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Abstract
Genetic influences modulating executive functions engaging prefrontal cortical brain systems were investigated in 141 
male subjects. The effects of variations in two genes implicated in dopamine and GABA activities in the prefrontal cortex: 
rs4680 (Val158/Met polymorphism of the catechol-o-methyltransferase gene—COMT) and rs3749034 (C/T) substitution 
in the promoter region of the glutamic acid decarboxylase gene (GAD1) were studied on antisaccade (AS) performance in 
healthy subjects and schizophrenic patients. Genotyping revealed a trend towards a reduced proportion of COMT Val/Met 
heterozygotes and a significantly increased frequency of the GAD1 rs3749034 C allele in schizophrenic patients relative to 
controls. Patients had elevated error rates, increased AS latencies and increased latency variability (coefficient of variation) 
compared to controls. The influence of polymorphisms was observed only in patients but not in controls. A substantial effect 
of the COMT genotype was noted on the coefficient of variation in latency, and this measure was higher in Val homozygotes 
compared to Met allele carriers (p < 0.05) in the patient group. The outcome from rs3749034 was also disclosed on the error 
rate (higher in T carriers relative to C homozygotes, p < 0.01) and latency (increased in C homozygotes relative to T carriers, 
p < 0.01). Binary logistic regression showed that inclusion of the genotype factor (i.e., selective estimation of antisaccade 
measures in CC carriers) considerably increased the validity of the diagnostic model based on the AS measures. These find-
ings may well be derived from specific genetic associations with prefrontal cortex functioning in schizophrenia.
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Introduction

There are numerous reports from structural and neuroimag-
ing studies of disturbed prefrontal cortical (PFC) function 
in schizophrenia [1–3]. Impaired performance in complex 
tasks critically engaging prefrontal cortical systems requir-
ing advanced cognitive processes are collectively known as 
executive functions and they are an important component 

underlying many of the cognitive deficits observed in schizo-
phrenia [1, 4, 5]. In the context of this, it has been suggested 
that cognitive deficits related to executive functions are par-
ticularly heritable [6, 7].

The genetic contribution to the etiology of schizophrenia 
is considerable, and recent molecular genetic studies indi-
cate that several genes may be associated with the disorder. 
In an endeavor to expose susceptibility genes, schizophre-
nia research has focused on an endophenotypic approach. 
Endophenotypes are relatively simple, distinct and meas-
urable biobehavioral characteristics. Individually, they are 
intermediary between the cellular effects of susceptibility 
genes manifesting psychopathology and they are undoubt-
edly determined by fewer genes than the more complex phe-
notype of schizophrenia [1, 8–11]. The antisaccade (AS) 
task has been employed as an endophenotype, and perfor-
mance impairment in this task is considered an indicator of 
genetic propensity towards fronto-striatal pathologies such 
as schizophrenia [12].
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AS performance involves a range of executive processes 
that rely heavily on frontal lobe structures including directed 
attention and inhibition, task management, planning, moni-
toring, and coding of representations in working memory 
[13, 14]. The importance of frontal cortical regions in AS 
performance has been established using functional brain 
imaging [15–19], and examination of event-related cortical 
potentials [20–22]. Increased neural firing in the prefrontal 
cortex before antisaccades has also been demonstrated in 
several studies in non-human primates [23–25].

The performance deficit exhibited by schizophrenic 
patients in the AS task has been interpreted as support 
for prefrontal cortical dysfunction and abnormalities in 
several related prefronto-centric circuits. It is notable that 
antisaccade deficits occur in unaffected family members 
of schizophrenic patients, and the large difference in effect 
size between schizophrenia probands, relatives and normal 
healthy controls renders the antisaccade task highly appro-
priate for endophenotype genetic studies [12, 26]. However, 
only a limited number of investigations have been carried 
out in this regard [27–30].

Numerous evidence-based treatments for psychosis 
point to the dopaminergic and other neurotransmitter sys-
tems, upon which much supportive scientific data has accu-
mulated. In relation to this, an association between genes 
linked to dopamine function and schizophrenia has been 
widely established in candidate-gene studies [1, 9–11, 31]. 
However, genome-wide association studies (GWAS) have 
confirmed relatively few of these associations though a post-
GWAS has identified not only COMT but also GAD1 among 
a selection of schizophrenia risk genes [32]. There can be 
discrepancy between the results of pre-GWAS (candidate-
gene) and GWAS studies with respect to disease. Conse-
quently, an omnigenic model has been proposed in which 
assorted genes expressed in disease-relevant cells may per-
turb the functions of core disease-related genes [33] and 
this concept is likely to be the focus of future debate. In 
the case of schizophrenia, the dopaminergic pathways are 
one of the main targets of treatment, and genes participat-
ing in the regulation of dopaminergic neurotransmission 
are among the most relevant hypothesis-driven candidates. 
Since hypofrontality greatly contributes to cognitive defi-
cit in schizophrenia, the study of genes linked to prefrontal 
dopamine activity contributes towards the understanding of 
the neurophysiologic and genetic mechanisms of the disease.

The catechol-O-methyltransferase gene (COMT) produces 
an enzyme that degrades catecholamines and is known to 
be one of the key factors in the regulation of dopamine 
level in the prefrontal cortex (PFC) [34]. COMT is among 
the so-called “hypothesis-driven” candidate genes for the 
risk of schizophrenia [32]. A Val158Met single nucleotide 
polymorphism of the COMT gene (rs4680) influences its 
enzyme activity. Thus, the Met/Met variant displays 40% 

less enzymatic activity than the Val/Val variant [35], and is 
consequently associated with higher dopamine levels in the 
prefrontal and anterior cingulate cortex [36]. The COMT 
Val158Met polymorphism correspondingly affects several 
cognitive functions including attention and executive con-
trol [37]. It has also been found that the Val/Val genotype is 
associated with smaller grey matter density in the anterior 
cingulate cortex [38] hippocampus, amygdala-uncus and 
middle temporal gyrus [39].

