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Abstract: Graphical analysis techniques are often applied to positron emission tomography (PET) images to estimate 
physiological parameters. Patlak analysis is primarily used to obtain the rate constant (Ki) that indicates the 
transfer of a tracer from plasma to the irreversible compartment and ultimately describes how the tracer 
binds to the targeted tissue. One of the most common issues associated with Patlak analysis is the 
introduction of statistical noise that affects the slope of the graphical plot and causes bias. In this study, 
several statistical methods are proposed and applied to PET time activity curves (TACs) for both reversible 
and irreversible regions that are involved in the equation. A dynamic PET imaging simulator for the Patlak 
model was used to evaluate the statistical methods employed to reduce the bias introduced in the acquired 
data.   

1 Introduction 

This article describes the first experiment in the 
optimisation process for 18F- FDOPA 
quantification in Parkinson’s disease (PD) images. 
[18F]FDOPA dynamic images of the brain are used 
and Patlak graphical analysis will be applied first to 
the PET data, then several statistical techniques will 
be implemented to Patlak equations in terms of 
reducing bias and noise as well as improving the 
accuracy of the result. The calculation of goodness 
of fit of the slope and the standard errors of the 
regression line are the reference for the evaluation 
of result improvement. Graphical techniques are 
considered simple for the PET data analysis. Patlak 
equations for irreversible tracers were used to 
establish another graphical technique for reversible 
binding tracers. These techniques are common and 
preferred due to the independence from 
compartmental modelling, which is harder 
compared to the graphical methods. One issue 
usually generated with this type of analysis is the 
bias introduced, which is caused by the sensitivity 

to statistical noise (Logan 2003) that is usually 
introduced by using the ordinary least squares 
(OLS) method. This could be reduced by selecting 
and applying several other methods that include the 
feasible generalized linear least squares (FGLS), 
total least square (TLS), robust fitting regression 
(RFR).  
 
In this article, these methods first will be applied on 
simulated phantom PET data generated from 
dPETSTEP simulation tool (Haggstrom et al. 2016) 
to see how different statistical methods will affect 
the image analysis result and how they behave with 
different levels of noise. The equations, materials, 
algorithms and tools used in the experiment will be 
described and the result will be discussed and 
evaluated in this article. 

2 Theory 

The main thing that distinguishes between 
reversible and irreversible tracers is the experiment 
length; in other words, a tracer can be reversible 
over a long period, but it could be irreversible 



 

during experiment or scanning time (Logan 2000). 
For irreversible tracers, the Patlak reference model 
is used to calculate the [18F]FDOPA uptake in ROI, 
and it is the same standard model using the blood 
data as an input function except that the blood 
activity is replaced by the activity of a reference 
TAC. The reference must be devoid of targeted 
receptors (Patlak et al. 1983; Patlak and Blasberg 
1985). The Patlak method can be modelled as two-
tissue compartments (Figure 1). 

 
Figure 1. Two-tissue compartmental model where 

Cp(t) is the plasma tracer concentration at time (t). C1 is 
the free tracer concentration in tissue and C2 is the 
trapped tracer concentration. K1, k2 and k3 are 
unidirectional rate constants of the tracer between plasma 
and tissues. 

With FDOPA tracer, the regions used to 
generate graphics include one reversible region 
(cerebellum) and one irreversible region (striatum). 
TACs of blood plasma usually calculated and used 
an input function for Patlak analysis but a reference 
tissue region replaces plasma measurement here. 
Patlak plot equation with reference tissue as an 
input function, which can be described by 
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Where CT(t) is the TAC values of the ROI tissue 
(striatum), CT’(t) is the reference tissue TAC 
(cerebellum) at time t, K is the unidirectional net 
uptake rate constant and V is the blood volume 
fraction . The equation works for t > t*, t* is the 
equilibration time where the radioactivity ratio 
between reference and ROI tissue becomes 
reasonably constant (Ikoma et al. 2008). K 
represents the tracer net uptake calculated from the 
regression slope, and V is the intercept, which is 
equal to the volume fraction of blood in ROI tissue 
at time 0. This means measured activity in ROI 
(striatum) is divided by the reference tissue activity 
that represents (y-axis), and plotted against the 
integral of the reference TAC from the injection 
time divided by the reference activity, which 
represents (x-axis). For 18F-FDOPA tracer that 

targets brain receptors in striatum, the model plot 
will result in a straight line after t* (Patlak and 
Blasberg 1985) as illustrated in (Figure 2).  
 
