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Summary

Many real-world operational research problems can be reformulated into static graph

colouring problems. However, such problems might be better represented as dynamic

graphs if their size and/or constraints change over time.

In this thesis, we explore heuristics approaches for colouring dynamic random

graphs. We consider two di�erent types of dynamic graph: edge dynamic and vertex

dynamic. We also consider two di�erent change scenarios for each of these dynamic

graph types: without future change information (i. e. random change) and with

probabilistic future change information.

By considering a dynamic graph as a series of static graphs, we propose a �mod-

i�cation approach� which modi�es a feasible colouring (or solution) for the static

representation of a dynamic graph at one time-step into a colouring for the sub-

sequent time-step. In almost all cases, this approach is bene�cial with regards to

either improving quality or reducing computational e�ort when compared against

using a static graph colouring approach for each time-step independently. In fact,

for test instances with small amounts of change between time-steps, this approach

can be bene�cial with regards to both quality and computational e�ort.

When probabilistic future change information is available, we propose a �two-

stage approach� which �rst attempts to identify a feasible colouring for the current

time-step using our �modi�cation approach�, and then attempts to increase the ro-

bustness of the colouring with regards to potential future changes. For both the edge

and vertex dynamic cases, this approach was shown to decrease the �problematic�

change introduced between time-steps. A clear trade-o� can be observed between

the quality of a colouring and its potential robustness, such that a colouring with

more colours (i. e. reduced quality) can be made more robust.
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Chapter 1

Introduction

The graph colouring problem (GCP) is a very well-studied combinatorial optimisa-

tion problem. Many real-world operational research problems can be reformulated

into GCPs, such as exam timetabling and frequency assignment (see Section 1.4).

However, in order to use GCP methods to tackle these real-world problems, it is

usually assumed that the real-world problem is not subject to change. If the size

and/or constraints of a real-world problem are altered in any way then the associated

graph will no longer be an accurate representation.

The importance of studying dynamic graphs and their associated problems has

been highlighted by Harary and Gupta [1997]. Yet, despite this, there has been very

little research, to date, regarding the colouring of dynamic graphs explicitly.

Due to its NP-hard nature, the most common approach to tackling the GCP

utilises heuristic methods to identify �good�, although not necessarily optimal, solu-

tions. It therefore follows that using heuristic methods to tackle dynamic variants

of the GCP will also prove to be an appropriate approach.

1.1 Aims and Structure of Thesis

In this thesis we wish to explore how we might approach the colouring of dynamic

graphs. We will consider the dynamic GCP in two �avours: i) edge dynamic, and

ii) vertex dynamic. By considering these two �avours we can explore methods that

will be useful in the context of real-world problems where either the constraints are

variable or the size of the problem itself is variable.

Within each of these �avours we will also consider two di�erent change scenarios:

i) without future change information (i. e. random change), and ii) with probabilistic

future change information. The �rst of these change scenarios will give us the

opportunity to consider how best to �repair� a solution if it becomes infeasible after

changes have occurred. The second scenario will allow the future change information

to be utilised before any changes occur in an attempt to improve the robustness of

a solution with regards to those changes.
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By considering a dynamic graph as a series of static graphs at di�erent time-steps,

we will explore how a feasible solution for the static representation of a dynamic

graph at one time-step can be modi�ed into a solution for the static representation

in the following time-step. The main aim therefore is to determine whether this

�modi�cation approach� is bene�cial compared to treating each static representation

independently. Also, if any bene�ts are observed, how much can a graph change

between time-steps for this to remain true? In Chapters 3 and 5, we will show

that, with appropriate parameter settings, this approach is bene�cial with regards

to either improving solution quality or reducing computational e�ort, in most cases.

In fact, for test instances with small amounts of change between time-steps, this

approach can be bene�cial with regards to both quality and computational e�ort.

When considering the second change scenario, where probabilistic future change

information is provided, we wish to improve the robustness of a solution with re-

gards to potential changes by utilising the previously unavailable information. More

speci�cally, we wish to determine whether this information can be used so that any

potential bene�ts of implementing our �modi�cation approach� can be further im-

proved. In Chapters 4 and 6, we will show that implementing a �two-stage approach�

can decrease the amount of �problematic� change introduced between time-steps,

which does indeed have knock-on e�ects for the bene�ts of our �modi�cation ap-

proach�. However, we will also show a clear trade-o� between solution quality and

robustness, such that the further a solution is from optimal, the more robust it can

be made.

This thesis has the following structure: the remainder of Chapter 1 will intro-

duce the static GCP and discuss some of its practical applications. Chapter 2 will

review methods used for tackling the static GCP with a particular focus on local

search heuristics. In Chapter 3 we will introduce the edge dynamic GCP without

future change information and will investigate whether our proposed �modi�cation

approach� is bene�cial in any way. Chapter 4 will then extend upon the work in

Chapter 3 by incorporating future change information in an attempt to improve the

robustness of colourings between time-steps. Chapters 5 and 6 will follow a similar

pattern to Chapters 3 and 4 but with regards to the vertex dynamic GCP, both

with and without future change information. Finally, in Chapter 7 we summarise

all of the key �ndings of the work presented and highlight areas of potential future

work.

1.2 Graphs and Colouring

A graph G = (V,E) is de�ned by a vertex set V = {v1, . . . , vn} and an edge set

E ⊆ {V × V }. Vertices u, v ∈ V are said to be adjacent to one another if there

exists an edge {u, v} ∈ E. The degree of a vertex v ∈ V , denoted deg(v), is equal
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Table 1.1: Adjacency matrix of the graph shown in Figure 1.1.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
v1 0 1 1 1 0 1 1 0 0 0
v2 1 0 0 0 1 0 0 0 0 0
v3 1 0 0 1 0 1 1 0 0 0
v4 1 0 1 0 1 1 1 1 0 0
v5 0 1 0 1 0 0 1 1 0 0
v6 1 0 1 1 0 0 1 0 1 0
v7 1 0 1 1 1 1 0 0 1 0
v8 0 0 0 1 1 0 0 0 0 1
v9 0 0 0 0 0 1 1 0 0 1
v10 0 0 0 0 0 0 0 1 1 0

v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

Figure 1.1: An undirected, static graph G = (V,E) with V = {v1, v2, . . . , v9, v10}
and E = {{v1, v2}, {v1, v3}, . . . , {v8, v10}, {v9, v10}}.

to the number of unique vertices adjacent to v.

Throughout this thesis, all graphs G = (V,E) are undirected (i. e. an edge

{u, v} ∈ E can also be labelled as {v, u}), and without loops (i. e. there are no

edges {u, v} ∈ E where u = v). Unless stated explicitly otherwise, all graphs are

also considered to be static (i. e. V and E do not change).

A graph G = (V,E) is commonly represented by a |V | × |V | adjacency matrix.

The (u, v)th entry of the adjacency matrix for G is equal to one if vertices u, v ∈
V are adjacent to one another, and zero otherwise. The graph in Figure 1.1 is

represented by the adjacency matrix in Table 1.1. Note that the diagonal values

(v1, v1), (v2, v2), . . . , (v10, v10) are all equal to zero because the graph in Figure 1.1

does not contain any loops.

The density of a graph G = (V,E) is given by 2m
n(n−1) where n = |V | and m = |E|.

For example, the graph in Figure 1.1 has 10 vertices and 20 edges, therefore its

density is 4
9

= 0.4̇.

An independent set of G is a set of mutually non-adjacent vertices V ′ ⊆ V (i. e.

if u, v ∈ V ′ then {u, v} /∈ E) and is said to be maximal if no other independent set
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V ′′ exists such that |V ′| < |V ′′|. The independence number of G, denoted by α(G),

is equal to the number of vertices in the largest maximal independent set of G. In

Figure 1.1, the set of vertices {v2, v3, v8, v9} is the largest maximal independent set,

therefore the independence number of this graph is 4.

A clique of G is a set of mutually adjacent vertices V ′ ⊆ V (i. e. for each pair of

vertices u, v ∈ V ′ there exists an edge {u, v} ∈ E). The clique number of G, denoted
by ω(G), is equal to the number of vertices in the largest clique of G. In Figure 1.1,

the largest clique is the set of vertices {v1, v3, v4, v6, v7}, therefore the clique number
of this graph is 5.

The Graph Colouring Problem

Given a graph G = (V,E), the objective of the graph colouring problem (GCP) is

to colour each vertex v ∈ V such that adjacent vertices are coloured di�erently and

the number of colours used is minimised. The minimum number of colours required

to colour a graph G is known as the chromatic number of G, denoted by χ(G).

The GCP can be considered as a partitioning problem where we wish to partition

V into k non-overlapping subsets such that k is minimised and each partition of V

is an independent set. This is equivalent to de�ning a colouring function c : V →
{1, . . . , k} such that k is minimised and c(u) 6= c(v) if {u, v} ∈ E. If adjacent

vertices are assigned the same colour, this is called a clash and the vertices involved

are said to be clashing.

In this thesis, a colouring (or solution) S of G = (V,E) is any partition of V into

non-overlapping subsets. If V is partitioned into k subsets (i. e. S = {S1, . . . , Sk}
where Si ⊆ V for i = 1, . . . , k) then we call S a k-colouring of G and Si the ith

colour class of S.

De�nition 1.1. A colouring S of G = (V,E) is complete if every vertex v ∈ V is

assigned to a colour class of S, otherwise it is partial.

De�nition 1.2. A colouring S of G = (V,E) is proper if each colour class of S is

an independent set, otherwise it is improper. In other words, a colouring is proper

if it contains no clashes.

De�nition 1.3. A colouring S of G = (V,E) is feasible if it is both complete and

proper, otherwise it is infeasible.

The colouring shown in Figure 1.2 can be represented as S = {S1, S2, S3, S4, S5}
where S1 = {v1, v5, v9}, S2 = {v2, v4, v10}, S3 = {v3, v8}, S4 = {v6}, and S5 = {v7}
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v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

Figure 1.2: A feasible 5-colouring of the graph shown in Figure 1.1.

and the complimentary colouring function would be de�ned as

c(vi) =



1 if i = 1, 5, 9

2 if i = 2, 4, 10

3 if i = 3, 8

4 if i = 6

5 if i = 7

(1.1)

It should be clear that this colouring is feasible as it is both complete (i. e. every

vertex v ∈ V has been assigned to a colour class) and proper (i. e. each colour

class is an independent set). The chromatic number for this particular graph is 5,

therefore this feasible colouring is also optimal.

Another way of representing feasible colourings involves graph homomorphisms.

In this representation, non-adjacent vertices are contracted to produce a complete

graph Kk such that each of the k hyper-vertices in Kk represents a colour class [Hell

and Ne²etril, 2004]. In other words, for every feasible k-colouring of a graph G there

exists a homomorphism G → Kk. We have shown that the graph in Figure 1.1 is

optimally coloured using 5 colours, therefore there must also exist a homomorphism

from this graph to the complete graph K5.

1.3 Complexity of the GCP

The number of ways of partitioning n objects into k non-empty, non-overlapping

subsets is given by the Stirling numbers of the second kind, denoted
{
n
k

}
(or S(n, k))

where {
n

k

}
=


1 if k ∈ {1, n}
1
k!

∑k
j=0(−1)k−j

(
k
j

)
jn if k ∈ {2, 3, . . . , n− 1}

0 otherwise

(1.2)
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For the graph in Figures 1.1 and 1.2 there are
{
10
5

}
= 42, 525 ways of partitioning

the 10 vertices into 5 colour classes. The total number of partitions of n objects is

given by the Bell numbers, denoted Bn where

Bn =
n∑
k=1

{
n

k

}
(1.3)

For the graph in Figures 1.1 and 1.2 there are a total of B10 = 115, 975 possible

partitions of the 10 vertices into non-empty, non-overlapping subsets.

Of course, not every possible partition of V into non-empty, non-overlapping

subsets need be considered explicitly in order to solve the GCP. One approach is to

search all partitions of V into k subsets, starting with k = 1 and increasing k by

1 (i. e. k ← k + 1) until a feasible k-colouring is achieved. By implementing this

approach, only as many as
χ(G)∑
k=1

{
n

k

}
(1.4)

of the partitions need be considered. However, the Stirling numbers of the second

kind still exhibit exponential growth for most values of k, which means that Equa-

tion (1.4) will also grow exponentially. This exponential growth demonstrates that

a naive �exhaustive search� style algorithm is not suitable for the GCP.

In fact, the decision problem �Can the graph G = (V,E) be feasible coloured

using only k colours?� is known to be a NP-complete problem [Garey and Johnson,

1979], and identifying χ(G) is an NP-hard problem (i. e. it is at least as hard as

the corresponding NP-complete decision problem). Due to the NP-hardness of the

GCP, excessive amounts of time and computational e�ort can be required to exactly

solve graphs, especially as they grow in size (i. e. as |V | increases). Therefore, in

practice, it is usually preferable to use heuristic methods to quickly generate �good�

approximations for χ(G) and identify feasible k-colourings, where k ≥ χ(G), for a

given graph G. This will be explored in much more detail in Chapter 2.

Known Bounds for χ(G)

If a given graph G = (V,E) has a particular structure then χ(G) is known in some

cases. For example, χ(G) = 1 if and only if G is a null graph (i. e. E = ∅), χ(G) = 2

if and only if G is a bipartite graph, and χ(G) = |V | if and only if G is a complete

graph (i. e. G = K|V |).

Although calculating χ(G) for a given graph G is NP-hard, some bounds for the

chromatic number are known regardless of the structure of G.

• χ(G) > ω(G)

• χ(G) > d n
α(G)
e where n = |V |
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• χ(G) > n2

n2−2m where m = |E| [Geller and Schmeichel, 1971]

• χ(G) 6 max
v∈V
{deg(v)}+ 1 [Brooks, 1941]

If G is connected but not complete, and max
v∈V
{deg(v)} > 3 then

• χ(G) 6 max
v∈V
{deg(v)} [Brooks, 1941]

If there is a feasible k-colouring for a graph H, and there is a homomorphism from

G to H (i. e. G→ H → Kk), then

• χ(G) ≤ χ(H) ≤ k [Hell and Ne²etril, 2004]

The �rst two of these bounds follow from the fact that each vertex within a clique

must be assigned to a di�erent colour class in order to avoid clashes, and each colour

class must also be an independent set. They are both interesting in theory but are

often di�cult to use in reality, because calculating the clique number ω(G) or the

independence number α(G) for a given graph G are also NP-hard problems [Garey

and Johnson, 1979]. The same can also be concluded with regards to the �nal of

these bounds; since calculating the chromatic number of a di�erent graph H is also

an NP-hard problem.

1.4 Applications of the GCP

We can reformulate many real-world problems as GCPs by considering the di�erent

aspects of a given problem instance and how they might relate to the components

of a graph (vertices, edges and colours). Therefore the methods developed and the

insights gained from studying the GCP can be utilised in a much broader sense.

To demonstrate this, we now review two explicit examples of real-world problems

that can be reformulated as GCPs: exam timetabling, and frequency assignment.

Exam Timetabling

Exam timetabling [Erben, 2001; Qu et al., 2009] is one of the most commonly

cited examples of where GCP techniques can be applied. Consider n exams to

be timetabled and, for each pair of exams x and y, it is known how many students

must sit both. The objective here is to assign exams to timeslots such that a student

is not required to sit more than one exam per timeslot (i. e. the timetable has no

clashes).

To reformulate this problem as a GCP, let each exam x be represented by a

vertex vx and, if at least one student must sit both exams x and y, de�ne an edge

{vx, vy}. A vertex set V , with |V | = n, and an edge set E have now been de�ned

such that the graph G = (V,E) has also been de�ned. By letting colours represent

7



Table 1.2: Example list of potential clashes within an exam timetabling problem.

Bio Chem Phys Maths Psych Stats ComSci
Bio - 47 32 40 23 0 0
Chem 47 - 36 39 26 0 0
Phys 32 36 - 52 0 0 16
Maths 40 39 52 - 0 31 24
Psych 23 26 0 0 - 28 0
Stats 0 0 0 31 28 - 0
ComSci 0 0 16 24 0 0 -

BPs

S

M

C Ph

CS

Figure 1.3: Graphical representation and feasible 4-colouring of the exam
timetabling problem presented in Table 1.2.

timeslots, GCP methods can now be applied to the newly de�ned graph G in order

to produce a clash-free exam timetable with approximately minimal timeslots.

Table 1.2 is an example of the information required to transform an exam

timetabling problem for 7 exams (biology, chemistry, physics, mathematics, psy-

chology, statistics, and computer science) into a GCP. Notice that only the pairs of

vertices representing exams in which some students are required to sit both exams

are connected by edges in Figure 1.3. In fact, Table 1.2 can easily be transformed

into an adjacency matrix by substituting any entry which is larger than zero with

a one. By applying GCP methods to the graphical representation of the problem

in Figure 1.3, a feasible 4-colouring has been found. This colouring translates to a

timetable in which all 7 exams are scheduled over 4 timeslots, such that exams (i. e.

vertices) in the same colour class are held simultaneously (e. g. exams for biology

and computer science are scheduled in the same timeslot).

Of course, this approach to solving the exam timetabling problem does not take

into account any secondary objectives (e. g. room sizes, exam lengths and resting

period constraints) but it does guarantee to �nd a feasible exam timetable under the

assumption that there is no upper bound on the number of timeslots (i. e. colours).
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Figure 1.4: Example object locations for a frequency assignment problem. Area
within which interference may occur with the object at (5,4) is represented by the
area within the red circle.

Frequency Assignment

The frequency assignment problem [Aardal et al., 2007] is another common example

of where GCP methods can be used. Here, the objective is to assign communication

frequencies (e. g. radio wavelengths) to a set of n physical locations such that there

is no interference. If two physical locations are within a certain proximity of one

another then they cannot be assigned the same frequency.

We can again apply GCP methods to tackle this problem by considering each

physical location x as a vertex, de�ning an edge {vx, vy} for each pair of locations

x and y that are within a given proximity of one another, and considering colours

as communication frequencies. For example, consider the two-dimensional grid of

object locations illustrated in Figure 1.4. If interference can occur between objects

that are within 2.5 units of one another, then the corresponding graph would include

edges from the vertex representing the object at coordinates (5,4) to the vertices rep-

resenting the objects at coordinates (4, 4), (4, 6), (6, 2) and (6,5). By including these

edges, we can ensure that the corresponding vertices are assigned to di�erent colour

classes which will then translate to a frequency assignment with no interference

between the respective objects.

