pre-colonisers. Fungal contribution cannot 

be ruled out, as the effect could be mediated by different incoming fungal communities 

between seasons (Hiscox et al. 2015). These seasonal differences could only be seen in the 

84-day samples. It has been postulated that during the early stages of wood colonisation, 

bacterial communities are determined by both neutral (stochastic) and niche-based 

processes, with niche-based processes only becoming dominant at later stages of decay 

(Kielak et al. 2016b). Intra-seasonal differences likewise could not be fully tested, but the 

autumn 84-day samples showed reduced diversity on one of the three collection dates. This 

sampling had been preceded by several days of hard frost, which may have adversely 

affected sections of the bacterial community. 

5.5.5 Archaea are a minor but detectable part of the dead-wood prokaryote community 

 Consistent with previous reports from decaying wood, Archaea accounted for <1% 

of the prokaryote community (Rinta-Kanto et al. 2016). Thaumarchaeota were not 

represented, despite being the largest archaeal component in previous surveys of decaying 

wood (Rinta-Kanto et al. 2016). Archaeal PCR on the samples from Chapter 4 also found 

Thaumarchaeota to be the phylum that occurred most frequently (Johnston et al., unpubl. 

data). Their current absence may be attributable to a known bias against Thaumarchaeota 

in the 515F-806R primer set (Parada et al. 2016). Methanobacteria inhabit living trees as part 

of the phenomenon known as bacterial wetwood (Zeikus & Ward 1974; Zeikus & Henning 

1975). Parvarchaeota are putative acidophiles (Hedlund et al. 2014), which may explain their 

presence in the acidic dead-wood environment (Chapter 4). 

5.5.6 Conclusions 

 In conclusion, this study provides strong evidence that wood-decay fungi act as 

‘gatekeepers’, exerting control over which bacteria can colonise a woody resource. This 

effect is manifest both in delayed bacterial community development in fungus-colonised 

wood, and in modified bacterial community composition dependent on the identity of the 

fungal pre-coloniser. Fungal colonisation significantly delays the process of bacterial 

establishment, indicating that community development will differ between canopy-decayed 

and fresh wood. Even early-decay fungi with low competitive ability are capable of modifying 

the bacterial community. Bacterial community composition in wood varies between seasons, 

but only once the community is relatively established. 
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Chapter 6. The influence of migratory Paraburkholderia on growth and competition of 

wood-decay fungi 

 

 

6.1 Abstract 

Certain bacteria are capable of migrating along fungal hyphae, using them as a dispersal 

mechanism to cross otherwise-prohibitory distances. Many of these bacteria have been 

assigned to the genus Paraburkholderia, recently separated from Burkholderia. Three strains 

of fungal-migratory Paraburkholderia were isolated in axenic culture from the mycelium of 

wood-decay fungi, and inoculated onto ten strains of wood-decay fungi growing on solid 

medium in the laboratory. With one exception, all bacteria were able to migrate on the 

hyphae of all fungi, although to differing extents. No bacteria-associated growth inhibition 

was observed with eight of the ten fungi, but two strains of Phanerochaete showed a 

significant reduction in mycelial extension rate. Bacteria were also introduced into fungus-

fungus competitive pairings, where they again significantly reduced the competitive 

performance of one of the Phanerochaete strains. In a subset of combinations, introducing 

bacteria into competitive interactions also reduced the predictability of the outcome. This is 

the first time that bacteria have been shown to influence fungal inter-specific competition, 

and underlines the influence fungal-migratory bacteria can have on their host. 
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6.2 Introduction  

The phenomenon of fungal-migratory bacteria has been recorded for decades 

(Leben 1984), but has only recently been investigated in detail. Certain bacterial strains have 

the ability to migrate along fungal hyphae in order to disperse further and in less favourable 

conditions than would otherwise be possible (Warmink & van Elsas 2009; Nazir et al. 2010). 

Fungal-migratory bacteria have been grouped into two types: single-strain migrators are 

capable of movement along hyphae on their own, whilst community migrators can only track 

along hyphae as part of a consortium (Warmink & van Elsas 2009; Warmink et al. 2011). It is 

important to note that migration requires active movement by the bacterium, as fungal 

hyphae extend apically whilst the rest of the hypha remains stationary in the substratum. 

Migratory bacteria have been isolated from a variety of soil types, from clay to sandy loam 

(Nazir et al. 2012). Soil type apparently influences migration competence; for a number of 

bacterial strains, migration success along the same fungal host varies depending on the soil 

they are in (Nazir et al. 2012). A single strain of bacteria can migrate along multiple hosts, 

but each fungal species appears to have an individual ‘carrying capacity’ in terms of the 

bacterial cell count it can support (Nazir et al. 2014). Migration is highly directional, with 

most bacteria moving preferentially towards the hyphal tips (Warmink & van Elsas 2009; 

Nazir et al. 2014), although others move in the opposite direction (Leben 1984; Hover et al. 

2016).  

Many of the single-strain migratory bacteria isolated to date have been assigned to 

the genus Burkholderia, although since the spitting of this genus they have been reassigned 

Paraburkholderia (Sawana et al. 2014; Oren & Garrity 2015). This genus seems to be 

especially predisposed to forming fungal symbioses of various kinds (Stopnisek et al. 2015; 

Johnston et al. 2016; Chapter 2). Paraburkholderia spp. have relatively large genomes for 

bacteria, and produce a diverse range of secondary metabolites, some of which have anti-

fungal activity (Depoorter et al. 2016). Genome analysis of the independent migrator 

Paraburkholderia terrae BS001 revealed motility-related genes for flagellae and walking pili, 

as well as genes involved in biofilm formation (Haq et al. 2014). Intriguingly, when a 

migratory strain of Paraburkholderia glathei was grown axenically it expressed cell motility 

proteins, but when co-cultured with a fungus many of these proteins were no longer 

expressed (Stopnisek et al. 2015); P. terrae BS001 likewise upregulated motility genes when 

near a fungus, but downregulated them again once hyphal contact had been made (Haq et 

al. 2017). A type III secretion system (T3SS) appears to have a beneficial but non-essential 

role in these migratory associations (Haq et al. 2016; Yang et al. 2016; Nazir et al. 2017). 



82 

The exact nature of this fungus-bacteria relationship remains unknown, in terms of 

the costs and benefits to each partner. The presence of a fungus allowed migratory bacteria 

to survive and grow in low pH soil and low-nutrient medium, neither of which could support 

the bacteria alone (Warmink & van Elsas 2009; Nazir et al. 2012; Stopnisek et al. 2015). The 

benefit to the bacteria could be mimicked in absence of the fungus by raising the soil pH and 

adding glycerol (Nazir et al. 2010). There are also indications that these benefits come at a 

cost: P. terrae BS001 carries a number of anti-toxin genes (Haq et al. 2014), and P. glathei 

upregulated its stress responses when tracking along a fungus (Stopnisek et al. 2015), 

possibly indicating that these bacteria may experience antibiosis from the fungus. Some 

community-migratory bacteria are selectively inhibited by the fungus Lyophyllum sp. strain 

Karsten (Warmink & van Elsas 2009). Outcomes for the fungi present a mixed picture. 

Paraburkholderia terrae BS001 protects its hosts from inhibition by pathogenic bacteria and 

ambient anti-fungal compounds (Nazir et al. 2014). Conversely, Serratia marcescens 

migrating over Rhizopus oryzae kill the fungus (Hover et al. 2016). 

