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Abstract

Groundwater depletion, due to both unsustainable water use and a decrease in precipitation, has1

been reported in many parts of Iran. In order to analyze these changes during the recent decade,2

in this study, we assimilate Terrestrial Water Storage (TWS) data from the Gravity Recovery3

And Climate Experiment (GRACE) into the World-Wide Water Resources Assessment (W3RA)4

model. This assimilation improves model derived water storage simulations by introducing5

missing trends and correcting the amplitude and phase of seasonal water storage variations. The6

Ensemble Square-Root Filter (EnSRF) technique is applied, which showed stable performance in7

propagating errors during the assimilation period (2002-2012). Our focus is on sub-surface water8

storage changes including groundwater and soil moisture variations within six major drainage9

divisions covering the whole Iran including its eastern part (East), Caspian Sea, Centre, Sarakhs,10

Persian Gulf and Oman Sea, and Lake Urmia. Results indicate an average of -8.9 mm/year11

groundwater reduction within Iran during the period 2002 to 2012. A similar decrease is12

also observed in soil moisture storage especially after 2005. We further apply the canonical13

correlation analysis (CCA) technique to relate sub-surface water storage changes to climate14

(e.g., precipitation) and anthropogenic (e.g., farming) impacts. Results indicate an average15

correlation of 0.81 between rainfall and groundwater variations and also a large impact of16

anthropogenic activities (mainly for irrigations) on Iran’s water storage depletions.17
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1. Introduction18

Water scarcity has become a serious issue in the Islamic Republic of Iran (abbreviated19

here as Iran) in recent years (e.g., Amery and Wolf, 2000; Wolf and Newton, 2007; Trigo20

et al., 2010; Madani, 2014; Michel, 2017). With the increased extraction of groundwater, its21

level has been reported to fall significantly (see, e.g., Sarraf et al., 2005; Motagh et al., 2008;22

Mohammadi-Ghaleni and Ebrahimi, 2011; Van Camp et al., 2012; Afshar et al., 2016). There23

have been studies that investigate surface and groundwater changes in Iran during the last24

decade (2003 onward) mainly using Terrestrial Water Storage (TWS) data from the Gravity25

Recovery And Climate Experiment (GRACE, Tapley et al., 2004). For example, Voss et al.26

(2013) reported ∼143.6 km3 reduction of freshwater from 2003 to 2009 over the north-central27

area of the Middle East, which largely covers the Tigris-Euphrates Basin. Forootan et al.28

(2014a) applied a statistical inversion to separate GRACE TWS using hydrological model out-29

puts and altimetry data as a priori information, and found a decrease in water storage with30

an average linear rate of ∼-15 mm/year between 2002 and 2011. A large negative trend (2003-31

2012) in TWS was observed by Joodaki et al. (2014) using GRACE TWS data over the western32

Iran and eastern Iraq.33

Estimating sub-surface water storages is very important since they support the life in semi-34

arid areas like Iran. Fatolazadeh et al. (2016) used the wavelet approach to improve estimates of35

groundwater storage variations from GRACE and found a remarkable decrease in groundwater36

in 2008, 2010 and particularly in 2011. Forootan et al. (2017) compared changes in water37

storage and hydrological water fluxes in Iran using GRACE and climate reanalysis data. Their38

results indicated that the decline of TWS in the Urmia and Tigris-Euphrates basins are greater39

than the decrease in the monthly accumulated total water fluxes. Therefore, it was concluded40

that the anthropogenic contribution on surface and groundwater flow is significant, and results41

in the storage decline within Iran.42

These studies have proved the effectiveness of GRACE to enhance the understanding of43

water storage changes within the country. However, they do not provide a full understanding of44

spatially distributed water resources changes in different water compartments in Iran. GRACE45

TWS measures the summation of all water masses in the surface and sub-surface compart-46

ment of the terrestrial water storage (vegetation, snow, surface waters, soil, groundwater, etc.).47

Therefore, GRACE TWS must be separated into different storage compartments, which has48

been achieved to date through a forward modeling or an inversion framework as is described in49
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Forootan et al. (2014a) and the literature mentioned before.50

To complement previous attempts, the aims of this study are to (i) update hydrological51

model simulations of sub-surface water storage changes (including water stored in the soil52

and groundwater storage) within Iran using GRACE data assimilation, and (ii) investigate53

climate and anthropogenic impacts on the estimated sub-surface water storages in (i). This54

study is the first data assimilation attempt to integrate GRACE TWS into the World-Wide55

Water Resources Assessment (W3RA; van Dijk, 2010) hydrological model over Iran. This56

methodology has been implemented in studies to constrain the mass balance of hydrological57

models over different river basins (e.g., Zaitchik et al., 2008; van Dijk et al., 2014; Eicker et al.,58

2014; Reager et al., 2015; Girotto et al., 2016; Schumacher et al., 2016). The main rationale in59

following this approach is that one relies on the physical processes, implemented in the model60

equations, to separate GRACE TWS into water compartments (see similar arguments, e.g., in61

Bertino et al., 2003). Thus, by generating ensemble members for a model derived water storage62

simulation, we will compute a priori estimates of mass redistribution in the country. Then,63

by assimilating GRACE data, while considering their uncertainty, we update (correct) these64

model estimations. A similar concept has also been followed in studies in hydrology, climate,65

and oceanography (see, e.g., Garner et al., 1999; Bennett, 2002; Kalnay, 2003; Schunk et al.,66

2004; Lahoz et al., 2007; Khaki et al., 2017a,b). In addition, by applying data assimilation, we67

will likely be able to reliably separate GRACE TWS data into different water compartments68

since both model and observation errors are considered. Considering that the spatial resolution69

of models is usually better than GRACE data, through the assimilation procedure, GRACE70

observations are downscaled, and therefore, higher resolution estimations of water storages will71

be available within the country (see also Schumacher et al., 2016; Khaki et al., 2018a).72

Once improved model simulations are obtained, by assimilating GRACE TWS, relation-73

ships between the model-derived groundwater and soil moisture storages and climatic variables74

within Iran are investigated. To investigate the impacts of climate on the regional water stor-75

age estimates, precipitation from satellite remote sensing, temperature, and vegetation changes76

through the Normalized Difference Vegetation Index (NDVI) are used. Furthermore, anthro-77

pogenic effects are explored using the changes in water use for farming, industry, and human78

consumption. To this end, Canonical Correlation Analysis (CCA) is applied to provide an79

insight into the relations between model-derived water storages and both climatic and anthro-80

pogenic impacts by extracting spatio-temporal correlations between these inter-related data81
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sets. For a better spatial analysis of water storage and to reduce the uncertainty of estimations,82

the study area is divided into six major areas: the eastern part of Iran (indicated by East),83

Caspian Sea, Centre, Sarakhs, Persian Gulf and Oman Sea, and Lake Urmia (Figure 1).84

The remainder of this study is structured as follows: Section 2 provides details on W3RA85

model, remotely sensed datasets, and in-situ measurements used. In Section 3, data assimilation86

filtering techniques, CCA algorithm, and the outline of our experimental setup are described.87

Results are presented and discussed in Section 4 including the data assimilation performance88

and analyzing the relationship between the model estimations, rainfall and NDVI through CCA.89

Finally, the study is concluded in Section 5.90

FIGURE 1

2. Study area and data91

2.1. Iran92

Located in an arid and semi-arid region, Iran experiences strong regional differences93

in climate (Figure 1). Subtropical conditions are dominant over the northern part, but 90%94

of the country has limited rainfall with extremely hot summers in the central and southern95

coastal regions (Golian et al., 2015). Much of the west to northwest of Iran is located in high96

plateaus and mountain ranges associated with strong temperature differences between winter97

and summer. By contrast, the centre to southern parts are warm (cf. Figure 1) for most of98

the year with mild winters and hot summers. Annual rainfall, the main source of freshwater in99

Iran, varies from 50 mm in the deserts to 2275 mm in the northern part of the country (FAO,100