The full graphical representation of the problem presented in Figure 1.4 can be

seen in Figure 1.5, as well as a feasible 4-colouring for it. This feasible 4-colouring

can easily be translated into a feasible frequency assignment in which only 4 unique

communication frequencies are required. The objects (i. e. vertices) in each colour

9



Figure 1.5: Graphical representation and feasible 4-colouring for the frequency as-
signment problem presented in Figure 1.4.

class can be assigned the same communication frequency without causing interfer-

ence within the network (e. g. the objects at coordinates (1, 0), (1, 6) and (4,6) can

be assigned the same communication frequency).

In a similar fashion to exam timetabling, this approach does not take into account

any of the additional constraints of frequency assignment but it does guarantee a

feasible solution under the assumption that there is no upper bound on the number

of available communication frequencies (which is often untrue in practice).

The dynamic frequency assignment problem [Dupont et al., 2009] extends upon

the standard problem to consider the situation where the physical locations change

over time (either by increasing/decreasing in number or by moving). This causes

some di�culties when attempting to apply GCP methods as we can no longer de�ne

a static graph to represent this problem. This example is part of the motivation

for studying the colouring of dynamic graphs, which will be discussed in Chapters 3

and 5.

Further Examples of Applicable Real-World Problems

There are many more examples of real-world problems that can be reformulated as

GCPs, including: register allocation [Chaitin, 1982], tournament scheduling [Costa,

1995], designing seating plans [Lewis and Carroll, 2016], and grouping individuals

within social networks [Tantipathananandh et al., 2007]. However, it is beyond the

scope of this section to cover all of these examples in great detail.
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1.5 Chapter Summary

In this chapter we have outlined the aims of this thesis and introduced the reader

to the static graph colour problem (GCP). The complexity of the GCP was then

discussed in order to justify the use of heuristic methods for solving GCPs as opposed

to exact methods. Finally, examples were provided of real-world problems that can

be transformed into GCPs so as to highlight the importance of studying the GCP

in terms of its applications.

In the next chapter we will discuss several heuristic approaches, taken from the

literature, for tackling the static GCP.
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Chapter 2

Heuristics for the Static Graph

Colouring Problem

As mentioned in Section 1.3, due to the NP-hard nature of the GCP, it is generally

preferable to use heuristic methods to generate feasible k-colourings for a given

graph G such that k ≥ χ(G) is a �good� approximation of χ(G). In this chapter

we will discuss and compare several di�erent heuristic approaches for tackling the

static GCP. The solution spaces of these heuristics will also be introduced along with

examples of appropriate objective functions and neighbourhood move operators to

be used within each space.

Although all of the methods discussed in this chapter are heuristic in nature,

exact methods for solving the GCP do exist. Exact methods usually come in the

form of backtracking algorithms [Korman, 1979; Kubale and Jackowski, 1985] or

integer programming models [Hansen et al., 2009; Malaguti et al., 2011; Mehrotra

and Trick, 1996]. The advantage of exact methods is that they will always optimally

calculate χ(G) for a given graph G and in most cases they also identify a feasible

χ(G)-colouring for G. However, these advantages are mitigated by the excessive

computational e�ort, and therefore time, requirements of these methods to run in

comparison to heuristic methods. That being said, exact methods are sometimes

included within a heuristic approach in order to optimise sub-problems of a GCP,

such as XRLF presented by Johnson et al. [1991] and MMT presented by Malaguti

et al. [2008].

What about approximation algorithms? Unlike heuristic approaches, approxi-

mation algorithms have provable bounds on the quality of the solutions they produce

compared to optimal. If A is a graph colouring algorithm, let A(G) be the number

of colours used when A is applied to a given graph G. Garey and Johnson [1976]

have shown that if a polynomial-time algorithm A exists for the GCP that can guar-

antee A(G) ≤ r · χ(G) + d for some constants r < 2 and d, then there also exists a

polynomial-time algorithm A′ that guarantees A′(G) = χ(G). However, the GCP is

known to be NP-complete. Therefore, unless P = NP, there are no approximation

12
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Figure 2.1: Example colourings produced by the Greedy constructive algorithm
with numbers representing the order in which vertices were assigned to colour classes.

algorithms for the GCP with an approximation ratio less than two (i. e. @A such

that A(G) < 2 · χ(G)).

2.1 Constructive Algorithms

A constructive (or sequential) algorithm for the GCP builds a colouring for a given

graph G = (V,E) by assigning each vertex v ∈ V , in turn, to a colour class.

The advantage of constructive algorithms is that they always produce a feasible k-

colouring S for G, and therefore an upper bound for χ(G). Unfortunately, there is

no generalised way to ensure that the upper bound k = |S| is �close� to the actual

value of χ(G). It should be noted that constructive algorithms do not act in the

manner that will be outlined in Section 2.3, however they are often incorporated

within that approach (i. e. to �nd an initial feasible colouring).

The Greedy (or First-Fit) algorithm [Welsh and Powell, 1967] takes some

ordering of the vertices (e. g. random, largest degree �rst, etc.) and assigns each

vertex in turn to the �rst colour class such that no clashes are incurred. For a graph

G = (V,E), there are at least

χ(G)!

χ(G)∏
i=1

|Si|! (2.1)

di�erent orderings of the |V | vertices that when passed to the Greedy algorithm

will result in an optimal colouring S = {S1, . . . , Sχ(G)} for G [Lewis, 2009]. Of

course, not every ordering of the vertices in V will result in an optimal colouring,

as illustrated in Figure 2.1. This �gure clearly demonstrate how the ordering of the

vertices can cause the Greedy algorithm to produce optimal (RHS) or sub-optimal

(LHS) colourings for a given graph.
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Colourings with fewer colour classes (see Table 2.1) can often be obtained by

dynamically altering the order in which vertices are coloured during the Greedy

algorithm such that �di�cult� vertices are coloured earlier. The DSatur algo-

rithm [Brélaz, 1979] does this by altering the ordering of vertices such that the

vertices with the highest saturation degrees are coloured �rst.

De�nition 2.1. Given a partial k-colouring S = {S1, . . . , Sk}, the saturation degree

degsat(v,S) of an �uncoloured� vertex v ∈ V \{
⋃k
i=1 Si} with respect to S, is equal

to the number of colour classes in S for which there exists at least one vertex u ∈ Si
such that u is adjacent to v (i. e. {u, v} ∈ E). Therefore, 0 ≤ degsat(v,S) ≤ k for

all uncoloured vertices v ∈ V \{
⋃k
i=1 Si} with respect to the partial k-colouring S.

A di�erent constructive approach is to build up each colour class (i. e. indepen-

dent set) one by one such that a new colour class is not considered until no more

vertices can be feasibly assigned to the current one. The RLF (recursive largest

�rst) algorithm [Leighton, 1979] is one such method, which successively builds colour

classes such that, in some sense, the remaining uncoloured vertices are �[colourable]

in as few [colour classes] as possible.�

To give an indication of how these constructive algorithms perform against one

another, the Greedy algorithm with random vertex ordering, the DSatur algo-

rithm and the RLF algorithm have been reproduced and implemented on a num-

ber of test instances for comparison1. For speci�c details of how these three algo-

rithms operate, see Appendix A.1. The test instances consist of random graphs with

n ∈ {250, 500, 1000} vertices and density d ∈ {0.1, 0.5, 0.9} such that an edge exists

between each pair of vertices with probability d. For each pair of graph parameters,

n and d, 20 random graphs were produced.

The results of these implementations are presented in Table 2.1. The �rst two

columns of this table indicates the test instance parameters, and the remaining

columns show the mean number of colour classes in the colourings produced by each

algorithm and the mean time (in seconds) required to produce them.

It can be seen from Table 2.1 that RLF signi�cantly2 outperforms DSatur,

with regards to the number of colour classes in the colourings achieved, in most

cases. DSatur outperforms the Greedy algorithm in the same respect. On the

other hand, the relationship between the algorithms is reversed with regards to the

time required to produce a colouring. These results are similar to those presented

in the literature e. g. [Lewis, 2015], and suggest a clear inverse relationship between

the number of colour classes in a colouring and the time required to produce it.

1All algorithms in this chapter were programmed in C++ and executed on a 2.9 GHZ Windows
7 PC with an Intel Core i5-4570T processor and 8 GB RAM

2Unless stated otherwise, all pair-wise comparisons are based on the Wilcoxon signed rank test
with signi�cance level α = 0.01. This is due to the non-normality of the results data.
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Table 2.1: Mean number of colour classes (k) in the colourings produced by con-
structive algorithms and the mean time (in seconds) required to produce them.

Greedy DSatur RLF

n d k time k time k time
250 0.1 12.50 0† 9.80 0.001 9.50 0.001

0.5 42.90 0† 37.05 0.002 32.25? 0.003
0.9 97.70 0† 90.25 0.004 85.90? 0.003

500 0.1 19.55 0† 16.00 0.002 14.95? 0.002
0.5 73.00 0† 64.95 0.009 60.90? 0.019
0.9 177.40 0† 163.20 0.019 156.40? 0.024

1000 0.1 31.55 0† 26.25 0.009 24.45? 0.015
0.5 126.90 0.001† 115.60 0.046 108.75? 0.146
0.9 320.75 0.001† 302.75 0.111 286.15? 0.197

0 represents a time less than 10−3 seconds.
? indicates colourings with signi�cantly fewer colour classes than those achieved by
all the other constructive algorithms for the same values of n and d.
† indicates a run-time that is signi�cantly less compared to all the other constructive
algorithms for the same values of n and d.

2.2 Solution Spaces

Before discussing more complex heuristics for tackling the static GCP we �rst intro-

duce some of the solution (or search) spaces employed within these methods. When

considering heuristic methods for the GCP, Hertz et al. [2008] and Lewis [2015]

suggest three main solution spaces:

1. feasible only;

2. complete, improper; and

3. partial, proper.

The number of colour classes k is generally �xed when operating in the latter two

solution spaces, though this value is often reduced once a feasible (i. e. zero cost)

k-colouring has been obtained (see Section 2.3 for more details).

We will now look at each of these solution spaces in more detail and highlight

some of the common objective functions and neighbourhood move operators3 used

within them.

2.2.1 Feasible Only Solution Space

In the feasible only solution space, only feasible colourings are considered (see Def-

initions 1.1 to 1.3). Recall, a colouring S = {S1, . . . , Sk} is considered feasible for

a graph G = (V,E) if every vertex is assigned to a colour class (i. e. V =
⋃k
i=0 Si)

3More speci�cally, we will only introduce the neighbourhood move operators that will be utilised
within our algorithms in Chapters 3 to 6 of this thesis.

15



and every pair of vertices in a given colour class are non-adjacent (i. e. if u ∈ Si and
v ∈ Si then {u, v} /∈ E). Unlike the complete, improper and partial proper solution

spaces, k is often not �xed when operating within this solution space.

When operating in the feasible only solution space, it can be di�cult to determine

which of two feasible k-colourings is �closer� to becoming a feasible colouring with

k−1 colour classes. One objective function that has been considered by Morgenstern

and Shapiro [1990] is

f(S) = −
k∑
i=0

|Si|2 (2.2)

which, if minimised, encourages reduction of the number of vertices in colour classes

until they are eventually emptied. Once a colour class has been emptied, it is

removed from S (i. e. if Si ∈ S and Si = ∅ then S ← S\Si). An alternative

objective function for this solution space, suggested by Erben [2001], is

f(S) =

∑|S|
i=1(
∑

v∈Si
deg(v))2

|S|
(2.3)

which, if maximised, encourages vertices with high degrees to be assigned to the same

colour classes, therefore increasing the likelihood of other colour classes becoming

empty.

As we will see in Chapters 4 and 6, this solution space is perhaps most useful

when considering a secondary objective. This is because the likes of Equations (2.2)

and (2.3) can be replaced with a secondary objective function which can then be

optimised without violating the constraints of the GCP.

Obviously, all neighbourhood move operators for this solution space must main-

tain the feasibility of a colouring at all times. We now consider two such neighbour-

hood move operators, the Kempe-chain interchange and the pair-swap operator.

Kempe-chain Interchange

Given a feasible k-colouring S for G = (V,E), a vertex v ∈ V and a colour class Sj

such that j 6= c(v), the Kempe-chain from Sc(v) to Sj that contains v is the maximal

connected subset of V which contains v and whose vertices are either in Sc(v) or

Sj. This is denoted by Kempe(v, c(v), j). The Kempe-chain interchange takes the

vertices in Kempe(v, c(v), j) and transfers those in colour class Sc(v) to colour class

Sj and vice versa. It should be noted that if |Kempe(v, c(v), j)| = |Sc(v)|+ |Sj| then
the Kempe-chain interchange is simply a re-labelling of the colour classes.

It is shown in [Lewis, 2015] that if S is feasible for G, then applying the Kempe-

chain interchange to S cannot result in an infeasible colouring for G. Moreover,

applying the Kempe-chain interchange to S will not increase the number of colour

classes, and may even reduce the number. Therefore, the Kempe-chain interchange

is an ideal neighbourhood move operator for the feasible only solution space.

16



S1:

S2:

v1 v2 v3 v4 v5

v6 v7 v8 v9 v10

Figure 2.2: A feasible 2-colouring with the vertices in colour class S1 displayed in
the row above those in colour class S2.

To illustrate, the bipartite graph induced by colour classes S1 and S2 in Figure 2.2

contains the following unique Kempe-chains: {v1, v3, v6, v7}, {v2, v4, v8, v10}, {v5} and
{v9}. Applying the Kempe-chain interchange to Kempe(v1, 1, 2) = {v1, v3, v6, v7}
transfers vertices v1 and v3 from S1 to S2 and vertices v6 and v7 from S2 to S1.

Note that although there are (k − 1) × n = 10 distinct Kempe-chain labels for

this example, these labels only map onto four unique sets of vertices. For example,

Kempe(v1, 1, 2) also maps to Kempe(v3, 1, 2), Kempe(v6, 2, 1) or Kempe(v7, 2, 1).

Kempe-chains can be identi�ed via breadth �rst search or depth �rst search,

using v ∈ V as a starting point and the graph induced by the two colour classes

Sc(v) and Sj. We have arbitrarily chosen to use breadth �rst search throughout this

thesis. The Kempe-chains for a given graph G = (V,E) and a feasible k-colouring S
for G can be stored in a |V | × k matrix where the (v, j)th entry is the Kempe-chain

Kempe(v, c(v), j). As di�erent Kempe-chain labels can relate to the same sets of

vertices, computational saving can be achieved when identifying the entries of this

matrix. For example, consider Kempe(v1, 1, 2) = {v1, v3, v6, v7} in Figure 2.2. Once

this has been identi�ed as the (v1, 2)th entry of our matrix, it can then also be

assigned to the (v3, 2)th, (v6, 1)th and (v7, 1)th entries. Of course, the (v, c(v))th

entry of this matrix will be the empty set ∅ for all v ∈ V .

Pair-swap Operator

An additional move operator for the feasible only solution space is the pair-swap

operator. This transfers a single vertex v ∈ V to a colour class Sj such that j 6= c(v)

and no clashes are incurred whilst simultaneously moving a vertex u ∈ Sj to Sc(v)
such that, again, no clashes are incurred. There is only one available pair-swap for

the graph in Figure 2.2, which transfers vertex v5 from S1 to S2 and v9 from S2 to

S1.

It should be noted that a pair-swap is the simultaneous application of two Kempe-

chain interchanges applied to Kempe(v, c(v), c(u)) and Kempe(u, c(u), c(v)) such

that |Kempe(v, c(v), c(u))| = |Kempe(u, c(u), c(v))| = 1. By observing this rela-

tionship to Kempe-chain interchanges, it follows that the pair-swap does not alter

the feasibility of an already feasible colouring either. This also means that pair-

swaps can be easily identi�ed from the |V | × k matrix of Kempe-chains for a given

graph G = (V,E) and a feasible k-colouring S for G. If the (v, j)th entry of the
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matrix satis�es |Kempe(v, c(v), j)| = 1, then we can simply search the (u, c(v))th

entries of the matrix, where u ∈ Sj, for corresponding Kempe-chains that satisfy

|Kempe(u, j, c(v))| = 1.

2.2.2 Complete, Improper Solution Space

We now consider our second solution space, that of complete, improper colourings.

This solution space is probably the most popular solution space for GCP heuristics

having been utilised by Avanthay et al. [2003]; Costa et al. [1995]; Chams et al.

[1987]; Dorne and Hao [1998]; Fleurent and Ferland [1996]; Galinier and Hao [1999];

Galinier et al. [2004]; Glass and Prügel-Bennett [2003]; Hertz and de Werra [1987];

and Johnson et al. [1991]. This space consists of every complete colouring (see

De�nition 1.1) regardless of whether clashes are incurred. Therefore, given a k-

colouring S, an appropriate objective function for this solution space might simply

be

f(S) =
k∑
i=1

|E ∩ {Si × Si}| (2.4)

which is equivalent to the number of clashes in the colouring. Indeed, this particular

objective function is used in most of the works cited above. If f(S) = 0, then S is

a feasible k-colouring.

Neighbourhood move operators for this solution space must ensure that all ver-

tices remain coloured (i. e. a resultant colouring S ′ = {S ′1, . . . , S ′k} must satisfy

V =
⋃k
i=0 S

′
i).

1-move Operator

A popular neighbourhood move operator for transforming a colouring S into a

colouring S ′ is the 1-move operator. The 1-move transfers a vertex v from its

current colour class Sc(v) to a di�erent colour class Sj such that j 6= c(v). Examples

of work that utilise this move operator can be found in [Chams et al., 1987; Hertz

and de Werra, 1987; Johnson et al., 1991].

