
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/10 9 3 1 1/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

M u s h t hofa, M u s h t hofa, Sc hock a e r t , S t eve n , Ling-H o n g, H u n g, Kathle e n , M a r c h al

a n d M a r t ine , De Cock 2 0 1 8. Mo d eling m ul ti-value d biological in t e r a c tion n e t wo rks

u sing F uzzy Answ e r S e t P ro g r a m min g. F uzzy S e t s a n d Sys t e m s 3 4 5 , p p . 6 3-8 2.

1 0.10 1 6/j.fss.201 8.0 1.00 3

P u blish e r s p a g e: h t t p s://doi.o rg/10.10 1 6/j.fss.20 1 8.01.00 3

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

1

Modeling Multi-Valued

Biological Interaction Networks using

Fuzzy Answer Set Programming
Mushthofa Mushthofa∗,†,¶ Steven Schockaert‡, Ling-Hong Hung§, Kathleen Marchal‖ and Martine De Cock∗,§

∗Department of Applied Mathematics, Statistics and Informatics, Ghent University, Ghent, Belgium,

Email: {Mushthofa.Mushthofa, Martine.DeCock}@UGent.be †Department of Computer Science, Bogor

Agricultural University, Bogor, Indonesia,

Email: mush@ipb.ac.id ‡School of Computer Science & Informatics, Cardiff University, UK,

Email: SchockaertS1@cardiff.ac.uk §Institute of Technology, University of Washington Tacoma, USA,

Email: {lhhung, mdecock}@uw.edu ¶Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
‖Department of Information Technology (INTEC, iMINDS), Ghent University, 9052 Ghent, Belgium

Abstract—Fuzzy Answer Set Programming (FASP) is an exten-
sion of the popular Answer Set Programming (ASP) paradigm
that allows for modeling and solving combinatorial search prob-
lems in continuous domains. The recent development of practical
solvers for FASP has enabled its applicability to real-world
problems. In this paper, we investigate the application of FASP in
modeling the dynamics of Gene Regulatory Networks (GRNs). A
commonly used simplifying assumption to model the dynamics of
GRNs is to assume only Boolean levels of activation of each node.
Our work extends this Boolean network formalism by allowing
multi-valued activation levels. We show how FASP can be used to
model the dynamics of such networks. We experimentally assess
the efficiency of our method using real biological networks found
in the literature, as well as on randomly-generated synthetic
networks. The experiments demonstrate the applicability and
usefulness of our proposed method to find network attractors.

I. INTRODUCTION

In biological systems, genes are known to interact with each

other in a complex and dynamic way. Briefly, each gene’s

activation state can influence the activation states of other

genes, either positively or negatively. These interactions can

be modelled using a graph structure, which is usually called a

Gene Regulatory Network (GRN). It determines the patterns

of activation states of the genes, which in turn affects the

phenotypic behavior of the system.

One of the most important concepts in modeling the dynam-

ics of GRNs are the so-called attractors, which are the sets

of states to which the system converges. An attractor usually

corresponds to the observed characteristics/phenotypes of the

biological system [1]. For example, the attractors of a GRN

usually correspond to the expression patterns of the genes in

the network for specific types of cells [2], [3]. In studying the

dynamics of such networks it is therefore of importance to be

able to identify their attractors.

In systems biology, one of the most popular approaches to

formalise a GRN is to use a so-called Boolean Network (BN)

[4]–[6]. Boolean networks represent genes as nodes that can

take on Boolean values (intuitively representing the activation

levels of the genes), while interactions between the genes are

represented as Boolean functions that determine the value of

each node at a certain time, depending on the current values

of the other genes. The state transitions of a GRN and their

attractors can be readily represented using such a formalism.

There have been numerous works about computational tools

to simulate the dynamics of Boolean networks and to compute

their attractors, mostly using logic-based techniques such as

Binary Decision Diagrams (BDDs) or Boolean SAT solvers

[7]–[12]. More recently, Answer Set Programming (ASP) has

become a particularly interesting framework for modeling

GRNs and Boolean networks [13]–[16].

ASP is a popular declarative programming paradigm which

allows for an easy and intuitive encoding of many combi-

natorial search and optimisation problems [17], [18]. The

availability of fast and efficient solvers for ASP, such as clasp

[19] and DLV [20], allows for the application of ASP in various

fields [21], [22]. Despite its flexibility and expressive power,

however, ASP lacks the ability to directly encode problems in

continuous domains.

Having only two levels of activation is sometimes not

always enough to fully understand the dynamics of real

biological systems. For example, in [3], [23]–[26], examples

of systems are given whose dynamics can only be modelled

by considering more than two activation levels. One classic

example is the lac operon regulatory system, which is a set

of genes that controls the production of the proteins needed

to metabolise lactose in enteric bacterias, such as Escherichia

coli (see e.g., [27]). In this case, it has been shown that one of

the key attractors cannot be characterized using a Boolean en-

coding (because of the so-called “leaky-expression”). Despite

the importance of multi-valued activation levels for modeling

gene regulatory networks, only limited progress has been made

on developing simulation tools that can support them. To the

best of our knowledge, only one tool has been developed that

supports multi-valued activation levels [24].

In this paper, we propose the use of Fuzzy Answer Set

Programming (FASP) [28] as a computational framework to

simulate the dynamics of multi-valued regulatory networks.

2

FASP is a form of declarative programming that extends

ASP by allowing graded truth values in atomic propositions

and using fuzzy logic connectives to aggregate these truth

values. Recent work on the implementation of a FASP solver,

such as [29]–[33], has opened the door to the application of

FASP for solving real-world applications. Other frameworks

dealing with the extension of ASP, or more generally, logic

programming into the fuzzy domains have been proposed

in the literature, e.g., [34]–[39]. While we have specifically

chosen to use the FASP framework and the corresponding

solver from [32], other multi-valued extensions of ASP might

also be suitable for the purpose of modeling the dynamics of

multi-valued regulatory networks.

Here, we propose an encoding of the dynamics of multi-

valued biological interaction networks that can be exe-

cuted/solved using the FASP solver proposed in [32], and we

prove the correctness of this encoding. We then perform an

extensive benchmark test using synthetic networks as well

as real biological networks found in the literature to show

the efficiency and applicability of this method. The results

indicate that the method is efficient for the size of the networks

typically used in the Boolean/discrete modeling of regulatory

networks (up to around a few dozen genes in the network).

This paper extends our previous work [40] with the follow-

ing contributions: (1) we provide complete formal definitions

of multi-valued networks and their dynamics, (2) we provide

detailed proofs of the correctness of the encoding, (3) we ex-

tend the framework to address the problems with the encoding

of cyclic attractors, in particular, in the case of asynchronous

updates, (4) we describe a method to perform automatic

encoding of the network structure into fuzzy propositions and

the implementation of a tool to perform this (FASPG), and

(5) we extend the experiments to include synthetic networks

and show the performance of our methods for increasingly

large networks, including the computation of cyclic attractors

of synthetic networks under different schemes of updates.

The remainder of this paper is structured as follows: we first

describe related work in Section II, and present the prelimi-

naries on Boolean networks and the theoretical background

on (F)ASP in Section III . We then formally define the multi-

valued networks and present our FASP-based encoding in

Section IV. Section V describes the FASPG tool that imple-

ments the proposed method, as well as providing an automatic

encoding for the network. Section VI contains the experiments

we conducted to test the feasibility and efficiency of the

proposed method, while Section VII provides a conclusion.

II. PRELIMINARIES

A. Boolean networks

A Boolean network consists of a set of nodes (represent-

ing genes/proteins that interact with each other) and a set

of edges, representing any interaction between the nodes.

Formally, a Boolean network [1] is a pair G = 〈X,F 〉,
where X = 〈x1, . . . , xn〉 is a tuple of Boolean variables

representing the nodes of the network, while F = 〈f1, . . . , fn〉
is a tuple of Boolean functions encoding the incoming edges

for each node, as well as their interactions. An assignment

x y

Fig. 1. A Boolean network model with two genes. Edges with arrowed tips
are activating interactions and edges with blunt tips are repressing (inhibiting)
links.

v ≡ 〈v(x1), . . . , v(xn)〉, where each v(xi) ∈ {0, 1}, is

called a network state. The set of all 2|X| network states is

called the state space of the Boolean network, denoted by S.