2009). Only a fraction of the country receives enough rainfall for agriculture. A growing use101

of irrigation for agricultural productions (Ardakani, 2009) and the increasing population (from102

∼55 million in 1990 to ∼80 million in 2015 Karamouzian and Haghdoost, 2015), make water103

availability an important issue across the country (Michel, 2017).104

2.2. W3RA hydrological model105

The present study uses the globally distributed World-Wide Water Resources Assess-106

ment system (W3RA) model, run at 1◦×1◦. W3RA, based on the Australian Water Resources107

Assessment system (AWRA) model (version 0.5) developed in 2008 by the Commonwealth Sci-108

entific and Industrial Research Organization (CSIRO) is a daily grid-distributed biophysical109

4

� ✆ ✟� ✝ ✠� ✝ �� ✝ ✁� ✝ ✂� ✝ ✄� ✝ ☎� ✝ ✆� ✝ ✝� ✝ ✞� ✝ ✟� ✞ ✠� ✞ �� ✞ ✁� ✞ ✂� ✞ ✄� ✞ ☎� ✞ ✆� ✞ ✝� ✞ ✞� ✞ ✟� ✟ ✠� ✟ �� ✟ ✁� ✟ ✂� ✟ ✄� ✟ ☎� ✟ ✆� ✟ ✝� ✟ ✞� ✟ ✟✁ ✠ ✠✁ ✠ �✁ ✠ ✁✁ ✠ ✂✁ ✠ ✄✁ ✠ ☎✁ ✠ ✆✁ ✠ ✝✁ ✠ ✞✁ ✠ ✟✁ � ✠✁ � �✁ � ✁✁ � ✂✁ � ✄✁ � ☎✁ � ✆✁ � ✝✁ � ✞✁ � ✟✁ ✁ ✠✁ ✁ �✁ ✁ ✁✁ ✁ ✂✁ ✁ ✄



model that simulates landscape water stored in the vegetation and soil systems (see details in110

van Dijk, 2010). The model represent and forecast terrestrial water cycles (van Dijk, 2010; Ren-111

zullo et al., 2014). W3RA does not consider anthropogenic effects (e.g., irrigation). Therefore,112

by assimilating GRACE TWS, which integrates both natural and anthropogenic signals (e.g.,113

Schumacher et al., 2018), we hope to constrain the model’s water storage simulations and in-114

troduce the missing variations. Meteorological forcing data that is used here are minimum and115

maximum temperature, down-welling short-wave radiation, and precipitation from the Prince-116

ton University (Sheffield et al., 2006). The model contains effective soil parameters, water117

holding capacity and soil evaporation, relating greenness and groundwater recession, and satu-118

rated area to catchment characteristics parameters (van Dijk et al., 2013). This one-dimensional119

grid-based water balance model represents the water balance of the soil, groundwater and sur-120

face water stores in which each cell is modeled independently of its neighbors (van Dijk, 2010;121

Renzullo et al., 2014). The model state, which is used for data assimilation (2002-2012), is com-122

posed of W3RA storages of the top, shallow root and deep root soil layers, and groundwater123

storage in an one-dimensional system (vertical variability).124

2.2.1. Satellite-derived observations125

We use monthly GRACE level 2 (L2) gravitational Stokes’ coefficients truncated up126

to spherical harmonic degree and order 90 along with their full error information from 2002127

to 2012 provided by the ITSG-Grace2016 gravity field model (Mayer-Gürr et al., 2014). The128

monthly full error information of the Stokes’ coefficients is used to construct an observation error129

covariance matrix for the GRACE TWS fields to be used for data assimilation (Schumacher et130

al., 2016). Degree 1 of Stokes’ coefficients are replaced with those estimated by Swenson et al.131

(2008) to account for the movement of the Earth’s center of mass. Degree 2 and order 0 (C20)132

coefficients are replaced by those from Satellite Laser Ranging solutions due to unquantified133

large uncertainties in this term (e.g., Cheng and Tapley, 2004; Chen et al., 2007). Afterward,134

following Wahr et al. (1998), the L2 gravity fields is converted to gridded TWS fields with a135

1◦×1◦ spatial resolution.136

Correlated noise in data due to anisotropic spatial sampling, instrumental noise (K-band137

ranging system and GPS), and temporal aliasing caused by the incomplete reduction of short-138

term mass variations (Forootan et al., 2014b) can be reduced by smoothing filters (e.g., Kusche139

et al., 2009). The application of smoothing, however, causes a spatial leakage problem that can140
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be problematic given that strong water resources of Tigris River and the Persian Gulf Basin can141

affect GRACE signals, as leakage-in errors, over the northwest and south of Iran, respectively.142

To tackle these errors, we use a Kernel Fourier Integration (KeFIn) filter, proposed by Khaki143

et al. (2018b), which defines an efficient averaging kernel to improve GRACE TWS within144

Iran. The KeFIn filtering method accounts for signal attenuations and leakage effects caused145

by smoothing in a two step filtering scheme (see more details in Khaki et al., 2018b). Lastly,146

in order to reach absolute TWS estimates (similar to W3RA), the mean TWS for the study147

period is taken from W3RA and added to the GRACE TWS anomalies time series.148

Furthermore, since W3RA does not simulate lake dynamics, one needs to account for the149

existing surface water storage over the Lake Urmia before assimilation of the GRACE TWS150

data. Water level height datasets from satellite radar altimetry of Jason-1 (260 cycles from151

2002 to 2008) and Jason-2 (165 cycles from 2008 to 2012) are used to separate groundwater152

and surface water storage from GRACE TWS (more details in Section 3.1.2). We use the ExtR153

post-processing technique (Khaki et al., 2014, 2015) to retrack the data and improve water154

level measurements, which are erroneous within inland waters. Filtered surface heights are155

then used to create time series for virtual gauge stations over the Lake Urmia. These time156

series are subsequently used to remove the contribution of surface water storage changes from157

GRACE TWS data before implementing the proposed data assimilation (see also the procedure158

in Forootan et al., 2014a).159

Satellite-derived precipitation data of TRMM-3B43 products (TRMM, 2011) from the Trop-160

ical Rainfall Measuring Mission Project (TRMM; version 7) is used to study rainfall variations.161

We convert the gridded precipitation products provided with a 0.25◦×0.25◦ spatial scale to162

1◦×1◦ for the period between 2002 and 2012. In addition, we use Version 4 gridded daily163

Normalized Difference Vegetation Index (NDVI) derived from the NOAA Climate Data Record164

(CDR) between 2002 and 2012 to further investigate climatic impacts. This dataset is pro-165

duced by the NASA Goddard Space Flight Center (GSFC) and the University of Maryland166

with a 0.05◦×0.05◦ spatial resolution. The datasets are rescaled to a 1◦×1◦ spatial resolution.167

A summary of the data sets and links to download the data are provided in Table 1.168

2.2.2. Temperature169

Monthly average temperature data for the temporal period of 2003 to 2012 is acquired170

from Climatic Research Unit (CRU; Harris, 2008), which is used in CCA as a climate indicator.171

6

✁ ✞ �✁ ✞ ✁✁ ✞ ✂✁ ✞ ✄✁ ✞ ☎✁ ✞ ✆✁ ✞ ✝✁ ✞ ✞✁ ✞ ✟✁ ✟ ✠✁ ✟ �✁ ✟ ✁✁ ✟ ✂✁ ✟ ✄✁ ✟ ☎✁ ✟ ✆✁ ✟ ✝✁ ✟ ✞✁ ✟ ✟✂ ✠ ✠✂ ✠ �✂ ✠ ✁✂ ✠ ✂✂ ✠ ✄✂ ✠ ☎✂ ✠ ✆✂ ✠ ✝✂ ✠ ✞✂ ✠ ✟✂ � ✠✂ � �✂ � ✁✂ � ✂✂ � ✄✂ � ☎✂ � ✆✂ � ✝✂ � ✞✂ � ✟✂ ✁ ✠✂ ✁ �✂ ✁ ✁✂ ✁ ✂✂ ✁ ✄✂ ✁ ☎✂ ✁ ✆✂ ✁ ✝✂ ✁ ✞✂ ✁ ✟✂ ✂ ✠✂ ✂ �✂ ✂ ✁✂ ✂ ✂✂ ✂ ✄✂ ✂ ☎✂ ✂ ✆