An example of the 1-move operator is illustrated in Figure 2.3. On the LHS

we have a 5-colouring S for G with two clashes between vertex pairs {v7, v9} and
{v8, v10}. By moving v8 from S3 to S5 such that S ′3 = S3\{v8} and S ′5 = S5 ∪ {v8}
we obtain the 5-colouring S ′ on the RHS. In this case, the 1-move has removed one

clash from the colouring without introducing any new ones, therefore bringing us

�closer� to a feasible 5-colouring for G. Note that, in this example, Si = S ′i for

i ∈ {1, 2, 4}.
Many previous works, including [Galinier and Hao, 1999], consider the critical

1-move operator, which modi�es the 1-move operator slightly such that the vertex

v to be transferred can only be selected if it is currently clashing with an adjacent

vertex (i. e. v ∈ Si can be transferred if and only if ∃u ∈ Si such that u 6= v
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v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

S = {S1 = {v1, v5}, S2 = {v2, v4},
S3 = {v3, v8, v10}, S4 = {v6}, S5 = {v7, v9}}

v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

S ′ = {S ′1 = {v1, v5}, S ′2 = {v2, v4},
S ′3 = {v3, v10}, S ′4 = {v6}, S ′5 = {v7, v8, v9}}

Figure 2.3: 1-move example in the complete, improper solution space for the graph
shown in Figure 1.1.

and {u, v} ∈ E). In the example illustrated in Figure 2.3, only 1-moves involving

v7, v8, v9 or v10 could be considered for the graph on the LHS, and only the 1-moves

involving v7 or v9 could be considered for the graph on the RHS.

2.2.3 Partial, Proper Solution Space

The partial, proper solution space consists of every proper colouring of a graph (see

De�nition 1.2) although not every vertex is necessarily assigned to a colour class.

When considering a colouring S = {S1, . . . , Sk} in this solution space, we de�ne the

set of �uncoloured� vertices as U = V \
⋃k
i=0 Si. In this solution space, one suitable

objective function, utilised by Blöchliger and Zu�erey [2008], is

f(S) = |U | = |V | −
k∑
i=1

|Si| (2.5)

which is simply the number of �uncoloured� vertices. An alternative objective func-

tion, considered by Morgenstern [1996], is

f(S) =
∑
v∈U

deg(v) (2.6)

where deg(v) is the degree of vertex v. If an �uncoloured� vertex is adjacent to fewer

vertices then, in practice, it will often be easier to transfer it into a colour class

without introducing clashes. As with Equation (2.4), f(S) = 0 indicates that S is

a feasible k-colouring.

Neighbourhood move operators for this solution space must ensure that the re-

sultant colouring also contains no clashes (i. e. the colouring function c′ : V →
{1, . . . , k} of the resultant k-colouring S ′ must satisfy c′(u) 6= c′(v) if {u, v} ∈ E).
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v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

S = {S1 = {v1, v5}, S2 = {v2, v4, v9},
S3 = {v3}, S4 = {v6}, S5 = {v10}}

U = {v7, v8}

v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

S ′ = {S ′1 = {v7}, S ′2 = {v2, v4, v9},
S ′3 = {v3}, S ′4 = {v6}, S ′5 = {v10}}

U ′ = {v1, v5, v8}

Figure 2.4: i-swap example in the partial, proper solution space for the graph shown
in Figure 1.1.

i-swap Operator

A popular neighbourhood move operator for the partial, proper solution space is the

i-swap operator. To transform a colouring S into a colouring S ′, the i-swap transfers

an �uncoloured� vertex v ∈ U to a colour class Si ∈ S. In order to ensure that S ′

remains proper, all vertices in Si that are adjacent to v are transferred to the set of

�uncoloured� vertices U (i. e. if u ∈ Si and {u, v} ∈ E then U ← U∪{u}). Examples

of work that utilise this move operator can be found in [Blöchliger and Zu�erey, 2008;

Morgenstern, 1996]. Note that, by only considering the �uncoloured� vertices, the

i-swap operator concentrates on the �problematic� parts of a colouring, in a similar

fashion to the critical 1-move operator for the complete, improper solution space.

An example of the i-swap operator is illustrated in Figure 2.4. On the LHS we

have a 5-colouring S forG with two �uncoloured� vertices U = {v7, v8}. By moving v7

from U to S1, two clashes are incurred between the vertex pairs {v1, v7} and {v5, v7}.
By de�ning S ′1 = (S1 ∪ {v7})\{v1, v5} and U ′ = (U\{v7}) ∪ {v1, v5} we ensure that
the resultant 5-colouring S ′ on the RHS remains proper. This particular i-swap has

increased the number of �uncoloured� vertices, therefore moving us �further� from a

feasible colouring for G. Note that, in this example, Si = S ′i for i = 2, . . . , 5.

2.3 General Static GCP Approach

In this section we review a common approach for tackling the static GCP via heuris-

tic methods. The approach in question aims to solve a series of k-GCPs for a graph

G such that k is decreasing. The goal of a k-GCP is to determine whether G can be

feasibly coloured using k colours. This particular approach was used by Lewis et al.

[2012] in their comprehensive comparison of six high-performing GCP algorithms.
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In practice, an initial value for k might be determined using a constructive opera-

tor which is guaranteed to produce a feasible colouring for G, such as the algorithms

described in Section 2.1. Once an initial, feasible value of k has been identi�ed,

an attempt can be made to �nd a feasible colouring with k − 1 colour classes. If

this is successful then an attempt to �nd a feasible colouring with one fewer colour

class again can be made, and so on, until some stopping criteria (e. g. a time or

computational limit) is reached. This approach is outlined in Algorithm 2.1.

Algorithm 2.1 Generic Static GCP Algorithm
Input: a graph G
Output: a feasible colouring S for G
1: S produced by a constructive operator
2: Sbest ← S
3: k ← |S| − 1
4: while not stopping criterion do
5: attempt to make S a feasible k-colouring for Gt+1

6: if S is a feasible k-colouring for Gt+1 then
7: Sbest ← S
8: k ← k − 1
9: S ← Sbest
10: return S

As mentioned in Section 2.2, algorithms designed to work in the complete, im-

proper or partial, proper solution spaces generally operate with a �xed number of

colour classes k. Because of this, these algorithms are only �good� at tackling the

GCP for a graph G if the value of k is also a �good� estimate of χ(G). This approach

allows such algorithms to be utilised for tackling k-GCPs whilst systematically re-

ducing k in order to determine �better and better� estimates for χ(G). In the best

case scenario, χ(G) might even be identi�ed (i. e. if the k-GCP for G can be solved

but the (k − 1)-GCP cannot4, then χ(G) = k).

2.4 Local Search Heuristics

In the following sections we will discuss several di�erent heuristic approaches for

tackling the static GCP that do not follow the basic constructive approach of the

methods discussed in Section 2.1. Firstly, we will discuss local search, a common

approach for solving combinatorial optimisation problems, such as the GCP.

Local search heuristics apply small perturbations to a single solution within a

neighbourhood of solutions in an attempt to improve it in some way. With regards

to the GCP, this means working within one of the solution spaces described in

Section 2.2 and applying an appropriate neighbourhood move operator to a single

colouring in an attempt to identify a feasible colouring.

4Remember, solving the k-GCP for a given graph G is NP-hard (see Section 1.3). Therefore,
proving that G is not k-colourable is also NP-hard.
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Simulated annealing, which mimics the process of annealing in metallurgy, is

a popular local search method �rst proposed for combinatorial optimisation prob-

lems by Kirkpatrick et al. [1983]. Simulated annealing is an extension of random

descent, which randomly generates a neighbourhood move and accepts the move

if it improves the objective function. The di�erence between random descent and

simulated annealing is that simulated annealing also probabilistically accepts moves

that do not improve the objective function. Johnson et al. [1991] propose three

di�erent simulated annealing algorithms for the GCP, one of which operates in the

feasible only solution space and two that operate in the complete, improper solution

space. Of these three algorithms, none was shown to clearly dominate the others.

Two further simulated annealing algorithms for the GCP were proposed by Chams

et al. [1987], and Morgenstern and Shapiro [1990].

Tabu search is another popular local search method �rst proposed by Glover

[1989, 1990]. Tabu search chooses the �best� move at each iteration from all available

non-tabu moves regardless of its a�ect on the objective function. A move that is

currently considered �tabu� cannot be chosen in the current iteration, unless an

aspiration criterion is met. The tabu list, which stores all currently �tabu� moves,

is usually updated during execution so as to decrease the chances of the algorithm

getting �stuck� at a local optimum. For the GCP, there are two popular tabu search

algorithms: TabuCol [Hertz and de Werra, 1987] and PartialCol [Blöchliger and

Zu�erey, 2008] (see Sections 2.4.1 and 2.4.2 respectively for detailed descriptions).

Both of these algorithms have proved to be very competitive against other local

search methods, and even against more sophisticated methods in some cases5.

Pseudocode and general details regarding both simulated annealing and tabu

search can be found in Appendix A.2.

Lewis [2009] proposes a hill-climbing algorithm for the GCP which operates in

the feasible only solution space. This algorithm uses a combination of the Greedy

constructive algorithm, a form of independent set extraction (see Section 2.5), and

local search that utilises Kempe-chain interchanges and pair-swaps. This algorithm's

objective function is simply |S| (i. e. the number of colour classes in the feasible

colouring S). The number of colour classes cannot increase during execution, hence
the objective function does not increase during execution either, thus providing its

�hill-climbing� characteristics.

All of the local search methods described so far operate in a single solution space

and often only employ a single neighbourhood move operator (with the exception

of the hill-climbing algorithm which uses two). On the other hand, variable neigh-

bour search (VNS), �rst introduced by Mladenovi¢ and Hansen [1997], is a general

purpose metaheuristic that utilises several neighbourhoods in order to explore the

solution space more freely. Avanthay et al. [2003] have proposed a VNS approach for

5In general, algorithms for the static GCP tend to be compared against one another using a set
of benchmark instances which can be found at http://mat.gsia.cmu.edu/COLOR/instances.html.
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tackling the GCP which combines TabuCol (see Section 2.4.1) with twelve di�er-

ent neighbourhood move operators in the complete, improper solution space. This

approach has been shown to be more e�cient than using TabuCol alone, at least

within the context of the experimental conditions of their paper.

A variable space search (VSS) approach for the GCP [Hertz et al., 2008] alter-

nates between three di�erent tabu search procedures operating in three di�erent

solution spaces, including TabuCol and PartialCol. The main idea behind this

approach is the possibility that the local optimum in one solution space may not be

a local optimum in another. Therefore, if a search becomes �stuck� in one solution

space, jumping to another may allow more freedom and lead to further improve-

ments. As with the VNS approach, this VSS approach has been shown to achieve

�better� results than either TabuCol or PartialCol on their own, at least within

the context of the paper's experimental conditions.

Other local search methods for the GCP exist, many of which are discussed in

a survey by Galinier and Hertz [2006]. This survey covers some of the solution

spaces, objective functions and neighbourhood move operators not discussed here.

This survey also provides references for more sophisticated approaches (e. g. hybrid

evolutionary algorithms) that incorporate local search methods, and also highlights

why TabuCol, a relatively old algorithm for solving the GCP, is still popular today.

2.4.1 TabuCol

As mentioned above, one of the most popular local search heuristics for the GCP is

TabuCol, a tabu search algorithm that operates in the complete, improper solution

space. TabuCol was �rst introduced by Hertz and de Werra [1987] and then later

improved by Galinier and Hao [1999]. One such improvement is that all critical

1-moves are considered in [Galinier and Hao, 1999], as opposed to just a random

sample of critical 1-moves in [Hertz and de Werra, 1987].

As TabuCol is designed to operate in the complete, improper solution space,

the objective function f is given by Equation (2.4) (i. e. the number of clashes).

During each iteration, the �best� non-tabu critical 1-move is applied to the current

k-colouring S to obtain the k-colouring S ′, regardless of whether f(S ′) < f(S) or

not, and ties are broken randomly. The inverse 1-move (i. e. the 1-move that would

transform S ′ back into S) is then made �tabu� for a number of subsequent iterations.

In fact, the tabu tenure varies dynamically, based on the objective function6. For

the example illustrated in Figure 2.3, the inverse 1-move would be the one that

transfers v8 back into colour class S3. The tabu list is stored as an |V | × k matrix

where the (v, j)th entry contains the �rst iteration that the 1-move that transfers

vertex v to colour class Sj is no longer tabu.

6The speci�c tabu tenure used by TabuCol and PartialCol is 0.6 ·f(S ′)+r iterations, where
f is Equation (2.4) or Equation (2.5), respectively, and r is a random integer from 0 to 9.
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It is worth noting that a �tabu� move can be selected if it satis�es an aspiration

criterion. The aspiration criterion for TabuCol is to accept a �tabu� move if the

resultant colouring S ′ satis�es f(S ′) < f(Sbest), where Sbest is the �best� colouring

observed up until that point. An even simpler aspiration criterion might be to accept

a �tabu� move if the resultant colouring S ′ satis�es f(S ′) = 0 (i. e. S ′ is a feasible

colouring).

TabuCol has been incorporated within many hybrid evolutionary algorithms,

including those proposed in [Dorne and Hao, 1998; Dowsland and Thompson, 2008;

Galinier and Hao, 1999; Galinier et al., 2004; Lü and Hao, 2010]. Blöchliger and

Zu�erey [2008] have also presented results which suggest TabuCol can be very

successful even when implemented on its own.

2.4.2 PartialCol

PartialCol proposed by Blöchliger and Zu�erey [2008], is a tabu search algorithm

for the static GCP that operates in the partial, proper solution space and acts in a

similar fashion to TabuCol. As it is designed for the partial, proper solution space,

PartialCol uses Equation (2.5) as its objective function f .

At each iteration, the �best� non-tabu i-swap is implemented to transform the

current k-colouring S into the k-colouring S ′, with ties broken randomly. Again, as

withTabuCol, this �best� move is implemented regardless of whether f(S ′) < f(S).

The inverse i-swaps are then made �tabu� for the same tabu number of iterations as

used in TabuCol (see Footnote 6). For the example illustrated in Figure 2.4, the

inverse i-swaps would be those that transfer vertices v1 or v5 back into colour class

S1.

Blöchliger and Zu�erey [2008] also propose Foo-PartialCol which dynami-

cally changes the tabu tenure of the inverse i-swaps based on the �uctuation of the

objective function. If the objective function is seen to �uctuate less and less be-

tween iterations then the tabu tenure is increased in an attempt to leave the region

of the solution space that the algorithm has become �stuck� in. Similarly, if the

objective function is seen to �uctuate more and more between iterations then the

tabu tenure is decreased in order to reduce these �uctuations and therefore refocus

the optimisation process. This method requires more parameter settings compared

to the standard PartialCol.

To give a �avour of the relative performance of TabuCol and PartialCol,

they have been reproduced and compared on a number of random test instances,

the results of which can be seen in Table 2.2. The algorithms follow the process

outlined in Algorithm 2.1 with initial colourings produced by DSatur and a time

limit of 5 minutes (300 seconds) being applied. Once a feasible k-colouring S =

{S1, . . . , Sk} is identi�ed, it is transformed into a colouring with k−1 colour classes.

When operating in the complete, improper space (i. e. for TabuCol) a feasible
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Table 2.2: Number of colour classes in the �best� colourings achieved by TabuCol
and PartialCol.

TabuCol PartialCol

n d min mean max min mean max
250 0.1 8 8.00 8 8 8.00 8

0.5 28 28.05? 29 28 28.55 29
0.9 72 72.95 74 72 73.20 75

500 0.1 13 13.00 13 12 12.70 13
0.5 49 49.60? 50 50 50.00 50
0.9 125 126.65? 127 126 127.80 129

1000 0.1 21 21.05 22 21 21.00 21
0.5 90 91.10 92 90 90.35? 91
0.9 227 228.00? 230 227 229.35 231

? indicates colourings with signi�cantly fewer colour classes than the those achieved
by the other tabu search algorithm for the same values of n and d.

k-colouring is transformed as follows: a random colour class Si ∈ S is removed such

that S ← S\Si, then each of the vertices v ∈ Si are randomly assigned to one of the

remaining k−1 colour classes. When operating in the partial, proper solution space

(i. e. for PartialCol) a feasible k-colouring is transformed in a similar manner

except now the removed colour class Si ∈ S is considered as the set of �uncoloured�

vertices such that U ← Si. The test instances used here are the same as those used

in Section 2.1 for comparing the constructive algorithms.

As can be seen in Table 2.2, there does not appear to be any overall dominance

of one algorithm over the other as they have both been shown to outperform one an-

other, with regards to the number of colour classes in the �best� colourings achieved,

in some cases. However, it should be noted that TabuCol does outperform Par-

tialCol in more cases than the reverse.

The literature would suggest that there is very little di�erence in the results

obtained by TabuCol and PartialCol. We do not consider our results to neces-

sarily contradict the literature because our test instances and conditions (e. g. time

limit) are di�erent from those generally used in the literature.

2.5 Independent Set Extraction

In this section we discuss a heuristic approach which is sometimes used to reduce

the problem size of GCPs. By reducing the size of a given GCP, it is assumed that

the resultant (�smaller�) GCP will be easier to tackle.

Independent set extraction can be considered as a pre-processing method of

reducing a graph G to a smaller residual graph G̃, which can then be passed to

a di�erent colouring procedure (e. g. a local search method). In Figure 2.5, the

maximal independent set I = {v2, v3, v8, v9} has been extracted from G to leave the

residual graph G̃ on the RHS. This residual graph G̃ can now be passed to another
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Figure 2.5: Independent set extraction example with maximal I = {v2, v3, v8, v9}

colouring procedure (e. g. a constructive algorithm or local search method). If a

feasible k-colouring S̃ for G̃ can be found, then combining S̃ with I will produce a

feasible colouring S for G with k + 1 colour classes. In general, if x independent

sets are extracted from a graph G and a feasible k-colouring can be identi�ed for

the residual graph G̃ then a feasible colouring for G exists with k+x colour classes.

An early tabu search algorithm for identifying large independent sets was pro-

posed by Hertz and de Werra [1987]. This works in a similar fashion to Algorithm 2.1

for the GCP, i. e. �rst a legal independent set with l vertices is identi�ed, then the

algorithm attempts to identify an independent set with l + 1 vertices, and so on

until some stopping criteria is met. Due to the way RLF [Leighton, 1979] con-

structs colourings (i. e. one colour class at a time), it can also be used to extract

independent sets.