A dopamine-GABA interplay in the prefrontal cortex 
sustains working memory and attention [40]. Moreover, 
schizophrenia is associated with alterations in several mark-
ers of GABA neurotransmission in multiple cortical regions, 
including the prefrontal, primary motor, primary visual, and 
anterior cingulate cortices [41, 42–45]. GABAergic activity 
strongly depends on glutamic acid decarboxylase (GAD67), 
the enzyme that metabolizes glutamate to GABA and is 
responsible for the production of the majority of GABA 
in the brain [45]. Like COMT, the GAD1gene that encodes 
GAD67 is a hypothesis-driven gene-candidate for the risk of 
schizophrenia [32]. Downregulation of GAD67 in the fast-
spiking parvalbumin-positive interneurons of the dorsolat-
eral prefrontal cortex (DLFPC) is an authenticated result in 
postmortem schizophrenics [46, 47], though this finding has 
not yet been followed up in genetic studies. The polymor-
phism rs3749034 (C/T substitution in the 5′-untranslated 
region in intron 1) is one of the few polymorphisms of GAD1 
with identified functional consequence. The C-allele of the 
polymorphism rs3749034 is associated with a decreased 
level of transcription of the enzyme, a genetic risk for child-
hood onset of schizophrenia and decreased cortical thickness 
[48–50]. More recently, a Т-allele association with lower 
white matter fractional anisotropy (FA) has been demon-
strated, as well as the effects of lower white matter FA on 
poor working memory performance and frontal executive 
functioning that are independent of diagnosis [51].

Despite the fact that a number of investigations concern-
ing associations between COMT and GAD1 genes with 
schizophrenia have been performed, the conclusions from 
these reports are somewhat open to debate. The majority 
of studies using intermediate phenotypes have examined 
the influence of a single genetic variant on brain activity 
and behavior. More recent work suggests that considering 
the effects of a gene in the context of additional and inter-
acting factors may further elucidate gene–brain–behavior 
relationships.

The approach that may provide a more comprehensive 
understanding of the phenotypic effects of genetic variations 
is the study of gene-trait (G x T) interaction [52]. A trait 
may indicate a psychological characteristic or the presence 
or absence of a diagnosis in research on psychopathology. 
It may also describe a variation in the general organismic 
context in which any single gene operates. Emerging from 
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this, it is important that studies directly comparing genetic 
influences on neurophysiological phenotypes are performed 
in both healthy persons and schizophrenic patients. This 
approach may also be fruitful for developing diagnostic 
models that include genetic and neurophysiological data, 
although such studies are scarce.

To study the role of genetic influences in modulating 
behavior during cognitive control related to PFC networks, 
we investigated the effects of polymorphisms of COMT and 
GAD1 genes on antisaccade performance in healthy controls 
versus schizophrenic patients. Bearing in mind that sexual 
dimorphism is a phenotypic consequence of genes [53], 
only male subjects were recruited to the study. Dominant 
handedness is also an important human characteristic ten-
dency and relationships between handedness and personality 
traits, cognitive styles, as well as psychopathology have been 
established. There is also evidence of lateralized activity 
in DA neurotransmitter pathways in the human brain [54]. 
Thus, an interaction between handedness and genetic vari-
ants can be assumed, therefore only right-handed subjects 
were selected for the study.

Additionally, taking into account the genotypes studied, 
we assessed the possibility of using AS data as a predictor 
in a diagnostic model for schizophrenia.

Experimental procedures

Participants

A total of 141 male subjects (aged 19–54 years) partici-
pated in the study. Both schizophrenia patients (SCH group, 
n = 78) and healthy volunteer controls (CON group, n = 63) 
were recruited and all participants were right-handed males.

The patients (mean age 31.8 ± 1.2 years) were admit-
ted to the Serbsky National Centre for Social and Foren-
sic Psychiatry to undergo examination: 75 patients were 
criminal offenders, and 3 individuals were examined within 
the framework of civil litigation. Most of the patients (63 
subjects) were classified as paranoid (F20.06), 7 patients 
had undifferentiated schizophrenia (F20.3), 3 patients had 
residual schizophrenia (F20.5) and 4 patients had simple 
schizophrenia (F20.6) according to ICD-10. Current patient 
symptomatology was assessed using the Positive and Nega-
tive Symptom Scale (PANSS). The mean sum of PANSS 
scores was 85.36 ± 1.50.

None of the patients displayed acute symptoms and they 
were free from medication for a period of approximately 
one month before investigation and prior to initiation of 
drug treatment. Healthy participants (63 subjects, mean age 
25.8 ± 0.55 years) were evaluated by a psychiatrist to exclude 
any psychiatric diagnosis. Individuals with a history of neu-
rological disorder, head trauma with loss of consciousness, 

substance abuse, or other medical conditions that might con-
ceivably affect brain functioning were excluded from partici-
pation in the study. After a detailed description of the study, 
written informed consent for the investigation was obtained 
from all subjects in accordance with the local ethics com-
mittee of the Federal Medical Research Centre of Psychiatry 
and Narcology, Moscow, Russian Federation and the study 
was performed in accordance with the ethical standards laid 
down in the 1964 Declaration of Helsinki.