This data is provided using more than 4000 weather stations distributed around the world.172

For the sake of consistency with other data sets, the collected 0.5◦×0.5◦ spatial scale data is173

converted to 1◦×1◦.174

2.3. In-situ data175

We use in-situ groundwater level data collected from 562 observation wells distributed176

over the six drainage divisions of East, Caspian Sea, Centre, Sarakhs, Persian Gulf and Oman177

Sea, and Lake Urmia water (cf. Figures 1) to compare them with our results. Datasets are178

provided by the Iran Water Resources Management Company (IWRMC) and are categorized179

based on Iran’s six largest provinces on a yearly temporal scale presenting groundwater storage180

changes for an entire aquifer (Forootan et al., 2014a). Figure 2 shows an annual increase in181

groundwater extraction and the number of drilled wells for the entire country derived from182

IWRMC data sets. The IWRMC volumetric groundwater change measurements are converted183

to equivalent water height using the area of each aquifer. The area-averaged time series of184

groundwater changes for each aquifer is then generated and used for evaluating the results. The185

modified in-situ groundwater time series are compared separately to the average assimilation186

results for the same aquifer. River water discharge, the number of bore holes, and average187

water use for farming, industry, and urban use provided by IWRMC are also used in the CCA188

process (see Section 3.2). Details of all the applied datasets, as well as the model are presented189

in Table 1.190

FIGURE 2
191

TABLE 1

3. Method192

3.1. Data assimilation193

3.1.1. EnSRF filtering194

In order to assimilate GRACE data into the W3RA model, we use the Ensemble Square-195

Root Filter (EnSRF) following Whitaker and Hamill (2002). EnSRF is an extended version196

of traditional Ensemble Kalman Filter (EnKF) that does not require the observations to be197

perturbed by introducing a new sampling scheme. Here, EnSRF is selected to avoid sampling198
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errors that can be reflected in the background covariance matrix especially in using a limited199

number of ensembles (Whitaker and Hamill, 2002). Khaki et al. (2017a) showed that this200

method is highly capable of assimilating GRACE TWS data into a hydrological model amongst201

the most commonly used filters. EnSRF adopts a similar analysis step to the EnKF in the sense202

that the analysis perturbations are computed from the forecast perturbations by updating each203

ensemble perturbation with a Kalman-like update step. In the present study X consists of six204

different water storages including top soil, shallow soil, and deep soil water, vegetation, snow,205

and groundwater storages. Previous studies, e.g., Forootan et al. (2014a) and Tourian et al.206

(2015), have investigated the surface water variations, specifically, in the Lake Urmia Basin207

and the Caspian Sea as the major source of surface water storage changes in Iran. Therefore,208

here, we only focus on the estimation of sub-surface compartments including groundwater and209

soil moisture. The modified GRACE TWS data (see Section 2.2.1 for details) is then used to210

update the above water compartments excluding surface storage.211

The forecast model state, the integrated model state by a dynamical model for N times (N212

is the ensemble number), is represented by Xf = [X1
f . . . XN

f ], where Xi
f (i = 1 . . . N) is the213

ith ensemble (hereafter ‘f’ refers to forecast and ‘a’ represents analysis). The corresponding214

model state forecast error covariance of P f is defined by:215

P f =
1

N − 1

N
∑

i=1

(Xi
f
− X̄f )(Xi

f
− X̄f )T , (1)

X̄f =
1

N

N
∑

i=1

(Xi). (2)

The update stage in EnSRF contains two steps. First, it updates the ensemble-mean following,216

X̄a = X̄f +K(y −HX̄f ), i = 1 . . . N, (3)

K = P f (H)T (HP f (H)T +R)−1, (4)

where K is the Kalman gain, y is the observation vector. The transition matrix and the217

observation covariance matrix are indicated by H and R, respectively. Next, EnSRF updates218

the forecast ensemble of anomalies Af = [A1
f . . . AN

f ] into the analysis ensemble deviation Aa.219

Af as the deviation of model state ensembles from the ensemble mean is derived from,220

Ai
f = Xi

f
− X̄f . (5)
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EnSRF exploits the serial formulation of the Kalman filter analysis step in which the observa-221

tions are assimilated each at a time to compute the analysis perturbations that exactly match222

the Kalman filter covariance (Hoteit et al., 2008) using the modified gain (K̃) with,223

224

Aa = (I − K̃H)Ai
f , (6)

α =
(

1 +

√

R

HP fHT +R

)

−1

, (7)

where I is an identity matrix. More details on EnSRF can be found in Whitaker and Hamill225

(2002) and Tippett et al. (2003).226

3.1.2. Assimilating GRACE TWS into W3RA227

Monthly gridded GRACE TWS data are assimilated into W3RA to update the model228

states, a summation of model vertical water compartments (here soil moisture, vegetation229

biomass, snow, and groundwater). Note that no parameter adjustment is considered here230

and the observations are only used to constrain the system states. The monthly increment (i.e.,231

the difference between the monthly averaged GRACE TWS and simulated TWS) can be added232

to each day of the current month, which guarantees that the update of the monthly mean is233

identical to the monthly mean of the daily updates. In practice, the differences between the234

predictions and the updated states are added as offsets to the state vectors at the last day of235

each month to generate the ensembles for the next month assimilation step. We use Monte236

Carlo sampling of multivariate normal distributions with the errors representing the standard237

deviations of the forcing sets (precipitation, temperature, and radiation) to generate an ini-238

tial ensemble (Renzullo et al., 2014). The perturbed meteorological forcing datasets, then, are239

integrated forward with the model from 2000 to 2002 providing 72 sets of state vectors (as240

suggested by Oke et al., 2008) at the beginning of the study period.241

An application of small ensemble size is problematic in ensemble data assimilation systems,242

as it can lead to filter divergent or inaccurate estimation (Tippett et al., 2003). Therefore,243

we apply ensemble inflation that uses a small coefficient factor (here 1.12; Anderson et al.,244

2001) to inflate prior ensemble deviation from the ensemble-mean and increases their variations245

(Anderson et al., 2007). Furthermore, the Local Analysis (LA) scheme (Evensen, 2003; Ott et246

al., 2004) is applied for localization. LA improves the assimilation procedure by restricting the247
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observations used for the covariance matrix computation to a spatially limited area (Khaki et al.,248

2017c). As a result, only those measurements located within a certain distance from a grid point249

have an impact on the updated states (Evensen, 2003; Ott et al., 2004). Different localization250

lengths are tested and their results are assessed against in-situ groundwater measurements251

(Section 2.3) to reach the best case scenario (i.e., 5◦ half-width used in this study).252

As mentioned, it is necessary to remove surface water storages from GRACE TWS data over253

Lake Urmia before data assimilation. For this purpose, following Forootan et al. (2014a) who254

undertook water analysis over the same area, we use satellite altimetry time series over the lake255

to derive surface water storage. The Global Land Data Assimilation System (GLDAS) outputs256

of total column soil moisture, snow water equivalent, and vegetation biomass water storage as257

well as water level variations from altimetry are used to estimate temporal and spatial patterns258

of surface water storage using Independent Component Analysis (ICA). The extracted patterns259

are then adjusted to GRACE TWS products using a least squares adjustment (LSA) procedure260

(see details in Forootan et al., 2014a). The GRACE data after removing surface water storage261

is used for the data assimilation process over Lake Urmia.262

3.2. Canonical Correlation Analysis (CCA)263

The present study applies Canonical Correlation Analysis (CCA) to find the linear264

connection of two sets of multidimensional variables of predictor (xc) and criterion (yc) values.265

