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Abstract 

Objective: The aim of this study was to evaluate current evidence for the 

effectiveness of virtual reality (VR) interventions in improving neurocognitive 

performance in individuals who have sustained a traumatic brain injury (TBI).  

Methods: A systematic literature search was performed across multiple databases 

(PubMed, EMBASE, Web of Science) for articles of relevance. Studies were 

evaluated according to study design, patient cohort, VR intervention, neurocognitive 

parameters assessed, and outcome. VR interventions were evaluated qualitatively, 

with respect to methodology and extent of immersion, and quantitatively with respect 

to intervention duration.   

Outcomes: Our search yielded 324 articles, of which only 13 studies including 132 

patients with TBI met inclusion criteria. A wide range of VR interventions and 

cognitive outcome measures were reported. Cognitive measures included learning 

and memory, attention, executive function, community skills, problem solving, route 

learning, and driving attitude. Several studies (n=10) reported statistically significant 

improvements in outcome, and two studies demonstrated successful translation into 

real-life performance.  

Conclusions: VR interventions hold significant potential for improving neuro-cognitive 

performance in patients with TBI. Whilst there is some evidence for translation into 

activities of daily living, further studies are required to confirm the validity of cognitive 

measures and reliable translation into real-life performance.  

Keywords: systematic review; virtual reality; traumatic brain injury; neurocognitive; 

rehabilitation 

Abbreviations: TBI- traumatic brain injury; IADL- independent activities of daily 

living; VR- virtual reality 



Introduction 

 

Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity 

worldwide1, contributing to approximately 30% of all injury-related deaths 2 in the 

United States. TBI can be divided into mild, moderate, and severe, depending on 

GCS at presentation, duration of PTA, and neurological deficits3. It is best 

understood as a pathophysiological entity involving an acute injurious trigger for a 

chronic process. This manifests, especially in moderate-severe TBI, as a multitude of 

deficits in sensorimotor, behavioural, and cognitive functions, such as attention, 

memory, executive function, and problem-solving skills 4,5.  This culminates in a 

considerable impact on everyday functioning, and necessitates a multidisciplinary 

approach to an individualised rehabilitation programme. Current approaches are 

hindered by factors such as inadequate access to care centres and limited clinical 

resources 6. Furthermore, increasing survival rates due to advancing healthcare in 

this cohort corroborate the requirement for an adequate solution to this problem 7.   

 

The advent of virtual reality (VR) technology and its incorporation into rehabilitation 

approaches may provide an answer. Ellis (1994) 8 defines VR as ‘interactive, virtual 

image displays enhanced by special processing and by non-visual display 

modalities… to convince users that they are immersed in a synthetic space.’ Since 

the time of this traditional definition of VR, rapid progress in technology means that it 

is increasingly possible to ‘convince users that they are immersed’ through various 

modalities such as head mounted displays, three dimensional (3D) displays, 

joysticks, gloves, and haptic feedback from robotic arms. Currently there is 

increasing evidence for the use of VR in cognitive rehabilitation in schizophrenia 9, 



depression 10, neurodegenerative disorders 11, and dementia 12. Essentially, VR 

technology is proving to be a discernible tool in the assessment, diagnosis, and 

treatment of chronic neurological and psychiatric disorders. It is well suited to this 

purpose as it provides: (i) a safe environment to practise activities of daily living 

(ADLs); (ii) the opportunity to tailor treatment modalities to the individual; (iii) tasks 

can be subjectively entertaining 13, thereby circumventing issues associated with 

demotivation. The aim of this article is to provide a systematic review of the evidence 

available on effectiveness of VR technology in improving cognitive performance in 

patients with TBI, and translation into real-life situations.  

   

 

 

 

Methods 

 

The framework for this literature review was based on the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) guidelines 14 The protocol for 

this systematic review is registered on PROSPERO (CRD42017064705).  

 

Search Strategy  

Relevant articles (n=324) were identified by authors SM and MZ by performing a 

systematic search across multiple databases (Web of Science, PubMed and 

Embase) for full text articles in English from January 1947 to June 2017 (Figure 1). 

Difference in opinion on study inclusion was settled by consensus between authors. 



The bibliographies of relevant articles and review articles were screened for 

additional citations of relevance.  

 

Study Inclusion 

All articles demonstrating the use of VR for cognitive rehabilitation in patients of any 

age who had previously sustained TBI of any severity were included (n=13). Articles 

demonstrating use in acquired brain injury were evaluated for any participants with 

traumatic aetiology before inclusion. If the results did not differentiate between TBI 

participants and other acquired brain injury participants, the study was excluded. 