Each function fi is a Boolean expression involving standard

Boolean connectives over the constants 0 and 1 and the set

of variables in X . The value of the expression fi, given the

assignment v for the variables in X is denoted by fi(v).
The tuple F of functions defines the state mapping function

f : S → S as follows: the state f(v) for a state v is the state

w ≡ 〈f1(v), . . . , fn(v)〉.

Example 1. Consider the Boolean network G1 = 〈{x, y}, F 〉,
with two nodes, as depicted in Figure 1. The Boolean functions

F describing the interaction between the nodes in the network

are given by

f1(x, y) = ¬x ∨ y

f2(x, y) = x ∨ ¬y

The state space S is a set of 4 states

{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}. In this case, if v = 〈0, 0〉,
then we have f(v) = 〈1, 1〉.

The dynamics of a Boolean network are defined by the

transitions between the network states as determined by the

given update scheme used in the network. Earlier models of

biological networks (e.g, in [1], [41]) assumed that at each

time step, all the nodes are updated (using their correspond-

ing function fi) in a synchronous manner. This simplifying

assumption allows for an easy computation of the transitions

between the states of the network. However, this assumption

does not necessarily hold in practice, for example due to the

difference in speed of one chemical reaction compared to

the others [42]. Thus, a more realistic setting for modelling

biological networks would be to not assume any synchronicity

between the update on each node. Instead, in this asynchronous

setting, we assume that at each time step, a single node is non-

deterministically chosen to be updated [42], [43]. Thus, rather

than having one possible next state, each state can potentially

have n possible next states (where n is the number of nodes

in the network).

To formally explain the concept of update scheme, we first

define the following notions. The Hamming distance function

over pairs of valuations/states, ∆ : S × S → {1, . . . , n} is

defined as the number of nodes for which the states have a

different value, i.e.

∆(v, w) = |{x ∈ X | v(x) 6= w(x)}| (1)

with v, w ∈ S. The dynamics of a Boolean network are mod-

elled using a directed graph 〈S, →֒〉, called the State Transition

Graph (STG), where the edge relation →֒ is determined by the

considered update scheme, as follows:

3

(i) For the synchronous update scheme: v →֒ w iff f(v) =
w.

(ii) For the asynchronous update scheme: v →֒ w iff either

v = w and f(v) = v, or ∆(v, w) = 1 and ∆(w, f(v)) <
∆(v, f(v))

Intuitively, with the synchronous update scheme, the network

transitions from a state to another state by applying all of

the update functions to all of the nodes. In contrast, with

the asynchronous state, the transition from a state to another

is done by applying the update functions to only one node.

The condition ∆(w, f(v)) < ∆(v, f(v)) intuitively means that

after applying the update functions to one node, the new state

w should be closer to f(v) than v, since the updated node in

w should have the same values as in f(v). We also say that

in the relation v →֒ w, w is a successor state of v in the STG.

The following definition defines the concept of an attractor

[7], [42].

Definition 1. An attractor of a Boolean network G is a

minimal set of states (w.r.t. set inclusion) A such that:

• For A′ = {a′ | a →֒ a′, a ∈ A}, it holds that A′ = A.

• For any a ∈ A, if the state a is visited in a transition, then

the probability of visiting a again after a finite number

of transitions is equal to one.

The size of an attractor A is defined to be |A|.

An attractor consisting of only one state, i.e. an attactor of

size 1, is called a single state attractor. The state that makes

up a single state attractor is called a steady state. An attractor

of size 2 or larger is usually called a cyclic attractor. Note

that, in general, the attractors of a Boolean network under

different update schemes are also different. Steady states,

however, do not depend on the particular choice of update

scheme [44]. This is due to the fact that for a steady state x,

f(x) = x, which means that {x} is an attractor w.r.t. both

update schemes.

For the asynchronous state, note that even though in general,

a state s can have multiple successor states (i.e., there can be

two different states t1 and t2 such that s →֒ t1 and s →֒ t2),

such a state s cannot be part of an attractor, for the following

reason. Suppose that s were indeed part of an attractor A.

Then we also have t1 ∈ A and t2 ∈ A, by Definition 1. This

means that s should be reachable from both t1 and t2 (since

s ∈ A). Now, it cannot be the case that both any path from t1
to s always contains t2 and any path from t2 always contains

t1. Suppose that there is a path from t1 to s that does not

go through t2; the case where there is a path from t2 to s

that does not go through t1 is analogous. Then there must be

a loop s →֒ t1 →֒ . . . →֒ s that does not contain t2. Hence,

once we visit either s or t1, the probability of visiting t2 within

a finite number of steps cannot be equal to 1. This contradicts

the assumption that t2 was also in the attractor A. Thus, only

states which have a unique successor can be included in an

attractor (both in the synchronous and asynchronous case).

Example 2. Consider the Boolean network given in Exam-

ple 1. The dynamics of the network under the synchronous

update scheme can be described using the STG given in

Figure 2. For example, starting from the state 〈0, 1〉, we move

Fig. 2. State Transition Graph of the Boolean network G1 under the
synchronous update scheme.

Fig. 3. State Transition Graph of the example Boolean network under the
asynchronous update scheme. Note that due to the fact that each of the states
〈0, 0〉, 〈0, 1〉, 〈1, 0〉 has multiple outgoing edges, there is no guarantee that the
dynamics of the network will be confined to any possible subset of these states,
and hence there is no attractor associated with these states. Consequently, the
only attractor of this network is the steady state 〈1, 1〉.

to the state 〈1, 0〉, i.e., f(〈0, 1〉) = 〈1, 0〉. From the figure, we

can see that the Boolean network has 2 attractors: the steady

state 〈1, 1〉 and the cyclic attractor of size 2: {〈1, 0〉, 〈0, 1〉}.
An asynchronous update implies that the dynamics of the

Boolean network may no longer be deterministic, since from

a particular state, there can be more than one outgoing edge

in the state transition graph. Figure 3 depicts the STG of

the example Boolean network when the asynchronous update

scheme is used. In this case, we only have one attractor, which

is the steady-state 〈1, 1〉.

B. Fuzzy answer set programming

Fuzzy Answer Set Programming (FASP) [28] is an exten-

sion of the well-known ASP paradigm into the fuzzy domain,

where atomic propositions can take a graded truth value and

rules are defined using fuzzy logic connectives. Assume that

atomic propositions are drawn from a set of universal symbols

B. An interpretation is defined as a function I : B → [0, 1]. In

this paper, we use the popular Łukasiewicz connectives [31],

[45], [46], defined as follows:

• I(α⊗ β) = max(I(α) + I(β)− 1, 0).
• I(α⊕ β) = min(I(α) + I(β), 1).
• I(α ⊻ β) = max(I(α), I(β)).
• I(α ⊼ β) = min(I(α), I(β)).
• I(not α) = 1− I(α).
• I(β → α) = min(1− I(β) + I(α), 1).

In a FASP program, a head expression is an expression of

the form a1 ⊕ a2 ⊕ . . . ⊕ an, where each ai’s is a literal,

while a body expression is an expression defined recursively

as follows:

4

• A constant term c where c ∈ [0, 1], a positive literal a

and a negative literal not a are body expressions.

• If a and b are body expressions, then so are a⊕ b, a⊗ b,

a ⊻ b and a ⊼ b.

A FASP program consists of rules of the form

α← β

where α is a head expression and β is a body expression.

We sometimes write Head(r) and Body(r) to denote the head

and body expressions of the rule r, respectively. A FASP rule

is said to be positive iff it contains no applications of the

not operator. A FASP program is positive iff it only contains

positive rules.

An interpretation I is a model of a rule r iff I(r) ≡
I(Body(r)→ Head(r)) = 1, and I is a model of a program

P iff I is a model of every rule r ∈ P . We write I ≤ J for

two interpretations I and J iff I(a) ≤ J(a) for every a ∈ B.

