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Genetic risk for Alzheimer’s disease is
concentrated in specific macrophage and
microglial transcriptional networks
Katherine E. Tansey1, Darren Cameron2 and Matthew J. Hill2,3*

Abstract

Background: Genome-wide association studies of Alzheimer’s disease (AD) have identified a number of significant
risk loci, the majority of which lie in non-coding regions of the genome. The lack of causal alleles and considerable
polygenicity remains a significant barrier to translation into mechanistic understanding. This includes identifying
causal variants and the cell/tissue types in which they operate. A fuller understanding of the cell types and
transcriptional networks involved in AD genetic risk mechanisms will provide important insights into pathogenesis.

Methods: We assessed the significance of the overlap between genome-wide significant AD risk variants and sites
of open chromatin from data sets representing diverse tissue types. We then focussed on macrophages and
microglia to investigate the role of open chromatin sites containing motifs for specific transcription factors.
Partitioned heritability using LDscore regression was used to investigate the contribution of specific macrophage
and microglia transcription factor motif-containing open chromatin sites to the heritability of AD.

Results: AD risk single nucleotide polymorphisms (SNPs) are preferentially located at sites of open chromatin in
immune cells, particularly monocytes (z score = 4.43; corrected P = 5.88 × 10− 3). Similar enrichments are observed
for macrophages (z score = 4.10; corrected P < 2.40 × 10− 3) and microglia (z score = 4.34, corrected P = 0.011). In
both macrophages and microglia, AD risk variants are enriched at a subset of open chromatin sites that contain DNA
binding motifs for specific transcription factors, e.g. SPI1 and MEF2. Genetic variation at many of these motif-containing
sites also mediate a substantial proportion of AD heritability, with SPI1-containing sites capturing the majority of the
common variant SNP-chip heritability (microglia enrichment = 16.28, corrected enrichment P = 0.0044).

Conclusions: AD risk alleles plausibly operate in immune cells, including microglia, and are concentrated in specific
transcriptional networks. Combined with primary genetic association results, the SPI1 and MEF2 transcriptional
networks appear central to AD risk mechanisms. Investigation of transcription factors targeting AD risk SNP associated
regulatory elements could provide powerful insights into the molecular processes affected by AD polygenic risk. More
broadly, our findings support a model of polygenic disease risk that arises from variants located in specific
transcriptional networks.
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Background
Genome-wide association studies (GWAS) of Alzheimer’s
disease (AD) have identified multiple loci containing com-
mon variant risk alleles [1]. These findings offer new
routes to understanding disease biology that could be used
to design novel therapies. However, like other complex
diseases and traits, the majority of these risk alleles are
located in non-coding regions of the genome [2], making
immediate functional interpretation difficult. Furthermore,
at each locus the risk signal is often associated with mul-
tiple variants in strong linkage disequilibrium (LD), any of
which could credibly be the causal variant(s). Neverthe-
less, analytical approaches, such as pathway analysis [3]
and integration with chromatin annotations [4, 5], have
begun to identify the cell types and processes that are
likely to be disrupted by AD risk alleles. Strikingly, these
complementary approaches have identified immune cells
and pathways as the likely effectors of AD genetic risk.
Despite these advances, the full repertoire of potentially
causal cell types and the molecular mechanisms through
which AD risk variants operate have yet to be fully investi-
gated. This includes the identification of functional vari-
ants at genome-wide significant risk loci as well as the
mechanisms through which polygenic risk operates.
Of these approaches, integration of genetic association

data with the growing amount of functional genomic an-
notations (e.g. ENCODE [6] and Roadmap Epigenomics
[7]) have the potential to identify: (1) causal non-coding
risk alleles, (2) the mechanisms by which they operate
and (3) the cell types in which they function [8, 9].
While risk alleles at genome-wide significant loci repre-
sent robust findings suitable for biological characterisa-
tion, it is now known that thousands of variants
throughout the genome contribute to disease heritability
[10]. Recently developed analytical methods, such as
stratified LDscore regression [11, 12], can use these
annotations to investigate the relevance of specific cell
types to the heritability of a disease of interest, extending
analysis beyond genome-wide significant loci to capture
polygenic risk mechanisms.
Several technologies now exist for genome-wide

