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Abstract

 Acquired resistance to endocrine therapy is a major limiting factor for their clinical

effectiveness, resulting in disease relapse and an associated poor prognosis. Acquired

resistance is also associated with the development of an invasive and migratory phenotype

in vitro that may promote metastatic spread in vivo of which bone is the most frequent

site. However, it is not currently known whether endocrine resistance affects the ability

of breast cancer cells to modulate bone cell function important in establishing bone

metastases or whether a resistant phenotype alters sensitivity to agents commonly used to

treat bone metastasis such as bisphosphonates. Thus, this thesis aimed to explore the bone

cell modulatory function of endocrine resistant and sensitive breast cancer cells along

with their sensitivity to the bisphosphonate, zoledronic acid.

 This thesis demonstrated that breast cancer cells were able to directly induce osteoclast

differentiation from both murine and human precursor cells. Importantly, this effect was

more prevalent in tamoxifen resistant and triple negative breast cancer subtypes. Our data

also suggested that the breast cancer-mediated osteoclastogenic effect involved Src

kinase, whilst bisphosphonates acted as anti-tumour agents in tamoxifen resistant cells

through inhibition of EGFR/AKT/mTOR pathway.

In conclusion, this thesis suggests that acquisition of endocrine resistance confers a

bone modulatory ability to breast cancer cells that may contribute to the development of

bone metastases. However, this thesis reports the novel finding that acquired endocrine

resistance augments the sensitivity of breast cancer cells to bisphosphonates, thus

representing an opportunity to target resistant disease clinically.
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1. General Introduction
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1.1 Breast cancer epidemiology and risk factors

 Breast cancer is the most frequently diagnosed malignancy in women and the

second most common cause of death in patients with cancer, accounting for ~ 23% of

all cancer cases (Ban & Godellas 2014). Specifically, it is estimated that one out of

eight women will develop breast cancer during their lifetime (Li et al. 2017). Breast

cancer represents a major global health concern accounting for nearly 1,700,000 new

cases and approximately 460,000 deaths in 2008 worldwide (Druesne-Pecollo et al.

2012). According to GLOBOCAN statistics in 2012, an increase in breast cancer

incidence rates by 18% it was observed compared to 2008 (Ferlay et al. 2014) and it

is predicted that by 2050 the new breast cancer diagnoses will escalate to 3.2 million

per year (Coughlin & Ekwueme 2009). Encouragingly, over the past few decades

breast cancer survival rates have been increased and mortality rates decreased due to

the advent of mammography screening that allows early detection, the implementation

of adjuvant therapy and the development of targeted therapies for specific breast

cancer subtypes (Baselga & Norton 2002).

 A number of key factors have been reported that are associated with an increased

risk of developing breast cancer. The strongest associations are seen with early

menarche, late menopause and use of hormone replacement therapy (Verkooijen et al.

2009); the underlying cause in these cases is thought to be an increase in the duration

of exposure of the mammary gland epithelium to estrogen (E2) and/or progesterone

(PG), thus demonstrating a link between breast cancer and estrogen exposure.

Interestingly, there is a correlation between distinct risk factors and the propensity to

develop specific breast cancer subtypes (Anderson et al. 2014). For instance, hormone

receptor positive (HR+) breast cancer demonstrates an inverse association with parity
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and breastfeeding, while late age of first pregnancy constitutes a risk factor for HR+

breast cancer (Rosato et al. 2013).

1.2 Oestrogen receptors

 Oestrogens are steroid hormones that regulate proliferation, differentiation and

function of multiple human tissues and play a key role in the maintenance of female

reproductive system (Norman & Henry 2015). Oestrogens can easily diffuse across

the cell membrane and once enter to the cell cytosol bind to and activate the oestrogen

receptors (ERs), which in turn regulate several pathways (Bouman et al. 2005). The

major oestrogen form in women is oestradiol (E2) that presents the highest affinity

with the ERs. There are also three other metabolites of E2 known, the oestrone, oestriol

and oestretrol, the latter is secreted only during pregnancy though (Lenz & McCarthy

2010).

 ERs belong to the nuclear superfamily receptor family and appear in two different

subtypes, designated as ER alpha (ERα) and ER beta (ERβ) (Nilsson & Gustafsson

2011). ERα was discovered in 1962 from observations that a characteristic protein

regulated the E2 levels in specific tissues (Jensen & Jacobsen 1962). It was assumed

that ERα was the only ER until 1996, when ERβ was isolated from rat prostate and

ovary (Kuiper et al. 1996). The ERα gene (ESR1) is located on chromosome 6 in

humans and encodes a 596- amino acid protein, while ERβ gene (ESR2) is positioned

on chromosome 14 and encodes a 530- amino acid protein (Bai & Gust 2009).

 Although these two receptors are encoded by independent genes, they share similar

structures; both are composed of 6 distinct regions, which are the N-terminal domain

(NTD), the DNA-binding domain (DBD), the hinge region and the ligand-binding

domain (LBD) (Figure 1.1). Two transactivation function (AF) domains AF1 and AF2
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are located within the NTD and LBD respectively while region D plays the role of a

link between C and E regions (Gilbert et al. 1992).

Figure 1.1: Domain structure of ERα and ERβ. The table describes the function of each domain.

 AF1 is considered to be hormone-independent, while AF2 requires the presence of

a steroid in order to function (Beato et al. 1987). Whilst AF1 and AF2 domains are

capable of initiating transcription separately, it has been reported that full ER

transcription activation is achieved by the collaboration between the AF1 and AF2

domains (Tzukerman et al. 1994). The highly conserved zinc-finger-containing DBD

binds to oestrogen response elements (ERE), which are sequences that play a crucial

role in the binding affinity of the ERs and the recruitment of co-activators (Brown &

Sharp 1990; Glass & Rosenfeld 2000). The LBD is comprised of 12 helices, which

fold to structure a compact three- layer helical cluster. The ligand binding pocket is

located in the inner part of the domain, completely isolated from agonist ligands

(Mueller-Fahrnow & Egner 1999). The hinge region contains nuclear localisation

signals that are unveiled upon ligand binding and also serves as a flexible link between

the DBD and the LBD regions (Kuiper et al. 1996).
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 ERα and ERβ possess high homology between their DBD (more than 95%), a

moderate homology between their LBD (approximately 55% amino acids) and poor

homology between their NTD (approximately 15%) due to the fact that ERβ is

relatively shorter compared to ERα (Kumar et al. 2011; Kuiper et al. 1996; Cowley et

al. 1997). The most considerable difference between the ERs is observed in their AF1

domains. Whilst ERα shows a high degree of AF1-mediated transcriptional activity,

this region exhibits minor activity in ERβ (Hall & McDonnell 1999).

 Both ERα and ERβ are expressed in various tissues including cardiovascular

system, urogenital track, central nervous system, breast and bone. However, in the

uterus and mammary gland ERα is the predominant isoform compared to ERβ. In

addition, ERβ expression is present in the gastrointestinal track, whereas in the liver

only ERα can be found (Table 1.1) (Gustafsson 1999).

Table 1.1: The distribution of the ERα and ERβ in the human body.

Tissue Oestrogen Receptors

Central nervous system ERα, ERβ

Breast ERα, ERβ

Liver ERα

Bone ERα, ERβ

Cardiovascular system ERα, ERβ

Gastrointestinal tract ERβ

Urogenital track ERα, ERβ
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ERα has been tightly correlated with the development and progression of breast cancer

as it is expressed in approximately 75% of breast tumours (Lim et al. 2016), however

the exact role of ERβ still remains unclear and under investigation. Several studies

have been reported that when ERβ is co-expressed with ERα the function of ERα is

impaired (Matthews 2003) by ERβ-mediated ERα degradation and altering the binding

patterns of key transcription factors, such as activator protein-1 (AP1), c-Fos and c-

Jun (Matthews et al. 2006).

1.3 Mechanisms of ER action

1.3.1 Ligand-dependent ER mechanism

 Specific proteins, such as heat shock protein 90 (hsp90), bound to the ER and

maintain it in an inactive conformation and must be detached in order to enable ligand-

dependent ER activity (Nilsson & Gustafsson 2011). Upon oestrogen binding in the

LBD, the helix cluster undergoes a conformational change, which promotes the

dissociation of ER from the binding proteins exposing the domains responsible for ER

dimerisation, nuclear translocation and binding to EREs and other transcription factors

(McKenna et al. 1999). By discarding hsp90 the ER is able to form stable homo- or

hetero- dimers and subsequently translocate to the nucleus, where it binds to EREs

located in the promoter of target genes (McKenna et al. 1999). Upon binding to DNA,

co-factor proteins are recruited to further stabilise the transcription complex resulting

in either activation or suppression of the downstream target gene (Hall et al. 2001).

1.3.2 Oestrogen-independent ER activation

 ER activation can also be mediated by extracellular signals in a ligand-independent

manner (Hall et al. 2001). Epidermal growth factor (EGF) and insulin-like growth
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factor 1 (IGF1) are the major factors known to promote ER activation in the absence

of E2 resulting in the expression of ER target genes (Smith 1998). Although the exact

mechanism of oestrogen-independent ER activation is not entirely understood, several

studies have illustrated the importance of specific kinases, such as mitogen activated

protein kinase (MAPK), protein kinase A (PKA) and p21, in this process

(Katzenellenbogen & Katzenellenbogen 2000; Power et al. 1991). These kinases are

able to phosphorylate the ER on several serine residues, thus promoting ER

dimerisation, nuclear translocation and finally transcription of target genes in the

absence of E2 (Hall et al. 2001). Moreover, it has been observed that in each tissue

phosphorylation of specific ER sites (e.g. Tyr537 and Ser118) is essential for E2-

independent activation of ER (Maggi 2011). This observation suggested that steroid-

independent ER activation possibly fulfills a range of cell specific functions (Maggi

2011). However, some studies indicate that, even if is able to recruit co-factors, direct

ER phosphorylation is not sufficient to initiate transcriptional activation by itself

(Masuhiro et al. 2005).

1.3.3 ERE-independent ER action

 Evidence that E2-ER can lead to expression of genes that lack ERE-like sequences,

led to the discovery that ER can promote gene activation without direct binding to

DNA (Hall et al. 2001). This mechanism, known as ‘transcriptional cross-talk’

(Aranda & Pascual 2001), is estimated to underlie the expression of ~35% of all ER-

mediated gene expression (O’Lone et al. 2004). ERE-independent mechanisms

requires the binding of another transcription factor in order to mediate ER association

with the DNA (O’Lone et al. 2004).



8

 A major mediator of ER-DNA indirect binding is the stimulation protein-1 (Sp-1)

(O’Lone et al. 2004) and a wide variety of important genes, such as cyclin D1 (Castro-

Rivera et al. 2001) and low-density lipoprotein (LDL) receptors (Li et al. 2001), have

been found to be regulated via this mechanism.

1.3.4 Non-genomic ER activity

 The genomic ER mechanisms discussed so far, occur within 30 minutes to several

hours following E2 stimulation (Contrò et al. 2015). The observation that oestrogens

can also stimulate rapid cytosolic signals that occur within seconds (Szego & Davis

1967) has led to the discovery of the non-genomic mechanisms of ER action. Upon

E2-ER binding a number of signalling pathways are stimulated and can be classified

into four distinct categories: 1) Ras/Raf/MAPK (Marino et al. 2002), 2) phosphatidyl

inositol 3 kinase (PI3K)/AKT (Acconcia et al. 2005), 3) cyclic adenosine

monophosphate (cAMP)/PKA (Malyala et al. 2005) and 4) phospholipase C (PLC)/

protein kinase C (PKC) (Marino et al. 1998). Interaction of E2-ER complex with the

IGF-1 receptor (IGFR) results in activation of the latter and consequently MAPK

signaling cascade (Kahlert et al. 2000). E2- ER complex can also lead to EGF receptor

activation resulting in PI3K/AKT signaling cascade events (Farach-Carson & Davis

2003; Kim & Bender 2005). These activated pathways can regulate the

phosphorylation of several non-ER transcription factors resulting in initiation of gene

transcription (Watters & Dorsa 1998). In addition, these pathways can also modulate

ER transcription via phosphorylation of the nuclear ER and interaction with

coregulatory proteins (Kow & Pfaff 2004).

 It is worth mentioning that non-genomic regulation of ER by E2, is cell type-

specific. Indeed, the E2-mediated activation of Src/PI3K/MAPK pathway was found



9

in late, but not early differentiated rat pre-adipocytes (Dos Santos et al. 2002).

Similarly, E2-mediated PKC cascade was evident in the preoptic area of female rat

brain, however it was not observed such activity in the cortex or hypothalamus

(Ansonoff & Etgen 1998).

 Taken together, all these studies indicate that ERα is the major mediator of rapid

E2 action. However, little is known about the role of ERβ to trigger non-genomic E2-

mediated functions. It has been reported that ERβ-ER complex is able to activate p38

MAPK in human cancer cells, but no effect on ERK or AKT activation was observed

(Acconcia et al. 2005; Marino et al. 2006). Moreover, ERβ was able to activate inositol

tris-phosphate production, JNK and ERK phosphorylation in hamster ovary cells

(Razandi et al. 1999). Although it is not entirely clear whether ERβ is able to promote

E2-mediated rapid signals, these findings imply that ERβ can regulate cell-specific

signalling pathways.

1.4 Breast Cancer classification

 Breast cancer is a heterogeneous disease, classified into a number of subtypes

(Table 1.2) according to the molecular profile of the tumour (Yersal & Barutca 2014).

Diagnostically, it is classified based on the expression of ERs and/or progesterone

receptors (PR) as well as the overexpression or amplification of the human epidermal

growth factor receptor 2 (HER2) (Yersal & Barutca 2014). Although initially

categorised into two main groups dependent upon expression, or not, of the ER (Perou

et al. 2000), more recent studies suggest that breast cancer is subdivided into at least

4 distinct clinical categories, the Luminal A and B, the HER2 and the basal-like (Dai

et al. 2015) according to their molecular profile.



10

1.4.1 Luminal breast cancer

 It is estimated that approximately 75% of breast tumours express the ER and/or PR

and accordingly express ER-target genes and other genes that encode proteins for the

luminal cell; such as cytokeratins, thus these cancers are denoted as having a Luminal

phenotype (Ignatiadis & Sotiriou 2013). Luminal breast cancer are generally

associated with a good prognosis and are likely to respond to endocrine treatments

which selectively target the ER (Ignatiadis & Sotiriou 2013). Evolution and use of

gene set analysis led to the design of three independent studies investigating breast

gene expression (C Sotiriou et al. 2003; van ’t Veer et al. 2002; Sørlie et al. 2001).

Combination of these data resulted in the identification of two luminal subcategories,

termed as Luminal A and Luminal B (Hu et al. 2006).

 Luminal A represents the most common breast cancer subtype accounting for 50-

60% of all breast cancer cases. It is characterised by low histological grade, low levels

of the proliferation marker Ki67 and significantly high ER levels (Ciriello et al. 2013).

Patients with Luminal A tumours usually have good prognosis and present low relapse

rate compared to other breast cancer subtypes (Ignatiadis & Sotiriou 2013). Secondary

tumour foci from Luminal A breast tumour are mostly observed in the bone, whereas

lung and liver are less frequently observed sites of metastases (Guarneri & Conte 2009;

Kennecke et al. 2010). The mainstay treatment for Luminal A tumours is the hormonal

therapy (Ignatiadis & Sotiriou 2013).

 Luminal B breast cancer accounts for the 15-20% of total breast cancers (Creighton

2012). It is characterised by high histological grade, Ki67 and ER expression (Cheang

et al. 2009; Creighton 2012). Breast cancer patients with Luminal B tumours have

worse prognosis, high recurrence possibility and lower survival rates compared to

those with Luminal A subtype (Ades et al. 2014). The major difference between the



11

Luminal subtypes is considered to be the Ki67 expression. Unlike the Luminal A

subtype, Luminal B tumours are not highly sensitive to endocrine therapy, however

they respond well to neoadjuvant chemotherapy (Melisko 2005; Bhargava et al. 2010;

Rouzier et al. 2005).

1.4.2 HER2+ breast cancer

 HER2 positive (HER2+) breast cancer represents 15-20% of breast tumours. This

breast cancer subtype is highly proliferative and overexpresses the HER2 oncogene,

which is associated with the corresponding signalling cascade. HER2+ breast cancer

usually exhibits a high histological grade and consequently demonstrates a more

aggressive phenotype with poorer prognosis compared to Luminal tumours. It is

estimated that approximately 50% of HER2+ breast cancers are positive for the ER.

In some cases, HER2+ tumours can appear insensitive to the endocrine treatment,

however they exhibit enhanced responsiveness to cytotoxic agents, such doxorubicin.

Recently, the development of the translational science has led to the development of

targeted therapies that have significantly improved HER2 prognosis and increased

survival rates.

1.4.3 Basal-like breast cancer

 The last group encompasses all the breast tumours that do not belong in the previous

categories, designated as basal like breast cancers. These tumours are characterised by

the expression of genes characteristic of the basally located region of the mammary

gland, such as cytokeratins 5 and 17, thus termed as basal-like (Toft & Cryns 2011).

Basal-like subgroup represents 8-37% of breast tumours and includes the triple

negative breast cancer (TNBC) that do not express ER/PR/HER2 and the tumours that
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carry mutated BRCA1 gene (Rakha et al. 2009). Since they lack a distinct therapeutic

target, chemotherapy constitutes the only therapeutic approach for basal-like tumours

(William D Foulkes et al. 2010). Whilst TNBCs exhibit enhanced sensitivity to

chemotherapy, they are associated with an aggressive phenotype and a very poor

prognosis compared to the other subtypes (Ismail-Khan & Bui 2010).

Table 1.2: Receptor status and frequency rates of breast cancer subtypes.

Subtypes Receptor status Frequency

Luminal A
ER+ and/or PR+,

HER2-low/absent Ki67 50-60%

Luminal B

ER+ and/or PR+,
HER2+ (HER2- with

high Ki67)
15-20%

HER2 ER-, PR-, HER2+ 15-20%

Basal-like Ki67, ER-,PR-, HER2-, 8-37%
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1.5 Endocrine Therapy

 Endocrine therapy constitutes the oldest therapeutic approach for the treatment of

breast cancer. Significant research effort over the past few decades, has led to

significant advances in endocrine therapy and the development of new hormonal

agents (Howell et al. 2002; Cole et al. 1971; Coombes et al. 1984; Baselga et al. 2012)

with current therapies now representing an effective treatment for breast cancer

patients whose tumours are ER+ (Palmieri et al. 2014). Endocrine treatments can be

grouped into 4 distinct classes: luteinising-hormone-releasing-hormone (LHRH)

analogues, aromatase inhibitors, selective oestrogen receptor modulators (SERMs)

and selective oestrogen receptor down-regulators (SERDs).

1.5.1 LHRH agonists

 LHRH agonists are synthetic peptide analogues of the natural hormone, LHRH.

They are widely used in hormone-sensitive tumors, such as prostate and breast cancer.

In pre-menopausal women, where oestrogen production is mainly supplied by the

ovaries, LHRH agonists induce pharmacological oophorectomy effectively

suppressing E2 levels (Goel et al. 2009).

1.5.2 SERMs and Tamoxifen

 SERMs are a class of compounds that compete with oestrogens for ER binding,

thus preventing E2-induced ER activity (Osborne et al. 2000). SERMs display both

agonist and antagonist activities dependent on the target tissue (Osborne et al. 2000).

In breast, SERMs exert antagonistic effects on the ER, whereas in endometrial tissue

they act as partial agonists and thus their use is associated with a risk of endometrial
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cancer development (Bland et al. 2009). The main representative of this class of

hormonal treatment is Tamoxifen.

 Tamoxifen was first synthesized in 1963 (Harper & Walpole 1967) and since then

several clinical trials have confirmed the high benefit in patients with early or

advanced breast cancer (Clemons et al. 2002). It was approved by the Food and Drug

Administration (FDA) in 1977 for the treatment of advanced breast cancer (Cohen et

al. 2001). Tamoxifen itself is a pro-drug with low affinity for the ER. However, it is

metabolised in the liver via cytochrome P450 enzyme CYP2D6 (Ortiz de Montellano

2013), to its pharmacologically active metabolites endoxifen and 4-hydroxy-

tamoxifen (4OH-Tam) (Bourassa et al. 2011). The latter displays up to 100 times

higher affinity for the ER compared to the parental compound (Fan et al. 2000).

 In breast cancer, Tamoxifen exert its antagonistic activity by competing with E2 for

binding to the ER. Upon binding tamoxifen induces conformational alterations in the

ER that disrupt its interaction with co-activator proteins (Brzozowski et al. 1997). The

ER-Tamoxifen complex further promotes the recruitment of suppressor proteins that

impede oestrogen-mediated gene activation and also promotes cell cycle arrest in the

Go/G1 phase (Renoir et al. 2008). In bone and in the endometrium Tamoxifen displays

an agonistic profile accounting for the development of osteoporosis in pre-menopausal

women and the risk of endometrial cancer development in patients that are exposed to

Tamoxifen for a long period respectively (Bland et al. 2009). Overall, Tamoxifen

discovery has significantly contributed to the treatment of breast cancer patients by

prolonging the survival rates and reducing the risk of recurrence (Clemons et al. 2002).
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1.5.3 Aromatase Inhibitors (AIs)

 In post-menopausal women circulatory oestrogens are produced by the conversion

of androgens in peripheral tissues such as adipose tissue, adrenal glands and liver

(Brueggemeier et al. 2005). This process is known as aromatisation and requires the

activity of the enzyme aromatase (Geisler et al. 1996). AIs are administered to post-

menopausal patients with ER+ breast cancer and inhibit the function of the aromatase

enzyme and hence oestrogen production (Smith & Dowsett 2003). Importantly, the

ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial revealed that the AI

anastrozole exerted greater benefit in the adjuvant setting as first line treatment for

ER+ postmenopausal women compared to tamoxifen (Baum et al. 2002). Due to the

ATAC trial findings, tamoxifen is currently used as a second line treatment following

relapse from AIs in ER+ breast cancer.

1.5.4 SERDs and Faslodex

 This class represents a relatively new group of hormonal therapies for the treatment

of patients with hormone-sensitive breast cancer and encompasses compounds with

pure anti-oestrogenic activity. Biologically, SERDs exert anti-mitotic activity, pro-

apoptotic actions and also result in the degradation of the ER itself. The main SERD

used clinically is Faslodex (Fulvestrant).