Genotyping

Extraction of DNA from saliva samples was done with 
MagMAX™ DNA Multi-Sample Ultra Kits (Applied Bio-
systems Cat No A25597). Determination of both COMT 
Val158Met and GAD1 rs3749034 polymorphisms was per-
formed using real-time polymerase chain reaction using 
TaqMan® SNP Genotyping Assays C__25746809_50 for 
rs4680 and C__2177452_1 for rs3749034 (Applied Bio-
systems, USA) with LightCycler® Nano Instrument, Roche 
Molecular Systems Inc, USA.

Antisaccade study procedure

Experiments were carried out in a darkened room. The 
subjects were seated 100 cm in front of a board with 3 red 
light-emitting diodes 5 × 5 mm (LEDs) (one central and 
two peripheral LEDs located 10° to the left and right of 
one positioned centrally). The central LED was used as 
the fixation point (FP) and the two other LEDs were used 
as peripheral targets (PT) (Fig. 1, panel 1 and 2). Partici-
pants performed antisaccades and were instructed to look 
as quickly as possible at the horizontal mirror position of 
the PT (Fig. 1, panel 3). During the experiment, the FP 
was extinguished simultaneously with PT onset. The dura-
tion of the interval between the FP and PT onset varied 
between 1200 and 1400 ms and the PT duration was set 
at 100 ms. Left or right target locations were randomly 
chosen for each trial. A correction visual stimulus at the 
mirror position was presented 1.5–2.0 s after the PT onset 
(Fig. 1, panel 4). To initiate each trial, the subject pressed 
and held down a mouse button with the right index finger, 
and FP was switched on 100–1500 ms after the press. The 
mouse was located on an elbow-rest for convenience. The 
button press was introduced in the experimental paradigm 
to increase attention level and behavioral engagement in 
the task, because these factors are generally reduced in 
schizophrenic patients. The LEDs were controlled by a 
custom-designed computer program and all intervals 
were varied randomly. During every experiment, 3–4 
blocks each consisting of 45 trials was presented. Most 
frequently, 3 blocks (135 trials in total) were presented; 4 
blocks were presented in the cases of patients displaying 
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poor task performance. The rest interval imposed between 
the blocks lasted 3 min and a short pre-training session 
was introduced before the main experiment.

Recording and data analysis

A horizontal electrooculogram (EOG) was recorded via 
skin electrodes placed at the outer canthi of both eyes with 
the left earlobe as recording reference using an EEG-24 
AC amplifier (MBN, Russia). The EOG channel was used 
for automatic saccade onset detection and for measuring 
both saccade latency and direction. Saccade onset was 
defined as a starting point of EOG deflection exceed-
ing a predetermined threshold by slope, and where the 
amplitude exceeded an EOG standard variation value. The 
sign of deflection determined the saccade direction and 
each individual trial was classified by means of latency 
and direction as being correct or incorrect. Regular sac-
cades only (with latency > 120 ms) [13] were included 
in the analysis. The following performance indices were 
obtained:

(1) antisaccade reflexive error rate which reflected the 
percentage of error trials over the total number of valid tri-
als, (2) latency of correct antisaccades which was defined 
as the time (ms) from target to saccade onset, (3) coef-
ficient of variation of the latency (CV, %) for correct sac-
cades as a measure of intra-individual latency variability.

Adjustment of groups for age

Age was differentially distributed across groups. Accord-
ingly, the mean age of the schizophrenic patients was 
somewhat greater than the healthy controls (31.8 ± 1.1 vs. 
25.8 ± 0.55 years), (F [1, 139] = 24.3, p < 0.001). Con-
sequently, to avoid any false conclusions caused by an 
influence of age on the parameters studied, groups were 
adjusted for age by exclusion of the youngest 15% of 
healthy controls and the oldest 15% of patients [55].

Age adjustment was performed for analysis of antisac-
cade measures and PANSS scores, while between-group 
differences in genotypes were analyzed for all participants.

Statistical analysis

Statistical analysis of results was performed using STA-
TISTICA 6.0 software. The Chi square test was used to 
evaluate the Hardy–Weinberg genotypic frequencies and 
the Fisher exact test was used to evaluate the proportion 
of different alleles of rs4680 and rs3749034 in healthy 
control (CON) and schizophrenia patient (SCH) groups.

Two-way ANOVA (General Linear Model procedure, 
GLM) was applied to study the effects of group, genotype 
and their interaction on the measures of the antisaccade 
task performance. Post hoc comparisons were performed 
using Student’s t-test with Bonferroni correction for multi-
ple comparisons. Spearman’s correlations between PANSS 
scores and AS measures were analyzed separately for dif-
ferent COMT and GAD1 genotypes.

Results

Genotyping: distribution of COMT and GAD1 
polymorphisms in control and schizophrenic patient 
groups

COMT rs4680 polymorphism schizophrenic patient 
and control group distribution outcomes

The distribution of the COMT genotype in the con-
trol group was within the Hardy–Weinberg equilibrium 
(Table  1). However, a significant deviation from the 
Hardy–Weinberg equilibrium equation was observed in 
the clinical patient group.

Comparison of genotype frequencies within the control 
group revealed that the proportion of Val/Met heterozy-
gotes was significantly higher than either Val homozy-
gotes (p = 0.011) or Met homozygotes (p = 0.002). 

Fig. 1   Antisaccade experimental paradigm and examples of Elec-
trooculogram (EOG) recording. a Experimental design of the visual 
stimuli presentation (dark circle—stimulus switched “on”; light cir-
cle—stimulus switched “off”). b Example of EOG recording
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Alongside this, the relative proportions of various geno-
types did not vary (p > 0.1) within the patient group.