identification of non-coding elements with regulatory po-
tential. These range from the study of post-translational
modifications of histones to the resolution of binding sites
for specific transcription factors; collectively termed chro-
matin immunoprecipitation (ChIP). Methods that rely on
discriminating local chromatin structure, such as DNase-
seq [13] and assay for transposase-accessible chromatin
using sequencing (ATAC-seq) [14], can identify potential
transcription factor binding sites without the need for per-
forming multiple transcription factor ChIP experiments.
These open chromatin regions (OCRs) display a high
degree of cell-type specificity, defining promoters of
expressed genes as well as distal regulatory elements [13],

and are enriched for DNA motifs recognised by transcrip-
tion factors important for determining cell lineage and
function [15]. Although the integration of chromatin
annotations with GWAS results has been successful in
identifying disease-relevant tissues [2, 8, 16], few, if any,
have attempted to attribute genome-wide polygenic risk
mechanisms to specific transcription factor networks.
We, therefore, reasoned that the integration of results

from GWAS of AD with OCRs from multiple cell types
would pinpoint disease relevant cell types and link AD
genetic risk variants to specific transcriptional networks
active in those cell types.

Methods
Data processing
DNase hypersensitivity sites (DHSs) and histone ChIP-seq
peaks (H3K4me3, H3K4me1 and H3K27ac) were gener-
ated by the Roadmap Epigenomics Project [7]. Monocyte
and macrophage DNase-seq data were generated by
Blueprint (http://dcc.blueprint-epigenome.eu/#/home). All
data sets had been mapped to hg19 (GRCh37). Data were
processed using BEDTools [17]. Cancer-derived cells lines
present in the Epigenomics Roadmap data set were
removed before further analyses. Microglia ATAC-seq
data [18] were obtained from dbGaP Study Accession:
phs001373.v1.p1. Data were aligned to hg19 (GRCh37)
using bwa [19] and peaks were called using hotspot [20],
following the protocol described by the Blueprint
Consortium.

Enrichment testing for the overlap between AD risk
variants and open chromatin regions
Genome-wide significant (P < 5 × 10− 8) AD risk
variants [(GWAS index single nucleotide polymorphisms
(SNPs)] identified by Lambert et al. [1] were downloaded
from the GWAS catalogue [21]. Variants located in the
APOE and major histocompatibility complex (MHC) re-
gions were excluded, resulting in 18 GWAS index SNPs.
For the remaining GWAS index SNPs, 10,000 matched
sets of variants were generated using SNPsnap [22], which
matches SNPs based on allele frequency, number of SNPs
in LD, distance to nearest gene and gene density. Variants
in high LD (r2 > 0.8) with each SNP (GWAS index SNPs
and matched sets) were extracted from the 1000 Genomes
Project (phase 3). The resulting 10,001 SNP sets were then
intersected with OCRs and histone peaks using BEDTools.
The number of overlapping loci was calculated for each
set and the deviation from the background matched sets
was calculated as a z score. P values were calculated by
direct observation of the number of background matched
SNPs sets that exceeded the overlap of the GWAS index
SNP set (minimum possible uncorrected P value is there-
fore 1 × 10− 4).
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De novo motif analysis and assignment to open
chromatin regions
Macrophage DHSs for the 16 data sets from the
BLUEPRINT Project were merged to form a consolidated
data set using BEDTools, run with default parameters.
Microglia ATAC peaks for the 12 donors were similarly
merged to form a consolidated set. The consolidated sets
were then used as input for de novo motif discovery using
HOMER, [23] with default parameters. The resulting mo-
tifs were then assigned to OCRs using the HOMER com-
mand findMotifs.pl with the ‘-find’ option enabled.

