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2OG, 2-oxoglutarate; ANS, anthocyanidin synthase; CODM, codeine 3-O-demethylase; F6'H, feruloyl-

CoA 6’-hydroxylase; ODD, 2-oxoglutarate/Fe(II)-dependent dioxygenases; T6ODM, thebaine 6-O-

demethylase; SIN, succinate. 

 

ABSTRACT 

Thebaine 6-O-demethylase (T6ODM) from Papaver somniferum (opium poppy) is a key enzyme in the  

morphine biosynthesis pathway that belongs to the non-heme 2-oxoglutarate/Fe(II)-dependent 

dioxygenases (ODD) family. Initially, T6ODM was characterized as an enzyme catalyzing O-

demethylation of thebaine to neopinone and oripavine to morphinone, however recently the substrate range 

of T6ODM was expanded to a number of various benzylisoquinoline alkaloids. Here, we present crystal 

structures of T6ODM in complexes with 2-oxoglutarate (T6ODM:2OG, PDB: 5O9W) and succinate 

(T6ODM:SIN, PDB: 5O7Y). The arrangement of the T6ODM’s active site is typical for proteins from the 

ODD family, but the enzyme is characterized by a large substrate binding cavity, whose volume can 

partially explain the T6ODM promiscuity. Moreover, the size of the cavity allows for binding of multiple 

molecules at once, posing a question about substrate-driven specificity of the enzyme.  
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T6ODM from opium poppy 

Non-heme 2-oxoglutarate/Fe(II)-dependent dioxygenases are widely distributed in nature and catalyze a 

wealth of modifications, e.g. hydroxylation, demethylation, desaturation, epimerization. Recently, a group 

of new ODD has been identified that encompasses enzymes involved in biosynthesis of morphinan 

alkaloids in opium poppy. Thebaine 6-O-demethylase (T6ODM) and codeine-3-O-demethylase (CODM) 

were long supposed to belong to cytochrome P450 family, until 2010 when it was revealed that these closely 

related enzymes belong to an ODD family. Notably, T6ODM and CODM are the first members of this 

family demonstrated to carry out O-demethylation (Hagel and Facchini, 2010). 

The final stage of morphine biosynthesis starts from thebaine and continues by two routes, both of which 

engage codeinone reductase (COR) and two ODD enzymes: T6ODM and CODM. T6ODM catalyzes the 

removal of the methyl group from the C6-bound oxygen atom of thebaine and oripavine, whereas CODM 

removes the methyl group from the C3-bound oxygen atom of thebaine and codeine (Figure 1). However, 

the substrate range of T6ODM and CODM has recently been studied and proven to be broader than initially 

expected. It encompasses different benzylisoquinoline alkaloids from the protopine, protoberberine, 

aporphine and 1-benzylisoquinoline groups (Farrow and Facchini, 2013). 

The fact that T6ODM and CODM belong to the same enzyme family, with 73% identity and 85% similarity 

at the amino acid sequence level, raises the question about the origins of the regioselectivity toward the 

demethylation reactions. Previously, this question was addressed by W. Runguphan and colleagues who 

attempted to swap T6ODM and CODM reaction specificities (Runguphan et al., 2012). They removed 

the demethylase activity toward thebaine from CODM by substituting four amino acids (E338G, I340L, 

L341V, K342E), which are relatively remote from the active site. However, these mutations did not manage 

to completely change the specificity. Due to lack of the crystal structure of CODM or T6ODM, the 

structural model used in that study was based on the closest homolog (30% of identity at amino acid 

sequence level) with a known 3D structure, anthocyanidin synthase (ANS) from Arabidopsis thaliana 

(Wilmouth et al., 2002).   