Figure 2. PET activity measured from ROI is divided by 
the reference tissue activity that represents (y-axis), and 
plotted against the integral of the reference TAC from the 
injection time divided by the reference activity, which 
represents (x-axis). The model plot resulted in a straight 
line after t* = 30 min in this analysis. 

2.1 Ordinary Least Square 

OLS is one of the simplest methods of linear 
regression and it is frequently used to analyse 
both experimental and observational data. It aims to 
closely “fit” a function with the data by minimizing 
the sum of squared differences between the 
observed responses in the given dataset and those 
predicted by a linear function. On a plotted graph, 
this is seen as the sum of the squared vertical 
distances between each data point in the set and the 
corresponding point on the regression line (RL). 
The smaller the differences, the better fitted the 
model of the data (Hayashi 2000). 

  
In the case of a model with p explanatory variables, 
the OLS regression model is expressed as: 

𝑌 = 𝛽! + 𝛽!
!

!!!
𝑋! + 𝜀 (3) 

    
Where Y is the dependent variable, β0 is the 
intercept of the model, Xj corresponds to the jth 
explanatory variable of the model (j=1 to p), and ε 
is the random error with expectation 0 and variance 
σ². With n observations, the estimation of the 
predicted value of the dependent variable Y for the 
ith observation is given by: 

𝑦! = 𝛽! + 𝛽!
!

!!!
𝑋!" (4) 

 



 

In a model, this leads to the following estimators of 
the parameters: 

β = (XTDX)-1 XT Dy σ² = 1/(W – p*) 
𝑤!

!!! i (yi - yi)              
(5) 

 

where β is the vector of the estimators of the βi	
parameters, X is the matrix of the explanatory 
variables preceded by a vector of 1s, y is the vector 
of n observed values of the dependent variable, p* 
is the number of explanatory variables to which we 
add 1 if the intercept is not fixed, wi is the weight of 
the ith observation, W is the sum of the wi weights, 
and D is a matrix with the wi weights on its 
diagonal. The vector of the predicted values can be 
written as follows (Freedman 2009): 

y = X (XT DX)-1 XT Dy   (6) 
 

2.2 Generalized Linear Least Squares 

Generalized linear least squares (GLLS) was 
applied in different PET quantitative model 
equations (Logan et al. 2001) to remove bias, and it 
was developed originally by Feng et al. (1993). 
GLLS is used for estimating the 
unknown parameters in models based on a linear 
regression when calculated data shows a certain 
degree of correlation in the residuals. This method 
was applied to the data in two parts: for times 0 to 
T1 and from T1 to the end time. The parameters 
generated a curve used as input to the linear 
regression analysis (Logan et al. 2001). The two 
types of GLLS are called weighted least squares 
(WLS) and feasible generalized least squares 
(FGLS). WLS can be applied when all the off-
diagonal entries of the covariance error matrix 
(W) are 0. In FGLS, the opposite occurs when the 
covariance of errors are unknown (Strutz 2010). 
With FGLS, the calculation progresses in two steps: 
first, the residuals are obtained by using OLS to 
establish the errors covariance matrix that shows a 
consistency in estimation. Second is implementing 
the idea of GLLS, which is to divide the data given 
into two sides, and the part that has the low variance 
is given more weight than the other sides to 
generate a more accurate fitted line. With finite 
samples, an estimator’s accuracy with FGLS can be 
improved by an iteration process where residuals 
are used to update the errors covariance estimator 
and consequently FGLS estimation is updated 

(Long and Trivedi 1992; Freedman 2008; Gujarati 
2009). The FGLS estimator may or may not be 
unbiased in small samples but if (W) is a consistent 
estimator of (W), then the FGLS estimator is 
asymptotically unbiased, efficient, and consistent. 
Monte Carlo studies have shown that the FGLS 
estimator generally yields better estimates than the 
OLS estimator (Kennedy 2008).  