Partitioned heritability using LDscore regression
LDscore regression [11, 12] was used to partition AD gen-
etic heritability by motif-containing sites identified as being
enriched at genome-wide significant loci (e.g. CEBPA,
EGR1, MEF2A and SPI1 for macrophages), following the
previously described methodology [12]. AD genome-wide
associated results were downloaded from http://web.
pasteur-lille.fr/en/recherche/u744/igap/igap_download.php,
and only phase 1 data were used. The no-motif-containing
set was included as a negative control. Sites were extended
by ±500 base pairs, consistent with previous partitioning
heritability studies [12]. LDscore files were made for each
specific annotation of interest using the open source soft-
ware available here: https://github.com/bulik/ldsc/wiki.
The MHC region (chr6:26,000–34,000 kb) and APOE re-
gion (chr19:44,400–46,500 kb) were removed. The results
remain significant with the inclusion of these regions (data
not shown). Each annotation was added to the baseline
model independently, creating five separate models. The
baseline model includes 24 non-cell-specific annotations
that cover a range of DNA features, such as coding, 3' un-
translated region, promoter, intronic, H3K4me1 marks,
H3K4me3 marks, H3K9ac marks, H3K27ac marks, DNase
I hypersensitivity sites, chromHMM and Segway predic-
tions, regions conserved in mammals, super-enhancers
and FANTOM5 enhancers (please see Finucane et al. [12]
for more information about the baseline model).

Web resources
Software:
LDscore: https://github.com/bulik/ldsc/wiki
HOMER: http://homer.ucsd.edu/homer/motif/index.html
SNPsnap: https://data.broadinstitute.org/mpg/snpsnap/
BEDTools: http://bedtools.readthedocs.io/en/latest/
Data availability:
Data generated by the Roadmap Epigenomics Project

were downloaded from http://egg2.wustl.edu/roadmap/
data/byFileType/peaks/consolidated/broadPeak/DNase/
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/

consolidated/broadPeak/
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/

consolidated/narrowPeak/

Blueprint monocyte and macrophage DHSs were
downloaded from http://ftp.ebi.ac.uk/pub/databases/
blueprint/data/homo_sapiens/GRCh37/
AD genome-wide associated results were downloaded

from http://web.pasteur-lille.fr/en/recherche/u744/igap/
igap_download.php
1000 Genomes data were downloaded from http://

www.internationalgenome.org/about#ProjectSamples
Microglia ATAC-seq data were obtained from: https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs001373.v1.p1

Results
Enrichment of AD risk variants at DNase hypersensitivity
sites across tissue/cell types
We assessed whether AD risk variants (index SNPs and
variants in LD at r2 > 0.8) were preferentially located at
DHSs from a panel of 38 tissues profiled by the Road-
map Epigenomics Consortium [7]. Three cell/tissue
types remained significant after correcting for all tests of
enrichment (DNase and the three histone modifications)
using the method described by Benjamini and Hochberg
[24] (Fig. 1). Of these, two were immune cell types
(primary haematopoietic stem cells G-CSF-mobilised,
z score = 4.75, corrected P = 4.2 × 10− 3; and primary
monocytes from peripheral blood, z score 4.43, corrected
P = 5.9 × 10− 3). Several other immune cell types ranked
highly in the analysis with four of the five most enriched
tissue types being immune cells. However, these did not
remain significant after correction for multiple testing.
Only two brain samples, both foetal, were available in this
DHS data set, and neither showed significant enrichment
after correction for multiple testing (z score = 2.63 and
1.40, uncorrected P = 0.011 and 0.140). Full details of the
results for each sample can be found in Additional file 1:
Table S1. To confirm our cell/tissue-type enrichments, we
also performed enrichment analyses using regions marked
by the histone modifications H3K27ac, H3K4me1 and
H4K3me3. For all three histone modifications, the largest
enrichment was observed in monocytes (Additional file 2:
Table S2, Additional file 3: Table S3 and Additional file 4:
Table S4). Although several immune cell types were sig-
nificantly enriched across these analyses, only monocytes
were significant in all four chromatin feature analyses.

