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Abstract

Bimetallic precious-metal nanoparticles (NPs) are promising as components of heteroge-

neous catalytic systems, however the synergistic effects that occur when combining multiple

elements in these discrete systems are still being understood. Here, we present a system-

atic computational study that investigates the effect of geometry and compositional arrange-

ments on the properties of bimetallic core@shell precious-metal NPs. Combinations of the

elements Ag, Au, Pd and Pt are considered and, for surface coverages of just one monolayer,
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we show that the electronic properties of the NP, such as the Fermi energy and d-band cen-

tre, are strongly correlated with the element occupying sites at the NP surface, in qualitative

but not quantitative agreement with previous two-dimensional slab calculations. In contrast,

strain effects from structural choices and elemental size mismatch play a minor role in altering

energetic levels. Charge transfer between the core and shell regions of the NPs is a balance

between the increased electronic degrees of freedom that implicitly exists at an NP surface

and the electronegativity of the constituent elements, with Au and Ag respectively good and

bad at retaining electron density. We use our results to rationalise recent experimental obser-

vations, and foresee that the outcomes will assist the rational atom-by-atom design of future

nanoparticle catalysts.

1 Introduction

Metallic nanoparticles (NPs) offer great promise for applications in chemical sciences due to their

novel properties when compared to bulk or atomic counterparts. Since the first reports of the re-

activity of gold NPs by Haruta1 and Hutchings,2 applications of precious-metal NPs have become

widespread through catalysis,3–8 electronics9–11 and optics.12–14 However, the scarcity and high-

cost of Au and Pt demands a shift towards improvements in the design and controlled synthesis

of precious-metal NPs.15 The use of bimetallic NPs, where two metals are combined, has thus

proven an excellent method for reducing costs whilst improving the catalytic chemistry feasible

with NPs.15–18 Size, structure and chemical arrangements of the bimetallic NPs can be experimen-

tally controlled through careful synthesis protocols,19,20 which allows fine tuning and maximisa-

tion of the the synergistic benefits available when combining multiple elements.17 Bimetallic NPs

can be categorised broadly as having alloy, janus-segregated or core@shell chemical arrangements,

with the latter particularly appealing for catalysis as it is relatively facile to synthesise, with e.g.

sequential precipitation, and a reactive “first-choice” metal can be supported on a core of an alter-

native cheaper material, lowering the manufacturing cost of the catalyst and potentially improving

turnover frequencies due to compositional synergy.21–25
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The discrete nature of NPs lends themselves towards computational modelling techniques

where forcefield or quantum mechanical methods can elucidate fundamental properties.17 Many

comprehensive computational investigations have been considered for bimetallic NPs, or “nanoal-

loys”,16,17 with emphasis on exploring either: (i) the structure, chemical arrangement and proper-

ties of energetic minima;17,26–31 or (ii) the surface reactivity of idealised structures.32–36 Whilst the

extrapolation of properties for single-element systems to large NP sizes are well established,37,38

the same process is complicated for bimetallic NPs by the additional compositional parameters.

Similarly, the relationship of catalytic observables, such as reactivity, to the position of the d-

band centre39–44 or structural features, such as edges and vertices,45,46 have been investigated

thoroughly for monometallic NPs, but bimetallic NPs are structurally and compositionally more

complicated;47 too simplify the analysis, d-band positioning, and chemical interactions, are often

considered using periodic slab models with dopants and/or monolayer coverages of a secondary

element probing the property changes.23,25,48 For unrelaxed slab models, Ruban et al. documented

shifts in the d-band centre for a range of transition metals;49 the effect of epitaxial strain on d-band

chemistry has been generalised since for bimetallic surfaces,50,51 with the width of the surface

d-band noted as being responsive to structural factors, and the d-band centre downshifting in re-

sponse to band broadening. Such effects have been correlated to CO chemisorption on to Pt- and

Pd-coated Au surfaces by Pedersen et al.52 and Roudgar et al.,53 respectively.

Despite the range of work covering bimetallic bulk surfaces, the properties of bimetallic NPs

remain less thoroughly studied. Tang and Henkelman showed that the binding energy of atomic

oxygen correlates to d-band levels of the surface layers in M@Pd NPs, where M ranged over Mo,

Co, Cu, Ag, Au and Pd. In particular, noble metal cores (Ag, Au) resulted in an upshift in the

surface d-band states, which led to stronger surface binding of the O species.54 The authors note

that strain affects the position of the d-band centre in the NPs, but structural relaxation minimises

this effect when compared to single-crystal (i.e. slab) surfaces, at which point the redistribution

of electron density has a greater influence. However, Gorzkowski and Lewera recently reported a

disagreement between experiment and d-band theory for formic acid decomposition over Pd-core
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Pt-shell (Pd@Pt) nanoparticles,55 which was attributed to changes in the density of states close to

the Fermi level rather than the overall d-band width. Similarly, formic acid decomposition over

M@Pd NPs (M = Rh, Ru, Ag, Au, Pd, Pt) was correlated with influencing factors beyond the

standard d-band model, focusing instead on the work function of the core element, with Ag being

most effective, and surface charge accumulation used as rationale for the experimental results.56

In contrast, Holmberg et al. produced recently an investigation of the Fermi energy (ε f ) position

for bimetallic AuAg nanoparticles, finding this was simply an average of ε f for monometallic

systems weighted by the percentage of the surface covered by each elemental species, e.g. ε f

for Au@Ag would be the same as for a purely Ag NP.57 This behaviour was attributed to charge

equilibration across the bimetallic interface, and noted as being analogous to Vegard’s law for

the lattice parameter of binary bulk systems,58 which opens up questions as to: (i) whether other

attributes of NPs are similarly dependent on the surface coverage by a particular element; and (ii)

whether these properties are affected by NP geometry.