Thus far, there has been little exploration of whether migratory bacteria occur with 

wood-decay fungi: much of the work has focused on soil saprotrophs (e.g. Nazir et al. 2014; 

Haq et al. 2016; Simon et al. 2017), and there has been no exploration of whether wood-

decay fungi coexist with migratory bacteria in the field. This relationship would be 

particularly interesting for cord-forming fungi, which primarily disperse, not as spores, but 

by forming large networks of mycelial cords across the forest floor (Boddy & Hiscox 2016). 

These networks would represent a major dispersal opportunity for any bacterium capable of 

exploiting them, providing a favourable habitat along which to migrate, and direct passage 

to new resources. Paraburkholderia terrae BS001 has been experimentally observed to 

migrate along the mycelial cords of Phanerochaete velutina, albeit less proficiently than with 

other fungal species (Nazir et al. 2014).  

Wood-decay fungal communities are driven by inter-specific competition in the form 

of direct, confrontational interactions (Boddy 2000). Wood-decay fungi frequently encounter 

one another as mycelia within a woody resource, or cord systems on the forest floor. When 

this happens, they engage each other via diffusible and volatile compounds; increased 

enzyme activity; environmental pH manipulation; and gross mycelial contact (Boddy 2000). 

This has two implications for any bacterial symbionts living with wood-decay fungi. Firstly, 

these fungi are highly capable of manipulating the microbial community in their 

surroundings, and there is evidence that this extends beyond other fungi to include bacteria 

(Chapters 4 & 5). Secondly, there is potential for bacteria in turn to influence fungal 
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communities by affecting the outcomes of interactions. Wood-decay fungi form competitive 

hierarchies, but these can be altered by changes in abiotic or biotic conditions. For example, 

invertebrate grazers can exert top-down control of fungal communities when they 

preferentially graze the dominant competitor, weakening it such that a less competitive but 

grazing-resistant fungus is able to take over (Crowther et al. 2011). In this manner, the 

presence of a ‘controlling’ organism can have knock-on effects throughout the dead-wood 

environment. 

 

Table 6.1 Fungal strains used to assess the effect of three migratory bacteria on fungal 

extension rates over agar. 

Fungus Strain Abbreviation Phylum Successional stage Source 

Biscogniauxia 

nummularia  

BxnFF1 Bxn Ascomycota Primary Fruit body 

isolation 

Vuilleminia 

comedens  

VcWVJH1 Vc Basidiomycota Primary Beech wood 

isolation 

Bjerkandera 

adusta  

BaSS1 Ba Basidiomycota Early-mid 

secondary 

Fruit body 

isolation 

Stereum 

hirsutum  

ShSS1 Sh Basidiomycota Early-mid 

secondary 

Fruit body 

isolation 

Trametes 

versicolor  

TvFPxH Tv Basidiomycota Early-mid 

secondary 

Lab cross 

Hypholoma 

fasciculare  

HfABWS1 Hf1 Basidiomycota Late secondary/ 

tertiary 

Cord 

isolation 

Hypholoma 

fasciculare  

HfGTWV2 Hf2 Basidiomycota Late secondary/ 

tertiary 

Fruit body 

isolation 

Phanerochaete 

velutina  

Pv29 Pv Basidiomycota Late secondary/ 

tertiary 

Beech wood 

isolation 

Phanerochaete 

sp.  

PW271 Psp Basidiomycota Late secondary/ 

tertiary 

Cord 

isolation 

Resinicium 

bicolor  

Rb1 Rb Basidiomycota Late secondary/ 

tertiary 

University of 

Aberdeen 

All strains are from the Cardiff University Culture Collection unless otherwise stated. 

Phanerochaete sp. PW271 and H. fasciculare HfABWS1 were both newly isolated during the 

course of this study. 
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The present study was designed to investigate the relationship between wood-decay 

fungi and migratory bacteria. The first objective was to isolate migratory bacteria directly 

from wood-decay fungi, in a UK mixed deciduous woodland: to date, the best-studied strains 

originate from soil in the Netherlands. Obtaining these strains allowed three hypotheses to 

be tested: (1) that the bacteria would be competent to migrate with a range of different 

wood-decay fungi as hosts; (2) that the presence of migratory bacteria would reduce fungal 

growth rate; and (3) that the presence of migratory bacteria would affect the competitive 

ability of wood-decay fungi. 

 

6.3 Methods 

6.3.1 Overview 

Migratory bacteria were isolated directly from the mycelium of wood-decay fungi. 

These bacteria were then used in agar-based laboratory experiments to determine their 

effect on fungal growth and competitive ability. 

6.3.2 Isolation and identification of migratory bacteria from the field 

Mycelial cords were collected from the forest floor at Whitestone Woods, 

Monmouthshire, U.K. in the autumn-winter of 2015 (lat. 51.72, long. -2.69; site described 

Hiscox et al., 2016). Cords were vigorously shaken by vortex-mixer in ten changes of sterile 

distilled water to remove all but tightly attached bacterial cells, before inoculation onto 2% 

malt agar (1.5 g l-1 LabM agar 1, 2 g l-1 malt). Static bacterial colonies were excluded during 

subsequent subcultures of the mycelium, but bacteria that clearly tracked the hyphal growth 

were retained. Of the 53 cords collected, migratory bacteria were obtained only from one. 

Pure cultures were established of both the bacterium (Paraburkholderia sp. BCC1884) and 

fungus (Phanerochaete sp. PW271).  

Two further strains of migratory bacteria (Paraburkholderia sp. BCC1885 and 

Paraburkholderia sp. BCC1886) were obtained from mycelium isolated from decaying beech 

wood (Fagus sylvatica) at the same site. Small chips of wood were taken under aseptic 

conditions from the interior of 3 x 3 x 3 cm blocks that had been colonised with Vuilleminia 

comedens in the laboratory, and left on the woodland floor for 84 days (Chapter 5). The chips 

were placed onto 2% malt agar and bacteria isolated as above.  

For preliminary identification of bacteria and fungi, DNA was extracted from cultures 

with the PowerSoil® kit (MO BIO, Carlsbad, USA) (amended to include 20 s at 4 m s-1 in a 

MPBio FastPrep bead beater). Fungal ITS rDNA markers were amplified using primers gITS7F 

(GTGARTCATCGARTCTTTG) and tagged ITS4R (TCCTCCGCTTATTGATATGC-AGTACGAG) 
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(Ihrmark et al. 2012) in 50 µl reactions containing 2.5 µl template, 300 nM tagged ITS4, 500 

nM gITS7, 0.025 U HS Taq polymerase (PCR Biosystems, UK) and 10 µl supplied buffer, in a 

Dyad DNA Engine Peltier thermal cycler.  The initial incubation was 94°C for 5 min, followed 

by 24 cycles of 30 s at 94°C, 30 s at 56°C and 30 s at 72°C, with a final incubation at 72°C for 

7 min. Bacterial 16S rRNA gene makers were amplified with primers 27F 

(AGAGTTTGATCMTTGGCTCAG) (Weisburg et al. 1991) and 1492R (TACCTTGTTACGACTT) 

(Lane et al. 1985) in 50 µl reactions containing 1 µl DNA, 200 nM each primer (MWG Eurofins, 

Ebersberg, Germany), 5 µg BSA (Promega, WI, USA), 0.025 U µl-1 Taq polymerase (PCR 

Biosystems, UK) and 10 µl supplied buffer, in a Dyad DNA Engine Peltier thermal cycler. The 

initial incubation was 95°C for 2 min, followed by 35 cycles of 94°C for 30 s, 52°C for 30 s, 

72°C for 1.5 min increasing by 1 s cycle-1, and a final incubation at 72°C for 5 min. The 

amplicons were purified with the QIAQuick gel extraction kit (Qiagen, Hilden, Germany), and 

sent for unidirectional Sanger sequencing by MWG Eurofins. Fungal sequences were 

assigned against the UNITE ITS database (Kõljalg et al. 2013) using BLASTn as a search engine. 