GAD1 rs3749034 polymorphism schizophrenic patient 
and control group distribution outcomes

In both groups, the distribution of the GAD1 genotype 
was within the Hardy–Weinberg equilibrium (Table 1). 
The frequency of the C allele in the schizophrenic patient 
group was significantly higher than it was in the healthy 
controls (73.1% compared to 62.7%, p = 0.038).

Absence of any age or educational level influence 
on COMT and GAD1 genotype distribution 
in schizophrenic patient and control groups

After adjustment of groups for age and artifact rejection, 65 
patients and 53 healthy subjects were included in the analy-
sis of antisaccade measures and PANSS scores. The mean 
age in the control group was 26.4 ± 1.1 years and the mean 
age in the schizophrenic patient group was 27.1 ± 1.3 years 
[F(1,116) = 1.15, p = 0.32]. Demographic characteristics of 
included participants from both groups in relation to their 
COMT and GAD1 genotype are presented in Table 2. No 
significant age differences existed between COMT and 
GAD1 genotypes in either the patient or control groups and 
no group x genotype interaction was observed (F < 1.18, 

Table 1   Genotype frequencies of rs4680 (COMT) and rs3749034 (GAD1) in the control (Con) and schizophrenic patient (Sch) groups

*p deviation from the Hardy–Weinberg equilibrium distribution
#p < 0.05 relative to Con group

SNPs Group Frequencies % (n) p (χ2)*

Alleles Genotypes

rs4680 Val Met Val/Val Val/Met Met/Met
Sch (n = 78) 43.0% (80) 57.0% (106) 32.0% (25) 38.5% (30) 29.4% (23) P = 0.024 (χ2 = 4.81)
Con (n = 63) 51.6% (65) 48.4% (61) 27.0% (17) 49.2% (31) 23.8% (15) P = 0.125 (χ2 = 2.35)

rs3749034 C T C/C C/T T/T
Sch (n = 78) 73.1 (114)# 26.9 (42) 59.8% (42) 38.5% (30) 7.7% (6) P = 0.365 (χ2 = 0.81)
Con (n = 63) 62.7% (79) 37.3% (47) 38.1% (24) 49.2% (31) 12.7% (8) P = 0.680 (χ2 = 0.17)

Table 2   Demographic 
characteristics of heathy control 
subjects and schizophrenic 
patients (included in the 
antisaccade analysis) in relation 
to their total and COMT and 
GAD1 genotypes

Parameters Group Polymorphism Genotype Mean ± SEM

Age (years) Healthy control (n = 53) rs4680 (COMT) Met/Met (n = 13) 26.2 ± 1.6
Val/Met (n = 26) 25.9 ± 1.4
Val/Val (n = 14) 27.5 ± 1.1

rs3749034 (GAD1) C/C 27.3 ± 1.4
C/T + T/T 25.7 ± 1.2

Schizophrenia patients (n = 65) rs4680 (COMT) Met/Met (n = 20) 25.8 ± 1.4
Val/Met (n = 24) 27.3 ± 1.2
Val/Val (n = 21) 28.6 ± 1.8

rs3749034 (GAD1) C/C 27.1 ± 1.0
C/T + T/T 26.8 ± 1.4

Education (years) Healthy control (n = 53) rs4680 (COMT) Met/Met (n = 13) 15.1 ± 0.4
Val/Met (n = 26) 14.6 ± 0.3
Val/Val (n = 14) 15.0 ± 0.4

rs3749034 (GAD1) C/C 15.1 0.5
C/T + T/T 14.8 0.3

Schizophrenia patients (n = 65) rs4680 (COMT) Met/Met (n = 20) 11.2 ± 0.3
Val/Met (n = 24) 12.9 ± 0.9
Val/Val (n = 21) 12.3 ± 0.6

rs3749034 (GAD1) C/C 13.0 0.4
C/T + T/T 11.8 0.4
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p > 0.38). Education level was significantly higher in the 
control group (14.9 ± 0.3 years) relative to the schizophrenic 
group (12.4 ± 0.3 years) [F (1,116) = 22.2, p < 0.001]. How-
ever, no effect of COMT or GAD1 genotype on education 
was observed, neither was there any group x genotype inter-
action (F < 1.6, p > 0.21).

PANSS scores for genotypes in schizophrenic 
patients

The clinical characteristics of the patients across genotypes 
are presented in Table 3. ANOVA revealed a significant 
effect [F (2,70) = 3.84, p < 0.05] of the COMT genotype on 

the General Psychopathology Scores (PANSS). The Val/
Val carriers had higher General Psychopathology Scores 
(PANSS) than either the Met/Met (p = 0.043) or Val/Met 
(p = 0.029) variants. Other effects of studied genotypes were 
insignificant.

Genotypes and antisaccade task performance

COMT genotype and antisaccades

To test the hypothesis that COMT Val158Met affected the 
measures of antisaccade task performance, a GLM ANOVA 
analysis was performed. There was no significant effect of 

Table 3   Symptom ratings (PANSS; mean ± SEM) in schizophrenic patients (included in the antisaccade analysis) in relation to their COMT and 
GAD1 genotypes

*p < 0.05 relative to carriers of the Val/Met variant of COMT
#p < 0.05 relative to carriers of the Met/Met variant of COMT

