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Abstract: This paper details testing conducted on selected void defects in dielectric insulation 

samples under various HVDC voltage conditions. The aim of this work is to illustrate the type of PD 

activity that could be observed in HVDC insulation systems. Initially the samples were subject to 

HVAC excitation to confirm the defect type and establish the PD inception voltage. HVDC testing was 

then conducted using a ‘ramp and hold’ test technique with different hold voltages in the ramp 
determined from the measured HVAC inception voltage. The effect of harmonic ripple superimposed 

on the HVDC voltage waveform, which is typically a result of the converter switching operation, was 

also investigated. The findings from this study should provide network operators and insulation 

manufacturers a greater insight into the behavior of PD phenomena in solid insulation under HVDC 

conditions, enabling greater confidence in the diagnosis of defect type and severity in such systems.  

 

Index Terms: HVDC Insulation, Partial Discharges, Power cables.  

 

1. Introduction  

HVDC transmission is increasingly being used in power systems. Conventional AC transmission in 

cables is limited by losses to about 50-100 km [1], beyond which HVDC transmission becomes the 

more cost-efficient solution. In the UK, HVDC applications include the transmission of power from 

isolated renewable generation sources, providing increased power flows in subsea cables from 

Scotland to England and enabling power trading between the UK and neighboring countries. Any 

system downtime will result in significant costs in terms of repairs, lost revenue and regulatory fines. The 

service experience for HVDC cable systems for land and subsea applications was outlined in [2]. 

Monitoring the condition of HVDC systems is one way to ensure that any system downtime can be 

planned in advance and mitigation measures put in place. The publication by Mazzanti et al provides 

background information on the behavior of HVDC insulation [3]. Recent guidelines [4] detail best working 

practices for the testing and diagnosis of faults in polymeric materials for HVDC insulation systems from 

initial design to final implementation. One method for monitoring the condition of the insulation is to 

detect partial discharges (PD). PD is generally produced when a defect is present or when insulation 

degradation occurs over time. PD detection is a well-established tool for insulation monitoring at AC 

voltages. In HVAC equipment, several different PD detection techniques are available depending on the 

application. However, PD still remains a complex phenomenon that poses challenges for 

measurement and diagnosis. In comparison, PD detection under HVDC conditions has received less 

research attention. A useful introduction to PD in HVDC insulation can be found in [5]. More recent 

publications on PD detection under HVDC conditions are [6]-[8]. 

This paper aims to further the understanding of PD measurement and analysis in solid dielectrics under 

DC conditions and DC with superimposed voltage source converter (VSC) ripple. PD pulses under these 



conditions are characterized in terms of their magnitude and time of occurrence and a number of 

classification techniques explored. The main methods applied to classification at HVDC have been based 

on the statistical analysis of PD pulses [9-12]. Section 11 of IEC 60270 [13] details analysis methods for DC 

PD data. These include four methods of representing statistical PD characterization of HVDC PD data, 

which are utilized in Section 4 of this paper. 

The PD sources used in this study were initially energized using AC to record their phase-resolved PD 

activity and inception voltages. DC testing was then performed considering the inception voltages 

under AC and using a ramped voltage technique. In separate experiments, the effects of VSC ripple 

on PD characteristics of a void in solid insulation were investigated. Tests were carried out using a 

high voltage amplifier to produce a DC voltage with superimposed harmonic ripple typical of a 6-

pulse converter.  The effect of the harmonics on time domain features, particularly PD pulse 

repetition, were explored. Quantifying the variation in pulse repetition with harmonic amplitude is 

proposed to generate comparative PD data for field stressing conditions of the PD test objects that 

are more akin to those realistically expected on an in-service cable. 

Two common methods used in the analysis of PD under AC conditions are phase resolved PD (PRPD) 

plots and pulse sequence analysis (PSA). PRPD analysis is used in this paper to confirm the PD 

characteristics of the dielectric samples. Two key parameters of the PD events are required to 

produce a PRPD plot; the apparent charge and a phase reference angle relative to the power-

frequency sinusoid. The phase location and relative spread of the PD activity are used for the 

identification of defect types [14]. In contrast, under DC conditions, PD generally occurs less 

frequently and is more likely to occur with a rate-of-change of voltage [5]. The parameters available 

in the analysis of PD under DC excitation are the apparent charge and the time of occurrence. The 

analysis of these parameters is best suited to statistical techniques. This study applies the statistical 

analysis techniques of IEC 60270 to demonstrate the PD behavior of defects inside a dielectric under 

HVDC conditions.  