To address some of the inconsistencies reported, and gaps in the literature with respect to the

d-band model for discrete bimetallic NPs, we have performed a density functional theory (DFT)

investigation of the energetic and electronic properties for core@shell segregated bimetallic NPs,

composed of the elements Ag, Au, Pd and Pt. We focus on NPs with 147-atoms, which allows us

to exclude spurious “quantum effects”. We study a range of structural motifs from close-packed

through to bulk fragments, which allows us to compare the structure-dependent properties for ele-

mentally equivalent systems. As for the periodic slab models highlighted from previous investiga-

tions, the chemical arrangement of the constituent elements affects electronic observables and we

discuss our observations with respect to the recent experimental and theoretical results outlined.
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2 Methodology

2.1 Structural Definitions

Three high-symmetry, 12-vertex geometries have been considered throughout this work, namely

the icosahedron (Ih), Ino-decahedron (I-Dh) and cuboctahedron (CO). Each of these motifs has the

same “magic number” nuclearities given by the third-order polynomial:59

N(k) =
1
3
[10k3 +15k2 +11k+3] (1)

where k is the number of shells in the structure; the first few values of N ("magic numbers") in

this sequence are 13, 55, 147, 309 and 561. Increasing k leads to larger N but a lower proportion

of surface atoms, as explained via the liquid drop model.60 The Ih, I-Dh and CO structures have

distinct atomic arrangements, which leads to differing geometrical attributes (Figure 1). The Ih

consists of 20 (111) faces, making it the most spherical of the three structures. This arrangement

minimises the surface area to volume ratio whilst maximising nearest neighbours contact, at the

expense of higher internal strain.61 The Ih is energetically most stable for small clusters, where

the energy penalty of the large surfaces is too great unless exceptional electronic configurations

exist.62 The minimisation of internal strain is more important for large clusters: The CO, with 8

(111) faces and 6 (100 faces), is a fragment of an FCC crystal and therefore internal strain is at

its lowest, meaning that CO is energetically preferable as N → ∞.62 The I-Dh motif occupies the

transitional space between these two geometries, with its structure not containing the tight packing

of the Ih structure nor the FCC crystalline structure of the CO: it has 10 (111) faces and 5 (100)

faces.

In the following work, calculations have been performed on the Ih, I-Dh and CO structures

with N = 147. We have focused on model systems so as to characterise the effect of core@shell

segregation on NP properties. Thus, we have only considered local, rather than global optimisa-

tion for structures. This can be rationalised by considering how the formation and stabilisation
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Figure 1: Views of the structural motifs investigated in this work: (a) Icosahedron (Ih), with the
(111) faces defined in red; (b) Ino-Decahedron (I-Dh), with the (111) faces defined in green; (c)
Cuboctahedorn, with the (100) and (111) faces defined in blue. The total density of states for Ag147
NPs with these different structures are presented in (d), relative to a vacuum level of 0 V, with the
colours of the plots matched to the structures defined in (a) - (c) i.e. Ih = red, I-Dh = green and CO
= blue. The Fermi energy, E f , relative to vacuum, is marked by a dashed vertical black line; this
was calculated as -3.99, -3.99 and -4.00 eV for the Ih, I-Dh and CO, respectively.
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of structures with varied geometry and chemical segregation can be performed in experimental

synthesis, due to e.g. kinetic trapping63–66 and ligand-induced surface stabilisation.17,67,68 The

range of structures considered allows us to identify variations with respect to topology as well as

composition.

2.2 Computational Methods

Energy calculations were performed using density functional theory (DFT), as implemented in

the real-space finite-difference DFT code GPAW.69,70 GPAW uses the all-electron density, where

the core electrons are described using the projector augmented wave (PAW) in the frozen core

approximation,71 with the setup based on a scalar-relativistic spin-paired all-electron calculation.

The PAW setup has recently been shown to be the most suitable ionic-core method for calculat-

ing the properties of large NPs as an alternative to more computationally-exhaustive all-electron

calculations.72

Only the valence electrons are treated explicitly in our calculations, via soft pseudo valence

wavefunctions; for Ag and Au, this constitutes the outermost 11 electrons (4d105s1 and 5d106s1

configurations, respectively), whilst for Pd and Pt the outermost 10 electrons are included (4d10

and 5d10, respectively). The Kohn-Sham wavefunctions are expanded directly on a real space

grid, with spacing of 0.18 Å, and the Hamiltonian is diagonalised after each geometry step using

the RMM-DIIS eigensolver.73 The generalised gradient approximation (GGA) of Perdew, Burke

and Ernzerhof (PBE)74 is used for the exchange-correlation (XC) energy functional. Fermi-Dirac

smearing of 0.1 eV was used to aid self-consistent field (SCF) convergence. No boundary condi-

tions were imposed and therefore all orbital energies are relative to the vacuum level (0 V). The

structure of bulk metals are calculated using a primitive FCC unit cell and a 14×14×14 k-point

mesh, with all other parameters as outlined above. Lattice parameters were minimised with respect

to energy using an equation of state.

Structural optimisation was performed using a quasi-Newtonian (BFGS) method75 until the

maximum force on all atoms is below 0.01 eV/Å, and the total energy change between steps is less
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than 10−4 eV. The Kohn-Sham orbitals are re-optimised after each ionic step, via self-consistent

evaluation, until the change in density is less than 10−5 electrons per valence electron and the in-

tegrated square of the residuals of the Kohn-Sham equations is less than 10−8 per state. Charge

redistribution is calculated using Bader charge analysis as implemented by Tang et al.76 All den-

sity of states (DOS) are computed by directly projecting the wavefunctions on to atomic orbitals,

centred at the atomic coordinates of the optimised geometries.