Here we present the crystal structures of T6ODM in complexes with 2OG (PDB: 5O9W) and SIN (PDB: 

5O7Y) that may serve as a starting point for further structural and mutagenesis studies and, hopefully, will 

help in the understanding of the origins of regioselectivity during the catalytic reactions of T6ODM and 

CODM.    
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Figure 1. Final stage of morphine biosynthesis pathway starts from thebaine and continues by two 

routes. T6ODM and CODM take part in both of them. Despite high similarity at amino acid sequence level 

they differ in reaction regioselectivity. T6ODM demethylates thebaine and oripavine at C6-bound methoxy 

group, while CODM demethylates thebaine and codeine at C3-bound methoxy group. Codeinone and 
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morphinone are reduced by COR to codeine and morphine, respectively. 

 

Protein expression and purification 

A codon-optimized gene encoding the T6ODM protein (Uniprot: D4N500) was synthesized by GenScript 

(Piscataway, NJ) and cloned into a modified pET28 vector. The construct was designed to allow direct 

expression from pET28 vector, subcloning into MCSG vectors using a ligation independent cloning 

(Eschenfeldt et al., 2009) or into StarGate system vectors (IBAGmbH, Germany). The expression was 

tested using pET28, pMCSG7 and pMCSG19 vectors and Escherichia coli strains BL21(DE3)Ripl, 

BL21(DE3)Arctic and BL21(DE3)Magic with best expression and solubility levels resulting from 

pMCSG19_T6ODM construct and BL21(DE3)Magic cells. As a result, T6ODM was overproduced as 

(His)6-MBP-T6ODM fusion protein with a cleavage site for Tobacco Etch Virus (TEV) protease.  

E. coli strain BL21(DE3)Magic cells harboring pMCSG19_T6ODM construct were grown in 1 L flasks of 

Terrific Broth medium at 37oC until optical density at 600 nm reached approx. 1. The overproduction of 

(His)6-MBP-T6ODM fusion protein was induced with 0.15 mM isopropyl-β-D-1-thiogalactopyranoside 

and performed for 20 hours at 16oC with shaking. The cells were harvested by centrifugation at 4000 rcf 

for 40 min at 4oC. For purification of (His)6-MBP-T6ODM fusion protein, bacterial pellets were 

resuspended (Lysis Buffer: 50 mM Tris-HCl, 150 mM NaCl, pH 7.8, 5% (v/v) glycerol) and incubated with 

DNase (Roche) and lysozyme (Carl Roth). The cell suspension was lysed by sonication on ice in the 

presence of a EDTA-free Protease Inhibitor Coctail (Roche). After clarification by centrifugation for 1 hour 

at 40000 rcf, the supernatant was applied to a Ni-NTA Superflow resin (Qiagen). Unbound proteins were 

washed away (Washing Buffer: 50 mM Tris, 600 mM NaCl, 10 mM imidazole, pH 7.8) and the protein of 

interest eluted (Elution Buffer: 50 mM Tris, 150 mM NaCl, 250 mM imidazole, pH 7.8). Cleavage of (His)6-

MBP-T6ODM fusion protein was performed overnight with recombinant (His)6-TEV protease in buffer 

containing 50 mM Tris, 150 mM NaCl at pH 7.8. (His)6-MBP, (His)6-TEV protease and undigested (His)6-

MBP-T6ODM protein were removed by Ni2+ affinity chromatography. The NiNTA resin flowthrough 

containing T6ODM protein was further purified using Superdex200 16/600 column attached to 

ÄKTApurifier system (Running Buffer: 50 mM Tris, 500 mM NaCl, pH 7.8). Before crystallization, buffer 

was exchanged with water by diafiltration, and the protein was concentrated to 37.5 mg/ml using Amicon 

centrifugal filter units (Millipore) with 10 kDa molecular weight cut-off. 

