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A B S T R A C T

As energy metabolism in the brain is largely oxidative, the measurement of cerebral metabolic rate of oxygen consumption (CMRO2) is a desirable biomarker for
quantifying brain activity and tissue viability. Currently, PET techniques based on oxygen isotopes are the gold standard for obtaining whole brain CMRO2 maps.
Among MRI techniques that have been developed as an alternative are dual calibrated fMRI (dcFMRI) methods, which exploit simultaneous measurements of BOLD
and ASL signals during a hypercapnic-hyperoxic experiment to modulate brain blood flow and oxygenation.

In this study we quantified the repeatability of a dcFMRI approach developed in our lab, evaluating its limits and informing its application in studies aimed at
characterising the metabolic state of human brain tissue over time. Our analysis focussed on the estimates of oxygen extraction fraction (OEF), cerebral blood flow
(CBF), CBF-related cerebrovascular reactivity (CVR) and CMRO2 based on a forward model that describes analytically the acquired dual echo GRE signal.

Indices of within- and between-session repeatability are calculated from two different datasets both at a bulk grey matter and at a voxel-wise resolution and finally
compared with similar indices obtained from previous MRI and PET measurements. Within- and between-session values of intra-subject coefficient of variation
(CVintra) calculated from bulk grey matter estimates 6.7� 6.6% (mean� std.) and 10.5� 9.7% for OEF, 6.9� 6% and 5.5� 4.7% for CBF, 12� 9.7% and 12.3� 10%
for CMRO2. Coefficient of variation (CV) and intraclass correlation coefficient (ICC) maps showed the spatial distribution of the repeatability metrics, informing on the
feasibility limits of the method.

In conclusion, results show an overall consistency of the estimated physiological parameters with literature reports and a satisfactory level of repeatability
considering the higher spatial sensitivity compared to other MRI methods, with varied performance depending on the specific parameter under analysis, on the spatial
resolution considered and on the study design.
Introduction

Brain activity is reliant on energy release principally through oxida-
tive metabolism. For this reason, a number of MRI methods are under
development to directly quantify the rate of cerebral metabolic oxygen
consumption (CMRO2). CMRO2 offers a marker of the physiological state
of brain tissue (Lin et al., 2010), with potential applications in tumour
(Brown and Wilson, 2004), stroke (Derdeyn et al., 2002), neurological
(Santens et al., 1997) and neurodegenerative disorders (Ishii et al.,
1996).

PET imaging based on an oxygen isotope (15O) is often still regarded
as the gold standard for obtaining whole brain CMRO2 maps despite the
technical complexity, the risks related to the administration of ionising
radiation and the implicit limits for longitudinal studies. Recent MRI
methods for measurement of CMRO2 have been introduced based on
exploiting the magnetic field differences between the superior sagittal
sinus (Jain et al., 2010) or major veins (Fan et al., 2012) and the
* Corresponding author. Cardiff University Brain Research Imaging Centre, Schoo
E-mail address: wiserg@cardiff.ac.uk (R.G. Wise).

https://doi.org/10.1016/j.neuroimage.2018.02.020
Received 24 October 2017; Received in revised form 12 January 2018; Accepted 12 February
Available online 14 February 2018
1053-8119/© 2018 The Authors. Published by Elsevier Inc. This is an open access article unde
surrounding parenchyma, T2-oxygenation calibration curves refined
with velocity selective techniques (Bolar and Rosen, 2011; Guo and
Wong, 2012) or quantifying venous oxygen saturation via the T2 of
venous blood (Lu and Ge, 2008; Xu et al., 2009). While this last approach
is limited to bulk level estimates, it is currently found to show the highest
level of precision and repeatability (Liu et al., 2013).

Another group of techniques, known as calibrated BOLD methods,
aims to estimate CMRO2 from BOLD and arterial spin labelling (ASL)
signals, exploiting respiratory tasks and mathematical models describing
the complex relationship between oxygen metabolism, BOLD signal and
cerebral blood flow (CBF) in the brain. Recently, extensions of the orig-
inal approaches of Davis and Hoge (Davis et al., 1998; Hoge et al., 1999)
have been developed allowing the use of both hypercapnia and hyperoxia
induced CBF and BOLD signal changes within the same experiment, to
estimate cerebral venous deoxyhaemoglobin concentration and thus
oxygen extraction fraction (OEF) and absolute CMRO2 (Bulte et al., 2012;
Gauthier and Hoge, 2012; Wise et al., 2013), an approach also known as
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Fig. 1. Top: diagram showing the experimental design for the within-session and between-sessions datasets. Bottom: list of indices calculated for each measure, both
at whole grey matter (GM) and voxel-wise resolution. All indices were calculated for every repeatability considered: within session, between sessions - same day and
between sessions – different day. [1] (McGraw and Wong, 1996).
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Fig. 2. A - Inspired gas fractions during the respiratory task. B – Tidal traces of a
single representative subject. C - End-tidal traces averaged across all subjects
and sessions of the within-session dataset. Vertical lines highlight the timing of
the respiratory task.
In both B and C periods of hypercapnia and of hyperoxia are clearly visible,
interleaved with short periods of normocapnia-normoxia. Positive and negative
emphases can be distinguished before and after the plateau hyperoxic periods,
respectively. As expected, periods of hyperoxia appear to produce a reduction in
end-tidal CO2 and periods of hypercapnia are associated with slight increases in
end-tidal O2.
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quantitative O2 imaging (QUO2) or dual calibrated fMRI (dcFMRI).
Eliminating the use of PET ionising agents in mapping CMRO2 is

desirable, although one of the factors that currently limit the application
of dcFMRI methods in clinical research studies is the lack of characteri-
sation of their variability and repeatability. In fact, to our knowledge only
a single study based on a dcFMRI technique (Lajoie et al., 2016) has been
recently presented reporting repeatability measurements. This involved a
cohort of eight healthy subjects undergoing two separate dcFMRI scan
sessions (within 24 h) and the data were analysed with a QUO2 estima-
tion approach (Gauthier and Hoge, 2012), supplying estimates of whole
brain grey matter and regional repeatability.

Our study also focuses on characterising the repeatability of the
dcFMRI technique, although considering estimates obtained from
dcFMRI experiments with a novel estimate approach based on a forward
model recently developed in our lab (Germuska et al., 2016). This model
allows us to describe analytically the contributions of BOLD signal, ASL
signal and of the measured end-tidal partial pressures of CO2 and O2 to
the measured dual echo GRE signal in a dcFMRI acquisition, at a
voxel-wise level of resolution (see Appendix for more details). We are
therefore able to present quantitative maps of four main physiological
parameters involved in brain metabolism across grey matter: OEF, CBF,
CO2-induced perfusion cerebrovascular reactivity (CVR) and CMRO2.