Furthermore, we define I = J as I ≤ J and J ≤ I , while

I < J is defined as I ≤ J but I 6= J . A model I of a positive

program P is an answer set of P iff there is no model J of

P s.t. J < I . For a non-positive program P , a generalization

of the so-called Gelfond-Lifschitz reduct is defined in [47] as

follows: the reduct of a rule r w.r.t. an interpretation I is the

positive rule rI obtained by replacing each occurrence of not a

by the constant I(not a). The reduct of a FASP program P

w.r.t. an interpretation I is then defined as the positive program

P I = {rI | r ∈ P}. A model I of P is called an answer set

of P iff I is an answer set of P I .

Following [31], we consider the finite-valued answer sets

of a FASP program P , by restricting the values of the

interpretation function I to the set Qk = {0, 1

k
, . . . , k−1

k
, 1}.

Any answer set derived by using this restriction is called a k-

answer set of the program. Formally, we call an interpretation

of a program P a k-interpretation, iff I(a) ∈ Qk for every

proposition a. Consequently, a k-interpretation is a k-model

of a program P iff it satisfies every rule of P . For a positive

program P , a k-model of P is a k-answer set of P iff there

is no k-model J of P such that J < I . For a non-positive

program P , a k-model P is a k-answer set of P iff it is a k-

answer set of P I . If we consider only rational-valued answer

sets, then every answer set of a FASP program is necessarily

a k-answer set of the program for some finite k. However, the

converse is generally not true: a k-answer set of a program

may not be an answer set of that program [31], [48].

Example 3. Consider the FASP program P1 having the

following rules:

open← not close

closed← not open

This program has infinitely many answer sets Ix having

Ix(open) = x and Ix(closed) = 1− x, where x ∈ [0, 1] ∩Q.

Furthermore, the program has exactly k+1 k-answer sets for

each positive integer k, where each answer set Ix is of the

form Ix(open) = x and Ix(closed) = 1− x, with x ∈ Qk.

Example 4. Consider the FASP program having the single

rule a ⊕ a ← 1. One can see that the interpretation {(a, 1)}

is a 1−answer set. However, it is not an answer set of the

program, because it is not minimal. The answer set of this

program is {(a, 0.5)} instead.

III. MULTI-VALUED NETWORKS

A. Modeling multi-valued networks using FASP

Models of multi-valued biological interaction networks are

typically specified through a set of input-output relationships

for each node, detailing the values each node takes, given the

combinations of the values of the regulators, i.e. nodes that

affect it. We formalize this idea, using the concept of a multi-

valued network defined as follows.

Definition 2 (Multi-valued network, network state). A multi-

valued network is a tuple G = 〈X,F, k〉 where X =
〈x1, . . . , xn〉 is a tuple of multi-valued variables denoting the

nodes of the network, F = 〈f1, . . . , fn〉 is a tuple of update

functions, and k ≥ 1 is a parameter describing the number

of activation levels for all the nodes. Specifically, for each

node x ∈ X1, we allow k+ 1 activation levels, i.e., the value

for each x is taken from the set Qk = {0, 1

k
, . . . , k−1

k
, 1}. A

network state is then defined as an assignment V : X → Qk.

Furthermore, each function fi ∈ F satisfies fi : Qn
k → Qk

and is defined using the Łukasiewicz connectives ⊗,⊕,⊻,⊼,

and ¬, instead of the Boolean connectives.

From this, we naturally extend the definitions of state

transition, update scheme as well as attractor. Note that the

definition of the Hamming distance function ∆ in (1) can also

be applied to the multi-valued network states.

Definition 3 (State transition). The tuple F of functions defines

the state mapping function f : S → S as follows: the state

f(v) for a state v is the state w ≡ 〈f1(v), . . . , fn(v)〉. The

state transition of a multi-valued network is a relation →֒:
S → S whose definition is determined by the type of the

update scheme that the network has. The notion of synchronous

and asynchronous update scheme in multi-valued networks is

defined similarly to the one in Boolean networks.

In the literature (e.g., [3], [49]), the values each node can

take are usually given as integers, ranging from 0, 1, . . . , k.

Due to the fact that our model is expressed in fuzzy logic,

we need to map these values into the [0, 1] range, which can

simply be done by mapping each value v to v
k

. Furthermore,

the ranges of possible values often differ from node to node

(e.g., the network in [49] has one node with two levels, and

one node with three levels). For such cases, we choose k based

on the node with the largest range of values, and we map the

values of any node having l < k possible values into the

values of an l-sized subset of Qk (while preserving order), as

illustrated in Example 5. This does not affect the behaviour

of the modeled system. In fact, in real biological networks

encountered in the literature, we mostly see the situation where

some nodes have exactly k levels, whereas the rest have only

two possible values. In such a case, we can map the values of

the two-valued nodes to the set {0, 1}.

1When it is more convenient, we will abuse the notation for X and treat
it as a set.

5

Fig. 4. Diagram for the network of P. aeruginosa

.

TABLE I
REGULATORY RELATIONSHIP IN THE P. aeruginosa MUCUS DEVELOPMENT

NETWORK

.

No. x(t) y(t) x(t+1) y(t+1)

1 0 0 1

2
0

2 0 1 0 0

3 1

2
0 1

2
1

4 1

2
1 0 1

5 1 0 1 1
6 1 1 1 1

Fig. 5. State transition graph for the network of P. aeruginosa using the
synchronous update

Example 5. As a running example, we take the network de-

scribing the production of mucus in Pseudomonas aeruginosa

described in [49]. There are two nodes in the network, namely

x and y, with x having three possible values: 0, 1 or 2, and

y having only two values: 0 or 1. Therefore, to model the

network in our fuzzy logical representation, we set k = 2, and

map the values of x into {0, 1

2
, 1}, while keeping the values

of y as they are. The node x is negatively-regulated by node

y and positively by itself, while y is positively-regulated by

x. The network structure is shown in Figure 4. The input-

output relationships between the two nodes, as given in [49],

are shown in Table I. Based on the regulatory relationships

between the nodes, the state transition graph of this network

is as shown in Figure 5. From the state transition graph, we

can clearly see that the network has two attractors: one is a

steady state, namely 〈1, 1〉, and the other is a cyclic attractor

of size 4.

Below, we extend the idea of using ASP to model the

dynamics of biological networks as used in [50] and [14]

by allowing a multi-valued activation level in each node.

However, instead of using ASP in a meta-level approach to

describe the dynamics of the network, as in [14], [15], we

propose to directly encode the interaction between nodes using

FASP rules, which allows for a simpler and more efficient

implementation. As shown in [16], a direct encoding of the

interaction between nodes in a Boolean network is enough

to characterize fixed-size attractors. The same holds for multi-

valued networks with FASP under an appropriate many-valued

logic semantics.

B. Finding steady states

We first tackle the problem of finding the single state

attractors – also called steady states – of a multi-valued

network. Recall that the steady states are identical for the

synchronous and asynchronous update schemes.

Let G = 〈X,F, k〉 be a multi-valued network. First, for

every node x ∈ X in the network, we consider two fuzzy

propositional atoms px and nx, and write the following FASP

rules:

px ⊕ nx ← 1

0← px ⊗ nx

Intuitively, these two rules generate “guesses” for the values

of px and nx such that px + nx = 1. Define GS(G) as the set

of all such rules. If x is a node that only takes Boolean values,

we can add the following rule (usually called the saturation

rule):

px ← px ⊕ px

This rule forces the atom px to take only Boolean values in

any answer set of the program.

We then encode the interaction between nodes by creating

a rule for every node xi, where the head of the rule is a

propositional atom p′xi
associated with the node, while the

body corresponds to the direct translation of the fuzzy logic

function for the update rule of xi, replacing the occurrences

of the negation symbol ¬ with FASP’s default negation not .