Bacterial sequences were assigned against the Greengenes database (DeSantis et al. 2006) 

in QIIME using UCLUST as a search engine (Caporaso et al. 2010).  

6.3.3 Culture preparation and maintenance 

 All ten wood-decay fungi used in the experiments were taken from the Cardiff 

Culture Collection (Table 6.1). They were selected to represent a variety of successional 

stages and, therefore, competitive abilities. The strains represent a range of taxonomic 

dissimilarity, from inter-phylum to intra-specific. All fungi were maintained on 2% malt agar 

for the duration of the experiment.  

 The three migratory bacterial strains were maintained on 2% malt agar plates. 

Bacterial cultures for long-term storage were frozen at -80°C in 2% malt broth diluted 80:20 

with glycerol. Experimental bacterial inoculum was prepared from 48-hr cultures grown at 

20°C in 2% malt broth with gentle agitation. The suspension was diluted 1:5 in 2% malt broth 

on the morning of the set-up, and viable cell numbers determined by dilution series and total 

viable counting (TVC).  
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Figure 6.1 Design of the competition 

experiment. Each pair of fungi was subject 

to ten treatments in total: no-bacteria 

controls + (3 bacterial strains x 3 bacterial 

arrangements). 

 

 

 

 

 

 

6.3.4 Mycelial extension rates 

 6 mm plugs were cut from 7-day old fungal cultures and individually inoculated onto 

2% malt agar in 9 cm diameter Petri dishes. The following day, each was inoculated with a 

10 µL drop of bacterial suspension (treatment; 2-7 x 105 colony-forming units, CFU) or sterile 

broth (control) directly on top of the inoculum plug. Plates were incubated at 10°C for 7 

weeks or 20°C for 4 weeks. Mycelial extension and bacterial migration were measured along 

four radii extending from the edge of the inoculum plug. Five replicates were prepared per 

treatment. 

6.3.5 Competition experiments 

 Plates were prepared as for the growth rate experiment, except that two plugs were 

inoculated onto each plate 3.5 cm apart, to set up competitive interactions. A restricted 

range of fungi was used due to the large number of potential combinations. Bjerkandera 

adusta, Stereum hirsutum, Trametes versicolor, Phanerochaete velutina and Phanerochaete 

sp. PW271 were paired in all combinations, including self-pairings. For each pairwise 

combination of fungi, interactions were set up with bacteria on both competitors; bacteria 

on one competitor but not the other, and vice versa; and bacteria on neither competitor (Fig 

6.1). Five replicates were prepared per treatment. Bacteria (1-7 x 104 CFUs) and sterile broth 

were added as for the growth rates experiment. Plates were incubated at 10°C for 8 weeks 

or 20°C for 6 weeks, and the progress of interactions recorded weekly by visual inspection. 

At the end of the experiment, fungal re-isolations were made from the underside of the agar 

disk to verify that any observed replacement was not merely overgrowth. Bacterial re-

isolations were made by drawing a sterile loop across the surface and streaking onto 2% malt 

agar.  
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Figure 6.2 MASH whole genome cluster analysis of Burkholderia and Paraburkholderia 

genomes. The three strains isolated in this study (BCC1884, BCC1885 and BCC1886) are 

marked with arrows. The deepest branches have been shortened for ease of visualisation. 

MASH analysis and tree supplied by Alex Mullins.  
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6.3.6 Confocal microscopy 

Additional interactions between Phanerochaete sp. PW271 and Stereum hirsutum 

were inoculated with Paraburkholderia sp. BCC1884 and visualised by confocal microscopy. 

A small slice of agar was cut out at each point to be visualised, and cells were stained with 

the LIVE/DEAD® BacLight™ Bacterial Viability Kit (ThermoFisher, Waltham, MA, USA). Images 

were taken of 1 and 7 week-old interactions, both at the interaction zone and on either side 

of it, using a Leica TCSSP2 confocal microscope.  

6.3.7 Statistical analysis 

Unless otherwise stated, all analysis was performed in R (R Development Core Team 

2011) using RStudio (RStudio Team 2016) and packages dplyr (Wickham & Francois 2016), 

ggplot2 (Wickham 2009), lattice (Sarkar 2008), lsmeans (Lenth 2016) and nlme (Pinheiro et 

al. 2016). R code to reproduce the analyses is available in Appendix 4 as an R markdown file 

(Protocol S6.1; Allaire et al. 2016). 

Mycelial extension rates were modelled using a linear mixed effects model (Zuur et 

al. 2009), with fungal identity, bacterial identity, temperature and time as fixed main effects 

predicting  the length of outgrowing mycelium. Fungus : time and fungus : bacterium 

interactions were also included, as each fungus grows at a different rate and may respond 

differently to the bacteria. The random part of the model consisted of a random intercept 

for replicate identity and a random slope for time | replicate identity, to account for the 

longitudinal design. A likelihood ratio test established the overall significance of the fungus : 

bacterium interaction, the main term of interest in the model. Post-hoc comparisons were 

done in package lsmeans with Tukey adjustment. 

 The outcomes of competitive interactions were codified as an interaction metric. 

Each competitor was given a score of 2 for completely replacing the other fungus; 1 for 

partial replacement; 0 for deadlock; -1 for being partially replaced; or -2 for being completely 

replaced. The number of weeks that each interaction took to reach that conclusion was 

recorded, and the metric calculated as score x (1/time of completion). This gave an identical 

score of opposite sign to each competitor, and created a metric whereby a fast win scored 

higher than a slow one, and a fast loss scored lower than a slow one. Deadlock always 

produced a score of 0.  

In each interaction, the fungal competitors were arbitrarily assigned as F1 and F2. 

The outcomes were modelled by regressing the metric score for F1 against a zero-sum 

contrast matrix in which F1 was coded as positive and F2 as negative. When F1 won, then its 

positive (winning) scores continued to be counted as positive, and were simultaneously 
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multiplied by -1 and counted as negative to F2; when F1 lost, its negative (losing) scores 

continued to be negative, and were simultaneously multiplied by -1 and counted as positive 

to F2. The model then included a second predictor matrix with a column for each 

combination of fungus and bacterium, e.g. Paraburkholderia sp. BCC1884 on B. adusta. If F1 

had been inoculated with bacteria, it received a 1 in the relevant column; if F2 had been 

inoculated, it received -1 in the relevant column. This allowed the effect of each bacterium 

on each fungus to be estimated irrespective of whether the fungus was F1 or F2. Finally, 

temperature was included in the model as a simple categorical variable. 

 

6.4 Results  

6.4.1 Bacterial strain identity 

16S rRNA gene sequencing placed all three strains within the genus Burkholderia, as 

the Greengenes database does not currently reflect the updated Paraburkholderia 

taxonomy. Subsequent whole-genome analysis placed the strains within Burkholderia clade 

3 (Fig 6.2; A. Mullins, pers. comm.), which has been reassigned to the new genus 

Paraburkholderia (Sawana et al. 2014). Strain BCC1884 was isolated from a mycelial cord of 

Phanerochaete sp. PW271, whilst strains BCC1885 and BCC1886 were isolated from F. 

sylvatica wood blocks being decayed by V. comedens.  