Review articles, commentaries, and studies using VR for assessment of cognitive 

performance or diagnosis of cognitive deficit alone were excluded.   

 

Data Analysis 

All included studies (n=13) were evaluated according to study design, patient cohort, 

VR intervention15 (Figure 2), method of assessment, and outcomes. Methods of 

assessment were defined descriptively and special attention given to inclusion of 

tests of translation into real-life performance. SIGN checklists were used for 

assessment of the internal validity and overall quality of RCT and comparative 

studies. The ROBINS-I tool 16 was developed for use with non-randomised 

comparative studies by evaluating several different domains to identify the risk of 

bias. We adapted this tool for assessing case studies.  Quality assessment was 

conducted using the Oxford Centre for Evidence-based Medicine Levels of Evidence 

2011 (see Table 1). Critical appraisal of all included articles was performed by 

authors LW, MP, and MA. Heterogeneity of included studies resulted in descriptive 

analyses being performed without meta-analysis.  



Results  

 

Study characteristics 

Of all included studies (n=13), there was a combination of RCT (n=4), comparative 

studies (n=3), and non-comparative studies (n=6) (Table 2). One comparative study 

was a cross-over study 17. Two non-comparative studies evaluated all acquired brain 

injury patients, meaning that patients that had previously suffered a stroke were also 

included: one study had one patient with TBI and three stroke patients 18, and 

another study had four patients with TBI and eight stroke patients 19.  

 

Patient Cohort 

From all included studies (n=13), a total of 132 patients were subjected to VR 

interventions. In studies reporting age (n=11), the mean age of participants was 36.1 

years (range: 20,67; SD=14.7), and of those that distinguished between gender 

(n=10), 74.5% of participants were male and 25.5% were female. Of studies 

reporting TBI severity (n=6), a total of 59 participants sustained severe TBI and four 

participants sustained moderate TBI. In the remaining studies (n=7), one study had 

20 participants who were classified as having sustained mild-to-moderate TBI but 

were not distinguished 20, another study had 14 participants who were classified as 

having sustained moderate-to-severe TBI but were not distinguished 21, and the 

other studies (n=5) did not report severity of TBI. Of studies reporting time elapsed 

since traumatic injury (n=9), the mean time was 130.5 weeks (range: 2,224; 

SD=286.2), or 32.6 months. One study of 37 participants reported a minimum of 

three months since traumatic injury 22, and remaining studies (n=3) did not report the 

time elapsed.   



 

Cognitive parameters 

Included studies assessed a wide range of cognitive parameters. Most studies 

(n=10) focused on a single parameter and some studies (n=3) assessed multiple 

parameters. Cognitive outcome measures (Table 3) included learning and memory 

(n=4), attention (n=4), executive function (n=3), psychological attitude towards 

driving/ risk of road rage (n=1), route learning (n=2), community skill performance 

(n=1), and problem solving with clerical tasks (n=1).  

 

VR interventions 

With respect to methodology, VR interventions were either task-oriented (n=5), 

game-based (n=2), or IADL-based (n=6). With respect to immersion, VR 

interventions were either fully- (n=6), semi- (n=3), or non-immersive (n=4). Some 

studies involved advanced technology such as robotic arms with haptic cues (n=2) or 

artificial intelligence (AI) assisted systems (n=1), and others involved vehicle 

simulators (n=2), navigation tasks (n=2), or simulations of real life environments 

(n=3). With respect to temporal aspect of interventions, the mean time period over 

which interventions were carried out was 11.1 days (range: 1,42; SD=13.4) (n=8), 

the mean number of sessions was 10.7 (range: 1,15; SD=3.2) (n=11), and the mean 

duration of each session was 18.1 minutes (range: 4,90; SD=18.2) (n=9). Overall 

time period and number of sessions were not reported in some studies (n=5, n=2). 

Duration of each session was not reported in some studies (n=4), one of which 

reported number of trials but not the duration of each trial 23. 

 

 



 

Outcomes 

Neuropsychological assessment tools (n=8) (Table 5), performance on the VR 

interventions (n=4), and translation of improvements into real-life outcome (n=4) 

were used as tools to measure outcome. Real-life outcome measures included post-

intervention employment rate 20, performance in real-life supermarket tasks 24, and 

performance of normal community based tasks 18. One study used functional 

magnetic resonance imaging (fMRI) to assess changes in brain activity during a 

paired word association memory task pre- and post-intervention 25, and another 

study only used a simple questionnaire on attitude towards driving to assess the risk 

of dangerous driving 26.  