The method of Hertz and de Werra [1987] has been reproduced to extract a user-

de�ned proportion 0 ≤ r ≤ 1 of vertices, such that if I1, . . . , Ix are the extracted

independent sets then
∑x

i=1 |Ii| ≥ r|V | (for more details, see Appendix A.3). The

stopping criterion, used here, is an iteration limit of 1000 iterations per independent

set. Once the extraction phase is complete, the residual graph is passed to Algo-

rithm 2.1 which produces an initial colouring via DSatur and utilises TabuCol

to tackle the subsequent k-GCPs. The overall time limit is set to 5 minutes (300

seconds), with the independent set extraction phase taking place within this limit.

All experimental results presented in this section are done so with the aim of

demonstrating that under the same time constraints used for comparing TabuCol

and PartialCol in Section 2.4, the inclusion of independent set extraction is rarely

bene�cial with regards to the quality of the colourings achieved. We use the same

test instances as in the previous comparisons of this chapter.

The results of extracting di�erent proportions r of vertices can be seen in Ta-

ble 2.3. The columns of the table show the mean number of colour classes in the

�best� colourings obtained. Here; that is equal to the number of independent sets

extracted plus the number of colour classes in the �best� colouring obtained for the
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Table 2.3: Mean number of colour classes in the �best� colouring achieved with a
proportion r of the vertices extracted via independent set extraction. The �nal
column is the Spearman rank correlation coe�cient ρ between r and the number
of colour classes in the �best� colouring achieved, which are all signi�cant at the
α = 0.01 level.

r
n d 0 0.1 0.2 0.3 0.4 0.5 ρ

250 0.1 8.00 8.00 8.15 8.15 8.95 9.00 0.796
0.5 28.05 28.70 29.10 29.75 30.20 30.90 0.896
0.9 72.95 74.75 76.40 78.25 80.05 82.05 0.936

500 0.1 13.00 13.00 13.00 13.00 13.00 13.35 0.388
0.5 49.60 50.00 50.50 50.95 51.70 52.50 0.887
0.9 126.65 129.50 131.95 135.05 138.35 141.65 0.976

1000 0.1 21.05 21.25 21.30 21.45 21.45 21.80 0.355
0.5 91.10 91.30 91.55 91.95 92.25 92.85 0.695
0.9 228.00 232.90 237.60 242.20 246.60 251.65 0.981

residual graph.

It can be seen in Table 2.3 that the proportion of vertices extracted has a signif-

icant positive relationship with the number of colour classes in the �best� colourings

achieved (i. e. as r increases so too does the number of colour classes). The poor qual-

ity of the colourings obtained after applying independent set extraction is probably

due to the lack of freedom in the solution space because the extracted independent

sets are equivalent to colour classes that can no longer be altered.

In later work [Hao and Wu, 2012; Wu and Hao, 2013], it has been suggested that

this observation could be tackled with the addition of an expansion phase. During

the expansion phase, the previously extracted independent sets are reintroduced to

the residual graph for further perturbation.

We have produced two di�erent expansion schemes for comparison: sequential

and simultaneous. For both of these expansion schemes, half of the time limit (so

150 seconds in our case) is dedicated to �rst extracting the independent sets and

then applying TabuCol to the initial residual graph. The sequential expansion

scheme reintroduces the extracted independent sets one-by-one in the reverse order

to which they were extracted. After each reintroduction, TabuCol is reapplied

for the remainder of the time limit divided by the number of initially extracted

independent sets x, so in our case that would be 150
x

seconds. The simultaneous

expansion scheme reintroduces all of the extracted independent sets at once and

TabuCol is reapplied for the remainder of the time limit.

As can be seen in Table 2.4, the strategy of not using any expansion scheme

is generally outperformed by using the sequential expansion scheme, with regards

to the number of colour classes in the �best� colouring achieved, which in turn is

generally outperformed by using the simultaneous expansion scheme. These �ndings,

along with those presented in Table 2.3, are clearly illustrated in Figure 2.6 for test
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Table 2.4: Mean number of colour classes in the �best� colouring achieved using
di�erent expansion schemes with a proportion of r = 0.5 of the vertices extracted
via independent set extraction.

Expansion Scheme
n d No Expansion Sequential Simultaneous

250 0.1 9.00 8.00 8.00
0.5 30.90 28.50 28.05?

0.9 82.05 73.30 72.95
500 0.1 13.35 13.00 13.00

0.5 52.50 50.65 49.80?

0.9 141.65 128.75 126.90?

1000 0.1 21.80 21.05 21.00
0.5 92.85 92.05 91.45?

0.9 251.65 238.95 229.15?

? indicates colourings with signi�cantly fewer colour classes than those achieved
when implementing all others expansion schemes for the same values of n and d.

instances with n = 500 and d = 0.5. Observe that the proportion of extracted

vertices r appears to have little to no e�ect on the quality of the colourings achieved

when using the simultaneous expansion scheme.

Under these test conditions, including independent set extraction (both with or

without an expansion phase) leads to results that cannot outperform and are regu-

larly bested by simply applying TabuCol to the original graph. However, a slightly

di�erent extraction phase described in [Wu and Hao, 2012], which is combined with

the memetic algorithm proposed by Lü and Hao [2010] instead of TabuCol, has

been shown to outperform many methods for tackling the GCP on very large graphs

(i. e. n = |V | ≥ 1000).

2.6 Evolutionary Methods

Overall, perhaps the best results reported in the literature for the GCP have been

obtained using evolutionary (or population-based) methods. These methods use

the characteristics of a population of colourings, rather than a single colouring, to

inform the generation of new colourings.

Evolutionary algorithms recombine two or more �parent� solutions to produce

one or more �o�spring� solutions. Heuristics are generally utilised such that �better

parent� solutions are selected for recombination with higher probabilities (e. g. using

roulette wheel selection). Random mutations to the �o�spring� are then allowed

in an attempt to improve diversity within the population. Hybrid evolutionary

algorithms (HEAs) work in a similar fashion but apply an local search method in

place of random mutation. As mentioned in Section 2.4.1, such algorithms designed

for tackling the GCP often replace random mutation with TabuCol [Hertz and

de Werra, 1987].
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Figure 2.6: Mean number of colour classes in the �best� colouring achieved with
di�erent extraction proportions and expansion schemes on test instances with n =
500 and d = 0.5.

For evolutionary and hybrid evolutionary algorithms, an appropriate crossover

operator must be de�ned. An e�ective crossover for the GCP is the greedy partition

crossover (GPX) operator introduced by Galinier and Hao [1999], which produces

an �o�spring� colouring by inheriting the largest remaining colour class from two

�parent� colourings in an alternating fashion.

An example of the GPX operator recombining �parent� colourings Sp1 and Sp2
to produce an �o�spring� colouring So can be seen in Table 2.5. Step 0 shows the

original �parent� colourings Sp1 and Sp2 . During step 1, So �inherits� the largest

colour class S2 from Sp1 and the vertices in this colour class are then removed from

both Sp1 and Sp2 . So then �inherits� colour class S3 from Sp2 and S1 from Sp1 during
steps 2 and 3 respectively. Notice that v9 has not been inherited by So so that So
is a partial colouring and v9 is �uncoloured�. In practice, after the GPX operator

has been executed, any �uncoloured� vertices need to be assigned to a colour class

of the �o�spring� colouring (e. g. at random).

The adaptive multi-parent crossover (AMPaX) operator proposed by Lü and

Hao [2010] works in a similar fashion to the GPX operator but recombines be-

tween 2 and maxP (a user-de�ned upper bound) �parent� colourings to produce an

�o�spring� colouring. Unlike GPX, AMPaX does not cycle through all �parent�

colouring in turn; instead, it selects the colour class with the most vertices across all

�parent� colourings at each step, and incorporates a simple heuristic (similar to tabu

search) to ensure that the �parent� colouring that was just selected cannot be se-

lected again for a number of subsequent steps. It should be noted, that if maxP = 2
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Table 2.5: GPX operator example with �parent� colourings Sp1 and Sp2 recombined
to produce an �o�spring� colouring So.

Colour Class
step colouring S1 S2 S3

0 Sp1 : {v1, v2, v3} {v4, v5, v6, v7} {v8, v9, v10}
Sp2 : {v3, v4, v5, v7} {v1, v6, v9} {v2, v8, v10}
So: {} {} {}

1 Sp1 : {v1, v2, v3} {} {v8, v9, v10}
Sp2 : {v3} {v1, v9} {v2, v8, v10}
So: {v4, v5, v6, v7} {} {}

2 Sp1 : {v1, v3} {} {v9}
Sp2 : {v3} {v1, v9} {}
So: {v4, v5, v6, v7} {v2, v8, v10} {}

3 Sp1 : {} {} {v9}
Sp2 : {} {v9} {}
So: {v4, v5, v6, v7} {v2, v8, v10} {v1, v3}

Table 2.6: Initial number of colour classes k for our hybrid evolutionary algorithm.

d
n 0.1 0.5 0.9

250 8 29 74
500 13 50 129
1000 22 92 232

then AMPaX acts in the exact same manner as GPX.

In order to determine whether a HEA can outperform local search with regards

to the quality of the colourings achieved, as might be expected by looking at the

results reported in the literature, we have reproduced a HEA that is similar to the

ones presented in [Galinier and Hao, 1999; Lü and Hao, 2010]. This algorithm uses

the AMPaX operator and, like these publications, applies TabuCol in place of

random mutation. Unlike the process outlined in Algorithm 2.1, this method starts

by attempting to �nd a colouring with a user-de�ned number of colour classes k.

If a feasible k-colouring can be identi�ed then k is reduced in the same manner as

before. The initial values of k used in our trials are given in Table 2.6, which were

in�uenced by the maximum colourings documented in Table 2.2. It should be noted

that the number of colour classes in the �best� colourings achieved by our HEA will

be greatly in�uenced by the �quality� of these initial values of k.

The initial population of colourings is generated using a modi�ed version of

DSatur which can only create colourings with at most k colour classes. Vertices

that can not be feasibly assigned to one of the k colour classes are randomly assigned

to a colour classes at the end, therefore creating a complete, improper colouring.

The AMPaX operator randomly chooses between 2 and maxP �parent� colourings

from the population to create an �o�spring� colouring. The population of colourings

is updated by replacing the �parent� colouring with the most clashes, with the �o�-
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Table 2.7: Mean number of colour classes in the �best� colourings achieved by our
hybrid evolutionary algorithm with maxP = 2 and 5000 TabuCol iterations. The
�nal column is the Spearman rank correlation coe�cient ρ between population size
and the number of colour classes in the �best� colourings achieved, if signi�cant at
the α = 0.01 level.

Population Size
n d 5 10 20 ρ

250 0.1 8.00 8.00 8.00 -
0.5 28.50 28.20 28.15 -
0.9 73.05 73.15 73.10 -

500 0.1 13.00 12.80 12.60? -0.408
0.5 49.40 49.00? 48.35? -0.734
0.9 127.75† 127.35† 127.00 -0.415

1000 0.1 21.00 20.90 20.25? -0.679
0.5 88.35? 86.70? 88.00? -
0.9 230.10† 228.25 229.60† -

? indicates colourings with signi�cantly fewer colour classes than those achieved
when using TabuCol alone for the same values of n and d.
† indicates colourings with signi�cantly more colour classes than those achieved
when using TabuCol alone for the same values of n and d.

spring� colouring. All new colourings (i. e. the initial population colourings and each

�o�spring� colouring) are passed to TabuCol for a �xed number of iterations. This

HEA has an overall time limit of 5 minutes (300 seconds) in order to be comparable

with the other algorithms discussed in this chapter.

Using the same test instances used throughout the chapter so far, comparisons of

the number of colour classes in the �best� colourings achieved when this HEA is im-

plemented with di�erent population sizes, values of maxP for AMPaX, and number

of TabuCol iterations can be seen in Tables 2.7 to 2.9 respectively. More speci�c

parameter setting for each of these comparisons can be found in the appropriate

table descriptions.

It can be seen in Table 2.7 that for some test instances, especially those with

n = 500, there is a signi�cant negative relationship between the population size and

the number of colour classes in the �best� colourings achieved (i. e. as the population

size increases, the number of colour classes decreases). In general, a larger population

could also imply higher diversity within the population, which in turn would allow

this method to explore more of the solution space for feasible colourings.

The results presented in Table 2.8 indicate that increasingmaxP does not appear

to have any positive impact on the quality of the �best� colourings achieved in most

cases. On the contrary, in some cases there appears to be a detrimental e�ect on

the number of colour classes in the �best� colourings achieved (see rows with ρ > 0).

The results in Table 2.9 show that in some cases, increasing the number of

TabuCol iterations, decreases the number of colour classes in the �best� colour-

ings achieved. This is likely due to the quality of the colourings that TabuCol is
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Table 2.8: Mean number of colour classes in the �best� colourings achieved by our
hybrid evolutionary algorithm with a population size of 20 and 5000 TabuCol
iterations. The �nal column is the Spearman rank correlation coe�cient ρ between
population size and the number of colour classes in the �best� colourings achieved,
if signi�cant at the α = 0.01 level.

maxP for AMPaX
n d 2 5 10 20 ρ

250 0.1 8.00 8.00 8.00 8.00 -
0.5 28.15 28.20 28.30 28.40 -
0.9 73.10 73.05 73.15 73.15 -

500 0.1 12.60? 12.80? 12.95 12.95 0.353
0.5 48.35? 48.90? 49.05? 49.15? 0.615
0.9 127.00 127.25† 127.35† 127.55† -

1000 0.1 20.25? 20.85 21.00 21.00 0.643
0.5 88.00? 87.00? 87.40? 87.90? -
0.9 229.60† 228.95† 228.60† 228.85† -0.430

? indicates colourings with signi�cantly fewer colour classes than those achieved
when using TabuCol alone for the same values of n and d.
† indicates colourings with signi�cantly more colour classes than those achieved
when using TabuCol alone for the same values of n and d.

known to achieve as a standalone method for solving the GCP (see Section 2.4.1

and [Blöchliger and Zu�erey, 2008]). However, for test instances with n = 1000 and

d ∈ {0.5, 0.9} a positive relationship was observed (i. e. ρ > 0). This seems con-

tradictory to what might be expected, but the reasons for the decrease in colouring

quality may be due to other parts of the HEA (e. g. crossover) being implemented

less often.

As mentioned at the start of this section, evolutionary methods have been shown

to produce some of the best results for the GCP. Under the parameters explored here,

the HEA described outperforms TabuCol most notably for test instances with n ∈
{500, 1000} and d = 0.5. Based on the literature, the HEA is expected to outperform

the relatively simple local search method on all random graphs. However, as with the

comparison between TabuCol and PartialCol, we do not consider these results

to be contradictory to the literature because our time limit is much shorter than

those usually used in the literature (i. e. our time limit is a few minutes as opposed

to days). It is also worth highlighting that our HEA is regularly outperformed,

with regards to the number of colour classes in the �best� colourings achieved, by

TabuCol on test instances with n ∈ {500, 1000} and d = 0.9.

In the literature, experimentation with di�erent local search methods in place of

TabuCol within the HEA framework have also been explored (e. g. simple vertex

descent [Glass and Prügel-Bennett, 2003]). This particular research concluded that it

is not the implementation of TabuCol speci�cally that leads to such �good� results

in [Galinier and Hao, 1999], but rather the combination of a crossover operator with

a local search method.
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Table 2.9: Mean number of colour classes in the �best� colourings achieved by our
hybrid evolutionary algorithm with a population size of 20 and maxP = 2. The
�nal column is the Spearman rank correlation coe�cient ρ between population size
and the number of colour classes in the �best� colourings achieved, if signi�cant at
the α = 0.01 level.

TabuCol Iterations
n d 1000 2000 5000 ρ

250 0.1 8.00 8.00 8.00 -
0.5 28.45† 28.40 28.15 -
0.9 73.30 73.15 73.10 -

500 0.1 13.00 12.85 12.60? -0.422
0.5 49.05? 48.85? 48.35? -0.610
0.9 127.85† 127.15† 127.00 -0.456

1000 0.1 21.00 20.60? 20.25? -0.630
0.5 87.45? 87.00? 88.00? 0.473
0.9 228.55 228.65† 229.60† 0.522

? indicates colourings with signi�cantly fewer colour classes than those achieved
when using TabuCol alone for the same values of n and d.
† indicates colourings with signi�cantly more colour classes than those achieved
when using TabuCol alone for the same values of n and d.

Another example of an evolutionary method for the GCP is the adaptive memory

algorithm proposed by Galinier et al. [2004], which utilises a population of indepen-

dent sets (i. e. colour classes) instead of full colourings. An ant colony optimisation

algorithm has also been designed for tackling the GCP by Costa and Hertz [1997],

and then later improved upon by Dowsland and Thompson [2008]. Ant colony

optimisation [Dorigo et al., 2006], which mimics the cooperative behaviour of real

ants, uses the relative success of previous colourings to generate new colourings that

embody the �good� aspects of the population.

2.7 Other Heuristic Methods

Many more heuristic methods for tackling the GCP have also been proposed, in-

cluding: iterated local search [Chiarandini and Stützle, 2002], neural networks

[Jagota, 1996], greedy randomised adaptive search procedure (GRASP) for low den-

sity graphs [Laguna and Martí, 2001], quantum annealing [Titiloye and Crispin,

2011], and hyper heuristics [Qu et al., 2009]. To discuss and compare all of these

methods is beyond the scope of this chapter. However, an overview of the most recent

methods for solving the GCP can be found in [Galinier et al., 2013], and a compre-

hensive comparison of some of the most successful methods (including TabuCol,

PartialCol and hybrid evolutionary algorithms) can be found in [Lewis et al.,

2012].
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2.8 Chapter Summary

In this chapter we have reviewed several di�erent heuristic methods for tackling the

static GCP. We have also reproduced and compared several of these methods under

relatively tight time constraints, at least in comparison to the time constraints used

in the literature. Shorter time limits were considered here, because when we look at

dynamic versions of the GCP in Chapters 3 to 6, quick run-times will be of increased

importance.

The best results observed in this chapter were achieved by TabuCol, Partial-

Col and our HEA. However, of these three algorithms, none was shown to clearly

dominate the other two over all test instances. One particular drawback of the HEA,

compared to the other two algorithms, is the large number of parameter settings that

must be �tuned� in order to achieve the �best� results. As we saw in Section 2.6,

the population size, the value of maxP used within the AMPaX operator, and the

number of TabuCol iterations all e�ect the quality of the colourings achieved by

the HEA.