Our aim is to evaluate the reliability of the estimates and to collect
reference data to evaluate the limits and the viability of the estimation
framework for adoption in future studies aimed at characterising the
metabolic state of human brain tissue. Compared to the work of Lajoie
and colleagues (Lajoie et al., 2016), a more extended cohort of subjects
and set of measurements are considered for this study. Indices quanti-
fying within-session repeatability of the estimates are presented, based
on measurements from a test-retest experiment on ten healthy volunteers
in the resting state. A second group of indices quantifying
between-session repeatability of the results is also presented, based on a
previously published study on sixteen healthy volunteers exploiting the
same dcFMRI analysis framework but a crossover design with repeated
measurements (Merola et al., 2017). We quantify repeatability both at a
whole grey matter level and at a voxel-wise level, supplying a good level
of spatial detail for such measurements.

Materials and methods

Participants and experimental design

Exclusion criteria were introduced with special attention to possible
difficulties in complying with respiratory tasks (asthma, smoking, cold/
flu, etc.) and known cardio/cerebrovascular disease. Volunteers' toler-
ance of hypercapnic periods and prolonged breathing through a facial
mask was tested with a benching session held in the days before the
scanning session. The study was approved by the local ethics committee
and written informed consent was obtained from each participant.

For within-session assessments ten healthy volunteers (4 females,
age¼ 27.4� 10) were recruited. Each participant was scanned at rest
(eyes open) in a single scan session (see Fig. 1, top). A dual calibrated
fMRI scan (dcFMRI scan, 18min) was performed and then repeated after
about 10min. During each of the dcFMRI scans an 18min respiratory
task was delivered, with interleaved levels of hypercapnia, hyperoxia and
medical air being delivered to the subjects. We will refer to this as the
within-session repeatability dataset.

For between-session assessments a second set of measurements is
included from a previously presented dcFMRI study on the acute effects
of caffeine for which sixteen healthy participants (8 females,
age¼ 24.7� 5.1) were recruited (Merola et al., 2017). The results from
one subject were excluded, due to the degraded nature of the data (please
refer to the original paper (Merola et al., 2017)). In this case each
participant was scanned on two different days (30.1� 18.8 days apart,
same time of the day), each day including the same protocol with a first
scan session followed by the delivery of a capsule of drug or placebo



Fig. 3. Scatterplots for the correlation analysis between the two sets of measurement (denoted as 1 and 2) of the within-session dataset. Dotted lines show unity and
also displayed are the coefficient of determination (R2) and statistical significance (p).
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outside the scanner and then a second scan session 45min later (see
schematic in Fig. 1). Crucially in each day the dcFMRI acquisitions were
run in two separate scanning sessions, with the participant spending time
outside the MR suite in between them. For the purpose of this study only
the pre-dose and placebo sessions were considered (see schematic in
Fig. 1) to avoid the caffeine effect. Each session included a dcFMRI
acquisition with specifications and respiratory tasks identical to the ones
used for the within-session repeatability dataset. We will refer to this as
the between-session repeatability dataset.
Gas delivery, breathing circuit and respiratory task

The respiratory task design we adopt is similar to interleaved para-
digms previously presented in literature (Bulte et al., 2012; Wise et al.,
2013) and was optimized using noise modelling as previously described
(Germuska et al., 2016). The design includes three periods of hyper-
capnia interleaved with two periods of hyperoxia, for a total duration of
18min (see Fig. 2, A). In order to achieve hypercapnia, fixed values of 5%
CO2 (balance air) were administered. Inspired fractions of 50% O2
(balance air) were delivered to achieve hyperoxia. Although in this last
case, the levels of administered gas were modified with positive and
negative emphasis; short periods of respectively 100% O2 (14s) and 10%
O2 (40s) were delivered in order to accelerate the process of reaching the
hyperoxic state and the return to normoxia (see Fig. 2). Although hypoxic
mixtures were administered, their short duration did not induce arterial
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hypoxia, as monitored by a pulse oximeter attached to the volunteers'
finger. Mixtures of 5% CO2 (balance air), 10% O2 (balance N2), 100% O2
and medical air were delivered at a total flow rate of 25 l/min to the gas
mixing chamber which was placed in the MR control room. The mixing
chamber was then connected to the breathing circuit through a humid-
ifier. An independent O2 backup cylinder was also connected directly to
the breathing circuit. The gas delivery system consisted of a laptop per-
sonal computer using in-house Matlab software (Mathworks, Natick, MA,
USA) to control the voltage output from a NI-DAQ AD converter (Na-
tional Instruments, Austin, TX). The output voltages were then fed into
four mass flow controllers (MKS Instruments, Wilmington, MA, USA) that
allowed us to administer the desired gas mixture. The respiratory circuit
adopted was similar to the one proposed by Tancredi and colleagues
(Tancredi et al., 2014). This circuit includes a system of one-way valves
that minimizes re-breathing and an open reservoir that allows the subject
to breathe room air when flow ceases to the circuit. Air was sampled from
the volunteers' tight-fitting facemask and tidal partial pressures of O2 and
CO2 were measured and recorded using rapidly responding gas analysers
(AEI Technologies, Pittsburgh, PA, USA).
Data acquisition

For both datasets presented, scanning was performed on a 3T GE HDx
MRI system (GE Healthcare, Milwaukee WI) with a body transmit coil
and 8-channel head receive coil. All participants underwent (or had



Fig. 4. ICC and CV indices calculated at a grey matter level for all estimated parameters. A,B: within session dataset; C,D: between sessions, same day dataset; E,F:
between sessions, different day dataset.
Indices for individual subjects (CVintra and ICCglobal) are shown in black circles and dots while group indices (CVinter and ICCglobal) are shown in red stars and crosses
respectively for ICC and CV.
CVintra is the intra-subject CV and CVinter is the inter-subjects CV; ICCglobal is the ICC(A,k) calculated between subjects at a GM level and ICCspatial is the ICC(A, 1)
calculated within subjects across voxels.
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Fig. 5. Voxel-wise CV indices calculated from the within-session dataset. A: results for <CVintra>, the mean across subjects of the intra-subject CV. B: results for CVinter,
the inter-subject CV. For both, reported are the axial views of the calculated maps for each physiological parameter and relative histograms showing the distributions
of the calculated values (in red the median and in black the interquartile range limits).
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available) whole brain T1-weighted structural scans (3D FSPGR,
1� 1� 1 mm voxels, TI/TR/TE¼ 450/7.8/3ms).