 

2. Theory  

Fundamental differences exist in the mechanisms that drive PD under AC and DC applied voltages. 

While AC PD phenomena are well understood through lab and field experience, more research is 

needed into diagnostic interpretation of the phenomena under DC conditions. 

2.1. AC PD 

PD activity under AC conditions can be modelled by using capacitors to represent the bulk properties 

of the insulation system. A common model used to represent AC PD resulting from a void in a solid 

dielectric is the three capacitor model [5]. The gas filled void (Figure 1) is represented by Cc, the 

insulation in series with the void is represented by Cb and the remaining insulation is represented by 

Ca. Under AC conditions the voltage polarity reverses every half cycle. When the electric field in the 

cavity exceeds the PD inception level, a PD will occur. As the capacitance of the void discharges, the 

voltage across the void drops.  The reliance of PD activity on the applied voltage leads to a phase-

synchronization of PD activity under AC conditions. 

PLACE FIGURE 1 HERE 

2.2. DC PD 

Under DC conditions the voltage is generally constant thus the three-capacitor model would reach 

steady-state and activity would cease. The DC PD model requires adaptation (Figure 2) of the AC 



model to reflect the charge dissipation from the void defect into the surrounding dielectric [5]. This 

is achieved through the addition of resistors in parallel with each capacitor. Under DC conditions the 

repetition rate of PD is dependent on the applied voltage magnitude and the conductivity of the 

insulation surrounding the void. 

In contrast to AC, PD under DC conditions has no phase reference thus characterization must be 

based upon correlating PD magnitude with other quantities such as time of occurrence or time-

difference between consecutive pulses. At DC, discharges take place in the manner of a relaxation 

oscillator, where the field in the cavity is built up through charging of the capacitive defect through 

the leakage resistance of the dielectric, with amplitude and rate of discharge being in proportion to 

the magnitude of the applied voltage.  

PLACE FIGURE 2 HERE 

3. Methodology 

 

3.1. AC Testing 

AC tests were performed using the calibrated IEC60270 standard measurement system shown in 

Figure 3. The test circuit comprises a 100 kV PD-free transformer, the sample under test 

(represented by the capacitance Ct), a coupling capacitor (Ck) and measuring impedance (Zm). The 

bandwidth of the measurement system was 100 – 400 kHz. 

PLACE FIGURE 3 HERE 

The AC tests were performed by incrementally increasing the voltage of the AC supply until 

sustained PD was apparent from the sample under test. The inception voltage was deemed to be the 

voltage at which repetitive and sustained PD was observed [14]. PD activity at the inception voltage 

was then recorded over a 10 second period in phase-resolved format by the IEC 60270 measurement 

system. These AC tests served to confirm the dominant source of PD for each of the dielectric 

samples.  

3.2. DC Testing 

The test circuit illustrated in Figure 4 includes the DC power supply, an input resistance Rin, a 

coupling capacitor Ck and the sample under test Ct. PD pulses were recorded using the same IEC PD 

measurement system used for the AC tests. The sensor connected to the measurement system was 

a high frequency current transformer (HFCT) with a nominal transfer impedance of 4.3 Ω and a 
bandwidth of 100 kHz – 20 MHz. A pulse injection calibration unit was used to ensure the output 

from the HFCT could be quantified as an apparent charge on the IEC 60270 measurement system. 

PLACE FIGURE 4 HERE 

A key feature of the DC test procedure was the ramp test profile [15]-[16]. The ramp test uses the 

peak value VR of the AC inception voltage as a basis for defining the voltage variation with respect to 

time. The ramp tests consisted of three voltage increments (as shown in Figure 5) after which the 

voltage was held constant at  VR/2, VR and 3VR/2 for 30 minutes each, followed by a final ramp down 

period of 30 seconds from 3VR/2 to 0 V. The data under analysis in this case is the 30-minute hold 

data recorded after each of the 3 voltage steps. 

PLACE FIGURE 5 HERE 

Section 11 in IEC 60270 recommends two methods for evaluating DC PD test data. Firstly, recording 



the pattern of consecutive charge pulses for a PD test period of 30 minutes at constant DC test level. 

Secondly, determining the cumulative PD pulse charge recorded over the 30 minutes PD test period. 