Enrichment of AD risk variants at DNase hypersensitive
sites in monocytes and macrophages
Given that data generated from the Roadmap Epige-
nomics Consortium are derived from a limited number
of donors, we sought to replicate these findings and test
additional immune cell types. DNase hypersensitivity
data from 16 macrophage and seven monocyte samples
were available from the Blueprint Epigenome Project
(http://dcc.blueprint-epigenome.eu/#/home). Using these
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data, enrichment z scores for the overlap with AD risk
variants ranged from 3.00 to 5.07 (mean = 4.12) for the
seven monocyte samples, and 1.98 to 5.32 (mean = 3.88)
for the 16 macrophage samples (Fig. 2). In total, 14 of
the 23 samples tested were significant after correction
for multiple testing using the Bonferroni method to cor-
rect for 37 tests (35 monocyte/macrophage/microglia
samples plus the two consolidated sets), replicating the
enrichment of AD variants at immune cell DHSs, and
identifying macrophages as a potential cell type affected
by AD genetic risk.
To reduce inconsistencies arising from selecting indi-

vidual donor samples, a consolidated set of macrophage
DHSs was generated by merging the peaks from the 16
different data files. AD risk variants were similarly
enriched at DHSs in this consolidated set (z score =
4.10, P < 1 × 10− 4, corrected P < 3.7 × 10− 3), with 13 of
the 18 loci tested having at least one overlapping SNP
(Fig. 3). At these 13 loci, the number of SNPs overlap-
ping macrophage DHSs ranges from 1 to 11 (Additional
file 5: Table S5 and Additional file 6: Figure S1), indicat-
ing multiple potential causal alleles. These loci contain
genes with both overt immune cell functions (e.g.
INPP5D) and no known immune-cell-specific activity
(e.g. BIN1 and PICALM).

Enrichment of AD risk variants at open chromatin regions
in microglia
We obtained publicly available human microglia open
chromatin (ATAC-seq) data from 12 donors [18] to in-
vestigate the role of the resident brain macrophage in
AD genetic risk mechanisms. We observed enrichment z
scores ranging from 2.77 to 5.25 (mean = 4.07). In total,
nine donor samples were significant after Bonferroni
correction for the 37 tests (35 monocyte/macrophage/
microglia samples plus the two consolidated sets). AD risk
variants were also enriched at microglia ATAC-seq peaks
using the consolidated peak set (z score = 4.34, corrected
P = 0.011), with a total of 11 loci containing at least one
SNP that overlapped an ATAC-seq peak (Fig. 3).
Additional file 7: Table S6 contains a full list of
overlapping SNPs and gene annotations.

Enrichment of AD risk SNPs at open chromatin regions
containing specific transcription factor motifs
We further investigated the localisation of AD risk vari-
ants to specific subsets of macrophage and microglia
OCRs defined by the presence of specific transcription
factor DNA binding motifs. De novo motif analysis of
the consolidated sets of macrophage DHS or microglia
ATAC-seq peaks was performed using HOMER [23].

Fig. 1 Overlap between genome-wide significant AD risk variants and DNase hypersensitivity sites from 38 tissues profiled by the Roadmap
Epigenomics Project. AD risk variants and 10,000 sets of matched SNPs were intersected with DNase hypersensitivity sites. Z scores were calculated for
the AD risk variants set for each tissue type. The x-axis is the z score and the y-axis the tissue types. Box plots indicate the distribution of overlap from
the 10,000 background matched SNP sets. Tissue have been coded as blood (green), brain (blue) and other (orange). Red circles are the z scores for
the AD risk variants set. P values were calculated from the observed overlap of the 10,000 background matched SNP sets. P values are corrected using
the method described by Benjamini and Hochberg [24]. AD Alzheimer’s disease, SNP single nucleotide polymorphism. ***P < 0.005, **P < 0.01
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Fig. 3 Overlap between genome-wide significant AD risk variants and open chromatin regions from the consolidated set of (a) macrophage and
(b) microglia samples. Grey histogram bars are the distribution of overlap from the 10,000 background matched SNP sets. The vertical black line is the
number of overlapping loci from the AD risk variants set. AD Alzheimer’s disease, SNP single-nucleotide polymorphism