dcFMRI acquisitions were acquired for both within- and between-
session repeatability datasets collecting simultaneous perfusion and
BOLD imaging data with a PASL PICORE, QUIPSS II imaging sequence
with a dual-gradient echo (GRE) readout and spiral k-space acquisition
with the following parameters: TE1¼ 2.7ms, TE2¼ 29ms, TR¼ 2.2 s,
Flip Angle¼ 90�, FOV¼ 22 cm, Matrix¼ 64� 64, 12 slices of 7mm
thickness with an inter-slice gap of 1mm acquired in ascending order,
TI1¼ 700ms, TI2¼ 1500ms for the most proximal slice and was incre-
mented for the subsequent slices, tag thickness¼ 20 cm, 10mm gap be-
tween labelling slab and bottom slice, 10 cm QUIPSS II saturation band
thickness. This resulted in a 490-volume acquisition (245 tag-control
pairs) for each of the dcFMRI acquisitions.

All dcFMRI scans were preceded by two calibration scans. The first
consisted of a single shot scan to estimate the equilibrium magnetization
of brain tissue (M0), used for perfusion quantification (Çavuşoǧlu et al.,
2009), with the same acquisition parameters as for the
perfusion-weighted scans, except for being acquired with fully relaxed
magnetization and no labelling. The second was a low resolution, mini-
mal contrast image used for coil sensitivity correction (Wu et al., 2011),
with the same acquisition parameters as for the equilibrium magnetiza-
tion scan, except for TE¼ 11ms and TR¼ 2 s.
Data analysis

dcFMRI data and end-tidal traces
dcFMRI data were pre-processed with motion correction (MCFLIRT

(Jenkinson et al., 2002),) and brain extraction (BET (Smith, 2002),) and
spatially smoothed with a Gaussian kernel of 6 mm with SUSAN (Smith
and Brady, 1997), separately for echo 1 and echo 2. Estimation of
physiological parameters of interest was performed with the forward
model previously developed in our lab (Germuska et al., 2016) adapted
for a Bayesian approach. This model - described in the Appendix section -
was adopted because it allows us to take into account different aspects of
physiology contributing to the measured BOLD and ASL signals in a
simultaneous optimization and also because it is less prone to estimation
failure compared to previous calibrated fMRI methods (Germuska et al.,
2016). The priors on estimates were defined specifying means and
standard deviations (mean, std.) as OEF ¼ (0.35, 0.1), CBF ¼ (60, Inf)
ml/100 g/min, CVR ¼ (3, 0.774) %mmHg, where by “Inf” we mean a
non-informative prior. These values were fixed in agreement with re-
ported physiological ranges and consistently with those used in the
original study on the Bayesian framework for the forward model (Ger-
muska et al., 2016). A prior was also defined on the estimated parameter
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K ¼ (0.07,0.087), as for a recent study from our centre (Merola et al.,
2017). Non-informative priors are used to initialize the estimate without
carrying information, therefore they can be thought of as uniform dis-
tributions of probability. No prior is defined on the estimates of CMRO2
as this is calculated as CMRO2¼ CBF⋅OEF⋅CaO2 (see Eq. A-11 in Ap-
pendix), where CaO2 is the arterial content of oxygen. With regards to the
remaining parameters, they were kept the same as those adopted in the
original work (Germuska et al., 2016) as also reported in Table 2 in the
Appendix.

The inputs to the framework are dual echo GRE images and, PetO2
and PetCO2 traces. Analytic models (see Equations 1–8 in (Germuska
et al., 2016) and the Appendix section) describing the magnetization
decay occurring at the first and second TE were used to estimate grey
matter maps of OEF, CBF, CVR and CMRO2. As for the parameters α and β
used in Eq. 5 of (Germuska et al., 2016), they were fixed to 0.06 and 1
respectively, following the results of our previous optimisation study
(Merola et al., 2016). Prior to analysis, the end-tidal responses were
visually aligned with the MR data to remove the influence of any bulk
delay between the recorded end-tidal traces and the fMRI data. Possible
alignment errors amount to fractions of TR and likely have a negligible
effect on the final estimation. Low-resolution functional images (mean
TE1 across time) were co-registered to the high-resolution T1 weighted
anatomical space using FSL FLIRT (Jenkinson et al., 2002) with 6 DOF for
each subject. Registrations from the individual anatomical space to the
MNI space were calculated with FNIRT (Andersson et al., 2007) for
second level analysis. The parametric maps obtained from the analysis
pipeline in the low-resolution functional space, were finally expressed
into the MNI space using the calculated spatial transformations.

Mean grey matter values of each estimated parameter were calculated
for the scans from an inclusive joint mask defined by I) partial volume
grey matter values (based on the individual FSL FAST segmented high
resolution anatomical maps) greater than 50%, II) estimated values of
CBF within the range [0200] ml/100 g/min. The first criterion was
imposed as an empirical threshold to avoid values affected by poor SNR
of the signal in white matter, while the second was used to exclude non-
physiological values, likely associated with high noise in some areas of
the ASL images. A small proportion of voxels for which the estimation
algorithm did not converge were also excluded from the analysis.

Within-session repeatability analysis
Indices quantifying the repeatability of the estimates were calculated

for each physiological parameter both at a bulk grey matter and the
voxel-wise level and are summarised in the table of Fig. 1.

Firstly indices were calculated at a bulk grey matter level with a
correlation analysis between the estimates at the two time points:



Fig. 6. Results of the repeatability analysis on the between-sessions dataset with measurements acquired in the same day. Scatterplots for the correlation analysis
between the two sets of measurement (denoted as 1 and 2), for all four estimted physiological parameters. Displayed are the line of unity (dotted), the coefficient of
determination (R2) and the statistical significance (p).
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coefficient of determination (R2) and statistical significance (p).
Then the intraclass correlation coefficient, or ICC (McGraw and

Wong, 1996; Shrout and Fleiss, 1979), was used as a measure of absolute
agreement between the bulk estimates. The ICC has previously been
applied to fMRI data to quantify the ratio between the data variance of
interest and the total data variance (Bright andMurphy, 2013; Lipp et al.,
2015). In particular, it can be applied in a voxel-wise fashion in order to
obtain estimates of spatial repeatability of the signal (Lipp et al., 2014).
Two different ICC indices were therefore considered: one calculated on
whole grey matter values of the parameters across subjects (corre-
sponding to ICC(A,k) in (McGraw and Wong, 1996)) and another
considering voxel-wise comparisons between the two scans for each
participant separately (corresponding to ICC(A, 1) in (McGraw and
Wong, 1996)). These are hence referred to as “global ICC” (ICCglobal) and
“spatial ICC” (ICCspatial) respectively (see table in Fig. 1). Both are
interpreted according to commonly used guidelines that classify values of
ICC below 0.4 as “poor”, values between 0.41 and 0.59 as “fair”, values
between 0.60 and 0.74 as “good” and values> 0.74 as “excellent” (Cic-
chetti, 2001).