Two further methods are recommended for performing statistical analysis on the PD data. Firstly, 

measuring the number of pulses whose apparent charge exceeds a specified threshold level for the 

PD data under test – this was termed ‘exceeding frequencies of PD pulses’. The second analysis 
method assesses the total number of PD pulses whose charge lies within a defined set of ranges of 

PD magnitude for the PD data under test – this was termed ‘class frequencies of PD pulses’. These 
methods were applied to the PD data gathered during the 30-minute hold at 3VR/2.  

 

3.3. VSC Ripple Test Method 

HV waveforms were applied to insulation test samples using an arbitrary waveform generator 

feeding an HV amplifier, as shown in Figure 6. The maximum slew rate of the system was 750 V/μs. 

For the tests reported here, a DC voltage was generated with superimposed harmonics of 50 Hz 

power frequency having orders and relative magnitudes as listed in Table I, based on available data 

for a 6-pulse VSC converter [17].  

PLACE FIGURE 6 HERE 

PLACE TABLE I HERE 

To test its effect on time-domain PD features, the 6
th

 harmonic voltage content was varied with 

respect to the HVDC voltage, while higher-order harmonics (12
th

, 18
th

, 24
th

) were maintained at the 

same percentage levels relative to the dominant 6
th

 harmonic. 

PD was measured with the same HFCT as that used in testing under pure DC conditions. The HFCT 

was clamped round the earth terminal of the insulation test sample. To correlate voltage levels and 

phase with PD pulse features, a voltage output monitor, integrated with the amplifier, allowed a low 

voltage version of the amplifier’s output to be measured by the oscilloscope at a divider ratio of 
3000:1.  

3.4. Test Samples 

Dielectric insulation samples were selected to reproduce PD that may occur in an HVDC insulation 

system. The samples were an epoxy resin disc with two brass plane electrodes fixed to its upper and 

lower faces. The first sample contained five voids (Figure 7(a)) and the second contained a single 

void (Figure 7(b)).  

PLACE FIGURE 7 HERE 

4. Results 

 

4.1. AC Test Results 

Sample (a) had an inception voltage of 8 kV rms. The IEC PD level at this voltage was 680 pC. This 

was a relatively high PD level, but not unexpected given the number of parallel voids in the sample 

and the close coupling to both external electrodes. The PRPD plot for the sample at 8 kV is shown in 

Figure 8. Discharges generally occur in advance of the test voltage peaks, a characteristic typical of 

internal PD [14]. 

PLACE FIGURE 8 HERE 

4.2. DC Test Results 

Results from testing the same samples under DC conditions are presented using the methods 



suggested in IEC 60270 for analyzing PD under DC conditions. The PD data under analysis was 

gathered at the highest test voltage (3VR/2), during which PD pulses were measured over 30 minutes 

to gather sufficient data for subsequent statistical analysis. In some cases, the maximum hold DC 

voltage had to be modified based on the level of observed PD activity. 

The AC inception voltage for the five-void sample was 8 kV rms, giving a peak voltage of VR=11.3 kV 

that was used to derive three hold voltages (5.6 kV, 11.3 kV and 17 kV) for ramp testing on sample 

(a). The voltage was ramped up to 3VR/2 (17 kV) but following the 2-minute wait period (which was 

necessary to ensure any that PD activity detected is not caused by the recent voltage change), only 

limited PD activity was detected. The voltage was increased further to 9VR/5 (20 kV) where 33 PD 

events were recorded. The plot in Figure 9(a) shows the pulses detected from the sample whilst the 

voltage was held at 20 kV for 30 minutes. The plot in Figure 9(b) shows the accumulated PD charge 

over the measuring period. Figure 10(a) illustrates the exceeding frequencies of PD pulses. Figure 

10(b) shows the class frequencies of PD pulses, as outlined in section 2.2. 