Formally, let fi be the update function of a node xi of the

network. The corresponding FASP node update rule of that

node, denoted by NU(fi) is a FASP rule defined as follows:

p′xi
← BU(fi)

where BU(fi) is the body of the node update rule, which is

a FASP expression defined recursively as follows:

• BU(fi) = val if fi ≡ val and val ∈ [0, 1]
• BU(fi) = pxi

if fi ≡ xi for a node xi

• BU(fi) = BU(exp1) ◦ BU(exp2) if fi ≡ exp1 ◦ exp2
for some expressions exp1, exp2 and ◦ ∈ {⊕,⊗,⊻,⊼}

• BU(fi) = not px if fi ≡ ¬x

Define NU(G) as the set of rules created in this step, i.e.,

NU(G) = {NU(fi) | 1 ≤ i ≤ n}. Intuitively, the atom

p′xi
holds the activation value of the node xi after the update

function has been applied. To drive the FASP program to find a

steady-state, we enforce the condition that the activation level

of each node is the same after the update. This can be done

by using the following rules CS(i) for each node xi

0← pxi
⊗ not p′xi

0← p′xi
⊗ not pxi

Define CS(G) as the set of all constraining rules, i.e. CS(G)
= {CS(i) | 1 ≤ i ≤ n}. The example below illustrates the

construction process of the FASP program P (G) = GU(G)∪
NU(G) ∪CS(G) for the multi-valued network introduced in

Example 5.

6

Example 6. Consider the network of P. aeruginosa given in

Example 5. Since the network consists of two nodes, x and y,

the initial guessing rules for the nodes’ values can be written

as

x⊕ n x← 1

0← x⊗ n x

x⊕ n y ← 1

0← y ⊗ n y

Since we need y to be Boolean, we add the following rule:

y ← y ⊕ y

The regulatory relationships between the nodes x and y in the

network (as given by Table I) can be captured by the following

update functions expressed in Łukasiewicz formulas:

f1(x, y) = ((x ⊻
1

2
)⊗ ¬y)⊕ z

z = (x⊗ 1

2
)⊕ (x⊗ 1

2
)

f2(x, y) = x⊕ x

where z is an auxiliary variable.2 We thus construct the

following FASP rules to represent the update on each node.

x′ ← ((x ⊻
1

2
)⊗ not y)⊕ z

z ← (x⊗ 1

2
)⊕ (x⊗ 1

2
)

y′ ← x⊕ x

Finally, we add the following constraints to find only steady-

states:

0← x′ ⊗ not x

0← x⊗ not x′

0← y′ ⊗ not y

0← y ⊗ not y′

It can be verified that the resulting program has exactly one

2-answer set, which contains {(x, 1), (y, 1)}, corresponding

to the only steady state 〈1, 1〉 of the network.

The previous example also illustrates the fact that we need

to translate the regulatory relationships between multi-valued

activation levels into FASP rules. In practice, it may not always

be easy to perform this translation manually. As we will

explain in Section V, in practice this step can be performed

automatically using the tool we wrote.

Next we show that the correspondence between steady states

of the multi-valued network G and k-answer sets of the FASP

program P (G) = GU(G)∪NU(G)∪CS(G) holds in general.

Proposition 1. The program P (G) = GU(G) ∪ NU(G) ∪
CS(G) captures all the steady states of the multi-valued

network G, i.e., for every k-answer set I of P (G), the state

S s.t. S(x) = I(px) for every x ∈ X is a steady state of G,

and for every steady state S of G, there is a corresponding

k-answer set I of G s.t. S(x) = I(px) for every x ∈ X .

2The variable z is an auxiliary variable only intended to allow us to present
a more concise expression here.

Proof. First, it can be easily seen that in any answer set I

of P (G), we have that I(p′x) = I(px), due the rules in

CS(G). Suppose that S is a steady-state of the multi-valued

network G. By definition, we have that fi(X) = S(xi) for

every xi ∈ X . We will show that the interpretation I s.t.

I(px) = S(x) and I(nx) = 1 − S(x) for every x ∈ X is a

k-answer set of the program P (G). First, by the definition of

GU(G), it is clear that I is a model of GU(G). For every

rule r in NU(G) corresponding to the update function fi,

from the fact that I(px) = I(p′x) = S(x) for every x ∈ X , it

can be shown that the recursive definition of BU(fi) entails

that I(Body(r)) = fi(X). Since we have fi(X) = S(xi),
we also have that I(Body(r)) = S(xi). This means that

I(Head(r)) = I(p′xi
) = S(xi) = I(Body(r)), which means

that I is also a model of the rule r. Consequently, I is a model

of NU(G), and thus also of P (G) = GU(G)∪NU(G). It is

easy to see that I is a minimal k-model of GU(G), since any

k-model J < I will violate at least one rule in GU(G).
Conversely, if we have a k-answer set I of P (G), we can

show that the state S s.t. S(x) = I(px) for every x ∈ X

is a steady state of the network. It is sufficient to show that

fi(X) = S(xi) = I(px) = I(p′x) for every xi ∈ X . Since

I is a model of the rule NU(fi), we have that I(p′xi
) ≥

I(Body(NU(fi)) = I(BU(fi)). From the definition of

BU(fi) it can be shown that I(BU(fi)) = fi(X). Hence

we have that I(p′xi
) ≥ fi(X). Suppose that I(p′xi

) > fi(X),
for some xi ∈ X . Consider the k-interpretation J such

that J(p′a) = I(p′a) for every a ∈ X s.t. a 6= xi, and

J(p′xi
) = fi(X). We have that J < I , and it can be seen

that J is also a k-model of P (G) (since it satisfies all the

rules in P (G)), contradicting the minimality of I . Hence, we

must have that I(p′xi
) = fi(X) for every xi ∈ X .

C. Finding fixed-size cyclic attractors

It is clear that the approach from Section IV.B is not suitable

for finding cyclic attractors, since the proposed encoding does

not represent different values of each node at different update

times. Recall that we can have either the synchronous or the

asynchronous update schemes for our networks, and that using

different update schemes on the same network can result in

different sets of attractors. We need to explicitly take into

account the time dimension to distinguish between different

update schemes, and thus compute the appropriate sets of

attractors.

Taking into account the time dimension can be achieved

by adding a parameter t, representing time, to each of the

fuzzy propositional atoms px and nx. This time parameter

can be limited up to a certain maximum value, say s, if we

are interested in only finding cyclic attractors of size up to s.

This can be done simply by adding facts that assert the truth

of a predicate called time(t) for t = 0, 1, . . . , s.

The initial guessing rules GU0(G) are now written as

px(0)⊕ nx(0)← 1

0← px(0)⊗ nx(0)

where the parameter 0 encodes the fact that we are guessing at

the initial time point t = 0. We then define a new encoding of

7

the node update rule that incorporates a time parameter t. In

order to do this, we first introduce the so called time-dependent

body of a node update rule, defined as follows:

• TBU(fi, t) = val if fi(xi) ≡ val and val ∈ [0, 1]
• TBU(fi, t) = px(t) if fi(xi) ≡ x for a node x

• TBU(fi, t) = TBU(exp1, t) ◦ TBU(exp2, t) if fi(xi) ≡
exp1 ◦ exp2 for some expressions exp1, exp2 and ◦ ∈
{⊕,⊗,⊻,⊼}

• TBU(fi, t) = not px(t) if fi(xi) ≡ ¬x

We then define the time-dependent node update rules TNU,

that perform the update to the values in each node, as follows:

pxi
(t+ 1)← time(t)⊗ TBU(fi, t)

For the synchronous case, this is enough to encode the fact

that at each time step t, each node’s value is updated using

the update function defined for the node.

For the asynchronous update scheme, recall that even though

a state can have multiple successor states (due to the non-

deterministic choice of which node is updated), only states that

have a single possible successor can be part of an attractor.

Thus, at any time step, we need to ensure that there is only

one possible successor state of the current state. This can be

done by checking that there is exactly one node that gets a new

value during the updates, since if no nodes get a new value,

then the state would be a steady state, while if more than one

node gets updated, then there will be multiple successors to

the current state.

This can be done by first adding the following set of rules

for each node x ∈ X:

dx ← px(t+ 1)⊗ not px(t)

dx ← px(t)⊗ not px(t+ 1)

dx ← dx ⊕ dx

which intuitively derives the atom dx if the node x gets a new

value during the update. We then add a constraint

0← dx ⊗ dy

for every pair of nodes x and y. This forces that there is at

most one node having a new value during the update. Finally,

using

at least one← (dxi
⊻ . . . ⊻ dxn

)

0← not at least one

ensures that there is exactly one node that receives a new value

during the update.