 Faslodex is an ER antagonist that exhibits 100 times higher affinity for the ER

compared to Tamoxifen (Robertson 2007). It is a pure anti-oestrogen, since it does not

exhibit any agonistic effects and consequently lacks the side effects of SERMs

(Howell, C. Kent Osborne, et al. 2000). The mode of action of faslodex involves the

binding, the inhibition and finally the degradation of the ER resulting in the

suppression of ER signaling (Howell, C Kent Osborne, et al. 2000). Clinically,
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Faslodex is generally used in patient’s that have relapsed on prior anti-hormonal

therapies (Tamoxifen or AIs) and its efficacy has been shown to be similar to that of

the aromatase inhibitor, anastrozole (Morris & Wakeling 2002). There is also clinical

data to suggest that it may be equivalent or marginally better than AIs as a first line

treatment (Chia et al. 2008).

1.6 Endocrine resistance

 Despite the benefits of endocrine therapy in ER+ disease, approximately 30% of

early and almost all advanced breast cancers initially responsive to endocrine agents

will acquire resistance (C. Kent Osborne & Schiff 2011). Moreover, a minority of

breast cancers will fail to respond to endocrine treatments despite being ER+ (de novo

resistance). As such, endocrine resistance represents one of the most challenging

issues in the clinical setting as it is associated with disease progression and enhanced

morbidity rates (Garcia-Becerra, Santos, Diaz and Camacho, 2013). Several studies

have pointed to four major mechanisms of resistance: i) ER loss ii) differential activity

of ER co-regulatory factors, iii) differential expression of cell cycle regulators and iv)

ER cross-talk with receptor tyrosine kinases, such as EGFR and HER2 (Musgrove &

Sutherland 2009).

1.6.1 Intrinsic (de novo) resistance

 The main mechanism of de novo resistance to endocrine therapy is lack of ER

expression and accounts for reduced responsiveness to endocrine therapy in

approximately 15-20% of breast cancer patients (Dixon 2014). Another, mechanism

of intrinsic resistance to the agent tamoxifen is the presence of inactive alleles of the

cytochrome P450 isoenzyme, CYP2D6 (Hoskins et al. 2009). Patients carrying these
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alleles fail to metabolise Tamoxifen to its active products and consequently their

responsiveness to Tamoxifen is limited (Hoskins et al. 2009).

1.6.2 Acquired resistance

1.6.2.1 ER and co-regulatory factors

 The ER modulates gene expression through interactions with co-regulatory proteins

(co-activators and co-suppressors) and the differential expression of these factors

significantly affects the equilibrium between the agonistic and antagonistic properties

of SERMs as well as altering ligand-independent ER activity. Thus, these ER

accessory proteins can represent critical determinants for responsiveness or resistance

to endocrine agents (Schiff et al. 2003). The ER can also interfere with various

molecules outside the nucleus that result in signaling pathway activation, which in turn

enhance non-nuclear ER localisation and subsequently endorsement of its non-

genomic activity (Schiff et al. 2004). This process generates a positive feedback loop

between the ER and growth factors and it is important to note that non-nuclear ER

mechanism can be activated by both E2 and tamoxifen (Shou et al. 2004). In addition,

hyper-expression of transcription factors, such as activator protein 1 (AP-1),

specificity protein 1 (SP-1) and nuclear factor-κB (NF-κB), significantly predispose

the development of endocrine resistance, especially to Tamoxifen (Zhou et al. 2007;

Johnston et al. 1999). ER activity is highly regulated by post-translational

modifications (methylation, phosphorylation and sumoylation) that notably affect ER

responsiveness to endocrine therapy (Musgrove & Sutherland 2009; Prabhu et al.

2015). Furthermore, the expression of the recently discovered truncated splicing

variant (ERα36) accounts for reduced responsiveness to endocrine agents (Shi et al.

2009).
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1.6.2.2 Cell cycle regulators

 The second possible mechanism of acquired resistance involves cell cycle

regulators. Specifically, increased expression of molecules that positively regulate G1

phase progression have been found to impede the inhibitory effects of endocrine

agents, resulting in resistance. Such molecules are the cyclins E1 and D1, whose

overexpression can either activate cyclin-dependent kinases (CDK) or diminish the

inhibitory effects of CDK suppressors p21 and p27 (Butt et al. 2005; Span et al. 2003).

Similarly, down-regulation or reduced activity of cell cycle suppressor factors, such

as p21 and p27, can lead to reduced sensitivity to endocrine agents (Chu et al. 2008).

In addition, enhanced activity of growth factor receptors or other key signaling

pathways such as AKT and Src negatively regulate cell cycle suppressor factor and

consequently result in the development of endocrine resistance (C. Kent Osborne &

Schiff 2011).

1.6.2.3 ER- cross talk with RTKs

 ER cross-talk with RTKs is one of the most crucial mechanisms that can lead to the

development of endocrine resistance. A number of studies have reported that elevated

expression of RTKs and their downstream signaling cascades, primarily ERK and

PI3K pathways, can promote the development of tamoxifen resistance (Cui et al. 2012;

Fagan et al. 2012; Massarweh et al. 2008; Dourdin et al. 2008; deGraffenried et al.

2003; Faridi et al. 2003). Deregulation of ERK and PI3K cascades can also occur as a

result of a variety of genetic and epigenetic alterations, including inactivation of the

tumour suppressor phosphatase tensin homolog (PTEN) (Zhang et al. 2013), mutations

in phosphatidylinositol 4,5-bisphospate 3-kinase catalytic subunit alpha isoform
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(PIK3CA) that lead to constitutive PI3K activation (Campbell et al. 2004) and HER2

amplification (Meng et al. 2004).

 EGFR and HER2 overexpression constitute the most widely studied mechanism of

endocrine resistance in breast cancer. Evidence suggests that loss of HER2 suppressors

including the fork-head box p3 (FOXp3) and the zinc finger transcription factor

GATA4 (Zuo et al. 2007; Hua et al. 2009), play a key role in facilitating

overexpression of this receptor. Elevated expression of EGFR and/or HER2 have been

observed in MCF7-derived models of acquired tamoxifen or faslodex resistance,

suggesting a prominent role of EGFR and HER in the development of endocrine

resistance (McClelland et al. 2001)(Knowlden et al. 2003). Further investigation of

these models demonstrated enhanced activation on MAPK and PI3K/AKT pathways

that ultimately lead to cell growth and survival (Nicholson et al. 2007). In addition,

immunohistochemical analysis from patient samples with both de novo and acquired

tamoxifen resistance, revealed hyperexpression of EGFR, HER2 and MAPK

(Gutierrez et al. 2005; Gee et al. 2005).

 Src kinase interacts and regulates a number of proteins via phosphorylation on

tyrosine residues. Previous studies have pointed to the involvement of Src in the

development of endocrine resistance through its interaction with ER and p85 subunit

of PI3K that ultimately leads to AKT and ERK1/2 activation and consequently cell

proliferation (Vallabhaneni et al. 2011; Song et al. 2005; Cheskis et al. 2008). In vitro

studies have demonstrated that Src substrate Cas is able to activate a number of

different pathways, including those that regulate proliferation, invasion and survival.

Elevated expression of Cas in breast cancer cells has been correlated with reduced

responsiveness to tamoxifen (Dorssers et al. 1993). Since Cas is associated with
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resistance, this indirectly implicates a role for Src in the development of endocrine

resistance as an upstream regulator.

1.6.3 Src kinase

 Src is a 60 kDa non-receptor tyrosine kinase (TK) that belongs to a nine-member

family collectively termed Src family kinases (SFKs). This group of proteins  is

comprised of Src, Lyn, Fyn, Yes, Fgr, Hck, Lck, Blk and Frk (Finn 2008). Src is the

oldest known oncogene, first identified in 1911 as the transforming product (v-Src) of

the oncogenic Rous sarcoma retrovirus in chicken sarcomas (Thomas & Brugge 1997).

 Src activity is primarily regulated by phosphorylation on tyrosine residues 527

(Y527) and 416 (Y416) (Figure 1.2). Phosphorylation of Y527 by tyrosine kinases

Csk and its homolog Chk, reduces Src kinase activity enabling the molecule to take

up an inactive conformation (Sen & Johnson 2011). The auto-phosphorylation site at

Y416, promote the kinase activity by allowing the molecule to establish a more open

structure that facilitates the interaction with downstream signalling molecules (Finn

2008). Thus, the auto-phosphorylation of Y416 constitutes the activation event of Src

kinase. In addition, Src can be activated by surface receptors, such as EGFR (Thomas

& Brugge 1997). Protein tyrosine phosphatases (PTP), such as PTPα, PTPγ, SHP-1,2

and PTP1B are able to regulate Src kinase function through dephosphorylation of

Y527 (Sen & Johnson 2011). Specifically, PTP1B expression has been correlated with

enhanced Src activation in breast cancer cell lines (Jeffrey D. Bjorge et al. 2000).
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Figure 1.2: The structure of Src kinase.

Many studies have been conducted regarding the role of SFKs at a cellular level

and have revealed that Src in particular regulates signalling pathways that control

proliferation, migration, angiogenesis and differentiation (Christos Sotiriou et al.

2003; Summy & Gallick 2003). Given that Src and related members are implicated in

cellular processes central to that of tumour development and progression, it is not

surprising that Src has been implicated in cancer.

Src is over expressed or activated in many cancer types, including breast (Sen &

Johnson 2011). Elevated Src expression and activity has been reported in cancer cells

that display an aggressive, metastatic phenotype and resistance to anti-growth or

endocrine treatments (Jackson et al. 2000; Irby & Yeatman 2002; Mao et al. 1997).

Src inhibition in breast cancer resistant models has been found to diminish migration

and invasion, indicating the pivotal contribution of Src in the metastatic behavior

(Hiscox et al. 2007). In addition, Src plays a central role in bone cell metabolism and

it is highly involved in bone metastasis as it is essential for osteoclast survival and

ruffled border formation, which enables the osteoclast to attach the bone substrate

during resorption (Boyce et al. 1992). Furthermore, recent evidence suggests that Src

activation is tightly correlated with late-onset of bone metastasis in breast cancer,

regardless of the subtype and the hormone receptor status (Zhang et al. 2009).
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 Src has been found to localise to the plasma membrane, where it can interact with

growth factor receptors to regulate signalling pathways particularly those involved in

cell proliferation (J D Bjorge et al. 2000). Whereas in normal breast cells Src is usually

detected in cytoplasmic regions, in tumour cells it is primarily localised around the

nucleus indicating a possible involvement of Src in nuclear-signal transduction events

(Sen & Johnson 2011; Verbeek et al. 1996). In addition, Src participates in the non-

genomic ER signalling. Through rapid E2-mediated stimulation Src activates

downstream signaling pathways that enhance tumour progression and metastasis

(Silva et al. 2010).

 Given the central role of Src in cancer progression and metastasis, a number of

small molecule that target Src kinase have been developed. Src inhibitors are ATP-

binding competitive inhibitors that do not selectively target Src, but are able to

interfere and block other SFK members as well (Mayer & Krop 2010). Some of the

most well studied Src kinase inhibitors include Dasatinib, Saracatinib and Bosutinib

and their efficacy in breast and other cancers has been evaluated in large clinical trials

(Sen & Johnson 2011).

 Numerous in vitro studies have revealed that treatment with Src inhibitors was able

to suppress migration and tumour growth in a variety of cancer cell types, including

breast, prostate, lung, pancreatic and colon (Messersmith et al. 2009; Richard S. Finn

et al. 2007; Park et al. 2008). Src inhibition results in reduced expression of various

proteins that are regulated via Src, such as MAPK, AKT, and focal adhesion kinase

(FAK), that subsequently leads to suppression of tumour growth (Jallal et al. 2007).

 Due to the key role of Src in facilitating the non-genomic ER function and

consequently the development of endocrine resistance (Varricchio et al. 2007), Src

inhibitors may represent a potent agent for overcoming endocrine resistance. Src
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inhibition in endocrine resistant cells resulted in reduced Src activity and decreased

invasion (Hiscox, Morgan, Tim P Green, et al. 2006). In addition, treatment of

androgen-independent prostate cancer cells with Saracatib, was found to inhibit

tumour growth and to prevent the nuclear translocation of the androgen receptor (Yang

et al. 2009).

 The effectiveness of the combination of Src kinase inhibitors with other targeted

agents or chemotherapy is also under investigation. Src inhibition has been found to

enhance the chemosensitivity of human pancreatic cells to 5-fluororacil in vitro

(Ischenko et al. 2008). In addition, simultaneous treatment of Saracatinib and RTK

inhibitors displayed additive inhibition effect in MCF7-derived tamoxifen resistant

cells compared to the single agents (Hiscox, Morgan, Tim P Green, et al. 2006).

Overall these finding suggest that combination of targeted therapy or chemotherapy

with concurrent Src inhibition demonstrates an additive benefit to cancer treatment by

suppressing tumour growth and metastatic potential.

1.7 Breast cancer bone metastasis

 It is estimated that approximately 85% of patients with advanced breast cancer will

develop bone metastases at some point (A Lipton et al. 2009). This results in a low

quality of life, mainly due to severe pain, pathological fractures and spinal cord

compression (Theriault & Theriault 2012). The seed and soil theory that was

introduced by Stephen Paget in 1889, suggests that cancer cells (seeds) can only

establish metastatic foci in appropriate stromal environments (soils) (Ribatti et al.

2006). Consequently, not all types of cancer can form bone metastasis. There are two

different types of bone metastasis; termed as osteolytic and osteoblastic. Osteolytic
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metastasis are more frequent and result in bone breakdown, while osteoblastic are less

uncommon (10-20%) and promote new bone formation (Chen et al. 2010a).

 In order to understand how tumour cells can influence the bone microenvironment

to support metastases, it is first important to consider how bone is remodeled

physiologically. Bone is a metabolically dynamic tissue that undergoes consecutive

remodelling and it is comprised of two distinct areas. The outer area mainly consists

of hard-mineralised matrix in which reside several growth factors (Hauschka et al.

1986). The inner part is composed of bone marrow, which encompasses

haematopoietic and stromal cells (Owen & Friedenstein 1988). Bone metabolism is

dependent upon the well-orchestrated balance of the two main cell types that exist in

the bone microenvironment, osteoblasts (OBs) and the osteoclasts (OCs) (Casimiro et

al. 2009).

1.7.1 Osteoblasts and osteoblastic metastasis

 Osteoblasts are large bone-producing cells. derived from mesenchymal stem cells

(Komori 2006). Apart from bone synthesis, osteoblasts are major regulators of

osteoclastogenesis as they produce macrophage-colony stimulating factor (MCS-F)

and receptor activator for nuclear factor κB ligand (RANKL), which are key factors

for osteoclast maturation (Khosla 2001). Moreover, osteoblasts secrete

osteoprotegerin (OPG), which is a decoy receptor of RANKL and hence is able to

inhibit osteoclast differentiation and consequently bone breakdown (Hofbauer 2004).

The ratio of RANKL:OPG determines the extent of osteoclast activation and

consequently bone degradation (Hofbauer 2004). In addition, on the osteoblast surface

there are receptors for the parathyroid-related peptide (PTHrP). Once PTHrP binds to



25

its receptor, stimulates the secretion of RANKL with concurrent down-regulation of

OPG, further regulating osteoclast activation (Datta & Abou-Samra 2009).

 Osteoblastic bone metastases are stimulated by tumour-secreted factors and trigger

the formation of new bone tissue. Due to the fact that osteoblastic metastases are

relatively uncommon, the exact mechanism is yet poorly understood (Akhtari et al.

2008). Emerging evidence suggests that tumour-derived endothelin-1A (ET-1A) plays

a central role in the development of osteoblastic metastases since ET-1A interaction

with the ET-1A receptor (ETAR) stimulates signal transduction pathways and gene

transcription involved in osteoblast proliferation and bone formation (Mohammad &

Guise 2003); inhibition of ETAR subsequently reduces osteoblastic bone lesions (Yin

et al. 2003).

1.7.2 Osteoclasts and osteolytic bone metastasis

 Osteoclasts are large, multinucleated bone-resorbing cells that originate from

haetopoietic cells of the bone marrow (Bar-Shavit 2007a). CD14 monocytes are

considered to be osteoclast precursor cells that fuse together in order to form a

multinucleated osteoclast (Udagawa et al. 1990). This process, known as osteoclast

differentiation, occurs within 5-8 days and requires the contribution of MCS-F and

RANKL factors (Asagiri & Takayanagi 2007).

 RANKL itself is expressed by osteoblasts, stromal cells and T-cells all known to

be present in the tumour microenvironment. Upon binding to its receptor RANKL,

which is located on osteoclast precursor cell surface, osteoclast differentiation and

activation triggered (Suda et al. 2001). RANKL is of fundamental importance in the

regulation of osteoclastogenesis and osteoclast survival. In vivo studies have

underlined the significance of RANKL in bone remodeling by demonstrating that lack
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of RANKL and RANK genes in animal models leads to the development of

osteopetrosis due to the absence of osteoclast differentiation and function (Dougall et

al. 2014).

 Osteolytic metastasis constitutes the most frequent type of bone metastasis.

Osteolysis occurs after enhanced tumour-mediated osteoclast activity, which is

accompanied by restrained osteoblast function (Chirgwin J.M. and Guise T.A., 2000).

Cancer cells promote osteoblast activation through the secretion of cytokines,

including PTHrP, ILs. Osteoblasts in turn, produce RANKL that stimulates osteoclast

differentiation and activation resulting in bone resorption (Gregory R. Mundy 2002).

Bone breakdown releases factors that are stored in the bone microenvironment, such

as transforming growth factor β (TGFβ), that further stimulate cancer cell proliferation

perpetuating the co-called vicious cycle of bone metastasis (Figure 1.3) (Esposito &

Kang 2014). In addition, cancer cells are able to stimulate osteoclastogenesis in a

RANKL-independent manner. Specifically, breast cancer cells secrete PTHrP, IL-1,

IL-6, IL-8, IL-11, IL-12 and tumor necrosis factor α (TNF-α) that can stimulate

osteoclast differentiation, even in the absence of RANKL (Yoneda & Hiraga 2005).
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Figure 1.3: Molecular mechanism involved in osteolytic breast cancer bone metastasis. Metastatic

breast cancer cells produce factors such as ILs and PTHrP that activate the osteoblasts.

Osteoblastic cells in turn, produce RANKL promoting the differentiation of pre-osteoclasts

to mature osteoclasts in a RANK/RANKL dependent manner. In addition, PTHrP can

promote osteoclast maturation in a RANK/RANKL independent manner. Bone breakdown

by osteoclasts, releases TGFβ, which further enhances the proliferation and growth of

breast cancer cells, perpetuating the “vicious cycle” of bone metastasis. OB: osteoblast,

OCL: osteoclast, IL: interleukin, TNFa: tumor necrosis factor alpha, PTHrP: parathyroid

related peptide, OPG: osteoprotegerin, ECM: extracellular matrix, RANKL: receptor

activator of NF-κΒ ligand, TGFβ: transforming growth factor β.
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1.8 Bisphosphonates (BPs)

Bone loss is a problem in post-menopausal women and also in cancer patients with

osteolytic bone metastasis. One therapy developed to help combat bone loss are the

bisphosphonates. BPs are a class of compounds with anti-resorptive properties that are

able to inhibit osteoclast-mediated bone degradation. They are characterised by two

phosphonate groups (P) bound to same carbon atom (C) forming a P-C-P backbone

that displays high affinity with hydroxyapatite crystals, known as bone mineral

(Russell et al. 1999). BPs are synthetic analogues of pyrophosphate, in which the

oxygen atom is replaced by the carbon, a key alteration that renders them resistant to

enzymatic activity. They are classified in two subclasses: non-nitrogenous and the

more recently developed nitrogen-containing compounds (N-BPs) (Russell et al.

1999).

 Non-nitrogen-containing bisphosphonates (clodronate and etidronate) reside in the

bone matrix and are digested by osteoclasts during osteolysis (Clézardin 2011). Due

to the high similarity of these compounds with the pyrophosphate (PPi), they are

incorporated into non-hydrolysable ATP analogues disrupting the function of

ADP/ATP translocase that subsequently leads to osteoclast apoptosis due to a lack of

energy and thus impaired metabolism (Lehenkari et al. 2002). Apart from osteoclast

apoptosis induction, BPs block osteoclast progenitor recruitment inhibiting the

generation and differentiation of new osteoclasts (Fleisch 1998). Importantly, BPs also

impair osteoclast ability to form ruffled borders, which are essential for osteoclast

attachment to the bony surface, thus preventing bone resorption (Colucci et al. 1998;

Sato et al. 1991; Fleisch 1998).

 N-BPs (alendronate, zoledronate, pamidronate, risedronate, ibandronate and

minodronate) on the other hand represent second generation therapeutics that are also
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able to disturb the mevalonate pathway by inhibiting farnesyl pyrophosphate synthase

(FPPS), one the major enzymes of the mevalonate pathway that regulates cholesterol

synthesis and protein prenylation. Agents such as zoledronic acid (ZOL) are able to

inhibit FPPS that ultimately leads to mevalonate pathway disruption (Figure 1.4).

FPPS inhibition results in accumulation of isopentenyl pyrophosphate, which in turn

is converted into a cytotoxic molecule called ApppI. In addition, mevalonate pathway

blockage prevents the prenylation of small GTPases, such as RhoA, Rac, Cdc42,

RhoU, Arf6 and Rab, which are important for the formation of ruffled borders and

sealing zone in osteoclasts (Itzstein et al. 2011). Importantly, impaired prenylation of

small GTPases can also drive the osteoclast cell to apoptosis (Kavanagh et al. 2006;

Mönkkönen et al. 2006).

Figure 1.4: The mevalonate pathway and action of nitrogen-containing bisphosphonates.
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1.8.1 Anti-tumour properties of N-BPs

 Intriguingly, reports have emerged recently suggesting that N-BPs, such as ZOL,

apart from their effectiveness in preventing bone resorption, may also exert anti-cancer

properties in a variety of tumours, including breast (Coleman et al. 2014; Holen et al

2010; Winter et al. 2008). These anti-tumour properties are attributed to the direct

action of ZOL on tumour cells themselves or other cells likely to be present in the

bone microenvironment such as γδ T cells, endothelial cells and macrophages

(Clézardin 2011).