PLACE FIGURE 9 HERE 

PLACE FIGURE 10 HERE 

4.3. VSC Ripple Test Results 

Sample (b) containing a single 0.6 mm diameter spherical void was used in the following tests. The 

sample had an inception voltage of around 4 kV DC. Tests were carried out at this applied voltage 

level, with subsequent measurements taken at a baseline 4 kV HVDC level with harmonic content 

added. These were generated with a dominant 6
th

 harmonic at 5% of the baseline HVDC voltage, 

then at 10%, then 15%. In all three cases, the 12
th

, 18
th

 and 24
th

 harmonics maintained the same 

amplitudes relative to the 6
th

 harmonic as given in Table I. It should be noted that in Table I, it is 

shown that in an idealised 6-pulse converter, the dominant harmonic would have an amplitude of 

approximately 4 percent of the baseline HVDC voltage. In this study, we are attempting to 

investigate and quantify the effects on PD of these harmonics in a controlled laboratory 

enviromment rather than recreating a single, down-scaled, typical HVDC waveform. For the purpose 

of the study, we have therefore increased the relative harmonic amplitudes, varying them up to a 

maximum of 15 percent of the baseline HVDC level. 

Figure 11 shows typical PD pulse sequences for the activated void sample at HVDC with increasing 

levels of harmonics (note the shorter time scale in the case of HVDC only). A well-defined time 

spacing between PD events was observed at pure HVDC applied voltage, typically in the region of 0.7 

ms. With the addition of harmonic ripple, PD activity tends to cluster around the dominant harmonic 

peaks. Pulses generally increase in repetition rate and amplitude as the harmonic amplitude (and 

thus peak voltage) increases. In cases where harmonics were applied, it was observed that PD 

activity tends to oscillate between low amplitude, sub-millisecond pulse spacing and a pulse spacing 

of approximately 3.3 ms, as dictated by the period of the 6
th

 harmonic. 

PLACE FIGURE 11 HERE 

To more effectively visualize the influence of harmonics on PD pulse spacing, over 1000 data records 

were recorded at sampling rate of at least 250 MSs
-1

 to ensure features of the PD waveforms were 

accurately resolved. The time delay between each trigger event and the subsequent PD pulse 

(defined as ΔT) were recorded for each trace and plotted as histograms corresponding to each of the 

four harmonic amplitude test cases, as shown in Figure 12. 



PLACE FIGURE 12 HERE 

Results indicate that for the void defect tested, the voltage harmonics significantly influence the PD 

repetition rate, with pulse spacing matching the period of the 300 Hz 6
th

 harmonic. This is evident by 

the difference in pulse spacing (ΔT) between Fig. 12(a) and 12(b). With no harmonic applied (pure 

DC), a narrow distribution of predictable ΔT values occurs – in this case around 0.6 ms between 

pulses. This would be expected from PD theory at HVDC discussed in Section 2.2, with ΔT being 

dictated by the properties of the insulator, applied voltage and geometry of the defect. As 

harmonics are added and their amplitudes increased, the pulse distribution becomes increasingly 

leptokurtic in proportion to harmonic voltage level, with their mean occurring around the period of 

the dominant harmonic. For a 300 Hz harmonic the period is T = 3.3 ms, matching the dominant ΔT 

observed in Figure 12(a). Since discharge rates in HVDC applications are correlated with the applied 

voltage (as well as the conductivity of the insulation) [18]-[19], it is hypothesised that clustering of 

pulses around the harmonic peaks is partly a result of the corresponding overvoltage above 

inception at each of these peaks. This differs from pure AC phenomena, where the dominant 

frequency would be twice per cycle. 

 

5. Discussion 

In the case of pure HVDC, PD was generally only measureable when the DC voltage was increased to 

3/2 times the peak AC inception voltage (VR). This is as expected from available literature [5]. 

Generally, no sustained PD activity was detected until the voltage was held at 9VR/5. 

PD under AC excitation was mostly higher in magnitude and more frequent than PD from the same 

sample under DC conditions. The largest PD event under AC conditions was 1940 pC and the largest 

under DC conditions was 220 pC. In a 10 second hold under AC conditions 1970 events were 

recorded compared to 33 events under DC conditions over a 30 minute period. Previous studies 

have reported similar findings when comparing AC and DC PD activity [5]. At equivalent DC voltages, 

PD behavior exhibits lower magnitude and repetition rates. However, note that in this case the DC 

data was acquired at a higher voltage, which could contribute to the higher PD magnitude.  

The methods recommended in IEC 60270 enable the PD activity to be represented in a generic way 

for comparison. The expansion of knowledge around DC PD testing coupled with the recommended 

methods would be valuable for operators of HVDC systems. The behavior of the insulation system 

could be characterized without implementing system shutdowns for AC testing or in systems where 

the HVDC system design does not allow AC energisation.  