In subsequent chapters, we will be reducing the time limit even further (from 5

minutes to 10 seconds). It has been shown by Lewis [2015] that local search methods

are generally quicker at locating local optima, compared to more complex methods.

Therefore, we will cease to use the HEA in the following chapters, but continue to

use TabuCol and PartialCol in their own rights.
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Chapter 3

Modifying Colourings for Edge

Dynamic Random Graphs without

Future Change Information

The importance of studying dynamic graphs and their associated problems has been

highlighted by Harary and Gupta [1997]. In their paper, they describe many prac-

tical application areas, especially within computer science, and postulate that tech-

niques applied to static graphs should be extended for their dynamic counterparts.

Despite this, there has been very little research regarding methods designed explic-

itly for colouring dynamic graphs.

As discussed in Section 1.4, many real-world operational research problems can

be reformulated as static GCPs. This method of tackling real-world problems as-

sumes that the size and constraints of said problems are �xed (i. e. the vertex set V

and edge set E of the associated graph G = (V,E) do not change). However, this is

not always appropriate.

Consider the dynamic frequency assignment problem [Dupont et al., 2009], an

extension of the frequency assignment problem discussed in Section 1.4. Initially, a

set of physical locations within a communication network will be known, such that

an initial static graph G0 = (V0, E0) can be de�ned to represent the initial (static)

frequency assignment problem. As time moves forward, additional locations may

be added to the communication network and / or locations may move within the

network, therefore altering the size of the problem and its �interference� constraints.

If these changes were to occur, then the initial static graph G0 will no longer ac-

curately represent the problem. Could it be bene�cial in some way to �repair� a

solution (i. e. a colouring) for the initial problem, rather than attempting to �nd a

new solution, from scratch, for the new problem?

In this chapter we will introduce the concept of dynamic graphs and their as-

sociated colouring problems. We will then introduce our modi�cation approach for

solving dynamic GCPs and present results for the edge dynamic GCP without future
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Figure 3.1: Edge dynamic graph example.

change information.

3.1 Dynamic Graph Colouring Problems

For the purpose of this thesis, we de�ne a dynamic graph G = (G0, G1, . . . , GT ) as

a series of T + 1 static graphs where Gt = (Vt, Et) ∈ G is the static representation

of G at time-step t ∈ {0, 1, . . . , T}. At every time-step the objective of the dynamic

GCP is analogous to the static GCP (i. e. we wish to minimise the number of

colours used). In terms of methodology, this means that we are interested in �nding

a feasible kt-colouring for each time-step t, where kt is a good approximation of

χ(Gt) (see Section 1.2 for a formal de�nition of a �feasible� colouring). Objectively,

this is an attempt to minimise
∑T

t=0 kt.

The concept of dynamic graphs will be considered as two separate cases: edge

dynamic graphs, which will be the focus of this chapter, and vertex dynamic graphs,

which will be explored in Chapter 5.

Edge Dynamic Graphs

For an edge dynamic graph, changes can only occur on the edge set such that Et

may be di�erent to Et+1; therefore Vt = Vt+1 for all time-steps t ∈ {0, 1, . . . , T − 1},
and we will simply refer to the vertex set of an edge dynamic graph as V . Given

an edge dynamic graph G, consider the graph Gt = (V,Et) at time-step t. To get

to time-step t+ 1 we de�ne a set of deleted edges E−t+1 ⊆ Et and a set of new edges

E+
t+1 ⊆ (E\Et) where E is the set of all

(|V |
2

)
possible edges between vertices in V .

The edge set for time-step t+ 1 is then de�ned as Et+1 = (Et\E−t+1) ∪ E+
t+1.

An example of how an edge dynamic graph can change between time-steps is

illustrated in Figure 3.1. Here, we de�ne the set of deleted edges as E−t+1 =

{{v1, v6}, {v1, v7}, {v3, v7}, {v4, v5}, {v4, v7}, {v9, v10}} and the set of new edges as

E+
t+1 = {{v1, v9}, {v2, v4}, {v2, v8}, {v2, v10}, {v7, v8}, {v7, v10}}. As mentioned, the
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vertex set V remains �xed between time-steps.

An edge dynamic graph could be used to represent a real-world problem where

the constraints change over time. For example, consider an exam timetabling prob-

lem for a university over a number of consecutive years. A university may have

decided to only o�er the same modules each year, which can be represented by a

�xed vertex set V . However, the modules may be combined in a number of di�er-

ent ways by students each year, therefore the constraints that ensure no con�icting

exams are scheduled in the same timeslots will also change on a yearly basis. These

changing constraints could then be represented by a changing edge set Et where t

represents a speci�c academic year.

3.2 Modi�cation Approach

Our general approach for tackling a dynamic graph G = (G0, G1, . . . , GT ) follows the

process outlined in Algorithm 3.1. Note that an approach for solving static graphs is

used for G0 because there is no colouring from a previous time-step to be modi�ed.

Algorithm 3.1 Generic Dynamic GCP Algorithm

Input: a dynamic graph G = (G0, G1, . . . , GT )
Output: a set S = {S0,S1, . . . ,ST} where St is a feasible colouring for Gt ∈ G
1: S0 ← Static GCP Algorithm [G0] (i. e. variation of Alg. 2.1)
2: for t = 1 to T do
3: St ← Dynamic GCP Time-step Algorithm [Gt,St−1] (i. e. variation of Alg. 3.2)
4: return S = {S0,S1, . . . ,ST}

For time-steps t = 1, . . . , T we can use the approach outlined in Algorithm 3.2

which is a modi�ed version of the general approach for solving a static GCP (see

Algorithm 2.1). Here, we have replaced the constructive operator at the beginning

of the algorithm with a modi�cation operator which modi�es the �best� feasible

colouring for the previous time-step into an initial, though not necessarily feasible,

colouring for the current time-step.

Consider time-step t + 1. The �best� feasible colouring St for Gt is modi�ed

into an initial colouring St+1 for Gt+1. This initial colouring is then passed to an

optimisation operator (i. e. a k-GCP algorithm) which attempts to �nd a feasible

k-colouring for Gt+1 where the initial value of k is determined by the modi�cation

operator and satis�es k ≥ |St|.
One potential issue with this methodology can arise if the initial value of k is

chosen such that k < χ(Gt+1). This eventuality is dealt with by periodically allowing

the value of k to increase if no feasible colouring for Gt+1 has been found. This is

shown on Lines 9 and 10 of Algorithm 3.2.

Although there are very few algorithms for tackling dynamic graph colouring

problems in the current literature, we will now summarise and compare these algo-
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Algorithm 3.2 Generic Dynamic GCP Time-step Algorithm
Input: a graph Gt+1 and a feasible colouring St for Gt

Output: a feasible colouring St+1 for Gt+1

1: Sbest ← ∅
2: St+1 ← St modi�ed in some way (see Sections 3.3 and 5.2)
3: k ← |St+1|
4: while not stopping criterion do
5: attempt to make St+1 a feasible k-colouring for Gt+1

6: if St+1 is a feasible k-colouring for Gt+1 then
7: Sbest ← St+1

8: k ← k − 1
9: if Sbest = ∅ and a computation limit is reached then
10: k ← k + 1
11: St+1 ← Sbest
12: return St+1

rithms against our proposed modi�cation approach.

Other Algorithms for Tackling Dynamic GCPs, a Literature Review

As mentioned previously, Harary and Gupta [1997] have highlighted the importance

of studying dynamic graphs, their associated problems, and adapting algorithms

from their static counterparts. Yet, very few static graph colouring algorithms have

been adapted for dynamic GCPs.

Theoretical studies by Barba et al. [2017] and Bhattacharya et al. [2018] have

proposed a few algorithms for tackling dynamic GCPs. Their works focuses on

upper-bounds for the number of vertices that must be recoloured or the �update�

time required, respectively, at each time-step in order to maintain a feasible colouring

with a �xed number of colour classes. As might be expected, a clear negative

relationship between these two objectives is presented, such that more �maintenance�

is required as the number of colour classes decreases (i. e. becomes closer to optimal).

Due to the theoretical nature of these works, it would be inappropriate to compare

their results with ours, which are experimental in nature.

Algorithms for the on-line graph colouring problem, a special case of the vertex

dynamic GCP, are well documented in the literature. Most research in this area is

theoretical and concerns worst-case behaviour of proposed algorithms. This problem,

and relevant literature, will be discussed in more detail in Section 5.1, once vertex

dynamic GCPs have been formally introduced.

The few heuristic approaches for dynamic GCPs that we were able to �nd in the

literature are slightly di�erent from our proposed modi�cation approach. Indeed,

most of these approaches are only interested in acquiring an initial feasible colouring

and do not allow local optimisation to take place between time-steps. For example,

Preuveneers and Berbers [2004] propose an agent-based approach (ACODYGRA)

for the edge dynamic GCP which �repairs� colourings between time-steps in a vertex-
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by-vertex manner. ACODYGRA �rst attempts to �recolour� a vertex (i. e. transfer

to a di�erent colour class) and, if this is not possible, a new colour class is created

which the vertex is then transferred to. This approach is similar in some ways to

Method 4 (solveClashes) which will be described towards the end of Section 3.3.

A decentralised algorithm for dynamic GCPs has been proposed by Dutot et al.

[2007]. The experimental results presented for this algorithm are very brief and

are only compared against the Greedy constructive algorithm [Welsh and Powell,

1967]. This decentralised algorithm does outperform the Greedy algorithm with

regards to the number of colour classes used, however no information is presented

regarding the computational e�ort required to do so. As with ACODYGRA, no

optimisation is permitted between time-steps.

Monical and Stonedahl [2014] proposed a genetic algorithm approach for tack-

ling the vertex dynamic GCP and experimented with both static and dynamic pop-

ulations of vertex orderings (which are passed to a Greedy-style constructive al-

gorithm). This approach di�ers from the one outlined in Algorithm 3.1 because,

instead of passing a single colourings from time-step t to time-step t + 1, their

algorithm passes a whole population of vertex orderings. Again, as with ACODY-

GRA and the decentralised algorithm discussed above, this algorithm is only con-

cerned with achieving an initial colouring and is therefore only compared against

DSatur [Brélaz, 1979].

3.3 Modi�cation Operators

The focus of this particular chapter is to compare the performance of the di�erent

modi�cation operators used on Line 2 of Algorithm 3.2. In doing so, we wish to

determine whether there are any bene�ts of using a feasible colouring for a graph Gt

to �nd a feasible colouring for a similar graph Gt+1 and, if so, under what conditions

these bene�ts occur.

It is worth noting that a feasible colouring at time-step t is likely to become a

complete, improper colouring at time-step t + 1 because the new edges introduced

are likely to lead to clashes. Let us reconsider the edge dynamic graph in Figure 3.1.

As is illustrated in Figure 3.2, the feasible colouring of Gt on the LHS has become

an complete, improper colouring for Gt+1 on the RHS. Every vertex of Gt+1 remains

coloured; however the introduction of edges {v1, v9}, {v2, v4} and {v2, v10} has led
to clashes. Therefore, perhaps the most �natural� solution space to consider when

using a colouring from time-step t as a starting point for a colouring at time-step

t+ 1 is the complete, improper one.

We now introduce �ve modi�cation operators (or methods) that �modify� a fea-

sible colouring for Gt into a colouring for Gt+1. The colourings produced by these

modi�cation operators are not necessarily feasible for Gt+1, in which case they are
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Figure 3.2: Edge dynamic graph colouring example

used as a starting point from which to �nd a feasible colouring for Gt+1. The �rst of

these modi�cation operators (Method 0) will be used as a control throughout this

thesis.

Method 0 (reset). Ignoring St, use a constructive operator to produce St+1.

By ignoring the colourings for the previous time-step and simply using a con-

structive algorithm (see Section 2.1 for examples), this approach can be used as a

base-line comparison against the remaining methods for time-steps t = 1, . . . , T . Es-

sentially, implementing Method 0 within Algorithm 3.2 is identical to the approach

used for static graphs outlined in Algorithm 2.1. This method is guaranteed to pro-

duce an initial, feasible colouring for all time-steps due to the nature of constructive

algorithms.

Method 1 (calculateClashes). Set St+1 = St and calculate the number of clashes

via Equation (2.4).

As mentioned above, a feasible colouring St for Gt is likely to be a complete,

improper colouring for Gt+1. By implementing Method 1, the resultant colouring

St+1 = St can be passed directly to an optimisation operator that operates in the

complete, improper solution space. This optimisation operator will attempt to re-

move all clashes from St+1 to achieve a feasible k-colouring for Gt+1 where k = |St|.
For the example illustrated in Figure 3.2, the optimisation operator would at-

tempt to �nd a feasible 5-colouring for Gt+1 starting from the feasible colouring for

Gt on the LHS which has 3 clashes for Gt+1 on the RHS.

Method 2 (uncolourClashes). Identify a pair of clashing vertices in St and transfer

one vertex from this pair to a set of �uncoloured� vertices U . Repeat until the

resultant colouring St+1 has no clashes.

Under this method, the resultant colouring St+1 is a partial, proper colouring for

Gt+1 which, along with U , can be passed to an optimisation operator that operates
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in the partial, proper solution space. This optimisation operator will attempt to

feasibly colour all �uncoloured� vertices in U to achieve a feasible k-colouring for

Gt+1 where k = |St|. By moving from the �natural� solution space to the partial,

proper one, we can explore an entirely di�erent neighbourhood of colourings.

Due to the random nature of how vertices are �uncoloured� here, there are several

di�erent colourings that Method 2 could produce. For the example illustrated in

Figure 3.2, there are 8 di�erent partial, proper colourings that could be produced, re-

sulting in U being any of the following: {v1, v2}, {v1, v2, v4}, {v1, v2, v10}, {v1, v4, v10},
{v2, v9}, {v2, v4, v9}, {v2, v9, v10}, or {v4, v9, v10}.

This modi�cation operator is very similar to the �translator� proposed by Hertz

et al. [2008], which converts a complete, improper k-colouring for a graph G into a

partial, proper k-colouring for G.

Method 3 (uncolourMostClashing). Identify all pairs of clashing vertices in St and
transfer the �most clashing� vertex (i. e. the vertex that is included in the highest

number of clashing pairs) to the set of �uncoloured� vertices U . Repeat until the

resultant colouring St+1 has no clashes.

Much like Method 2, we wish to �uncolour� clashing vertices in St to achieve a

partial, proper colouring for Gt+1. By using this method, the number of �uncoloured�

vertices, |U |, should be reduced in comparison to using the random approach of

Method 2.

For the example illustrated in Figure 3.2, Method 3 could produce 2 di�erent

partial, proper colourings for Gt+1 with either U = {v1, v2} or {v2, v9}. Therefore, in
this particular case, this method is guaranteed to produce a partial, proper colouring

St+1 for Gt+1 with |U | = 2. On the other hand, implementing Method 2 on the same

graph can lead to partial, proper colourings for Gt+1 with either |U | = 2 or |U | = 3

at a ratio of 1 : 2.

Method 4 (solveClashes). Using Method 2 on St, obtain a partial, proper colouring

Stemp forGt+1 and a set of �uncoloured� vertices U . Next, randomly order the vertices

in U and attempt to transfer the �rst vertex in U to a colour class of Stemp in a

�greedy� fashion such that no clashes are introduced. Repeat for each vertex in U

sequentially. Pass the residual graph G̃ induced by the remaining vertices in U to

a constructive operator to produce a colouring S̃ for G̃. Combine Stemp and S̃ to

produce the colouring St+1.

This method bears some similarity to independent set extraction (see Section 2.5)

where a graph is considered in separate parts which are then combined to produce a

colouring for the whole graph. Here, the clashing vertices are considered separately

to the vertices which remain feasibly coloured between time-steps.

This method is guaranteed to produce a feasible colouring St+1 for Gt+1. Firstly,

by implementing Method 2, all clashes in St for Gt+1 are removed. Also, no new
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clashes are introduced when a vertex in U is transferred to a colour class in Stemp,
otherwise it would not be transferred. A constructive algorithm is also guaranteed

to produce a feasible colouring for any given graph, so the colouring S̃ is a feasible

colouring of the remaining �uncoloured� vertices. Finally, when Stemp and S̃ are

combined, the resultant colouring St+1 has no clashes and all vertices in V are

assigned to a colour class. Therefore, St+1 is a feasible colouring for Gt+1 with

k = |St|+ |S̃| colour classes.
For the example illustrated in Figure 3.2, regardless of which vertices are trans-

ferred to the set of �uncoloured� vertices U , all vertices in U can be feasibly trans-

ferred to a colour class in Stemp to produce a feasible 5-colouring for Gt+1. Consider

U = {v2, v9}, in this example v2 can be transferred to either the grey or the green

colour class without introducing clashes, and v9 can be transferred to the red colour

class similarly. Thus, for this example there is no residual graph G̃ to pass to a

constructive operator.

As mentioned in Section 3.2, this method is similar to ACODYGRA [Preuve-

neers and Berbers, 2004]. Both approaches attempts to transfer each �problematic�

vertex to a colour class in the current colouring �rst, and then, if necessary, they cre-

ate new colour classes for any remaining �problematic� vertices. In ACODYGRA

the �problematic� vertices are those which are clashing, and here the �problematic�

vertices are the newly �uncoloured� ones.

The speci�c details regarding the constructive operators and optimisation oper-

ators used in Methods 0 to 4 will be discussed in Section 3.4.2.

3.4 Trial Information

3.4.1 Test Instances

The graphs that make up our test instances have four parameters: n the num-

ber of vertices, d the desired density, p the change probability, and T the number

of time-steps. The following parameter values were used for our test instances:

n = {250, 500, 1000}, d ∈ {0.1, 0.5, 0.9}, p ∈ {0.005, 0.01, . . . , 0.05} and T = 10.

These values of n and d are broadly in line with the parameters of the static random

graphs presented in the benchmark instances referenced in Chapter 2. Preliminary

trials indicated that larger values of p greatly diminished the bene�ts of using a mod-

i�cation operator between time-steps. For each combination of these parameters, 20

dynamic graphs were produced.