Sample PANSS total score PANSS positive score PANSS nega-
tive score

PANSS general score

Total 85.5 ± 1.8 19.4 ± 0.7 22.4 ± 0.7 43.9 ± 1.0
Carriers of the Met/Met variant of COMT (n = 20) 84.7 ± 2.4 19.3 ± 1.2 22.1 ± 1.3 42.9 ± 1.7
Carriers of the Val/Met variant of COMT (n = 24) 82.0 ± 2.9 18.1 ± 1.2 22.1 ± 1.4 42.1 ± 1.8
Carriers of the Val/Val variant of COMT (n = 21) 91.2 ± 3.5 21.1 ± 1.4 22.6 ± 1.4 47.9 ± 2.0* #
Carriers of the C/C variant of GAD1 (n = 34) 87.1 ± 2.2 19.8 ± 0.9 23.3 ± 0.9 44.0 ± 1.2
Carriers of the T allele of GAD1 (n = 31) 83.8 ± 2.0 19.4 ± 0.9 21.6 ± 0.9 43.8 ± 1.2
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Fig. 2   The effects of COMT Val158Met polymorphism on antisac-
cade parameters in schizophrenic patients (Sch) and healthy controls 
(Con). a Antisaccade error rate (%), **p < 0.01 relative to the carri-
ers of the same COMT genotype from the Con group. b Antisaccade 
latency (ms), *p < 0.05 relative to the carriers of the same COMT 

genotype from the Con group. c Coefficient of variation of antisac-
cade latency, (%). **p < 0.01 relative to the carriers of the Val/Val 
COMT genotype from the Con group, ##p < 0.01 relative to Val/Met 
carriers from the Sch group, ^p < 0.05 relative to Met/Met carriers 
from Sch group
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genotype on the error rate [F(2, 114) = 0.41, p = 0.6] in 
the pooled sample of patients and controls. In addition, 
no genotype x diagnosis interaction was exposed [F(1,2, 
112) = 0.389, p = 0.678], though there was a highly signifi-
cant effect of diagnosis on the error rate [F(1, 116) = 19.02, 
p = 0.00004] (Fig. 2a).

Additionally, comparison of Val carriers (Val/Val + Val/
Met genotypes) versus Met homozygotes, or Met carriers 
(Met/Met + Val/Met genotypes) versus Val homozygotes did 
not disclose any association between COMT genotype and 
error rate.

Similar outcomes were obtained for the latency of cor-
rect saccades. Hence, there was neither a significant effect 
of genotype [F(2, 114) = 0.98, p = 0.39] nor any interaction 
between genotype x diagnosis. Nevertheless, the effect of 
diagnosis on saccade latency was once again highly signifi-
cant [F(1, 116) = 18.6, p < 0.001], although comparison of 
Val carriers versus Met homozygotes, or Met carriers versus 
Val homozygotes did not divulge any influence of COMT 
genotypes on saccade latency (Fig. 2b).

In relation to the coefficient of variation (CV) for the 
latency of correct saccades, a significant effect of geno-
type [F(2, 114) = 6.1, p < 0.01] was disclosed in the pooled 
sample of patients and controls. No significant genotype 
x diagnosis interaction was recorded [F(1, 2, 112) = 2.41, 
p = 0.076]. However, the effect of diagnosis on saccades was 
highly significant [F(1, 116) = 18.2, p < 0.0001] (Fig. 2c).

Furthermore, in the patient group, post hoc t test analy-
sis with Bonferroni correction for multiple comparisons 
unveiled a substantially increased CV in the Val homozy-
gote sample compared to either Val/Met heterozygotes 
(p = 0.009) or Met homozygotes (p = 0.015). On the other 
hand, there was no effect of COMT genotype on the CV in 
the control group (p > 0.21).

Analysis of CV differences between the samples of Val 
homozygotes and Met carriers also revealed significant 
effects for genotype [F(2, 114) = 12.3, p = 0.001], genotype 
x diagnosis interaction [F(1, 2, 112) = 5.11, p = 0.021] and 
diagnosis alone [F(1, 116) = 20.4, p < 0.001] in the pooled 
sample. Post hoc comparisons showed distinctly increased 
CV in the Val homozygotes compared to Met carriers in the 
patient group (p = 0.0005), but not in the controls (p = 0.68).

GAD1 genotype and antisaccades

Data from 65 patients (34 C homozygotes, 25 C/T hete-
rozygotes and 6 T homozygotes) in addition to 53 healthy 
subjects (22 C homozygotes, 24 C/T heterozygotes and 7 T 
homozygotes) were included in the analysis of antisaccade 
measures. Due to the low number of T homozygotes, com-
bined samples of T allele carriers (C/T + TT genotypes) and 
C homozygotes were compared.

In the case of the error rate, significant effects of gen-
otype [F(1, 116) = 5.41, p = 0.023] and diagnosis [F(1, 
116) = 15.23, p < 0.001] were observed. Also, post hoc 
comparisons revealed that mean values of error rate were 
higher in T carriers compared to C homozygotes, and the 
differences were significant for the patient group (p = 0.023), 
but not for the healthy controls (p = 0.65) (Fig. 3a).

Statistically significant effects of genotype [F(1, 
116) = 4.10, p = 0.020], diagnosis [F(1, 116) = 24.87, 
p < 0.001], and genotype x diagnosis interactions [F(1,1, 
114) = 8.94, p < 0.01] were observed to the latency of correct 
saccades. Additionally, post hoc comparison of means con-
firmed an increased saccade latency in C homozygotes com-
pared to T allele carriers in the patient group (p < 0.001). In 
the control group, however, the effect of the GAD1 genotype 
was not significant (p = 0.82) (Fig. 3b).

The coefficient of variation for the latency of correct sac-
cades was not dependent on the genotype [F(1, 116) = 0.16, 
p = 0.84], although an effect of group [F(1, 116) = 11.04, 
p < 0.01] but not a group x genotype interaction [F(1,1, 
113) = 0.38, p = 0.69] was observed (Fig. 3c).