 

Statistically significant improvement in cognitive parameter(s) was reported in ten 

studies. These mostly involved a range of neuropsychological assessment tools but 

one study demonstrated post intervention increases in blood oxygen level-dependent 

(BOLD) signal in several brain regions using functional magnetic resonance imaging 

(fMRI) 25, and two studies demonstrated translation of improvement into 

corresponding real-life tasks 18,22. One study demonstrated a significant improvement 

in learning and attention but not in memory function 17, and another study 

demonstrated improvement in neuropsychological measures but this did not 

translate into an improvement measures of ‘real-life’ employment 20.  

 

No significant differences were found in terms of topographical behaviour and spatial 

representations in TBI patients when the effectiveness of virtual and real 

environments were compared for rehabilitation. For example, no differences were 



found for route learning tasks, but superior performance on a spatial awareness 

assessment task in the real environment group was observed 21. With respect to 

performance within VR environments and translation into real life, a study using a VR 

model of a shopping mall (“VMall”) did not report a significant improvement post-

intervention24. One study compared two different learning paradigms using virtual 

environments but did not evaluate the use of virtual environments alone to assess its 

specific contribution to an improvement in cognitive parameters 23. With respect to 

level of evidence, two studies were level 1, three studies were level 2, two studies 

were level 3, and six studies were level 4 evidence (Table 4). 

 

 

 

Discussion 

 

The results of this systematic review demonstrate that there is a considerable body 

of evidence supporting the potential for the use of VR in the cognitive rehabilitation of 

patients with TBI. The total patient cohort across all included studies showed a 

significant male preponderance and mean age of 36.1 years. This is consistent with 

the demographics of patients with TBI: commonly young male individuals2. The 

mean time elapsed since TBI was 32.6 months, which demonstrates that the timing 

of appropriate allocation of VR interventions would not necessarily negate their 

efficacy. The wide range of 10 weeks to >15 years since trauma demonstrates a 

wide window for potential use of the intervention, and suggests that VR can be used 

for both patients with TBI in the community at present and prospectively as part of a 

rehabilitation programme for patients sustaining TBI. Further studies are required to 



explore the possibility of an interval-dependent effect on the extent of improvement 

as a result of VR intervention, or to identify the optimal time at which maximal benefit 

can be derived from VR interventions. 

 

Randomised controlled trials  

Our search yielded four RCT studies 20,22,24,26, which all showed a potential use for 

VR in cognitive rehabilitation. Common limitations include an unblinded approach, 

small sample sizes, unreported confounding factors such as IQ and neuropsychiatric 

deficits, and a lack of performance validity indicators, which is important to assess in 

TBI samples27,28. Cox et al. 26 studied changes in driving attitude in post-TBI military 

personnel when subjected to VR driving simulator sessions. Participants had 

suffered at least one closed head injury during previous deployment. Whilst the 

results demonstrate an improvement in driving attitude measured by a questionnaire, 

there are several limitations: (i) the control group did not receive a comparable 

placebo VR activity, meaning that the effects could potentially be the result of the 

increased interaction and engagement received by the treated group, (ii) there was 

no evidence of real world translation, (iii) a small sample size (six patients in the VR 

group and five patients in the control group) with a sub-optimal statistical approach 

using multiple t-tests rather than ANOVA limits the applicability of results, and (iv) 

PTSD rate was not reported in the sample, which may account for cognitive 

sequelae, especially in mild TBI29. Jacoby et al. 24 studied the use of a VR 

supermarket model for improving executive function in patients with TBI, compared 

with occupational therapy controls. The large effect sizes seen, although non-

significant, is supportive of a beneficial role of VR. However, whilst there were no 

significant statistical differences between the participants allocated to the 



experimental and control groups, there was a trend towards the experimental group 

having less severe TBI, a younger age, and more education. Also, the randomisation 

schedule was changed during the study, and it is unclear if this resulted in 

researchers being unblinded to treatment allocation. The authors acknowledge that 

differential enjoyment of tasks may have resulted in group differences in motivation, 

which could also partly explain the reported effects. Thus, whilst the findings of this 

study are encouraging, more robust data is required to further validate its 

conclusions. 

 

One study 20 employed an artificial intelligence (AI) assisted 3D VR system with 

clerical task oriented content to evaluate its effect on problem solving skills and 

employment outcomes. The VR group showed better performance on 

neuropsychological assessment post-intervention compared to control, but this did 

not translate into differences in employment outcomes. This highlights the difficulty of 

translating enhanced performance on rigidly assessed outcome measures to real-

world activities, and the importance of assessing real-world translation whenever 

possible to reliably conclude on the benefits of treatment. Whilst this study had a 

larger sample size of 40 participants, 20% of participants dropped out per arm, and 

several basic demographics were unreported. Also, for the measures on which 

differences between VR group and control group were found using the Wisconsin 

Card Sorting Test (WCST), there was a trend towards the VR group performing 

better than the control group in pre-training. This may partly explain the superiority of 

the VR group performance post-intervention, however these pre-training differences 

were not statistically significant. The fact that participants were reported to enjoy the 

VR approach supports the advantage of VR in maintaining motivation during 



potential treatment. Despite its limitations, the basic experimental design and thought 

process behind the VR intervention is an encouraging marker of the directions that 

VR therapy could potentially take.  