CCA is selected here rather than simple correlation analysis due to its ability in establishing266

the relationships between multiple intercorrelated variables. CCA extracts canonical coefficients267

that represent common processes between two or more variables (Chang et al., 2013) using an268

eigenvector decomposition that yields linear weights, known as canonical coefficients, which269

describe maximum correlations between variables (see details in Steiger and Browne, 1984).270

The combination of variables with the first canonical coefficient for each set has the highest271

possible multiple correlations with the variables in the other set. CCA extracts canonical272

coefficients u and v such that Xc = xc
Tu and Yc = yC

T v (Xc and Yc are canonical variates)273
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possess a maximum correlation coefficient (Chang et al., 2013) using the following function,274

R =
E[XcYc]

sqrt(E[X2
c ]E[Y 2

c ])

=
E[uTxcyc

T v]

sqrt(E[uTxcxcTu]E[vT ycycT v])

=
uTCxc,ycv

sqrt(uTCxc,xc
uvTCyc,ycv])

,

(8)

where Cxc,xc
and Cyc,yc are covariance matrices of xc and yc, respectively and the objective in275

above function is to maximize the correlation R. We use an eigenvalue decomposition procedure276

to find the linear weights producing canonical coefficients, which imply maximum possible277

correlations (see details in Steiger and Browne, 1984). There are different canonical coefficients278

within each set leading to different uncorrelated coefficients. Nevertheless, the combination279

of variables with the first canonical coefficient for each set has the highest possible multiple280

correlations with the variables in the other set.281

Two scenarios are considered for prediction: (i) the predictor (xc) contains time series282

of both groundwater used for farming, industry, and human consumption from IWRMC and283

climate-related variables of precipitation, NDVI, and temperature (provided by Harris, 2008),284

and (ii) the predictor (xc) includes only climate-related variables of precipitation, NDVI, and285

temperature. This is done to explore the impact of each scenario on water variations. The286

criterion (yc) in both scenarios contains water storage (groundwater and soil moisture) and287

discharge (from IWRMC) variations. By applying CCA, we establish the best combinations288

between two sets of variables in two different cases. By comparing the results of these two289

scenarios, we can investigate how water use and climate variabilities impact water storage290

changes within Iran. Nevertheless, there are other effective components (e.g., large-scale ocean-291

atmosphere phenomenon, evaporation, and droughts) on the water storage, which is difficult to292

include all of them in the process. This CCA scheme, however, could provide an insight on the293

connection between the above components. Table 2 summarizes the experiments undertaken294

in this study. The corresponding research objectives and related sections that contain each295

experiment’s results are also listed in the table.296

TABLE 2
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4. Results and discussion297

4.1. Simulated assimilation298

In the following, we analyze the effect of various scenarios of observations on the as-299

similation. As mentioned earlier, GRACE TWS observations are used to update the sum of300

soil moisture, vegetation, snow, and groundwater compartments at each grid cell. Thus, it is301

important to investigate the distribution of the increments between these compartments, espe-302

cially soil moisture and groundwater storage while the influence of the remaining storages (i.e.,303

vegetation and snow) is negligible. In particular, we are interested in monitoring the impacts304

of trends in observations time series on different water components. Schumacher et al. (2018)305

showed that assimilating GRACE TWS data can improve model simulation of seasonality and306

trend of TWS, as well as individual water storage components. This point is important be-307

cause the largest part of GRACE TWS trends caused by groundwater variations that originate308

from both natural and human-induced (e.g. water use) changes while soil moisture variations309

generally follow climate pattern. Simulation experiments are undertaken to monitor how obser-310

vations’ variations, and particularly their trends are reflected in soil moisture and groundwater311

estimates during assimilation.312

To illustrate how GRACE data assimilation can improve model states, we perform a syn-313

thetic study, in which arbitrary errors (uncertainty with different magnitudes) are assigned to314

different model derived water storage states. We evaluate whether these states accurately re-315

ceive increments from GRACE TWS. To this end, we introduce different uncertainties to model316

states and test how these are transferred to the assimilation forecast steps (cf. Eqs. (3)-(4)).317

Figure 3 shows the relationship between selected uncertainties of water states and their corre-318

sponding weights in the (synthetic) assimilation. Based on this setup, six different scenarios are319

considered to explore the impact of weights as the ratio of the assigned increment derived for320

each storage state to the summation of all states. The results presented in Figure 3 indicate an321

average influence of assimilating GRACE TWS data into W3RA over Iran between 2003 and322

2013. In general, as theoretically expected, higher weight (i.e., larger increment) is assigned323

to a variable with a smaller uncertainty. In other words, by assimilating GRACE TWS, the324

model’s water states with larger uncertainty receive larger increments, and this is reverse for325

states with smaller uncertainty. These results approve the recent results of Schumacher et al.326

(2018), who assimilate GRACE TWS data into WGHM model over Australia. Figure 3 also327

shows that the average correlations between the individual estimated storage in each scenario328

12

✆ � ✝✆ � ✞✆ � ✟✆ ✁ ✠✆ ✁ �✆ ✁ ✁✆ ✁ ✂✆ ✁ ✄✆ ✁ ☎✆ ✁ ✆✆ ✁ ✝✆ ✁ ✞✆ ✁ ✟✆ ✂ ✠✆ ✂ �✆ ✂ ✁✆ ✂ ✂✆ ✂ ✄✆ ✂ ☎✆ ✂ ✆✆ ✂ ✝✆ ✂ ✞✆ ✂ ✟✆ ✄ ✠✆ ✄ �✆ ✄ ✁✆ ✄ ✂✆ ✄ ✄✆ ✄ ☎✆ ✄ ✆✆ ✄ ✝✆ ✄ ✞✆ ✄ ✟✆ ☎ ✠✆ ☎ �✆ ☎ ✁✆ ☎ ✂✆ ☎ ✄✆ ☎ ☎✆ ☎ ✆✆ ☎ ✝✆ ☎ ✞✆ ☎ ✟✆ ✆ ✠✆ ✆ �✆ ✆ ✁✆ ✆ ✂✆ ✆ ✄✆ ✆ ☎✆ ✆ ✆✆ ✆ ✝✆ ✆ ✞✆ ✆ ✟✆ ✝ ✠✆ ✝ �✆ ✝ ✁



and the assimilated GRACE TWS. The correlations are calculated after removing seasonal ef-329

fects on time series to focus on trends. It can be seen that larger correlations to the GRACE330

TWS trends are obtained for a compartment with larger uncertainty and correspondingly with331

a larger increment. This means that the assimilation process transfers the observation trends332

into the more uncertain storage, which receives the larger corrections.333

FIGURE 3

Another synthetic experiment is also implemented, where, different observation sets are334

assimilated into W3RA but this time without manipulating their uncertainties. The aim is to335

investigate whether the distribution of increments of different water states changes when the336

TWS observations change. Here, four different synthetic observation scenarios are considered,337

which include two versions of the WaterGAP Global Hydrology Model (WGHM; more details338

on Döll et al., 2003; Müller et al., 2014) TWS estimates with and without water abstractions,339

GRACE-derived TWS, and GRACE TWS minus WGHM soil moisture that roughly gives340

groundwater observations. The spatially averaged time series of the TWS observations (for the341

first three cases) over Iran are displayed in Figure 4a. The difference between the WGHM TWS342

observations with and without water use clearly show the anthropogenic impacts as a distinct343

negative trend in WGHM with water abstraction impact. A similar trend can also be seen in344

GRACE TWS. Assimilation of these observations can show how water storages, for example345

their trends, are distributed between soil moisture and groundwater estimates. Assimilating346

WGHM TWS without water use, which does not show any significant trends, might better347

estimate soil moisture. This is due to the fact that the main source of TWS’s negative trends is348

groundwater exploitation, while soil moisture variations generally are related to climatic (e.g.,349

precipitation) variations. Hence, comparing the soil moisture results of assimilating GRACE350