2.3 Structural Analysis

The strain at each atomic site was calculated by considering the deformation of bonds in bimetallic

NPs compared to the equivalent monometallic systems, with results averaged as a function of like

atom species. The strain is expressed as a percentage of the total deformation:

e =
l−L

L
(2)

where L and l are the initial and final lengths of the bond of interest. With this notation, contraction

of the bond leads to compressive strain whilst extension gives tensile strain.

2.4 Energetic Analysis

The binding energy per atom (Eb) for a bimetallic cluster of composition XN−mYm is defined as:

Eb =−
Etot− (N−m)EX −mEY

N
(3)

where Etot is the total energy of the system, N is the total number of atoms, m is the number of

atoms of element Y, and EX and EY are the energies of the gas-phase atoms X and Y, respectively;

m = 0 for a monometallic system. Our definition is such that a more positive number indicates

stronger binding and, at the bulk limit (N → ∞), our Eb therefore relates to the bulk cohesive

energy (Ecoh) as Ecoh = Eb.
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Etot , as reported in GPAW, is relative to the energy of the reference gas-phase atoms (EX and

EY ) calculated in a spin-paired and spherically symmetric state when generating the PAW setup.

However, the energy of the considered gas-phase atoms are dependent on their spin-state and the

calculation setup, and this is particularly important for Ag and Au, where S = 1
2 in the ground state.

Thus, the ground-state energies of the gas-phase atoms are calculated to be -0.19, -0.24, -0.04 and

-0.32 eV relative to the spin-paired and spherically symmetric reference state for Ag, Au, Pd and

Pt, respectively.

2.5 Electronic Analysis

The energy of the highest occupied molecular orbital (εHOMO) and lowest unoccupied molecular

orbital (εLUMO) are provided relative to the vacuum (0 V), having been taken directly from the

eigenvalues at the end of the self-consistent calculation. The Fermi energy (ε f ) is also reported

where appropriate: this includes smearing effects and indicates the level at which the orbitals are

equiprobable of containing an electron. The difference between εHOMO and εLUMO is known as the

energy gap, εg. The centre of mass for the d-electrons, ε̄d , is analogous to the d-band centre for

bulk41 and given by:33

ε̄d =
∫

εHOMO

−∞

ρd(ε)

ρd
dε− εHOMO (4)

where ε is the eigenvalue of an electronic state, ρd(ε) is the density of d-electrons for this

particular eigenvalue, and ρd is the total number of d-electrons. "Core" and "shell" atomic subsets

of the total systems were also identified by applying Eq. (4) explicitly to the projected orbitals

centred on these atoms, giving values for ε̄d,core and ε̄d,shell , respectively.
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3 Results

3.1 Monometallic NPs

Structural, energetic and electronic results have been thoroughly investigated previously for 147-

atom Ag, Au, Pd and Pt NPs61,63 and are therefore only discussed briefly here, with full analysis

provided in the Supporting Information (SI). In general, Eb does not vary significantly with struc-

ture, being greatest for the Ih and a difference of less than 0.03 eV/atom for the CO and I-Dh.

Eb is ordered Pt (5.03 eV) > Pd (3.08 eV) > Au (2.59 eV) > Ag (2.17 eV) for the Ih structures,

which is consistent with the bulk ordering (5.83, 3.75, 3.01 and 2.56 eV, respectively). Eb matches

experiment for Pd and Pt, reported as 5.84 and 3.89 eV, respectively,77 but not for Au (3.81 eV)

and Ag (2.95 eV) due to bond-lengthening effects at the GGA level of theory.78,79

The ordering of εHOMO inversely correlates with Eb, as Ag (-4.05) > Au (-4.83 eV) > Pd (-4.89

eV) > Pt (-5.36 eV) for the Ih motif. The variation in εHOMO for the other geometries was smaller

than 0.13 eV. εHOMO The bulk workfunction (Φ) can be related to our observables via Koopmans’

theorem80,81 as Φ =−εHOMO. Φ is the energy required to remove an electron from a system and

can depend on surface geometry, ranging between 4.52 and 4.74 eV for bulk Ag (110) and (111)

surfaces; between 5.31 and 5.47 eV for Au (111) and (100) surfaces; between 5.22 and 5.6 eV

for Pd polycrystalline and (111) surfaces; and between 5.64 and 5.93 eV for the Pt polycrystalline

faces, respectively.82 Our results for NPs are less than the bulk values by ≈ 0.5 eV, which we

believe is an effect of quantum confinement i.e. the discretisation of the electronic energy levels.

3.2 Bimetallic NPs

3.2.1 Structural and Energetic Properties

Eb for the bimetallic NPs (Table 1) can be related to the monometallic results through Vegard’s law,

which dictates that properties of a mixed system will be linearly dependent on the properties of the

constiuent elements.58 For example, combining Pt with Ag reduces Eb(Ih) from 5.03 eV/atom
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(monometallic) to 3.85 and 3.32 eV/atom for Ag@Pt and Pt@Ag, respectively, with monometallic

Ag being 2.17 eV/atom. More interesting is the stability hierarchy of the structures as we vary the

chemical arrangements, with data for all structures given in the SI. In general, Ih is most stable

for all systems with an Ag core (Ag@M), and for an Ag shell with a Pd or Pt core (Pd@Ag and

Pt@Ag); and the CO is most stable for Au@Ag, Au@Pd and Pt@Pd. The I-Dh is not preferable

for any of the bimetallic nanopartices - it is joint lowest for only Pt@Pt, Ag@Pd, Au@Pd.