6.4.2 Migratory capability of bacterial isolates 

 All the bacteria were competent to migrate along at least one fungus, and all fungi 

successfully hosted at least one bacterium (Fig 6.3). There was considerable inter-fungal 

variation in the success of bacterial establishment and the extent of migration (Fig 6.3). 

Bacteria travelled furthest on the two Phanerochaete strains, and also migrated very 

successfully on S. hirsutum. In contrast, only one replicate indicated substantial bacterial 

migration on R. bicolor. The two strains of H. fasciculare showed an unexpected intra-specific 

difference: bacteria successfully established on only 5 out of 30 replicates of H. fasciculare 

GtWV2, compared with 19 out of 30 for H. fasciculare ABWS1. The only bacterium-fungus 

combination that completely failed to establish was BCC1885 on H. fasciculare GtWV2. 

6.4.2 Mycelial extension rates 

 As expected, fungi showed considerable inter-specific variation in extension rate. At 

20°C the fastest species, B. adusta, averaged 6.0 mm day-1, whilst the slowest grower, H. 

fasciculare ABWS1, averaged 1.1 mm day-1 (Fig 6.4). Primary colonising fungi (i.e. early 

successional species) grew more quickly than did secondary/tertiary-stage colonisers. At 
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10°C, growth rates were reduced for all fungi, typically 2-3 times slower than at 20°C (Fig 

6.5). 

 None of the three bacterial treatments significantly altered fungal extension rate 

when considered across all fungi. However, there was a significant interaction between 

fungal identity and bacterial treatment (LR 136, P <0.001). Post-hoc comparisons revealed 

that the interaction was driven by the Phanerochaete species, both of which showed 

significantly slower growth in the presence of bacteria (Table 6.2). The only other significant 

effect was on H. fasciculare ABWS1, where the mycelial extension rate increased by 28% in 

the presence of Paraburkholderia sp. BCC1886. 

 

 

Figure 6.3 Extent of Paraburkholderia migration along hyphae of wood-decay fungi on 2% 

malt agar. Each point represents the maximum extent of bacterial migration on one 

replicate, at the time the fungus reached the edge of the plate. Shape of points indicates 

temperature (°C); colour indicates bacterial strain identity. 
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Table 6.2 Post-hoc comparisons of mycelial extension rate for wood-decay fungi inoculated 

with fungal-migratory Paraburkholderia.  

Fungus Bacterium Coefficient Std error DF t P 

Ba BCC1884 -0.346 0.508 355 -0.682 >0.999 

BCC1885 -0.050 0.512 355 -0.097 >0.999 

BCC1886 0.453 0.508 355 0.893 >0.999 

Bxn BCC1884 0.084 0.489 355 0.173 >0.999 

BCC1885 -0.226 0.489 355 -0.463 >0.999 

BCC1886 -0.718 0.489 355 -1.47 >0.999 

Hf1 BCC1884 -1.59 0.504 355 -3.16 0.395 

BCC1885 -1.21 0.504 355 -2.39 0.930 

BCC1886 -2.20 0.481 355 -4.58 0.004 

Hf2 BCC1884 0.177 0.502 355 0.353 >0.999 

BCC1885 0.042 0.502 355 0.083 >0.999 

BCC1886 0.050 0.516 355 0.097 >0.999 

Psp BCC1884 2.57 0.528 355 4.87 0.001 

BCC1885 3.21 0.543 355 5.91 <0.001 

BCC1886 2.67 0.548 355 4.87 0.001 

Pv BCC1884 2.24 0.527 355 4.25 0.016 

BCC1885 4.10 0.533 355 7.70 <0.001 

BCC1886 3.75 0.570 355 6.58 <0.001 

Rb BCC1884 0.515 0.610 355 0.845 >0.999 

BCC1885 0.955 0.610 355 1.57 >0.999 

BCC1886 1.35 0.610 355 2.21 0.974 

Sh BCC1884 0.177 0.538 355 0.329 >0.999 

BCC1885 -0.036 0.538 355 -0.067 >0.999 

BCC1886 -0.088 0.538 355 -0.164 >0.999 

Tv BCC1884 -0.155 0.525 355 -0.295 >0.999 

BCC1885 -0.144 0.525 355 -0.274 >0.999 

BCC1886 -1.062 0.525 355 -2.02 0.994 

Vc BCC1884 -0.136 0.533 355 -0.254 >0.999 

BCC1885 -0.324 0.526 355 -0.616 >0.999 

BCC1886 -0.921 0.525 355 -1.75 >0.999 

Comparisons are derived from a linear mixed effects model. P value adjustment: Tukey 

method for comparing a family of 40 estimates (not all comparisons are shown). Significant 

terms are shown in bold. All numbers are given to three significant figures. Fungal 

abbreviations are given in Table 6.1.  
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Figure 6.4 Mycelial extension rates of ten wood-decay fungi on 2% malt agar at 20°C in the 

presence and absence of Paraburkholderia. Different colours indicate the three different 

strains. 
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Figure 6.5 Mycelial extension rates of ten wood-decay fungi on 2% malt agar at 10°C in the 

presence and absence of Paraburkholderia. Different colours indicate the three different 

strains. 
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6.4.3 Effects of bacteria on inter-fungal competitive interactions 

 B. adusta had the highest average interaction score overall, followed by T. versicolor, 

S. hirsutum, P. velutina and Phanerochaete sp.; in the controls, B. adusta still scored highest, 

followed by S. hirsutum, T. versicolor, Phanerochaete sp. and P. velutina. The presence of 

bacteria significantly affected fungal performance in a species-specific fashion (Table 6.3). 

Phanerochaete sp. PW271 had significantly reduced performance scores when inoculated 

with any of the three bacteria. Paraburkholderia sp. BCC1885 also significantly reduced the 

performance of B. adusta and P. velutina, although to a lesser extent. In some cases the 

addition of bacteria could reverse the outcome of the interaction (e.g. T. versicolor vs. 

Phanerochaete sp. and P. velutina vs. Phanerochaete sp. at 20°C; Fig 6.6), and there were 

also instances where bacteria could make an otherwise-consistent outcome unpredictable 

(e.g. B. adusta vs. P. velutina at 10°C, P. velutina vs. T. versicolor and P. velutina vs. S. hirsutum 

at 20°C; Figs 6.6 & 6.7). All the fungal self-pairings met and merged as expected, regardless 

of bacterial treatment. 

6.4.4 Observations on fungal morphology and bacterial behaviour 

 The presence of bacteria induced highly localised pigment production in S. hirsutum 

(Fig 6.8); the progress of bacterial migration was marked by bright orange colouration. 

Bacterial establishment on mycelium was often asymmetric, resulting in parts of the 

mycelium being colonised and others remaining (visually) bacteria-free. Bacteria were 

sometimes observed to cross the interaction front and become established on the other 

fungus. This indicates that whilst migration preferentially occurred towards the hyphal tips, 

there was at least some capacity to move in the opposite direction. Confocal microscopy 

revealed bacteria massing around hyphae, including at the point where several hyphae were 

starting to aggregate into a cord (Fig 6.9). 