 
The general linear regression model is defined 

by the following set of assumptions:  
 
• Linearity in parameters is the functional 

form 
 

y = Xβ + µ (7) 
 

• Error term has mean zero 
 

E(µ) = 0   (8) 
  

• Errors are nonspherical 
 

Cov(µ) = E(µµT) = W (9) 
 
Where W is any nonsingular TxT variance-
covariance matrix of disturbances. 
 

• Error term has a normal distribution 
 

µ ~ N   
 

• Error term is uncorrelated with each 
independent variable. 
 

Cov (µ,X) = 0   (10) 
 
There are two types of nonspherical errors: First is 
when an error term does not have constant variance, 
and this is called heteroscedasticity. In this type of 
error, the disturbances are drawn from probability 
distributions that have different variances and the 
error term has non-constant variance; the variance-
covariance matrix of disturbances is not given by a 
constant multiplied by the identity matrix (i.e., W ≠ 
σ2I). Second, the errors are correlated, which is 
called autocorrelation or serial correlation where 
disturbances are correlated with one another. It 
occurs when using time-series data. When the 
disturbances are correlated, the variance-covariance 
matrix of disturbances is not given by a constant 
multiplied by the identity matrix (i.e., W ≠ σ2I). 
This is because the elements off the principal 



 

diagonal of W, which are the covariance of the 
disturbances, are non-zero numbers (Granger 1994).    
 
In a general linear regression model stated in matrix 
format, the sample of T multivariate observations 
(Yt, Xt1, Xt2, …, Xtk) is generated by a process 
explained below:  

 
y = Xβ + µ,  µ ~ N(0, W) (11) 

or  
y ~ N(Xβ, W) (12) 

 
An FGLS estimator uses the sample of data to 
obtain an estimate of W where the true W is 
replaced with its estimate W. The FGLS estimator 
is given by the rule:   

     
𝛽FGLS = (XTW-1X)-1XT W-1y (13) 

 
The variance-covariance matrix of estimates for the 
GLS estimator is  

 
Cov(𝛽) = (XTW-1X)-1 (14) 

 
The FGLS estimator is also a WLS estimator. The 
WLS estimated is derived as follows. Find a TxT 
transformation matrix P such that µ* = Pµ, where 
µ* has variance-covariance matrix Cov(µ*) = E(µ* 
µ*T) = σ2I. This transforms the original error term µ 
that is nonspherical into a new error term that is 
spherical. Use the matrix P to derive a transformed 
model (Granger 1994; Kennedy 2008):  

 
Py = PXβ + Pµ (15) 

or  
y* = X*β + µ* (16) 

    
Where y* = Py, X* = PX, and µ* = Pµ. The FGLS 
estimator is the OLS estimator applied to the 
transformed model, which is considered a 
computational device only to obtain efficient 
estimates of the parameters and standard errors of 
the original model of interest.  

2.3 Robust Fitting Regression 

 Robustness denotes the solidity of 
conclusions and how their differences from 
assumptions are assigned to a certain model. This 
means that small changes in the data distribution do 
not cause large changes in the variance of the 
estimates (Western 1995). RFR provides an 
alternative to OLS when assumptions are invalid 

within the model. RFR provides much improved 
regression coefficient estimates when data noise or 
outliers are existent. The influence of outliers is 
down-weighted by making the outlying residuals 
larger and simpler to detected, plus performing an 
iterative procedure to identify outliers and reduce 
the impact on the coefficient estimates. Robust 
regression implements its own residual analysis and 
reduces or completely removes numerous data 
points, so a decision should be made whether these 
observations are essential in the analysis (Hintze 
2001; Kutner et al. 2004). The most common 
general method of robust regression is a class of 
techniques called M-estimators that discount the 
impact of outlying observations (Fox 2002), 
introduced by Huber (1964). Consider the linear 
model 

yi = α + β1xi1 + β2xi2 + . . . + βkxik + εi 

= x’iβ + εi 

 
 

(17) 

The fitted model for the ith of n observations is 

yi = a + b1xi1 + b2xi2 + . . . + bkxik + ei 

= x’ib + ei 

 
 