 

Crystallization 

Crystals of T6ODM were grown by sitting drop vapour diffusion method at 4oC using 2.4 μl drops 

containing equal volumes of protein solution and mother liquor. Preliminary crystallization conditions were 
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examined using PACT premier (Molecular Dimensions), Wizard Cryo (Rigaku Reagents), SaltRx, Index 

(Hampton Research) commercial screens. After a series of optimization, microcrystals were grown from 

modified PACT premier (0.2 M potassium sodium tartrate tetrahydrate, 20% PEG 3350) and SaltRx (0.6 

M potassium sodium tartrate tetrahydrate, 0.1 M Tris pH 8.5; 0.6 M potassium sodium tartrate tetrahydrate, 

0.1 M BIS-TRIS propane pH 7.0) conditions. Based on the assumption that tartrate may substitute for either 

the substrate or product of T6ODM, it was replaced with 2OG and SIN in the crystallization buffer. The 

concentration of T6ODM, PEG 3350, 2OG, SIN as well as the temperature of growth were systematically 

varied. Finally, the T6ODM:2OG complex was crystallized using 19% PEG 3350 and 200 mM disodium 

2-oxoglutarate, pH 9.4 solution as a mother liquor, while the T6ODM:SIN complex crystallized in 22% 

PEG 3350 and 125 mM disodium succinate, pH 7.9. Plate-shaped crystals of T6ODM:SIN and thick needles 

of T6ODM:2OG were observed within 3-5 weeks (Figure S1). For data collection, crystals were harvested 

using CryoLoops (Hampton Research), transferred into cryoprotectant solution (mother liquor containing 

30% ethylene glycol) and flash-cooled in LN2 cryo-stream (130K).  

Crystallization trials of T6ODM with available product analog (morphine) were carried out. However, 

although crystals did grow in the solution containing morphine, the electron density indicating morphine 

presence in the active site could not be found.  

 

Data collection and data analysis 

The diffraction data was collected at a temperature of 130 K with Rigaku Oxford Diffraction SuperNova 

dual source diffractometer with a Cu-Kα radiation source and 135 mm Atlas 2 CCD area detector at Faculty 

of Chemistry, Jagiellonian University. Data were collected using CrysAlisPro (Oxford Diffraction, 2006) 

and processed with HKL-2000 (Otwinowski and Minor, 1997). Structure solution and model building 

were carried out with HKL-3000 (Minor et al., 2006) coupled with MOLREP (Vagin and Teplyakov, 

1997), BUCCANEER (Cowtan, 2008) and Fitmunk (Porebski et al., 2016). The T6ODM:SIN structure 

was solved by molecular replacement with structure of feruloyl-CoA 6-hydroxylase (F6’H) from 

Arabidopsis thaliana as a search model (PDB: 4XAE) (Sun et al., 2015), while T6ODM:2OG was based 

on T6ODM:SIN model. Obtained models were further refined with REFMAC 5.8 (Murshudov et al., 

2011) and rebuilt with COOT 0.8.6 (Emsley et al., 2010). The quality of models was assessed using 

Molprobity (Chen et al., 2010) and wwPDB Validation Service (Young et al., 2017). Diffraction data 

have been deposited to The Integrated Resource for Reproducibility in Macromolecular Crystallography 

(IRRMC, proteindiffraction.org) (Grabowski et al., 2016) and can be accessed at 

DOI:10.18430/M35O7Y (T6ODM:SIN) and DOI:10.18430/M35O9W (T6ODM:2OG). Identification of 

the sodium ion in T6ODM:2OG electron density map was based on its environment (Zheng et al., 2017) 

and validated using CheckMyMetal (CMM) (Zheng et al., 2013). The distances between sodium and 
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coordinated atoms were restrained to 2.4 Å using REFMAC restraints generated by CMM. The distances 

and geometry between the nickel and coordinated atoms were unrestrained.  

 

Anomalous data collection and analysis  

The X-ray energy scan in the vicinity of absorption K-edge of nickel (8.305 - 8.370 keV) was performed 

for T6ODM:2OG crystals at beamline P13 operated by EMBL Hamburg at the PETRA III storage ring 

(DESY, Hamburg, Germany) (Cianci et al., 2017). Two diffraction data sets were collected at energies 

of 8.360 keV (1.4831 Å) and 8.320 keV (1.4902 Å) - above and below the nickel absorption K-edge, 

respectively. Data was processed with XDS (Kabsch, 2010) and CCP4 (Winn et al., 2011) coupled with 

POINTLESS 1.10, SCALA 3.3 (Evans, 2006, 2011) and TRUNCATE 1.17 (French et al., 1974). The 

T6ODM:2OG model (5O9W) was used for Fourier synthesis using REFMAC 5.8, followed by ten cycles 

of maximum likelihood restrained refinement using SAD data directly at the wavelength of 1.4902 Å and 

1.4831 Å, accordingly.  Diffraction data have been deposited to IRRMC. 