 

6.5 Discussion 

 This is the first report of migratory bacteria isolated from wood-decay fungi, and 

indicates that they co-occur naturally both in wood and on mycelial cords. Whilst most fungi 

appeared unaffected by hosting bacteria, active fungal-bacterial interaction was revealed by 

growth and competitive inhibition of two strains of Phanerochaete, and by morphological 

responses in S. hirsutum. This is the first assessment of how bacteria influence fungal inter-

specific interactions, and reveals that they consistently impede the performance of some 

strains. The addition of bacteria can also change or destabilise the outcome of interactions 

in a pairing-specific fashion.  
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Table 6.3 Model output for outcomes of competitive interactions between wood-decay fungi 

and the effect of inoculating each competitor with fungal-migratory Paraburkholderia. 

Term Coefficient Std error t Pr(>|t|) 

(Intercept) -0.275 0.027 -10.3 <0.001 

Ba 0.448 0.031 14.6 <0.001 

Sh -0.021 0.024 -0.905 0.366 

Psp -0.278 0.031 -9.07 <0.001 

Pv -0.040 0.026 -1.57 0.115 

Ba-BCC1884 -0.041 0.048 -0.842 0.400 

Sh-BCC1884 0.018 0.048 0.382 0.703 

Psp-BCC1884 -0.205 0.048 -4.25 <0.001 

Pv-BCC1884 0.033 0.048 0.691 0.490 

Tv-BCC1884 0.014 0.048 0.292 0.771 

Ba-BCC1886 -0.025 0.048 -0.525 0.600 

Ba-BCC1885 -0.122 0.048 -2.54 0.011 

Sh-BCC1885 -0.053 0.048 -1.09 0.275 

Psp-BCC1885 -0.296 0.049 -6.04 <0.001 

Pv-BCC1885 -0.111 0.048 -2.31 0.021 

Tv-BCC1885 0.073 0.049 1.49 0.137 

Sh-BCC1886 0.001 0.048 0.012 0.990 

Psp-BCC1886 -0.602 0.048 -12.5 <0.001 

Pv-BCC1886 -0.068 0.048 -1.41 0.159 

Tv-BCC1886 0.046 0.049 0.942 0.346 

Temp20 0.157 0.022 7.22 <0.001 

The fungal identity matrix is calculated with zero-sum contrasts; the estimate for Tv may be 

obtained by subtracting the coefficients for the other fungi. Null deviance = 213.96 on 986 

degrees of freedom; residual deviance = 112.33 on 966 degrees of freedom; R2 = 0.47. 

Significant terms are shown in bold. All numbers are given to three significant figures. Fungal 

abbreviations are given in Table 6.1. 
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Figure 6.6 Outcomes of competitive interactions between wood decay basidiomycetes on 

2% malt agar at 20°C in the presence and absence of Paraburkholderia. Interactions are 

scored on a metric that combines outcome of interaction and the time taken to reach a 

conclusion. Error bars represent standard deviation. 
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Figure 6.7 Outcomes of competitive interactions between wood decay basidiomycetes on 

2% malt agar at 10°C in the presence and absence of Paraburkholderia. Interactions are 

scored on a metric that combines outcome of interaction and the time taken to reach a 

conclusion. Error bars represent standard deviation. 
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 All three of the bacterial strains isolated were from a single clade of 

Paraburkholderia, even though no attempt was made to discriminate taxa in the isolation. 

This lends further support that Burkholderiaceae are an important fungal-associated family, 

and Paraburkholderia in particular are a major genus among fungal-migratory bacteria (Nazir 

et al. 2012; Stopnisek et al. 2015; Johnston et al. 2016; Simon et al. 2017; Chapters 2 & 4). 

None of the three present strains formed a cluster with each other, suggesting that all three 

may be different species. All three fell within the P. xenovorans group, close to P. fungorum, 

P. terricola, P. xenovorans and P. terrae. This clade encompasses many migratory or 

otherwise fungal-associated species. P. fungorum was originally isolated from a wood-decay 

fungus, Phanerochaete chrysosporium, with which it formed close hyphal associations 

(although whether P. fungorum migrated along the host was not reported) (Seigle-Murandi 

et al. 1996; Coenye et al. 2001). P. terricola and P. xenovorans are both capable of single-

strain migration on Lyophyllum sp. strain Karsten (Nazir et al. 2012). P. terrae is the best 

characterised of all migratory bacteria, with multiple strains known to migrate on a range of 

fungi (Nazir et al. 2012; Haq et al. 2014; Nazir et al. 2014). The P. terrae genome has been 

sequenced (Haq et al. 2014), opening the door for future comparison between P. terrae and 

the present strains that may reveal a genomic signature of migration. Previous work has 

pointed to type III secretion systems, flagella and pili as likely enablers of migratory 

behaviour (Yang et al. 2016; Yang et al. 2017; Nazir et al. 2017). 

6.5.1 Migratory bacteria occur naturally with wood-decay fungi and have a broad host range 

 Migratory bacteria could be isolated from mycelial cords, but the retrieval rate was 

nonetheless low. The strains isolated from wood were discovered serendipitously, so 

detection rates cannot be compared. Nazir et al. (2014) reported low rates of migration over 

cords compared to hyphae, suggesting that cords may represent a more challenging venue 

for bacteria. Mycelial cords are toughened dispersal organs, aggregations of hyphae 

organised within a protective rind (Boddy 1993). This may provide the opportunity for 

migration of bacteria over the surface of the cord, and/or along hyphae inside the rind. Living 

within the rind would afford the bacteria direct access to the hyphae, and protection from 

the environment. This idea is entirely speculative at present, but a small measure of support 

is provided by the microscopic evidence of bacteria adhering to hyphae which were in the 

process of forming a cord. Note that this is not evidence of endosymbiosis, as at no point 

were bacteria observed within hyphae. 

 The three strains of Paraburkholderia obtained were generalist migrators, capable 

of becoming established on multiple different fungi and thus supporting hypothesis 1. Each 
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of the bacterial strains was able to migrate on a range of fungal hosts, representative of the 

species that would be encountered within their habitat. Two of the three bacteria (BCC1884 

and BCC1886) migrated over all ten fungi (although with varying success), irrespective of 

fungal taxonomic position or ecological strategy.  

6.5.2 Wood-decay fungi show inter- and intra-specific variation in their responses to 

migratory bacteria 

 Most of the fungi tested were neither inhibited nor stimulated due to the presence 

of migratory Paraburkholderia, in accord with previous work (Nazir et al. 2014). Sometimes, 

this was because bacteria were largely unable to establish on the mycelium (e.g. H. 

fasciculare GtWV2). The difference in bacterial establishment between the two H. fasciculare 

strains was both unexpected and unexplained, but it indicates that the factors required for 

colonisation by migratory bacteria can vary at the intra-specific level. R. bicolor supported 

very limited bacterial movement, perhaps related to the calcium oxalate crystals which cover 

the hyphae (Connolly & Jellison 2011). S. hirsutum had very high rates of bacterial 

establishment and movement, yet with no effect on its mycelial extension rate – although 

its abundant pigmentation shows that it actively responded to bacterial presence. 