(18) 

The general M-estimator minimizes the objective 
function 

ρ ei =
n

i=1

ρ yi-x'ib
n

i=1

 
 

(19) 

The function ρ gives the contribution of each 
residual to the objective function and should have 
the following properties: 

§ ρ(e) ≥ 0  
§ ρ(0) = 0  
§ ρ(e) = ρ(−e)  
§ ρ(ei) ≥ ρ(ei’) for |ei| > |ei’|  

For least-squares estimation, ρ(ei)=ei
2, let ψ=ρ’  be 

the derivative of ρ, differentiating the objective 
function while considering the coefficients b, and 
assume the partial derivatives to be 0, which 



 

enervates a system of k+1 estimating equations for 
the coefficients: 

ψ yi-x!
!b x'=0

n

i=1

    
 

(20) 

Assume the weight function w(e) = ψ(e)/e , and let 
wi = w(ei), then the estimating equations can be 
written as 

wi yi-x!
!b x'=0

n

i=1

 
 

(21) 

An iterative solution called iteratively reweighted 
least-squares (IRLS) is required due to the 
dependency between weights, residuals and the 
estimated coefficients. The iteration is performed 
following these steps: 

1. Select initial estimates b(0); for example, the 
least-squares estimates. 

2. At each iteration t, calculate residuals ei
(t-1) 

 and related weights wi
(t-1)=w[ei

(t-1)] 
 from the previous iteration. 

3. Apply for new weighted-least-squares estimates 

b t =[X'W(t-1)X]
-1

 X'𝑊 (t-1)y  
 
(22) 

X is the model matrix, with x!! as its ith row, and 
𝑤!
(!!!) = 𝑑𝑖𝑎𝑔 {𝑤!

(!!!)} is the current weight 
matrix. These steps are repeated till the estimated 
coefficients converge and covariance matrix of b is 

Vb=
E(ψ2)

[E(ψ')]2
(X'X)-1 (23) 

Using [ψ(ei)]
2  to estimate E(ψ2) and 

 ψ ' ei /n 2 to estimate [Eψ']2   produces the 
estimated covariance matrix V (b). 

2.4 Total Least Squares 

The TLS method, known also as error-in-variables 
method or orthogonal regression method, is a 
general approach that can be used in n-dimensional 

space (Petras and Podlubny 2010). Many areas of 
application use the TLS method such as signal 
processing, image processing and economics. The 
orthogonal distance, distance between data point 
and fitted line, is the main category of TLS and 
mathematically can be expressed by the following 
relation (Petráš and Bednárová 2010): 

R= |di|
n

i=1

 
 

(24) 

d is the orthogonal distance and the target is to find 
a minimum of R; the TLS approach minimizes the 
sum of the squared d from the data points to the 
fitting line. With the TLS method, well-known 
mathematical tools are usually used.  

For linear regression model of the expression: 

y = bx + a (25) 

The coefficients a and b can be derived from the 
following relations: 

a = 
yi

n
i=1 -b xin

i=1

n
= y - bx 

(26) 
 

  

B =
1
2

 
yi
2n

i=1 -ny2 -( xi
2n

i=1 -nx2)
nxy- xiyi

n
i=1

 
(27) 

  
b= -B± B2+1   (28) 

The OLS and TLS methods assess the fitting 
accuracy in different ways: the OLS method 
minimizes the sum of the squared vertical distances 
from the data points to the fitting line, whereas the 
TLS method minimizes the sum of the squared d 
from the data points to the fitting line. Figure 4 
shows OLS and TLS fitting lines as well as the data 
approximation. In the least squares case, the data 
approximation is obtained by correcting the second 
coordinate only. In TLS, the data approximation is 
obtained by correcting both coordinates 
(Markovsky and Van Huffel 2007). This method 
takes into account the noise in the independent as 
well as dependent variables (Varga and Szabo 
2002). 