We can now define the required condition to find cyclic

attractors, independent of the update scheme. The following

set of rules and constraints can be used to find cyclic attractors

up to size s. First, add the following rules for all k, 1 ≤ k ≤ s

and all xi ∈ X:

ak ← pxi
(0)⊗ not pxi

(k)

ak ← pxi
(k)⊗ not pxi

(0)

These rules ensure that ak is false iff the value of px(0) equals

to px(k) for all x ∈ X , which means that there is a cyclic

attractor of size k (or of size an integer divisor of k). Then

add the following constraint:

0← a1 ⊼ a2 . . . ⊼ as

which forces at least one of the ak’s to be false, say al, which

means that there is a cyclic attractor of size l (or a divisor of l).

The example below illustrates the FASP program construction

process for the network from Example 5.

Example 7. Consider again the network in Example 5, and

consider the task of finding the cyclic attractors of size 4 under

the synchronous update. Denote this network as G. The initial

guessing rules GU0(G) are:

x(0)⊕ n x(0)← 1

y(0)⊕ n y(0)← 1

0← x(0)⊗ n x(0)

0← y(0)⊗ n y(0)

Furthermore, since we need to allow node y to be 0 or 1 only,

we add a constraint:

y(T)← y(T)⊕ y(T)

The node updates TNU(G) can be represented using the

following rules

x(T + 1)← time(T)⊗ ((x(T) ⊻ 1

2
)⊗ not y(T))⊕ z(T))

z(T)← (x(T)⊗ 1

2
)⊕ (x(T)⊗ 1

2
)

y(T + 1)← time(T)⊗ (x(T)⊕ x(T))

To find synchronous cyclic attractors up to size 4, we add

the following for all i = 1, . . . , 4:

ai ← x(0)⊗ not x(i)

ai ← x(i)⊗ not x(0)

ai ← y(0)⊗ not y(i)

ai ← y(i)⊗ not y(0)

0← a1 ⊼ a2 ⊼ a3 ⊼ a4

One can check that the resulting program has exactly five

2-answer sets. One of these answer sets encodes the static

transitions of the steady-state 〈1, 1〉, by having the same values

for x(0), . . . x(4) and y(0), . . . y(4). The other four answer

sets encode the cyclic attractor 〈0, 0〉 →֒ 〈 1
2
, 0〉 →֒ 〈 1

2
, 1〉 →֒

〈0, 1〉 →֒ 〈0, 0〉, with each answer set encoding the different

initial conditions.

Recall that the example network does not have any cyclic

attractor of size > 1 (as explained in Figure 3) for the asyn-

8

Fig. 6. FASPG work flow

chronous update. In this case, we need to add the following

rules and constraints:

dx ← px(t+ 1)⊗ not px(t)

dx ← px(t)⊗ not px(t+ 1)

dx ← dx ⊕ dx

dy ← py(t+ 1)⊗ not py(t)

dy ← py(t)⊗ not py(t+ 1)

dy ← dy ⊕ dy

0← dx ⊗ dy

at least one← dx ⊻ dy

0← not at least one

We can see that the states 〈0, 0〉, 〈0, 1〉, and 〈1, 0〉 will

be eliminated from the search immediately, since they have

multiple successor states, as shown in Figure 3.

IV. AUTOMATIC ENCODING OF NETWORK DESCRIPTIONS

Biological networks with multiple activation levels are often

specified in terms of the regulatory relationships between their

nodes (e.g., in [3], [49]). Such relationships are basically a

set of input-output specification for every node, consisting of

every possible combination of values of every node regulating

it. To generate the required FASP program for computing the

attractors, we need to represent these relationships in the form

of fuzzy logic formulas under Łukasiewicz semantics, such as

the ones given in Example 6. It is not always straightforward

for a human expert to find a suitable formula that fits a certain

input-output relationship specification. We therefore provide a

tool, called FASPG3, that performs this task automatically,

and then invokes a FASP solver to compute the attractors of

the GRN. Figure 6 shows the work flow of FASPG.

The input for FASPG is the description of a network,

consisting of:

• The number of nodes, n

• The number of activation levels each node has, k

• An input-output specification for every node (described

below)

3FASPG is available at http://github.com/mushthofa/faspg

An input-output specification of a node is a set of assignments

for that node, given all possible combinations of the nodes

regulating it. For example, consider a node x regulated by

m nodes, y1, . . . , ym. Then, the input-output specification for

x is a table of km rows, each row consisting of a possible

combination of the values of the yi’s and a corresponding

value for x.

Given such an input-output specification for a node, FASPG

automatically constructs a correct set of Łukasiewicz logic

formulas that evaluates to the required value for the node,

following the construction process outlined in Proposition 2.

Proposition 2. Suppose we are given that x has value v

whenever each yi has the value vi, i = 1, . . . ,m. Consider

the program F (x, v) consisting, for each i, of the following

rules:

pi ← yi ⊗ 1− vi

pi ← pi ⊕ pi

qi ← not yi ⊗ vi

qi ← qi ⊕ qi

ci ← not pi ⊗ not qi

and the single rule

x← c1 ⊗ . . .⊗ cm ⊗ v

It holds that in any answer set I of F (x, v), I(x) = v

whenever I(yi) = vi for every i = 1, . . . ,m.

Proof. Intuitively, the atoms pi and qi are Boolean atoms

signifying the condition of whether the value of yi is > vi and

< vi, respectively. Therefore, the atom ci, which is only true

when both pi and qi are false, encodes the condition when the

value of yi is exactly vi. The last rule of F (x, v) then assigns

the value of v to x, given that all ci’s are true.

Such an encoding is applied to every row in the input-output

relationship table, and then used in the program encoding

for the computation of the attractor. Note that this encoding

is not the only possible one we can come up with, nor is

it necessarily the most efficient one, but as the experiments

below will show, it is efficient enough for real-world networks.

After obtaining the encoding for the regulatory relation-

ships, FASPG writes the remaining program encoding for the

appropriate problem, and then submits it to the FASP solver

FFASP4 [31], [32], which in turn performs the translation to

ASP and calls the ASP solver CLINGO [19]. The attractors

are then deduced from the resulting answer sets by FASPG.

V. BENCHMARK AND EXPERIMENTS

In the literature, little work has been done so far on

computing attractors of multi-valued networks obtained from

biological knowledge, due to the lack of appropriate tools to

perform analysis on multi-valued networks. Our work is aimed

to address this issue. In order to show the applicability of our

approach, we collected several multi-valued networks obtained

from the known biological networks in the literature. We

4FFASP is available at http://github.com/mushthofa/ffasp

9

run our approach on these networks and verify the expected

results. Furthermore, to test the scalability of our approach, we

also applied it to randomly generated synthetic networks and

measure the time and memory requirements. All experiments

were run on a machine with an 2.5GHz Intel Xeon CPU and

a maximum of 15 GB of allowed memory consumption.

A. Experiments on real networks

To evaluate the correctness and efficiency of our method,

we have tested it on a number of biological network models

obtained from the literature. Table II represents the summary

of the data collected. In each of these networks, each node is

either Boolean-valued, or three-valued (represented as either

the values 0, 1 and 2 or ‘low’, ‘medium’ and ‘high’ in

the papers originally describing these multi-valued networks),

except for the D. melanogaster segmentation network which

uses a four-valued logical model. In encoding the regulatory

relationships between the nodes in the network, we assign

values from Qk to any k-valued nodes. Consequently, in these

network models, we only consider attractors reached from the

set of states where the Boolean-valued nodes are assigned

either 0 or 1, and 3-valued and 4-valued nodes are assigned

values from Q3 and Q4, respectively. To generate all the

possible relevant states, we add a saturation rule as described

in Section IV to each Boolean node x. For each of these

models, the steady-states are computed, and compared to the

ones reported in their respective reference(s).

For the A. thaliana flowering network, the network update

functions are listed in [3] as name-values pairs indicating

the input-output pairs of the update function on each node.

For the Th cell regulatory network, [52] proposed different

versions of the network. For our purpose, we use the logical

rules presented in the Equation 2 in that paper, and evaluate

them as 3-valued Łukasiewicz functions (i.e., treating ∨ and

∧ as ⊕ and ⊗, respectively), which is equivalent to the 1-hot

encoding used in [2]. For the D. melanogaster segmentation

network, the network update functions are represented using

the notation used in [43]. By ignoring the time-delay parameter

of this representation and using the assumption of the basal-

expression levels of the genes to be 0 (as also done in [25]),

we can faithfully represent each of the update functions given

using Łukasiewicz logic formulas.