TWS and WGHM TWS with water use with those of WGHM TWS without water use can help351

to assess the performance of data assimilation in updating soil moisture. Furthermore, while352

the first three observation sets (i.e., WGHM with and without water use and GRACE-derived353

TWS) are used to update the summation of all compartments, the last case (GRACE TWS354

minus WGHM soil moisture) is used to update only the groundwater simulations. The main355

rationale for updating only groundwater in the last experiment is to compare its results with356

the other scenarios, which can help to investigate how accurate groundwater corrections are357

13

✆ ✝ ✂✆ ✝ ✄✆ ✝ ☎✆ ✝ ✆✆ ✝ ✝✆ ✝ ✞✆ ✝ ✟✆ ✞ ✠✆ ✞ �✆ ✞ ✁✆ ✞ ✂✆ ✞ ✄✆ ✞ ☎✆ ✞ ✆✆ ✞ ✝✆ ✞ ✞✆ ✞ ✟✆ ✟ ✠✆ ✟ �✆ ✟ ✁✆ ✟ ✂✆ ✟ ✄✆ ✟ ☎✆ ✟ ✆✆ ✟ ✝✆ ✟ ✞✆ ✟ ✟✝ ✠ ✠✝ ✠ �✝ ✠ ✁✝ ✠ ✂✝ ✠ ✄✝ ✠ ☎✝ ✠ ✆✝ ✠ ✝✝ ✠ ✞✝ ✠ ✟✝ � ✠✝ � �✝ � ✁✝ � ✂✝ � ✄✝ � ☎✝ � ✆✝ � ✝✝ � ✞✝ � ✟✝ ✁ ✠✝ ✁ �✝ ✁ ✁✝ ✁ ✂✝ ✁ ✄✝ ✁ ☎✝ ✁ ✆✝ ✁ ✝✝ ✁ ✞



applied from TWS increments in the other cases, where different compartments are available.358

FIGURE 4

The results of the data assimilation variants are shown in Figures 4b and 4c and updated359

groundwater estimates from assimilating GRACE TWS minus WGHM soil moisture is plotted360

in Figure 4c. The assimilation results for soil moisture (Figure 4b) and groundwater (Figure361

4c) show that the negative TWS trends are largely reflected only in groundwater time series.362

The average correlation between the above TWS observations and corresponding groundwater363

estimates is 0.92, 42% (on average) larger than for the open-loop run, which indicates the364

suitability of data assimilation for constraining system states. For the entire area, there is365

a stronger agreement between the soil moisture from assimilation compared to the open-loop366

run, e.g., 22% (on average) for the GRACE TWS case and 28% (on average) for the WGHM367

TWS with water use case. Lower correlations are obtained for assimilating WGHM TWS368

without water use in comparison to other data assimilation scenarios (see also Figure 4b).369

Furthermore, groundwater variations from the assimilated GRACE TWS are largely correlated370

to the groundwater estimates from assimilating only groundwater observations (GRACE TWS371

minus WGHM soil moisture). TWS observations of WGHM without water use have the least372

effect on groundwater variations.373

It can be concluded from Figure 4 that the data assimilation process successfully distributes374

TWS increments between soil moisture and groundwater storages. These results indicate that375

the largest part of increments during data assimilation is assigned to groundwater. The larger376

impact on groundwater, based on Figure 3, suggests that the groundwater estimation of W3RA377

is more uncertain than its soil moisture and as a result it receive larger updates. This is even378

more clear in Figure 5, where groundwater and soil moisture estimates by ensemble members be-379

tween 2004 and 2008 are shown. This time period is selected because it includes an episode with380

strongly negative groundwater trend after 2005 (see also Figure 4c), where ensemble spreads381

show a different pattern, e.g., larger spreads. The propagated groundwater ensemble members382

are more dispersed than those of soil moisture, which causes larger ensemble deviations from its383

mean and consequently larger uncertainty for the states (cf. Eqs. (1)-(2)). This can be due to384

the point that the W3RA model has a simplified simulation of groundwater dynamics for un-385

confined groundwater and does not simulate confined groundwater dynamics or anthropogenic386
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groundwater extraction (Tregoning et al., 2012). The larger corrections applied to groundwater387

is also realistic considering the fact that a majority of water depletion in Iran occurs in ground-388

water due to large extractions for irrigation. The applied irrigation water is likely to locally389

increase total soil column water storage, which may contribute to a smaller decline in soil water390

content (Michel, 2017).391

FIGURE 5

Even though the results indicate good performance of GRACE data assimilation, one might392

still expect artefacts from the TWS increments on the state estimates. The absence of ground-393

water abstractions and anthropogenic impacts in most hydrological models, especially where394

the rate of this extraction is high, can cause a misinterpretation of a negative TWS trend395

captured by GRACE in the system states. As shown by Girotto et al. (2017), the assimila-396

tion of GRACE TWS can successfully introduce the negative trends in the modeled TWS and397

groundwater, however, this can also introduce unrealistic decline in other components, e.g., soil398

moisture and evapotranspiration. This effect can be exacerbated when groundwater extraction399

is large and occurs over an extended period. The model dynamical range of groundwater may400

not be sufficient to accommodate the assimilated values (Zaitchik et al., 2008; Li and Rodell,401

2015). Despite these, merging GRACE TWS data with high resolution models is the most ef-402

ficient existing approach to analyze groundwater changes over wide areas, which in most cases403

results in an improvement in the estimates (Li and Rodell, 2015; Girotto et al., 2017). Here,404

we addressed this challenge by conducting a synthetic experiment, as well as by independently405

assessing groundwater and soil moisture from assimilation. However, more investigations are406

needed to be extended and the impacts of various data assimilation scenarios on each individual407

water compartments need to be tested. These investigations are, however, out of the scope of408

this study.409

4.2. Result evaluation410

In this section, we assess the performance of data assimilation using in-situ groundwater411

measurements. To examine the validity of data assimilation results, in-situ groundwater mea-412

surements of the six major drainage regions in the area including the East, Caspian Sea, Centre,413

Sarakhs, Persian Gulf and Oman Sea, and Lake Urmia (cf. Figure 1) are used. For each basin in414

Figure 1, we calculate the spatial average time series of groundwater storages with and without415
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data assimilation and compare them with the IWRMC in-situ and WGHM groundwater varia-416

tion. We first analyze the performance of two assimilation cases of GRACE TWS and GRACE417

TWS minus WGHM soil moisture data assimilation experiments for improving groundwater418

estimates. Figure 6 shows the average root-mean-square error (RMSE) and standard deviation419

(STD) calculated using groundwater from assimilation cases and in-situ measurements. Both420

cases perform comparably in terms of RMSE and STD with an average of 38% error reduction421

compared to open-loop. Nevertheless, assimilating GRACE TWS obtains the smaller RMSE422

than groundwater only data assimilation. This further confirms the effectiveness of the applied423

data assimilation for distribution TWS increments, especially for groundwater storage. Based424

on this assessment, hereafter only the results for GRACE TWS data assimilation are presented.425

FIGURE 6

The results for groundwater examination from data assimilation, WGHM, and the open-426

loop run for each drainage division are illustrated in Figure 7, which show that the strongest427

agreement between groundwater estimates and in-situ measurements occur in the assimilation428

results. In most of the cases, WGHM performs better than the open-loop. For a better assess-429

ment of data assimilation results, additional agreement statistics using RMSE and correlation430

analysis are calculated and reported in Table 3. Significance at p < 0.05 was calculated using431

the Students t-test with consideration of temporal autocorrelation through effective sample size.432

FIGURE 7
433

TABLE 3

The computed time series for each region is compared to IWRMC data for the corresponding434

region in order to estimate the reported statistics in Table 3. Generally, the assimilation results435

are largely correlated with the in-situ data (0.85 on average) after data assimilation, with an436

improvement of 35% over open-loop results. The largest improvements in terms of correlation437

increase and RMSE reduction with respect to the in-situ measurements are achieved over Lake438