In order to evaluate the spread of the bulk estimates around their
mean values, coefficients of variation (CV) of the estimates were also
calculated. Two CV indices were considered: one taking account of the
differences between the subjects of the cohort (i.e. inter-subjects, CVinter)
and the other considering the variability occurring in each subject
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separately (ie intra-subject, CVintra, see table in Fig. 1). CVinter was
calculated as the mean of the CV values calculated for the two sessions,
each of which was obtained as the ratio between the standard deviation
andmean. CVintra was calculated for each person by dividing the standard
deviation of the estimates from two sessions by their mean. These CV
indices were also visually represented in Bland-Altman plots, scatterplots
in which the differences between two set of measurements are plotted
against their means. Calculating the mean (m) and standard deviation
(std) across the differences, it is then possible to characterise as outliers
the values lying beyond the interval of m� 1.96� std.

The relationship between the similarity of the respiratory traces in the
two acquisitions, expressed as a correlation, and the estimated indices of
CVintra was investigated, looking for possible sources of nuisance influ-
encing intra-session variability.

Indices were also calculated at a voxel-wise level. Maps of the ICC
index for each estimated parameter were calculated measuring the ab-
solute agreement between each voxel across subjects (corresponding to
ICC(A, 1) in (McGraw andWong, 1996)). As for the bulk case, two indices
were considered for CV: CVinter was calculated as the mean between the
CV (¼std/m) values calculated for each of the two sessions. CVintra maps
were also calculated for each subject as the ratio between the standard
deviation and the mean of the two measurements. Differently from the
bulk estimates, a single map denoted <CVintra> was then calculated as
the mean of each subject's CVintra map, for an easier comparison with the



Fig. 7. Results of the repeatability analysis on the between-sessions dataset with measurements acquired in different days. Scatterplots for the correlation analysis
between the two sets of measurement (denoted as 1 and 2), for all four estimted physiological parameters. Displayed are the line of unity (dotted), the coefficient of
determination (R2) and the statistical significance (p).
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CVinter map (see table in Fig. 1).

Between-session repeatability analysis
Between-sessions repeatability was assessed similarly to the within

sessions analysis but considering the dataset from our previous study on
caffeine effects (see schematic in Fig. 1).

In order to avoid the effects of caffeine, only the three acquisitions
without caffeine administration were considered in this case (i.e. both
acquisitions in day 1 and the first in day 2, see Fig. 1). Therefore in this
instance two different sets of measurements were calculated: the first
comparing data acquired in different sessions but on the same day, which
we shall refer to as “same day, between sessions repeatability” (or “be-
tween, same day”), while the second comparing different sessions and
different days, which we shall refer to as “different day, between sessions
repeatability” (or “between, different day”, see Fig. 1).

At a bulk level, measurements of between-session correlation were
calculated: CV (CVintra and CVinter) and ICC (ICCglobal and ICCspatial). Then
maps of the CV (<CVintra> and CVinter) and ICC indices were also
calculated. All measurements are defined as for the within session case
and are given for both same day- and different day-, between sessions
repeatability.

The code used in this manuscript for data analysis is openly available
from the Cardiff University data archive http://doi.org/10.17035/d.
2017.0041693648. However, due to ethical considerations open access
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cannot be given to the in vivo subject data or data derived from this.

Results

Within-session dataset

Respiratory traces and bulk results
The mean baseline PetO2 value was 113mmHg, while it was

42mmHg for PetCO2. Plateau levels of hyperoxia caused a mean increase
of approximately 230mmHg in PetO2 and the mean increase in PetCO2
from baseline with hypercapnia was 11.5mmHg. Moreover, periods of
hyperoxia appear to produce a reduction in PetCO2 of about 2mmHg,
while periods of hypercapnia showed an increase in PetO2 of approxi-
mately 10mmHg, consistently with literature findings (Floyd et al.,
2003; Tancredi et al., 2014). An example of tidal measurements from a
single subject and the averaged end-tidal traces for this dataset.

With regards to grey matter values of the four estimated physiological
parameters, means calculated across subjects show only slight and not
significant differences between the two time points, with pooled mean
values of 0.38 (SEM� 0.024) for OEF, 56 (SEM� 3.8) [ml/100mg/min]
for CBF, 2.6 (SEM� 0.15) [%/mmHg] for CVR and 183 (SEM� 16)
[μmol/100mg/min] for CMRO2.

Results of the correlation analysis are reported for all parameters in
Fig. 3. In this case the goodness of fit is mixed: while OEF and CBF show

http://doi.org/10.17035/d.2017.0041693648
http://doi.org/10.17035/d.2017.0041693648


Fig. 8. Voxel-wise CV indices calculated from the between-session dataset for the same day (A,B) or different day (C,D) case. Axial view of the calculated maps for
each physiological parameter and relative histograms showing the distributions of the calculated values (in red the median and delimited in black the interquartile
range). <CVintra> is the mean across subjects of the intra-subject CV and CVinter is the inter-subjects CV.

Table 1
Sample size needed to detect effect sizes of 15%, 20% and 25% in OEF, CBF and CMRO2 for three different study designs (significance level¼ 5%, statistical
power¼ 80%).

OEF CBF CMRO2

15% 20% 25% 15% 20% 25% 15% 20% 25%

(i) within subjects, within session 14 8 5 15 9 6 24 14 9
(ii) within subjects, between sessions 8 4 3 11 6 4 12 7 5
(iii) between subjects 20 11 7 28 16 10 40 23 15
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relatively high values of the coefficient of determination (R2> 0.7), CVR
and CMRO2 only show moderate agreement between the two measure-
ments (R2> 0.5).

With regards to the ICC indices, ICCglobal is found to be “excellent” for
all four parameters, with particularly high performances for OEF and CBF
(>0.9, Fig. 4A). Results are more varied for the voxel-wise analysis, with
values of ICCspatial remarkably high for CBF, mostly “excellent” for CVR
and CMRO2, while mostly “good” for OEF.