 The two Phanerochaete strains were notable exceptions to this general lack of 

growth response. Both provided a very successful platform for bacterial migration, and both 

were markedly inhibited in the process, thus offering partial support for the second 

hypothesis. Curiously, Nazir et al. (2014) used the same strain of P. velutina as the present 

study, and found it was unaffected when growing across soil with Paraburkholderia terrae 

BS001. This may reflect the difference in bacterial identity, venue of interaction (soil vs. agar) 

or fungal morphology (cords vs. hyphae). Although the present study contrasts with P. 

terrae’s lack of effect on host growth rate during co-migration, P. terrae has been observed 

to reduce fungal growth prior to physical contact (Haq et al. 2016). 
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Figure 6.8 Paraburkholderia 

sp. BCC1885 inducing 

localised pigment production 

in a self-pairing of S. 

hirsutum. The two 

inoculation plugs are visible in 

the centre of the plate. The 

top plug was inoculated with 

Paraburkholderia. 

 

 

 

Figure 6.9 Confocal microscope image of Paraburkholderia BCC1884 adhering to the hyphae 

of Phanerochaete sp. PW271, stained with LIVE/DEAD® BacLight™ Bacterial Viability Kit. The 

hyphae appear to be aggregating into a cord at the centre of the image. Arrows indicate 

clusters of bacteria. Some autofluorescence is also visible from the hyphae. 
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6.5.3 Migratory bacteria can reduce the competitive ability of wood-decay fungi 

 As with extension rate, bacterial effects on competitive ability were fungus-specific, 

and so the third hypothesis was likewise partially supported. Once again, Phanerochaete sp. 

was the most affected, with a reduction in competitive ability when inoculated with any of 

the three bacteria. This fungus was isolated alongside Paraburkholderia sp. BCC1886, and it 

is noteworthy that the fungus most affected by bacteria was known to naturally host 

migratory bacteria. It is possible that this strain is particularly prone to exploitation by 

bacteria. Migratory bacteria are able to partner with a range of fungal strains and species, 

yet with a varying strength of interaction, mediated by different mechanisms (Nazir et al. 

2014; Haq et al. 2016). The negative effects on both growth and competition suggest that 

these Paraburkholderia may be parasites, dispersing along fungal hyphae whilst 

disadvantaging the host. Conversely, P. terrae BS001 can protect its host from harmful 

bacteria and anti-fungal compounds (Nazir et al. 2014). Future work on the strains from the 

current study should investigate whether they also exhibit this ability, in which case there 

may be a fitness trade-off for fungi between the cost of hosting migratory bacteria and the 

protection that they afford. Wood-decay fungi exert active selection over the bacteria in 

their resource (Chapters 4 & 5), so the persistence of Paraburkholderia actually on mycelium 

indicates that it must be either tolerated by the fungus or resistant to its anti-bacterial 

mechanisms. 

 Wood-decay fungi form competitive hierarchies, whereby one species will 

outcompete another in a predictable (though not deterministic) manner (Boddy 2000). The 

competitive hierarchy observed in the present study was reversed compared to that 

normally expected (e.g. Hiscox et al. 2017), with the early coloniser B. adusta scoring highest 

and the late-stage Phanerochaete strains scoring lowest. On a rich agar medium, fast-

growing earlier-successional species are at an advantage, which probably explains why they 

were able to outcompete the slower-growing secondary colonisers. This may also help to 

explain the reduced performance of Phanerochaete sp., as the bacteria slow its growth rate 

even further. 

 In some combinations, the addition of the bacteria reversed the outcome of the 

interaction, or destabilised an otherwise predictable relationship. The effect is reminiscent 

of how grazing invertebrates can reverse interaction outcomes by preferentially consuming 

the stronger competitor (Crowther et al. 2011). Likewise, the addition of a third fungal 

competitor into a pairwise interaction can shift the outcome from consistent to unstable 

(Hiscox et al. 2017). These examples underline the importance of considering competition 
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not only in terms of the competitors’ own traits, but also as a process under cross-kingdom, 

top-down influences. 

The addition of bacteria did not impede fungal self-recognition mechanisms, as all 

self-pairings showed normal recognition and mycelial fusion. Altering the bacterial 

community associated with the zygomycete Mucor hiemalis interfered with this process, 

producing antagonism between the cured and uncured mycelium (Schulz-Bohm et al. 2017). 

Pseudomonas syringae activates programmed cell death (and thus nutrient release) in 

Neurospora crassa by tapping into a somatic incompatibility pathway used in self-recognition 

(Wichmann et al. 2008). 

6.5.4 Conclusions 

In conclusion, migratory bacteria have been isolated directly from fungal mycelium, 

in a different habitat and geographically distant location to previous strains. These 

Paraburkholderia are competent to migrate with a taxonomically and ecologically diverse 

range of wood-decay fungi, which in turn showed species- and strain-specific responses to 

bacterial presence. Most fungi were largely unaffected in both growth and competitive 

ability, but the two Phanerochaete strains were consistently inhibited by the bacteria. These 

results show that wood-decay fungi naturally host migratory bacteria, and that these 

bacteria may influence the results of fungus-fungus interactions. 
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Chapter 7. General discussion 

7.1 Synthesis 

 The work presented here furthers current understanding of fungus-bacteria 

interactions during wood decomposition by establishing causative relationships in a natural 

environment: wood-decay fungi drive bacterial community composition. This is the first time 

that this relationship has been demonstrated in the field. The work also extends knowledge 

of fungal interactions with migratory bacteria from a soil context to include wood-inhabiting 

taxa, and reveals for the first time that bacteria can influence the outcomes of inter-specific 

fungal interactions.  

The major finding of Chapter 4 was that fungi can control bacterial communities in 

the field. Radical changes in bacterial community composition have been seen when fungi 

were introduced to wood microcosms (Folman et al. 2008; Hervé et al. 2014), but the present 

study provided the first evidence of a causative association in the field. Additionally, it 

provided support for the idea that pH modification is a mechanism for fungal control of the 

wood environment (de Boer et al. 2010). Unexpectedly, the best predictor of bacterial 

community composition was whether or not the dominant fungus was a cord-former, adding 

a new aspect to the distinctive ecology of cord-forming basidiomycete fungi in woodland 

ecosystems (Boddy 1993). This degree of control over the bacterial community may be due 

directly to the highly competitive nature of cord-formers; additionally, this competitive 

dominance allows cord-formers to occupy larger territories for longer periods of time 

compared to less competitive fungi, giving them more opportunity to make a mark on the 

bacterial community.  

Chapter 5 extended this causative association to less-competitive fungi at the early 

stages of community development. Wood-decay fungi actively repel other fungi from 

entering their territory (Hiscox et al. 2017), but this was the first time that they have been 

shown to exclude bacteria. Canopy decay has not previously been considered as a driver of 

bacterial succession, but the differing bacterial communities between fresh and pre-

colonised wood highlight the importance of this decay stage. 

The complexity of individual fungus-bacteria interactions was demonstrated in 

Chapter 6. Bacterial migration on wood-decay fungi has been observed in the lab (Nazir et 

al. 2014), but had not previously been demonstrated to occur naturally. The competitive 

inhibition of Phanerochaete sp. by migrating bacteria adds a new entry to the list of biotic 

controls on fungal competition (Crowther et al. 2011; Hiscox et al. 2017). None of the fungi 

showed a significant improvement in performance when inoculated with Paraburkholderia, 
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which was surprising given that other strains convey considerable benefits to the host (Nazir 

et al. 2014). It may be that the scenarios tested revealed the cost to the host, but concealed 

benefits that would become apparent under different conditions. 