Urmia, Sarakhs, and to a lesser degree Persian Gulf and Oman Sea. Table 3 shows considerable439

groundwater decline in most of the regions especially within the Persian Gulf and Oman Sea440

and Lake Urmia (both mostly located in the western areas). The largest negative groundwater441
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trend is exhibited for Lake Urmia while the lowest trend is found for the Caspian Sea division442

in the north, which could be attributed to a large amount of precipitation in the latter region.443

We further examine the soil moisture estimates from data assimilation. In the absence444

of reliable in-situ soil moisture measurements over the study area, we use satellite-derived445

and independent model soil moisture products. Soil moisture observations from the Advanced446

Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and Soil Moisture and447

Ocean Salinity (SMOS) are compared to the assimilated top layer soil moisture estimates. The448

motivation behind this comparison is based on the fact that SMOS and AMSR-E measurements449

are largely correlated, respectively, to surface 0-5 cm and 0-2 cm soil moisture content (Njoku450

et al., 2003). Figure 8 shows the average time series of the above comparison within the451

study period. It can be seen that the assimilation top layer soil moisture is better matched452

(41% improvement in correlation) to the satellite measurements in comparison to the open-loop453

estimates. This shows a successful impact of GRACE TWS data assimilation on the model top454

layer.455

FIGURE 8

Total soil moisture estimates from data assimilation, i.e., summation of soil moisture at top,456

shallow- and deep-root layers, are compared with soil moisture estimates of WGHM, the Global457

Land Data Assimilation System (GLDAS; Rodell et al., 2004), and soil moisture provided by van458

Dijk et al. (2014), who combined different data (e.g., GRACE) and model outputs (indicated459

here as W3). The results are displayed in Figure 9. In all cases, data assimilation leads to a460

better agreement to other products with an average 25% improvement. The largest correlation,461

as well as the greatest improvement, are found for soil moisture after assimilation of WGHM.462

There is also a considerable correlation between the results and W3.463

FIGURE 9

4.3. Water storage analysis464

Based on the improved soil moisture and groundwater estimates, spatio-temporal varia-465

tions of both compartments are analyzed in this section. The variation of groundwater storages466

within Iran before and after data assimilation are illustrated in Figure 10. The blue graph in467

Figure 10 represents the average groundwater variations of all grid points after data assimila-468
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tion. This graph clearly shows a negative trend between 2002 and 2013 with an average -8.9469

mm/year groundwater depletion for the entire country. However, such a trend is not present in470

the open-loop time series. GRACE TWS data assimilation constrains groundwater estimates471

and introduces this negative trend into the state as it exists in GRACE TWS observations (cf.472

Figure 4). It is evident that the W3RA without data assimilation is not able to provide reli-473

able long-term changes of groundwater, e.g., trend and multi-year variations. Therefore, data474

assimilation is vital for reliable interpretation of ground water beyond the annual cycle. How-475

ever, without additional information the data assimilation results cannot differentiate between476

natural and anthropogenic causes. Apart from the trends, Figure 10 also shows a multi-year477

cycle, e.g., positive trend between 2002 and 2005 and a stronger negative trend for the later478

years 2006 to 2013. Again, this trend is not visible in the open-loop simulations.479

FIGURE 10

Furthermore, we separately analyze water compartments for each of Iran’s major drainage480

regions. The soil moisture and groundwater average time series from W3RA before and after481

assimilating GRACE TWS for each of the divisions are shown in Figure 11 and Figure 12,482

respectively. Larger soil moisture variations (in terms of amplitude) exist for the data assimi-483

lation results compared to open-loop results in Figure 11. In particular, this is evident for the484

Persian Gulf and Oman Sea and Caspian Sea. This could be due to a larger amount of annual485

precipitation over these areas. Declines in soil water content can be seen in Sarakhs, especially486

between 2005 and 2009, and Lake Urmia. In most of the regions, increases (e.g., large positive487

variations) are observed during 2004 and 2010. Overall, better agreements between open-loop488

and assimilation time series are found over East and Centre regions, where a semi-arid cli-489

mate condition is dominant. GRACE data assimilation has the least impact on soil moisture490

estimates within these areas.491

FIGURE 11

Figure 12 depicts groundwater variations for each individual drainage division. Similar to492

soil moisture analysis (cf. Figure 11), data assimilation results demonstrate larger magnitudes493

than open-loop results. Except for the Caspian Sea, all the regions show a considerable decline494

in groundwater estimates during the study period. In particular, this is clear in Lake Urmia,495
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Sarakhs, and Centre, especially after 2007. These trends are absent in the open-loop time series496

and derive from GRACE TWS after implementing data assimilation, which confirm the results497

shown in Figure 10. Larger groundwater declines are found in regions over the western parts498

of the country (e.g., the Persian Gulf and Oman Sea and Lake Urmia). In most of the cases,499

groundwater rise is observed as a positive trend between 2004 and 2005. These increases are500

then followed by consistent declines despite some short-term increases such as during 2010. A501

large trend decline is observed after 2006 in Lake Urmia, Centre, Sarakhs, and to a lesser degree502

in Caspian Sea. For the Persian Gulf and Oman Sea, Sarakhs, and Center, the groundwater503

negative trend is remarkable after 2008. Despite a small negative trend in East for the study504

period, the groundwater variations have the smallest amplitudes in this region compared to505

other areas. Seasonal variations can clearly be seen in most of the regions while this pattern is506

dominant mostly in Caspian Sea. Figure 12 and the reported negative trends in Table 3 show507

that groundwater depletion is a major issue in most parts of Iran resulting in a remarkable508

dryness across the country.509

FIGURE 12

4.4. Climatic impacts510

We further investigate the connection between climatic impacts and water storage vari-511

ations. A comparison between groundwater and soil moisture variations and climate-related512

variables such as precipitation and NDVI can reveal such interactions these parameters. Figure513

13 shows maps of temporal average precipitation, soil moisture, and groundwater maps during514

the study period. The first row in Figure 13 represent the average applied increment to soil515

moisture and groundwater storages, the second row indicates variations (average of time series516

at each grid point) of precipitation, soil moisture, and groundwater, and trends for each variable517

at each grid point are depicted in the third row.518

FIGURE 13

Figure 13 shows the spatial pattern of increments, i.e., the difference between assimilation519

results and open-loop estimates, applied to the system states. It can be seen that the largest520

increments are applied to groundwater storage as can be expected from Figures 3 and 4. These521

corrections are mostly focused on the northwest to south and the eastern part of Iran. In soil522
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moisture, the increments can be found across the country, again, with larger concentrations523

in the western areas. The effect of data assimilation clearly can be seen by the increments524

illustrated in Figure 13. The spatial pattern of precipitation, soil moisture, and groundwater525

variations in Figure 13 show larger variations over the north toward northwest parts, where the526

Alborz mountain range cover a large portion of the areas. A similar pattern can also be seen527

in western parts, where the Zagros mountain range is located. Overall, the soil moisture map528

more closely reflects the precipitation patterns compared to groundwater variations, which can529

be attributed to impacts from water uses. Contrary to precipitation and soil moisture, negative530

groundwater variations are found over different regions, especially the north-western and south-531

ern parts. There are very limited variations in terms of amplitude changes for precipitation,532

soil moisture, and groundwater within the centre, eastern, and partially south-eastern parts of533

Iran. Trend maps (last row in Figure 13) illustrate spatial patterns for each component. Both534

precipitation and soil moisture show increasing trends in the north and to a lesser degree in535

the south. Groundwater trends are generally negative in all regions, but more strongly in the536

west, where Lake Urmia is located. A significant groundwater depletion can be observed in537

the central parts extended to the north, where Tehran, Iran’s capital city is located. Large538

groundwater extractions in Tehran during the study period can be the main reason for this539

while in other areas, an excessive irrigation is a potential candidate for the observed depletion.540

It can be seen that there is an agreement between the applied increment by data assimilation,541

especially for groundwater, and the negative observed trends. Again it can be concluded that542

without using assimilation, these negative trends are not captured.543

To better quantify the spatio-temporal variations of water storage and climate variabilities,544

principal component analysis (PCA Lorenz, 1956) is applied on precipitation, NDVI, GRACE545