 

Another study 22 assessed the effect of a PC based VR program for ADL on 

prospective memory of patients with acquired brain injury, which also included TBI. 

Prospective memory (PM) is the capacity to remember to perform an activity at a 

dedicated time in the future: an ability that is often compromised in TBI survivors. 

Compared to participants receiving control treatment, participants assigned to a VR 

training program designed to improve PM in a virtual convenience store showed 

improvements on several outcome measures, although these failed to reach 

statistical significance. The reliability of outcome measures is unclear since the use 

of VR outcomes in this study appear to be a novel assessment tool. Also, the pre- 

versus post-test differences in VR measures in the experimental group could 

potentially reflect a practice effect. Since the control group did not seem to receive 

any tasks designed to tax PM specifically, in contrast to the VR treatment group, it is 

unclear whether their improved performance is due to the use of VR per se or due to 

the emphasis on improving PM in the treatment group. Evaluation of motivation 

would have been beneficial since the two groups have had a differential level of 

engagement in the study at post-test. Nonetheless, improvements in VR test 

measures in the treatment group were seen to transfer to real-life test measures. 

Further studies with more reliable assessment tools and equally engaging control 

interventions in patients with TBI alone are required.    

  

 



Comparative studies 

Our literature search yielded three comparative studies. Grealy et al. 17 studied the 

use of a VR bike-riding simulator on patients with severe TBI for improving cognitive 

functions. Results showed significant improvements in attention and learning but not 

memory functions. However, control subject data was drawn from a database of 

previous cases and numerous potential confounding factors were undisclosed such 

as TBI severity in the controls compared to the VR group. The fact that the authors 

only demonstrate improvements in cognition by comparing performance of the 

experimental group both before and after the intervention, with the performance of 

‘control’ subjects who completed the cognitive assessments only once significantly 

undermines the results of the study. There may, therefore, be a large practice effect 

in the cognitive measures, but the experimental design cannot separate this from 

any treatment effect. Comparison of VR group post-intervention cognitive 

performance with ‘re-test’ cognitive data obtained from controls would be required to 

achieve this. Also, it is unclear whether the benefits in performance observed are 

due to VR itself or purely due to exercise. There are well-documented effects of 

cardiovascular exercise upon cognition, thought to occur via upregulation of plasticity 

related proteins such as BDNF 30,31. In order to determine whether VR accounts for 

any of this effect, a group of TBI survivors subjected to a non-VR exercise 

intervention is required. This study suggests a VR approach could be useful in TBI 

rehabilitation but the design does not offer a robust test of that proposition and no 

transfer effect is reported.  

 

Lloyd et al. 23 studied the use of VR for route learning in patients with TBI. It is 

difficult to draw any reliable conclusions from this study as it presents a novel 



assessment tool.  Also, the measures are obtained based on the experimenter 

controlling the VR software, which leaves the potential for experimenter bias in 

driving behaviour across the two conditions. This study does not reliably 

demonstrate the effectiveness of VR-based rehab in TBI per se as there is no control 

group in the strict sense of the term. However, it does show, via a within-subjects 

design, that when using a VR based approach to spatial navigation assessment and 

rehabilitation in brain injured patients, errorless training approaches may be 

preferable. Another study 21, compared VR and real environments (RE) for route 

learning and found the same pattern of route learning in both environments. 

Environment did not differentially impact TBI survivors’ performance in completing a 

spatial navigation task, suggesting that VR may provide a potential alternative to RE 

rehabilitation. Their results show that recall of routes is comparable between VR and 

RE, which suggests that VR interventions do not provide a benefit to TBI survivors 

over real world training, at least in the context of spatial navigation. Furthermore, on 

several measures, there was a trend towards participants in the VR group 

performing worse suggesting that learning was affected. However, it cannot be 

guaranteed that VR and RE routes were of equal difficulty, which may explain the 

trend towards poorer performance in the VR group. Indeed, the VR was a replica of 

the RE that the control group experienced- but no direction names or street names 

were included in the VR district meaning that subjects had fewer cues in this 

condition, which may have affected their performance or made it more difficult than 

real-world navigation. Furthermore, no details were given of the RE group and their 

motor skills compared to the VR group. In summary, current evidence for the use of 

VR interventions for improvement of route learning and spatial representations in TBI 

survivors is insufficient.   