Across all the above chapters, the Burkholderiaeae repeatedly emerged as major 

bacterial players: they were positively associated with fungi in Chapters 4 & 5, and all three 

migratory bacteria isolated in Chapter 6 belonged to the Paraburkholderia. This adds further 

evidence for their importance among fungal-associated bacteria (Stopnisek et al. 2015; 

Chapter 2). Acidobacteria were notable for their fungal associations in Chapter 4, yet their 

scarcity in Chapter 5 suggests that they are slow to colonise wood. This is consistent with 

previous reports of Acidobacteria as a major bacterial taxon in wood (Valásková et al. 2009; 

Sun et al. 2013; Sun et al. 2014; Hoppe et al. 2015; Kielak et al. 2016a), and their general 

association with acidic, low-nutrient environments (Kielak et al. 2016b). More surprising was 

the consistently low proportion of Actinobacteria (Chapters 4 & 5), in contrast to previous 

studies (Sun et al. 2013; Sun et al. 2014; Hoppe et al. 2015; Kielak et al. 2016b; Rinta-Kanto 

et al. 2016). One possible explanation is that most of the above studies examined coniferous 

wood, whereas the present work used deciduous wood – although Hoppe et al. (2015) 

recorded little difference in relative abundance of Actinobacteria between deciduous and 

coniferous wood. Actinobacteria may become abundant at later stages of decay (Rinta-Kanto 

et al. 2016), although conversely they have been postulated to be early colonisers (Hoppe et 

al. 2015). Overall, the ecology and determinants of Actinobacteria in wood remain unclear. 

Most wood-decay fungi used in these experiments were basidiomycetes, although 

an ascomycete was included in Chapter 6; fungi were primarily selected based on their 

ecological strategy, rather than their taxonomic classification. The exploratory aspect of 

Chapter 4 found no correlation between bacterial community composition and the phylum 

of the dominant fungus. However, it remains an area for future work to explore specific 

associations between bacteria and ascomycete wood-decay fungi. 

 

7.2 Issues and innovation in methodology 

 One recurring theme that emerged during the course of the work is the need for new 

and improved methods to tackle the increasing complex questions in microbial ecology. 

Attempts to quantify bacteria in wood by quantitative PCR revealed the unexpected but 

substantial co-amplification of fungal DNA. The diagnosis and exploration of this problem 

form Chapter 3, which found that universal bacterial qPCR primers are non-specific when 

fungal DNA is abundant, and particularly where fungal DNA is equal or greater in 
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concentration than the target. Amplification of host DNA is a known problem in microbiome 

studies (Galkiewicz & Kellogg 2008) but this is the first time it has been reported for a fungal 

host, despite having been predicted in fungus-rich environments (Huws et al. 2007). 

The robust analysis of OTU data is an outstanding challenge in microbial ecology, in 

light of extremely challenging data properties and the number of decisions that arise in the 

course of data processing. Chapters 4 & 5 attempt to make progress in this area by replacing 

the controversial technique of rarefying (McMurdie & Holmes 2014; Weiss et al. 2017) with 

methods that account explicitly for uneven sample sizes and overdispersion in the data. 

Whilst analysing interaction outcomes is a less common problem, Chapter 6 also required 

statistical innovation, such as the creation of a combined outcome-and-time metric and the 

collaborative development of an advanced matrix-based linear model. 

  The combination of laboratory and field approaches provides a powerful insight into 

community processes. Field studies are the gold standard for realism, yet their complexity 

and unpredictability can obscure genuine patterns amidst large amounts of noise. Until now, 

field assessments of fungus-bacteria interactions in wood have relied on correlation (Hoppe 

et al. 2014; Kielak et al. 2016b). Using wood that had been pre-colonised by fungi in the lab 

gives insight into real-world communities whilst employing the increased inferential power 

of manipulative experiments (Chapters 4 & 5). A potential drawback of this method is that it 

introduces the pre-coloniser fungi into the field, where they may grow out from the 

experimental wood resources and colonise the site. By the end of the experiment in Chapter 

5, Hypholoma fasciculare mycelium could be seen proceeding from the blocks and colonising 

adjacent leaf litter. To mitigate for this, all the pre-coloniser fungi used in field experiments 

were common species, typical of the habitat at the sites. All strains were originally collected 

within the UK (apart from Trametes versicolor TvAW-HxFP, which is a laboratory cross 

between two homokaryon strains), and in some cases were local to the field sites. 

Culture-based methods are useless for surveying bacterial communities in wood 

(Chapter 2), but remain valuable tools for investigating specific processes in detail (Fierer 

2017). The isolation of fungal-migratory Paraburkholderia allowed behavioural and 

physiological study of their interactions with fungi (Chapter 6), which could not have been 

observed with gross DNA-based techniques. Simple techniques such as measurement and 

microscopy still make an important contribution to modern microbiology when used in an 

appropriate setting. The downside to culture-based approaches is that they are by nature 

artificial, with limited applicability to a field situation. This was reflected in the atypical fungal 
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hierarchy seen in Chapter 6, which was probably caused by interaction on nutrient-rich 

medium. 

 

7.3 Fungi as holobionts 

 Evidence is mounting that fungi naturally host a bacterial community that intimately 

interacts with the mycelium (Chapter 2). From this, it has been recently argued that fungi 

should be considered holobionts: not isolated organisms, but unified combinations of host 

and microbiome (Partida-Martínez 2017). This presents a unique situation in which the host 

is itself a microorganism, albeit one that reaches macroscopic size. Perturbing the 

microbiome of Mucor hiemalis affected host growth, morphology, volatile production and 

self-recognition (Schulz-Bohm et al. 2017). The present work contributes to understanding 

fungi within this framework. Firstly, it demonstrates that wood-decay fungi naturally host 

migratory bacteria, both within wood and on/in mycelial cords (Chapter 6). These migratory 

bacteria alter the fitness of the host, but the bacteria-host interaction is species- and 

genotype-specific. Secondly, it indicates that wood-decay fungi influence and alter the 

bacterial community within their resource (Chapters 4 & 5). For a wood-decay fungus, the 

immediate environment may be considered an extension of the organism because fungi 

acquire nutrients by extracellular enzyme production. The bacterial community within wood 

under single-species fungal dominance is thus broadly analogous to its gut microbiome. 

 

7.4 The usefulness of a trait-based framework in studying fungus-bacteria interactions 

 A picture has emerged of the importance of traits when considering fungus-bacteria 

interactions. The concept of describing species in terms of traits (individual-level properties 

that influence performance) is gaining popularity in microbial ecology, but remains 

challenging when a large proportion of microbial diversity is poorly described and cannot 

even be cultured (Crowther et al. 2014; Fierer 2017). The present work indicates the 

usefulness of trait-based classification. The ability to form mycelial cords is a trait associated 

with particular wood-decay fungi, indicative of a foraging-based ecology that is correlated 

with high competitive ability, powerful enzyme systems and a late-secondary successional 

position (Boddy 1993). The possession of this trait turned out to be a major predictor of 

associated bacterial communities (Chapter 4). The same experiment indicated that certain 

traits, notably acid-tolerance, are likely to be common among bacterial symbionts of wood-

decay fungi and convey an advantage in a fungus-dominated environment. Bacterial 

migration on fungi represents a ‘trait complex’ (sensu Crowther et al. 2014), and Chapter 6 



107 

indicates that it may have far-reaching effects in the wood environment, interacting with 

fungal traits such as growth rate and competitive ability. The ‘true traits’ underlying this trait 

complex are not fully understood, but there is evidence that they include flagella-linked 

motility, expression of type III secretion systems, and cellular recognition and binding ability 

(Haq et al. 2016; Yang et al. 2016; Yang et al. 2017; Nazir et al. 2017). 