Table 1: Highest binding energy (Eb) for monometallic and bimetallic core@shell NPs. The ele-
ment in the core (shell) of the NP is presented on the left (top). The values are taken for the highest
Eb, i.e. strongest bonded system, which was the Ih motif except for values given in bold, namely
those of Au@Ag, Au@Pd and Pt@Pd

Ag Au Pd Pt
Ag 2.17 2.47 2.48 3.85
Au 2.33 2.59 2.80 3.93
Pd 2.50 2.90 3.08 4.30
Pt 3.32 3.59 3.86 5.03

Instability for the Ih is sometimes related to excessive internal strain from shortened internal

bonds (Figure 2), where the strain can be reduced by positioning a smaller element in the core for

bimetallic systems;83–85 considering our elements of interest, Pd and Pt, of Group 10, have ex-

perimental (DFT) bond lengths of 2.76 and 2.81 Å, respectively, with errors of ±0.01 Å, whereas

Ag and Au, of Group 11, have bond lengths (with similar errors) of 2.88 and 2.96 Å, respec-

tively.82 Thus, the Ih core@shell could be rationalised as potentially particularly stable for (Group

10)@(Group 11) configurations, with the inverse being the lease stable. However, this hypothesis

of instability when the larger element is in the NP core is only valid for Au@Pd (Figure 2), where

the CO structure relieves internal strain; unaccounted charge transfer effects influence stability for

other compositions. We note that the stronger binding element is at the core of the structure for

other compositions favouring CO motifs (Au@Ag and Pt@Pd) and thus we suggest that the FCC

fragment facilitates ideal bond lengths for the stronger element (Figure 2), resulting in stronger

overall binding for the CO motif.

Calculation of the strain for the core (ecore) and shell (eshell) components of the system, as
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presented in Figure 3, confirms there is an inverse correlation between core and shell strain for

most structures; however, whilst for Ih and I-Dh motifs there is typical not net gain in strain, net

positive strain is observed for CO, with the most prominent outliers being CO structures with Ag

shells, namely Au@Ag, Pd@Ag and Pt@Ag. We tentatively associate this observation with the

interatomic distances in the pure Ag nanoparticle being heavily contracted at specific sites on the

CO surface, such as vertices, as seen in Figure 2; however, this cannot be the complete explanation

as the effect is observed irrespective of the size of the element in the nanoparticle core, for both

smaller (Pd, Pt) and larger (Au) species, and so electronic effects may also play a role.

Figure 2: Cutplane views through the middle of monometallic and bimetallic core@shell struc-
tures with the internal bond lengths highlighted. Top, left to right: Pd147 (Ih); Pd147 (CO);
Au55@Pd92 (Ih); Au55@Pd92 (CO). Bottom, left to right: Ag147 (Ih); Ag147 (CO); Au55@Ag92
(Ih); Ag55@Pd92 (CO). Ag, Au and Pd atoms are illustrated in silver, gold and blue, respectively.
Bond lengths, given in Å, are highlighted in red for specific internal bonds to show the difference
in interaction distance in the core and shell regions.

More generally, three clustering of data points is observed in Figure 3, which can be attributed

to the relative Eb of the monometallic systems. For systems where the element on the nanoparticle

shell has a higher Eb than the core element, compression of the core and expansion of the shell is

observed; for the inverse, with the strongest binding element in the core, expansion is observed in
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the core in order for the system to maximise the energy available from these stronger bonds. Such

behaviour is most prominent for Pt, and to a lesser degree Pd; for Ag@Pt, the Pt shell compresses

the Ag core (ecore = -3.98 % in the case of the Ih motif); inversely, for Pt@Ag with the same motif,

the core expands (ecore = 2.59 %). For systems where the relative Eb of the composite elements are

similar, there is significantly less strain present in the core and shell regions of the nanoparticle,

hence the clustering of points where ecore ≈ eshell ≈ 0.

Figure 3: Relative strain on the core and shell atoms compared to the equivalent monometallic
structures. Purple squares, green circles and blue triangles represent CO, I-Dh and Ih structural
motifs, with the lines of best fit displayed as dashed lines as a guide to the eye. Significant outliers,
namely CO structures with net positive strain, are highlighted in red, whilst CO structures that are
the lowest energy motif for any composition are also highlighted in black.

3.2.2 Electronic Properties

The electronic properties of the bimetallic NPs have common trends: ε f , εHOMO and εLUMO are

defined by the element in the NP shell, agreeing with previous observations that ε f is dependent on

shell composition.57 Presented in Table 2 are the values for εHOMO when considering the mono-

and bimetallic Ih structures, with clear correlations visible in each column, indicating that the

shell element dictates this particular electronic property. It is noted that for the weaker binding Ag,

εHOMO decreases when stronger binding core elements are considered; and for the stronger binding

13



Pt, an inverse correlation is observed i.e. εHOMO decreases as weaker binding core elements are

considered.

To illustrate further our point that nanoparticle properties depend heavily on the shell element,

Figure 4 compares the density of states (DOS) when considering an NP composed either as Ag@M

and M@Ag. For the Ag@M composition, ε f is clearly varied and the DOS outline for the Ag, Au,

Pd and Pt cores show little similarity, even if alligned to match by ε f . In contrast, the consistent

level in ε f for all M@Ag NPs is clearly visible in the lower graph of Figure 4, allowing us to

assert that the electronic properties are dominated by the shell element. Overall, εHOMO varies by

only 0.07 eV for M@Ag; variation of 0.26 and 0.27 eV is noted for M@Au and M@Pt, which

is attributed to the implicit strain of geometry and chemical variation. Furthermore, the lowest

and highest εHOMO for M@Pt are when M = Ag and Pt, respectively, which correlates not only

with binding energy, as noted above, but also with the Φ of the core metal (SI, Figure S4).The gap

between occupied and unoccupied states, εg, is ≈ 0 eV for all NPs, with a greatest value of 0.06

eV for Ih Pd@Ag and 0.03 eV for Ih Pd@Au.