Table II shows, for each network, the number of nodes

(n) , the number of Boolean nodes, the number of possible

activation levels (k), the number of steady-states found, and

the computation time using our method. We can see that

for the largest network (n = 23), the computation time

is still very manageable (< 5 seconds). Except for the A.

thaliana flowering network, we have taken advantage of the

fact that the source literature already represented the update

function as a logical function that can be directly translated

into Łukasiewicz logic formulas. This might not always be

the case, as shown in the A. thaliana network, where the

interaction network was given just in the form of input-output

pairs between the regulating nodes and the regulated node. In

such cases, FASPG relies on the construction process from

Proposition 2 to automatically generate the update function.

These automatically-generated formulas, despite being correct,

might cause the computations to take more time compared to

manually crafted ones. The following subsection details an

experiment on applying our method to synthetic networks to

gain a more realistic picture of the computational requirements

when we use FASPG to assist in the encoding of the interac-

tion network.

B. Experiments on synthetic networks

Due to the limited availability of results about them in the

literature, experiments on real biological networks can only

paint a small picture on the efficiency of the application of

the proposed method. Furthermore, the benchmark test on

real networks that we presented in the previous subsection

was limited to only the computation of steady states, due

to the non-availability of cyclic attractor data for any of

the networks. Additionally, we would like to see the effects

of using FASPG’s automatic encoding of the interaction

network. Below we therefore apply the method on randomly

generated networks. These additional experiments are intended

to asses the computational resources (in terms of time and

space) needed to run the method, given increasing values of

n and k. To this end, we generated 5 random networks for

each combination of n and k, ranging from n = 5 to n = 50
with a step of 5, and k = 1 to k = 6. To generate realistic

network topologies, we follow the procedure for generating

random scale-free networks as given in [53]. Briefly, during

the random network generation, each node is added one by

one. At each step, the probability that an existing node is

connected to a new node is proportional to its current degree.

The directionality of the interactions are then chosen randomly.

Furthermore, to limit the computational burden, we restrict

the number of incoming regulatory interactions for a node to

be within the range of 1 to 5. In each of these regulatory

relationships, a set of random input-output relationships are

generated (which covers every possible combination of values

for the regulators).

For each of these random networks, we solve the following

tasks using FASPG:

• Find all steady states of the network.

• Find at least one cyclic attractor with size < 5 using

either synchronous or asynchronous updates (or report

that there are none).

In each of our runs, we record the running time and the

maximum memory usage. We set a time-out of 20 minutes

per computation. For every combination of n and k, we run

the method on 5 different randomly-generated networks, and

we report the average of the running times and memory usages

on the 5 networks, unless we observe a time-out or a memory-

out in any of the 5 networks, in which case we report it as a

failure.

Figure 7 and Figure 8 show the computation time and

memory usage of the algorithm in finding all steady states,

respectively. Overall, we notice that the method performs quite

well in computing steady states for lower values of k, with

the largest instance (n = 50) requiring less than 5 minutes,

on average, to complete. However, we can clearly see that the

10

TABLE II
BENCHMARK RESULTS.

No. network (and references) # of nodes # of Boolean nodes k # of steady-states time (seconds)

1 P. aeruginosa mucus development network [49], [51] 2 1 3 2 0.03
2 A. thaliana flowering network [3] 15 7 3 10 2.87
3 Th cell regulatory network [2], [52] 23 9 3 4 4.3
4 D. melanogaster segmentation network [25] 7 4 4 4 4.2

Fig. 7. Running time for computing steady states. Missing nodes indicate
failure due to time-outs/memory-outs.

Fig. 8. Memory usage for computing steady states. Missing nodes indicate
failure due to time-outs/memory-outs.

bottleneck is in k, and for k ≥ 5, computation time as well as

memory usage increase drastically with larger values of n.

Figure 9 and Figure 10 show the computation time and

memory usage for finding cyclic attractors using synchronous

updates. Overall, we see that finding cyclic attractors generally

takes more time and memory than finding steady states. The

overall trend that k seems to be the bottleneck can still be

observed, with even more time-outs. For k = 1, no time-outs

are observed for the network sizes considered. For larger k, we

Fig. 9. Running time for computing synchronous cyclic attractors. Missing
nodes indicate failure due to time-outs/memory-outs. The singleton node
represents a value for k = 4. All instances with k > 4 failed due to time-
outs/memory-outs, and are thus not shown.

Fig. 10. Memory usage for computing synchronous cyclic attractors. Missing
nodes indicate failure due to time-outs/memory-outs.The singleton node
represents a value for k = 4. All instances with k > 4 failed due to time-
outs/memory-outs, and are thus not shown.

start to observe more and more time-outs, with k = 4 having

time-outs for n > 5.

Figure 11 and Figure 12 show the computation time and

memory usage for finding cyclic attractors using asynchronous

updates. Here, we notice that the time requirement for finding

asynchronous cyclic attractors is, in general, lower than in

11

Fig. 11. Running time for computing asynchronous cyclic attractors. Missing
nodes indicate failure due to time-outs/memory-outs.

Fig. 12. Memory usage for computing asynchronous cyclic attractors. Missing
nodes indicate failure due to time-outs/memory-outs.

the synchronous case. This is probably due to the more

stringent criteria applied to the dynamics (in which only one

possible successor state is allowed) which can be exploited by

the solver. No time-outs are observed for the network sizes

considered. However, we see a larger memory-usage than for

either the steady-states and synchronous cyclic attractors, with

larger instances having memory outs.

In conclusion, we observe, as expected, that time and mem-

ory requirements generally increase exponentially w.r.t the size

of the network (n), while the number of possible values in the

activation level of the genes (k) serves as an exponential factor.

In addition, we observe that computing steady states generally

has a lower computational requirements than computing syn-

chronous and asynchronous attractors. Synchronous attractor

computation generally requires more computation time than

the other two, while memory consumption is generally the

biggest bottleneck in asynchronous attractor computation.

VI. RELATED WORK

Since they were introduced by Kauffman [4], Boolean

networks have gained considerable popularity as a simple but

powerful modeling technique in systems biology. Boolean net-

works have been used to describe the dynamics of regulatory

networks in cases where we have reasonably good knowledge

about the regulatory relationship between the genes, and where

the activation levels of genes can be simply represented as

“on” and “off”. In such cases, the dynamics of the network,

and especially the attractors, usually correspond to some

biologically relevant phenotype, e.g. a cell type. For instance,

in [54], [55] and more recently, [3] and [56], the flower devel-

opment in Arabidopsis thaliana was modeled using a Boolean

network, in which the network attractors corresponded to sta-

ble gene expression levels during the different stages of flower

development. In [57], Li et al. used a Boolean network model

and its steady states to describe the different stages of the yeast

cell cycle, where the stages of the cycle correspond to the

strong attractors of the network. Kaufman et al. [5] explained

the various states of the immune system with Boolean network

models. Similarly, the regulatory networks involved in the

various parts of the development of Drosophila melanogaster

were studied using Boolean networks in [58], [59] and [60].

Although Boolean networks provide a useful simplification

to study the dynamics of gene regulatory networks, using

only two values to represent the activation may cause one to

miss important characterizations of GRNs that have attractors

containing “intermediate” levels of expressions of the genes

(see e.g., [3], [23]–[25], [43]). In [24], an extension of Boolean

networks into multi-valued networks in which each node is

allowed to have k levels of activation (where k ≥ 2) is

considered. Using the so-called 1-hot encoding, these multi-

valued networks are reduced into a representation which

allows techniques already used in Boolean networks, such as

Binary Decision Diagrams (BDD), to be applied. However,

the use of an encoding scheme such as 1-hot encoding can

make the representation quite cumbersome, especially for large

values of k, since it requires us to explicitly encode the logical

operators for all combinations of truth values. As we will show,

the use of FASP can overcome this problem by using fuzzy

logic connectives.