 BPs have been shown to directly inhibit proliferation, invasion and migration and

promote programmed cell death in tumour cells through direct action (I. Holen 2010;

Clézardin 2013). One potential mechanism through which they may achieve this is

through disruption of the mevalonate pathway since BP-mediated inhibition of cell

cycle progression can be partially counteracted by the addition of mevalonate pathway

intermediates (Stresing et al. 2007). Since the mevalonate pathway is important for

localisation of GTPases to the plasma membrane for signalling, this may thus

represent a major mechanism of the anti-tumour action of BPs.

 In the light of promising in vitro and pre-clinical data regarding the anti-tumour

properties of BPs, particularly ZOL, three large cohort Phase III clinical trials were

designed (ABCSG-12, ZO-FAST and AZURE) in order to evaluate potential benefit

from ZOL in breast cancer patients (Table 1.3).

 The ABCSG-12 trial evaluated tamoxifen or anastrozole efficacy with and without

ZOL in pre-menopausal women that were treated with LHRH agonists. The addition

of ZOL significantly improved disease-free survival (DFS) and overall survival (OS)

rates after 76-month follow-up (Gnat et al. 2011).
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 The ZO-FAST trial involved post-menopausal women treated with aromatase

inhibitor with and without ZOL. Immediate addition of ZOL to adjuvant endocrine

treatment reduced the risk of DFS events by 34% compared to delayed addition of

ZOL after a 60-month follow-up (De Boer et al. 2010)

 The AZURE trial included pre- and post-menopausal patients receiving adjuvant

chemotherapy and/or endocrine treatment alone or in combination with ZOL. AZURE

outcomes revealed that ZOL did not improve DFS in the total population, however a

statistically significant DFS benefit was found in patients that were at least 5 years

after menopause. OS benefit was observed only in the subset of patients with age

greater than 60 years (Coleman et al. 2010).
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Table 1.3: Zoledronic acid phase III clinical trials in breast cancer. CT: chemotherapy, ST: standard

treatment, ET: endocrine therapy, AI: aromatase inhibitor, DFS: disease-free survival OS:

overall survival, PMW: post-menopausal women

ABCSG-12 ZO-FAST AZURE

Population

1803

Premenopausal,

stage I/II, ER+,

receiving LHRH

agonists

1065

Postmenopausal

stage I–IIIa, ER+,

receiving AIs for

5 years

3360 pre- and

postmenopausal,

stage II/III,

receiving standard

CT and/or ET

Treatment

LHRH+ AI or

Tam ± ZOL for

5 years

AI± ZOL for 5

years

ST(CT±ET) ±

ZOL for 5 years

ZOL DFS benefit Yes
only in the subset

of PMW
Yes

ZOL OS benefit Yes
only in patients

<60 years
No
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1.9 Aims

 Acquired endocrine resistance in breast cancer results in disease relapse frequently

at distant sites including bone. The central aim of this thesis was to explore whether

endocrine resistance altered the ability of breast cancer cells to influence pre-osteoclast

cells that play a major role in the vicious cycle of bone metastases. We further wished

to investigate whether Src was involved in this process and to study the direct anti-

tumour action of bisphosphonates on breast cancer cells, particularly in the context of

endocrine resistance.
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2. Materials and methods
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2.1 Materials and reagents

 The SRC inhibitor Saracatinib (AZD0530) (Figure 2.1) used for this study was a

gift from AstraZeneca. Saracatinib act as an ATP-competitive inhibitor of SRC and

Abl kinases (Liu et al. 2013). Stock solutions were prepared in DMSO at a

concentration of 10mM and stored in 50ul aliquots at -20°C. Stocks were thawed

before use and diluted in media to the appropriate concentration. Any thawed, unused

stock solutions was stored at 4°C for a maximum of 2 weeks after which it were

discarded.

Figure 2.1: Chemical structure of Src inhibitor Saracatinib (Hennequin et al. 2006).

 Zoledronic acid (ZOL) (Figure 2.2), a nitrogen containing bisphosphonate (N-BP)

approved for the treatment of bone lesions in patients with advanced cancer (Clézardin

2013) was purchased from Sigma Aldrich and stock solutions were prepared in H2O

at a concentration of 5μΜ and stored in aliquots at -80°C until use.

Figure 2.2: Chemical structure of Zoledronic acid.
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Table 2.1: Materials and reagents used throughout the current study and their source of

purchase.

Materials/Reagents Supplier

3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT)
Sigma Aldrich

5X siRNA buffer solution Thermo Scientific

30% Acrylamide solution Sigma Aldrich

Ammonium Persulphate (APS) Sigma Aldrich

Fungizone Invitrogen

Penicillin/Streptomycin Invitrogen

Aprotinin Sigma Aldrich

Leupeptin Sigma Aldrich

BioRad Protein Assay Reagents A, B, S BioRad Laboratories Ltd

Blue sensitive X-ray film Photon Imaging Systems

Bovine Serum Albumin (BSA) Sigma Aldrich

Bromophenol Blue BDH Chemicals

Cell Culture Medium (RPMI 1640 and Phenol

Red-free RPMI 1640)
Invitrogen

Chemiluminescence reagents (ECL, Dura,

Femto,)
Fisher Scientific

Dimethyl sulphoxide (DMSO) Sigma Aldrich

Di-thiothreitol (DTT) Sigma Aldrich

Dharmafect Transfection Lipid Thermo Scientific

Foetal Calf Serum Gibco

Glycerol Fisher Scientific

Glycine Fisher Scientific

L-glutamine Sigma Aldrich

NP40 Sigma Aldrich

Ponceau S solution (0.1% w/v in 5% acetic acid) Sigma Aldrich
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Materials/Reagents Supplier

Phenylarsine oxide Sigma Aldrich

Phenylmethylsulfonyl fluoride (PMSF) Sigma Aldrich

Methanol Fisher Scientific

Precision Plus Protein Blue marker BioRad

siRNA buffer (1X) diluted in H20 Sigma Aldrich

Sodium Azide Sigma Aldrich

Sodium dodecyl sulphate (SDS) Sigma Aldrich

Sodium Fluoride Sigma Aldrich

Sodium Molybdate Sigma Aldrich

Sodium Orthovanadate Sigma Aldrich

TWEEN20 Sigma Aldrich

Triton-X 100 Sigma Aldrich

Stripping buffer Fisher Scientific

Tetramethylethylenediamine (TEMED) Fisher Scientific

Trizma Base (Tris) Fisher Scientific

2-propanol (isopropanol) Sigma Aldrich

Acetic acid, glacial Sigma Aldrich

Western Blocking Reagent Roche Diagnostics

X-ray film developer solution (X-O-dev) X-O- graph Imaging System

X-ray film fixative solution (X-O-fix) X-O- graph Imaging System

Whatman qualitative filter paper, Grade 4

(diameter, 125 mm)
Sigma Aldrich

Ficoll Paque plus GE Healthcare Life Sciences

Human recombinant MCSF R&D Systems

Mouse recombinant RANKL R&D Systems

Nitrocellulose membrane Thermo Fisher Scientific

Foetal Calf Serum (FCS) Gibco

Trypsin/EDTA 10x solution Life Technologies
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Table 2.2: List of primary and secondary antibodies used for Western blot analysis throughout

the current project. Unless otherwise stated, primary antibodies were diluted 1:1,000  (actin

1:15,000) and secondary antibodies used at a 1:10,000 dilution.

Target protein Species Supplier

phospho-AKT(Ser473) Rabbit Cell Signalling

AKT (total) Rabbit Cell Signalling

phospho-42/44 MAPK Rabbit Cell Signalling

MAPK (total) Rabbit Cell Signalling

SRC (total) Rabbit Cell Signalling

phospho-SRC(Tyr416) Rabbit Cell Signalling

mTOR (total) Rabbit Cell Signalling

phospho-mTOR (Ser2448) Rabbit Cell Signalling

phospho-p70S6K (Thr389) Rabbit Cell Signalling

phospho-p70S6K (Ser371) Rabbit Cell Signalling

4EBP1 Rabbit Cell Signalling

phospho-EGFR (Tyr1068) Rabbit Cell Signalling

EGFR (total) Mouse Cell Signalling

PARP Goat R&D

FAK (total) Rabbit Cell Signalling

phospho-FAK (Tyr397) Rabbit Cell Signalling

Anti-rabbit IgG Goat Cell Signalling

Anti-mouse IgG Sheep Santa Cruz

Anti-goat IgG Rabbit Santa Cruz

β-actin Mouse Santa Cruz
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2.2 In vitro cell models and routine cell culture methods

2.2.1 Breast cancer cell models

 The ER+, antihormone-sensitive breast cancer cell line MCF-7 was obtained from

the American Type Culture Collection (ATCC) and used as an in vitro model of

Luminal A breast cancer. MCF-7 cells were routinely maintained in RPMI 1640 media

containing phenol-red, glutamine (200 mM), 5 % (v/v) foetal calf serum (FCS),

Fungizone (2.5 µg/ml) and penicillin/streptomycin (100 IU/ml and 100 µg/ml

respectively). All experiments involving antihormones were performed in the above

media but without phenol red (wRPMI).

 To model triple-negative breast cancer, the MDA-MB-231 cell line was used

(ATCC). These cells were maintained in DMEM supplemented with 5 % (v/v) FCS

and 1 % antibiotics (Fungizone (2.5 µg/ml) and penicillin (100 IU/ml)/streptomycin

(100 µg/ml).

2.2.1.1 Derivation of acquired-antihormone resistant cells

In vitro breast cancer models of acquired antihormone resistance were developed

by the Breast Cancer Molecular Pharmacology Group (BCMPG) as follows: MCF-7

cells were continuously cultured in the presence of either 100nM 4-hydroxytamoxifen

(‘tam’) or 100nM fulvestrant (faslodex, ‘fas’) with routine media changes every 3-4

days. The medium used for the development of the resistant models was wRPMI

supplemented with 5% (v/v) charcoal-stripped foetal calf serum (SFCS) in order to

provide a steroid-depleted environment. After a period of initial growth suppression

(~3 months), cells began to regrow in the presence of these agents until full regain of

growth capabilities in the presence of endocrine agent was acquired at ~ 8 months

indicative of acquired resistance to these agents. These resistant cell lines were



40

designated TamR (tamoxifen resistant) and FasR (faslodex resistant) and maintained

in wRPMI+5% (v/v) SFCS as has been previously characterised (Staka et al. 2005).

Basic characteristics and culture conditions of all the breast cancer cell lines described

above, are summarized in Table 2.3.

Table 2.3: Characterisation and molecular features of breast cancer cell models used and their

respective culture conditions Adapted from (Neve et al., 2006)

Cell line
Molecular

Subtype

ER & PR

status

Culture

conditions
Tumour Type

MCF-7 Luminal
ER+

PR+

rRPMI

+5% FCS

Invasive ductal

carcinoma

TamR Luminal
ER+

PR+

wRPMI

+5%

SFCS

Invasive ductal

carcinoma

FasR Luminal
ER-

PR-

wRPMI

+5%

SFCS

Invasive ductal

carcinoma

MDA-MB-231
Triple

negative

ER-

PR-

DMEM

+5% FCS
Adenocarcinoma
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2.2.2 Mouse monocytic cells

 RAW 264.7 cells were purchased from ATCC and is a murine monocytic cell line

that is widely used as an osteoclast precursor model and can differentiate into

osteoclasts upon exposure to RANKL (Collin-Osdoby & Osdoby 2012). RAW 264.7

cells were cultured in alpha Minimum Essential Medium (αMEM) supplemented with

penicillin/streptomycin (100 IU/ml and 100 µg/ml respectively) and 10% (v/v) FCS.

2.2.3 Peripheral Blood Mononuclear Cells (PBMCs)

 Blood from healthy volunteers was used as a source of PBMCs, which were

cultured in αMEM supplemented with penicillin/streptomycin (100 IU/ml and 100

µg/ml respectively) and 10% (v/v) FCS. For blood collection, ethical approval was

obtained by the Department of Medicine, Cardiff University (see Appendix B).

2.3 Routine cell culture, passaging and freezing

2.1 Cell culture

 All cell lines were cultured in a 37 ˚C/ 5 % CO2 incubator. Cell manipulations were

carried out under sterile conditions in an MDH Class II laminar-flow safety cabinet

and all equipment and consumables were either purchased sterile for single use or

sterilised at 119 °C in a Denley BA825 autoclave.

2.2 Cell passaging

 Once breast cancer cells reached ~70% confluency (by eye) media was aspirated

and cells were detached following treatment for 3-5min with trypsin/EDTA solution

(0.05%/0.02% in PBS respectively). The trypsin suspension containing the detached

cells was centrifuged for 5min at 1000 rpm. After centrifugation, the supernatant was
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discarded and the pellet was resuspended in growth media at 1:8 dilution and 10ml of

cell suspension was transferred to a new T75 flask and returned to the incubator.

Thereafter the media was replaced every 3-4 days unless otherwise stated. A similar

process was followed for RAW 264.7, but for cell detachment a cell scraper was used

instead of trypsin.

2.3 Cell freezing

 The cell pellet from a 70% confluent T75 flask was resuspended in 2ml of

maintenance media supplemented with 10% (v/v) serum. 800ul of cell suspension was

then transferred into 1ml cryovials and 5% (v/v) of DMSO was added in each vial

before they were stored in liquid nitrogen.

2.4 Cell proliferation assays

2.4.1 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)

assay

 The principle of the MTT assay is based the conversion of MTT into insoluble

purple formazan crystals through the mitochondrial activity of viable cells. These

formazan crystals can be solubilized and the absorbance of the resultant solution

measured with a spectrophotometer. The absorbance reading is proportional to the

number of viable cells.

Cells harvested by trypsinisation, pelleted and resuspended at 1.5x105 cells/ml before

they seeded into a 96-well plate (0.1ml/well) and left to adhere overnight. The

following day the media was removed and fresh media was added containing the

appropriate treatment. After 72h, 10μl of the MTT reagent (0.5μg/ml in PBS) was

added to each well and cells were incubated for another 4h at 37°C in dark. Following
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this incubation time, the formazan crystals that had formed were dissolved in 100μl of

acidified isopropanol (isopropanol containing 0.04M HCl) and the absorbance of each

well was measured at 540nm in a spectrophotometer.

2.4.2 Coulter counting assay

 In some cases, a more sensitive method was required than the MTT assay that could

more accurately detect subtle changes in cell number following treatment and so a

coulter counter based method was employed. In these assays, cells were harvested and

prepared as for the MTT assay but seeded into 24-well plates at a density of 105

cells/well and left to adhere overnight. The following day the media was aspirated and

replaced with fresh media containing treatments as indicated in the respective results

chapter. The plate was then returned to the incubator and cultured for the required

time. Following this the media was aspirated from each well and replaced with trypsin

solution (1ml 0.02% EDTA trypsin/well), left for two minutes and then all solution

was drawn up into a 5ml syringe through a 25G needle to ensure that a single cell

suspension was achieved. The cell suspension was then transferred into a Coulter

counting cup containing 6ml of isoton. The wells were washed with 3x1ml isoton

solution each time drawing up the well contents through a 25G needle and transferring

the solution into the counting cup so that at the end of the procedure, the cup contained

a total of 10ml volume. The final solution was placed on the Coulter Counter stage

and the probe inserted approximately half way down the solution. Counting was

performed automatically by the Coulter Multisizer II.  Each treatment was performed

in at least in triplicate and mean average was normalized to % of the corresponding

control (set at 100%).
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2.5 Microarray Analysis

 Prior to this project, the BCMPG undertook a study to characterise the antihormone

sensitive and resistant cell models at a gene level using Affymetrix gene-expression

microarrays. Briefly, the approach taken to undertake the microarray study was as

follows:

 RNA samples from MCF-7, TamR and FasR cells were collected in triplicate and

sent to a third-party biotechnology service, Cardiff University Central Biotechnology

Services (CBS) to be microarrayed. RNA sample quality was assessed. Reverse

transcription of RNA to cDNA, synthesis of cRNA to incorporate biotin (in vitro

transcription), hybridisation, washing, streptavidin staining and scanning of chips to

detect amount of transcript hybridised at each gene probe position was performed.

Samples were hybridised to Affymetrix Human Genome U133A Arrays containing

probe sets representing more than 39,000 transcripts derived from approximately

33,000 well-substantiated human genes. Data obtained from microarraying after

normalisation and log2 transformation was uploaded to the commercial software

GeneSifter Analysis Edition (Perkin Elmer) (https://login.genesifter.net/). Triplicate

data were analysed using t-test or one-way Anova as appropriate. Boxplots for

negative controls were generated and the median expression (~6.1) taken as an

approximation of baseline expression above which gene expression was considered

valid not background noise. In some cases, the gene chips contained more than one

gene probe per gene and thus they were consequently placed on the ‘Jetset’ probe,

which identifies the most reliable probe for the gene of interest (Li et al. 2011).
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2.6 Gene expression detection by PCR analysis

2.6.1 RNA extraction

 Cells were seeded into 60mm dishes and cultured until they reached ~70%

confluency. Media was then aspirated and cells were washed twice with 1x PBS before

TRI Reagent (Sigma Ltd; 0.75ml/60mm dish) was applied. After 2 minutes, cells were

scraped using a disposable cell scraper and lysates were quickly transferred into a

1.5ml Eppendorf tube and stored at -80° overnight. Following this, lysates were

thawed and allowed to equilibrate at room temperature prior to RNA extraction as

follows:

 All the following steps were performed on ice to minimize RNase activity.

Chloroform (CHCl3) was added to the cell lysates (0.2ml CHCl3/ml TRI reagent),

tubes vortexed for 15sec then left at room temperature for 15 min before centrifugation

at 12000g for 15min, 4°C. After centrifugation, the cell lysates separated into three

phases with the RNA being present in the upper aqueous phase. This phase was

carefully pipetted without disturbing the interface layer and placed to a fresh

Eppendorf tube. Isopropanol was added to the aqueous RNA-containing phase (0.75ml

isopropanol/ml TRI reagent, and centrifuged at 12000g for 10min. The supernatant

was gently removed and the resultant RNA pellet was air-dried and then dissolved in

20 μl of RNase-free water. Samples were stored in aliquots at -80°C until use.

2.6.2 RNA quantification and purification

 RNA was quantified by diluting 1μl RNA in 499μl RNase-free water and evaluated

in a spectrophotometer by measuring the absorbance at 260nm. The purification was

assessed based on the formula: RNA= A260nmx40 (dilution factor) and a ratio of 1.8-2

represented high RNA purity. To assess RNA integrity, samples were run in a 1%
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agarose gel supplemented with ethidium bromide and intact RNA led to the formation

of two bands indicative of the 18S and 28s ribosomal subunits.

2.6.3 cDNA synthesis

The extracted RNA was converted into its complementary DNA (cDNA) by reverse

transcription. For each reaction a master mix solution, as described in Table 2.4, was

added to 1μg (total volume 7μl) of RNA.

Table 2.4: The volume of the substrates required for master mix preparation for one reaction

(1μg RNA)

Reagent Volume (μl)
Final

concentration

dNTPs 5 2.5mM

10x PCR Buffer 2

10 mM Tris-HCI,

pH 8.3, 50 mM

NH4,

0.001 % w.v

gelatin

Dithiothreitol (DTT) 2 0.1M

Random Hexamers 2 100μΜ

MgCl2 0.5 50mM
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 Samples were denatured at 95°C for 5min and then placed on ice for another 5min.

To each reaction, 0.5μl RNase inhibitor and 1μl of Molony-murine leukemia virus

(MMLV) was added (final volume 20μl) and samples were placed in a thermocycler

for reverse transcrption using the following parameters:

Annealing at 22 ˚C for 10min

Reverse transcriptase extension at 22 ˚C for 40min

Denaturation at 95 ˚C for 5min.

The resultant cDNA was stored at -20 ˚C until required.
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2.6.4 Oligonucleotide primer design

Gene sequences were obtained from the National Centre for Biotechnology database

(see Appendix A) and oligonucleotide primers were designed using the OligoPerfect

primer design tool (Invitrogen). In Table 2.5 are shown the sequences, expected

product size and conditions used for PCR analysis. The primer sequences were

inputted into the Basic Local Alignment Search Tool (BLAST) to confirm their

specificity for the gene of interest.

Table 2.5: The sequences, expected product size of the primers designed and used for RT-PCR

analysis. Sizes of products are in base pairs (bp).

Gene target Sequence
Expected

product size
PCR conditions

PTHLH
FW: 5’-CCCTCTCCCAACACAAAGAA-3’

309 bp 55 ˚C, 29 cycles
RV: 5’-GGAGGTGTCAGACAGGTGGT-3’

RANKL
FW: 5’-AGAGCGCAGATGGATCCTAA-3’

140 bp 55 ˚C, 30 cycles
RV: 5’-TTCCTTTTGCACAGCTCCTT-3’

M-CSF
FW: 5’-ACCCCAGTTGTCAAGGACAG-3’

83 bp 55 ˚C, 29 cycles
RV: 5’-TTCTGGGACCCAATTAGTGC-3’

β-actin
FW: 5’-GGAGCAATGATCTTGATCTT-3’

204 bp 55 ˚C, 27 cycles
RV: 5’-CCTTCCTGGGCATGGAGTCCT-

3’
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2.6.5 Endpoint-PCR analysis

 PCR analysis was performed by using 0.5μl cDNA and 25μl a mixture comprising

of: 18.6μl RNase-free water, 2μl dNTPs, 0.75μl MgCl, 2.5μl PCR buffer, 0.625μl

forward primer, 0.625μl reverse primer and 0.2μl TAQ polymerase. On the top of the

reaction solution a drop of mineral oil was added to minimise evaporation. The

samples were transferred in a thermocycler using the parameters described in Table

2.6:

Table 2.6: Thermocycle parameters used for Endpoint PCR amplification.

Phase Step Temperature (°C)
Time

(min)
Cycle Number

1 denaturation

annealing

extention

95

dependent on target

gene

72

2

1

2
1

2 denaturation

annealing

extention

95

dependent on target

gene

72

1

0.5

1

dependent on

target gene

3 denaturation 94 1 1

4 extention 60 7 1
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 PCR samples were electrophorised in 2% agarose gel [2g agarose in 100ml 1x Tris

Acetate (TAE) buffer (50x TAE buffer: 242g Tris, 57.1 ml glacial acetic acid, 100ml

0.5% EDTA, 1L dH20, pH 8.3) and 1μl ethidium bromide). The gels were placed into

an electrophoretic tank filled with 1x TAE buffer and samples were loaded into the

gel wells (to 10μl PCR product was added 5μl loading buffer) and constant voltage of

75V was applied for approximately 1h. PCR products were visualised under a UV

light and photographed using a Bio-Rad GS-690 Imaging Densitometer.
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2.7 siRNA-mediated suppression of Src kinase

 In order to investigate the potential contribution of Src kinase to breast cancer cell

function, we used an siRNA based approach to suppress Src expression.