Predictive logit‑models with antisaccades

Overall, the results demonstrated that patients differed 
from controls in their error rate, antisaccade latency and 
coefficient of variation within the latencies for correct sac-
cades. Subsequently, whether these measures could serve 
as predictors for group differentiation was evaluated using 
binary logistic regression, where group (y = 0 for healthy 
controls and y = 1 for schizophrenic patients) was taken as 
a dependent variable for different COMT and GAD1 geno-
types. This approach was fruitful only in the case of the 
GAD1 genotypes.

Logit‑regression analysis with variants of the GAD1 
genotype

The between-group difference in antisaccade latency was 
significant only in carriers of the CC variant of rs3749034. A 
comparison was then made between the predictive validities 
of the logistic regression model in the total sample, CC car-
riers and CT + TT carriers. Three equations were generated 
by STATISTICA 6.0 (Table 4), where y was the probability 
of the tested person attribution to the schizophrenic patient 
group and three sets of predictors (error rate, saccade latency 
and CV) were used as arguments.

A relatively high level of specificity of correctly identi-
fied healthy subjects (90–100%) was observed in all three 
samples. At the same time, the sensitivities (correctly iden-
tified patients) of models in the total sample and in the 
CT + TT sample were comparatively low (67.7 and 48.4% 
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respectively), whereas in the sample of CC carriers, the sen-
sitivity of the model was high (91.2%).

Correlations between antisaccade measures 
and PANSS scores

Correlations within the total sample

In the total patient sample, 9 significant correlations were 
found. Analysis revealed that as a whole, impaired AS 

performance correlated with increased PANSS scores 
(Table 5). Error rate correlated positively with P6 (sus-
piciousness/persecution), N5 (difficulty in abstract think-
ing) and O10 (disorientation) scales. AS latency correlated 
positively with N1 (blunted affect), N5, N6 (lack of spon-
taneity and flow of conversation), and O7 (motor retarda-
tion) scales, but negatively with the P4 scale (hyperactiv-
ity), and latency variability correlated positively with the 
N2 scale (emotional withdrawal).
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Fig. 3   The effects of rs3749034 polymorphism of GAD1 on antisac-
cade parameters in schizophrenic patients (Sch) and healthy controls 
(Con). a Error rate, %. *p < 0.05, **p < 0.01 relative to the carriers of 
the same genotype from the Con group, #p < 0.05 relative to the car-
riers of the C/C genotype from Sch group, b Latency, ms. **p < 0.01 

relative to the cariers of C/C genotype from Con group, #p < 0.05 rel-
ative to the carriers of C/C genotype from Sch group. c Coefficient of 
variation of antisaccade latency, %. *p < 0.05, **p < 0.01 relative to 
the carriers of the same genotype from the Con group

Table 4   Results of logit analysis with error rate, latency and latency variability (CV) for correct saccades as predictors for differentiation of 
healthy subjects and schizophrenic patients in the total sample and in the samples with different genotypes of GAD1 

Samples Model quality Specificity (correctly identi-
fied healthy subjects, %)

Sensitivity (correctly 
identified patients, %)

Accuracy (correctly classified par-
ticipants in the total sample, %)

Odds ratio

Total χ2 = 47.2
p < 0.0001

90.6 (48 of 53) 67.7 (44 of 65) 78.0 (92 of 118) 17.5

CC carriers χ2 = 26.8
p < 0.0001

90.9 (20 of 22) 91.2 (31 of 34) 91.1 (51 of 56) 84.9

CT + TT carriers χ2 = 27.2
p = 0.0010

100% (31 of 31) 48.4 (15 of 34) 74.8 46 of 65 15.4
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Variants of the COMT genotype

In the case of Val homozygotes, correlations between AS 
measures and PANSS scores were very similar to those 
for the total sample, and only the correlation between AS 
latency and N5 scale was insignificant. In contrast, within 
the sample of Met carriers, only 3 correlations were signifi-
cant. These were between error rate and O10, AS latency 
and N5, along with AS latency and the O7 score (Table 5).

Variants of the GAD1 genotype

In the sample of T carriers, 6 significant correlations were 
detected. In comparison with the total sample, one new 
association between AS latency and blunted affect (N1) was 
unmasked, whilst 3 correlations from the total sample were 
insignificant (Table 4). Within the sample of C homozy-
gotes, only 3 correlations were significant, namely, error rate 
which correlated positively with P1 (delusions), P6 scores 
(lack of spontaneity and flow of conversation), in addition to 
AS latency which correlated positively with O7 score (motor 
retardation).

In conclusion, error rate correlated predominantly 
with positive scales (P1, P6) and disorientation (O10). 
Latency correlated positively with negative scales (N1, 
N5, N6) and motor retardation (O7), and negatively with 
P4 (hyperactivity). Both error rate and AS latency cor-
related with difficulty in abstract thinking (N5) and only 

one positive correlation between latency variability (CV) 
and emotional withdrawal (N2) was obtained. The largest 
number of significant correlations was obtained for Val 
homozygotes (rs4680) and T carrier (rs3749034) samples.