Investigation of the effect of VSC harmonic voltage ripple demonstrated that the distribution of 

time-intervals ΔT between pulses exhibits a strong correlation with the period of the dominant 

voltage harmonics that could be present as a result of the VSC switching regime. The phase 

relationship of PD to the harmonic voltage in HVDC applications occurs by means of a different 

physical process than the phase relationship of PD to the power-frequency waveform in HVAC 

applications. It therefore appears unlikely that existing knowledge of AC PRPD characteristics can be 

transferred directly for application to HVDC. It is proposed that metrics such as repetition rate and 

harmonic-phase correlation be investigated more extensively in future through programs of testing 

on defect samples under different conditions, as well as through the acquisition of on-site data. 

 

6. Conclusions 



This paper has presented AC, DC and DC-superimposed-harmonic testing of void-type dielectric 

samples. AC testing was used to confirm the inception voltage of PD and the dominant PD source 

through reference to the PRPD behavior. The AC inception voltage was used to define voltages for 

use in DC ramp testing of the samples. 

The proposed test methods for DC PD testing were employed to statistically analyze PD data under 

DC conditions. These methods may augment present AC PD test methodologies and standardize test 

methods as DC PD diagnostics becomes more prevalent. Mapping the distribution in time 

differences between PD events for various levels of VSC harmonic ripple demonstrated a strong 

correlation with the period and amplitude of the dominant harmonic, with the higher amplitude PD 

events tending to occur around the harmonic peaks with increasing probability as the depth of 

harmonic modulation voltage was increased. Harmonic distortion has become progressively more 

noteworthy as the ratings of HVDC installations have increased. While this, in itself, is an undesirable 

phenomenon, results indicate that it may be useful from a diagnostic standpoint since it provides a 

reference for potentially correlating PD features that may yield identifying characteristics for defect 

type and severity. 
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Figure 3. AC test circuit with IEC 60270 detection system. The circuit consists of a Ct the sample under test, Ck the

coupling capacitor and Zm the measuring impedance connected to the IEC 60270 PD measurement system. 
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Figure 2. (a) Illustration of void type defect indicating which sections of insulation correspond to which capacitances, 

resistances and spark gap (S) (b) Three capacitor model adapted for DC PD. 
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Figure 1. (a) Illustration of void type defect indicating which sections of insulation correspond to which 

capacitances and spark gap (s). (b) Three capacitor model for AC PD. 
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Figure 7. Dielectric samples used in (a) pure HVDC tests; five voids in epoxy resin of diameters 0.59, 0.46, 0.43, 0.32 and 0.21 mm

respectively (not to scale) and (b) HVDC ripple tests; single spherical void in epoxy resin of diameter 0.6 mm.  
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Figure 6. Diagram of experimental setup for measuring PD characteristics under HVDC and HVDC with superimposed harmonic ripple. 

 
Figure 5. Ramp test profile for DC testing. VR is the peak value of the AC PD inception voltage. 
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Figure 4. DC test circuit with HFCT and IEC 60270 PD measurement system. Resistance Rin=25 MΩ, Ct is the sample under 

test, Ck is the coupling capacitor of 1.9 nF and the HFCT is the sensor (Ztrans=4.3 V/A). 
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Figure 10. Five void sample. (a) Exceeding frequencies of PD pulses - the number of pulses whose apparent charge exceeds a specified threshold level (b) 

Class frequencies of PD pulses - total number of PD pulses whose charge lies within a defined set of ranges. 
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Figure 9. Five void sample. (a) Consecutive charge pulses recorded at 20 kV in 30 mins (b) Accumulated pulse charges recorded over the 30 min test 

period.  
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Figure 8. PRPD plot for the five void sample for 10 seconds of PD activity at  8 kV (rms). 



 

 
Figure 11. PD pulse characteristics on a millisecond time-scale for VSC dominant harmonic contributions of: (a) 0% (b) 5% (c) 10% (d)

15% PD was generated by a 0.6 mm void sample in solid dielectric insulation.   



 

Tables: 

 

Table I. Theoretical harmonic content of a 6-pulse VSC converter’s voltage 
output 

Harmonic order 
Harmonic Frequency Amplitude relative to DC 

6th 300 Hz 0.0404 

12th 600 Hz 0.0099 

 
Figure 12. Distribution of PD pulse spacing for: (a) 0% (b) 5% (c) 10% (d)  15% 6th harmonic relative amplitudes. PD was generated from 

a spherical void sample.   