Table 2: Energy of the highest occupied molecular orbital (εHOMO) for monometallic and bimetal-
lic core@shell NP structures. The element in the core (shell) of the NP is presented on the left
(top). The values shown are for the Ih motif; full results are available in the SI for the I-Dh and
CO motifs, with the range of values greatest for Ag@M, and at most 0.22 eV for Ag@Pt.

Ag Au Pd Pt
Ag -4.05 -4.67 -4.99 -5.63
Au -4.03 -4.83 -4.95 -5.59
Pd -4.12 -4.96 -4.89 -5.46
Pt -4.12 -4.83 -4.78 -5.36

The centre of mass for the d-band states was calculated for core (ε̄d
core) and shell (ε̄d

shell) atoms

and is presented in Table 3. The energetic position in each case (core or shell) depends heavily

on the elemental species, ranging for ε̄d
shell over -3.87 to -4.10 (0.33), -3.21 to -3.55 (0.34), -1.46

to -1.79 (0.33) and -1.84 to -2.28 (0.44) eV for Ag, Au, Pd and Pt, respectively, with the overall

variation given in brackets. These values are noted as being alignments with respect to εHOMO,

in common with previous slab models, and when aligned absolutely the range of ε̄d
shell is actually
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Figure 4: Projected density of states (PDOS) for Ag containing core@shell NPs. Top: PDOS for
Ag atoms in the 55-atom core of a 147-atom Ih structure, with a 92-atom shell composed of Ag
(red), Au (green), Pd (blue) and Pt (yellow). Bottom: PDOS for Ag atoms in the 92-atom shell of
a 147-atom Ih structure, with a 55-atom core composed of Ag (red), Au (green), Pd (blue) and Pt
(yellow). For clarity, the PDOS of each composition are offset by a constant in the y-axis and, in
both graphs, the corresponding Fermi energy, ε f , is given with vertical dashed line of the matching
colour.
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smaller: 0.26, 0.11, 0.21 and 0.28 eV for Ag, Au, Pd and Pt, respectively.

Table 3: Centre of mass for the occupied d-states (ε̄d) for monometallic and bimetallic core@shell
NP structures.The element in the core (shell) of the NP is presented on the left (top) of each Table.
The values are for the Ih geometry; full results for all structural motifs are available in the SI. For
ε̄d

shell , the change relative to the monometallic system is given in brackets to aid comparison with
literature.

ε̄d Ag Au Pd Pt
Ag: -4.22 -3.92 -2.46 -2.80
Au: -4.06 -3.62 -2.28 -2.60
Pd: -3.19 -2.80 -1.97 -2.40
Pt: -3.46 -3.18 -2.28 -2.67

ε̄d
core Ag Au Pd Pt
Ag: -4.42 -4.54 -4.14 -4.30
Au: -4.01 -4.00 -3.70 -3.87
Pd: -2.06 -2.12 -2.43 -2.65
Pt: -2.67 -2.84 -3.11 -3.31

ε̄d
shell Ag Au Pd Pt
Ag: -4.10 -3.55 -1.46 -1.90

(-0.15) (0.24) (0.38)
Au: -4.09 -3.40 -1.43 -1.84

(0.01) (0.27) (0.44)
Pd: -3.87 -3.21 -1.70 -2.25

(0.23) ( 0.19) (0.03)
Pt: -3.93 -3.38 -1.79 -2.28

(0.17) (0.02) (-0.09)

Considering our observations alongside the slab calculations of Ruban et al., our results for

monometallic systems clearly match the previous work, with differences of 0.20, 0.16, 0.13 and -

0.03 eV for ε̄d
shell; however, whilst qualitative agreement is found with experiment, quantitative dis-

agreements are noted in comparison to the XPS measurements of transition metal foils by Hofmann

et al., who observed similar differences between computation and experiment themselves, and as-

sociated errors with underlying physical faults in DFT;44 given that our results for monometallic

systems are similar to those previously reported, we direct the reader to this previous work for a

more thorough discussion of the monometallic systems.

In the case of bimetallic NPs, we again compare our results to the fixed slabs of Ruban et
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al., where a monolayer "shell" of second species was included over a slab "core".49 The relative

changes in ε̄d
shell (Table 3) are similar in magnitude for both ours and previous work, but there

is an absence of consistent direction of shifts for the d-band centre in the slab and NP models:

different signs are observed for Au@Ag (-0.21 vs. 0.01 eV in our work), Pd@Au (0.12 vs -0.15

eV), Au@Pd (-0.21 vs 0.27 eV), Pt@Pd (0.37 vs -0.09 eV) and Au@Pt (-0.08 vs 0.44 eV). We note

a common theme exists for Au cores, where slab models give a positive (negative) d-band shift for

Ag (Pd,Pt) shells, and the inverse occurs in our NP calculations. Furthermore, Gorzkowski and

Lewera comment that a small decrease in ε̄d is expected for NPs relative to slabs and bulk, due

to size effects resulting in a decrease of εHOMO;55 however, we do not observe such an effect.

Considering also the results of Tang and Henkelman for 79-atom FCC M@Pd NPs,54 positive

shifts in the d-band centre are observed for M = Ag and Au, relative to the Pd@Pd system, with

values of approximately 0.20 and 0.25 eV; this is very close to our results of 0.24 and 0.27 eV for

Ih, leading us to believe that morphology effects may be minimal.

To understand where the electrons have localised in our NPs, we analyse the atomic charge in

the NPs, which can be correlated with variation in e.g. reactivity for vertices, edges and faces. With

respect to charge equlibration alone, the most important information is whether charge accumulates

in the shell or the core of the NPs: the increased degrees of freedom at a surface will attract

electrons away from the core, though this could be countered by a strongly electronegative core

element. For example, charge transfer from Ag to Au is common in AuAg NPs as the Au (2.4) is

more electronegative than Ag (1.9),86,87 whereas the electronegativity of Pd and Pt, which is 2.2

in both cases, differs less compared to the Group 11 elements,77 and thus charge transfer may be

considered less of an energetic driving force.