Discussion

A possible association between COMT Val158Met and 
GAD1 rs3749034 polymorphisms with antisaccade task 
(AS) performance was investigated in schizophrenic 
patients. In summary, the following principal findings were 
obtained: (1) genotyping revealed a decreased frequency 
of Val/Met heterozygotes in COMT rs4680 polymorphism 
and an increased frequency of C allele carriers in GAD1 
rs3749034 polymorphism in patients compared to con-
trols; (2) AS performance was impaired in schizophrenic 
patients versus controls, whereby patients displayed ele-
vated error rates, and increased response latencies as well 
as latency variability (coefficient of variation) of correct 
responses compared to controls; (3) the polymorphisms in 
question were associated with the AS performance modi-
fications in patients but not controls; (4) In the case of 
the COMT rs4680 polymorphism, an augmented latency 
variability was observed in Val homozygotes compared to 
Met allele carriers in patients; (5) for the GAD1 rs3749034 
polymorphism, an elevated error rate was found in T car-
riers relative to C homozygotes, although an increased 

Table 5   Correlations between antisaccade measures and PANSS scores in the total sample of patients carrying different COMT or GAD1 geno-
types

All values in bold text are significant (p < 0.05)
CV, coefficient of variation

PANSS Total sample
n = 65

COMT GAD1

Met/Met + Val/
Met
n = 44

Val/Val
n = 21

CC
n = 34

n = 31
CT + TT

r p r p r p r p r p

Error rate P1 delusions 0.24 0.11 0.31 0.25 0.42 0.10 0.47 0.026 0.02 0.93
P6 suspiciousness/persecution 0.46 0.001 0.32 0.12 0.73 0.002 0.53 0.011 0.42 0.042
N5 difficulty in abstract thinking 0.30 0.046 0.25 0.27 0.67 0.006 0.24 0.27 0.36 0.085
O10 disorientation 0.35 0.031 0.31 0.049 0.44 0.049 0.20 0.37 0.42 0.041

Latency P4 hyperactivity 0.32 0.031 − 0.15 0.51 − 0.69 0.006 − 0.15 0.48 − 0.61 0.002
N1 blunted affect 0.31 0.053 0.23 0.11 0.39 0.20 0.16 0.47 0.47 0.021
N5 difficulty in abstract thinking 0.32 0.049 0.40 0.026 − 0.08 0.75 0.11 0.63 0.39 0.038
N6 lack of spontaneity and flow of 

conversation
0.33 0.024 0.21 0.27 0.64 0.011 − 0.15 0.50 0.32 0.13

O7 motor retardation 0.45 0.002 0.34 0.043 0.69 0.005 0.44 0.043 0.46 0.023
CV N2 Emotional withdrawal 0.33 0.027 0.23 0.21 0.51 0.036 0.25 0.25 0.38 0.11
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latency of correct responses was noted in C homozygotes 
relative to T carriers (Fig. 4).

COMT Val158Met polymorphism and antisaccade 
performance

The finding that there was a lower frequency of Val/Met het-
erozygote carriers among schizophrenic patients compared 
to healthy subjects coincides with that of Hoenicka et al., 
[56]. The result also accords with the outcome of the meta-
analysis performed by Costas et al., [57], in which a deficit 
of rs4680 heterozygotes among male schizophrenic patients 
suggested a protective effect for heterozygosis. The current 
data also concur with the notion that an inverted U-shaped 
relationship in dopamine signaling at the molecular level in 
the dorsolateral prefrontal cortex arises from optimal levels 
of gene product in COMT Val/Met heterozygote carriers.

Analysis of the outcome of COMT rs4680 polymorphism 
on AS performance divulged an increased coefficient of vari-
ation of latency (CV) for correct saccades in Val homozy-
gotes compared to Met carriers in the pooled samples of 
patients and controls and in the patient group.

This increased antisaccade latency variability in schizo-
phrenic patients corroborates previously reported studies 
involving not only schizophrenic patients, but also individu-
als with schizotypal traits [29, 58, 59]. A specific increase in 
latency variability but not mean latency of visually driven 
saccades in schizophrenic patients prompted the hypothesis 
that this deficit may originate from a distinct frontal cor-
tical aberration in schizophrenia [58–60]. In non-human 
primates, the response latency in saccadic tasks correlates 
with the rise time of neuronal activity between the resting 
state and a threshold level in the frontal eye field (FEF) 
[61]. Thus, in extrapolating to schizophrenic patients, any 

increased latency variability may well have been related to a 
primary increased variability in neuronal activity rise time.

Considering the postulation that the COMT Val allele is 
associated with increased dopamine inactivation, this might 
conceivably result in reduced dopamine neurotransmission 
and a somewhat compromised prefrontal cortical function. It 
is, therefore, speculated that alterations in the fine-tuning of 
cortical DA-ergic pathways may be responsible for abnormal 
(disorganized) neuronal activity and a decreased signal/noise 
ratio in the prefrontal cortex would in turn lead to increased 
latency variability in the AS task.

In our study, the impact of COMT rs4680 polymorphism 
on the clinical symptomatology of schizophrenia has also 
been exposed. Hence, a higher General Psychopathology 
Score and twice as many correlations between AS perfor-
mance measures and PANSS scores were unveiled in Val- 
compared to Met-homozygotes.

Only in the Val homozygote sample did CV exhibit a 
positive correlation with N2 score (emotional withdrawal), 
while the only distinctive correlation in the sample of 
Met allele carriers was a positive association between AS 
latency and N5 scale (Difficulty in abstract thinking). These 
results are compatible with the data obtained by others who 
reported that the presence of the Val allele was positively 
associated with prefrontal activation during emotional pro-
cessing, while the Met allele was associated with greater 
prefrontal activation during cognitive processing [37].