 Cells were harvested by trypsinisation and seeded at 2 x 105 cells/dish into 35 mm

dishes in their respective media, without the addition of antibiotics, and incubated at

37 ˚C until 60 % confluent. For transfection, 20 μM stock of the siRNA was diluted

to 2μM in 1x siRNA buffer (5x siRNA buffer was diluted to 1x in sterile RNase free

water). The constituents for each sample were assembled into two separate 1.5ml

Eppendorf tubes (A and B) as stated in Table 2.7, mixed well by gentle pipetting and

incubated at room temperature for 5min.

 The two mixtures (A and B) were then combined, mixed by gentle pipetting and

left to stand for 20 min at room temperature. Each sample was then diluted 1:5 in warm

media (wRPMI, 5% SFCS, 2 % glutamine, without antibiotics), added to the cells and

returned to the incubator for 72h to allow sufficient siRNA protein knockdown before

harvesting.

Table 2.7: The volumes (μl) required for siRNA transfection of a 35mm dish.

NT-siRNA SRC-specific siRNA

Tube A B A B

wRPMI 50 98.4 50 98.4

2μΜ siRNA 50 - 50 -

Dharmafect #1 - 1.6 - 1.6

Total volume 100 100 100 100
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2.8 Western blotting analysis

 Western blotting is a commonly used analytical technique that can detect and

confirm the presence of specific proteins.

2.8.1 Protein Extraction

 Cells were seeded into 60mm dishes and cultured ± treatments until 70-80%

confluency. Before harvest, dishes were placed on ice and cells were washed twice in

PBS. To each dish 120μl of lysis buffer were added [50mM Tris base (0.61g), 150mM

(0.875g) NaCl, 5mM (0.19g) EDTA, 1ml TritonX-100 and 100ml dH20 with final pH

7.4] containing freshly added protease/phosphatase inhibitors as stated in Table 2.8.

Cells were scraped and the cell suspension was transferred into a 1.5ml Eppendorf

tube and centrifuged in a pre-cooled centrifuge for 15min at 12000 rpm, 4°C to

separate the insoluble cell debris. After centrifugation, the supernatant was transferred

into a clean Eppendorf tube and stored at -20°C until use.
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Table 2.8: Volume of protease/phosphatase inhibitors required for 1ml Lysis Buffer.

Inhibitor

Volume (μl)

required for 1ml

Lysis Buffer

Final Concentration

Sodium Fluoride 20 50mM

Sodium Orthovanadate 20 2mM

Sodium Molybdate 10 10mM

Phenylmethylsulfonyl 10 1mM

Phenylarsine 1 20μM

Leupeptin 2 10μg/ml

Aprotinin 4 8μg/ml

2.8.2 Protein quantification

 The total protein concentration of cell lysates was measured using a Bio-Rad DC

colorimetric assay based on a modified Lowry method. The principle of this assay

relies on the reaction between the copper tartrate solution with the proteins that causes

a reduction of Folin reagent and produces a blue colour. The optical density of the blue

colour can be measured in a spectrophotometer and is proportional to the protein

concentration in the sample.

 Initially a standard curve was prepared by using a range of known BSA

concentrations (0-1.45mg/ml) diluted in lysis buffer. At the same time, 10μl of each

protein sample was placed into 1ml cuvettes. To both protein samples and BSA

standards, 250μl of Bio-Rad ‘reagent A’ and 2ml of Bio-Rad protein ‘reagent B’ were

added and mixed by vortexing. Following 5min incubation in the dark, the absorbance

was measured at 750nm. Data were plotted to produce a standard curve from which
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the protein concentration of the test samples could be calculated. 100μg of total protein

from each sample was then mixed with an equal volume of 2X SDS-PAGE loading

buffer (0.4 Tris, 10% SDS-pH 6.8, 50% glycerol and 0.05%bromophenol blue)

containing 24 mg/ml DTT and heated to 90°C for 5 min prior to SDS-PAGE or, where

samples were to be used later, stored at 4°C.

2.8.3 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-

PAGE)

Gels for SDS-PAGE analysis consisted of the separating and the stacking gel, which

were made between glass plates 1.5mm. The separating gel (lower) was poured to a

height approximately 0.5cm below the gel combs and after 20min the stacking gel was

added. The lower gel was usually 8- 12%, while, the upper was always 4% (Table

2.9). Gel combs were placed on the top and gel left to set.
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Table 2.9: Volumes of the substrates required for resolving and stacking gel preparation.

Resolving

gel (%)

8% 10% 12%
Stacking

gel (%)
4%

Acrylamide 5.4ml 6.6 8 Acrylamide 1.67

dH20 9.2ml 8 6.6 dH20 5.83ml

Tris pH 8.8 5ml 5ml 5ml Tris pH 6.8 2.5ml

10% SDS 0.2ml 0.2ml 0.2ml 10% SDS 0.1ml

Temed 0.2ml 0.2ml 0.2ml Temed 25ul

10% APS 50ul 50ul 50ul 10% APS 50ul

 Once set, protein samples were loaded into the wells 20ul/lane. Loaded samples

were separated by application of a constant voltage of 120V for approximately 2h in

the presence of Running Buffer (192mM glycine, 25mM Tris, 0.1% w/v SDS), which

had been poured until the 1/3 of the height of the running tank.

2.8.4 Blotting and Blocking

 After SDS-PAGE separated proteins were transferred from the gel onto a

Nitrocellulose membrane using a semi-dry blotting system as depicted in Figure 2.3

below. The cassettes were placed in a tank that was filled with Transfer Buffer (0.25M

TRIS base, 1.92M Glycine, 20% methanol) together with an ice block for cooling.

Transfer of proteins was performed at 100V for 60 minutes.
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Figure 2.3: The assembly of the transfer ‘sandwich’. Proteins were transferred to nitrocellulose

membranes using the semi-dry method assembled as shown. Black represents the cathode

(-) and red the anode (+).

 After transfer, Ponceau-S staining was performed to visualise transferred proteins

in order to validate the transfer. The membranes were then rinsed in dH2O to remove

stain then blocked with 5% semi-skimmed milk powder in Tris-Buffered Saline

Tween (TBS-T) for 1h.

 Following blocking, membranes were washed in TBS-T (3x 5min) and then

incubated with the appropriate primary antibody at the concentration indicated in

Table 2.2, overnight at 4C° on a rocking platform. The following day the membrane

was washed 3 times in TBS-T (5 min each) and incubated with secondary antibodies

(horseradish peroxidase-conjugated IgG) used at 1/10000 for 1h at room temperature.

 Finally, the membrane was washed 3 times in TBS-T (5 min each) and

chemiluminesence detection reagent (ECL, Clarity or Femto) was applied. X-Ray film

Scouring pad

Scouring pad

2X filter 

2x filter paper

Gel

Nitrocellulose 
membrane

Cassette

Cassette
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was then exposed to the membrane and then processed with an automatic film

developer/fixer machine.

2.9 ELISA

 This assay was performed using the DuoSet ELISA kit for human RANKL (cat. #

DY626 R&D systems). 96-well ELISA plates were coated with 1μg/ml mouse anti-

human RANKL antibody (100λ/well) at RT overnight. On the next day plates were

washed three times with PBS/0.05% Tween 20 and blocked with 1% BSA/PBS at RT

for a minimum of 1h. Plates were washed three times with PBS/0.05% Tween 20 and

either samples (conditioned media) or standards were applied to the ELISA plate

(100λ/well) and incubated for 2h at RT. Plates were washed three times with

PBS/0.05% Tween 20 and incubated with 9μg/ml goat anti-human RANKL antibody

(100λ/well) for 2h at RT. Plates were washed, as previously described, and incubated

with a streptavidin-HRP antibody (100λ/well)  for 20min at RT. Following this, plates

were washed and substrate solution was applied to each well (100λ/well) and

incubated for 20min at RT in dark. Stop solution was then added (50λ/well H2SO4)

and optical density was determined using an ELISA reader set to 450nm.

2.10 Isolation of peripheral blood mononuclear cells (PBMCs) from whole blood

 For blood collection from healthy donors, ethical approval was obtained by Cardiff

University, School of Medicine with Reference Number: 14/25 (see Appendix B).

 Blood was collected from healthy volunteers in EDTA containing 9ml blood

collection tubes, mixed well and allowed to stand for 10 minutes before use. An equal

volume of αΜEM medium, (serum free) was added. A volume of Ficoll was added

that was equivalent to the total volume of blood/media. The addition of Ficoll was
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carried out carefully with the use of a syringe and kwill underneath the blood mixture,

trying not to disturb the blood layer. The samples were then centrifuged at 510g, 4°C

for 25min with no brake. Following centrifugation, the blood cells separated according

to their density. Using this technique and from bottom to top the phases were: red

blood cells, Ficoll, a tiny layer containing the PBMCs and the plasma phase (Figure

2.4).

Figure 2.4: Density gradient centrifugation of whole blood with Ficoll.

Blood

Ficoll

Plasma

PBMCs

Ficoll

Red Blood Cells

Layers before Ficoll 
spin

Layers after Ficoll 
spin
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 The PBMC layer was carefully collected trying to minimise contamination with the

adjacent layers of Ficoll and plasma. The samples were transferred to clean universals

containing 10 ml cell culture medium and centrifuged at 510g, 4°C with no brake for

another 10 min. Then, the supernatant was carefully removed and the pellet re-

suspended in 10 ml of serum free αMEM and centrifuged at 510g, 4°C with no brake

under for another 5min. Finally, the pellet was re-suspended in 2 ml of αMEM medium

supplemented with serum and counted using a haemocytometer. Before the cells were

placed into the haemocytometer, 10 µl of the sample was added to 90 µl of 2 % acetic

acid in an Eppendorf tube and mixed gently to lyse any erythrocytes present in the

sample.

2.11 PBMC differentiation

 Sterile coverslips were placed into 96 well-plates and PBMCs were seeded at a

density of 5x105 cells per well. The differentiation of the human cells was triggered

following treatment with 10ng/ml RANKL and 25ng/ml MCS-F for two weeks.

2.12 Tartrate-acid resistance phosphatase (TRAP) staining

 Following incubation with RANKL, cells were washed twice in dH20 and then

fixed using a fixative solution containing 25ml citrate solution, 65ml acetone and 8ml

of 37% formaldehyde, for 30 sec. The fixative solution was then aspirated and cells

were rinsed with dH2O before the staining solution for TRAP was applied. A TRAP

staining solution was made as described in Table 2.10.
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Table 2.10: Substrates and their corresponding quantities used for TRAP staining

solution preparation.

Reagent Quantity

pre-warmed (37°C) dH20 5 ml

Fast Garnet GBC Solution 55 μl

Sodium nitrite solution 55 μl

Naphthol AS-BI phosphoric acid 55 μl

Acetate solution 222 μl

Tartrate solution 110 μl

 Following incubation for 1h at 37°C in dark, the staining solution was removed and

the cover slips were rinsed in dH20. Finally, counterstaining was performed using acid

haematoxylin solution for 2 min. When the counterstain solution was removed,

coverslips were rinsed in tap water. This procedure resulted in the nuclei taking on a

blue colour for easy identification, whilst TRAP-positive cells appeared as light pink.

2.13 Bone Resorption assay

 Transverse dentine wafers, 0.13-0.16 mm thick were cut using a Buehler IsoMet

Low Speed Saw with a diamond wafer blade (series 20 HC diamond) following which

6mm ivory discs were cut from the wafers using a paper hole punch. The discs were

then subjected to sonication in dH20 and left to dry before sterilising by immersion in

100% ethanol. The disks were then dried and then immersed in αMEM medium.

 Following their isolation, PBMCs were seeded on ivory slices on a 96-well plate at

5x106 cells/well and left to adhere overnight. The following day, cells were washed
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twice in serum free media to remove the non-adherent cells and fresh media

supplemented with 25ng/ml MCSF and 10ng/ml RANKL was added and cells

returned to the incubator and cultured for 21 days in total with regular medium changes

throughout. After 21 days the media was removed and ivory slices were washed in

PBS for 2min. Once the PBS was removed 1% sodium hypochlorite solution was

applied for 10min to ensure death of all the live cells. The slices were then washed

twice in dH20 (2min each) and vigorously rubbed in the palm of a gloved hand to

remove all the cells from the slice surface. A subsequent staining step with 0.5%

Toludine blue (0.5g toluidine blue, 0.5g boric acid, pH 7.3) for 2min was performed

to visualise the resorption pits. Excess stain was then removed by washing the slices

twice (2min each) in 70% ethanol solution. Finally, the ethanol was removed and slices

were washed in tap water and allowed to dry. Resorption pits were viewed with an

inverted microscope and images taken at x10 magnification.

2.14 Immunohistochemistry staining for Ki67

 Cells were cultured on 0.13-0.17mm thick 3-aminopropyltriethoxysilane (TESPA)

coated glass coverslips in 35mm dishes. Once they reached 70% confluency, media

was aspirated and cells were fixed in 1ml formal saline for 5min. Cells were washed

for 5min in 100% ethanol and then twice (5min each) in 0.02% PBS/Tween. To each

coverslip MIB1 primary antibody at a concentration 1:50 diluted in PBS was added

and incubated for 60min. Following that cells were washed twice (5min each) in

0.02% PBS/Tween and a secondary antibody detection was performed by adding

50μl/coverslip Dako mouse EnVision for 30min. Cells were washed twice (5min each)

in 0.02% PBS/Tween and incubated with diaminobenzidine tetrahydrochloride (DAB)

chromogen solution (50μl/coverslip) for 75min. Coverslips were washed in PBS and

counterstained with 0.05% methyl green for 10min. Cells were finally washed three
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times (5min each) in dH20 and allowed to dry overnight. The following day coverslips

were mounted onto glass microscope slides using di-butyl phthalate xylene (DPX).

 Immunostaining was evaluated at 20× magnification using an Olympus BH-2 light

microscope and representative photographs were taken. Ki67 expression was

estimated by counting over 500 cells from at least 6 different fields of view and then

calculating the percentage of cells deemed positive (brown cells) versus negative (blue

cells) from three independent experiments.

2.15 Fluorescence-activated cell sorting (FACS) analysis

 Cells were cultured in 60mm dishes ± treatments for times indicated in the relevant

results section prior to trypinisation and pelleting by centrifugation at 1000 rpm for

5min. The supernatant was removed and cells were washed twice in PBS and

centrifuged under the same conditions. The cell number was measured using a Coulter

counter and 106 cells were fixed in 10ml ice-cold ethanol overnight at -20°C. The next

day the cell suspension was centrifuged and cells were stained with propidium iodide

solution [5.4ml PBS, 6μl Triton X100, 120μl Propidium iodide solution(2%v/v),

1.2mg DNAse-free RNAse]. Cell cycle distribution was then determined using BD

FACSCanto II (BD Biosciences) flow cytometer.

2.16 Statistical analysis

 Statistical analysis was carried out using GraphPad Prism 5 software and error bars

were expressed as mean ±SEM. For comparing more than two groups of data, one-

way analysis of variance tests (ANOVA) with Turkey multiple comparison test was

used. For the comparison of pairs of data, a student’s independent t-test was

performed. Statistical significance is marked as follows in the results chapters:

*p<0.05, ** p<0.01, ***p<0.0001.
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3.  Determining the impact of breast cancer cell

conditioned media on RAW 264.7 cell

differentiation to osteoclasts
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3.1 Introduction

 Breast cancer is the most common malignancy in women with over 70% of breast

cancers being hormone receptor positive (Ignatiadis & Sotiriou 2013). The majority

of breast cancers are thus likely to display estrogen-dependent growth (Yue et al.

2013) and sensitivity to ER modulatory agents such as tamoxifen. Despite the benefits

observed with endocrine therapy, resistance remains a limiting factor with associated

disease progression (Schiavon & Smith 2013).

 For breast cancer, as with several other cancer types, the bone is the preferential

site of metastasis and a high percentage of patients with advanced breast cancer present

with skeletal metastases (Scully et al. 2012). Once in the bone microenvironment,

breast cancer cells may cross-talk with, and modulate the function of bone cells

(osteoblasts and osteoclasts), which can lead to either osteoblastic or osteolytic bone

lesions (Ortiz & Lin 2012). In the latter case, breast cancer cells are known to stimulate

osteoclastogenesis in both RANKL-dependent and independent mechanisms (Dougall

2012). Additional evidence also points to a role for Src kinase in the expression

pathways that lead to the secretion of bone-modulatory proteins from cancer cells and

also to mediate the function of osteoclasts themselves (Boyce et al. 2006).

Interestingly, Src activity has been demonstrated to be elevated in acquired endocrine

resistance where it promotes an invasive and highly metastatic phenotype (Hiscox,

Morgan, Tim P. Green, et al. 2006).

 This chapter sets out to investigate the hypothesis that acquisition of endocrine

resistance in breast cancer influences the ability of these cells to promote

osteoclastogenesis and that this occurs in a Src-dependent manner.

 To investigate our hypothesis, we initially used the RAW 264.7 cell line (RAW

cells). RAW cells are a mouse monocytic cell line that readily differentiate into
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osteoclasts in response to RANKL and are a widely used model to study osteoclast

differentiation in vitro (Collin-Osdoby & Osdoby 2012; Shevde et al. 2000; Lee et al.

2014; Hiken 2004). Mature and fully-differentiated osteoclasts are distinguished by

two characteristics: (i) they are giant multi-nucleated cells and (ii) they stain positive

for tartrate-resistant acid phosphatase (TRAP), a metalloprotein enzyme that is highly

expressed in activated osteoclasts (Soysa et al. 2012).

 In this chapter, the approach was to expose RAW cells to conditioned media from

endocrine sensitive and resistant breast cancer cell models ±Src inhibition and

determine the effects on osteoclastogenesis. Specifically, to achieve our aims the

following objectives were set:

1. optimise a RAW cell-based assay in order to measure osteoclast differentiation

2. employ the RAW assay to investigate the ability of drug-responsive and drug-

resistant breast cancer cell models to influence differentiation into osteoclasts

3. investigate whether Src kinase is involved in

i) RANKL-mediated osteoclast differentiation

ii) breast cancer conditioned media effects on RAW cell differentiation
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3.2 Results

3.2.1 Optimisation of RAW 264.7 cells osteoclast differentiation assay

3.2.1.1 Creating a positive control- RANKL concentration curve

 Optimisation of the RAW cell assay was performed using a method reported by

(Hsu et al. 1999) that is depicted in Figure 3.1.

Figure 3.1: RAW 264.7 differentiation assay protocol. (1) Cells were scraped gently and pelleted

following centrifugation. (2) Cell pellet was resuspended in αMEM/ 10% FCS media at a

concentration of 2x103 cells/ml. (3) Cells were seeded on 13mm glass coverslips at a

density of 103 cells/coverslip and left to adhere overnight. (4) The following day the media

was replaced with fresh media (αMEM/ 10% FCS) supplemented with 2ng/ml RANKL

and cells were cultured for 7 days in total. Media supplemented with RANKL was

replacing twice a week. (5) After a 7-day exposure to RANKL, cells were stained for TRAP

to confirm their differentiation to osteoclasts and counterstained with haematoxylin to

visualise their nuclei. Osteoclasts were assessed as differentiated when stained positive for

TRAP and having more than 3 nuclei
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 Initially we wished to explore the optimum RANKL concentration for osteoclast

differentiation. In order to achieve this, a range of different concentrations of RANKL

(0.5-4ng/ml) were tried using the protocol described above. After a 7-day exposure to

RANKL, cells were stained for TRAP and counterstained with haematoxylin to

confirm their differentiation and to evaluate the number of their nuclei respectively.

Multinucleation (> 3 nuclei) and TRAP+ staining were the criteria set for successful

osteoclast differentiation. Treatment with the lowest concentration of RANKL (0.5

ng/ml) failed to induce differentiation of any osteoclasts. The effect of 1ng/ml RANKL

was moderate in terms of number of osteoclasts identified in each sample, whereas

when using either 2 or 4 ng/ml RANKL greatest numbers of osteoclasts were seen

(Figure 3.2). Since both higher concentrations resulted in a similar effect it was

decided the 2 ng/ml concentration was to be used for all the future experiments.
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Figure 3.2: Optimisation of RANKL concentration to induce osteoclast differentiation. (A) TRAP

staining and haematoxylin counterstaining of RAW 264.7 following treatment for 7 days

with different concentrations of RANKL. The control did not contain any RANKL.

Representative photographs were captured using an Olympus BH-2 light microscope at

40× magnification. (B) Quantitation based on the number of differentiated osteoclasts per

coverslip. *** p<0.001 (C) High power image of differentiated osteoclasts following

TRAP staining. Multi-nucleation is pointed with arrows.
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3.2.1.2 Adjusting culture conditions to support osteoclast differentiation

 As we wished to use our assay to determine the ability of endocrine-resistant breast

cancer cells to promote osteoclastogenesis in RAW cells, we additionally had to

consider the fact that these endocrine resistant models are routinely grown in a variety

of media (see Table 3.1) ± phenol red and ± full or charcoal-stripped FCS (SFCS) as

appropriate depending on the hormonal status of the cell line. Thus, a series of

experiments were performed to establish whether RAW cells would be amenable to

culture in these conditions and whether this would affect their ability to differentiate.

Table 3.1: Breast cancer cell lines hormone receptor status and their respective culture

conditions. wRPMI: RPMI media without phenol-red, rRPMI: RPMI media containing

phenol-red, TamR cells: MCF7-derived cells with acquired resistance to tamoxifen, FasR

cells: MCF7-derived cells with acquired resistance to faslodex.

Cell line Hormone Receptor
Status Medium Serum

MCF-7 ER+, PR+ rRPMI 5% FCS

TamR ER+, PR- wRPMI 5% SFCS

FasR ER-, PR- wRPMI 5% SFCS

MDA-MB-231 ER-, PR- DMEM 5% FCS
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 The RAW 264.7 differentiation assay was repeated using the culture conditions

stated in Table 3.1. This investigated how RAW 264 cells respond to the RANKL

treatment and whether osteoclast differentiation takes place under the culture

conditions in which breast cancer cells are growing. Combinations of media/serum

that are routinely used for MCF-7 cells (rRPMI/ 5% FCS) and MDA-MB-231 cells

(DMEM/ 5% FCS) led to significant osteoclast yield in response to RANKL treatment

after 7 days. TamR and FasR culture conditions (wRPMI/ 5% SFCS) resulted in poor

osteoclast differentiation as far as the number and the size are concerned (Figure 3.3).