 

Overall crystal structure 

The crystal structures of T6ODM in its complexes with 2OG (PDB: 5O9W) and SIN (PDB: 5O7Y) were 

determined by molecular replacement using 4XAE as a search model and refined to 1.85 Å and 1.97 Å, 

respectively. T6ODM crystallized in the P212121 space group with one monomer in the asymmetric unit 

and estimated water content of 48%. Data collection, structure refinement and validation statistics are 

summarized in Table 1. The residues 37-40, 46-52 for T6ODM:2OG and residues 38-40, 46-51 for 

T6ODM:SIN were not included in the final models due to insufficient electron density.  

Despite relatively low amino acid sequence identity, the general backbone of T6ODM shows high 

similarities to its closest homologs with known 3D structures. ANS (PDB: 1GP4; amino acid sequence 

identity: 30%) and F6’H (PDB: 4XAE; amino acid sequence identity: 32%) from Arabidopsis thaliana can 

be superposed with T6ODM:2OG with a root mean square deviation (RMSD) of 1.77 Å and 1.62 Å, 

respectively (Figure S2) (Krissinel and Henrick, 2004). 
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Table 1. Diffraction data collection and refinement statistics. The coordinate data files and structure 

factors have been deposited in the Protein Data Bank as 5O9W (T6ODM:2OG) and 5O7Y (T6ODM:SIN). 

Diffraction data have been deposited to IRRMC.  

 
PDB ID 5O9W 5O7Y 

Data collection   
Space group P212121 P212121 

α = β = γ [o] 90 90 

a, b, c [Å] 47.04, 87.42, 94.86    47.23, 87.03, 94.17 

Resolution [Å] 1.85 (1.85 - 1.88) 1.97 (1.97 - 2.00) 
Rmerge 0.070 (0.355) 0.136 (0.653) 

I / σ (I)  15.773 (2.271) 17.710 (2.271) 
Completeness [%] 99 (95) 100 (100) 

Redundancy 3.4 (2.2) 15.8 (7.5) 
Refinement   

Resolution range [Å] 41.43 - 1.85 41.51 - 1.97 

Completeness for range 
[%] 

97.57 99.42 

Number of reflections 31662 26620 

Rwork / Rfree 0.162 / 0.214 0.163 / 0.207 

Number of atoms 3220 3206 

B factors [Å2] 24.61 29.24 

Structure quality   
R.m.s deviations   
Bond lengths [Å] 0.010 0.009 

Bond angles [o] 1.414 1.387 

Ramachandran statistics   
Favoured [%] 97.9 98.86 

Allowed [%] 99.7 99.72 

Outliers [%] 0.29 0.28 

Molprobity analysis   

Clashscore 1.32 (100th percentile) 1.69 (100th percentile) 

Poor rotamers [%] 0.00 0.00 

Favoured rotamers [%] 96.70 98.12 

Molprobity score 0.88 (100th percentile) 0.92 (100th percentile) 
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The core of T6ODM consists of multiple antiparallel β-strands, eight of which form a β-jellyroll fold 

conserved throughout the ODD superfamily (Figure 2). The active site is sandwiched between two β-

sheets, major (strands β5, β7, β10, β12) and minor (strands β6, β8, β9, β11). A highly conserved HXD/E...H 

motif (responsible for metal binding) is located in strand β6 (residue His-238), loop β6/β7 in the close 

proximity to β6 (Asp-240) and strand β11 (His-295). Structural studies of ODD have revealed that strands 