Several computational tools have been developed to com-

pute attractors in Boolean network models. In [7], Garg et al.

developed genYsis, which uses techniques involving BDDs

to compute attractors. Ay et al. [10] used state-space pruning

and randomized state-space traversal methods to improve the

scalability of the attractor computation. Dubrova et al. [11]

used a Boolean Satisfiability (SAT) solver, which was shown to

be more efficient, both in terms of computation time and space

requirements, compared to the BDD-based approach. Zheng et

al. [12] developed geneFatt based on the Reduced Order BDD

(ROBDD) data structure, which further improves the efficiency

of the attractor computation. Berntenis et al. [9] considered the

enumeration of attractors of larger networks by restricting the

enumeration of possible states to only the relevant subsets.

More recently, [14] used Answer Set Programming (ASP) to

model the computation of attractors in a Boolean network.

12

However, these methods were designed to compute the dynam-

ics of Boolean networks, i.e., where the nodes can take only

two possible values. In this paper, we extend the work in [14],

by using Fuzzy Answer Set Programming (FASP) to allow the

computation of the dynamics of multi-valued networks.

ASP has been successfully applied to model the dynamics of

gene regulatory networks in the Boolean setting; see e.g. [14],

[15]. In these works, the encoding of the update function is

restricted to two specific types (denoted as r∗ and r+ in [14]),

due to the particular way that the encoding of the dynamics is

written (i.e., encoding the update function at a meta-level). In

[16], it was suggested that each of the node’s update functions

of a Boolean network can be directly encoded as a rule in ASP.

This allows for a more generic encoding of the network update

function. Furthermore, it was shown that the steady states of

the network are directly obtainable using the semantics of ASP.

To obtain the cyclic attractors, [16] proposes an extension of

the ASP semantics which allows to capture cyclic attractors

“naturally” as answer sets of the program. Such an extension is

not obvious nor easy to develop and implement, however, since

it requires the redefinition of the basics of ASP, as well as the

reimplementation of currently available solvers. In addition,

this method is only geared towards Boolean networks, instead

of multi-valued networks.

In this paper, we proposed a new method to encode the

dynamics of multi-valued networks using FASP which incor-

porates two distinguishing characteristics:

• It allows graded activation levels in the nodes of the

networks instead of only “on” and “off”, and

• It allows a more flexible definition of the network update

function by encoding the dynamics of the network using

a time argument. In contrast to the approach used in [14],

[50], the use of the time argument and the direct encoding

of the network update function allows for a more general

relationships between interacting nodes. Additionally, this

alleviates the requirement to extend/redefine the theoret-

ical notion of answer sets in logic programming, as is

required by the approach used in [16] for encoding the

computation of cyclic attractors.

VII. CONCLUSION

Boolean networks have traditionally been used as one of

the most popular methods for modeling and analyzing the

dynamics of GRNs. Using Boolean networks, we can capture

the steady states/attractors of the network, which is useful to

understand the biological function of such networks. Many

tools, including the ones based on ASP, have been devised

to model such dynamics. However, few developments have

looked at characterizing attractors based on degrees of acti-

vation. In this paper, we have suggested the use of FASP, an

extension of ASP in the continuous domain, as a convenient

language for encoding the dynamics of multi-valued networks.

To the best of our knowledge, this is the first real-world

application of FASP that goes beyond small toy examples.

We showed the correctness of our encoding, and we evaluated

its efficiency for computing the steady-states of real biological

networks found in the literature. The experimental result shows

that the proposed method works quite efficiently, especially for

finding the most biologically-relevant type of attractors, which

are the steady-states and small-sized attractors.

REFERENCES

[1] S. A. Kauffman, The origins of order: Self-organization and selection

in evolution. Oxford university press, 1993.
[2] L. Mendoza, “A network model for the control of the differentiation

process in Th cells,” Biosystems, vol. 84, no. 2, pp. 101–114, 2006.
[3] C. Espinosa-Soto, P. Padilla-Longoria, and E. R. Alvarez-Buylla, “A

gene regulatory network model for cell-fate determination during ara-
bidopsis thaliana flower development that is robust and recovers experi-
mental gene expression profiles,” The Plant Cell Online, vol. 16, no. 11,
pp. 2923–2939, 2004.

[4] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets,” Journal of Theoretical Biology, vol. 22, no. 3, pp.
437–467, 1969.

[5] M. Kaufman, J. Urbain, and R. Thomas, “Towards a logical analysis of
the immune response,” Journal of Theoretical Biology, vol. 114, no. 4,
pp. 527–561, 1985.

[6] H. De Jong, “Modeling and simulation of genetic regulatory systems: a
literature review,” Journal of computational biology, vol. 9, no. 1, pp.
67–103, 2002.

[7] A. Garg, I. Xenarios, L. Mendoza, and G. DeMicheli, “An efficient
method for dynamic analysis of gene regulatory networks and in
silico gene perturbation experiments,” in Research in Computational

Molecular Biology. Springer, 2007, pp. 62–76.
[8] G. Arellano, J. Argil, E. Azpeitia, M. Benitez, M. Carrillo, P. Gongora,

D. Rosenblueth, and E. Alvarez-Buylla, “”antelope”: a hybrid-logic
model checker for branching-time boolean grn analysis,” BMC Bioin-

formatics, vol. 12, no. 1, p. 490, 2011.
[9] N. Berntenis and M. Ebeling, “Detection of attractors of large boolean

networks via exhaustive enumeration of appropriate subspaces of the
state space,” BMC Bioinformatics, vol. 14, no. 1, pp. 1–10, 2013.

[10] F. Ay, F. Xu, and T. Kahveci, “Scalable steady state analysis of boolean
biological regulatory networks,” PLoS ONE, vol. 4, no. 12, p. e7992, 12
2009.

[11] E. Dubrova and M. Teslenko, “A SAT-based algorithm for finding
attractors in synchronous boolean networks,” IEEE/ACM Trans. on

Computational Biology and Bioinformatics, vol. 8, no. 5, pp. 1393–
1399, 2011.

[12] D. Zheng, G. Yang, X. Li, Z. Wang, F. Liu, and L. He, “An efficient
algorithm for computing attractors of synchronous and asynchronous
boolean networks,” PloS ONE, vol. 8, no. 4, p. e60593, 2013.

[13] S. Dworschak, S. Grell, V. J. Nikiforova, T. Schaub, and J. Selbig,
“Modeling biological networks by action languages via answer set
programming,” Constraints, vol. 13, no. 1-2, pp. 21–65, 2008.

[14] M. Mushthofa, G. Torres, Y. Van de Peer, K. Marchal, and M. De Cock,
“ASP-G: an ASP-based method for finding attractors in genetic regula-
tory networks,” Bioinformatics, vol. 30, no. 21, p. 3086, 2014.

[15] T. Fayruzov, M. De Cock, C. Cornelis, and D. Vermeir, “Modeling
protein interaction networks with answer set programming,” in Pro-

ceedings of the IEEE International Conference on Bioinformatics and

Biomedicine, 2009, 2009, pp. 99–104.
[16] K. Inoue, “Logic programming for boolean networks,” in Proceedings

of the Twenty-Second International Joint Conference on Artificial Intel-

ligence (IJCAI 2011), 2011, pp. 924–930.
[17] V. Lifschitz, “What is answer set programming?.” in Proceedings of

the 23rd AAAI Conference in Artificial Intelligence, vol. 8, 2008, pp.
1594–1597.

[18] C. Baral, Knowledge representation, reasoning and declarative problem

solving. Cambridge University Press, 2003.
[19] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and

M. Schneider, “Potassco: The Potsdam answer set solving collection,”
AI Communications, vol. 24, no. 2, pp. 107–124, 2011.

[20] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello, “The DLV system for knowledge representation and reasoning,”
ACM Trans. on Computational Logic, vol. 7, no. 3, pp. 499–562, 2006.

[21] T. Eiter, G. Ianni, and T. Krennwallner, “Answer set programming: A
primer,” in Reasoning Web. Semantic Technologies for Information Sys-

tems, ser. Lecture Notes in Computer Science, S. Tessaris, E. Franconi,
T. Eiter, C. Gutierrez, S. Handschuh, M.-C. Rousset, and R. Schmidt,
Eds. Springer Berlin Heidelberg, 2009, vol. 5689, pp. 40–110.

[22] E. Erdem, “Theory and applications of answer set programming,” Ph.D.
dissertation, The University of Texas at Austin, 2002.