These data were summarised in Table 3.2.

 Based on these findings, we then wished to assess the RAW cell viability and

growth under the aforementioned culture conditions using the MTT assay. Following

a 7-day culture with RANKL, RAW cells demonstrated similar growth and

proliferation with all the different media/serum combinations and no statistically

significant difference was observed (Figure 3.4).
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Figure 3.3: RAW cell osteoclast differentiation assay under various culture conditions. (A) TRAP

staining and haematoxylin counterstain of RAW 264.7 cells following RANKL treatment

in culture conditions that are routinely used for breast cancer cells lines. When RAW cells

were grown in αMEM with 10% FCS, supplemented with 2ng/ml of mouse soluble

recombinant RANKL for 7 days, giant TRAP positive osteoclasts were produced. When

RAW cells were grown in either rRPMI or DMEM with 5% FCS in the presence of 2ng/ml

RANKL, the osteoclast formation was reduced. When RAW cells were grown in either

wRPMI with 5% SFCS in the presence of 2ng/ml RANKL, the osteoclast formation was

significantly limited - only a few tiny osteoclasts were observed. Representative

photographs were captured using an Olympus BH-2 light microscope at 40× magnification.

(B) Quantitation based on the number of differentiated osteoclasts per coverslip. ***

p<0.001
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Figure 3.4: RAW cells viability assay under different culture conditions. RAW 264.7 cell number

under different culture conditions was assessed using MTT assay and no significant

difference was observed.
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 Due to the fact that the culture conditions of TamR and FasR cells resulted in an

impaired osteoclast differentiation there was the need for further optimisation. This

culture combination was supplemented with stripped serum, in which the steroids had

been removed to prevent steroidal activation of the oestrogen receptor, but still

retained growth factors and nutrients. Based on the poor yield of osteoclasts obtained

from this combination, it was indicated that steroids might be fundamental for

successful osteoclast differentiation. Therefore, we decided to collect the CM by

maintaining the normal culture conditions of TamR and FasR cells and before CM

was applied on RAW cells it was spiked with either 5% FCS or supplemented with

10-9M οestradiol (E2). After 7 days of treatment with RANKL under these culture

conditions, cells were stained for TRAP in order to evaluate the osteoclast

differentiation. The addition of both FCS and E2 significantly enhanced the number of

differentiated OC following RANKL treatment for 7 days (Figure 3.5). These data

were summarised in Table 3.2.

 The combination of wRPMI supplemented with SFCS was rejected due to the poor

quality of osteoclasts produced. Although the addition of either E2 or FCS significantly

improved the number of differentiated osteoclasts, these conditions were not as

effective as the αMEM/10%FCS. Osteoclast formation was also seen in RPMI and

DMEM, however both media were not as effective as the αMEM. Therefore, it was

decided for the following CM experiments to maintain both RAW and breast cancer

cells in their normal culture conditions. For the positive and negative control, the same

amount of media was added, but the media was not exposed to breast cancer cells.
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Figure 3.5: RAW differentiation assay under different culture conditions.  (A) TRAP staining and

haematoxylin counterstain of RAW 264.7 cells following RANKL treatment in different

culture conditions. When RAW cells were grown in wRPMI with 5% SFCS in the presence

of 2ng/ml RANKL, the osteoclast formation was limited - only a few, tiny osteoclasts were

observed. When RAW cells were grown in the same medium spiked with 5% FCS the

osteoclast formation was greater compared to case A. When RAW cells were grown in

wRPMI with 5% SFCS in the presence of 2ng/ml RANKL, but supplemented with 10-9M

E2, the osteoclast formation was greater compared to case A. Representative photographs

were captured using an Olympus BH-2 light microscope at 40× magnification. (B)

Quantitation based on the number of osteoclasts per coverslip. **p<0.01, *** p<0.001
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Table 3.2: Summarising data of osteoclast differentiation assay under various culture

conditions. Each different culture condition was assessed by performing at least

three independent experiments, each of which consisted of 6 replicates.

Culture conditions Osteoclast differentiation

Control: αΜΕΜ/ 10% FCS successful

rRPMI + 5% FCS adequate, relatively lower number and reduced
size compared to the control

DMEM + 5% FCS adequate, relatively lower number compared to
the control

wRPMI + 5% SFCS poor, low number and reduced in size compared
to the control

wRPMI + 5% SFCS + 5% FCS adequate, relatively lower number compared to
the control

wRPMI + 5% SFCS + 10-9 E2
adequate, relatively lower number compared to

the control
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3.2.2 Investigation of the breast cancer cell conditioned media effect on direct

RAW cells differentiation without the exogenous addition of RANKL.

3.2.2.1 Effect of CM percentage on osteoclast formation

 Initial observations on the ability of BC cells to induce RAW cell differentiation

involved experiments using different breast cancer cell CM ratios given the reports in

the literature that use a range of conditioned media concentrations from 10 to 40%

(Tiedemann et al. 2009; Chen et al. 2013; Casimiro et al. 2013; Hussein et al. 2011).

In order to confirm which CM percentage was more suitable to induce RAW

differentiation, we decided to use CM derived from MCF-7, TamR, FasR and MDA-

MB-231 cells in 3 different percentages: 10, 20 and 40% CM, keeping the collection

time point consistent at 24h. The CM was collected by adhering to a strict protocol

illustrated in Figure 3.6.
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Figure 3.6: Breast cancer conditioned media collection protocol. Breast cancer cells were seeded

into T75 flask at a density of 4x105 cells/ml and left to adhere overnight. The following

day the media was replaced with serum free culture media and incubated for 24 or 72h

before collection. Once collected, media was centrifuged to remove cell debris and

supernatant was filtered through a 10μm pore filter. Conditioned media were aliquoted into

1.5ml Eppendorf tubes and stored at -80 °C until use.
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 Both endocrine resistant (TamR and FasR) and triple negative breast cancer cell

(MDA-MB-231) CM supported the differentiation of RAW cells to osteoclasts

following a 7-day treatment with either 10 or 20% CM concentration. However, the

osteoclasts produced following CM treatment were reduced in number and

significantly smaller compared to those triggered by RANKL treatment. Interestingly,

the luminal A breast cancer model, MCF-7, barely supported the formation of

osteoclasts regardless of the CM concentration. A similar effect was observed with the

highest concentration of 40% CM, which triggered the formation of a low number of

osteoclasts regardless of the cell line the CM was derived from (Figure 3.7). Given

the results obtained in these experiments it was decided to use the 10% CM

concentration for all forthcoming experiments.
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Figure 3.7: Breast cancer cell conditioned media collected at 24h triggers osteoclastogenesis. (A-D)

TRAP staining with haematoxylin counterstain of RAW 264.7 cells following treatment with

various percentages (10, 20 and 40%) conditioned medium, collected after 24h incubation,

from four different breast cell lines (MCF-7, TamR, FasR and MDA-MB-231) for 7 days. (E)

Quantitation based on the number of differentiated osteoclasts per coverslip. * p<0.05, **

p<0.01.
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3.2.2.2 Effect of CM collection time on osteoclast formation

 We next wished to explore the effects of CM collected at different time points whilst

keeping the CM concentration in the osteoclast differentiation assay consistent. Thus, in

addition to the 24h CM, 72h CM was also included. Quantitation of all the experiments

performed with both 24 and 72h CM showed that the CM harvested at 24h was capable

of inducing the highest number of osteoclasts compared to the CM collected at 72h. As

far as the cell type is concerned, MDA-MB-231 and TamR cells exhibited the most robust

osteoclastogenic effect among the cell lines resulting in the highest osteoclast yield,

moderate osteoclast differentiation was observed when RAW cells were treated with

FasR CM, while MCF-7 CM failed to induce the differentiation of any osteoclasts

(Figure 3.8).
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Figure 3.8: 24 vs 72h collected CM in RAW cell osteoclast differentiation. (A) RAW cells were treated

for 7 days with 10% breast cancer cell CM collected at either 24 or 72h. Breast cancer cell CM

harvested at 24h promoted the greater osteoclast yield compared to the CM harvested at 72h,

especially in the case of TamR and MDA-MB-231 where statistical significance was observed

between the two collection time points. Among the cell lines, MDA-MB-231 and TamR cells

exhibited the most significant osteoclastogenic effect, FasR CM treatment resulted in a lower

number of osteoclasts and MCF-7 CM failed to support osteoclast formation. (B) Quantitation

based on the number of differentiated osteoclasts per coverslip. * p<0.05
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3.2.2.3 Effects of RANKL priming on osteoclast formation

 Although the CM treatment promoted osteoclast differentiation, the number of

osteoclasts was very low. In an attempt to increase the osteoclast yield, RAW cells were

primed with RANKL for 3d prior to the CM treatment and left in culture for 7d in total.

Indeed, RANKL priming increased the number of differentiated osteoclasts, however

there was no significant difference among the different breast cancer cell CM tried, as

they all resulted in similar number of osteoclasts (Figure 3.9).
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Figure 3.9: RAW differentiation assay with RANKL priming prior to CM treatment. (A) TRAP

staining and haematoxylin counterstain of RAW 264.7 differentiation assays (n=4) primed with

2ng/ml RANKL for 3d and then treated for another 4d with 10% breast cancer cell CM

collected at either 24 or 72h. Both breast cancer cell CM harvested at 24h and 72h resulted in

a similar osteoclast number when RAW 264.7 were primed with RANKL prior to the CM

treatment. The control was treated with 2ng/ml RANKL for 3d and left in culture for 7d in

total. (B) Quantitation based on the number of differentiated osteoclasts per coverslip.



90

3.2.2.4 Low vs high RAW passage number on osteoclast formation

 Several reports in the literature highlight the importance of using low passage number

of RAW cells that do not exceed generation 20 (Berghaus et al. 2009; Marino et al. 2014;

Collin-Osdoby & Osdoby 2012). There is evidence that high passage number (>20) has

been correlated with reduced responsiveness and low osteoclast yield following RANKL

stimulation (Collin-Osdoby & Osdoby 2012). In light of this, we then wished to explore

whether CM-mediated osteoclast formation can be affected by a late generation of RAW

cells. Thus, the differentiation assay was performed using a high passage batch of RAW

cells (>40) treated with 10% CM from each breast cancer cell line for 7 days. TRAP

staining and haematoxylin counterstain did not reveal the formation of any multinucleated

and TRAP+ osteoclasts in response to CM treatment, while positive control that was

stimulated with RANKL resulted in the differentiation of only a few osteoclasts (Figure

3.10).
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Figure 3.10: High passage number affects RAW cell responsiveness to RANKL and CM treatment.

High passage (>40) RAW cells were treated for 7 days with 10% breast cancer cell CM

collected at 24h. TRAP staining did not reveal the formation of any osteoclasts in response

to the CM treatment, while RANKL stimulation resulted in a low number of differentiated

osteoclasts. Positive control was treated with 2ng/ml RANKL for 7d.
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3.2.3 Investigation of Src kinase involvement in osteoclast differentiation

3.2.3.1 Src-deficient breast cancer cell CM results in reduced number of osteoclasts

 So far, our data suggested that breast cancer cell CM was able to induce osteoclast

differentiation in RAW cells even in the absence of exogenous RANKL supporting our

hypothesis that breast cancer cells secrete bone cell-modulatory factors that are

responsible for the transformation of RAW 264.7 cells to mature osteoclasts. Src kinase

plays a fundamental role in osteoclastogenesis and it is also expressed by breast cancer

cells. Specifically, Src is highly expressed in TamR and MDA-MB-231 and CM from

these cells was able to induce RAW cell differentiation to the greatest extent. Based on

these findings and the fact that the literature highlights the importance of Src in osteoclast

differentiation and survival we then wished to investigate whether CM from Src-deficient

breast cancer cells were still able to trigger osteoclast differentiation.

 siRNA-mediated Src knock-down was first confirmed using Western blotting (Figure

3.11), which revealed an almost complete loss of Src in siRNA-treated samples compared

to samples treated with non-targeting (NT) siRNA. Application of CM from these Src-

deficient cell models to the RAW differentiation assay resulted in reduced number of

differentiated osteoclasts compared to the CM from un-treated breast cancer cell cultures.

Specifically, in the case of TamR and MDA-MB-231 the number of differentiated

osteoclasts generated by Src siRNA-treated CM was significantly lower (p<0.05)

compared to the NT-CM (Figure 3.12).
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Figure 3.11: Src siRNA treatment suppresses activated Src protein in breast cancer cells. (A)

Representative blot illustrates the levels of phospho-Src (Y416) following treatment with Src

si-RNA and NT control. Protein expression of phospho-Src (Tyr-416) treated for 72h with

either Src siRNA or NT control in MCF-7, TamR, FasR and MDA-MB-231 cells. All cells

were grown to 50% confluence and treated with Src-siRNA at 25nM for 72h. Cell lysates

were processed for Western Blotting and probed for phospho-Src Y416. Actin was used as a

loading control. (B) Densitometry analysis. ** p<0.01, ***p<0.001
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Figure 3.12: Src-deficient breast cancer cell CM results in a significantly lower number of osteoclasts

compared to the untreated breast cancer cell CM. (A) CM was collected after 24h

incubation with either Src-siRNA post-transfected or untreated cells, diluted at 10% with

fresh medium and then added on to RAW cell culture. After 7 days, cells were fixed and

stained for TRAP. Src- deficient CM induced lower number of differentiated osteoclasts

compared to the corresponding NT control, especially in the case of TamR and MDA-MB-

231. (B) Quantitation based on the number of differentiated osteoclasts per coverslip. *

p<0.05
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3.2.3.2 Exploring the cross- talk of RANKL and Src kinase

 Based on the impaired osteoclastogenic effect seen following treatment with Src-

deficient breast cancer cell CM and the importance of Src kinase involvement in

osteoclast differentiation and survival that is widely highlighted in the literature

(Miyazaki et al. 2004; Miyazaki et al. 2006; Izawa et al. 2012; Sgroi 2009; J. C. Edwards

et al. 2006), we then wished to explore how RAW cells respond to RANKL treatment in

the presence of the pharmacological Src inhibitor AZD0530, also known as Saracatinib.

RAW cells were pre-treated with a range of AZD0530 concentrations (0-1μM) for 2h and

then RANKL was added and left in culture for 7 days in total before TRAP staining. A

negative control for each concentration of AZD0530 without RANKL was also included,

to identify any effects that this drug might exert on RAW cells.

 At 0.1μM or less, RAW cell differentiation into osteoclast cells did not appear to be

significantly affected in terms of the osteoclast yield produced. Although the number of

differentiated osteoclasts was relatively lower compared to the control, in terms of size

the osteoclasts generated in the presence of AZD0530 were bigger and covered a similar

surface compared to the control. At 0.5μM AZD0530 and above, RAW cell

differentiation was notably impaired and no osteoclast formation was observed (Figure

3.13). Observation of the negative control that contained AZD0530 alone, did not reveal

any toxic effects to be caused by the Src inhibitor on RAW 264.7 cells, as their cell

number was not affected. In addition, MTT assay confirmed that RAW cell growth was

not affected by the treatment with Saracatib (0-1μΜ), as no statistically significant

alteration in RAW cell number was observed following treatment with the indicated doses

of AZD0530 (Figure 3.14).
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Figure 3.13: Src inhibition inhibits the differentiation of RAW 264.7 cells to osteoclasts in response

to RANKL treatment in a dose-dependent manner. (A) TRAP staining and haematoxylin

counterstain of RAW cells treated with various concentrations of AZD0530 (0-1μΜ) ±

RANKL for 7 days. (B) Quantitation based on the number of differentiated osteoclasts per

coverslip. *** p<0.001
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Figure 3.14: RAW cells numbers are unaffected following Src pharmacological inhibition with

AZD0530. RAW 264.7 cells were treated with various AZD0530 concentrations (0-1μΜ)

for 7 days and their number assessed using the MTT assay. Cell numbers were not

significantly affected by the indicated doses of AZD0530.
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 Having found that Src kinase inhibition significantly impaired RANKL-mediated

osteoclast differentiation, we next wished to explore the interplay of RANKL and Src

kinase. In order to confirm that RANKL activates the Src pathway, a time-course

experiment (0-24h) by treating RAW cells with RANKL ± AZD0530 was performed.

Western blot for the activated form of Src kinase (Y416) revealed that 0.5μΜ AZD0530

suppressed suppress Src kinase levels after a 2h-treatment. However, this effect was

attenuated by the addition of RANKL after 5min and this phenomenon was even more

prevalent at 30min, when the highest expression level of Src was shown. Following that

point Src kinase levels gradually started to reduce and at 24h returned to their initial low

levels caused by the AZD0530 inhibition. RAW cell treatment with RANKL alone did

not affect the expression levels of Src kinase, regardless of the duration of RANKL

treatment (Figure 3.15).
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Figure 3.15: RANKL temporarily attenuates AZD0530-mediated Src inhibition in RAW cells. Cells

were seeded on plates and cultured to 70% confluence and subsequently treated with RANKL

(2ng/ml) ± pre-treatment with AZD0530 (0.5μM) for 2h. Samples were harvested at the

indicated time-points (0-24h). Cells were lysed, processed for Western Blotting and probed

for phospho-Y416 Src kinase as indicated. Actin was used as loading control. Representative

blots shown from three independent experiments.
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3.3 Discussion

 Breast cancer is one of the most common malignancies in women. The evolution of

our understanding of the pathophysiology underlying breast cancer has led to significant

scientific breakthroughs and the development of new therapeutic agents that have

increased the 10-year survival rate to around 80% for a large proportion of patients (Bodai

& Tuso 2015). However, breast cancer bone metastasis still constitutes one of the most

challenging topics to be faced in the clinical setting, since approximately 85% of patients

with advanced breast cancer develop bone metastases (Harries et al. 2014). Resistance to

endocrine treatment might also predispose to the development of bone metastasis as it is

highly correlated with an aggressive and metastatic phenotype (Hiscox et al. 2004).

Although significant developments have been made in the treatment of breast cancer,

bone metastases still remain incurable (Ibrahim et al. 2013). Breast cancer cells secrete

growth factors, such as PTHrP and interleukins, that promote osteoclast activation either

indirectly or directly and subsequently lead to bone resorption (M. Bendre et al. 2003). In

turn, bone breakdown releases factors that are stored in the matrix, such as TGFβ and

VEGF, that further supply cancer cell growth and proliferation resulting in the so called

‘vicious cycle of bone metastasis’ (Chen et al. 2010b). Triple negative and endocrine

resistant breast cancers represent the most aggressive breast tumour subtypes that are

associated with disease progression and high morbidity rates (Anders & Carey 2008;

Chang 2012). In the current chapter, we aimed to investigate whether the aggressive

breast cancer phenotype, either due to the subtype or the development of endocrine

resistance, predisposes the establishment of secondary tumour foci in the bone and, if so,

a possible mechanism underlying this.

 RAW cells are an accepted model for the study of osteoclast differentiation (Collin-

Osdoby & Osdoby 2012) and have been found to respond to bone modulatory factors

including RANKL and conditioned media from different cell models of solid tumours
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(Tiedemann et al. 2009; Ouellet et al. 2011; Zhang et al. 2001; Araujo et al. 2009;

Morrissey et al. 2010). Thus, RAW 264.7 cells were initially exposed for 7 days to various

RANKL concentrations (0.5-4ng/ml), according to manufacturer’s instructions, in order

to determine the optimum concentration producing the highest osteoclast yield.

Osteoclast differentiation was affected by RANKL in a dose-dependent manner, with the

lowest concentration of 0.5ng/ml RANKL barely supporting osteoclastogenesis and the

highest concentration of 4ng/ml RANKL leading to the highest number of osteoclasts

formed. As such, in line with other reports all the RANKL concentrations 1-4ng/ml can

be used to generate a positive differentiation control (Karlsson et al. 2016; Fowler et al.

2015; Mediero et al. 2015).

 Several studies support that breast cancer cells secrete factors that facilitate the

establishment of new tumour foci in the bone (Tiedemann et al. 2009; McCoy et al. 2013;

Clohisy et al. 1996). Indeed, treatment of RAW cells with breast cancer cell CM resulted

in the differentiation of multinucleated osteoclasts, in the absence of RANKL.

Specifically, the breast cancer model with acquired resistance to tamoxifen (TamR) and

the triple negative cells (MDA-MB-231) stimulated the highest number of differentiated

osteoclasts. This might be explained by the fact that these subtypes clinically exhibit an

aggressive and highly metastatic phenotype that is accompanied by reduced survival rates

(Hiscox, Jiang, et al. 2006; Hiscox et al. 2004; William D Foulkes et al. 2010) The MCF-

7-derived CM did not stimulate the formation of any osteoclasts and this is probably due

to the low aggressive status that Luminal A breast cancers represent in the clinical setting

compared with other subtypes (Ignatiadis & Sotiriou 2013), whilst the Faslodex resistant

model (FasR) resulted in the formation of a moderate number of multinucleated

osteoclasts.

 Concentration and CM collection time constituted an important factor for the

osteoclastogenic effect seen. Interestingly, the lowest percentage of CM tried (10%)



104

exerted the most robust impact on RAW cell differentiation to osteoclasts, while the

highest CM concentration (40%) led to the lowest number of differentiated cells.

Moreover, CM collected at 24h supported the formation of a higher osteoclast yield

compared to the CM harvested at 72h. A possible interpretation of these findings might

be the build-up of metabolic products by breast cancer cells that possibly impair RAW

cell osteoclast differentiation. Although this observation still remains obscure, our

findings were in agreement with the vast majority of the literature that suggests the use

of 10% CM collected at 24h to induce RAW cell differentiation (Tiedemann et al. 2009;

Araujo et al. 2009; Rafiei & Komarova 2013; Mourskaia et al. 2012).