In our case, G0 is constructed such that |V | = n, and every edge {u, v} of the(
n
2

)
possible edges in E is included in E0 with probability d. At time-step t, each

edge {u, v} ∈ Et is included in the set of deleted edges E−t+1 with probability p and

each edge {u, v} ∈ E\Et is included in the set of new edges E+
t+1 with probability

pd
1−d . The probability pd

1−d is used to ensure that the density of the various graphs
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Figure 3.3: Legal combinations of change probability p and desired density d that
maintain approximately equal density of an edge dynamic graph over all time-steps.

remains approximately equal over all time-steps.

Legal Parameter Combinations for Edge Dynamic Graphs

Note that at time-step t there are |Et| active edges out of the |E| possible edges

between all the vertices in V , where |E| =
(|V |

2

)
. If at each time-step a proportion p

of the active edges are deleted and a proportion q of the non-active edges are added

then

|Et+1| = |Et| − |E−t+1|+ |E+
t+1|

= |Et| − p|Et|+ q(|E| − |Et|).

If we want the density of G to remain approximately equal to d over all time-steps

then it is necessary for |Et| ≈ d|E| for all t. The above equation therefore becomes

|Et+1| = d|E| − pd|E|+ q(|E| − d|E|).

Setting |Et+1| = d|E| and rearranging gives q = pd
1−d . Hence, if each edge in Et

is added to E−t+1 with probability p, then each non-active edge in E\Et should be

added to E+
t+1 with probability pd

1−d .

As q is a probability, it must hold that 0 ≤ q ≤ 1. It therefore follows that p and

d must satisfy pd
1−d ≤ 1 and p ≤ 1−d

d
. Because p is also a probability (satisfying 0 ≤

p ≤ 1) these inequalities can only be reasonably violated when d > 0.5. Figure 3.3

clearly illustrates the legal combinations of p and d (represented by the shaded

area). All combinations of the parameter values of our test instances satisfy these

inequalities.
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3.4.2 Algorithm Parameters

For our experiments we used RLF [Leighton, 1979] as our constructive operator.

This constructive operator is used for producing initial colourings for G0 of each

test instance (i. e. RLF replaces Line 2 in Algorithm 3.2 for G0) and also within

Method 4. Of the three constructive algorithms discussed in Section 2.1, RLF was

shown to produce colourings with the fewest number of colour classes though, in

many cases, it also requires the most time to run.

TabuCol [Hertz and de Werra, 1987] and PartialCol [Blöchliger and Zuf-

ferey, 2008] are implemented to tackle the k-GCPs within our approach (i. e. Line

5 of Algorithm 3.2) when operating in the complete, improper and partial, proper

solution spaces respectively. These algorithms operate as described in Sections 2.4.1

and 2.4.2 and include an aspiration criterion that allows a �tabu� move to be se-

lected and executed if the resultant colouring has fewer clashes or �uncoloured�

vertices than the �best� colouring observed up until that iteration. With regards to

TabuCol, only the critical 1-moves are considered, in a similar way that only the

i-moves for currently �uncoloured� vertices are considered by PartialCol.

During execution, k is adjusted in the following way: if a feasible k-colouring,

where the initial value of k is de�ned by the modi�cation operator, cannot be ob-

tained within half of the allotted time limit then k is increased by 1. If a feasible

k-colouring cannot then be obtained within half of the remaining time limit then

k is again increased by 1, and so on (i. e. Lines 9 and 10 of Algorithm 3.2). Less

time is allocated to solving the k-GCP for higher value of k because, in general, it

should be easier to identify a feasible k-colouring as k increases. This adjustment

is particularly useful if a feasible k-colouring for Gt is passed to Algorithm 3.2 such

that k < χ(Gt+1) (see Section 3.2).

We used a time limit of 10 seconds1 per time-step (i. e. Line 4 in Algorithm 3.2).

If this time limit had been set much longer, say hours, then the advantage of modi-

fying colourings between time-steps obviously diminishes.

It should be noted that Method 1 exclusively produces complete, improper

colourings, and Methods 2 and 3 exclusively produce partial, proper colourings.

On the other hand, Methods 0 and 4 produce feasible colourings which can then

be passed to a tabu search operator that operates within either solution space, as

required. Therefore, only comparisons between modi�cation operators that produce

colourings within the same solution space or feasible colourings will be compared

(e. g. Methods 1 and 2 will not be compared against one another).

1All algorithms were programmed in C++ and executed on a 3.3GHZ Windows 7 PC with an
Intel Core i3-2120 processor and 8GB RAM.
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3.5 Results

In this section we present an analysis of our experimental results. The majority of

our data was found to be non-normally distributed, therefore non-parametric statis-

tical techniques are employed. Unless stated otherwise, all pairwise statistical com-

parisons are based on the Wilcoxon signed rank test with signi�cance level α = 0.01.

Results refer to the graphs G1, . . . , GT of each dynamic graph G = {G0, G1, . . . , GT},
with G0 ignored because there are no colouring from a previous time-step to be

modi�ed. As such, the results will refer to single time-steps rather than the entire

dynamic graph (e. g. |St| for Gt will be reported rather than
∑T

i=1 |Si|).

3.5.1 Initial Colourings

Let us �rst consider the initial feasible colourings produced for the edge dynamic

GCP. For all densities d and change probabilities p, Methods 1 to 3 were found to

produce initial, feasible colourings with signi�cantly fewer colour classes than both

Methods 0 and 4. This is clearly illustrated in Figure 3.4. However we also see that

there is a signi�cant increase in the time required by Methods 1 to 3 to achieve their

initial, feasible colourings compared to Methods 0 and 4 for all values of d and p,

as seen in Table 3.1. A main contributing factor to this is found in the nature of

the di�erent methods: Methods 0 and 4 both start from feasible colourings, whereas

Methods 1 to 3 do not and therefore require more time to move to a feasible region of

the solution space. For similar reasons, as p increases, so too does the time required

by Methods 1 to 3 to achieve an initial, feasible colouring.

For d = 0.1 with p = 0.005, d = 0.5 with p ≤ 0.02, and d = 0.9 with p ≤ 0.01

Method 4 was found to produce initial, feasible colourings with signi�cantly fewer

colour classes than Method 0. However, for higher settings of p, speci�cally for

d = 0.1 with p ≥ 0.01, d = 0.5 with p ≥ 0.03, and d = 0.9 with p ≥ 0.015, the

opposite holds. This is again clearly illustrated in Figure 3.4. Hence we can conclude

that for these high levels of p, modifying feasible colourings for Gt via Method 4 is

of no bene�t when attempting to achieve initial, feasible colourings for Gt+1.

Considering computational e�ort, we found that the time required by Method 4

to achieve initial, feasible colourings is signi�cantly less compared to Method 0 for

d ∈ {0.5, 0.9} with all values of p. Both Methods 0 and 4 employ RLF; however,

Method 0 applies it to the whole graph Gt = (V,Et) at each time-step t as opposed

to Method 4 which only applies it to a residual graph G̃ = (Ṽ , Ẽ) of Gt where Ṽ ⊆ V

(which implies |Ṽ | ≤ |V |). We therefore see that applying Method 4 with low levels

of p is advantageous with regards to both the number of colour classes in initial,

feasible colourings and the time required to obtain them.

With the exception of Table 3.2, all of the results, �gures and tables presented

so far are for test instances with n = 500. In general, the relationships observed
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Figure 3.4: Mean number of colour classes in initial, feasible colourings for the edge
dynamic GCP on test instances with |V | = 500. Graphs (a), (c) and (e) represent
methods that operate in the complete, improper solution space, graphs (b), (d) and
(f) represent methods that operate in the partial, proper solution space, and the rows
from top to bottom represent test instances with d = 0.1, 0.5 and 0.9, respectively
(e. g. graphs (a) and (b) represent test instances with d = 0.1).
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Table 3.1: Median time (in seconds) required to obtain an initial, feasible colouring
for the edge dynamic GCP on test instances with |V | = 500. The second column
indicates the method (M.) that was implemented.

p
d M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0.1 0 0 0 0 0 0 0 0 0 0 0

1 0 0.015 0.016 0.031 0.031 0.031 0.031 0.047 0.047 0.047
2 0 0 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.016
3 0 0 0.015 0.016 0.016 0.016 0.016 0.031 0.031 0.031
4 0 0 0 0 0 0 0 0 0 0

0.5 0 0.016 0.016 0.031 0.031 0.031 0.016 0.016 0.016 0.016 0.016
1 1.692 2.246 2.777 2.948 3.182 3.268 3.363 3.791 4.181 3.713
2 1.545 1.872 2.083 2.996 2.325 2.590 2.824 2.519 2.730 2.972
3 1.794 2.012 2.083 2.730 2.504 2.840 2.605 2.855 3.066 2.886
4 0? 0? 0? 0? 0? 0? 0? 0? 0? 0?

0.9 0 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
1 5.008 5.125 5.335 5.140 5.288 5.421 5.366 5.171 5.327 5.304
2 4.376 4.235 5.016 5.070 5.047 5.031 5.008 4.789 5.038 5.023
3 4.290 4.938 5.047 5.007 5.039 5.054 5.016 5.039 5.008 4.961
4 0? 0? 0? 0? 0? 0? 0? 0? 0? 0?

0 represents a time less than 10−3 seconds.
? indicates a time that is signi�cantly less than all others for the same values of d
and p.

Table 3.2: Signi�cant di�erences between the number of colour classes in the initial
colourings achieved by Methods 0 and 4. The third column indicates the solution
space (S.S.) that Methods 0 and 4 are operating in.

p
n d S.S. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

250 0.1 C.I. X - O O O O O O O O
P.P. X O O O O O O O O O

0.5 C.I. X X X X - O O O O O
P.P. X X X X - O O O O O

0.9 C.I. X - O O O O O O O O
P.P. X - O O O O O O O O

500 0.1 C.I. X - O O O O O O O O
P.P. X - O O O O O O O O

0.5 C.I. X X X X - O O O O O
P.P. X X X X - O O O O O

0.9 C.I. X X O O O O O O O O
P.P. X X O O O O O O O O

1000 0.1 C.I. X O O O O O O O O O
P.P. X X - O O O O O O O

0.5 C.I. X X X X O O O O O O
P.P. X X X X O O O O O O

0.9 C.I. X X O O O O O O O O
P.P. X X O O O O O O O O

X - indicates that Method 4 achieves an initial colouring with signi�cantly fewer
colour classes than Method 0.
O - indicates that Method 4 achieves an initial colouring with signi�cantly more
colour classes than Method 0.
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between the di�erent modi�cation operators were seen to be very similar regardless

of the size of the test instances, as can be seen by comparing Figure 3.4 and Table 3.1

with Figures B.1 and B.2 and Table B.1 in Appendix B, respectively. The only

di�erence of note is that Method 4 does not clearly require the least amount of time

to achieve initial feasible colourings for test instances with n = 250. This is likely

due to the relatively small time values recorded for these test instances, which may

not be accurate enough for reliable conclusions to be drawn.

Method 2 (uncolourClashes) vs. Method 3 (uncolourMostClashing)

We have observed that Methods 2 and 3 behave in a very similar fashion when

compared against Methods 0 and 4. Now we will compare Methods 2 and 3 against

one another to explore whether the manner in which vertices are �uncoloured� be-

tween time-steps has any a�ect on the initial colourings achieved. It is hypothesised

that the more sophisticated manner employed by Method 3, which reduces the ini-

tial number of �uncoloured� vertices, should therefore reduce the amount of time

required by the tabu search operator to subsequently achieve a feasible colouring.

At the α = 0.01 signi�cance level, we found that there was no signi�cant di�er-

ence between the number of colour classes in the initial, feasible colourings achieved

when using either modi�cation operator on most test instances. However, for a few

test instance Method 2 achieved initial, feasible colourings with signi�cantly fewer

colour classes than Method 3. More speci�cally, this occurred on test instance with

the following parameter combinations: n = 500, d = 0.9, p ∈ {0.01, 0.04, 0.045},
and n = 1000, d = 0.5, p = 0.03.

With the exception of these few test instances, it stands to reason that the initial

number of �uncoloured� vertices should not a�ect the number of colour classes in the

initial, feasible colourings achieved. Indeed, for both Methods 2 and 3, the initial

target number of colour classes is determined by the �best� colouring achieved in

the previous time-step (see descriptions in Section 3.3) and not the modi�cation

operator itself.

With regards to computational e�ort, we observed no signi�cant di�erence in

the time required to achieve an initial feasible colouring between the two methods

in most cases. Nor does there appear to be any signi�cant di�erence in the number

of iterations of PartialCol required to achieve an initial feasible colouring in

most cases. However, there are a few exceptions which illuminate the behavioural

di�erence between Methods 2 and 3.

For test instances with n ∈ {250, 500} and d = 0.1, signi�cantly more time is

required to achieve an initial, feasible colouring when using Method 3. However,

there is no signi�cant di�erence in the the number of iterations of PartialCol

required to identify a feasible colouring from the initial partial, proper colourings

produced by Methods 2 and 3. Both of these observations are clearly illustrated in
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Figure 3.5: Mean time (a) and median number of PartialCol iterations (b) re-
quired to achieve an initial, feasible colouring for the edge dynamic GCP on test
instances with |V | = 250 and d = 0.1.
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Figure 3.6: Median time (a) and number of PartialCol iterations (b) required
to achieve an initial, feasible colouring for the edge dynamic GCP on test instances
with |V | = 500 and d = 0.9.

Figure 3.5. We can therefore conclude that the additional time required when using

Method 3 is likely due to the modi�cation operator itself, which is more complex in

its transformation of St to St+1.

For test instances with n = 500 and d = 0.9 (see Figure 3.6) there is no signi�cant

di�erence in the time required by Methods 2 and 3 to achieve an initial, feasible

colouring, but PartialCol requires signi�cantly fewer iterations to do so when

Method 3 is implemented. This would again suggest that Method 3 requires more

execution time than Method 2.

3.5.2 Final Colourings

Let us now consider �nal colourings for the edge dynamic GCP. The Friedman

test with α = 0.01 shows that for test instances with n = 250 and all values of

49



d, and n = 500, d = 0.1 there is no signi�cant di�erence between the number of

colour classes in the �nal, feasible colourings achieved when applying any of the

modi�cation operators.

In a small number of cases, using Methods 1 to 3 led to �nal, feasible colourings

with signi�cantly fewer colour classes than Method 0. In all of these cases, the test

instance parameters satisfy n ∈ {500, 1000}, d ∈ {0.5, 0.9} and p ≤ 0.03. However,

in most cases there was either no signi�cant di�erence or a signi�cant increase when

compared to Method 0. For example, Methods 1 to 3 all achieve �nal, feasible

colourings with signi�cantly more colour classes than Method 0 for test instances

with n = 1000 and d = 0.9, with the exception of Methods 2 and 3 when p = 0.005.

This continues to hold for Methods 1 and 3 on most test instances with n = 500

and d = 0.9. Methods 1 to 3 also achieve �nal, feasible colourings with signi�cantly

more colour classes than those achieved by Method 4 for some test instances with

n ∈ {500, 1000} and d = 0.9. Method 1 is also outperformed by Method 4 on some

test instances with n ∈ {500, 1000} and d = 0.5.

These observations are likely due to the relatively large amount of time required

by Methods 1 to 3 to identify an initial, feasible colouring compared to Methods 0

and 4 as discussed in Section 3.5.1. For most test instances with n = 500 and

d = 0.9, the median time required to achieve an initial feasible colourings is greater

than 5 seconds (see Table 3.1), which indicates that the initial value of k generally

needed to be increased before a feasible colouring could be identi�ed in these cases.

This �wasted� time then translates to time which cannot be allocated to identifying

feasible colourings with fewer colour classes.

For some test instances with n ∈ {500, 1000}, d ∈ {0.5, 0.9} and p ≤ 0.025,

Method 4 was found to achieve �nal, feasible colourings with signi�cantly fewer

colour classes than Method 0. This is unsurprising as Method 4 produces initial,

feasible colourings with signi�cantly fewer colour classes than Method 0 and requires

signi�cantly less time to do so under these parameter settings, which then allows

more time to tackle k-GCPs with decreasing values of k whilst also starting with a

smaller lower bound for k.

We now consider the computational e�ort required to achieve the �best� feasible

colouring for each time-step. Here, the following time comparisons correspond only

to time-steps where the number of colour classes in the �nal, feasible colourings

achieved by the compared methods were equal to one another. Therefore, less data

will be utilised for these comparisons due to the exclusion of time-steps for which

the �nal colourings had di�ering numbers of colour classes.

Methods 1 to 3 were found to identify �nal, feasible colourings signi�cantly faster

than Method 0 for some test instances with d ∈ {0.1, 0.5}, as seen in Table 3.3

for test instances with n = 500. These methods were also able to reach �nal,

feasible colourings signi�cantly faster than Method 4 for test instances with d = 0.1
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Table 3.3: Median time (in seconds) required to obtain �nal, feasible colourings with
the same numbers of colour classes for the edge dynamic GCP on test instances with
|V | = 500.

p
d S.S. M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0.1 C.I. 0 0.047 0.046 0.047 0.046 0.047 0.046 0.047 0.046 0.047 0.047

1 0? 0.015† 0.016? 0.031† 0.031? 0.031? 0.031? 0.047 0.047 0.047
4 0.015? 0.016? 0.031? 0.031? 0.046 0.031 0.047 0.047 0.047 0.047

P.P. 0 0.031 0.016 0.031 0.016 0.031 0.031 0.031 0.031 0.031 0.031
2 0† 0† 0.015† 0.015† 0.015? 0.015† 0.015† 0.016† 0.016† 0.016†

3 0† 0† 0.015? 0.016? 0.016? 0.016? 0.016? 0.031 0.031 0.031
4 0? 0.015? 0.015? 0.015? 0.016? 0.016 0.016? 0.031 0.031 0.031

0.5 C.I. 0 3.478 2.996 3.034 3.128 2.442 2.855 2.528 3.136 2.941 2.754
1 1.653? 2.371 3.190 3.097 3.424 3.417 3.869 4.259 4.321 4.275
4 1.077? 1.794? 2.130? 2.683 2.239 2.652 2.754 2.465 3.284 2.762

P.P. 0 3.058 2.964 2.800 2.949 2.192 2.730 2.636 2.605 2.356 2.387
2 1.872 1.918 2.160 3.620 2.247 2.714 3.120 2.574 2.512 2.972
3 1.841 2.075 2.192 3.089 3.182 3.229 2.745 3.495 3.206 3.666
4 1.435? 2.278? 2.021? 2.372? 2.246 2.870 2.184 2.340 2.067 2.551

0.9 C.I. 0 5.492 5.476 5.008 4.836 5.569 5.912 4.851 5.694 4.430 4.602
1 6.225 7.122 7.691 7.074 7.964 7.550 7.535 8.455 7.176 7.488
4 4.181 4.906 4.415 4.353 5.694 5.195 4.649 5.234 5.039 4.882

P.P. 0 4.852 5.952 5.179 4.095 4.384 4.173 3.681 4.696 4.665 4.633
2 5.117 5.343 6.505 6.224 5.257 5.203 5.710 5.483 5.577 5.928
3 4.617 6.178 6.802 5.717 6.458 6.381 6.131 7.184 6.287 5.679
4 3.885 4.805 5.663 4.064 4.352 4.228 3.775 4.087 5.117 4.914

0 represents a time less than 10−3 seconds.
? indicates a time that is signi�cantly less than Method 0 for the same values of d
and p whilst operating in the same solution space.
† indicates a time that is signi�cantly less than both Methods 0 and 4 for the same
values of d and p whilst operating in the same solution space.

and some values of p. These observations are likely because the initial, feasible

colourings achieved by Methods 1 to 3 are also the �nal, feasible colourings achieved

for test instances with d ∈ {0.1, 0.5} and low values of p. Results regarding the time

requirements on test instances with n ∈ {250, 1000} can be seen in Table B.2 in

Appendix B.