Non-comparative studies 

The majority of studies yielded by our search were non-comparative. Whilst they 

collectively indicate the potential benefit of VR interventions for cognitive 

rehabilitation, they are insufficient to draw any firm conclusions due to their 

experimental design and lack of controls. One study 32, demonstrated visuo-spatial 

improvement on neuropsychological assessment in a patient with severe TBI after a 

PC videogame driving simulator based intervention. Interestingly, there was 

increased activation of hippocampal and parahippocampal regions on fMRI post-VR, 

raising the possibility of enhanced memory function. Another study 33 used a novel 

VR system with a robotic arm providing haptic cues in a target acquisition task, 

which was received well by users and a reduction in frequency of problematic 

behaviour was noticed during treatment. The same group 13 corroborated these 

findings and demonstrated potential benefits to attention in patients with severe TBI. 

Yip & Man 18 demonstrated the use of VR based community skills training in a group 

of patients with acquired brain injury, of which one had sustained TBI. Both 

improvement in skills acquisition and memory performance, and translation into real-

life task performance was observed. In summary, although non-comparative studies 

cannot fully validate the use of VR, several ideas such as the use of fMRI to 

correlate findings with the activation of particular regions of the brain, and the use of 

more advanced VR based interventions that are likely to be more engaging and 

subsequently maintain patient motivation, suggests that there are many promising 

future directions for the use of VR in cognitive rehabilitation.    

 

 

 



Limitations 

The use of VR for cognitive rehabilitation in TBI is a novel topic that is rapidly 

advancing in conjunction with technology. Therefore, there is limited evidence of its 

use in the literature, and there was insufficient data to perform any meta-analyses. 

Subsequently, case studies were also included to illustrate a more detailed account 

of current advances. VR interventions are diverse, ranging from simple game 

console based tasks 23 to the use of robotics 13,33. Thus, rapid advances over the 

years means that the use of technology across included studies is not truly uniform. 

One example of future directions for VR-based rehabilitation strategies is the Oculus 

Rift DK2 (Oculus, Menlo Park, CA, USA) system, a VR headset which provides 

higher degrees of immersion. Studies of its efficacy in VR-based approaches to 

neuropsychological assessment34 and balance 35 in non-pathological cohorts 

suggest that it may be an effective tool for use in TBI cohorts in future.   

 

Conclusions 

In conclusion, the use of VR for cognitive rehabilitation in patients with TBI appears 

to be a promising tool that could form a key component of the larger rehabilitation 

process. It allows the possibility for individualised treatment plans both in terms of 

content and pace. Since it may be more engaging than conventional rehabilitation, it 

is likely to be a more enjoyable experience for the patient and subsequently optimise 

improvement. However, several factors must be addressed in future studies: (i) 

differentiation between TBI severity to accurately assess VR efficacy, (ii) 

standardised neuropsychological assessment tools for specific cognitive parameters, 

(iii) development and testing of VR tools for assessment of cognition, (iv) use of 

performance validity should be addressed, (v) well-matched controls with equivalent 



non-VR interventions, (vi) assessing translation into real-life outcomes, and (vii) long 

term follow up to ensure positive effects are not transient.     

      

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1- Flowchart depicting multi-database literature search for of VR for cognitive rehabilitation in 

TBI patients 

 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traumatic brain injury 
TBI 
Brain injury 
Concussion 
Concussive injury 
 

Search terms 

Virtual reality 
Virtual environment 
Virtual game 
Virtual 
 
Cognitive impairment 
Cognitive rehabilitation 
Cognitive training 
 

Pubmed:   182 
Web of Science:   80 
Embase:     62 
 
Total:   324 

Potentially relevant articles included 
 

n = 9 

Duplicates, conference 
abstracts, non-English 
articles, and articles 
not fulfilling inclusion 
criteria excluded 
 
n=315  

Total articles included 
 

n = 13 
 

Included articles and 
review articles 
screened for 
appropriate 
references and other 
citing articles 
 
n=4 
 



Figure 2- This flow-chart summarizes methodology used for evaluation of VR 
interventions in retrieved studies.  
 