 Breast cancer cell CM treatment of RAW cells that have been previously primed with

RANKL resulted in a similar number of differentiated osteoclasts regardless of the cell

subtype the CM was derived from and no statistical differences were observed. This

finding was in contrast with other studies suggesting that CM enhances the number of

differentiated osteoclasts in RANKL-primed RAW cells. According to a recent study,

soluble factors secreted by the prostate cancer cell line PC-3 are able to enhance osteoclast

differentiation of RANKL-primed precursors (Rafiei & Komarova 2013), however this

was not the case in our own system. This might be attributed to the fact that RANKL

treatment possibly saturated the system and therefore any differential effect across

different cell lines’ CM was not revealed. Moreover, it is known that breast cancer cell

lines express and secrete OPG that is a decoy receptor of RANKL and thus obstructs

RANKL-mediated osteoclast differentiation (Thomas et al. 1999; Ney et al. 2012). Thus,

an alternative explanation for this observation could be that differential expression of

OPG levels in the CM possibly neutralised the effect of RANKL and masked the pure

impact of CM on osteoclast differentiation and thus resulted in a similar number of

differentiated cells.
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 The passage number of RAW cells constituted a critical factor for their responsiveness

and induction of osteoclast differentiation. Such observation has been highlighted by

several research groups, concluding that RAW cells should not be used over 20 passages

(Watanabe et al. 2004). The reason underlying this is not fully clear, but it is possibly

attributed to the fact that these cells are comprised of different subclones and suffer from

genetic drift. Thus, RAW cells undergo genotypic alterations that result in reduced

responsiveness over time in normal cell culture conditions (Cassady et al. 2003; Collin-

Osdoby & Osdoby 2012). Evaluation of these observations in our system indicated that,

indeed, CM treatment of high passage RAW cells failed to induce osteoclast

differentiation. RANKL stimulation in these cells, revealed the formation of only a few

osteoclasts further supporting the importance of using low passage RAW cells in the

investigation of bone and cancer cells interactions.

 Src kinase plays a key role in osteoclast differentiation and function (Kim & Kim

2016). In addition, Src is of fundamental importance in the formation of the ruffled

borders in osteoclasts that enables them to attach the bony substrate during resorption

(Boyce et al. 1992). Our data demonstrated that Src inhibition impaired RANKL-

mediated osteoclast formation in a dose-dependent manner. In addition, RAW cell

treatment with CM from Src-deficient breast cancer cells resulted in the formation of

significantly lower number of osteoclasts compared to the CM that was derived from

untreated breast cancer cells. These finding are in line with a relatively recent study

revealed that Src inhibitor dasatinib impaired both RANKL- and PC-3 conditioned

media- mediated RAW differentiation to osteoclasts (Araujo et al. 2009). Notably, in the

case of TamR and MDA-MB-231 cells that exhibit an aggressive phenotype, the

formation of osteoclasts was significantly lower implying that Src inhibition in the

clinical setting might display a beneficial effect to patients with triple negative or

tamoxifen resistant breast cancer.
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 It is known that RANKL activates Src to subsequently trigger AKT and MAPK

activation (Mizukami et al. 2002). Western blot analysis for RAW cells that have been

treated with RANKL ± AZD0530 for different times, revealed that RANKL did not seem

to activate Src in the absence of AZD0530. However, this could be due to Src levels being

saturated on the blot so that differences can’t be seen. Nevertheless, Src activity was

prolonged (>24hr) in absence of AZD0530, but when AZD0530 was present it diminished

after 24hrs. Consequently, this effect may be important as RAW cell differentiation

occurs over longer time points.

 In summary, breast cancer cells secrete factors that can induce RAW cell

differentiation to osteoclasts in a RANKL-independent manner. The highest number of

differentiated cells generated following CM treatment derived from two highly aggressive

subtypes; triple negative cells and breast cancer cells with acquired tamoxifen resistance.

Furthermore, Src inhibition significantly impaired osteoclast differentiation and Src-

deficient breast cancer cell CM resulted in a lower number of differentiated osteoclasts

suggesting that Src inhibition might be a promising application into the clinical setting

that would benefit breast cancer patients, especially those with triple negative or

tamoxifen resistant breast cancer.
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4. Tamoxifen-resistant breast cancer cells promote

osteoclast differentiation in a Src-dependent manner
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4.1 Introduction

 The bone is a favoured site of breast cancer metastases and it has been demonstrated

that breast cancers that spread to the bone are able to influence the balance between

osteoclasts and osteoblasts in the bone microenvironment, promoting so-called osteolytic

metastases (Zhang et al. 2010). Breast cancer patients with bone metastases frequently

have skeletal-related co-morbidities such as spinal cord compression, fractures and severe

pain leading to reduced quality of life (Gnant et al. 2012). Importantly, the data in the

previous chapter suggested that breast cancer cells secrete factors that can influence the

differentiation of murine monocytes into osteoclasts in the absence of RANKL. This was

particularly the case with acquired endocrine resistant models that represent a range of

clinical resistance phenotypes, both ER+ and ER-, along with a well-established model

of triple-negative breast cancer (TNBC). Both endocrine-resistant and TNBC subtypes

are associated with a poor prognosis clinically and frequently involve spread to the bone

(Bianchini et al. 2016). Interestingly, previous studies by our group have identified a role

for Src kinase in promoting the development of an aggressive phenotype in endocrine-

resistant models (Hiscox, Morgan, Tim P. Green, et al. 2006), and a link between elevated

Src activity and poor outcome on tamoxifen has been shown in translational studies

(Morgan et al. 2009). Additionally, Src has been identified as playing a key role in TNBC

growth and migration according to recent preclinical studies (Tryfonopoulos et al. 2011;

Huang et al. 2007; Richard S Finn et al. 2007). This finding was of particular importance

as TNBC treatment is limited to chemotherapy and therefore Src inhibition may represent

another therapeutic option in a difficult-to-treat-population (Finn 2008).

 Interestingly, as well as promoting migratory and invasive behaviour in cancer cells,

Src kinase has also been shown to regulate the expression of cytokines and growth factors

that themselves are implicated in osteoclastogenesis (Mundy 1993; Finn 2008). Given

that both TNBC and relapsed disease (i.e. ER+ endocrine sensitive cancers that recur due
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to acquired resistance) frequently associate with bone metastases, we wished to explore

whether these types of breast cancer were able to influence the differentiation of

osteoclast precursor cells into osteoclasts. Peripheral blood mononuclear cells (PBMC)

were chosen as the pre-osteoclast model system with a view of making this research more

translational and relevant to the human context. Thus, our central hypothesis under test

here was that resistant and/or TNBC cell models that reflect clinically aggressive forms

of breast cancer, are able to promote differentiation of PBMCs into osteoclasts and that

this occurs through a Src-dependent mechanism.

To achieve our aims the following objectives were set:

1. optimise a PBMC-based assay in order to measure osteoclast differentiation

2. optimise a bone-degradation assay to measure osteoclast osteolytic function

3. employ the PBMC assay to investigate the ability of drug-responsive and drug-

resistant breast cancer cell models to influence differentiation into osteoclasts

4. investigate whether Src kinase plays a role in breast cancer cell mediated PBMC

differentiation to osteoclasts

5. elucidate the underlying mechanism(s) of breast cancer cell mediated osteoclast

differentiation.
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4.2 Results

4.2.1 Optimisation of PBMC differentiation assay

 To begin to explore the ability of breast cancer cell CM to promote differentiation of

freshly-isolated PBMCs, it was first necessary to develop a standard protocol for PBMC

differentiation which would subsequently be used as a positive, internal control in future

experiments (Mabilleau & Sabokbar 2009). PBMCs were cultured in αMEM/10% FCS

and treated for 14 days with MCSF, a factor essential for their proliferation, and RANKL

which is necessary for their fusion and differentiation to large, multinucleated osteoclasts

(Kim & Kim 2016). Optimisation involved treating PBMC cells with macrophage colony-

stimulating factor (MCSF) and RANKL over the range 0-50ng/ml and 0-20ng/ml

respectively, doses corresponding to the range of concentrations most frequently cited in

the literature for human PBMC differentiation (Jevon et al. 2002; J. R. Edwards et al.

2006). Initially each MCSF concentration was used with a fixed RANKL concentration

of 10ng/ml (Hirayama et al. 2002) and differentiation allowed to proceed for 14 days.

Following that period cells were subject to TRAP staining and counterstained with

haematoxylin (to aid visualisation).

 Treatment of PBMC cells with RANKL (10ngml) and either 25ng/ml or 50ng/ml

MCSF resulted in formation of TRAP-positive, multinucleated cells indicative of

osteoclasts (Figure 4.1). Similarly, TRAP-positive, multinucleated cells were seen to

develop following treatment with all concentrations of RANKL (5-25ng/ml) and a fixed

MCSF dose (25ng/ml). For PBMCs isolation we recruited both male and female healthy

donors with various ages in order to have a representative sample group (Table 4.1).
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Table 4.1: Gender and age range of the blood donors recruited to study the effect of breast cancer

cells on osteoclastogenesis

Donor number Gender Age

1 Female 50-59

2 Male 20-29

3 Female 20-29

4 Male 30-49

5 Female 40-49

6 Female 20-29

7 Male 20-29

8 Male 40-49

9 Female 30-39

10 Male 50-59
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Figure 4.1: MCSF and RANKL promote PBMC differentiation into osteoclasts. Osteoclast

differentiation assay was optimised by testing a range of MCSF and RANKL concentrations

(RANKL: 0-20 ng/ml and MCSF: 6.25-50 ng/ml) on PBMCs for 14 days, in order to

determine the optimal combination of ligands for osteoclast formation. (A) Representative

pictures of TRAP staining and haematoxylin counterstain of differentiated osteoclasts were

captured using 100x magnification. (B) Quantitation based on the number of the

differentiated osteoclasts per coverslip. * p<0.05, ** p<0.01, *** p<0.001 (C) PBMCs

cultured in the absence of MCSF, most of the cells were dead. (D) High power (200x)

osteoclast differentiation. Red arrows indicate the multinucleation.
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4.2.2 Response of PBMC cells to breast cancer cell condition media (CM)

 Having established a reproducible assay with which to investigate PBMC

differentiation, essentially a positive control, we next wished to determine whether breast

cancer cells were able to induce PBMC differentiation. We used conditioned media from

breast cancer cells at a concentration of 10% based on our previous observations (see

Chapter 3).

 Freshly isolated PBMCs were treated with 10% breast cancer cell CM [i.e. a 1:9

dilution with fresh media (αMEM/10% FCS) that had not been used for cell culture] in

the presence of MCSF for 14 days. Following that, cells were stained for TRAP and

evaluated using a light microscope. Each assay had positive (RANKL and MCSF) and

negative (MCSF only) controls. Treatment of PBMCs with conditioned media induced

the formation of large, multinucleated and TRAP positive cells (Figure 4.2). For all

donors tested, PBMC differentiation to multinucleated osteoclasts appeared greatest when

stimulated with MDA-MB-231 and TamR cells CM; moderate differentiation was

triggered by FasR CM, while the least amount of differentiation was observed following

treatment with MCF-7 conditioned media (Figure 4.2).
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Figure 4.2: Breast cancer cell conditioned media supports osteoclast formation. (A) Representative

image from Donor 1. CM was collected after 24h incubation with breast cancer cells, diluted

1:10 with fresh medium and then added on to PBMCs cultures. After 14 days, cells were fixed

and stained for TRAP. Osteoclast formation was evaluated by counting the number of TRAP

(+) cells that had 3 or more nuclei. (B) Quantitation of the number of osteoclasts per cover slip.

* p<0.05, *** p<0.001 n=6 replicates for each condition
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 The experiment with the application of breast cancer cells CM was performed using

PBMCs isolated from 10 different donors stated in Table 4.1, and the collective results

of all the assays, normalised to results with MCF-7 CM, is shown below (Figure 4.3).

Figure 4.3: TamR and MDA-MB-231 cells CM exert significant osteoclastogenic effects compared to

FasR and MCF-7 cell CM. Collective data of differentiated osteoclasts obtained following

PBMC treatment from 10 different donors with breast cancer cells CM. Osteoclast number was

normalised to MCF-7 data. n=6 replicates for each condition * p<0.05, ** p<0.01, ***p<0.001
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4.2.3 Effect of breast cancer cell conditioned media on osteoclast bone resorptive

activity

 Having established that breast cancer cell CM promoted differentiation into cells

appearing osteoclast-like, we then aimed to investigate whether these cells also possessed

the functional features of bone-resorptive cells given that this is frequently underreported

in the literature. To evaluate this, PBMCs were set up on ivory discs instead of coverslips

and treated with CM for a period of 21 days. Cells were then removed from the discs and

the discs stained with Toluidine Blue to visualise resorption pits. A positive (RANKL-

stimulated, 10ng/ml) and a negative (no RANKL) control were also included in the

experiment for assay validation. Ivory discs containing PBMCs stimulated by RANKL

(positive control) stained positive for resorption pits whereas no such staining was

observed in the negative control. Staining of PBMC after incubation with breast cancer

conditioned media failed to show any discrete pit formation instead revealing a general

blue stain over the ivory disk surface (Figure 4.4).
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Figure 4.4: Osteoclasts generated in response to breast cancer cell CM do not possess resorptive features. Toluidine blue staining on ivory slices seeded with PBMCs and treated

with MCSF alone (negative control), MCSF and RANKL (positive control) or MCSF and breast cancer cell CM for 21 days. Toluidine blue staining showed distinct

resorption pits in positive control only.
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4.2.4 Investigation into the role of Src kinase in breast cancer cell-mediated PBMC

differentiation

 Src kinase plays a key role in multiple signalling pathways that regulate the aggressive

nature of breast and other cancer cells, promoting their invasion in vitro (Guarino 2010)

and progression and spread in vivo (Elsberger 2014). Activation of Src can also promote

expression of various factors some of which are known to regulate crosstalk with other

cell types including bone cells. Given that tamoxifen-resistant MCF-7 cell models

(‘TamR cells’) are known to have significantly elevated Src activity and also induced

PBMCs differentiation, we hypothesised that this may occur in a Src-dependent manner.

To explore this further, we suppressed Src expression using siRNA in our breast cancer

models prior to collection of CM and used it in a PBMC differentiation assay.

 siRNA-mediated Src knock-down was first confirmed using Western blotting (see

Chapter 3, figure 3.11), which revealed an almost complete loss of Src in siRNA-treated

samples compared to samples treated with non-targeting (NT) siRNA.

 Application of CM from these Src-deficient cell models to the RAW assay resulted in

reduced number of differentiated osteoclasts compared to the CM from un-treated breast

cancer cell cultures (Figure 4.5)
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Figure 4.5: Src inhibition significantly reduces the osteoclastogenic effect seen by untreated breast

cancer cells. (A) Representative figure from Donor 4. CM was collected after 24h incubation

with untreated or Src siRNA post-transfected cells, diluted 1:10 with fresh medium and then

added on to PBMCs cultures. After 14 days, cells were fixed and stained for TRAP. Osteoclasts

formation was evaluated by counting the number of TRAP (+) cells that had 3 or more nuclei.

(B) Quantitation based on the number of osteoclasts per cover slip. p values: ** p<0.01
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4.2.5 Investigation of potential Src-dependent bone modulatory mechanisms in

breast cancer cells

 Having identified a potential role for Src kinase in driving PBMC differentiation into

osteoclast cells, particularly in tamoxifen resistant and triple negative breast cancer cells,

we next wished to begin to investigate the mechanism(s) underlying this. Based on the

fact Src promotes breast cancer cell migration and invasion (Pohorelic et al. 2012) and in

addition is essential for osteoclast function (Miyazaki et al. 2004) one hypothesis is that

Src might regulate internal signalling pathways that in turn regulate the production and

secretion of bone cell modulatory factors. To achieve this the following strategy plan was

followed:
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4.2.5.1 Microarray interrogation

 The Breast Cancer Molecular Pharmacology Group have previously constructed an in-

house microarray database for MCF-7 cells and their resistant counterparts. To explore a

potentially novel link between Src and RANKL expression, we first interrogated our in-

house microarray database and investigated the expression of probes corresponding to

RANKL. This data suggested that RANKL was not expressed in any of the breast cancer

cells (Figure 4.6).

Figure 4.6: RANKL is not expressed by breast cancer cells. Microarray data for RANKL expression in

MCF-7, TamR and FasR cells revealed that RANKL is not expressed (Intensity<0) TNFSF11:

RANKL gene probe.
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4.2.5.2 Exploration of the RANKL gene levels in breast cancer cells

 Whilst the microarray data was in agreement with a number of published studies (Ney

et al. 2012), one report does demonstrate RANKL expression in breast cancer cells (Owen

et al. 2013). Thus, we wished to validate the microarray data using q-PCR analysis. This

data suggested that RANKL was expressed in breast cancer cells (Figure 4.7), albeit only

detectable at relatively high cycle number.

Figure 4.7: RANKL gene expression is detectable in breast cancer cells. qPCR investigation revealed

that RANKL was expressed by breast cancer cells, however in a relative high cell number.

Actin was used as a loading control.
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4.2.5.3 Exploration of the RANKL secretion in breast cancer cells conditioned media

 Thus, to confirm RANKL abundance we next performed ELISA specific for RANKL

to measure the levels of the human RANKL in the breast cancer cells conditioned media.

A standard curve was generated using known concentrations of RANKL (0-5000 pg/ml)

and then the samples of breast cancer cells were analysed compared to the standard curve.

Conditioned media analysis of all the breast cancer cell lines did not detect any significant

levels of RANKL and all the measurements were below the lowest value of the standard

curve, confirming the microarray data (see Appendix C).

4.2.5.4 Breast cancer cell line screening to identify potential bone-modulatory

mechanisms

 Our research was equivocal regarding the role of RANKL in breast cancer-mediated

PBMC differentiation and so to begin to explore potential mechanisms further we

employed a limited screening strategy using a protein microarray using commercially

available membranes for human cytokines (R&D Systems). These results revealed that

MCF7 and both MCF7-derived resistant cell lines secreted Macrophage Migration

Inhibitory Factor (MIF); this appeared higher in TamR cells versus MCF-7 and FasR

cells. Cytokine profiling of MDA-MB-231 cells revealed that, including MIF, these cells

also secreted CXCL1/GROa, CXCL12/SDF-1, GM-CSF, IL-8 and Serpin E1/PAI-1

(Figure 4.8). In Table 4.2 is illustrated the cytokine expression in breast cancer cells

along with their biological function.
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Figure 4.8: Expression of human cytokines in breast cancer cell models. An ELISA kit containing

membranes with 46 different cytokines was employed to investigate the cytokines expressed

by breast cancer cells. Analysis revealed that MCF-7, TamR and FasR cells secreted only the

MIF cytokine, while MDA-MB-231 cells were found to secrete in addition to MIF, SeprinE1-

PAI1, CXCL1/GROa, IL-8, SDF1.
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Table 4.2: Cytokines secreted by breast cancer cells and their corresponding biological function.

MCF-7 TamR FasR MDA-MB-231 Biological function

C
yt

ok
in

e 
ex

pr
es

sio
n

CXCL12/
SDF-1

CXCL12/
SDF-1

CXCL12/
SDF-1

CXCL12/SDF-1

increases recruitment of
osteoclast precursors by
upregulation of MMP-9

activity (Liao et al. 2005)

MIF MIF MIF MIF

possibly important for
osteoclast differentiation
and activation (Madeira

et al. 2012)

CCL2/MCP1
Stimulates

osteoclastogenesis
(Miyamoto et al. 2009)

CXCL1/GROa

possibly affect osteoclast
formation via its capacity

to attract osteoclast
precursors (Onan et al.

2009)

GM-CSF

regulates fusion of
mononuclear osteoclasts

into bone-resorbing
osteoclasts (Lee et al.

2009)

Serpin E1/PAI-1
promotes tumour

progression (Klein et al.
2012)

IL-6
supports osteoclast

differentiation (Roux &
Orcel 2000)

IL-8

promotes osteoclasts
differentiation in a

RANKL independent
manner (Sabokbar et al.

2016)
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4.3 Discussion

 Bone represents a preferred site for breast cancer metastasis (Petrut et al. 2008) with

approximately 85% of advanced breast cancer patients developing bone metastases

resulting in reduced quality of life due to severe pain and pathological fractures (Gregory

R Mundy 2002). A deeper understanding of the mechanisms underlying bone function

and the pathophysiology of bone metastasis, has led to the development of bone-targeted

therapies which aim to reduce the symptoms of bone disease and/or to prevent or delay

its onset. However, it is currently poorly understood whether the development of

endocrine resistance further predisposes the development of secondary tumour foci in the

bone. Acquisition of resistance to endocrine therapies is a major limiting factor to their

clinical effectiveness, resulting in disease relapse and poor prognosis (C Kent Osborne &

Schiff 2011). This may be due in part to the observations that acquired resistance to agents

such as tamoxifen is accompanied by a gain in aggressive cellular features likely to

promote disease spread and survival at metastatic sites (Hiscox et al. 2004). In the present

chapter, we aimed to investigate whether acquisition of an endocrine resistant phenotype

conferred an ability on breast cancer cells to influence monocyte differentiation into

osteoclasts.

 The ability of breast cancer cells to influence the bone microenvironment was

determined using a PBMC assay as this represents a widely used model to such

investigations (Arrigoni et al. 2016; Morgan et al. 2004). One caveat of this assay is the

issue of donor variability and heterogeneity, which can affect response. However, our

data suggested that, whilst there was a variability among the different donors, a consistent

trend was observed. Our findings revealed that breast cancer cells can promote PBMCs

differentiation into TRAP+ multinucleated cells characteristic of osteoclasts.

Morphologically, the osteoclasts generated by breast cancer cell stimulation were

identical with those stimulated by RANKL, but the number of osteoclasts varied across
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the different cell lines, with the major osteoclastogenic effect seen by MDA-MB-231 and

TamR cells. Several reports have highlighted the aggressive phenotype that is exerted by

triple negative breast cancer cells (William D. Foulkes et al. 2010; Dent et al. 2007b;

Rakha & Chan 2011; Dent et al. 2009). In addition, previous studies by our group have

demonstrated that breast cancer cells with acquired tamoxifen resistance exhibit a highly

motile and invasive behaviour (Hiscox, Jiang, et al. 2006; Hiscox et al. 2004). Thus, our

findings are compatible with the highly aggressive phenotype that is displayed by these

cell models.

 We also investigated the bone-resorptive ability of the osteoclasts, since this is a

characteristic of such cells likely to be important in the in vivo context of osteolytic bone

metastases. Intriguingly this is a little-reported aspect of osteoclast cells in the literature

with the majority of studies focusing on osteoclast formation rather than bone lytic ability.