 

 

3    Materials and Methods 

3.1   Scanner and Reconstruction 
Parameters 

The scanner available in the PET Imaging Centre at 
the University Hospital of Wales is GE Discovery 
690 PET/CT (General Electric Healthcare), and it is 
made for clinical and research use. The 
reconstruction method used with FDOPA imaging 
is a maximum likelihood ordered subset estimation 
maximisation (ML OSEM) with Vue Point FX 
algorithm with time of flight (TOF) correction.  

3.2 dPETSTEP and Simulation 
Parameters 

dPETSTEP is a dynamic PET simulator that can 
generate PET brain images and allows full 
simulation of kinetic modelling (Haggstrom et al. 
2016). Additionally, the dynamic PET data can then 
be model-fitted to produce physiological parameter 
estimates. dPETSTEP uses MATLAB as a platform 
and works as an extension of another application 
named PETSTEP, and they both share some 
commands. Both applications are open source and 
available on the GitHub© website. dPETSTEP is a 
fast and simple tool and can be used as an 
alternative to Monte Carlo (MC), as it is 8000 times 
faster than MC. In terms of kinetic analysis, 
dPETSTEP is very helpful for the evaluation of 
different processing choices with dynamic and 
parametric images that usually require a long time 
for image analysis where each pixel is analysed. To 
run the simulation, at the beginning, the settings of 
the simulation must be adjusted to be consistent 
with the PET scanner features that are targeted by 
the analysis or evaluation. Table 1 shows all 

required simulation settings to generate simulated 
dynamic PET data for 18F-FDOPA images that are 
performed for a PD patient. The simulated dynamic 
PET scan will be acquired as 26 time frames over 
94.5 min (1 × 30 sec, 4 × 1 min, 3 × 2 min, 3 × 3 
min, and 15 × 5 min) with a dose of 111 MBq. The 
cerebellum region from each time frame will be 
used as the reference region tissue (input function) 
for the quantitative analysis. The output after 
running the simulator is a 4D matrix with a 
reconstructed dynamic ordered subset expectation 
maximization (OSEM) image with point spread 
function (PSF) correction, which is similar in 
features to the dynamic PET data produced by the 
real scanner. The noise level of the 4D matrix is 
kept at a minimum in its sinogram. The entire 
volume of images is separated into single slices as 
2D images (Figure 5), and these are saved to a 
MATLAB version 4 MAT-file, which allows them 
to be loaded in any MATLAB version with 2D 
double, character, sparse arrays and without 
compression. This version allows for each variable 

to have a maximum size of 100 million elements 
per array and 231 bytes per variable, which allows 
all the data information to be kept without losing 

Figure 4. Ordinary least squares (Left) and total least squares (Right) fits of a set of m = 20 data points in 
the plane. (¢---) data points, [𝑎! 𝑏!], x- approximations [𝑎!! 𝑏!!] , solid line (—) fitting model 𝑎!𝑥!  = 𝑏!, 
dashed lines (---) approximation errors. 

 

Figure 5. (Left) The entire volume of images is 
separated into single slices as 2D images, which are 
saved to a MATLAB version 4 MAT-file, which allows 
them to be loaded to PMOD software (Right). 



 

any details. Scatter and decay correction was 
applied during the reconstruction process obtained 
from setting the parameters file within the 
simulation codes. All slices introduced by the 4D 
matrix are exported to PMOD 3.4 software to 
perform further analysis in kinetic modelling with 
specific ROI. 

3.3 PMOD Software 

PMOD software has been designed for researchers 
in the molecular imaging field and provides suitable 
tools for all quantitative data processing steps. This 
will make researchers pay more attention to the 
content and clinical data rather than programming 
new tools from scratch. PMOD can process all type 
of images such, as CT, MR and SPECT, in many 
different imaging formats, from simple processing 
tasks to sophisticated protocols and analysis all 
packed into one graphical user interface application. 
It is validated and refers to more than 1000 peer-
reviewed publication documents on kinetic 
modelling and biomedical research (LLC 2017). In 
this experiment, two applications are used for the 
analysis, PBAS and PKIN, which allow import of 
the simulated dynamic PET images and applying 
kinetic analysis, respectively. PBAS is the main tool 
in PMOD and can receive images in different 
proper formats, one of which is v4 MAT-files, 
which should be imported to PBAS as double SE 
data form. The images imported must be in Bq/cc 
units, and the orientation should be corrected if it 
looks different. All corrections are already made by 
the simulator, and PMOD should do nothing in 
terms of corrections. At the beginning, all slices are 
merged into frames again, and the times for each 
frame are consistent with the protocol used with the 
simulator. After that, all frames are saved as 
DICOM format, the Digital Imaging and 
Communications in Medicine standard. This format 
is data rich, and the header information includes 
attenuation, scatter and decay correction, 
normalisation, frame timing and reconstruction 
parameters as well as the standard, required details 
of matrix dimensions and pixel size. The computer 
which was used for reconstruction of the images 
was an Intel® Core™ I7-6700K processor 8MB 