β5, β6 and β12, loops β5/β6, β6/β7, β8/β9 as well as the N-terminal and C-terminal regions play an 

important role in substrate and co-substrate binding. In some cases, loop β8/β9 can also take part in substrate 

binding or dimer formation, although, this region varies significantly in size and function among ODD (Aik 

et al., 2012). In the case of T6ODM, this loop consists of only four amino acids and according to 

PDBePISA analysis (Krissinel and Henrick, 2007) does not facilitate any contacts that can be responsible 

for dimerization. The main core of T6ODM is surrounded by additional six β-strands, twelve α-helices and 

four 310 helices (according to DSSP). The long α8 helix in the N-terminal region is placed in immediate 

proximity to the β-jellyroll fold, which is consistent with the previously reported ANS and F6’H structures, 

and might act as a ‘structural backbone’ (Sun et al., 2015; Wilmouth et al., 2002). 

We have observed a possible modification of Lys-3 in T6ODM:2OG structure, but as a crystallization 

artifact irrelevant to structural studies of T6ODM it has not been further investigated and verified. Similar, 

but more disordered density was observed for Lys-336. These additional densities were assigned as an 

unknown atoms (UNX) and can be inspected interactively using Molstack (Porebski et al., 2017) at 

http://molstack.bioreproducibility.org/project/view/OJM60NCMQF1VMKW0IBUF. Because these 

additional densities were not present in the T6ODM:SIN structure we suspect that, due to high 

concentration of 2OG (200 mM), 2OG underwent a non-enzymatic condensation reaction with a lysine 

http://molstack.bioreproducibility.org/project/view/OJM60NCMQF1VMKW0IBUF
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yielding a saccharopine (known as an intermediate in lysine degradation) (Sacksteder et al., 2000). 

 

 

Figure 2. (A) Top and (B) bottom view of the overall structure of T6ODM (PDB: 5O7Y). Residues not 

included in the final model were rebuilt for clarity of visualization. Secondary structure assignment was 

performed with DSSP and presented with PyMOL using DSSP & Stride Plugin (Zhu, 2011; Kabsch and 

Sander, 1983; Schrödinger LLC, 2015; Touw et al., 2015). Helices (blue), β-strands (orange) are indicated 

and labeled. Conserved β-jellyroll fold of T6ODM is shown in yellow.  

 

The active site  

It was unclear whether the obtained structures contain nickel or iron ion bound in the active site. Results of 

preliminary ICP-OES analysis indicated high nickel and only residual iron content.  The purification 
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protocol included Ni2+ affinity chromatography steps that sometimes, as a result of stripping nickel from 

the resin, may result in sample contamination (Niedzialkowska et al., 2017; Oswald et al., 1997). 

Nevertheless, results of previous structural studies on ODD indicate that the geometry of the active site and 

the protein, as a whole, is unaffected by Fe to Ni substitution (Horton et al., 2011). To determine which 

metal is present in the active site the data collection protocol by Handing et al. (Handing et al. in 

preparation) was employed. In short, the X-ray energy scan in the vicinity of absorption K-edge of nickel 

proved that nickel was present in the T6ODM:2OG crystals (Figure S3). To confirm that the nickel ion 

was present exactly in the active site, two diffraction data sets were collected at energies above and below 

the nickel absorption K-edge (Figure S4). For the two collected datasets we compared the ratio of peak 

values (e/Å3) in an anomalous difference map of the metal ion present in the active site, to sulfur atoms in 

cysteine and methionine residues. At this wavelengths, the estimated ratios of anomalous scattering of 

atoms relevant to this structure are f”(Fe)/f”(S) = 5.80 (at 1.4831 Å), f”(Fe)/f”(S) = 5.80 (at 1.4902 Å), 

f”(Ni)/f”(S) = 7.51 (at 1.4831 Å) and f”(Ni)/f”(S) = 0.92 (at 1.4902 Å) as calculated with values estimated 

by the CCP4 CROSSEC (Cromer, 1983). The peak value ratios (calculated as ratios of the peak value of 

the ion in the active site, to the average value of sulfur atoms, with peak level above 4 r.m.s.d) calculated 

from the anomalous difference maps are 7.23 at 1.4831 Å and 0.92 at 1.4902 Å. Therefore, we have assigned 

a nickel ion in the active site. 