Fig. 2 Overlap between genome-wide significant AD risk variants and open chromatin sites identified in monocyte, macrophage and microglia
samples. AD risk variants and 10,000 sets of matched SNPs were intersected with open chromatin regions. z scores were calculated for the AD risk
variants set for each tissue type. The x-axis is the z score and the y-axis the cell type. Box plots indicate the distribution of overlap from the 10,000
background matched SNP sets. Red circles are the z scores for the AD risk variants set. P values were calculated from the observed overlap of the
10,000 background matched SNP sets. P values have been corrected for 37 tests. AD Alzheimer’s disease, SNP single-nucleotide polymorphism.
***P < 0.005, **P < 0.01, *P < 0.05
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In the macrophage DHS, this identified 15 enriched
motifs (Additional file 8: Table S7), including established
regulators of immune cell function (e.g. SPI1 and
NFKB). We then grouped DHSs according to the pres-
ence or absence of a motif for each of the 15 motifs
identified, generating 16 subsets, one for each specific
transcription factor motif and one with DHSs that
lacked any of these motifs. Two motif sets were removed
from the analysis as fewer than 1000 of the 10,000 back-
ground matched SNPs showed any overlap. AD risk vari-
ants were significantly enriched after correction for
multiple testing using the Bonferroni method at DHSs
containing the motifs SPI1 (PU.1) (z score = 5.53,
corrected P < 1.30 × 10− 3), EGR1 (z score = 4.40, corrected
P < 1.30 × 10− 3), MEF2A (z score = 4.08, corrected P =
0.023) or CEBPA (z score = 3.68, corrected P = 0.013)
(Fig. 4a). The SPI1 (PU.1) motif set captured all 13 of the
loci that showed an overlap with the consolidated macro-
phage DHS set. The number of SNPs overlapping the
SPI1 motif-containing DHS at each locus ranged from 1
to 7, implicating multiple potential causal SNPs.
De novo motif analysis of the microglia ATAC-seq

peaks identified 19 motifs (Additional file 9: Table S8),
including known lineage-determining factors such as
SPI1 and IRF [25]. Sets of motif-containing peaks were
then generated as described above. After intersecting

with SNP data, one motif set was removed from the ana-
lysis as fewer than 1000 of the 10,000 background
matched SNPs showed any overlap. AD risk variants were
significantly enriched at ATAC-seq peaks containing mo-
tifs for RUNX (z score = 5.22, corrected P < 1.9 × 10− 3),
SPI1 (PU.1) (z score = 5.02, corrected P < 1.9 × 10− 3) and
Spdef (z score = 3.80, corrected P = 0.027) after correction
for multiple testing using the Bonferroni method (Fig. 4b).
Like the macrophages, the SPI1 (PU.1) set captured the
largest number of loci, accounting for nine of the 11 over-
laps identified using all ATAC-seq peaks in the consoli-
dated set. We validated our motif-based findings using
SPI1 (PU.1) ChIP-seq data from human microglia [18].
AD risk variants were significantly enriched at these
experimentally identified SPI1 (PU.1) bound regions
(z score = 4.62, P = 2 × 10− 4; Additional file 6: Figure S2).
For both macrophages and microglia, SPI1 (PU.1)

motif-containing OCRs were significantly enriched,
indicating that this class of OCRs is of relevance to AD
genetic risk mechanisms in both cell types. CEBP and
MEF2 motif-containing OCRs survived correction for
multiple testing in macrophages and were nominally sig-
nificant (uncorrected P < 0.05) in microglia. Several motif-
containing OCR sets were tested for only one cell type as
de novo motif analysis did not identify them in the other,
e.g. EGR1 for macrophages and RUNX for microglia.

Fig. 4 Overlap between genome-wide significant AD risk variants and transcription factor motif-containing open chromatin sites from the consolidated
macrophage (a) and microglia (b) data. AD risk variants and 10,000 sets of matched SNPs were intersected with transcription factor motif-containing
open chromatin region sets and one no-motif-containing set for each cell type. The x-axis is the z score and the y-axis is the transcription factor motif.
Box plots indicate the distribution of overlap from the 10,000 background matched SNP sets. Red circles are the z scores for the AD risk variant set.
P values were calculated from the observed overlap of the 10,000 background matched sets. P values have been adjusted within each cell type using
the Bonferroni correction for the number of motif sets tested. AD Alzheimer’s disease, SNP single-nucleotide polymorphism. ***P < 0.005, *P < 0.05
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Common variant heritability of AD is enriched at specific
transcription factor motif-containing open chromatin
regions
Although many genome-wide significant AD risk loci
have been identified, they account for a small proportion
of the genetic heritability. Instead, thousands of variants
across the entire genome collectively contribute to the
polygenic inheritance of AD. We reasoned that tran-
scription factor motif-containing OCRs identified as be-
ing enriched at genome-wide significant loci would also
be important for mediating polygenic inheritance.
Therefore, we partitioned AD heritability by macrophage
or microglia motif sets using LDscore regression [12].
Consistent with the macrophage SNP enrichment ana-