TWS, and groundwater time series. This allows us to monitor the relationship between the546

estimated groundwater and GRACE TWS, as well as their connection to climatic impacts547

through precipitation and NDVI. The first three extracted principal components (PC1, PC2,548

and PC3) of each component are plotted in Figure 14. There is good agreement between the549

time series for all three cases, in particular for seasonal variations. All time series in PC1550

show a clear annual variation. Negative trends, especially after 2009 are only captured by551

PC1 of GRACE TWS and groundwater. Stronger agreements between precipitation and NDVI552

PCs can be found. This can be attributed to vegetation growth response to rainfall and soil553

moisture. The assimilated groundwater storage variations largely follow the GRACE TWS554
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variation patterns, both in terms of variability and trend, mainly due to the application of555

GRACE data assimilation. Both of these variables are strongly correlated with rainfall time556

series in PC2 and PC3 with an average correlation of 0.86. Various strong anomalies are occur in557

the time series, e.g., in 2005 and 2010. Increases in the time series occur in PC1 for all variables558

between 2004 and 2006 and during 2010 and 2012. PC2 shows similar rises in 2008 and 2010559

followed by a strong decrease. PC3 shows an increase in 2009 and 2010 in the precipitation,560

GRACE TWS, and groundwater which explains the corresponding increase in water storages561

(cf. Figures 10 and 12). Some negative anomalies are found in PC3 in 2003, 2005, and 2011 and562

also in 2006 and 2013. The other variables generally demonstrate the same variation pattern as563

precipitation, which shows a strong connection between water storage variations and climatic564

changes. Water storage variations in Iran, however, are also affected by non-climate factors565

(e.g., anthropogenic impacts), which are likely the cause of the observed negative trends in566

PC1 for GRACE TWS and groundwater.567

FIGURE 14

The corresponding empirical orthogonal functions (EOF1, EOF2, and EOF3) extracted by568

applying PCA on precipitation, NDVI, GRACE TWS, and groundwater from data assimilation569

are shown in Figure 15. Overall, the mode 1 represents a strong annual signal (as would be570

expected), mode 2 shows some deviations from the annual signal (e.g. inter-annual variations)571

in the same regions as for mode 1. Mode 3 to some extent shows inter-annual variations but572

importantly shows some extreme values. The spatial patterns of NDVI, GRACE TWS, and573

groundwater are largely correlated to rainfall pattern, especially in EOF1 and EOF2. Larger574

spatial variations exist over the northern and western parts of Iran, which seem to cause larger575

water storage and NDVI changes in the same areas. These are the parts with higher altitudes576

in which precipitation rates are generally high. GRACE TWS and groundwater EOF2 maps577

show strong positive signals over the north toward the northwest and partially in western areas.578

The rainfall EOF2 map, however, does not show a large signal over the north-western part but579

only over the northern and western parts, where the Alborz and Zagros mountain ranges are580

located. On the other hand, all variables show a negative signal in the south-eastern part.581

Positive signals over the eastern parts, with smaller amplitudes, compared to EOF1 and EOF2582

for NDVI, GRACE TWS, and groundwater are displayed by EOF3 maps. Negative signals can583
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be seen in EOF3 maps, especially for groundwater mostly over the northwestern areas, where584

Lake Urmia is located, as well as the northeast and Sarakh.585

FIGURE 15

4.5. CCA results586

We further implement CCA on the estimated water compartments (from the data as-587

similation) on the one hand, and human- as well as climate-related variables on the other hand588

in two different scenarios, i.e., (i) the predictor contains time series of both groundwater used589

(e.g., for farming and industry) and climate-related variables (precipitation, NDVI, and tem-590

perature), and (ii) the predictor includes only climate-related variables of precipitation, NDVI,591

and temperature (cf. Section 3.2). By this, we can establish the relations between water stor-592

ages and other factors. CCA is applied to the spatially averaged time series of all variables593

to estimate canonical coefficients. Canonical loadings are used to interpret the CCA results,594

which measure the simple linear correlation between an observed variable and the estimated595

canonical variates (Dattalo, 2014). The interpretation is mostly based on examining the sign596

and the magnitude of the canonical coefficients assigned to each variable. Variables with larger597

coefficients contribute more to the variates and variables with opposite signs exhibit an inverse598

relationship with each other while those with the same sign exhibit a direct relationship. De-599

tailed results of the CCA experiment for each scenario applied within Iran are presented in600

Table 4.601

TABLE 4

The table summarizes the contribution of each variable in CCA. Results indicate that sce-602

nario (i) leads to larger canonical correlation coefficients in comparison to scenario (ii). This603

means that variations in water storages are more correlated to variations of the combined604

human- and climate-related parameters. Note that CCA extract different sets of results (roots),605

thus, we only use the first root that is statistically significant (for a significant level of 0.05). It606

can be seen from Table 4 that the water use has strong negative correlations to water storage607

variations, especially groundwater, which has the largest loading. This means that water con-608

sumption for various uses (especially farming) is a very effective factor within the country that609

causes the greatest impact on groundwater (with 0.938 canonical correlation). Among climate610
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variables, precipitation, and to a lesser degree temperature have also a considerable influence611

on water storage variations. Not surprisingly, an increase (or decrease) in rainfall directly leads612

to increase (or decrease) in water storages as indicated by the same signs. Table 4 suggests that613

variations in groundwater use and climate parameters in both scenarios have minimum impact614

on water discharge. This may be due to the fact that surface waters compose a relatively small615

amount of water availability across Iran in comparison to other storages such as groundwater.616

It can also be inferred from Table 4 that removing the water use from scenario (i) results617

in smaller canonical correlation in (ii), which means a smaller agreement between variables in618

scenario (ii) and water storage changes, even though this removal causes ∼3% and 5% increase in619

loadings of precipitation and temperature, respectively. Comparing the results of both scenarios620

implies the large anthropogenic impact (more than climate-related factors) on water storages621

variations, which makes it essential to include this impact along with climatic effects while one622

studies sub-surface water storage variations in Iran. Figure 16 depicts scatter bi-plots and the623

linear trend which represents the correspondence between two sets of variables using average624

canonical coefficients for each scenario. It can be seen that the distribution of the two datasets625

in scenario (i) has smaller deviations and is more symmetric (closer to the reference line than626

scenario (ii)), which leads to higher canonical correlation for the first scenario. Figure 16 shows627

that incorporating the water use results in a better agreement between the criterion, i.e., water628

storage variations and predicant. This stresses the necessity of considering the water use and629

anthropogenic impacts (e.g., irrigation) on water storages analyzes, which cannot be happen630

without inclusion of GRACE TWS into the process.631

FIGURE 16

5. Conclusions632

Sub-surface water storages are a major source of freshwater in Iran. With increased633

population and irrigated land, water availability has become a serious issue across the country.634

In the present study we assimilate GRACE TWS into W3RA to separately analyze different635

water compartments including groundwater, soil moisture, and surface water storages. The636

six major drainage divisions in the area including the eastern part of Iran (East), Caspian637

Sea, Centre, Sarakhs, Persian Gulf and Oman Sea, and Lake Urmia are considered to better638

understand water availability in the different regions. An analysis is undertaken to examine the639
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effects of GRACE data assimilation on different water storage compartments. It is found that640

the implemented process can effectively distribute the TWS increments between groundwater641

and soil moisture storages. Although the results show improvements in both groundwater and642

soil moisture, the data assimilation still may have introduced some artefacts into the simulated643

groundwater dynamics due to the massive effects of groundwater extraction within the country,644

which requires an independent extensive study and more comprehensive analysis.645

It is found that the application of GRACE TWS data assimilation can significantly improve646

the performance of W3RA. Data assimilation successfully correct for the open-loop simulation647

variations, e.g., in terms of trends and multi-year variations, especially for groundwater storage.648