Cache 4.00 GHz 4 Cores 8, with Windows 7 
Enterprise 64-bit OS and 32 GB RAM.  

PBAS was used to draw and analyse the ROI (left 
striatum) and reference tissue (cerebellum), the 
reason for choosing the left striatum is that it is 
assumed that in simulated images both the left and 
right side will have the same amount of 
radioactivity. The net influx rate constant (Ki) is 
usually calculated over a range of 30-90 min for 
dynamic images, so all frames between 30 and 90 
minutes are averaged into slices, and then the ROIs 
are drawn on all slices to show them. Two volumes 
of interest (VOIs) at minimum must be created; one 
VOI for the cerebellum represents the reversible 
region, and another one for the left striatum 
represents the irreversible region. For regional 

analysis, the ROI is drawn as one complete contour; 
ROI objects were drawn freehand (Figure 6).  

Each VOI includes contours that are drawn over the 
simulated anatomical region required for the 
analysis, and all VOIs are saved in a single file to 
be used again as a template. In fact, even the ROIs’ 
contours are drawn on the averaged dynamic 
frames; however, the TACs at the end will be 
obtained from the original dynamic PET volume. 
So, the images are averaged to help guiding the 
drawing on all slices that show ROIs. Then, the 
time activity curves (TACs) are generated from the 
contours of regions required for the analysis. TACs 
for all regions must be checked, and the tracer in the 
reversible curve should show a clear washout. 
PMOD has an algorithm to determine the best time 

Figure 6. For regional analysis, the ROI is drawn as one 
complete contour; ROI objects were drawn freehand; 
simulated striatum (Left) and part of simulated 
cerebellum (Right). 



 

for t*. In this experiment, the Patlak reference tissue 
analysis is based on t* = 30 min, and this is 
important for slope calculations (Ki value). For 
regional analysis, the result will be (Ki) value 
(slope). For each specific ROI made, the intercepts 
that represent (V), standard errors (SE) and Chi-
square are calculated within the analysis. The 
maximum standard error accepted for (Ki) is 10%.  

The simulation of the FDOPA dynamic PET data is 
repeated 10 times and simulates different (Ki) 
values within the normal healthy subjects, which 
are between 0.012 and 0.014 according to literature, 
considering that the imaging protocol of FDOPA 
for scanning patients is based on giving both 
carbidopa and entacapone. After finishing the 
kinetic modelling analysis, Gaussian noise with a 
zero mean was applied in 10 levels (0.05 – 0.5) for 
both the reference tissue and ROI. All the TACs 
where then exported to be analysed by our 
statistical calculation methods, FGLS, TLS and 
RFR, which were explained before. Codes were 
written in MATLAB software to analyse all TACs 
obtained from the simulated images processed by 
PMOD, and the (Ki) results were saved to Excel 
sheets. The following section illustrates the results 
for the simulated data, including statistics, which 
were calculated to evaluate how the methods 
affected the estimate of the final (Ki) values. 