lysis of genome-wide significant loci, AD heritability was
significantly enriched at variants in the DHS motif sets
SPI1 (PU.1) (enrichment = 8.93, corrected enrichment
P = 0.012), MEF2A (enrichment = 19.22, corrected enrich-
ment P = 0.022), CEBPA (enrichment = 9.72, corrected en-
richment P = 3.43 × 10− 3) and EGR1 (enrichment = 14.48,
corrected enrichment P = 5.14 × 10− 4). P values for all
the transcription factors tested withstood Bonferroni
correction for multiple testing (Table 1). Importantly,
the no-motif DHS set was not significantly enriched
(corrected enrichment P = 0.625) (Table 1). Additional
file 10: Table S9 contains the full results.
In microglia, AD heritability was significantly enriched at

variants in the OCR motif sets SPI1 (PU.1) (enrichment =
16.28, corrected enrichment P = 4.39 × 10− 3) and Spdef
(enrichment = 19.92, corrected enrichment P = 0.040). The
RUNX OCR motif set was not significantly enriched
(enrichment = 14.09, correct enrichment P = 0.412), nor
was the no-motif set (enrichment = 20.27, corrected
enrichment P = 0.168). P values were corrected using
Bonferroni correction for multiple testing accounting for
the number of tests undertaken within each cell type
(Table 2). Additional file 11: Table S10 contains the full
results. The enrichment of AD heritability at variants in
SPI1 motif-containing OCRs was validated using the

SPI1 ChIP-seq data. Variants at these SPI1 bound regions
were also substantially enriched for AD heritability (enrich-
ment = 20.56, enrichment P = 6.9 × 10–4).

Discussion
Although GWAS have identified thousands of variants
that influence diseases and traits, the majority are
located in non-coding regions of the genome [2]. Com-
bined with small effect sizes, the biological interpretation
of these results is challenging. We have integrated re-
sults from GWAS of AD with OCRs identified in differ-
ent tissue types, first by using genome-wide significant
loci and then extending our analyses to genome-wide
measurements of partitioned heritability. Through this
two-stage approach, we identify alleles of potential func-
tional significance that are amenable to further mechan-
istic investigation, and show variants contributing to
polygenic inheritance are likely to operate through
shared mechanisms. Specifically, these analyses identified
macrophage and microglia transcriptional networks in
which both genome-wide significant alleles and poly-
genic risk for AD are enriched.
The localisation of AD risk variants to DHSs from

multiple immune cell types assayed by the Epigenomics
Roadmap Project highlights their potential importance
in mediating the effects of AD genetic risk, and is in
agreement with other studies [4, 5]. Our analyses using
histone modifications that are indicative of active gene
regulatory elements, also strongly supports the role of
immune cells, particularly monocytes, in AD genetic risk
mechanisms. Enrichment at all three histone modifica-
tions tested suggests risk mechanisms involve multiple
types of regulatory elements (e.g. promoters and en-
hancers). Combined with results generated using data
from the Blueprint Epigenome Project, we provide repli-
cated evidence for the enrichment of AD risk variants at
monocyte DHSs. A similar enrichment is also observed
at macrophage DHSs, a cell type derived from mono-
cytes that have invaded a target tissue. Finally, we show
that microglia are also plausibly linked to AD genetic
risk mechanisms via regions of open chromatin. Unlike

Table 1 Enrichment of AD heritability at variants within EGR1,
CEBPA, MEF2A, SPI1 and no-motif-containing macrophage
DNase hypersensitivity sites