Based on the improved estimates, we find that groundwater trends in a large part of the649

country’s central, western and southern areas are negative representing a significant water650

availability issue. An average -8.9 mm/year water storages decline is observed during 2002 to651

2012 with a larger rate since 2005 suggesting that Iran is becoming considerably dryer. Larger652

water store depletions are found to occur in the Persian Gulf and Oman Sea and Lake Urmia653

with lesser effects on soil moisture in these regions. In the Caspian Sea region, however, due to654

a large amount of precipitation, smaller groundwater and soil moisture trends are observed. In655

the Persian Gulf and Oman Sea, -9.3 mm/year (on average) groundwater trend is found, which656

is the second largest negative trend after that of Lake Urmia.657

Furthermore, PCA is applied to investigate the relationship between the estimated ground-658

water and GRACE TWS, as well as their connection to climatic impacts in various parts of659

Iran. Larger water storage spatial variations are observed over the northern and western parts660

of Iran with higher altitudes in which precipitation rates are generally high. Contrary to rainfall661

maps, strong positive GRACE TWS and groundwater signals are found over the north toward662

the northwest and partially in western areas. In terms of temporal variations, water storage663

variables generally demonstrate the same variation pattern as precipitation, however, they are664

also affected by non-climate factors (e.g., anthropogenic impacts), which are likely the cause of665

the observed negative trends in GRACE TWS and groundwater time series. Therefore, CCA is666

applied to explore the relationship between water storages estimated by data assimilation and667

climatic, as well as anthropogenic indicators. The application of CCA reveals strong correla-668

tion (0.89 in average) suggesting that the groundwater use has a major impact on water storage669

variations.670
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Figure 1: The study area and its average temperature (Harris, 2008). The figure also contains the locations of 6
major catchments separated by black solid lines.
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Figure 2: Groundwater depletion and the number of drilled wells in Iran from IWRMC.
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Figure 3: Relationships between groundwater and soil moisture state variable uncertainties and corresponding
weights during data assimilation.
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Figure 4: (a) Simulated average TWS observations using WGHM with and without human use, and W3RA
open-loop plus GRACE trend. Average soil moisture (b) and groundwater (c) estimates from data assimilation
based on simulated observations in (a).
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Figure 5: Average groundwater and soil moisture ensemble spreads between 2004 and 2008 over Iran. Gray
lines indicate ensemble members and the black solid line present ensemble mean. Larger ensemble propagation
is evident compared to that of soil moisture that represents larger uncertainties in the former water storage
compartment.
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Figure 6: Average groundwater RMSE and STD from assimilating GRACE TWS and GRACE TWS minus soil
moisture.
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Figure 7: Comparison between in-situ groundwater measurements and those estimated by open-loop run, data
assimilation, and WGHM over different catchments (units are mm).
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Figure 8: Comparison between the average estimated top layer soil moisture with and without (open-loop)
data assimilation and soil moisture observations from satellite remote sensing (AMSR-E+SMOS). Correlations
between the satellite measurements and both open-loop and assimilation estimates are also repotted in the figure.
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Figure 9: Comparison between the average soil moisture estimates from open-loop and data assimilation, and
soil moisture products of W3, WGHM, and GLDAS (units are mm).
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Figure 10: Average groundwater variations within Iran from open-loop and data assimilation results and corre-
sponding 95% confidence intervals (shaded blue). Trend lines for time series are also displayed by dashed lines.
Note that the open-loop time series slop is not reported because no significant trend is observed.
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Figure 11: Average time series of soil moisture variations over different catchments with (blue) and without
(black) data assimilation.
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Figure 12: Average time series of groundwater variations over different catchments with (blue) and without
(black) data assimilation. The correlations of time series with the in-situ measurements, as well as the trends of
assimilation results are reported in Table 2.
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Figure 13: First row: temporally averaged increments applied to soil moisture and groundwater storages. Second
row: variation of precipitation, soil moisture, and groundwater (after data assimilation) estimated as the average
of each time series at each grid point. Third row: gridded trend of time series precipitation, soil moisture, and
groundwater (after data assimilation) time series.
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Figure 14: The three first principal components of precipitation, GRACE TWS, NDVI, and groundwater.
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Figure 15: The empirical orthogonal functions (EOF1, EOF2, and EOF3) extracted from precipitation, GRACE
TWS, NDVI, and groundwater.
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Figure 16: Scatter bi-plots (circles) and the linear trend (solid lines) of average canonical coefficients from CCA for
each scenario applied. The combination of the water storages and discharge data and their canonical coefficients
are in the x-axis (as criterion variables), the y-axis represents the combination of the predictor variables. Black
solid line represents the reference line.
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Table 1: A summary of the datasets used in this study.

Description Platform Data access

Terrestrial water storage (TWS) GRACE https://www.tugraz.at/institute/ifg/downloads/

gravity-field-models/itsg-grace2014/

Precipitation TRMM-3B43 https://disc.gsfc.nasa.gov/datacollection/TRMM_

3B43_7.html

Normalized Difference Vegetation

Index (NDVI)

NASA-GSFC ftp://eclipse.ncdc.noaa.gov/pub/cdr/avhrr-land/

ndvi/

Hydrological model W3RA http://www.wenfo.org/wald/data-software/

Temperature Harris (2008) https://crudata.uea.ac.uk/cru/data/hrg/

Groundwater in-situ measurements IWRMC http://www.wrm.ir/

Average water consumption IWRMC http://www.wrm.ir/

Discharge data IWRMC http://www.wrm.ir/

Number of groundwater bore holes IWRMC http://www.wrm.ir/

Altimetry-derived level height Jason-1 http://podaac.jpl.nasa.gov

Altimetry-derived level height Jason-2 http://avisoftp.cnes.fr/
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Table 2: The undertaken experiments and corresponding research objectives. The result section associated to
each experiment is also presented.

Experiment Research objective Result section

Simulated assimilation To assess the impacts of GRACE observations on different

water storage

Section 4.1

Evaluation procedure To examine the validity of results against independent ob-

servations

Section 4.2

Water storage analysis To analyze spatio-temporal variations of groundwater and

soil moisture

Section 4.3

Climatic impacts using PCA To investigate the impacts of climate indicators (e.g., pre-

cipitation) on water storage

Section 4.4

CCA To establish the relations between water storages and

human- as well as climate-related variables

Section 4.5
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Table 3: Statistics of groundwater variations and its errors with respect to the in-situ observations. For each
region the RMSE average and its range (±XX) at the 95% confidence interval is presented. Improvements in data
assimilation results are calculated for each catchment in relation to the water storages from the model without
implementing data assimilation.

Assessment with In-situ

Open-loop Assimilation

Region Groundwater trend (mm/year) Correlation RMSE (mm) Correlation RMSE (mm) Improvement (%)

East -3.8 0.57 60±8.66 0.84 38±4.64 36.29

Caspian Sea -2.1 0.64 64±9.19 0.73 46±5.13 28.13

Centre -6.7 0.63 55±7.84 0.65 41±5.01 26.55

Sarakhs -5.4 0.61 52±7.58 0.82 32±4.26 38.64

Persian Gulf and Oman Sea -9.3 0.56 79±9.07 0.75 49±5.17 37.81

Lake Urmia -11.8 0.52 69±8.28 0.81 40±4.25 41.90
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Table 4: Average canonical correlation coefficients and variable loadings for the data inputs in CCA for each
scenario.

Scenario (i) Scenario (ii)

Canonical coefficients Canonical coefficients

Canonical correlation coefficient 0.972 0.841

P
re
d
ic
to
r
va
ri
ab

le
s

Precipitation 0.721 0.749

NDVI 0.365 0.412

Temperature -0.591 -0.681

Water use for: # Farming -0.938 –

# Industry -0.758 –

# Drink (Urban use) -0.820 –

Number of bore holes -0.893 –

C
ri
te
ri
on

va
ri
ab

le
s

Groundwater 0.938 0.705

Soil moisture 0.633 0.617

Water discharge 0.174 0.249
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