On the other hand, Methods 1 to 3 were found to require signi�cantly more time

than Method 0 to achieve �nal, feasible colourings for test instances with d = 0.5

and high values of p, and d = 0.9 with most values of p. In a similar fashion, these

three methods require signi�cantly more time to achieve �nal, feasible colourings

than Method 4 for test instances with d ∈ {0.5, 09} and most values of p. This is

probably due to the same arguments presented with regards to the number of colour

classes in the �nal, feasible colourings achieved by these methods for d = 0.9. A

clear illustration of how d and p a�ect the time required to achieve a �nal feasible

colouring can be seen in Table 3.4.

Unlike Methods 1 to 3, Method 4 was found only to require signi�cantly more

time than Method 0. In contrast, for test instances with d ∈ {0.1, 0.5} and p ≤ 0.035
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Table 3.4: Signi�cant di�erences in the time required by Methods 0 and 3 to achieve
�nal, feasible colouring with the same number of colour classes on test instances with
|V | = 500.

p
d 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0.1 O O O O O O O - - -
0.5 - - - - - - - - X X
0.9 - - X X X X X X X X

X - indicates that Method 3 requires signi�cantly less time than Method 0.
O - indicates that Method 3 requires signi�cantly more time than Method 0.

or p ≤ 0.02, respectively, Method 4 requires signi�cantly less time to identify a �nal,

feasible colourings. It should be highlighted that, as with the number of colour

classes, these are similar parameter settings for which Method 4 is able to produce

initial, feasible colourings with signi�cantly fewer colour classes than Method 0.

Method 2 (uncolourClashes) vs. Method 3 (uncolourMostClashing)

As with the initial colourings, there is no signi�cant di�erence in the number of

colour classes in �nal feasible colourings achieved when implementing Methods 2

and 3. In a small number of test instances with n = 500 and d ∈ {0.5, 0.9},
Method 2 was able to achieve �nal feasible colourings with signi�cantly fewer colour

classes than Method 3. However, there appears to be no link between the number of

colour classes in the initial feasible colouring achieved because none of the instances

mentioned here are the same as those mentioned in Section 3.5.

Again, in most cases, no signi�cant di�erence was observed between the time and

number of PartialCol iterations required to reach the �nal feasible colourings. In

the few cases where a signi�cant di�erence was observed, it is for the same test

instances for which the same signi�cant di�erence was observed with regards to

achieving an initial feasible colouring. For example, Method 2 requires signi�cantly

less time than Method 3 to achieve �nal feasible colourings for test instances with

n = 250, d = 0.1, and some test instances with n = 500, d = 0.1. These are the

same test instances where Method 2 requires signi�cantly less time than Method 3

to achieve initial feasible colourings (see Figure 3.5).

In general, there appears to be no obvious preference with regards to using either

Method 2 or 3 as the modi�cation operator within our proposed approach. If forced

to choose, Method 2 is easier to implement and requires signi�cantly less time to

achieve both initial and �nal feasible colourings for a handful of test instances.

52



3.6 Adding Empty Colour Classes

We saw in Section 3.5.1 that Methods 1 to 3 will achieve initial, feasible colourings

with signi�cantly fewer colour classes than Method 0, but require signi�cantly more

time to do so.

The optimisation that takes place during each time-step often results in Meth-

ods 1 to 3 passing an infeasible colouring St+1 to a tabu search operator such that

|St+1| = |St| is a �good� approximation to χ(Gt+1). The tabu search operator then

attempts to solve the k-GCP for Gt+1 where k = |St+1| ≈ χ(Gt+1). As k becomes

�closer� to χ(Gt+1), there are fewer feasible k-colourings for Gt+1 and the k-GCP

becomes more di�cult to solve (i. e. more time is required to identify a feasible

k-colouring for Gt+1). Similarly, as k becomes greater than χ(Gt+1), the associated

k-GCP becomes easier to solve.

In our approach, if k = |St| is too low for a feasible k-colouring to be found for

Gt+1 then half of the time limit is �wasted� before k is increased. As can be seen in

Table 3.1, this is the situation encountered for most test instances with d = 0.9.

In this regard, we now propose variations of Methods 1 and 2 such that the initial

colouring St+1 passed to the tabu search operator has more colour classes than the

previous �best� colouring St for Gt (i. e. |St+1| > |St|) in an attempt to reduce the

amount of time required to achieve an initial feasible colouring for Gt+1. Due to the

similarity of the results between Methods 2 and 3, we omit Method 3 from these

comparisons in an attempt to reduce the volume of results presented in this section.

3.6.1 Empty Colour Classes Approach

In this method, St+1 and U are initially de�ned in the same manner as when using

the respective modi�cation operators given in Section 3.3. Then St+1 is combined

with x > 0 empty colour classes where x is a user-de�ned integer. When St+1 is

passed to the tabu search operator, along with U where appropriate, an attempt

will be made to �nd a k-colouring for Gt+1 where k = |St|+ x.

In the �gures presented in this section, we will use the same names introduced

previously to refer to the methods followed by �_x� to indicate the number of empty

colour classes used (e. g. Method 1 with x empty colour classes will be referred to

as M.1_calculateClashes_x).

Here, we use the same test instances as described in Section 3.4.1 with n = 500,

and all algorithm parameters also remain the same as in Section 3.4.2.

The number of empty colour classes x added to the colourings produced by

Methods 1 and 2 are as follows:

• x ∈ {0, 1, 2} for test instances with d = 0.1,

• x ∈ {0, 2, 4, 6} for test instances with d = 0.5, and
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• x ∈ {0, 3, 6, 9, 12} for test instances with d = 0.9.

When applying the modi�cation with empty colour classes approach, the number

of empty colour classes x may be chosen such that a feasible colouring is identi�ed

in which some of the empty colour classes remain empty. If say, 0 < r ≤ x of

the empty colour classes remain empty, then the tabu search operator will report

�nding a feasible colouring with k − r = |St|+ x− r colour classes as opposed to a

k-colouring.

3.6.2 Results

As with Section 3.5, most of our data was found to be non-normally distributed.

Therefore we continue to use non-parametric statistical techniques and, unless stated

otherwise, all pair-wise statistical comparisons are based on the Wilcoxon signed

rank test with α = 0.01.

Initial Colourings

As can be seen in Figure 3.7, Methods 1 and 2 with empty colour classes still achieve

initial, feasible colouring with signi�cantly fewer colour classes than Methods 0 and 4

in some cases. The number of empty colour classes x for which this holds true

depends on the density d of the test instance.

More speci�cally, for test instances with d = 0.1, implementing Methods 1 and 2

with x = 1 empty colour class achieves initial, feasible colouring with signi�cantly

fewer colour classes than Methods 0 and 4 for all values of p. However, with x = 2,

Methods 1 and 2 only achieve initial colouring with signi�cantly fewer colour classes

than Method 0 for p = 0.005, but either no signi�cant di�erence or signi�cantly

more colour classes for p ≥ 0.01. This is illustrated in Figure 3.7(a,b) where the

lines for Method 0 (i. e. the line of circles) is met by the lines for Methods 1 and 2

with x = 2 (i. e. the line of plus symbols). In comparison to Method 4, they achieve

signi�cantly more colour classes for p = 0.005, there is no signi�cant di�erence for

p = 0.01, and signi�cantly fewer colour classes for p ≥ 0.015, which is similar to the

relationship observed between Methods 0 and 4 (see Section 3.5.1). This is again

illustrated in Figure 3.7(a,b) where the lines for Method 4 (i. e. the line of crosses)

is met and then crossed at p = 0.01 by the lines for Methods 1 and 2 with x = 2.

For test instances with d ∈ {0.5, 0.9}, Methods 1 and 2 achieved initial, feasible

colouring with signi�cantly fewer colour classes than Method 0 for all combinations

of x and p tested, and for d = 0.9 this also holds against Method 4. For d = 0.5

with (x = 4, p = 0.005) and (x = 6, p = 0.01) there is no signi�cant di�erence in the

number of colour classes compared to Method 4 and signi�cantly more for x = 6

and p = 0.005. This can be seen in Figure 3.7(c,d) where the lines for Method 4
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Figure 3.7: Mean number of colour classes in initial, feasible colourings for the
edge dynamic GCP with Methods 1 and 2 including empty colour classes on test
instances with |V | = 500. Graphs (a), (c) and (e) represent methods that operate
in the complete, improper solution space, graphs (b), (d) and (f) represent methods
that operate in the partial, proper solution space, and rows from top to bottom
represent test instances with d = 0.1, 0.5 and 0.9, respectively.
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Figure 3.8: Mean time (in seconds) for Method 2 with x ∈ {6, 9, 12} empty colour
classes to achieve an initial, feasible colouring on test instances with d = 0.9.

(i. e. the line of crosses) is met and then crossed by the lines for Methods 1 and 2

with x = 4 and 6 (i. e. the lines of plus symbols and squares, respectively).

As was shown in Section 3.5.1, Methods 1 and 2 without empty colour classes

(i. e. with x = 0) require signi�cantly more time to achieve an initial, feasible

colouring compared to Method 0 for all change probabilities p tested. However, this

does not remain true once empty colour classes are included and the initial value of

k is increased.

The amount of time required by Methods 1 and 2 with empty colour classes to

achieve an initial, feasible colouring is now also dependent on the number of empty

colour classes x, as well as the change probability p. The relationship between x and

the amount of time required is negatively correlated such that as x increases, the

amount of time required decreases. An example of this is illustrated in Figure 3.8

for Method 2 on test instances with d = 0.9.

For test instances with d ∈ {0.5, 0.9}2 and some values of x, Methods 1 and 2 are

able to achieve an initial, feasible colouring in signi�cantly less time than Method 0.

In fact, as x increases so too does the value of p for which this holds true (see

Table 3.5). However, Methods 1 and 2 remain unable to identify an initial, feasible

colouring in signi�cantly less time than Method 4 for any values of x or p tested.

These results appear to con�rm our proposition that the tabu search operator

will require less time to identify a k-colouring for Gt+1 where k > |St| and St is the
colouring with the fewest colour classes identi�ed for Gt.

Final Colourings

Somewhat surprisingly, the empty colour classes approach has a detrimental e�ect on

the �nal feasible colourings achieved, with regards to both quality and computational

2For test instances with d = 0.1, the times required to achieve initial, feasible colourings were
generally less than 10−3 seconds and therefore output as 0 seconds. Due to the inaccuracy of these
outputs, any conclusions drawn from statistical comparisons would also be inaccurate.
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Table 3.5: Signi�cant di�erences in the time required by Method 1 with x empty
colour classes to achieve an initial, feasible colouring compared against Method 0
on test instances with d = 0.5.

p
x 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0 O O O O O O O O O O
2 X - O O O O O O O O
4 X X X X X X - O O O
6 X X X X X X X X X X

X - indicates that Method 1 requires signi�cantly less time than Method 0.
O - indicates that Method 1 requires signi�cantly more time than Method 0.

e�ort, as x increases for most test instances, especially those with d ∈ {0.5, 0.9}.
For example, Methods 1 and 2 achieve �nal feasible colourings with signi�cantly

fewer colour classes than those achieved by Method 0, or no signi�cant di�erence is

observed (i. e. the colourings never have signi�cantly more colour classes) for test

instances with d = 0.5. However, Methods 1 and 2 with x ≥ 4 empty colour classes

achieve �nal feasible colourings with signi�cantly more colour classes than those

achieved by Method 0 for most test instances with d = 0.5. This increase in colour

classes is similarly observed for x ≥ 3 on test instances with d = 0.9.

With regards to the time required to achieve �nal feasible colouring with the same

number of colour classes, there again appears to be a detrimental relationship with

x such that as x increases so too does the time required. For example, Methods 1

and 2 with x ∈ {0, 1} require signi�cantly less time than Method 0 to achieve �nal

feasible colourings for most test instances with d = 0.1, but the number of test

instances for which this continues to hold drops-o� when x = 2.

These observations seem contradictory to what might be expected because for

higher values of x, Methods 1 and 2 achieve initial feasible colourings with signif-

icantly fewer colour classes and require signi�cantly less time to do so compared

to Method 0. Of course, it will naturally require more time to achieve a colouring

with the fewest number of colour classes when starting from an initial colouring

with more colour classes (i. e. |St| < |St|+ x for x > 0). Perhaps time is also being

�wasted� identifying empty colour classes that remain within feasible colourings (i. e.

if ∃Si ∈ St such that Si = ∅).
In general, it would appear that the empty colour classes approach yields im-

proved results with regards to the initial feasible colourings achieved but these do

not lead to improved results with regards to the �nal feasible colourings achieved.

3.7 Conclusions

In this chapter we have discussed edge dynamic graphs and introduced an associated

graph colouring problem. We have proposed a modi�cation approach for tackling
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the edge dynamic GCP along with four modi�cation operators (calculateClashes,

uncolourClashes, uncolourMostClashing and solveClashes) to be used within this

approach. These modi�cation operators modify a feasible colouring for one time-

step into an initial, though not necessarily feasible, colouring for the following time-

step. These four modi�cation operators were then compared against one another,

where appropriate, and against an approach that treats each time-step of a dynamic

graph as a static graph, i. e. Method 0 (reset).

Our experiments have shown that initial colourings with signi�cantly fewer colour

classes can be achieved by using Methods 1 to 3 (calculateClashes, uncolourClashes

and uncolourMostClashing, respectively), which all modify a feasible k-colouring for

Gt into an infeasible k-colouring for Gt+1 and then pass this colouring directly to

an optimisation operator (tabu search in our experiments). However, there is a

signi�cant trade-o� with respect to the time required to achieve an initial, feasible

colouring when these modi�cation operators are applied. These operators were also

found to achieve �nal, feasible colourings with both signi�cantly fewer or signi�cantly

more colour classes depending on the density d of the test instance and its change

probability p. In general, more bene�cial results are observed for lower values of d

and p, whereas the number of vertices n in a test instance has little a�ect, at least

with regards to the relationships observed between modi�cation operators.

It has also been shown that Method 4 (solveClashes), which modi�es a feasible

k-colouring for Gt into a feasible k′-colouring for Gt+1 such that k′ ≥ k, can also

achieve initial, feasible colourings with signi�cantly fewer colour classes for small

values of p. This modi�cation operator was also shown to require signi�cantly less

time to produce initial, feasible colourings for all values of d and p. Finally, using this

modi�cation operator led to �nal, feasible colourings with the same or signi�cantly

fewer colour classes than Method 0 (reset) and requires signi�cantly less time to do

so for low values of d and p. Of the four modi�cation operators introduced, Method 4

(solveClashes) was the only one that improved upon both the quality (i. e. number

of colour classes) and e�ort (i. e. computation time) required compared to treating

each time-step as an individual static graph in several cases, i. e. on test instances

with low values of p.

In order to combat the trade-o� between quality and computational e�ort ob-

served for the �rst three modi�cation operators, an empty colour classes approach

was also proposed. This approach uses Methods 1 and 2 to modify a feasible k-

colouring for Gt and then includes x > 0 empty colour classes such that the opti-

misation operator attempts to �nd a feasible colouring for Gt+1 with k + x colour

classes. With appropriate values of x, this approach was able to achieve initial

feasible colourings with signi�cantly fewer colour classes than those produced by

Method 0 and required less time to do so. In fact, as x increases, this approach

is able to achieve initial feasible colourings signi�cantly faster than Method 0 for
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test instances with increasing change probabilities p. Unfortunately, as x increases,

this approach appears to have a detrimental e�ect on the �nal feasible colourings

achieved with regards to both quality and computational e�ort.

In comparison to Method 4, the empty colour classes approach achieved initial

feasible colouring with signi�cantly fewer colour classes than Method 0 dependent

on x rather than p. However, in order to identify an initial feasible colouring in

signi�cantly less time than Method 0, the empty colour classes approach depends

on p whereas Method 4 does not, at least not for p ≤ 0.05.

Key Findings and Recommendations

• Methods 1 to 3 achieve initial feasible colourings with signi�cantly fewer colour

classes than Method 0 but require signi�cantly longer to do so.

• For low values of p, Method 4 achieves initial feasible colourings with signi�-

cantly fewer colour classes than Method 0 and signi�cantly less time is required

to do so.

• Adding an �appropriate� number of empty colour classes to the colouring pro-

duced by Methods 1 and 2 leads to initial feasible colourings with signi�cantly

fewer colour classes than Method 0 which are also achieved in signi�cantly less

time.

• For low values of p, we suggest using Method 4 over Methods 1 and 2 with

empty colour classes, as the latter option requires extra knowledge concerning

the �appropriate� number of empty colour classes to use.