4   Results 

TACs for reference tissue (cerebellum) and ROI 
(left striatum) that were obtained from the first 
simulation data without noise are plotted as an 
example in Figure 7. The curves show that activity 
in the cerebellum starts to increase significantly, 
reaching 12000 Kbq/cc, and then decreases 
(washout) to around 4000 Kbq/cc and starts what is 
known as the equilibration stage, which is the time 
point most preferable for Patlak analysis. The 
activity washout confirms the reversibility of the 
cerebellum region. In contrast, the left striatum 
TAC increased until it reached a stable level for the 
remainder of the scan, which confirms the 
irreversibility. For OLS, FGLS, TLS and RFR 
calculation, the results include noisy and non-noisy 

data. After fitting the data in the statistical models, 
two numerical methods used to evaluate the 
goodness of fit for all linear regression analyses 
were included: the sum of squares due to error 
(SSE) and the standard error (SE), known as the 
root mean squared error (RMSE) as well. The 
numerical measures are more closely concentrated 
on a specific aspect of the data and often try to 
compress that information into a single number. 
SSE measures the total deviation of the response 
values from the fit, where a value closer to 0 
indicates a smaller random error component within 
the model selected, and the fit will be more useful 
for prediction. It is also known as the summed 
square of residuals.  

SSE= (yi-yi

n

i=1

)2 
 

(29) 

Where yi is the ith value of the variable to be 
predicted, 𝑦! is the predicted value of yi. SE is an 
estimate of the standard deviation of the random 
components in the data and is similar to the SSE. 
An SE value closer to 0 indicates a fit that is more 
useful for estimation. SE is described as 

SE= MSE  , MSE=
SSE
v

 , v=n-m 
(30) 

Where MSE is the mean square error or the residual 
mean square and v indicates the number of 
independent pieces of information involving the n 

Figure 7. TACs for the reference tissue (cerebellum) 
and ROI (left striatum) that were obtained from the 
first simulation data without noise are plotted as an 
example. 



 

data points that are required to calculate the sum of 
squares, which is calculated as the number of 
response values n minus the number of fitted 
coefficients m estimated from the response values. 

A one-way repeated measured analysis of variance 
(ANOVA) was conducted to evaluate the null 
hypothesis that there is no change in the 
simulations’ Ki value when calculated with 
different statistical regression models in all four 
groups (N = 10). The results of the ANOVA 
indicated a significant effect, Wilks’ Lambda = 
.001, F(3, 7) = 41.17, p < 0.01, η2 = .75. Thus, there 
is significant evidence to reject the null hypothesis. 
Follow-up comparisons indicated that each pairwise 
difference was significant, p < 0.01, except between 
OLS and TLS, where p = 0.09. There was a 
significant difference between the statistical models 
used, suggesting that using a different linear 
regression model reveals a different Ki value, which 
is the main parameter of diagnosis. A repeated 
measures ANOVA is performed when the samples 
are considered related (dependent) and more than 
two groups. Table 2 illustrates te SE and SSE for 
each method applied to simulation data. With the 
OLS method, the min SE in all simulations 
including noisy data was 0.05680 and the max was 
1.01070; the average SE was 0.23551. For SSE, the 
min was 0.00029, max 0.09286 and the average 
0.00741. The fold change range was between 
0.00041 and 2.09565. FGLS calculations with the 
data showed the SE min was 0.0012377, max 
0.0105768 and the average 0.0041978. The SSE 
min was 0.0000001, max 0.0000102 and the 
average 0.0000020, with a general fold change 
range of 0.0032366-2.3815366. For TLS analysis, 
the min SE was 0.05337, max 18.79341 and the 
average SE in all data calculations was 2.86733. 
The SSE min was 0.00026, max 32.10839 and 
average 1.58100. The fold change range was 
0.00506-2.09567. The min SE in the RFR analysis 
was 0.07026, max 0.92162 and the average 
0.37945. The SSE min was 0.00045, max 0.07722 
and the average 0.01797 with a fold change range 
of 0.00755-2.83829. 

 

Table1: A one-way repeated measured analysis of variance 
(ANOVA) result. 

Test Wilks’ 
Lambda F(3, 7) p -value 

ANOVA 
(N=10) 

.001 41.17 p < 0.01 

pairwise 
difference 

OLS and 
TLS, pairwise η2 

p < 0.01 p = 0.09 .75 

Table 2: SE and SSE values for each method applied to 
simulation data. 