DHS motif set Enrichment Enrichment P value Corrected P value

EGR1 14.481 1.03 × 10− 4 5.14 × 10− 4

CEBPA 9.716 6.86 × 10− 4 3.43 × 10−3

SPI1 8.933 2.43 × 10−3 0.012

MEF2A 19.222 4.46 × 10−3 0.022

No-motif 7.661 0.125 0.623

AD heritability was partitioned by transcription factor motif-containing DNase
hypersensitivity sites using LDscore regression [12]. AD heritability was
significantly enriched (after correcting for multiple testing) at all four transcription
factor motif-containing DNase hypersensitivity sites but not the no-motif set
AD Alzheimer’s disease

Table 2 Enrichment of AD heritability at variants within SPI1,
Spdef, RUNX and no-motif-containing microglia ATAC-seq peaks

Motif set Enrichment Enrichment P value Corrected P value

SPI1 16.28 1.10 × 10−3 4.39 × 10− 3

Spdef 19.92 9.93 × 10− 3 0.040

No-motif 20.27 0.042 0.168

RUNX 14.09 0.103 0.412

AD heritability was partitioned by transcription factor motif-containing
ATAC-seq peaks using LDscore regression [12]. AD heritability was significantly
enriched (after correcting for multiple testing) at SPI1 and Spdef transcription
factor motif-containing ATAC-seq peaks but not the RUNX or no motif sets
AD Alzheimer’s disease
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studies of post-mortem material, where cause cannot
easily be separated from consequence, genetic associa-
tions do not suffer from problems of reverse causation.
Therefore, our findings implicate immune cell dysfunc-
tion as a causal factor in AD risk. Given the extensive
overlap between regulatory elements in related cell
types, it is not currently possible to identify a single
causal immune cell type and we cannot exclude the
involvement of multiple cell types in AD risk mechanisms.
However, the location of microglia in the brain positions
them as the likely causal candidates.
In contrast to the significant enrichment at immune

cell DHSs, AD risk variants were not enriched at brain
DHSs identified using bulk tissue. However, DHSs data
from the Epigenomics Roadmap Project contains only
two brain samples, both foetal. The enrichment at
microglial OCRs suggests that they are the plausible
brain cell type in which AD risk mechanisms operate,
and that profiles from bulk tissue suffer from lack of
cell-type specificity. It is necessary to investigate add-
itional brain data as they become available, particularly
those that can resolve cell-type specific information [26].
It should also be noted that the currently available data
are primarily derived from healthy donors under basal
conditions. To investigate the gene regulatory mecha-
nisms underlying genetic disease risk fully, it may be ne-
cessary to investigate cells under a variety of conditions,
including those thought to be environmental risk factors
for disease.
Consistent with gene-based pathway analysis of AD

GWAS [27, 28], these loci harbour genes such as PTK2B
and INPP5D that encode for proteins with recognised
immune functions and have immune cell-type enriched
expression. However, it is at the level of DNA regulatory
elements that tissue-specific risk mechanisms are gener-
ated. Indeed, our analysis identifies a number of ubiqui-
tously expressed genes (e.g. BIN1 and CD2AP) at which
AD associated risk variation could credibly operate in
immune cells, including microglia. Therefore, the num-
ber of AD risk loci that impact on immune cell function
is likely to be larger than that captured by current gene-
based pathway annotation methods. It is now important
to identify the biological processes that are disrupted by
AD risk variants in immune cells.
Of the 18 genome-wide significant loci tested, 13 have

at least one variant located in a macrophage DHS and
11 in a microglial OCR, indicating that the majority of
AD risk loci plausibly operate to alter gene expression in
these cells. At most of these loci, more than one SNP
overlapped an OCR, suggesting that individual risk loci
are likely to harbour multiple functional variants. By
focusing on OCRs containing transcription factor motifs,
the number of overlapping SNPs at each locus is re-
duced. For example, in microglia, eight of the 11 loci

contain three or fewer SNPs overlapping a SPI1 motif-
containing OCR. These variants can, therefore, be priori-
tised for further molecular characterisation.
Having established an enrichment of AD risk variants

at macrophage and microglia OCRs, we investigated
their localisation to OCRs containing motifs for specific
transcription factors. Within a given cell type, thousands
of transcriptional regulators contribute to the control of
gene expression, but master regulators, often cell type
specific, can be recovered by a motif analysis of regula-
tory element sequences. In both macrophage and micro-
glia, AD risk variants were enriched at OCRs containing
specific transcription factor motifs, supporting the hy-
pothesis that risk variants are localised to specific tran-
scription factor targeted OCRs, including experimentally
determined SPI1 bound regions in microglia.
Of particular interest is the enrichment of AD risk