Recent evidence suggests that CM from cancer cells is able to differentiate PBMCs into

activated osteoclasts and subsequently result in bone erosion (Mizutani et al. 2009),

however this could not be verified in our system. Our data indicated that osteoclasts

induced by breast cancer cell conditioned media lacked an ability to degrade ivory disks,

unlike RANKL-differentiated osteoclasts, which appeared to stimulate the production of

resorptive pits. Although one might infer that our TRAP+, multinucleated cells may not

be osteoclasts, other have reported a lack of bone-degrading activity in differentiated cells

(Mabilleau & Sabokbar 2009) suggesting that differentiated osteoclasts are not

necessarily activated and thus do not always possess bone collapsing properties such as

formation of ruffled borders and Cathepsin K secretion (Bar-Shavit 2007b).

 Src is a non-receptor tyrosine kinase, involved in many cellular processes such as

growth, proliferation, migration and metastasis (Roskoski 2004), Src activation has been

tightly correlated with breast cancer cell invasion and migration as well as the

development of breast cancer bone metastasis (Sgroi 2009; Zhang et al. 2009; Pohorelic
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et al. 2012). In addition Src is implicated in bone resorption due to its involvement in the

formation of ruffled membranes that enable osteoclast attachment to the bony surface

during resorption (Boyce et al. 1992) and osteoclast differentiation, activation and

survival via PI3K pathway activation (Miyazaki et al. 2004; Kim & Kim 2016). Given

the fundamental role of Src protein for breast and bone and the fact that it is highly

expressed by the cell lines producing the highest number of osteoclasts (MDA-MB-231

and TamR), it was hypothesised that Src might be one of the key molecules that drove

PBMCs fusion and subsequently osteoclast formation following CM treatment. Indeed,

siRNA-mediated Src knockdown in TamR and MDA-MB-231 cells significantly reduced

number of differentiated osteoclasts obtained with the conditioned media compared to

breast cancer cells treated with non-targeting siRNA. These data implied that breast

cancer cells may exert their osteoclastogenic effects in a Src-dependent manner. Although

the fundamental role of Src in bone metabolism has been widely reported (Sgroi 2009;

Aleshin & Finn 2010; Miyazaki et al. 2004), this is the first time that a largely Src-

dependent correlation between the development of acquired resistance and

osteoclastogenesis has been reported.

 Breast cancer cells secrete various factors that may be involved in osteoclast formation

the most well implicated of which is RANKL. RANKL is also known to be secreted by

osteoblasts where it targets the RANK receptor located on the osteoclasts surface to

initiate downstream signalling leading to osteoclast formation and ultimately the

acquisition of bone-resorptive features (Liu & Zhang 2015). Our microarray data revealed

that the RANKL gene is not expressed by our breast cancer cells, an observation further

supported by others (Ney et al. 2012), and our own ELISA and qPCR data. We therefore

concluded that it was very unlikely that our breast cancer cells triggered osteoclast

formation in a RANKL-dependent manner.
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 Although the main osteoclastogenic pathway involves RANKL, there are also RANKL

independent pathways that lead to osteoclast differentiation (Lau et al. 2007). TNFa has

been reported to induce osteoclast formation in the presence of interleukin-1a in a

RANKL-independent mechanism (Kim et al. 2005; Kobayashi et al. 2000). Moreover,

there are studies supporting that interleukins enhance osteoclastogenesis, and, in some

cases, support osteoclast formation in the absence of RANKL. IL-8 has been found to be

one such molecule and it is known that it is highly expressed by MDA-MB-231 cells (M.

Bendre et al. 2003). Additionally, in some cases, breast cancer cells secrete MCSF that is

essential for osteoclast survival and differentiation or inhibit the osteoclast apoptosis

(Mancino et al. 2001; Gallet et al. 2004). Gallet et al. managed to generate osteoclasts

from a bone-marrow cell line that was supplied with RANKL, while CM from MDA-

MB-231 cells was used as a source of MCSF.

 In light of this evidence, we employed a human cytokine array panel of 36 different

cytokines known to play a role in the bone microenvironment, in order to investigate

whether the breast cancer cells secrete factors able to support osteoclastogenesis in the

absence of RANKL. All the cell lines secreted MIF, with the highest expression in TamR

cells. MIF is an inflammatory cytokine fundamental for innate immunity that is released

in response to hypoxia, bacterial infection and other cellular processes, including

carcinogenesis (Gu et al. 2015; Morand et al. 2006). MIF has a prominent role in bone

breakdown as it has been reported in several studies that is involved in rheumatoid

arthritis enhancing the bone erosion and disease development (Gu et al. 2015; Movila et

al. 2016; Madeira et al. 2012). One study supports a role for MIF in osteoclastogenesis

(Jacquin et al. 2009). Interestingly, a number of reports support that Src is a downstream

molecule of MIF signalling. Specifically, MIF has been found to activate Src in a dose-

dependent manner and has been suggested as a potential target for diseases characterised

by high levels of cell adhesion molecules (Amin et al. 2006), including tumour spread. In
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addition, literature suggests that MIF triggers Src-mediated MAPK and AKT signalling

cascades and that this activation can be abolished by treatment with a kinase inhibitor

(Lue et al. 2006; Mitchell et al. 1999; Lue et al. 2007). Taken together, this evidence

implies that MIF might predispose the development of breast cancer bone metastasis in a

Src dependent manner and that Src inhibition may thus attenuate this effect in cancers

that overexpress MIF, such as tamoxifen resistant breast cancer.

 Overall, this chapter illustrates the ability of breast cancer cells to influence

osteoclastogenesis in a RANKL-independent manner. The resultant cells were TRAP+

and multinucleated but lacked any bone-resorptive activity in vitro. Furthermore, this

process appeared to be dependent upon Src activity in breast cancer cells, specifically in

the tamoxifen resistant and triple negative breast cancer models. Although no direct

mechanism was elucidated, preliminary screening suggested that MIF may well represent

a bone-modulatory protein that warrants further investigation in breast cancer cells.
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5. Anti-tumour effects of zoledronic acid in endocrine

sensitive and resistant breast cancer cell models
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5.1 Introduction

 Bone metastasis is one of the most frequent complications in patients with advanced

breast cancer. It is estimated that nearly 85% of breast cancer patients with advanced

disease will develop bone metastasis at some stage (Allan Lipton et al. 2009).

Colonisation of bone by breast cancer cells leading to the development of secondary

tumour foci is sustained by reciprocal interactions between cancer cells and bone cells

(Weilbaecher et al. 2011). The result for the patient is a poor quality of life with severe

pain, spinal cord compression (where the spine is involved) and pathologic fractures

(Chen et al. 2010c). Although the duration of survival varies according to the primary

tumour, bone metastases are generally incurable.

 Bone is a dynamic tissue that is constantly undergoing remodelling based on the fine

balance between osteoclasts, the cells that resorb bone substrate, and osteoblasts, the cells

that generate new bone (Rucci 2008). The presence of cancer cells in the bone

microenvironment can disturb this balance resulting in pathological conditions, the so-

called bone metastasis (Chen et al. 2010c). Bone metastasis can be either osteolytic, when

bone breakdown occurs as a result of osteoclast hyper-activation, or osteoblastic, when

excess bone formation takes place through osteoblast hyper-activation (Papachristou et

al. 2012).

 General treatment options for patients with cancer-related bone lesions include

bisphosphonate (BP) administration, such as Zoledronic acid (ZOL). Being a nitrogen

containing BP, ZOL interferes with the mevalonate pathway resulting in reduced viability

of cells that ingest it (Graham & Russell 2007; Roelofs et al. 2008). Additionally, N-BPs

are able to impair the formation of the ruffled border in OCs, thus prevent their attachment

to the bone surface and inhibit bone degradation (Colucci et al. 1998; Fleisch 1998).

 Intriguingly, recent evidence also suggests that, apart from its bone cell-regulatory

action, ZOL also exerts anti-tumour properties in various tumour types such as breast,
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lung and prostate (Zekria et al. 2014) although the mechanism through which ZOL does

this is not yet fully understood. Some studies claim that ZOL that directly interacts with

cancer cells and drives them to apoptosis (Green & Guenther 2011), while others suggest

that its role is indirect by either inhibiting angiogenesis or activating anti-cancer immune

responses (Benzaïd et al. 2011).

 In light of this, the aims of this chapter were to investigate the effect of ZOL in the

breast cancer context, focusing on any differential effects between endocrine-sensitive

and endocrine-resistant models. In addition, we wished to determine the mechanism of

action underlying any tumour-suppressive activities produced by ZOL. Specifically, to

achieve our aims the following objectives were set:

1.  Investigate ZOL effects on breast cancer cell proliferation and Ki67 expression

2.  Explore ZOL effects on breast cancer cell cycle progression

3.  Investigate which pathways and protein molecules are affected by ZOL treatment

in endocrine sensitive and resistant breast cancer cell models
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5.2 Results

5.2.1 Zoledronic acid suppresses breast cancer cell proliferation

 Initially we explored the effect of Zoledronic acid on breast cancer cell proliferation

over a range of doses (0-160μΜ) at 72h. This dose range reflected what widely reported

in the literature from other groups (Kars et al. 2007; Insalaco et al. 2012; Ibrahim et al.

2012). MCF-7 cell proliferation was slightly induced when treated with lower doses of

ZOL, while a weak suppressive effect at higher doses was observed (Figure 5.1 A). FasR

cell proliferation was modestly suppressed at 20-160μΜ and IC50 value was at 38.29 ±

6.31μM (Figure 5.1 C). In contrast, TamR cells exhibited enhanced sensitivity to ZOL

compared to the other two cell models, even at low concentrations, in a dose-dependent

manner, which was reflected by the IC50 value at 15.05 ± 2.25μM (Figure 5.1 B).

Superimposing the ZOL dose response curves illustrate the superior inhibitory effect of

ZOL on TamR cells compared to the other two cell lines (Figure 5.1 D).

 This data revealed that TamR cells were much more sensitive to ZOL, particularly at

lower concentrations, versus MCF-7 and FasR cells. To study the TamR response further,

we performed a time course using 20μΜ ZOL. ZOL-mediated growth suppression

occurred from 48h with maximal effects seen at 96h when almost all cells were dead

(Figure 5.2).
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Figure 5.1: Effect of Zoledronic acid on breast cancer cell proliferation. (A) MCF-7 cell growth was

not significantly suppressed in response to ZOL (IC50 > 40μΜ). (B) TamR cell growth was

greatly inhibited following ZOL treatment (IC50: 15.05 ± 2.25μΜ). (C) FasR cell growth was

modestly suppressed by ZOL treatment (IC50: 38.29 ± 6.31μΜ). (D) Combination of the dose

response curves for all the cell lines clearly illustrates the superior inhibitory effect of

Zoledronic acid in Tam R cells. The cell growth in response to Zoledronic acid (0–160 μM)

over a period of 72h was assessed using MTT assay. Data are mean cell proliferation values ±

SEM (n=3). * p<0.05, ** p<0.01, *** p<0.001
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Figure 5.2: Zoledronic acid suppresses TamR cell proliferation in a time-dependent manner. Time-

course treatment of TamR cells with 20μΜ Zoledronic acid (0-96h). Zoledronic acid

suppressed cell proliferation in a time-dependent manner with the first significant effect shown

at 48h. Data are mean cell proliferation values ±SEM (n=3). * p<0.05, ** p<0.01, *** p<0.001
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5.2.2 Zoledronic acid significantly suppresses Ki67 expression in endocrine-

sensitive and resistant models

 The data so far suggested that ZOL exerts a potent anti-proliferative effect on TamR

cells. To further investigate ZOL-mediated suppression of proliferation we performed

IHC staining of the proliferation marker Ki67. These data revealed that ZOL suppressed

Ki67 in both MCF7 and TamR cells with the effects being greatest in the latter. No

significant changes were seen with FasR cells (Figure 5.3).
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Figure 5.3: Zoledronic acid significantly suppresses proliferation marker Ki67 in MCF-7 and TamR

cells, but not in FasR cells. Ki67 detection with immunohistochemistry demonstrated that

treatment of breast cancer cells with 20μΜ ZOL for 72h was able to suppress Ki67 expression,

more notably in the case of TamR cells. Data are mean values ±SEM (n=3). * p<0.05, ***

p<0.001
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5.2.3 Zoledronic acid affects the cell cycle in Tamoxifen resistant cells

 Having found that ZOL suppressed cell growth in breast cancer cell lines, we then

wished to explore whether this might be due to ZOL-mediated changes in the cell cycle.

Control (0 uM ZOL) and cells treated with 20μΜ ZOL were analysed with propidium

iodide FACS analysis. Whilst MCF7 cells displayed an increase in S-phase cells

following ZOL treatment, TamR cells displayed an increase in G1 and S-phase cells and

a decrease in M-phase cells following treatment with ZOL (Figure 5.4 A & B). In

contrast, treatment with ZOL did not appear to affect cell cycle phase distribution in FasR

cells (Figure 5.4 C).
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Figure 5.4: Cell cycle analysis using FACS in breast cancer cell lines. Cells treated with 20μΜ ZOL for

72h and compared with untreated cells to determine any differences in cell cycle phase

distribution. Treatment with ZOL led to a slight increase in Go/G1 and S phases with

concurrent decrease of G2/M phase in MCF-7 and TamR cells. FasR cell cycle was not affected

by ZOL treatment. Data are mean cell cycle values ±SEM (n=3). * p<0.05, ** p<0.01
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5.2.4 Exploration of the mechanism of action of Zoledronic acid

 Our data thus far reveals that ZOL exerts an anti-proliferative effect on endocrine

sensitive and resistant cells with the TamR cells being most sensitive to ZOL. As such,

we next sought to investigate the mechanism underlying the enhanced sensitivity of these

cells. Recent studies have reported that ZOL may bind the EGFR and erbB2 receptors

and subsequently inhibit downstream signalling pathways resulting in an altered cellular

phenotype (Agnes Stachnik et al. 2014; Yuen et al. 2014). Since TamR cells are known

to overexpress EGFR and HER2 compared to their endocrine-sensitive MCF-7

counterparts and also the FasR resistant model (Figure 5.5) (Knowlden et al. 2003), we

hypothesised that this might represent a mechanism of action for ZOL. If this was the

case, we further hypothesised that the anti-proliferative effects of ZOL might be

attenuated in the presence of an EGFR activator such as TGFa.

 To investigate this hypothesis, we first selected an appropriate stimulatory

concentration for TGFa by performing an MTT assay using a range of TGFa doses

(Figure 5.6). These data pointed to 10nM as being a dose that produced a small but

significant growth-promoting effect over this time point (72h).
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Figure 5.5: Immunohistochemical staining for EGFR and HER2 in MCF-7, TamR and FasR breast cancer cell models. Both EGFR and

HER2 expression is elevated in TamR cells compared to their endocrine sensitive counterparts (MCF-7) and Faslodex resistant

models (FasR).
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Figure 5.6: Stimulatory effect of TGFα on the growth of TamR cells. The cell growth in response to

TGFα (0–20 nM) over a period of 72h was assessed using MTT assay. Data are mean cell

proliferation values ±SEM (n=3). * p<0.05
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 We next investigated whether ZOL + TGFa was as effective as ZOL alone in

suppressing the proliferation of TamR cells. These data revealed that the anti-proliferative

effects of ZOL were reduced in the presence of TGFa at all concentrations tested (Figure

5.7).

 To further investigate the importance of the EGFR in ZOL-action, we investigated the

hypothesis that dual treatment with ZOL and a Tyrosine Kinase Inhibitor (TKI) of the

EGFR (gefitinib) would result in an additive effect in terms of proliferation suppression.

Analysis of cell growth data demonstrated that combination treatment led to a greater cell

growth inhibition compared to either agent alone (Figure 5.8).
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Figure 5.7: ZOL alone is more effective in suppressing TamR cell proliferation than ZOL + TGFα.

Comparison of the inhibitory effect of Zoledronic acid on TamR cells and TamR cells that

have been pre-treated with 10nM TGFα for 2h. The cell growth in response to Zoledronic acid

(0–160 μM) over a period of 72h was assessed using MTT assay. Data are mean cell

proliferation values ±SEM (n=3).
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Figure 5.8: Combination of Zoledronic acid and TKI results in a further improved suppression of

TamR cells. Cells were pre- treated with 20μΜ ZOL for 2h and then added TKI (0–1nM) and

compared with TKI alone. Pre-treatment of TamR cells with ZOL resulted in enhanced

sensitivity of cells in TKI treatment compared to TKI alone. The cell growth in response to

treatment over a period of 72h was assessed using MTT assay. Data are mean cell proliferation

values ±SEM (n=3). ** p<0.01, *** p<0.001
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5.2.5 Zoledronic acid suppressed EGFR in endocrine sensitive and resistant cells

 Results so far indicated that ZOL possibly exerts an inhibitory effect on RTKs. To

confirm that we performed Western blot analysis for EGFR and HER2 in TamR samples

treated with various concentrations of ZOL (0-40μΜ). Results revealed that ZOL was

able to suppress activated EGFR levels in TamR cells following 72h treatment with the

highest dose of ZOL (40μΜ). In contrast, HER2 levels were not found to be affected by

any of these doses of ZOL treatment. (Figure 5.9).
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Figure 5.9: Zoledronic acid suppresses EGFR but not HER2 levels in TamR cells. Treatment of TamR

cells with a range of ZOL concentrations (0-40μΜ) for 72h revealed that ZOL was able to

suppress the activated levels of EGFR, whereas HER2 level were unaffected. Densitometry

analysis for EGFR levels indicated that the highest dose of ZOL tried (40μΜ) induced a

statistically significant suppression effect. ***p<0.001
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5.2.6 Zoledronic acid inhibits AKT in endocrine sensitive and resistant cells

 To further investigate the mechanism of action of ZOL in TamR cells, we next

explored whether key signalling molecules involved in pathways known to regulate

proliferation were affected by ZOL treatment. Western blot analysis revealed that ZOL

treatment resulted in a dose dependent suppression of AKT activity in both endocrine

sensitive and resistant models. In TamR cells, MAPK was reduced in a similar manner.

ZOL did not affect the total levels of these proteins (Figure 5.10).
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Figure 5.10: Zoledronic acid treatment results in a loss of AKT in MCF-7, TamR and FasR cells and

loss of MAPK only in the case of TamR cells. Cells were grown to 70% confluence and

treated with ZOL at the indicated concentrations for 72h. Subsequent cell lysates were

processed for Western Blotting and immuno-probed for proteins as indicated (β-actin was

used as loading control). Representative blots shown from three independent experiments.

*** p<0.001
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5.2.7 Zoledronic acid inhibits the mTOR pathway in endocrine resistant cells

 Having found that a generic consequence of ZOL treatment was the reduction of AKT

activity, we next wished to investigate the consequences of this for the mTOR pathway,

an important element of AKT-mediated signalling that controls cellular proliferation.

Western blot analysis revealed that mTOR pathway components were inhibited in both

TamR and FasR cells in a dose-dependent manner; no effects were observed in MCF-7

cells (Figure 5.11). Densitometry analysis of these data showed that ZOL treatment

resulted in a significant inhibition of mTOR components in TamR and FasR cells
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Figure 5.11: Zoledronic acid inhibits the mTOR pathway in endocrine resistant cells. Cells were

grown to 70% confluence and treated with ZOL at the indicated concentrations for 72h.

Subsequent cell lysates were processed for Western Blotting and immuno-probed for proteins

as indicated (β-actin was used as loading control). Representative blots shown from three

independent experiments. * p<0.05, ** p<0.01, *** p<0.001
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5.3 Discussion

 Bisphosphonates (BP) are the mainstay of treatment for patients with osteoporosis and

cancer-related bone disease. Two classes of BPs are used: non-nitrogen containing and

nitrogen containing BPs. Non nitrogen-containing BPs are digested by osteoclasts and

form a non-functional ATP analogue that competes with ATP, depriving the cell of the

energy required for its metabolism resulting in initiation of apoptosis and cell death

(Lehenkari et al. 2002). Nitrogen-containing BPs cause mevalonate pathway disruption

by interfering with farnesyl pyrophosphate (FPPS) and geranylgeranyl pyrophosphate

synthases (GGPPS). FPPS inhibition results in accumulation of isopentenyl

pyrophosphate, which in turn is converted into a cytotoxic molecule called ApppI. In

addition, mevalonate pathway blockage prevents small GTPases prenylation inhibiting

their function in osteoclasts and thus drive the cell to apoptosis (Kavanagh et al. 2006;

Mönkkönen et al. 2006).

 Apart from their therapeutic effectiveness in protecting bone tissue, emerging clinical

and preclinical studies indicate that N-BPs also possess anti-tumour properties that may

be attributed to their interaction with cells other than osteoclasts including the tumour

cells themselves (Clézardin 2011). Despite potential anti-tumour properties of ZOL in

malignancies such as breast, prostate and lung being reported by numerous studies (A.

Stachnik et al. 2014; Marra et al. 2009; Mathew & Brufsky 2015) their direct anti-tumour

mechanism of action is poorly understood. In the present chapter, we aimed to explore

whether ZOL exerts anti-tumour effects on endocrine sensitive and resistant breast cancer

models and, if so, to attempt to elucidate the mechanism of this.

 Whilst ZOL inhibited proliferation of both endocrine sensitive and resistant models,

the effects were significantly greater in the tamoxifen resistant cells. Our data suggests

that one consequence of ZOL treatment may be deregulation of the cell cycle and growth

arrest. Our observations support S-phase arrest in TamR and MCF7 cells consistent with
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a previous study demonstrating that ZOL induced apoptosis and S-cycle arrest in human

fibrosarcoma cells through suppression of Topoisomerase II (Topo II) (Okamoto et al.

2014). Topo II requires ATP for its catalytic activity and, as it has already been

mentioned, ZOL forms a non-functional ATP analogue that competes with ATP. Another

mechanism by which ZOL can promote apoptosis via S-cycle arrest is by modulating the

cyclins or cell cycle regulatory molecules as S-phase arrest is associated with caspase-

dependent and independent apoptotic pathways (Okamoto & Kawamura 2012).

 Compatible with proliferation and cell cycle findings are the Ki67 expression data,

which again showed a reduction in Ki67-positive cells following ZOL treatment in TamR

cells, other cells did not show a significant difference between control or ZOL-treated

cells.

 Recent preclinical studies have been reported that the anti-tumour properties of ZOL

are shown in tumours that express or hyper-express the EGFR supporting that ZOL

directly binds to this receptor and thus inhibits the downstream pathway (Yuen et al.