 

 

 
 
Table 1- levels of evidence (adapted from Oxford Centre for Evidence-based 
Medicine 2011)  
 
Level of 
Evidence 

Description 

1 Systematic reviews (with ‘homogeneous’ RCTs), individual high 
quality RCT (with ‘narrow’ confidence intervals) 

2 Systematic reviews (with ‘homogeneous’ cohort studies), individual 
low quality RCT, individual cohort studies 

3 Systematic reviews (with case-control studies), individual case control 
studies 

4 Case series, case reports, low quality case control studies 
 
 

 

 

Table 2- summarises studies included from literature search

VR 

intervention

Quantitative

Number of 
sessions

Duration per 
session

Total time 
period

Qualitative

Descriptive Methodology

Task-based
Game-

oriented
IADL-based

Extent of 
immersion



Study Participants TBI severity Cognitive 
parameters 

Virtual reality intervention Outcomes measured 
 Details Methodology Immersion 
 Task Game IADL Full Semi Non 

Grealy et 
al 1999 

13 patients who 
sustained severe 
TBI 1.7-178 
weeks prior, 
compared with 
>25 matched 
controls 
 

Severe Learning and 
memory 
 
Attention 

VR bike riding 
simulator 
 
12 sessions, 25 
mins each, 3 per 
week, 4 weeks 

 X  X   Significantly better than controls 
post-intervention tests of attention 
and learning 
 
Memory functions did not improve 

Lloyd et al 
2009 

8 patients with 
TBI sustained 
206±105 mths 
prior, errorful vs 
errorless learning 

paradigm in VE 

Unreported- 
inclusion criterion 
of evidence of 
memory deficits 

Route learning VE navigation 
task, control pad 
operated by 
experimenter in 
response to 
user command 
 
Demonstration 
trial, 2 learning 
trials, test trial    
 

X     X Significantly greater number of 
errors during route recall in 
errorful learning paradigm 
compared to errorless learning 
paradigm 

Yip & Man 
2009 

Adult male, 30 
months since 
injury (and three 
other patients 
post stroke) 

Unreported- 
inclusion criterion 
one or more 
cognitive deficits 
affecting 
community 
integration 

Task specific 
Transfer to real 
environment  
Skills acquisition 
Functional 
independence 
Global cognitive 
ability 
 

VR based 
community skills 
training 
 
10 sessions, 35-
40 mins each, 3 
per week 

  X   X Skills acquisition and memory 
performance improved 
 
Improvement in real-life task 
performance 

 
Cox et al 
2010 

 
Post-TBI military 
personnel- 6 
patients in VR 
group compared 
with 5 in control 

 
Unreported- 
participants 
already 
participating in 
rehabilitation 
programme for 
TBI  

 
Questionnaires 
on road rage and 
risky driving 
behaviour 

 
Ford T driving 
simulator 
 
4-6 sessions, 
60-90 mins each 
 

   
X 

 
X 

   
Significant reduction in road rage 
and risky driving in VR group only 
 
 

Gamito et 
al 2011 

20y male with 
severe TBI 
sustained 3 
months prior 

Severe Memory  
 
Attention 

Online 3D 
platform with VR 
simulation of 
ADL 
 

  X X   Significant increase in correct 
responses between initial and final 
PASAT assessment  



10 sessions 
 

Larson et 
al 2011 

18 participants 
aged 19-73y 
with severe TBI 
sustained 2-71 
weeks prior 

Severe Attention 
 
Subjective 
responses to VR 

VRROOM 
system with 
robotic arm 
providing haptic 
cues 
 
6 trial blocks per 
day, 4 mins 
each, 2 days 

X   X   15/18 users completed all blocks 
 
Frequency of problem behaviour 
declined during treatment 
 
Target acquisition time decreased 
over consecutive blocks 
 
Haptic cue (nudge) significantly 
aided target acquisition 

Caglio et al 
2012 

24y male, with 
moderate TBI 
sustained 1y 
prior, and 5 
months rehab 
unsuccessful 

Moderate Learning and 
memory 
 
Frontal executive 
function 
 

PC videogame 
driving simulator 
 
90 mins per 
session, 3 per 
week, 5 weeks 
 

 X    X Visuo-spatial improvement shown 
with neuropsychological 
assessment post-VR 
 
Increased activation of several 
brain regions on fMRI post-VR 

Sorita et al 
2012 

27 participants 
with moderate-
severe TBI, 
route learning in 
VE vs RE 
 

Moderate-severe Route learning 
 
Spatial 
representation 

VE on large 
video projector 
controlled with 
joystick 
 
 

X    X  Same pattern of route learning in 
both VE and RE 
 
Spatial representation similar 
between groups (RE group 
significantly better on scene 
arrangement test)  

Dvorkin et 
al 2013 

21 participants 
sustained severe 
TBI 10.3±15.6 
weeks prior 

Severe Attention 
 
Subjective 
responses to VR 

VRROOM 
system with 
robotic arm 
providing haptic 
cues 
 
6 trial blocks per 
day, 4 mins 
each, 2 days 

X   X   Well tolerated by 18/21 users, with 
improvements in behaviour 
 
Significant reduction in attention 
loss during a task 
 
Haptic nudge beneficial for 
learning 
 
Progressive improvement in target 
acquisition  



Jacoby et 
al 2013 

12 participants 
aged 19-55y 
sustained 
moderate-severe 
TBI, several with 
DAI, VR vs 
occupational 
therapy controls, 
6 per group 
 