SNPs at SPI1 and MEF2A motif-containing OCRs. Gen-
etic variants at, or in close proximity to, SPI1 and
MEF2C (HOMER reports that the MEF2C and MEF2A
motifs have a similarity score of 0.94) have been identi-
fied as significant AD risk loci [1, 29]. Impaired tran-
scriptional control by these factors, either through
altered gene expression in cis or via disrupted DNA
binding due to genetic variants at target sites, is likely to
play a central role in AD genetic risk mechanisms. The
importance of variants in these motif-containing OCRs
extends beyond those reaching genome-wide sig-
nificance, providing evidence that the thousands of
subthreshold variants contributing to polygenic risk
collectively operate by similar mechanisms. Although
enrichment at these sites is large (~9–19 fold), and ac-
count for a substantial proportion of the total SNP-chip
heritability, the P values reported are weaker than those
observed in analyses of some other diseases using chro-
matin features [12]. This is most likely due to the low
SNP-chip heritability of AD as calculated by LDscore re-
gression (~7%, http://ldsc.broadinstitute.org/lookup/).
GWAS data from larger cohorts will be important for de-
fining risk mechanisms at increased molecular resolution.
Similarly, the identification of transcription factor motifs
from studies of open chromatin derived from additional
methods will reduce potential single source biases.
More generally, our results support a model of poly-

genic disease risk that is enriched at defined transcrip-
tional networks operating in cell types relevant to
disease. For other complex disorders such as type 2 dia-
betes, genome-wide significant risk variants have been
shown to localise to specific transcription factor binding
sites in islet cells [30, 31], but the extent to which vari-
ants in these binding sites contribute to polygenic inher-
itance was not investigated. We show that polygenic risk
arising from non-coding variation is localised to specific
transcription factor networks. For AD, this is most
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prominent for a potential SPI1-driven network, consist-
ent with a targeted investigation [32].
SPI1 encodes a transcription factor known to be critical

for the development and function of haematopoietic cell
lineages [33], including microglia [25]. Decreased expres-
sion of SPI1 and CEBPA (also identified through motif en-
richment analysis in macrophages) is observed after a
reduction in AD-like pathology and behaviour in APPswe/
PSEN1dE9 mice following pharmacological inhibition of
the receptor CSF1R [34]. Therefore, our results link poly-
genic AD risk mechanisms to transcriptional networks
that have therapeutic validity. The identification of up-
stream regulators of these transcription factors may yield
novel targets that are important for AD therapies.

Conclusions
In summary, integration of GWAS results with sites of
open chromatin identifies immune cells as likely mediators
of common variant genetic risk for AD. The majority of
genome-wide significant AD risk loci plausibly operate in
peripheral monocytes, macrophages and/or microglia, and
we identify candidate SNPs at these loci suitable for tar-
geted mechanistic studies based on shared OCR annota-
tions. Within open chromatin sites, those containing
specific DNA motifs drive this enrichment. Similarly, gen-
etic variants at these sites capture a substantial proportion
of the AD common variant SNP-chip heritability, ~67% for
the SPI1 targeted sites, increasing the molecular resolution
of AD genetic risk mechanisms from cell type to transcrip-
tional networks. We provide evidence for the causal role of
microglia in AD pathogenesis and therefore, a parsimoni-
ous explanation for the involvement of immune cells in
AD risk mechanisms. Furthermore, we establish that the
thousands of variants contributing to AD polygenic risk
are enriched at specific macrophage/microglial transcrip-
tional networks, placing them in tangible biological path-
ways amenable to future mechanistic studies.
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