Fig. 4B also shows CV indices. Values of CVinter are generally high,
ranging between 17.5% for CVR to 26.9% for CMRO2. CVintra indices
have similar distributions across parameters, with a value (mean� std.)
of 6.7� 6.6% for OEF, 6.9� 6% for CBF, 9.5� 8.8% for CVR and
12� 9.7% for CMRO2. In only three cases (not corresponding to the same
subject) CVintra is higher than CVinter.

Figure S1 in the Supplementary Material reports the linear relation-
ship between the similarity of the respiratory traces in the two sessions -
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calculated as correlation - and the estimated indices of CVintra for OEF.
Results show a significant negative association among the two, although
this effect is not found for the remaining physiological parameters esti-
mated. Notably the two subjects with highest CVintra also show the lowest
values of correlation for CO2 and O2 traces between runs.

Bulk results visualised with Bland-Altman plots (reported in the
Supplementary Material section, Figure S2) show most of the values
clustering around the pool means for OEF and CVR, with bias in the
differences of 4.9% and �6.5% respectively compared to the relative
mean. For these parameters it is also possible to find an outlier (not al-
ways corresponding to the same subject). Distributions for CBF and
CMRO2 are instead broader, with bias in the differences of just �0.4%
and 4.6% respectively and no apparent outliers.

Voxel-wise results
Maps of the CV indices at a voxel-wise level and their normalised



Table 2
List of main physiological parameters involved in the modelling. For each of
them the role in the estimation process (“measured”, “estimated”, “calculated” or
assumed “fixed”) and relative value (prior: [mean, standard deviation], fixed
value or defining equation) and units are reported.

Parameter Role in modelling Value Units

OEF estimated prior: [0.35,0.1] –

CBF estimated prior: [60,Inf] ml/100 g/min
CVR estimated prior: [3, 0.774] %/mmHg
K estimated prior: [0.07, 0.087] –

CMRO2 calculated (Eq. A-11) μmol/100 g/min
PaCO2 measured – mmHg
PaO2 measured – mmHg
M0,blood measured – –

θ fixed 0.06 –

φ fixed 1.34 ml/g
Hb fixed 15 g/dl
T1b calculated (Eq. A-9) s
b; c (Eq. A-9) fixed -5x10�4; 1.78 s/mmHg; s
tmax (Eq. A-10) fixed 0.2 s
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histograms are reported in Fig. 5. As for the bulk estimates, values of the
mean of the intra-subject CV are generally lower than values of inter-
subjects CV. Notably, for all physiological parameters areas of interface
between grey matter and different structures (white matter, ventricles
and skull) present higher CV values. For both <CVintra> and CVinter, CBF
shows the lowest variability, with values mostly homogeneous across
parameters apart from few focal areas. A similar situation is shown by
OEF and CVR, but with higher estimates. CMRO2 shows instead high
<CVintra> and CVinter indices with irregular distributions in space. The
histograms support such evidence, with positively skewed distributions
and median values lying around 25% for <CVintra> while above 50% for
CVinter.

Finally, Figure S3 in the Supplementary Material section shows maps
of the ICC index for each parameter and normalised histograms. The
spatial distribution of the ICC is similar to that of the CV indices, with
lower values associated with areas of interface between grey matter and
different structures and CBF results showing the higher degree of uni-
formity. This is supported by the distributions, which all present negative
skewness and with the best performance associated with the estimates of
CBF reporting a median of 0.76 (classifiable as “excellent”), while for the
remaining parameters the median lies between 0.55 for CVR and 0.60 for
CMRO2.
Between-sessions dataset

Bulk results
The effects elicited by the respiratory task are consistent with those

found for the within-session repeatability dataset, with mean baseline
values were 113mmHg for PetO2 and 39mmHg for PetCO2, with mean
changes from baseline due to hypercapnia and hyperoxia of 12mmHg
and 211mmHg respectively.

Results of the correlation analysis for the between sessions datasets
are reported in Figs. 6 and 7 for same and different days respectively.
Values of correlation are overall lower than for the within-session data-
set, with results from the same day found to be higher than those from
different days. In both these last two cases, the correlation is particularly
good for CBF with high values of the coefficient of determination
(R2> 0.7). Satisfactory levels of agreement are also reported for CVR in
the case of between, same-day, while for the other estimated parameters
the agreement is poorer.

CV indices reported in Fig. 4 D,F appear similar among the two in-
stances of the between-sessions repeatability. Values of CVinter are
generally higher, ranging between about 25% for CVR to about 15% for
OEF. CVintra shows values (mean� std.) of 10.8� 10% for OEF,
4.4� 2.7% for CBF, 12.5� 9.1% for CVR and 11.2� 9.7% for CMRO2 in
the between sessions - same day, while of 10.5� 9.7% for OEF,
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5.5� 4.7% for CBF, 17.5� 17.9% for CVR and 12.3� 10% for CMRO2 in
the between sessions - different day. The distribution of CVintra indices
generally shows lower performances and outliers up to about 55% in the
case of different days.

ICCspatial indices are found to be overall consistent among same day
and different day acquisitions for all four parameters, with mean values
typically above 0.65 and a few outlying low values for the latter case
(Fig. 4 C,E). Results are more varied for the bulk analysis, with values of
ICCglobal remarkably high for CBF in both cases, mostly “good” for CVR
for the same day case, while “poor” for the rest, with the different day
instance reporting the worse performances. In general, the performances
reported are lower than for the within-session analysis.

The correlation analysis between the similarity of the respiratory
traces in the two sessions and the estimated indices of CVintra for the
different physiological parameters did not show any significant results
for the between sessions datasets (results not shown).

Voxel-wise results
Maps of the CV indices and normalised histograms for both same day-

and different day-, between sessions repeatability are reported for each
parameter in Fig. 8. Notably, for all physiological parameters areas of
interface between grey matter and different structures and areas of the
occipital lobe present higher CV values. As for the within session case,
CBF shows the lowest variability, with values mostly homogeneous
across parameters apart from a few areas, while CVR shows high
<CVintra> and CVinter indices with less regular distributions in space.
Histograms show that for all parameters distributions of<CVintra> (Fig. 8
A,C) are shifted towards lower values compared to CVinter (Fig. 8 B,D).
The distributions are instead very similar when comparing indices ob-
tained in acquisitions from the same day (Fig. 8 A,B) against acquisitions
in different days (Fig. 8 C,D), with only a slight increase in the latter case.