Moderate-severe Executive 
function 
 
ADL performance 
and transfer to 
real life 

VMall  
 
10 sessions, 3-4 
per week 

  X  X  No significant differences but 
larger effect sizes in VR group 
suggest potential advantage 

Man et al 
2013 

40 participants 
aged 18-55y 
with mild-
moderate TBI, 
VR vs psycho-
education 
control, 20 per 
group 
 

Mild-moderate Problem solving 
 
Employment 
outcome at 
follow-up 

AI assisted 3D 
VR system with 
clerical task 
oriented content 
 
12 sessions, 20-
25 mins each 

  X X   VR group showed better 
performance on 
neuropsychological assessment 
post-intervention than control 
 
No difference in employment 
outcomes 

Yip & Man 
2013 

37 participants 
with brain injury 
acquired at least 
3 months prior, 
VR compared 
with reading/ 
games control 
 

Unreported Prospective 
memory 
 
Real life outcome 

PC based VR 
program for ADL 
 
12 sessions 

  X   X Significant changes in both VR 
based and real-life based outcome 
measures 

Simmons 
et al 2014 

4 participants 
with TBI (further 
8 post stroke) 

Unreported Executive 
function (and 
motor function) 
 
Independent 
living skill 
 

3D PreMotor 
exercise games 
 
 

X    X  Significant improvement shown by 
EFPT assessment 



Table 3- table summarising cognitive parameters tested in included studies 
 
Cognitive parameters Studies  

 
Learning and memory Grealy et al 1999, Yip & Man 2013, Caglio et al 

2012, Gamito et al 2011 
 

Attention Grealy et al 1999, Gamito et al 2011, Larson et al 
2011, Dvorkin et al 2013 
 

Executive function Simmons et al 2014, Jacoby et al 2013, Caglio et al 
2012 
 

Community skills Yip & Man 2009 
 

Problem solving  Man et al 2013 
 

Route learning Lloyd et al 2009, Sorita et al 2012 
 

Driving attitude Cox et al 2010 
  

 
 
 
Table 4- summarises study types and level of evidence of included studies from 
literature search 
 
Study  Type Level of 

Evidence 

Jacoby et al 2013 RCT 1 
Man et al 2013 RCT 1 
Cox et al 2010 RCT 2 
Grealy et al 1999 Comparative  2 
Yip & Man 2013 RCT 2 
Lloyd et al 2009 Comparative 3 
Sorita et al 2012 Comparative 3 
Yip & Man 2009 Non-comparative   4 
Gamito et al 2011 Case study 4 
Larson et al 2011 Non-comparative   4 
Caglio et al 2012 Case study 4 
Dvorkin et al 2013 Non-comparative   4 
Simmons et al 2014 Non-comparative   4 

 
 
 
 

 
 



Table 5- summarises neuropsychological tests used to assess cognitive function parameters across included studies 
 
 
Reference Cognitive function 

parameter 
Test Statistical Effect Time points 

Grealy et al 
1999 

Learning  Auditory verbal learning (Rey) 
Visual learning (AMIPB) 

F1, 8=7.48, p<0.05 Compared changes between 
pre- and immediate post-
intervention performance 
against control population 
mean (note: digit span 
excluded as scores from 
control population were 
skewed) 

Memory Logical memory learning (AMIPB) 
Complex figure tests (Rey) 

F1,11=0.14, p=0.71 

Attention Digit span (forward and backward) 
Digit symbol (WAIS-R) 
Trails A and B tests 

F2,18=5.93, p<0.05 

Lloyd et al 
2009 

Route learning Errorless and errorful learning condition 
paradigms 

t(20) = 2.631, p=0.016, partial 
eta2=0.267 

Errors during route recall on 
two different paradigms 
assessed in same  
participants- errorless 
learning more effective 

Yip & Man 
2009 

Community living skills Training software parameters 
Behavioural checklist for RE 
Self-efficacy questionnaire 
NSCE-CV 
Lawton IADL-CV 

No statistical tests, but improvement in 
all 4 cases across all parameters 
 

Pre- and immediate post-
intervention tests 

Cox et al 
2010 

Driving attitude Road Rage Questionnaire 
 

Pre: 27.2 ± 6.4, post: 23.6 ± 9.9 
p = 0.01  

Pre- and immediate post-
intervention measures, 
performance on simulator 
also improved significantly 
across several measured 
variables 