Both 2OG and SIN are clearly visible in the electron density maps (Figure 3.  A-B). The side chain of Arg-

305 (highly conserved residue among ODD), located in strand β12, participates in stabilizing hydrogen 

bond interaction with the terminal carboxylate group of 2OG and SIN. Conserved amino acid residues: 

Asn-221, Tyr-223 (strand β5), Leu-235 (β6), Leu-247 (β7), Leu-256 (β8) and Ser-307 (β12) line up the co-

substrate binding pocket of 2OG and SIN. When comparing this region of T6ODM to ANS and F6’H, it is 

noticeable that only the Leu-235 of T6ODM is not conserved and instead is replaced with Val residue. 

In T6ODM:2OG complex the metal ion is coordinated by side chains of His-238, Asp-240, His-295, 1-

carboxylate and 2-oxo groups of 2OG, and one water molecule. In the case of T6ODM in complex with 

SIN, the water molecule is absent in the metal coordination sphere; whilst SIN and two ethylene glycol 

molecules from either the crystallization buffer or cryoprotectant solution are modeled instead. The 

ethylene glycol molecule that is displaced by 2OG has a well resolved electron density but the identification 

of the other ethylene glycol molecule is more ambiguous. The electron density in this region was initially 

interpreted as two water molecules but, due to presence of the unresolved positive difference electron 

density between the water molecules, it was remodeled as ethylene glycol. In the T6ODM:2OG complex 

only two water molecules can be identified in this coordination site. In both structures we have observed 

elongated ambiguous electron densities that have been modeled tentatively as disordered PEG molecules.  

The two determined structures (PDB: 5O7Y, 5O9W) can be superposed with a RMSD of 0.27 Å (as 
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calculated by PDBeFOLD) (Krissinel and Henrick, 2004). The replacement of succinate by 2OG results 

in a change of conformations or flexibility of Ile-148, Met-150 (β4) and Arg-219 (β5) that ‘trap’ 2OG in 

the active site (Figure 3. C-D). In this T6ODM:2OG model, Arg-219 adopts one major conformation, in 

which it is closer to the 2OG probably due to electrostatic interactions with the co-substrate, whereas there 

are two distinct Arg-219 conformations observed in the T6ODM:SIN complex. Due to change in Arg-219 

orientation after 2OG binding, Ile-148 adopts a different conformation whereby it is not colliding with Arg-

219. The shift of Arg-219 results in formation of additional space near Met-150, which can now help to 

facilitate binding of a hydrophobic moiety (modeled as PEG molecule) in a pocket formed between Val-

128, Glu-129, Met-150 and Phe-152 side chains.  

 

 

Figure 3. Active site of T6ODM complexed with (A) SIN and (B) 2OG shown with 2mFo-DFc electron 

density maps contoured at 1 r.m.s.d. Metal ion is shown as a sphere (orange), metal coordination is 

presented as solid line (black). Side chains arrangements with 2OG (C) or SIN (D) bound in the active site 

are presented. The models and the electron density maps, including omit maps, can be inspected 
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interactively using Molstack at 

http://molstack.bioreproducibility.org/project/view/OJM60NCMQF1VMKW0IBUF (T6ODM:2OG 

complex) and http://molstack.bioreproducibility.org/project/view/WU926J8HEKZP4ATBSW9B 

(T6ODM:SIN complex). 

 

The C-terminal lid 

T6ODM:SIN and T6ODM:2OG structures are generally well ordered with clear electron density maps. The 

structures were determined with an average B-factor of 29 Å2 and 25 Å2 for T6ODM:SIN and 

T6ODM:2OG, respectively. A few flexible regions that are characterized by relatively high B-factors can 

be identified: 36-53, 123-127, 200-204, 348-355 (including regions unmodeled due to uninterpretable 

electron density: residues  38-40, 46-51 for T6ODM:SIN and residues 37-40, 46-52 for T6ODM:2OG). 