Our results for charge transfer (Table 4) have clear trends: for Ag@M, the core has signifi-

cant charge depletion (q̄core > 0 e/atom), for all bimetallic NPs, with charge accumulation on the

surfaces (q̄shell < 0 e/atom) and particularly the vertex sites (SI). Furthermore, for an Ag shell

(M@Ag), charge transfer is also to the second element, indicating that, for the Ag containing NPs,

the low electronegativity is more influential than surface effects. For cores of Au, Pd and Pt, charge
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Table 4: Mean change in the electron density for the core (q̄core) and shell (q̄shell) atoms in
monometallic and bimetallic core@shell NP structures. The element in the core (shell) of the
NP is presented on the left (top). The values shown are for the Ih motif, with full results for all
structures available in the SI.

q̄core Ag Au Pd Pt
Ag: -0.03 -0.12 -0.10 -0.16
Au: 0.06 -0.05 -0.01 -0.08
Pd: 0.04 -0.05 -0.04 -0.10
Pt: 0.09 -0.03 -0.00 -0.07

q̄shell Ag Au Pd Pt
Ag: 0.06 0.11 0.07 0.14
Au: 0.02 0.09 0.05 0.12
Pd: 0.02 0.09 0.07 0.13
Pt: 0.03 0.09 0.07 0.14

transfer is towards the shell in all cases (q̄shell > 0 e/atom) with the Pt shell for M@Pt proving most

prolific at accumulating charge. The outcome illustrates that the electronic degrees of freedom at

the surface play an important role in charge localisation for the bimetallic NPs when the elements

have similar electronegativities.

Referring back to the work of Tang and Henkelman, charge depletion was observed at the

surface for Ag@Pd and Au@Pd, which may be related to strain effects in the FCC motif,54 though

no such effects were noted for our FCC fragment (CO) nor the I-Dh motif (SI). In contrast, we do

observe similar results to Holmberg et al.: 0.05 and 0.07 e/atom are transferred to the surface for

Au@Ag and Ag@Au, respectively. However, they also note the charge depletion from the core

is inhomogeneous in the latter case, being predominantly from the subsurface layer, which may

have some relation to the results we observe for an Ag core. In our simulations, the charge mostly

accumulates at the NPs vertices (Figure 5), which we attribute to the lower coordination of these

sites compared to edge and surface atoms; this trend is consistent for the Ih, I-Dh and CO structures

(SI). We also note the variation in charge of the surface atoms for Figure 5A and Figure 5B, which

is attributed to the breaking of symmetry in the structure geometry during the preceding structural

optimisation.
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Figure 5: Schematic representation of charge localisation for: (A) Au; (B) Ag; (C) Ag@Au; and
(D) Au@Ag 147-atom Ih NPs. Atoms highlighted in blue indicate those that have accummulated
electrons due to charge transfer, and atoms highlighted in red mark atoms that have lost electron
density; a scale is provided on the right hand side to aid the reader. Similar results were observed
for I-Dh and CO structures (See SI).
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4 Discussion

Previous work has highlighted clearly the correlation between the d-band centre and adsorption

strength very clear for monometallic systems;39–44 however, the inhomogeneous distribution of

the constituent elements in bimetallic NPs, such as the case of core@shell segregation, means

this standard model needs adaptation. The more complex parameter space, which now includes

interfacial strain and charge transfer effects, is most obvious when considering the inconsistencies

between our results and the previous slab calculations of Ruban et al.. However, our results do

show that the general behaviour of d-band centres on NPs is as for slab surfaces, which implies

that adsorption strength must be in-part correlated to the energetic position of the d-electrons on the

surface atoms, rather than the same measurements for the entire NP. This is most clearly seen by

noting the limited range of ε̄d
shell in comparison to ε̄d

core for the precious-metal elements discussed

in this manuscript.

With this in mind, we now consider the report of Gorzkowski and Lewera,55 where ε̄d was

measured as being particularly low for Pt@Pd NPs (-2.61 eV) and the previous computational

results were labelled erroneous because of an absence of a downshift in ε̄d
shell . From our results

in Table 3, we see that there is a downshift if we consider the d-band centre of the entire NP, ε̄d ,

as might be measured via XPS; however, the d-band states on the surface are higher than for the

Pt core. Thus, our simulations differentiate between core and shell atoms, whereas the reported

experiment does not appear to do so. In addtion, we also note that the monometallic results from

Gorzkowski and Lewera, of -2.02 and -2.80 eV for Pd and Pt, are in very good agreement with our

ε̄d results of -1.97 and -2.67 eV.

Similarly, let us consider the results of Tedsree et al.56 for M@Pd, where higher reactivity is

attributed to a smaller work function for the core metal and the d-band model does not given a

similar linear correlation. We do not disagree with the observations for the work function, which

are matched in our results, but we also observe that Ag@Pd has a relatively low ε̄d
core, and this

increases for Au@Pd and Pt@Pd. Thus, the effects we observe can be related to interfacial charge

transfer effects, which are then dependent on the inherent material workfunctions. Additionally,
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though, we note that ε̄d
shell is relatively static in all our calculations, which implies other driving

forces may be worth considering for the surface chemistry observed in experiment.

As a final observation, we look in more detail at the role of strain on the change of NP proper-

ties. As seen in Figure 6, little to no absolute change is observed for ε̄d
shell , or εHOMO (SI, Figure

S5), due to the strain on the surface elements when changing the core element. In contrast, strain

has more varied outcomes for the core elements: ε̄d
core shifts by a considerable amount relative to

the monometallic NP. Thus, further work is needed to systematically investigate these effects in

the regime that is beyond that of quantum confinement (N < 100) whilst not yet at the bulk, as it

seems the behaviour remains unpredictable at these sizes. Open questions remain with respect to

the role of strain and whether such effects could be harnessed for monolayer metallic deposition

on inorganic substrates, thus resulting in a shift of the d-band centre. We will investigate this in

our future work.