CARDS Pre: 27.2 ± 15.3, post: 11.2 ± 7 
p < 0.05 

Gamito et al 
2011 

Memory 
Attention 

PASAT assessment Trial 1: 
Pre vs int: χ2(1, 59) = 23.438;  
p < 0.001)  
Int vs post: (χ2(1, 59) = 41.667;  
p < 0.001)  
Trial 2: 
Pre vs int: (χ2(1, 59) = 4.356;  
p < 0.05)  
Int vs post: (χ2(1, 59) = 5.689;  

Pre-intervention (pre), 
intermediate (int), and 
immediate post-intervention 
(post) assessments 



p < 0.05)  
 

Larson et al 
2011 

Attention 
 

VR-adaptation of APT F(2,28)=3.925,  MSE=14.116,  p<0.031 
 

Target acquisition time 
recorded for first 23 trials of 
each block of 12 

Caglio et al 
2012 

Learning and memory Corsi block-tapping test 
Corsi’s supraspan test  
Auditory verbal learning (Rey) 
RBMT 

RAVLT immediate recall (z adjusted = 
1.99, p=0.05) 
Corsi’s supraspan test, delayed recall 
(z adjusted = 1.96, p = 0.05) 
Corsi’s supraspan test, immediate 
recall (z adjusted = 2.12, p = 0.05) 
Remaining were either non significant 
or insufficient data  

Pre-intervention, and 
immediate, 2 months, and 1 
year post-intervention 

Attentional-executive 
functioning 

Trail making test 
ADAS 

Sorita et al 
2012 

Route learning Error rate during route recall No significant effect of environment on 
learning 

Immediate and delayed route 
recall after route learning task 
in RE and VE 

Dvorkin et al 
2013 

Attention VR-based target acquisition task Between visits: 
 (F(1,17) = 20.2, p = 0.0003) 
Between blocks: 
 (F(5,85) = 8.95, p < 0.0001) 

12 blocks of trials over the 
course of 2 days, with target 
acquisition times measured at 
all points 

Jacoby et al 
2013 

Executive function Executive function performance test VR: 35.5% improvement in scores but 
not significant 
VR vs non-VR improvement:  
Z=-1.761, p=0.046, ES=0.51 
 

Pre- and immediate post-
intervention assessments 

RE transfer Multiple Errands Test- simplified 
version 

VR: 46.2% improvement in scores but 
not significant 
VR vs non-VR improvement:  
Z=-1.761, p=0.046, ES=0.51 

Man et al 
2013 

Problem solving Wisconsin Card Sorting Test 
Tower of London test 
Vocational Cognitive Rating Scale 

WCST-% errors (p=0.02) 
WCST-% conceptual level response 
(p<0.01) 
Remaining non significant 

Pre and immediate post-
intervention assessment and 
compared effect size between 
VR and control 

Yip & Man 
2013 

Prospective memory VR based memory test 
Behavioural checklist for RE 
CAMPROMT-CV 
Hong Kong List Learning Test 
Frontal Assessment Battery 

Significant differences in real life 
behavioural checklist, HKLLT, FAB, 
WFT-CV and CTT 

Pre- and 1 week includepost-
intervention assessments, 
and comparisons between VR 
and control groups 



World Fluency Test- Chinese version 
Colours Trail Test 
CIQ-CV 
Self efficacy questionnaire 

Simmons et 
al 2014 

Executive function Executive function performance test Significant improvement in 3 of 4 
components of EFPT-skill scores and 
in 1 of 4 components of EFPT-task 
scores 

Pre- and immediate post-
intervention measurements 

 
 
Abbreviations: ADAS- Alzheimer’s disease assessment scale; AMIPB- Adult Memory and information Processing Battery; APT- 

attention process training; CAMPROMT-CV- Cambridge Prospective Memory Test- Chinese Version; CARDS- Cox Assessment of 

Risky Driving Scale; CIQ-CV- Chinese Version of the Community Integration Questionnaire; CTT- Colour Trails Test; FAB- frontal 

assessment battery; HKLLT- Hong Kong List Learning Test; Lawton IADL-CV- Lawton Instrumental Activities of Daily Living Scale- 

Chinese Version; NCSE-CV- Neurobehavioural Cognitive Status Examination-Chinese Version; PASAT- Paced Auditory Serial 

Addition Task; RBMT- Rivermead Behavioural Memory Test; WAIS-R- revised Wechsler Adult Intelligence Scale; WCST- 

Wisconsin Card Sorting Test; WFT-CV- Word Fluency Test- Chinese Version; RE- real environment. 
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