Despite there being a selection of findings to date, a 
range of investigations have generally identified inferior 
performance in tests of executive cognition associated with 
the COMT Val allele. Furthermore, associations between 
the COMT rs4680 polymorphism and endophenotypes are 
consistently more evident in schizophrenic patients than 
in healthy controls [11]. It has also emerged that reduced 
volumes of frontal brain areas are associated with the Val/
Val genotype in schizophrenic patients [39] as well as indi-
viduals at high risk of psychosis [38]. Meanwhile, there are 
divergent reports concerning the impact of COMT rs4680 
polymorphism on antisaccade performance. In this con-
text, a larger number of Val158 alleles have been associ-
ated ostensibly with briefer and less variable AS latencies 
in schizophrenic patients [29], whilst others have shown an 
absence of any association between rs4680 polymorphism 
and AS performance [27, 30]. The results discrepancies 
between previous reports and our study may have been 
derived from methodological differences. Essentially, the 
experimental paradigm of Haraldsson and coworkers, [29] 
for example, was more complex (4 peripheral locations) and 
no training session was employed. Consequently, even the 
control subjects in their study expressed considerably more 
errors (19–36%) than in our study (4.8%). Other differences 
are related to the participant samples, since both men and 
women participated in both cited studies, handedness was 

Fig. 4   Scheme summarizing the principal findings
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not considered, and patients were on stable treatments. Con-
versely, in our study, all subjects were right-handed males, 
and all of the patients were not under treatment. Data regard-
ing the selective action of genes or gene-trait interactions 
have accumulated in recent years [52]. In fact, trait-relevant 
genes have different effects in respect of gender, psycho-
logical traits and other inherited or acquired individual char-
acteristics. Thus, a more homogeneous sample of subjects 
inevitably facilitates detection of specific genetic effects.

GAD1 rs3749034 polymorphism and antisaccade 
performance

This is a preliminary report regarding the effects of GAD1 
rs3749034 polymorphism on antisaccade performance. Sub-
sequent analysis of the frequency of different variants of 
the rs3749034 polymorphism exposed a higher frequency 
of CC carriers in the schizophrenic patient group compared 
to healthy controls. This finding is in agreement with data 
obtained by some researchers [48, 49], but it is in contrast 
with the results of others [51]. Sources of these discrepan-
cies, including such factors as the contribution of gender 
or ethnicity, are yet to be resolved. Nonetheless, it is note-
worthy that we identified a deleterious effect of rs3749034 
on antisaccade performance only in schizophrenic patients, 
just as we observed in the case of the diminished perfor-
mance with the Val158Met homozygotes (Fig. 4). Analysis 
of AS performance measures between samples revealed that 
the error rate was higher in T carriers, but AS latency was 
increased in CC homozygotes. Moreover, an increase in the 
latencies relative to control levels was found only in CC 
homozygotes. The correlation pattern between antisaccade 
measures and PANSS scores included predominantly nega-
tive ratings in T carriers, and positive scores in CC carri-
ers. Also, there were considerably more correlations for T 
carriers.

Error rate in the AS task is one of the most compelling 
candidates for a schizophrenia endophenotype and numer-
ous studies have consistently reported a greater number of 
inappropriate reflexive saccades to the target in different 
populations of schizophrenia patients [12, 26]. Increased 
error rate in patients is also thought to be associated with an 
impaired ability to inhibit intrinsic responses to redundant 
or irrelevant inputs [26].

Concerning the antisaccade response latency, most stud-
ies also report protracted latencies for correct antisaccades 
in patients with schizophrenia compared to controls [12, 22, 
26, 62]. It is well-known that in healthy subjects, antisaccade 
response latencies are more prolonged than prosaccades and 
this can be attributed to additional cognitive processes that 
are invoked to perform the AS task correctly. Empirically, 
antisaccades entail an aptitude to restrain a reflexive stimu-
lus-driven prosaccade to a peripheral visual target, then to 

achieve a coordinated transformation and initiate a voluntary 
oculomotor response towards the opposite side to the target 
[14]. On the other hand, studies of visually guided saccades 
in schizophrenia have reported both a prominence of antici-
patory saccades as well as bimodal patient latencies which 
are either slower or match those of healthy controls [63, 64]. 
It has, therefore, been proposed that a deficit in prefrontal 
cortical processes in relation to the oculomotor system is 
associated with a predisposition to schizophrenia [65].

In this connection, the genotype carried by rs3749034 
patients is likely to determine prefrontal cortical insuf-
ficiency and any ensuing impaired AS task performance 
inherent in schizophrenia. In addition, genotypic variations 
in GAD1 generally, may well modify cognitive function 
and conceivably related adverse changes in brain structure 
allometry. The elevated error rate in the AS task disclosed by 
T carriers is among the most typical disordered paradigms in 
schizophrenia [12, 26]. Therefore, although the T-allele has 
a protective function in healthy subjects, this genotype might 
contribute to the poor performance of frontally mediated 
cognitive tasks and the occurrence of associated negative 
symptoms in patients with schizophrenia. This deduction 
also coincides with the proposition that both variants of 
rs3749034 can play their own specific roles in the patho-
logical processes [51].

Gene x trait interaction in schizophrenic patients

An interaction of genotype and diagnosis was found not only 
for rs4680, but also to a large degree for rs3749034. So, the 
effects of both polymorphisms were observed principally 
in patients but not in healthy controls. This is evidence of 
the polygenic nature of schizophrenia and a major role of 
epistatic interaction in the development of the disease and 
its symptomatology.

This gene x trait interaction may be useful in the develop-
ment of diagnostic tools, and in the present investigation, it 
has been shown that the selective use of AS evaluation in 
the sample of CC carriers substantially improved the quality 
of the diagnostic model. This approach was applied in our 
previous investigation where the Met/Met variant of rs4680 
was explored with respect to the risk of schizophrenia [66]. 
The development of a complex model that includes a number 
of genes and different relevant neurophysiological tests is the 
focus of future studies.

Further investigations in this direction warrant larger sam-
ples that will allow application of factor analysis to assess 
the effects of the studied polymorphisms on the behavioral 
control and mechanisms of psychopathology.
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