Figure 6: Strain for the core and shell elements relative to ∆εd for different structures, i.e. the
change relative to monometallic NPs. ∆εd

shell is given in absolute terms, thus implicitly incorporat-
ing changes in the εHOMO. Purple squares, green circles and blue triangles represent CO, I-Dh and
Ih structural motifs, with the lines of best fit displayed as dashed lines as a guide to the eye. The
poor quality of the fit is illutrated by the R2 of the fitted lines, which, for the core atoms, are 0.25,
0.56 and 0.74 for the CO, I-Dh and Ih, respectively; for the shell atoms, the R2 of the fitted lines
are 0.13, 0.02 and 0.26 for the same structures
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5 Conclusions

We have investigated the structural, energetic and electronic properties of bimetallic NPs com-

posed of the precious-metal elements Ag, Au, Pd and Pt, focusing specifically on the properties

of core@shell nanostructures. The energetic properties are strongly correlated with the cohesive

energy of the composite elements, with most compositions favouring the Ih structure for the 147-

atom motifs investigated. Three specific chemical arrangements are more stable in a CO structure

at this nuclearity, namely Au@Ag, Au@Pd and Pt@Pd. For Au@Pd, the compressed nature of the

internal bonds in an Ih destabilises this motif relative to the CO, whereas perhaps such a structural

preference is not observed for Au@Pt due to the greater strength of the encapsulating Pt-Pt bonds.

For Au@Ag and Pt@Pd, the considered elements have similar radii but the stronger binding ele-

ment is also at the core of the structure, and thus we conclude that an ideal bond length for this

element, as facilitated by the FCC motif, ensures that the overall binding of the CO NP is stronger

than the more compressed Ih.

Analysis of the electronic structure shows that the energy of the highest occupied molecular

orbitals (εHOMO) is strongly correlated to the element in the shell of the NP, with minor variance

depending on the core. εHOMO is lowest for systems with a Pt shell, and increases when Pt is

replaced by Pd, Au and Ag, respectively. For Ag@M, an energy gap in the electronic levels is

identified, which is also seen for Au@Au and Pd@Au; no energy gap is seen for systems with Pd

or Pt shells. Further review of the DOS offers insight into the positioning of the d-band centre of

mass, which plays an important part in the generic concepts of bonding during catalytic reactions.

The centre of mass for shell-centred d-band electrons is fairly consistent irrespective of the element

in the core of the NP, with ranges relative to εHOMO of 0.23, 0.34, 0.36 and 0.44 eV for shells

of Ag, Au, Pd and Pt, respectively; and only 0.33, 0.07, 0.16 and 0.11 eV in absolute terms.

This observation is extremely important as these are the physically accessible states for interacting

adsorbate molecules. Finally, we analysed the charge segregation across the NPs. In general

electrons accumulate at the NP surfaces irrespective of the core@shell composition, except in the

case of Ag: for M@Ag the core tends to gain electron density, which is explained due to the
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low electronegativity of Ag (1.9) with respect to other constituent elements (Au: 2.4; Pd: 2.2; Pt:

2.2). In all cases charge accumulates more prominently on the vertices of the NPs, especially for Pt

surfaces, and less so on the edges and surfaces, showing a distinct correlation between coordination

number and charge accumulation.

Supporting Information Available

The Supporting Information contains thorough analysis of the structure, energetic and electronic

properties for nanoparticles considered in this study, Tables of data containing all reported ob-

servables for the bimetallic nanoparticles discussed in this article, and Graphs of: (i) the pro-

jected density of states for NPs with a Pt shell and varying core elements; and (ii) the relation-

ship between strain and the change in the position of εHOMO. This material is available free of

charge via the Internet at http://pubs.acs.org. Information on the data underpinning the results pre-

sented here, including how to access them, can be found in the Cardiff University data catalogue

at http://doi.org/10.17035/d.2018.0045513133

Acknowledgement

The authors acknowledge N. Dimitratos, D. O. Scanlon, A. A. Sokol and C. R. A. Catlow for

several stimulating and useful conversations. Via our membership of the UK’s HEC Materials

Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER

UK National Supercomputing Service. This work also used the computational facilities of the

Advanced Research Computing @ Cardiff (ARCCA) Division, Cardiff University.

23



References

1. Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Low-

Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. J. Catal.

1993, 144, 175–192.

2. Hutchings, G. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of

supported metal chloride catalysts. J. Catal. 1985, 96, 292 – 295.

3. Haruta, M.; Daté, M. Advances in the Catalysis of Au Nanoparticles. Appl. Catal. A: Gen.

2001, 222, 427 – 437.

4. Turner, M.; Golovko, V. B.; Vaughan, O. P.; Abdulkin, P.; Berenguer-Murcia, A.;

Tikhov, M. S.; Johnson, B. F.; Lambert, R. M. Selective oxidation with dioxygen by gold

nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981–983.

5. Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem-

ical Society Reviews 2008, 37, 2096–2126.

6. Hvolbæk, B.; Janssens, T. V.; Clausen, B. S.; Falsig, H.; Christensen, C. H.; Nørskov, J. K.

Catalytic activity of Au nanoparticles. Nano Today 2007, 2, 14–18.

7. Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles

in colloidal solution. Nano letters 2004, 4, 1343–1348.

8. Wilson, O. M.; Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M. Effect of Pd nanoparticle

size on the catalytic hydrogenation of allyl alcohol. Journal of the American Chemical Society

2006, 128, 4510–4511.

9. Huang, D.; Liao, F.; Molesa, S.; Redinger, D.; Subramanian, V. Plastic-compatible low resis-

tance printable gold nanoparticle conductors for flexible electronics. Journal of the electro-

chemical society 2003, 150, G412–G417.