Finally Figure S4 in the Supplementary Material section shows maps
of the ICC index for each parameter and normalised histograms. In both
cases the spatial distribution of the ICC results is in agreement that found
for CV indices, with maps from the same day (Figure S4, A) very similar
to maps from different days (Figure S4, B) and CBF results showing the
higher performance in general. This is supported by the relative histo-
grams, with only CVR values resulting appreciably higher for same-day
acquisitions, while in contrast CBF values being even higher for
different-day acquisitions. In general ICC values appear lower than the
within-session case, with most distributions having median values below
0.5 and small but non-negligible proportion of negative values.

Discussion

The present study aims to quantify the repeatability of a novel esti-
mation approach based on a dcFMRI experiment, providing reference
data characterising variability of CBF, CVR, OEF and CMRO2 estimates
and thus informing the design of future dcFMRI studies. An analogous
study recently evaluated the bulk and regional reproducibility of physi-
ological parameters including OEF and CMRO2 estimates obtained with a
similar dcFMRI calibration approach (Lajoie et al., 2016). In the present
study we provide additional assessments of repeatability by comparing
within and between (same- and different-day) session variability using
two groups of subjects. Moreover, maps of the spatial distribution of the
variability were obtained from a voxel-wise analysis.

With regards to the within-session dataset, grey matter values esti-
mated with our forward model show an overall consistency of the results
between the sets of measurements taken at two time points. Measured
global grey matter values of 0.38� 0.08 (mean� std) for OEF are in
agreement with our previous reports (0.42� 0.12 (Wise et al., 2013),) or
from other centres, with typical values for other MR methods ranging
between 0.26 (Bolar and Rosen, 2011) and 0.435 (Fan et al., 2016).
Notably, the variability of the reported whole brain estimates of OEF
performs well compared to results from recent similar studies with dual
calibrated fMRI approaches. Values of 0.43� 0.08 and 0.39� 0.06 in
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young (N¼ 28) and older (N¼ 45) subjects were found by De Vis et al.
(De Vis et al., 2015), values of 0.435� 0.14 and 0.423� 0.17 were re-
ported by Fan and colleagues for different application of the QUO2
method (N¼ 11 (Fan et al., 2016),) and finally values of 0.37� 0.06
were shown by Lajoie and colleagues (N¼ 8 (Lajoie et al., 2016),) again
with QUO2.

Global grey matter measures of CBF (56 ml/100mg/min) tend to be
higher than what typically reported for MRI and PET studies (41 ml/
100mg/min (Bulte et al., 2012), 42ml/100 g/min (Ibaraki et al., 2010)),
but they are consistent with those from our previous study and similar
ones, especially when considering young cohorts (56 ml/100mg/min
(Wise et al., 2013), 52 ml/100mg/min (Gauthier and Hoge, 2012) and
63ml/100 g/min (Ances et al., 2009)). Estimates of 2.6� 0.47%/mmHg
for CVR lie on the lower side of the typical range of values obtained for
comparable CO2 challenges in most of the MRI literature (between
5.15� 1.1%/mmHg (Bulte et al., 2012) and 2.82� 1.21%/mmHg
(Heijtel et al., 2014)).

Finally mean CMRO2 values of 183� 49 μmol/100 g/min are com-
parable to reported values obtained with the dual calibrated fMRI
method previously presented by our lab (184� 45 μmol/100 g/min
(Wise et al., 2013)), other calibrated fMRI methods
(145� 30 μmol/100 g/min (Gauthier and Hoge, 2012) and
155� 39 μmol/100 g/min (Bulte et al., 2012)) and values of
182� 12 μmol/100 g/min (Liu et al., 2013), 158� 18 μmol/100 g/min
(Fan et al., 2012) and 157.4� 19.7 μmol/100 g/min (Roland et al., 1987)
obtained with different MR methods and PET. In terms of variability
around the mean value, our results are comparable with estimates of
181� 60 and 133� 43 μmol/100 g/min in young (N¼ 28) and older
(N¼ 45) subjects respectively recently reported by De Vis and colleagues
(De Vis et al., 2015) and with the values of 143� 34 shown by Lajoie and
colleagues (Lajoie et al., 2016). Nevertheless in our study a few subjects
show substantial changes between the two time points or outlying values,
highlighting a degree of noise in the estimates, especially with regards to
CVR and CMRO2.

The correlation analysis for the within session dataset shows a
generally good level of correlation between the estimates, although
highlights less than optimal performances in the cases of CVR and
CMRO2. In particular, in Fig. 3-C,D few subjects appear as outliers. The
main cause can be found considering the nature of the measurements, as
both are derived from other estimates: CVR as the ratio between percent
change in CBF and absolute changes in PetCO2 while CMRO2 as the
product of OEF and CBF. This means that they are particularly sensitive
to cumulative effects of noise in the original measurements.

ICC indices provide further quantification of the absolute agreement
between the estimates: high values for the ICCglobal index support the
good performance found in the correlation analysis, while calculated
ICCspatial indices inform about consistency at a voxel-wise level. As ex-
pected, ICCspatial is generally lower than ICCglobal because averaging the
estimate across grey matter allows some of the noise contributions to be
reduced. In fact it might be argued that the good agreement of the esti-
mates at a grey matter level is simply due to the averaging operated on a
possibly wide range of noisy and non-informative estimates. Our analysis
gives evidence that this is not the case: in fact ICCspatial indices and the
maps of ICC show that estimates are generally spatially consistent also at
a voxel-wise level.

A further understanding of the variability in the within session data is
given by the calculated coefficients of variance. CVinter and CVintra indices
measure the proportion of the variability in the estimates originating
from inter-subjects differences (such as normal distribution of physio-
logical parameters in the cohort) and intra-subject differences (more
related to measurement error, on the assumption of stable physiology).
As values of CVintra are found to be generally lower than CVinter, this
means that the method applied is accurate enough to capture the single
subject's physiology. Moreover, grey matter CVintra values of 6.7� 6.6%
(mean� std.) for OEF, 6.9� 5.9% for CBF and 12� 9.6% for CMRO2 are
comparable with those reported in PET literature for other methods
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aiming at estimating brain metabolism and haemodynamics across brain
(5.7� 4.4%, 8.4� 7.6% and 5.3� 3.9% respectively for (Coles et al.,
2006) and 9.3%, 8.8% and 5.3% respectively for (Bremmer et al., 2011).
With regards to MRI, results are higher than those reported for bulk es-
timates coupling TRUST measurements and phase contrast imaging for
CBF (3.2� 1.2%, 2.8� 0.8% and 3.8� 1.4% respectively (Liu et al.,
2013)) but comparable with the values reported for the only fMRI cali-
brated study that addressed the issue of repeatability so far (about 4%,
13.5% and 15% respectively with QUO2 (Lajoie et al., 2016)). It is worth
noting that in both this last example and our study, bulk grey matter
results are obtained excluding voxels in which the estimation algorithm
fails to converge to a solution or presents invalid estimates. The pro-
portion of included voxels of the total considered is 88.5� 6% (m� std)
for that study (see Table 3 in (Lajoie et al., 2016)) and it is 96� 2% for
our study. This is consistent with our previous report showing lower
proportions of valid estimates obtained with the QUO2 analysis method
compared to our forward modelling approach (Germuska et al., 2016).
By neutralising the variability contribution from these problematic vox-
els, the repeatability estimates from Lajoie et al. (2016) may show higher
performance but would have a decreased spatial coverage compared to
those reported in our study.