Stat. Model SE SSE fold 
change 

OLS 
Min 0.0568 0.0003 0.0003

-
0.7927 

Max 1.0107 0.0929 
Avg. 0.2355 0.0074 

FGLS 
Min 0.0012 0.1 ×10!! 0.0049

-
2.5119 

Max 0.0106 10.2 ×10!! 
Avg. 0.0042 2.0 ×10!! 

TLS 
Min 0.0697 0.0004 0.0107

-
2.0719 

Max 1.3071 0.1553 
Avg. 0.4505 0.0237 

RFR 
Min 0.0703 0.0005 0.0196

-
1.6780 

Max 0.9216 0.0772 
Avg. 0.3795 0.0180 

5   Discussion 

For most of the Ki values, it increases in proportion 
to the level of noise. SE and SSE also increase with 
higher noise level. In simulations 1-5, the data 
behaved quite similarly with the noise effect 
compared to simulations 6-10, which had more 
scattering, and this could have been caused by 
increasing the Ki amount for the data without noise. 
A one-way repeated measurements ANOVA test 
indicated that there is significant evidence to reject 
the null hypothesis and confirm that those statistical 
models reveal different results for the final Ki 
value. Each statistical regression model dealt with 
the simulation data in a different way, and based on 
the goodness of fit evaluations, the best fitted 
regression model can be chosen. Follow-up 
comparisons indicated that each pairwise difference 
was significant except between OLS and TLS. The 
p-value between OLS and TLS shows that null-
hypothesis about equality can not be rejected at 
confidence level 0.05 that is used with this test. The 
significant difference between the statistical models 



 

used, suggesting that using a different linear 
regression model reveals a different Ki value, which 
is the main parameter of Parkinson’s disease 
diagnosis. The min SE and SSE were found with 
FGLS, and this suggests that FGLS is the best of 
these models to fit the noisy data. FGLS also had 
the second lowest fold change rate, which measures 
the change difference from the Ki value without 
noise. OLS and TLS showed the lowest fold change 
rate, and that indicates more resistance to the noise 
effect than the other methods. RFR had the highest 
fold change rate compared to the data without noise, 
which indicates sensitivity to noise.  

In the first simulation, the OLS Ki data had similar 
values at all levels of noise, unlike the other data for 
the rest of the simulations. For the first two 
simulations, all statistical regression models 
behaved similarly at all noise levels; thus, the Ki 
data points were close in value. This could happen 
in link to the original Ki values without noise where 
considered the lowest among the other simulations. 
Other simulations with low Ki values below 0.012, 
which represents the diseased levels, could reveal 
more details about how statistical models will 
behave. In addition, Ki values lower than 0.012 
could clarify whether the noise could lead to 
moving the Ki values to be considered normal. The 
big difference within the SE from one noise level to 
another indicates the high sensitivity to noise in 
linear regression analysis, which confirms the 
previous results in the published literature review. 
The experiment has contributed to the knowledge in 
the field by suggesting using FGLS as a linear 
regression method for Patlak graphical analysis. 
From the above results, using FGLS could provide 
better data fitting with low SE and SEE, indicating 
more accurate results than other approaches. 
Including lower Ki values without noise could give 
more details and better confirms the best fitting 
model from regression methods. Repeating the 
experiment with different equivalent time (t*) 
points could reveal more details and alter the 
accuracy of those methods. It would be useful to 
apply those models on clinical data obtained from 
patient dynamic images and compare the results to 
the outcome of this experiment.  

6   Conclusion 

Graphical techniques in PET data analysis from 
reference tissue are considered simple means of 
analysis to obtain physiological parameters. One 
issue usually generated with this type of analysis is 
the bias introduced, which is caused by the 
sensitivity to statistical noise. The study shows 
there is a significant difference between the 
statistical models used, suggesting that using a 
different linear regression model reveals a different 
Ki value, which is the main parameter of 
Parkinson’s disease diagnosis. Analysing the PET 
data with different statistical regression approaches 
and evaluating each approach graphically and 
numerically could improve the final result for more 
accurate diagnosis. FGLS regression model could 
provide better data fitting in Patlak analysis with 
low SE and SEE, indicating more accurate results 
than other approaches. In the next work, these 
methods will be applied to clinical PET data 
obtained from a clinical trial to see how the final 
result will be affected. 
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