24



10. Li, Y.; Wu, Y.; Ong, B. S. Facile synthesis of silver nanoparticles useful for fabrication of

high-conductivity elements for printed electronics. Journal of the American Chemical Society

2005, 127, 3266–3267.

11. Takei, K.; Yu, Z.; Zheng, M.; Ota, H.; Takahashi, T.; Javey, A. Highly sensitive electronic

whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Pro-

ceedings of the National Academy of Sciences 2014, 111, 1703–1707.

12. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colori-

metric detection of polynucleotides based on the distance-dependent optical properties of gold

nanoparticles. Science 1997, 277, 1078–1081.

13. Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: a versatile nanofabrication tool for

studies of size-dependent nanoparticle optics. The Journal of Physical Chemistry B 2001, 105,

5599–5611.

14. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal

Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem.

B 2003, 107, 668–677.

15. Toshima, N.; Yonezawa, T. Bimetallic nanoparticles—novel materials for chemical and phys-

ical applications. New Journal of Chemistry 1998, 22, 1179–1201.

16. Nanoalloys: From Theory to Applications. Faraday Discussions No.138, 2008.

17. Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From Theory to Applications of Alloy

Clusters and Nanoparticles. Chem. Rev. 2008, 108, 845–910.

18. Johnston, R. L.; Wilcoxon, J. P. Metal Nanoparticles and Nanoalloys; Frontiers of

Nanoscience (Vol. 3); Elsevier: Oxford, 2012.

19. Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold

25



nanoparticles in aqueous solution. Journal of the American Chemical Society 2004, 126, 8648–

8649.

20. Wegner, K.; Piseri, P.; Tafreshi, H. V.; Milani, P. Cluster beam deposition: a tool for nanoscale

science and technology. Journal of Physics D: Applied Physics 2006, 39, R439.

21. Su, R.; Tiruvalam, R.; Logsdail, A. J.; He, Q.; Downing, C. A.; Jensen, M. T.; Dimitratos, N.;

Kesavan, L.; Wells, P. P.; Bechstein, R. et al. Designer titania-supported Au–Pd nanoparticles

for efficient photocatalytic hydrogen production. ACS nano 2014, 8, 3490–3497.

22. Sankar, M.; Dimitratos, N.; Miedziak, P. J.; Wells, P. P.; Kiely, C. J.; Hutchings, G. J. De-

signing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 2012, 41,

8099–8139.

23. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nord-

lund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel

cell catalysts. Nature Chem. 2010, 2, 454–460.

24. Villa, A.; Dimitratos, N.; Chan-Thaw, C. E.; Hammond, C.; Prati, L.; Hutchings, G. J. Glycerol

Oxidation Using Gold-Containing Catalysts. Accounts of chemical research 2015, 48, 1403–

1412.

25. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core-shell nanoparticles for

preferential oxidation of carbon monoxide in hydrogen. Nature Mater. 2008, 7, 333–338.

26. Johnston, R. L. Evolving better nanoparticles: Genetic algorithms for optimising cluster ge-

ometries. Dalton Trans. 2003, 4193.

27. Ferrando, R.; Fortunelli, A.; Johnston, R. L. Searching for the optimum structures of alloy

nanoclusters. Chem. Phys. Phys. Chem. 2008, 10, 640–649.

28. Paz-Borbón, L. O.; Johnston, R. L.; Barcaro, G.; Fortunelli, A. Structural motifs, mixing, and

segregation effects in 38-atom binary clusters. J. Chem. Phys. 2008, 128, 134517.

26



29. Rapallo, A.; Rossi, G.; Ferrando, R.; Fortunelli, A.; Curley, B. C.; Lloyd, L. D.; Tar-

buck, G. M.; Johnston, R. L. Global optimization of bimetallic cluster structures. I. Size-

mismatched Ag–Cu, Ag–Ni, and Au–Cu systems. The Journal of chemical physics 2005, 122,

194308.

30. Rossi, G.; Ferrando, R.; Rapallo, A.; Fortunelli, A.; Curley, B. C.; Lloyd, L. D.; Johnston, R. L.

Global optimization of bimetallic cluster structures. II. Size-matched Ag-Pd, Ag-Au, and Pd-

Pt systems. The Journal of chemical physics 2005, 122, 194309.

31. Kozlov, S. M.; Kovacs, G.; Ferrando, R.; Neyman, K. M. How to determine accurate chemical

ordering in several nanometer large bimetallic crystallites from electronic structure calcula-

tions. Chem. Sci. 2015, 6, 3868–3880.

32. Scamehorn, C. A.; Harrison, N. M.; McCarthy, M. I. Water chemistry on surface defect sites:

Chemidissociation versus physisorption on MgO(001). J. Chem. Phys. 1994, 101, 1547–1554.

33. Jennings, P. C.; Pollet, B. G.; Johnston, R. L. Electronic Properties of Pt–Ti Nanoalloys and

the Effect on Reactivity for Use in PEMFCs. J. Phys. Chem. C 2012, 116, 15241–15250.

34. Jennings, P.; Aleksandrov, H.; Neyman, K.; Johnston, R. O2 Dissociation on M@Pt Core–

Shell Particles for 3d, 4d, and 5d Transition Metals. J. Phys. Chem. C 2015, 119, 11031–

11041.

35. Song, C.; Ge, Q.; ; Wang*, L. DFT Studies of Pt/Au Bimetallic Clusters and Their Interactions

with the CO Molecule. The Journal of Physical Chemistry B 2005, 109, 22341–22350, PMID:

16853910.

36. Nilekar, A. U.; Alayoglu, S.; Eichhorn, B.; Mavrikakis, M. Preferential CO Oxidation in Hy-
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