A significant source of nuisance for the within-session repeatability
appears to be related to the variations in the end tidal responses to the
respiratory task between different acquisitions, at least for estimates of
OEF. In fact the negative correlation found in Figure S1 in the Supple-
mentary material indicates that changes in such response are correlated
to higher CVintra indices. Although, it is not possible to infer whether this
is a causal relationship or such correlation is determined, for example, by
a third underlying physiological variable.

The Bland-Altman plots (Supplementary material, Figure S2) visu-
alize the relationship between the inter-subject and intra-subject vari-
ability, or measurement precision. Results confirm what was seen for the
ICC and CV indices, that is a generally good agreement of the estimates in
the two time points with a few outliers lowering the performance. It is
also highlighted how values of OEF are mostly clustered around a
physiological “average” value, whereas more varied values are found for
CBF and CMRO2.

Voxel-wise CV indices are higher than those reported for bulk esti-
mates, typically by a factor of 2 and 3 for the intra- and inter-subjects case
respectively. Similarly, voxel-wise ICC indices show lower performance.
This is expected due to the higher spatial resolution but it tells us about
the spatial distribution of the variability in the estimates. In particular
they show that the low CV indices calculated at a bulk level for OEF and
CBF are representative of the voxel-wise distribution of these indices.
Maps of CMRO2 further support the notion that the precision of the es-
timates is degraded by the combination of both OEF and CBF variability.

Results from the between-sessions analysis give us a further insight
into the repeatability of the measurements obtained with our method for
applications with acquisitions obtained during the same day but in
different scanning sessions or in two different days. Compared to the
within-session case, levels of repeatability are expected to decrease due
to increasing levels of experimental variability, related to running two
different sessions in the MRI scanner, and enhanced intra-subjects
physiological variability (in the between, different day case), with
possible variations in the participants' haemodynamic and metabolic
state across time. In fact performance does decrease somewhat, with the
lowest repeatability being between day for CMRO2, whose estimates
subject to the cumulative effects of errors in CBF and OEF measurements.
Notably, the correlation of OEF estimates shown in Figs. 6 and 7 appears
to be particularly poor. This could be driven by the relatively low
physiological variance in true values of OEF rather than by the accuracy
of ourmethods. In fact while values of CBF are found to vary considerably
in the healthy brain depending of multiple factors such as age and
gender, OEF typically varies within a narrower range of values, with an
average of about 0.4 (in the healthy brain (Buxton, 2009), this being also
observed for the within-session dataset and visible in Figure S2,A). This



A. Merola et al. NeuroImage 173 (2018) 113–126
would manifest as scatterplots with isotropic distributions (rather than
aligned along the unitary line) despite relatively low levels of CV indices,
as reported by our analysis.

A first caveat in the present study relates to the application of our
method under the assumption of isometabolism during hypercapnia and
hyperoxia when performing respiratory tasks. Studies on the dependence
of CMRO2 on altered arterial CO2 and O2 levels have found variable re-
sults, with some of the more relevant ones pointing at a decrease in
metabolism with both hyperoxia and hypercapnia (Xu et al., 2012,
2011). An eventual deviation from isometabolism during these condi-
tions would translate into bias on the estimates from calibrated fMRI
models, as reported by studies from our and other groups (Merola et al.,
2016, Blockley et al., 2015). In particular, we would expect values of OEF
to be overestimated if CO2 lowered O2 metabolism, while values of OEF
would be underestimated if O2 lowered O2 metabolism (Merola et al.,
2016). Due to the form of the forward model, estimates of CBF are not
expected to be affected by the violation of isometabolic conditions.
Although still the subject of discussion in the field, this is a commonly
adopted assumption for calibrated fMRI methods.

Another limitation arises from the precision of the estimates obtained
with the forward model. As previously discussed, grey matter values
reported are generally consistent with those found in literature.
Repeatability of the measurement, quantified with correlation analysis
and ICC calculations, has been shown to be overall satisfactory for the
within-session repeatability, both at a bulk and voxel-wise level, the
worst performances being related to the inherently noisiest derived pa-
rameters, i.e. CVR and CMRO2. CV indices are instead higher than those
reported in literature for alternative MRI bulk measurements, as previ-
ously discussed. Although this does not represent a major limitation as in
most cases values of CVintra are lower than CVinter, indicating that the
estimation precision of a subject's parameters is still good enough not to
be confounded by the cohort's variability. In fact we should note that the
estimates of four physiological parameters presented here have a voxel-
wise resolution. Therefore, a trade-off between repeatability and
spatial resolution has to be considered when comparing them to other
methods only allowing bulk estimates of fewer parameters such as
TRUST (Lu and Ge, 2008) or susceptibility methods applied to major
veins (Fan et al., 2012; Jain et al., 2010). In our approach while the
reproducibility is dependent on many factors, it is heavily conditioned by
the ASL signal, which shows the lower SNR compared to the
BOLD-weighted measurements. Therefore possible strategies to improve
reproducibility would be preferentially focused on enhancing the quality
of the ASL signal, for example adopting a pCASL tagging scheme or
background suppression.

The final issue originates from the Bayesian approach adopted for the
estimates. In fact the use of priors could potentially bias the estimates
towards pre-determined values (the priors themselves) rather than the
real ones. This would translate into good repeatability and decreased
variability in the data, but ultimately resulting in a loss in sensitivity to
differences in individual physiology. This argument, however, seems to
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be contradicted by the evidence of physiologically meaningful variation
of estimates across grey matter and the presence of outlying values.
Furthermore, also findings from previous studies in our centre point
against this possibility. In fact, increased sensitivity to physiological
changes was shown for the forward model used compared to other ap-
proaches (Germuska et al., 2016) and significant changes in physiology
were found after caffeine consumption despite fixed priors (Merola et al.,
2017).