 

7.5 Future directions 

 With the discovery that wood-decay fungi can control bacterial communities, an 

obvious next step would be to probe the mechanisms of how this occurs. Chapter 4 indicates 

the importance of fungal pH modification, and Chapter 5 suggests that the first few months 

of colonisation would be an appropriate time point to focus on, as fungi are likely to be 

responding actively to a developing bacterial community. Metatranscriptomics could provide 

a useful way of simultaneously recording fungal and bacterial responses, and would be 

particularly powerful if combined with experimental manipulation of potential drivers such 

as wood pH. 

 Further to this, the role of traits in predicting fungus-bacteria co-existence merits 

future consideration. From a fungal perspective, the topic could be explored by selecting a 

range of pre-colonisers specifically chosen to encompass variation in specific traits, and 

seeing how well those traits predicted the associated bacterial communities. Examining 

bacterial traits is more challenging, as many taxa are poorly characterised, if they are 

described at all. Ascribing and describing traits for a particular organism still rely heavily on 

the ability to culture it (Crowther et al. 2014; Evans et al. 2017). Metagenomics could provide 

a way forward, allowing community-level correlation of genomic potential with 

environmental conditions. Although this approach would have limited ability to combine 

traits and identities, it could provide a starting point for identifying important traits by 

looking for those over-represented within the community. Metatranscriptomics and 

metaproteomics could also provide valuable insights, albeit with their own caveats: fungal 

gene expression does not necessarily correlate well with enzyme activity, and there is limited 

capacity to predict protein function and origin in an environment where most organisms are 

poorly characterised (Keiblinger et al. 2016). 

 Nutritional interactions are likely to play an important role in fungus-bacteria 

interactions in wood, and would be a fascinating area for future research. This is a particularly 

important aspect of the relationship, as the need to access nutrition frames all other aspects 

of life and interactions within wood. Anything that influences which organisms are best able 
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to exploit the available nutrients will be a key driver of the communities. Specifically, 

reciprocal carbon and nitrogen exchange between wood-decay fungi and diazotrophic 

bacteria is an intriguing possibility that could be tested using stable isotope analysis in 

microcosms. The same methods could be used to gain insight into how many bacteria in the 

wood are obtaining nutrition directly from the fungus, rather than the wood itself. 

Quantifying the relative contributions of fungi and bacteria to direct wood breakdown 

remains extremely difficult, but a judicious combination of stable isotope analysis and 

metaproteomics could start to give insight into this relationship. 

 The fungal-migratory Paraburkholderia isolated in the course of this research have 

shown interesting properties and are worthy of further investigation. In particular, it would 

be valuable to know if they can protect the host from ambient anti-fungal compounds or 

harmful bacteria, in the manner Paraburkholderia terrae BS001 does (Nazir et al. 2014). The 

genomes for these strains have been sequenced recently, and it will be interesting to learn 

more of their genomic make-up and capabilities. The number and types of secretion system 

present are of particular interest, as their role in migration interactions is important but not 

entirely clear (Haq et al. 2016; Yang et al. 2016; Nazir et al. 2017). 

 

7.6 Conclusions 

 Fungi profoundly influence the establishment and development of bacterial 

communities. The presence and identity of the fungus within a woody resource can alter the 

timescale of bacterial colonisation, as well as which bacteria manage to establish successfully 

within the resource. Conversely, bacteria have the potential to act as controls on fungi, 

affecting the competitive interactions which are the major determinant of fungal community 

development in wood. Together, these findings indicated that fungal and bacterial 

community succession are tied into one another, with reciprocal influence on the dynamics 

of dead-wood communities. 
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Appendix 1: Chapter 3 supplementary material 

 

Protocol S3.1 R script used to query the NCBI database 

 

Available online at https://github.com/drevansa/qPCR_primer_paper/ 
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Appendix 2: Chapter 4 supplementary material 

 

 

Fig S4.1. Hellinger-transformed principal components analysis of the bacterial community in 

fungus-colonised wood disks. Points are coloured by (a) pre-coloniser identity; (b) site of 

origin; (c) gradient of wood pH; (d) gradient of soil pH; (e) pre-coloniser persistence; and (f) 

whether the dominant fungal OTU belonged to a cord-forming genus (transparency dictated 

by % of disk held by the dominant OTU). 
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Fig S4.2 NMDS ordination of the bacterial community in fungus-colonised wood disks, with 

points coloured on a gradient by sequencing depth. 
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Fig S4.3 NMDS ordination of the bacterial community in fungus-colonised wood disks, 

coloured by pre-coloniser and panelled by site. Black points are control disks, blue are pre-

colonised by V. comedens, green are pre-colonised by T. versicolor, and red are pre-colonised 

by H. fasciculare. Note that the greatest separation by pre-coloniser occurs on the Wytham 

site, in keeping with the results of Hiscox et al. (2016). 
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Protocol S4.1. R markdown of the code used to produce the analysis in Chapter 4 

 

Available online at https://github.com/ecologysarah/SR-Johnston-thesis 
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Appendix 3: Chapter 5 supplementary material  

 

Table S5.1 Number of replicates per treatment from which bacteria could be amplified 

successfully. 

Season Pre-coloniser Days Bacteria present (no. 

samples) 

% samples with 

bacteria present 

Autumn C 14 10 83 

Autumn C 84 11 100 

Autumn Vc 14 0 0 

Autumn Vc 84 12 100 

Autumn Tv 14 0 0 

Autumn Tv 84 2 17 

Autumn Hf 14 0 0 

Autumn Hf 84 5 42 

Spring C 14 8 67 

Spring C 84 10 100 

Spring Vc 14 1 8 

Spring Vc 84 4 33 

Spring Tv 14 2 20 

Spring Tv 84 3 23 

Spring Hf 14 0 0 

Spring Hf 84 7 64 

Abbreviations: C stands for control samples, Vc pre-colonised with V. comedens, Tv pre-

colonised with T. versicolor, Hf pre-colonised with H. fasciculare. 
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Fig S5.1 Pair of blocks wired together and pegged to the forest floor. A metal forestry tag 

identifies the pair with a unique number. Symbols on the blocks are burnt on with a 

pyrography iron, identifying to which precoloniser treatment they belong. 
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Fig S5.2 Hellinger-transformed principal components analysis of the bacterial community in 

fungus-colonised wood disks. Points are coloured by: (a) sequencing depth or (b) extraction 

kit lot number. Note that (a) and (b) are on different axes. 
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Fig S5.3 NMDS ordination of the bacterial community in fungus-colonised wood blocks, 

coloured by sequencing depth and extraction kit. Points are coloured by (a) sequencing 

depth; (b) pre-coloniser identity; (c) season of field incubation; (d) length of time in field; (e) 

set-out date (1-3 represent autumn set-outs, 4-6 are spring). 
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Protocol S5.1. An R markdown file of R code used to create the analysis in Chapter 5 

 

Available online at https://github.com/ecologysarah/SR-Johnston-thesis 
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Appendix 4: Chapter 6 supplementary material 

 

Protocol S6.1 An R markdown file of R code used to create the analysis in Chapter 6 

 

Available online at https://github.com/ecologysarah/SR-Johnston-thesis 

 