13

[23] G. Didier, E. Remy, and C. Chaouiya, “Mapping multivalued onto
boolean dynamics,” Journal of Theoretical Biology, vol. 270, no. 1, pp.
177 – 184, 2011.

[24] A. Garg, L. Mendoza, I. Xenarios, and G. DeMicheli, “Modeling of
multiple valued gene regulatory networks,” in Proceedings of the 29th

Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBS 2007). IEEE, 2007, pp. 1398–1404.

[25] L. Sanchez and D. Thieffry, “Segmenting the fly embryo:: a logical
analysis of the pair-rule cross-regulatory module,” Journal of Theoretical

Biology, vol. 224, no. 4, pp. 517–537, 2003.

[26] A. Bockmayr and H. Siebert, Programming Logics: Essays in Memory of

Harald Ganzinger. Springer Berlin Heidelberg, 2013, ch. Bio-Logics:
Logical Analysis of Bioregulatory Networks, pp. 19–34.

[27] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore,
J. Darnell et al., Molecular cell biology. WH Freeman New York,
2000, vol. 5.

[28] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir, “Fuzzy answer
set programming,” in Proceedings of the 10th European Conference on

Logics in Artificial Intelligence, 2006, pp. 359–372.

[29] M. Blondeel, S. Schockaert, D. Vermeir, and M. De Cock, “Complex-
ity of fuzzy answer set programming under Łukasiewicz semantics,”
International Journal of Approximate Reasoning, vol. 55, no. 9, pp.
1971–2003, 2014.

[30] M. Alviano and R. Peñaloza, “Fuzzy answer sets approximations,”
Theory and Practice of Logic Programming, vol. 13, no. 4-5, pp. 753–
767, 2013.

[31] M. Mushthofa, S. Schockaert, and M. De Cock, “A finite-valued solver
for disjunctive fuzzy answer set programs,” in Proceedings of European

Conference in Artificial Intelligence 2014, 2014, pp. 645–650.

[32] ——, “Solving disjunctive fuzzy answer set programs,” in Proceedings

of the 13th International Conference on Logic Programming and Non-

monotonic Reasoning, 2015, pp. 453–466.

[33] M. Alviano and R. Peñaloza, “Fuzzy answer set computation via satis-
fiability modulo theories,” Theory and Practice of Logic Programming,
vol. 15, pp. 588–603, 7 2015.

[34] P. Vojtáš, “Fuzzy logic programming,” Fuzzy sets and systems, vol. 124,
no. 3, pp. 361–370, 2001.

[35] J. Lee and Y. Wang, “Stable models of fuzzy propositional formulas,”
in Proceedings of the 14th European Conference on Logics in Artificial

Intelligence, JELIA 2014, 2014, p. 326.

[36] N. Madrid and M. Ojeda-Aciego, “Towards a fuzzy answer set semantics
for residuated logic programs.” in Web Intelligence/IAT Workshops,
2008, pp. 260–264.

[37] C. V. Damásio and L. M. Pereira, “Antitonic logic programs,” in
Proceedings of the 6th International Conference on Logic Programming

and Nonmonotonic Reasoning, 2001, pp. 379–392.

[38] U. Straccia, “Annotated answer set programming,” in In: Proceedings

of the 11th International Conference on Information Processing and

Management of Uncertainty in Knowledge-Based Systems (IPMU-06,
2006.

[39] ——, “Managing uncertainty and vagueness in description logics, logic
programs and description logic programs,” in Reasoning Web, 4th

International Summer School, Tutorial Lectures, ser. Lecture Notes in
Computer Science, vol. 5224. Springer Verlag, 2008, pp. 54–103.

[40] M. Mushthofa, S. Schockaert, and M. De Cock, “Computing attrac-
tors of multi-valued gene regulatory networks using fuzzy answer set
programming,” in Proceedings of the 2016 IEEE World Congress on

Computational Intelligence, 2016.

[41] R. Thomas, “Boolean formalization of genetic control circuits,” Journal

of Theoretical Biology, vol. 42, no. 3, pp. 563–585, 1973.

[42] I. Harvey and T. Bossomaier, “Time out of joint: Attractors in asyn-
chronous random boolean networks,” in Proceedings of the Fourth

European Conference on Artificial Life, 1997, pp. 67–75.

[43] R. Thomas, “Regulatory networks seen as asynchronous automata: a
logical description,” Journal of Theoretical Biology, vol. 153, no. 1, pp.
1–23, 1991.

[44] H. Klarner, A. Bockmayr, and H. Siebert, “Computing maximal and
minimal trap spaces of boolean networks,” Natural Computing, vol. 14,
no. 4, pp. 535–544, 2015.

[45] M. Blondeel, S. Schockaert, D. Vermeir, and M. De Cock, “Complex-
ity of fuzzy answer set programming under Łukasiewicz semantics,”
International Journal of Approximate Reasoning, vol. 55, no. 9, pp.
1971–2003, 2014.

[46] S. Schockaert, J. Janssen, and D. Vermeir, “Fuzzy equilibrium logic:
Declarative problem solving in continuous domains,” ACM Trans. on

Computational Logic, vol. 13, no. 4, pp. 33:1–33:39, 2012.

[47] T. Lukasiewicz and U. Straccia, “Tightly integrated fuzzy description
logic programs under the answer set semantics for the semantic web,”
in Proceedings of the 1st International Conference on Web Reasoning

and Rule Systems, 2007, pp. 289–298.
[48] S. Aguzzoli and A. Ciabattoni, “Finiteness in infinite-valued

Łukasiewicz logic,” Journal of Logic, Language and Information, vol. 9,
no. 1, pp. 5–29, 2000.

[49] J. Guespin-Michel and M. Kaufman, “Positive feedback circuits and
adaptive regulations in bacteria,” Acta Biotheoretica, vol. 49, no. 4, pp.
207–218, 2001.

[50] T. Fayruzov, M. De Cock, C. Cornelis, and D. Vermeir, “Modeling
protein interaction networks with answer set programming,” in IEEE

Internat. Conf. on Bioinformatics and Biomedicine, 2009, pp. 99–104.
[51] S. Peres and J.-P. Comet, “Contribution of computational tree logic to bi-

ological regulatory networks: Example from pseudomonas aeruginosa,”
in Proceedings of the First International Workshop on Computational

Methods in Systems Biology (CMSB 2003), 2003, pp. 47–56.
[52] L. Mendoza and I. Xenarios, “A method for the generation of standard-

ized qualitative dynamical systems of regulatory networks,” Theoretical

Biology and Medical Modelling, vol. 3, no. 1, p. 13, 2006.
[53] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-

works,” Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.
[54] L. Mendoza and E. R. Alvarez-Buylla, “Dynamics of the genetic regu-

latory network for arabidopsis thaliana flower morphogenesis,” Journal

of Theoretical Biology, vol. 193, no. 2, pp. 307–319, 1998.
[55] L. Mendoza, D. Thieffry, and E. R. Alvarez-Buylla, “Genetic control

of flower morphogenesis in arabidopsis thaliana: a logical analysis.”
Bioinformatics, vol. 15, no. 7, pp. 593–606, 1999.

[56] Y.-E. Sanchez-Corrales, E. R. Alvarez-Buylla, and L. Mendoza, “The
arabidopsis thaliana flower organ specification gene regulatory network
determines a robust differentiation process,” Journal of Theoretical

Biology, vol. 264, no. 3, pp. 971–983, 2010.
[57] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, “The yeast cell-cycle

network is robustly designed,” Proceedings of the National Academy of

Sciences of the USA, vol. 101, no. 14, pp. 4781–4786, 2004.
[58] L. Sánchez and D. Thieffry, “A logical analysis of the drosophila gap-

gene system,” Journal of Theoretical Biology, vol. 211, no. 2, pp. 115–
141, 2001.

[59] R. Albert and H. G. Othmer, “The topology of the regulatory inter-
actions predicts the expression pattern of the segment polarity genes in
drosophila melanogaster,” Journal of theoretical biology, vol. 223, no. 1,
pp. 1–18, 2003.

[60] A. González, C. Chaouiya, and D. Thieffry, “Logical modelling of the
role of the hh pathway in the patterning of the drosophila wing disc,”
Bioinformatics, vol. 24, no. 16, pp. i234–i240, 2008.