Finally, this work helps us to design future studies based on the same
estimation framework. By way of example, we consider three study de-
signs: i) within subjects, within-session (based on scan 1 and 2 from the
within session dataset); ii) within subjects, between sessions (based on
the baseline scans from the between session dataset); and iii) between
subjects (based on scan 1 from the within session dataset and the first
baseline scan from the between session dataset).

Considering the bulk grey matter values reported, a significance level
of 5% and a statistical power of 80%, the sample sizes (N) needed to
detect effect sizes of 15%, 20% and 25% in the three study designs
described are shown in Table 1.

The lower numbers for case ii) compared to case i) seem counterin-
tuitive andmay just arise from uncertainty in variance estimates from our
samples. Nevertheless, these calculations, supported by the repeatability
analysis previously presented, suggest that our approach can be usefully
applied with practical sample sizes. In order to avoid large cohorts,
experimental designs characterized by reduced variability in the data
should be chosen, such as crossover and longitudinal.

In conclusion with this study we have characterised the variability of
the estimates obtained with our dcFMRI method, showing an overall
consistency with literature reports and a good level of repeatability.
Performance varies for the different physiological parameters and ac-
cording to spatial resolution and study design. In particular the infor-
mation supplied by grey matter maps is of extreme interest for studies
focused on the spatial distribution of brain physiology, despite some
reliability limitations compared to methods supplying bulk measure-
ments. The level of variability in the data suggest that the dcFMRI
approach can be applied usefully for appropriate experimental designs
with sample sizes typically found in MRI studies.
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Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.neuroimage.2018.02.020.

Appendix

The estimation framework used in this work for both the within-session and the between-sessions datasets is described with more detail in the
original paper from our centre (Germuska et al., 2016) and has already been applied in its Bayesian variant in a recent publication (Merola et al., 2017).
The code used for the estimates is available in the Cardiff University data Catalogue at https://doi.org/10.17035/d.2015.100126.

A forward signal model is constructed by combining a detailed description of the arterial spin labelling (ASL) signal developed by Woolrich and
colleagues (Woolrich et al., 2006) and amodel of the BOLD signal developed in our centre (Wise et al., 2013). Here we summarize the equations relating
the estimated parameters OEF, CBF, CVR and CMRO2.

The total MR signal STOT resulting from a dual-gradient echo (GRE) imaging sequence with a PASL PICORE, QUIPSS II scheme for ASL signal can be

https://doi.org/10.1016/j.neuroimage.2018.02.020
https://doi.org/10.17035/d.2015.100126
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expressed as:

STOT ¼ SASL e
�TE R*2;0ð1þΔR*2= R*2;0Þ (A-1)

colleagues (Wise et al., 2013 Where SASL is the ASL signal and the BOLD contribution is accounted for by changes in transverse relaxation rate R2*.
With regards to the latter, it can be expressed following the model first proposed by Wise and colleagues (Wise et al., 2013) and then optimised (Merola
et al., 2016) as:

ΔR*
2 ¼ K ½dHb�0

�
f θ
� ½dHb�
½dHb�0

�
� 1

�
(A-2)

and

f ¼
�
1þ CVR ΔPaCO2

100

�
(A-3)

Where [dHb] is the deoxy-haemoglobin concentration (0 for baseline), PaCO2 is the arterial partial pressure of O2, CVR is the cerebrovascular
reactivity (in %ΔCBF/mmHgCO2), θ is an optimised fitting parameter and K is a lumped parameter depending on cerebral blood volume, field magnitude
and geometry. Then OEF can be calculated from the expression for [dHb]/[dHb]0 proposed by Wise and colleagues (Wise et al., 2013):

½dHb�
½dHb�0

¼ 1
f
� 1
½dHb�0

�
1
ϕ

�
CaO2 � 1

f
CaO2;0

�
þ ½Hb�

�
1
f
� 1

��
(A-4)

Where [Hb] is the haemoglobin concentration, φ is the O2 carrying capacity of haemoglobin (1.34ml O2/gHb, see Table 2) and CaCO2 is the arterial
O2 content. OEF is then related to [dHb]0 by:

½dHb�0 ¼ ½Hb�⋅ OEF (A-5)

The ASL contribution SASL can also be expressed, following Woolrich model (Woolrich et al., 2006), as a sum of a static component (Ss) and a
component due to perfusion (Sb):

SASL ¼ Ss þ Sb (A-6)

where the static component is expressed in terms of changes in voxel magnetization M:

Ss ¼ M0ð1þ ΔM=M0Þ (A-7)

So that changes inM0 are assumed to derive from a change in blood volume andwater exchange. The perfusion component is then expressed in terms
of changes of CBF and the kinetic PASL model:

Sb ¼ M0;blood CBF
�
1þ CVR ⋅ ΔPaCO2

100

�
þ �½TI1ðRpn þ ð1� RÞÞ� þ �ðTI2 � TI1 � δtÞ⋅ �1� e�ðTI1�TI2Þ=T1b	þ δt


�
(A-8)

Where M0,blood and T1b are respectively the baseline magnetization and the longitudinal relaxation time of blood, R¼ e�TI2=T1b and with pn¼ 1 for
control and p¼�1 for tag. Finally TI1, TI2 and δt are the times time to saturation, time to imaging and transit time defined by the QUIPSS II tagging
scheme. The relationship between PaO2 and arterial T1b is taken to be linear (as per Ma and colleagues (Ma et al., 2014),) and described by:

T1;b ¼ b PaO2 þ c (A-9)

The unknown parameters were fixed to literature values, with b¼ -5x10�4 (extrapolated from Ma and colleagues (Ma et al., 2014),) and c¼ 1.78
(from Lu and colleagues, (Lu et al., 2004), see Table 2). With regards to the contribution of PetO2 and to PetCO2 to calculated CaO2 and ΔPaCO2
respectively, local variation of the haemodynamic response (hr(t)) was allowed modelling each of them separately as gamma-variate functions:

hrðtÞ ¼ t�ηi
max e

ηi tηi e�ηi t=tmax (A-10)

with tmax (fixed to 0.2 s, see Table 2) denoting the time of peak and ηi free parameter determining the rise and fall times of the response (with i¼ CO2,
O2). Finally CMRO2 is calculated as:

CMRO2 ¼ OEF CBF CaO2 (A-11)

Finally, Table 2 reports the main physiological parameters involved in the modelling with information about their role in the estimation process and
values.
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