A flexible C-terminal loop along with surrounding α11 and α12 helices forms a lid over the active site. 

Previous mutagenesis studies of T6ODM and CODM demonstrated that this fragment is partly responsible 

for the specificity of these enzymes toward thebaine and codeine, respectively (Runguphan et al., 2012). 

Our structural comparison of the T6ODM with ANS shows that in ANS this lid is formed by an extended 

α-helix as compared to the helix-loop-helix motif in T6ODM (Figure S2). Therefore, former analyses that 

used comparative models of T6ODM and CODM based on ANS crystal structure may have not fully 

explored the importance of the C-terminal region for the substrate specificity of T6ODM and CODM 

enzymes. Since this fragment is supposed to play a significant role in the substrate selectivity, a detailed 

and reliable knowledge of its structure is essential for future studies.  

 

The substrate binding cavity  

The residues terminating the C-terminal loop (Thr-350 and Ser-357) are located 15 and 16 Å away from 

the nickel ion, respectively, whereas the most exposed ones (Leu-353, Asp-354) span to 22 Å from the 

cofactor ion. There are several possible explanations for how a lid that is located so far away from the 

catalytic site can influence substrate specificity. It could pre-orient the substrate during initial binding and 

be involved in a product-substrate exchange. The lid might close the entrance to the active site upon 

substrate binding in an induced-fit mechanisms. The hinge regions of the lid are involved in the crystal 

contacts (Figure S5), therefore it is possible that structure may be locked in this particular conformation. 

We speculate that this is a reason why, despite numerous attempts, we were unable to crystalize a 

T6ODM:morphine complex. On the other hand the related structure of the ANS does not demonstrate the 

conformational change in this part of the protein, upon substrate binding.  

Furthermore, crystallographic studies of ANS revealed that it binds two molecules of substrate and a buffer 

molecule (Wilmouth et al., 2002) and since the binding pocket of T6ODM is also relatively spacious, it 

http://molstack.bioreproducibility.org/project/view/OJM60NCMQF1VMKW0IBUF
http://molstack.bioreproducibility.org/project/view/WU926J8HEKZP4ATBSW9B
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is possible that it could accommodate two molecules of substrate as well (Figure S6).  Additionally, it was 

suggested that presence of dihydroquercetin (substrate analog of ANS) in the distal binding site of ANS 

may hinder product release, which could inhibit enzyme activity at high substrate concentration (Welford 

et al., 2005). Substrate inhibition was observed for T6ODM for thebaine but not oripavine (Hagel and 

Facchini, 2010). 

 

CONCLUSIONS 

The results presented here describe the structure of T6ODM, an ODD enzyme involved in biosynthesis of 

pharmaceutically useful morphinan alkaloids. Although the general fold is usually maintained among ODD, 

binding of the substrates is accomplished by less conserved regions of the main core and surrounding loops. 

The T6ODM has a large substrate binding cavity that may allow the enzyme to bind large and diverse 

molecules - the feature that may contribute to T6ODM promiscuity. The size of the cavity is comparable to 

that of ANS and since the ANS cavity can accommodate multiple and various molecules at the same time, 

it is possible that the T6ODM substrate specificity and the kinetic characteristic changes when there are 

one or more compounds bound in the cavity. The previous studies show that the T6ODM activity with 

thebaine is affected by substrate inhibition - that observation is consistent with the hypothesis of multiple 

molecules bound in the cavity. However, substrate inhibition was not observed for oripavine. This poses an 

interesting question, whether the substrate specificity and regioselectivity are influenced by binding of the 

multiple molecules. We hope that the exact insight into the T6ODM structure we provided will help in 

future mutagenesis and computational studies aiming to understand the origins of substrate regioselectivity. 
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