2014; Agnes Stachnik et al. 2014). Our own studies here also suggest an involvement of

the EGFR in ZOL action since stimulation of the EGFR attenuated ZOL response, whist

EGFR inhibition augmented it. This observation was in concordance with a previous

study demonstrated that gefitinib augmented the anti-tumour effects of ZOL in non-small

cell lung cancer with mutated EGFR (Chang et al. 2009).

 The data of this thesis revealed that treatment of TamR cells with ZOL was able to

suppress activated EGFR level. However, it is not clear whether ZOL acts only on the

EGFR or also affects one or more of the many downstream elements governed by the

EGFR and other RTKs. Either hypothesis is supported by our data, which shows a dose-

dependent decrease in the activity of AKT and MAPK following ZOL action in EGFR-

overexpressing TamR cells.
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 Having found there was strong evidence of anti-tumour activity of ZOL to breast

cancer cells, and more notably advanced responsiveness of TamR cells to ZOL, we then

sought to elucidate the mechanism underlying this effect. Protein expression analysis of

key molecules that regulate cell growth, proliferation and migration, such as AKT and

MAPK, were found to be decreased in response to ZOL. Specifically, ZOL was able to

reduce AKT expression in MCF-7, TamR and FasR cells and also managed to down-

regulate the expression of MAPK in TamR cells only. That was consistent with other

studies that have demonstrated that ZOL can cause disruption of AKT and MAPK

signaling pathways in a variety of tumours, such as breast and prostate (Mognetti et al.

2014; Fournier et al. 2002; Clyburn et al. 2010). In an attempt to further investigate the

downstream pathway that is affected by the AKT and MAPK down-regulation we

identified that ZOL restrained the mTOR signaling in TamR and FasR cells, while this

pathway appeared to be unaffected in MCF-7 cells. It has already been mentioned that

ZOL interferes with the mevalonate pathway and disrupts protein prenylation of

GTPases. Therefore, a possible explanation of the enhanced anti-tumour activity of ZOL

in TamR cells would be the indirect inhibition of the mTOR pathway by ZOL, through

prenylation inhibition of the Ras homologue enriched in brain protein (RHEB) that

activates the mTOR.

 In conclusion, our data suggests that zoledronic acid exerts anti-tumour effects in

breast cancer cell models through modulation of RTK signalling pathway intermediates

and that this is particularly evident in the context of acquired endocrine (tamoxifen)

resistance.



162

6. General Discussion
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 Bone is a frequent site for breast cancer metastasis, with around 85% of patients with

advanced breast cancer developing metastatic bone lesions. The vast majority of bone

metastases are of the osteolytic type, arising as a result of enhanced differentiation of

precursor cells into osteoclasts and augmented activation of bone-resident osteoclast

cells. Osteolytic bone metastases are usually accompanied by chronic and severe bone

pain with pathological fractures and which significantly impact on a patients’ morbidity,

quality of life and mortality. Interestingly, the type of breast cancer most likely to spread

to the bone is the Luminal A subtype, which also represents the most frequent form of

this disease (~75% of all breast cancers) and is characterised by presence of hormone

receptors. Although such tumorous are routinely treated with endocrine agents, in many

instances resistance can be acquired with associated disease relapse.

 The development of endocrine resistance is accompanied by the acquisition of

aggressive features such as tumour cell invasion and motility that are likely to facilitate

the establishment of secondary tumour foci at distant sites (Chang 2012; Ali et al. 2016;

C Kent Osborne & Schiff 2011; Hiscox et al. 2004). Moreover, endocrine resistance is

usually accompanied by enhanced RTK signalling that induces the activation of

downstream signalling cascades, such as Ras/MAPK and PI3K/AΚΤ, that contribute to

the aggressive phenotype of these models (Kurokawa et al. 2000). In support of this,

Hiscox et al. (2012) reported that breast cancer cells with acquired tamoxifen resistance

exhibited an invasive and aggressive phenotype in vitro. To date, however, little is known

whether or how the development of endocrine resistance may contribute to formation of

bone metastases.

 Triple negative is another aggressive subtype of breast cancer, known to be associated

with highly metastatic phenotype and poor prognosis (Bosch et al. 2010; Anders & Carey

2009; Dent et al. 2007b). Several studies have demonstrated the motile and invasive

phenotype of triple negative breast cancer cells (Ferrari-Amorotti et al. 2014; Bailey et
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al. 2012; Sánchez-Bailón et al. 2012). In addition, clinical evidence revealed that TNBC

demonstrated the most aggressive clinical course compared to the all other breast cancer

subtypes (Dent et al. 2007a).Given the aggressive phenotype of the endocrine resistant

and triple negative breast tumours, part of the aims of this thesis were to investigate

whether these subtypes further facilitate the development of bone metastasis compared to

the Luminal A breast cancers.

 Using a murine monocytic cell line, the data showed that conditioned media from cell

models of both acquired tamoxifen resistance and triple negative breast cancer were able

to induce osteoclastogenesis. This data was further validated using a human PBMC

model. Indeed, breast cancer cells in the bone microenvironment are known to release

soluble factors, such as PTHrP and cytokines, that promote development and activation

of osteoclasts and osteoblasts. The result of this is a destruction of bone matrix, which

can release factors, such as TGFβ, that in turn perpetuate breast cancer proliferation. This

bi-directional interplay is known as the vicious cycle of bone metastasis.

 Src kinase is known to play a critical role in breast cancer as a mediator of key

signaling pathways that regulate cell proliferation, angiogenesis, invasion and metastasis.

Elevated Src expression has also been correlated with an aggressive phenotype in breast

cancer. In support of this, several studies have indicated that endocrine resistant models

that are associated with aggressive cell behaviours, such as invasion and metastasis, have

differential expression of Src compared to the endocrine sensitive models (Hiscox,

Morgan, Tim P. Green, et al. 2006; Hiscox et al. 2010; Guest et al. 2016). Our data

implicated Src as a mediator of breast cancer cell ability to influence osteoclastogenesis,

while this effect was attenuated by treatment of the Src kinase inhibitor Sracatinib.

Similar observation has been made by Araujo et al. 2009, where it was demonstrated that

Src pharmacological inhibition with Dasatinib of PC-3 prostate cancer cells, significantly

impaired the ability of conditioned media to differentiate RAW cells to osteoclasts.
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 Numerous in vitro studies have shown that treatment with Src inhibitors is able to

suppress migration and tumour growth in a variety of cancer cell types, including breast,

prostate, lung, pancreatic and colon (Messersmith et al. 2009; Richard S. Finn et al. 2007;

Park et al. 2008). Src inhibition is also reported to promote reduction in expression of

various proteins, such as MAPK, AΚΤ, and focal adhesion kinase (FAK), that

subsequently leads to suppression of tumour growth (Jallal et al. 2007). Importantly,

emerging data from early phase clinical trials indicate the efficacy of Src-inhibitors in

preventing bone lesions and decreasing levels of bone resorption markers in serum and

urine (Hannon et al. 2010). Taken together, this data suggests that Src inhibition owns a

central role in the development of breast cancer bone metastasis, especially in tamoxifen

resistant and triple negative breast cancer where Src levels are elevated, and this effect

can be attenuated by Src inhibition.

 The use of RAW cells as osteoclast precursor model assisted in the preliminary

investigation of this thesis. However, the limitation of this model was the murine origin

of these cells and thus may react slightly differently compared to human cells. Another

limitation of this model was that a cell line does not completely simulate the primary

cells’ behaviour. Thus, to further endorse and validate the findings from RAW cell

studies, a peripheral blood mononuclear cell (PBMC) model was introduced as osteoclast

precursors.

 PBMC treatment with breast cancer cell conditioned media resulted in osteoclast

differentiation in support of the findings observed by using RAW cells. Specifically,

tamoxifen resistant and triple negative breast cancer cell conditioned media led to the

highest number of differentiated cells possibly due to the aggressive nature of these

models as it was previously detailed. This was in accordance with previous studies that

have shown the ability of MDA-MB-231 conditioned media to induce osteoclast

differentiation (Tiedemann et al. 2009), however it was the first time reported such effect
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for tamoxifen resistant cells. In addition, this thesis revealed that breast cancer cells

influenced PBMCs osteoclast differentiation in a Src-dependent manner.

 RANKL has been widely implicated as a regulator of osteoclast differentiation.

However, our data revealed that RANKL was not expressed by any of the breast cancer

models used in this study, despite the ability of some of these models to induce

differentiation. Thus, our observations implied that breast cancer cells were able to

promote osteoclast differentiation in a RANKL-independent manner. RANKL-

independent pathways for osteoclast differentiation have been previously reported in the

literature and involve the participation of a number of molecules, including interleukins

and other cytokines (Lau et al. 2007; Dougall 2012; McCoy et al. 2013). Indeed,

investigation of 36 different cytokines for the breast cancer cells lines involved in this

study demonstrated that all breast cancer models secrete the macrophage migration

inhibitory factor (MIF), with the highest expression level observed in tamoxifen resistant

cells. MIF is a cytokine secreted in pathological conditions, such as inflammation and

cancer. In addition, it has been reported that MIF possibly participates in osteoclast

differentiation (Madeira et al. 2012; Movila et al. 2016). MIF signalling in breast cancer

cells is triggered following binding to its receptor CD74, which in turn activates the AΚΤ

pathway with the involvement of Src and PI3K. Given the pivotal role of Src in MIF

signalling, studies have shown that this MIF-mediated AKT activation can be abolished

by Src inhibitors (Lue et al. 2006; Mitchell et al. 1999; Lue et al. 2007). Taken together

the observations that Src knockdown reduces breast cancer cells’ ability to induce

osteoclast differentiation and the fact that MIF signalling is regulated in a Src-mediated

manner, these findings suggest that the osteoclastogenic effect seen by breast cancer cells

might be attributed to a synergistic effect between Src and MIF. Consequently, Src and

MIF possibly represent target molecules for triple negative and tamoxifen resistant breast
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cancer, however further research needs to be done by either using MIF siRNA or inducing

MIF overexpression in breast cancer cells in order to confirm this assumption.

 Although breast cancer bone metastasis constitutes a major challenge in the clinical

setting, the onset of bisphosphonates, which are agents with anti-resorptive properties,

has significantly contributed to the alleviation of symptoms and the delay of bone disease

progression. Interestingly, the new generation N-BPs have been found that apart from

their effectiveness in preventing bone breakdown, also exert anticancer properties that

target the tumour itself (Clézardin 2013). Three major clinical trials have scrutinised the

anti-tumour properties of Zoledronic acid in pre- and post-menopausal women. ABCSG

phase III clinical trial involved 1803 pre-menopausal patients that had been treated with

LHRH agonists and aromatase inhibitors or tamoxifen with or without Zoledronic acid.

This trial revealed benefit in disease free survival (DFS) and overall survival (OS)

compared to endocrine treatment alone (Gnant et al. 2011). ZO-FAST clinical trial was

primarily designed to evaluate Zoledronic acid activity in preventing aromatase inhibitor-

associated bone loss, however the anticancer properties of Zoledronic acid were assessed

as secondary endpoints. This trial involved 1065 post-menopausal patients treated with

aromatase inhibitor with or without Zoledronic acid. Although this study did not reveal

any benefit in OS, upfront zoledronic acid conferred a 34% reduction in the risk of disease

recurrence or death compared to the delayed Zoledronic acid (de Boer et al. 2010).

AZURE clinical trial involved 3360 pre- and post-menopausal patients and explored the

anticancer effects of Zoledronic acid in combination with adjuvant chemotherapy and

endocrine therapy. In AZURE, Zoledronic acid failed to show any benefits in DFS and

OS in the mixed population, however it was significantly reduced the risk of bone

metastasis development. In addition, Zoledronic acid was found to improve disease

outcome only for patients with established menopause (>5 years) (Coleman et al. 2014).

Apart from its anti-tumour properties, observational studies have suggested that
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Zoledronic acid reduces by 20-30% the risk of breast cancer development (Mathew &

Brufsky 2012).

 The data in this thesis demonstrated a potential anti-cancer activity for

bisphosphonates against tamoxifen resistant subtypes of breast cancer. Zoledronic acid

significantly suppressed the proliferation marker Ki67 in TamR cells, while this effect

was not that prevalent in the case of faslodex resistant and endocrine sensitive breast

cancer cells. In support of these observations, Zoledronic acid was found to induce S-

phase arrest in TamR cells. This was in accordance with previous studies reported that

Zoledronic acid interferes in the cell cycle of a variety of cancer cell models, including

breast, by promoting S-phase arrest (Okamoto et al. 2014; Okamoto & Kawamura 2012;

Schech et al. 2013). This constitutes an interesting finding as it is the first time that

acquired tamoxifen resistance has been identified as a mechanism of sensitisation to

bisphosphonates.

 These findings may suggest that Zoledronic acid exhibits a differential inhibitory

effect in TamR cells, however further investigation is essential before firm conclusions

are drawn. Recent studies have reported that Zoledronic acid may bind the EGFR and

HER2 receptors and subsequently inhibit downstream signalling pathways (Agnes

Stachnik et al. 2014; Yuen et al. 2014). Thus, enhanced sensitivity to this agent might be

observed by tumours that overexpress these receptors. Among the cell lines used for this

thesis, TamR cells expressed the highest levels of EGFR. In light of this, it was

hypothesised that stimulation of EGFR expression by TGFα in TamR cells would

possibly amplify the inhibitory effect seen by Zoledronic acid. Although such response

was not shown in this study, it was found that dual treatment of TamR cells with

Zoledronic acid and the Tyrosine Kinase Inhibitor gefitinib significantly restricted the

growth of TamR compared to each single agent. This finding suggests that combined

treatment of gefitinib and Zoledronic acid might confer an additional benefit for patients
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with tamoxifen resistant breast cancer. Moreover, this observation was in line with

previous studies reporting that dual treatment with these agents represents a more

effective treatment for non-small cell lung cancer with EGFR mutations (Chang et al.

2009).

 This thesis provided evidence that Zoledronic acid reduced EGFR activation, but not

HER2, confirming Yuen et al. 2014 study that bisphosphonates target EGFR and/or

HER2 in order to exert their anti-tumour effects. Further investigation to identify which

downstream signalling pathways were affected by the EGFR downregulation,

demonstrated that Zoledronic acid reduced AKT and MAPK signalling cascades and

consequently mTOR pathway in TamR cells. Downregulation of the mTOR pathway by

Zoledronic acid has been previously reported by other studies (Lan et al. 2013; Moriceau

et al. 2010; Broom et al. 2015; Kato et al. 2016), however this thesis revealed the novel

finding that Zoledronic acid inhibits growth and proliferation of TamR cells in an mTOR-

mediated manner.

  The work presented here suggests that acquired tamoxifen resistant breast cancer and

the TNBC subtype are both able to promote osteoclast differentiation in a RANKL-

independent manner via a mechanism that potentially involves Src kinase and the

cytokine, MIF. In addition, our data revealed an important anticancer activity of

Zoledronic acid which may occur through modulation of the mTOR pathway in these two

breast cancer contexts. Zoledronic acid might therefore offer a potential benefit for

patients with tamoxifen resistant breast cancer or the TNBC subtype.
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Appendix A. Gene and primer sequences

PTHLH (V1)

ATGCAGCGGAGACTGGTTCAGCAGTGGAGCGTCGCGGTGTTCCTGCTGAGC

TACGCGGTGCCCTCCTGCGGGCGCTCGGTGGAGGGTCTCAGCCGCCGCCTC

AAAAGAGCTGTGTCTGAACATCAGCTCCTCCATGACAAGGGGAAGTCCATC

CAAGATTTACGGCGACGATTCTTCCTTCACCATCTGATCGCAGAAATCCACA

CAGCTGAAATCAGAGCTACCTCGGAGGTGTCCCCTAACTCCAAGCCCTCTCC

CAACACAAAGAACCACCCCGTCCGATTTGGGTCTGATGATGAGGGCAGATA

CCTAACTCAGGAAACTAACAAGGTGGAGACGTACAAAGAGCAGCCGCTCA

AGACACCTGGGAAGAAAAAGAAAGGCAAGCCCGGGAAACGCAAGGAGCA

GGAAAAGAAAAAACGGCGAACTCGCTCTGCCTGGTTAGACTCTGGAGTGAC

TGGGAGTGGGCTAGAAGGGGACCACCTGTCTGACACCTCCACAACGTCGCT

GGAGCTCGATTCACGGTAA

M-CSF

ATGACCGCGCCGGGCGCCGCCGGGCGCTGCCCTCCCACGACATGGCTGGGC

TCCCTGCTGTTGTTGGTCTGTCTCCTGGCGAGCAGGAGTATCACCGAGGAGG

TGTCGGAGTACTGTAGCCACATGATTGGGAGTGGACACCTGCAGTCTCTGC

AGCGGCTGATTGACAGTCAGATGGAGACCTCGTGCCAAATTACATTTGAGT

TTGTAGACCAGGAACAGTTGAAAGATCCAGTGTGCTACCTTAAGAAGGCAT

TTCTCCTGGTACAAGACATAATGGAGGACACCATGCGCTTCAGAGATAACA

CCCCCAATGCCATCGCCATTGTGCAGCTGCAGGAACTCTCTTTGAGGCTGAA

GAGCTGCTTCACCAAGGATTATGAAGAGCATGACAAGGCCTGCGTCCGAAC

TTTCTATGAGACACCTCTCCAGTTGCTGGAGAAGGTCAAGAATGTCTTTAAT

GAAACAAAGAATCTCCTTGACAAGGACTGGAATATTTTCAGCAAGAACTGC

AACAACAGCTTTGCTGAATGCTCCAGCCAAGATGTGGTGACCAAGCCTGAT

TGCAACTGCCTGTACCCCAAAGCCATCCCTAGCAGTGACCCGGCCTCTGTCT
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CCCCTCATCAGCCCCTCGCCCCCTCCATGGCCCCTGTGGCTGGCTTGACCTG

GGAGGACTCTGAGGGAACTGAGGGCAGCTCCCTCTTGCCTGGTGAGCAGCC

CCTGCACACAGTGGATCCAGGCAGTGCCAAGCAGCGGCCACCCAGGAGCAC

CTGCCAGAGCTTTGAGCCGCCAGAGACCCCAGTTGTCAAGGACAGCACCAT

CGGTGGCTCACCACAGCCTCGCCCCTCTGTCGGGGCCTTCAACCCCGGGATG

GAGGATATTCTTGACTCTGCAATGGGCACTAATTGGGTCCCAGAAGAAGCC

TCTGGAGAGGCCAGTGAGATTCCCGTACCCCAAGGGACAGAGCTTTCCCCC

TCCAGGCCAGGAGGGGGCAGCATGCAGACAGAGCCCGCCAGACCCAGCAA

CTTCCTCTCAGCATCTTCTCCACTCCCTGCATCAGCAAAGGGCCAACAGCCG

GCAGATGTAACTGGTACCGCCTTGCCCAGGGTGGGCCCCGTGAGGCCCACT

GGCCAGGACTGGAATCACACCCCCCAGAAGACAGACCATCCATCTGCCCTG

CTCAGAGACCCCCCGGAGCCAGGCTCTCCCAGGATCTCATCACTGCGCCCCC

AGGGCCTCAGCAACCCCTCCACCCTCTCTGCTCAGCCACAGCTTTCCAGAAG

CCACTCCTCGGGCAGCGTGCTGCCCCTTGGGGAGCTGGAGGGCAGGAGGAG

CACCAGGGATCGGAGGAGCCCCGCAGAGCCAGAAGGAGGACCAGCAAGTG

AAGGGGCAGCCAGGCCCCTGCCCCGTTTTAACTCCGTTCCTTTGACTGACAC

AGGCCATGAGAGGCAGTCCGAGGGATCCTTCAGCCCGCAGCTCCAGGAGTC

TGTCTTCCACCTGCTGGTGCCCAGTGTCATCCTGGTCTTGCTGGCCGTCGGA

GGCCTCTTGTTCTACAGGTGGAGGCGGCGGAGCCATCAAGAGCCTCAGAGA

GCGGATTCTCCCTTGGAGCAACCAGAGGGCAGCCCCCTGACTCAGGATGAC

AGACAGGTGGAACTGCCAGTGTAG
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RANKL isoform 1,2

ATGCGCCGCGCCAGCAGAGACTACACCAAGTACCTGCGTGGCTCGGAGGAG

ATGGGCGGCGGCCCCGGAGCCCCGCACGAGGGCCCCCTGCACGCCCCGCCG

CCGCCTGCGCCGCACCAGCCCCCTGCCGCCTCCCGCTCCATGTTCGTGGCCC

TCCTGGGGCTGGGGCTGGGCCAGGTTGTCTGCAGCGTCGCCCTGTTCTTCTA

TTTCAGAGCGCAGATGGATCCTAATAGAATATCAGAAGATGGCACTCACTG

CATTTATAGAATTTTGAGACTCCATGAAAATGCAGATTTTCAAGACACAACT

CTGGAGAGTCAAGATACAAAATTAATACCTGATTCATGTAGGAGAATTAAA

CAGGCCTTTCAAGGAGCTGTGCAAAAGGAATTACAACATATCGTTGGATCA

CAGCACATCAGAGCAGAGAAAGCGATGGTGGATGGCTCATGGTTAGATCTG

GCCAAGAGGAGCAAGCTTGAAGCTCAGCCTTTTGCTCATCTCACTATTAATG

CCACCGACATCCCATCTGGTTCCCATAAAGTGAGTCTGTCCTCTTGGTACCA

TGATCGGGGTTGGGCCAAGATCTCCAACATGACTTTTAGCAATGGAAAACT

AATAGTTAATCAGGATGGCTTTTATTACCTGTATGCCAACATTTGCTTTCGA

CATCATGAAACTTCAGGAGACCTAGCTACAGAGTATCTTCAACTAATGGTGT

ACGTCACTAAAACCAGCATCAAAATCCCAAGTTCTCATACCCTGATGAAAG

GAGGAAGCACCAAGTATTGGTCAGGGAATTCTGAATTCCATTTTTATTCCAT

AAACGTTGGTGGATTTTTTAAGTTACGGTCTGGAGAGGAAATCAGCATCGA

GGTCTCCAACCCCTCCTTACTGGATCCGGATCAGGATGCAACATACTTTGGG

GCTTTTAAAGTTCGAGATATAGATTGA
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Appendix C. Scanned data Elisa hRANKL
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