• With regards to �nal feasible colourings, very few bene�ts can be gained from

using our modi�cation approach.

In the next chapter, we will look at how future information regarding the changes

to the edge set between time-steps might be utilised to improve the robustness of a

colouring to change.
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Chapter 4

Colouring Edge Dynamic Random

Graphs with Future Adjacency

Information

Up to this point we have approached the edge dynamic GCP under the assumption

that we have no prior information regarding future changes to the edge set. Now let

us consider the case where we have some probabilistic information concerning how

likely each non-active edge is to be included in the next time-step.

The focus of this chapter is to determine whether this information can be utilised

in some bene�cial way, e. g. to decrease the likelihood of clashes being introduced

between time-steps. At each time-step t we wish to identify a feasible colouring for

Gt whilst also trying to increase the robustness of this colouring with regards to

Gt+1.

Consider the example illustrated in Figure 4.1. The dotted edges represent the

non-active edges at time-step t that are �highly likely� to become active in time-

step t + 1. Although St and S ′t are both feasible 5-colourings for Gt, only S ′t will
remain feasible at time-step t+1 if all of the dotted edges are included in E+

t+1. The

objective of this chapter is to determine a way of transforming St on the LHS into

S ′t on the RHS without compromising feasibility for the current time-step at any

stage of the transformation.

4.1 Future Adjacency

As with Chapter 3, let G = {G0, G1, . . . , GT} be a dynamic graph where Gt is

the static representation of G at time-step t. For a graph Gt = (V,Et) ∈ G, let
pt+1(u, v) = pt+1(v, u) be the probability that {u, v} ∈ Et+1. At time-step t, we say

that vertices u and v are future adjacent with probability pt+1(u, v). If pt+1(u, v) is

known for every possible edge {u, v} ∈ E then we can de�ne the |V | × |V | future
adjacency matrix Pt+1 such that the (u, v)th entry of Pt+1 is equal to pt+1(u, v).
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v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

St for Gt = (V,Et)

v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

S ′t for Gt = (V,Et)

Figure 4.1: Edge dynamic graph with future adjacency information example. Solid
lines represent edges that are included in Et and dotted lines represent edges that
are �highly likely� to be included in E+

t+1.

Regardless of whether Pt+1 is known, given the distribution of future adjacency

probabilities for {u, v} ∈ E\Et, we can estimate the number of clashes in a feasible

k-colouring St (for Gt) at time-step t+ 1 as

F(St) = E(pt+1) ·
k∑
i=1

(
|Si|
2

)
(4.1)

where pt+1 is simply the distribution of future adjacency probabilities for edges

in E\Et and E(pt+1) is the expected value of this distribution. If the number of

vertices in each colour class is approximately equal (i. e. |Si| ≈ n
k
for i = 1, . . . , k)

then Equation (4.1) can be simpli�ed to

F(St) = E(pt+1) ·
n(n− k)

2k
(4.2)

It should be apparent that if Pt+1 is unknown then, other than increasing k,

little can be done with regards to minimising F(St) because every edge needs to be

treated as having the same future adjacency probability. On the other hand, if Pt+1

is known then F(St) is given by

F(St) =
k∑
i=1

∑
u,v∈Si
u6=v

pt+1(u, v) (4.3)

which is more useful. Vertices in St can now be �recoloured� in an attempt to reduce

Equation (4.3), without increasing k or violating the constraints of the GCP. In doing

so, a more robust, feasible k-colouring for Gt can be produced that is likely to have

fewer clashes in time-step t + 1 and therefore be �closer� to a feasible colouring for

Gt+1 also.
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4.2 Two Stage Approach

As noted in Section 4.1, if Pt+1 is known then we can also attempt to reduce the

estimated number of clashes in St for time-step t + 1 by reducing F(St), given by

Equation (4.3). The approach outlined in Algorithm 4.1 is a two stage approach

that �rst attempts to �nd a feasible colouring for the current time-step with a user-

de�ned target number of colour classes (Lines 1-10). It then attempts to reduce the

estimated number of clashes for the following time-step (Lines 11-16).

Algorithm 4.1 Two Stage Approach for �Robust� Colourings

Input: a graph Gt+1, a target number of colour classes k?, a feasible colouring St
for Gt such that |St| ≥ k? and the future change information Pt+2

Output: a feasible colouring St+1 for Gt+1 such that |St+1| ≥ k?

1: Sbest ← ∅
2: St+1 ← St modi�ed in some way (see Sections 3.3 and 5.2)
3: k ← |St+1|
4: while not stopping criterion and |Sbest| 6= k? do
5: Attempt to make St+1 a feasible k-colouring for Gt+1

6: if St+1 is a feasible k-colouring for Gt+1 then
7: Sbest ← St+1

8: k ← k − 1
9: if Sbest = ∅ and a computational limit is reached then
10: k ← k + 1
11: Fbest ← F(Sbest) (see Equations (4.3) and (6.2))
12: while not stopping criterion do
13: Attempt to reduce F(St+1)
14: if F(St+1) < Fbest then
15: Sbest ← St+1

16: Fbest ← F(St+1)
17: St+1 ← Sbest
18: return St+1

Note that Stage 1 of this approach (Lines 1-10) is almost identical to Algo-

rithm 3.2 with the exception that a user-de�ned, target number of colour classes k?

must also be provided. For Stage 2 (Lines 11-16) a tabu search operator is imple-

mented that, at each iteration, attempts to reduce the expected number of future

clashes. Speci�c details regarding the design and performance of this tabu search

operator with be discussed in Section 4.3.

A two stage approach has previously been proposed by Thompson and Dowsland

[1998] for solving exam timetabling problems which, as shown in Section 1.4, can

be reformulated as GCPs. The �rst stage attempts to �nd a feasible timetable (i. e.

one in which no student must attend more than one exam simultaneously), and the

second stage attempts to optimise secondary objectives (e. g. reducing the number

of consecutive exams for students). This is essentially the same as the approach

outlined above, but here we only have one secondary objective: increase robustness

by reducing F(St+1).
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4.3 Method for Reducing Future Adjacency

The backbone of our method for increasing the robustness of a colouring at time-step

t is the tabu search operator that attempts to reduce F(St), the expected number

of future clashes in time-step t+ 1.

The main challenge when attempting to reduce F(St) is the requirement for

St to remain feasible for Gt. As mentioned in Section 2.2.1, neighbourhood move

operators designed to work in the feasible only solution space are useful here because

we wish to tackle a secondary objective rather than reduce the number of colour

classes. Therefore, we consider a tabu search operator that uses the Kempe-chain

interchange and pair-swap move operators.

4.3.1 Design Process

Although it is clear what objective function and neighbourhood move operators

should be used, in implementing our algorithm, experiments were conducted in

order to determine a few other parameters (e. g. tabu tenure). In this section we

discuss which options were considered and which options were ultimately chosen.

In all of the following discussions we compare the �nal expected number of future

clashes for the �best� colourings achieved and the time required by these methods

to complete 5000 iterations. To do this, we use a small set of test instances each

comprising of a single graph G0 and its future adjacency matrix P1. These test

instances have n = 500 vertices, a desired density of d ∈ {0.1, 0.5, 0.9}, and change

probability p ∈ {0.01, 0.025, 0.05}. For each test instance, G0 is constructed with

|V | = |V0| = n and each edge {u, v} ∈ E is included in E0 with probability d.

The future adjacency matrix P1 is populated with values sampled from the uniform

distribution U [0, 2pd
1−d ]. Five test instances were produced for each combination of n,

d and p, totalling 45 test instances.

Initial colourings for these test instances were produced using the DSatur algo-

rithm [Brélaz, 1979] described in Section 2.1, therefore the colourings are guaranteed

to be feasible. The number of colour classes remains �xed throughout the tabu search

procedure and equals the number of colour classes in the initial colouring produced

by DSatur.

Unless stated otherwise, all pair-wise comparisons were conducted using the

Wilcoxon signed rank test due to the non-normality of most of the data. The level

of signi�cance is set at α = 0.01.

�Tabu� Inverse Moves vs. �Tabu� Costs

Firstly, we wish to compare tabu search algorithms that consider either inverse

moves or costs (i. e. values of F(S)) for the tabu list. At each iteration, either the

inverse moves are made �tabu� for a �xed number of subsequent iterations, or the
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S1:

S2:

v1 v2 v3 v4 v5

v6 v7 v8 v9 v10

Figure 4.2: A feasible 2-colouring with the vertices in colour class S1 displayed in
the row above those in colour class S2. This �gure is identical to Figure 2.2.

resultant colouring's cost is made �tabu� such that no move operator that results in

a colouring with a cost equal to any cost on the tabu list can be chosen1 for a �xed

number of subsequent iterations. Making inverse moves tabu will be referred to as

the TM (i. e. tabu moves) method, and making costs tabu will be referred to as the

TC (i. e. tabu costs) method.

When we refer to the inverse moves of the Kempe-chain interchange or pair-swap

that transforms S into S ′, these are the labels of the associated Kempe-chain inter-

changes2 that will transform S ′ back into S. For example, consider the Kempe-chain

interchange applied to Kempe(v1, 1, 2) = {v1, v3, v6, v7} in Figure 4.2. The inverse

moves of this Kempe-chain interchange would be the Kempe-chain interchange ap-

plied to Kempe(v1, 1, 2), Kempe(v3, 1, 2), Kempe(v6, 2, 1), or Kempe(v7, 2, 1). The

advantage of using the labels in this way is that the tabu list can be stored in a

|V |×k matrix where k = |S| = |S ′| and the (i, j)th entry refers to the Kempe-chain

interchange applied to Kempe(vi, c(vi), j).

As this is the �rst comparison to be made, trials were conducted using two

di�erent methods of choosing a neighbourhood move (which was shown to have no

in�uence here) and four di�erent tabu tenures (50, 100, 250, and 500). Note that the

tabu search procedure was unable to complete 5000 iterations for test instances with

d = 0.1 when using a tabu tenure of 500. In this case, it is likely that a colouring

is found such that every possible neighbourhood move is an inverse move of at least

one of the previous 500 (or fewer) moves executed. Therefore, all neighbourhood

moves are simultaneously �tabu� and the algorithm is unable to continue. Note, this

issue is dealt with when implementing the �nal tabu search procedure in Section 4.5

by allowing random moves to be executed if such a scenario arises.

For almost all test instances and tabu tenures, TM was shown to identify �nal

colourings with a signi�cantly smaller number of expected future clashes compared

to TC (see Table 4.1). The one exception to this is for test instances with d = 0.9

when using a tabu tenure of 50 iterations, in which case no signi�cant di�erence

was observed between the methods. TM makes the labels of Kempe-chains tabu

rather than the Kempe-chains themselves, therefore as the colouring continues to be

1More speci�cally, no move operator that results in a colouring that is within ±10−6 of any
cost on the tabu list can be chosen.

2Remember that a pair-swap is the simultaneous execution of two Kempe-chain interchanges
applied to Kempe(v, c(v), c(u)) and Kempe(u, c(u), c(v)) such that |Kempe(v, c(v), c(u))| =
|Kempe(u, c(u), c(v))| = 1.
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Table 4.1: Median expected number of future clashes when using TM and TC within
the tabu search procedure. The �rst column indicates the �xed tabu tenure (T.T.)
used.

Best Move (BM ) Prioritise Swaps (PS )
p p

T.T. d M. 0.010 0.025 0.050 0.010 0.025 0.050
50 0.1 TM 7.367 18.455 36.986 7.809 19.458 38.957

TC 7.697 19.357 38.539 8.673 21.673 43.237
0.5 TM 13.961 34.534 70.181 14.071 35.117 69.225

TC 14.790 37.125 74.250 14.684 37.065 72.552
0.9 TM 32.735 81.056 165.663 32.010 82.869 171.194

TC 34.003 85.006 170.013 31.654 82.581 165.586
100 0.1 TM 7.338 18.362 36.708 7.967 19.885 39.856

TC 7.662 19.192 38.436 8.649 21.554 43.214
0.5 TM 13.184 33.297 65.846 13.014 32.694 66.334

TC 14.619 36.734 73.467 14.505 36.311 72.552
0.9 TM 28.466 70.468 139.313 28.636 69.862 139.836

TC 31.441 77.566 156.796 31.018 76.263 157.689
250 0.1 TM 7.332 18.331 36.801 7.685 19.287 38.446

TC 7.612 19.070 38.284 8.590 21.513 43.056
0.5 TM 12.701 31.641 63.765 12.685 31.392 63.833

TC 14.409 36.137 71.719 14.357 35.377 71.129
0.9 TM 25.153 63.107 126.631 24.316 62.833 126.804

TC 28.798 72.079 142.704 28.951 70.508 134.021
500 0.1 TM - - - - - -

TC - - - - - -
0.5 TM 12.665 31.536 63.570 12.567 31.587 61.876

TC 14.250 35.089 70.798 14.358 35.362 69.685
0.9 TM 24.463 61.425 122.329 24.631 59.598 121.617

TC 27.931 69.471 138.996 27.636 67.869 131.076

altered, the labels may no longer refer to the original Kempe-chains (i. e. the same

sets of vertices that the labels referred to when they were made tabu). On the other

hand, for TC, once a Kempe-chain changes such that the resultant cost is no longer

on the tabu list it can be executed again. Therefore labelled moves remain tabu for

longer under TM than TC, which means that more of the solution space may be

explored under TM.

It was also shown that for graphs with d ∈ {0.1, 0.5}, the TM method was able

to complete 5000 iterations signi�cantly faster than the TC method. The same

can also be shown for test instances with d = 0.9 when using a tabu tenure of 250

or 500 iterations. However, when using a tabu tenure of 50 or 100 iterations on

the same instances, it can be seen that the TC method requires signi�cantly less

time to complete 5000 iterations compared to the TM method. These results can

be observed in Table 4.2. The general increase in time required by TC is likely

caused by the way in which the tabu list is stored compared to TM. In TM, a

|V | × k matrix stores the tabu list such that determining whether a move applied

to Kempe(vi, c(vi), j) is tabu is as simple as looking up the (i, j)th entry of this

matrix. On the other hand, TC stores the tabu costs as an ordered list equal in

size to the tabu tenure. In order to determine whether a move is tabu under TC

requires comparing the cost of the move's resultant colouring against the costs on
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Table 4.2: Median time (in seconds) required for the tabu search procedure to
complete 5000 iterations when using TM and TC.

Best Move (BM ) Prioritise Swaps (PS )
p p

T.T. d M. 0.010 0.025 0.050 0.010 0.025 0.050
50 0.1 TM 5.175 5.124 5.135 4.942 4.961 4.938

TC 10.670 10.655 10.538 6.309 6.306 6.325
0.5 TM 4.706 4.705 4.697 4.683 4.717 4.705

TC 6.040 5.874 5.853 5.968 5.853 5.921
0.9 TM 6.625 6.718 6.725 6.620 6.767 6.711

TC 6.026 5.990 6.011 6.084 6.031 6.123
100 0.1 TM 5.106 5.108 5.103 4.979 4.983 4.944

TC 16.324 16.190 16.202 7.906 7.965 8.043
0.5 TM 4.725 4.740 4.717 4.702 4.734 4.737

TC 7.457 7.442 7.318 7.583 7.475 7.214
0.9 TM 6.613 6.697 6.677 6.608 6.729 6.755

TC 6.338 6.338 6.332 6.483 6.512 6.450
250 0.1 TM 5.092 5.114 5.064 5.101 5.093 5.090

TC 31.725 30.601 31.198 13.172 13.012 12.665
0.5 TM 4.766 4.764 4.780 4.759 4.786 4.792

TC 11.846 11.841 11.501 10.625 10.702 10.399
0.9 TM 6.599 6.719 6.715 6.672 6.753 6.732

TC 7.333 7.343 7.326 7.439 7.372 7.258
500 0.1 TM - - - - - -

TC - - - - - -
0.5 TM 4.867 4.852 4.830 4.849 4.853 4.850

TC 18.110 17.629 17.496 15.527 14.475 14.133
0.9 TM 6.649 6.727 6.719 6.660 6.794 6.741

TC 8.240 8.364 8.281 8.320 8.230 7.968

the ordered list, which clearly requires far more checks compared to TM.

It was decided that the TM method (i. e. making inverse moves �tabu�) would be

used within our tabu search procedure because it was shown to outperform the TC

method with regards to the quality of colourings and time requirements in almost

all cases tested. The few cases in which the TC method was able to outperform

the TM method with regards to run-time are associated with tabu tenures that are

unlikely to be used in practice (see later discussion).

Best Move vs. Prioritise Pair-Swap

Now, we compare two di�erent methods for choosing which neighbourhood move

is to be executed during each iteration of the tabu search procedure. The �rst

method chooses the best of all available non-tabu neighbourhood moves (i. e. the

Kempe-chain interchange or pair-swap that will result in the best cost change). The

second method prioritises pair-swaps, such that if a pair-swap is available (i. e. not

all pair-swaps are currently �tabu�) then this will be chosen over all possible Kempe-

chain interchanges even if an available Kempe-chain interchanges would result in a

better cost change. This second method was considered because preliminary trials

indicated that pair-swaps were utilised far less often than Kempe-chain interchanges.

The �rst method will be referred to as the best move (BM ) method and the second
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will be referred to as the prioritise swaps (PS ) method.

As with the previous comparison, trials were conducted using four di�erent tabu

tenures (50, 100, 250, and 500). Results presented are for trials using the TM

method from the previous discussion.

For test instances with d = 0.1, the BM method was able to achieve colourings

with a signi�cantly smaller number of expected future clashes compared to the

PS method. On the other hand, no signi�cant di�erences were observed for test

instances with d ∈ {0.5, 0.9}. Again, this can be seen in Table 4.1. Note that here,

the tabu tenure used within the tabu search procedure has no observable in�uence

on the results.

With regards to the time required to complete 5000 iterations, the PS method

requires signi�cantly less time than the BM method on some test instances with

d = 0.1 when using a tabu tenure of 50 or 100 iterations. In all other cases, there is

no signi�cant di�erence in the time required by either method (see Table 4.2).

It was decided that the BM method (i. e. choose the best Kempe-chain inter-

change or pair-swap) would be used within our tabu search procedure because it

was shown to have no signi�cant di�erence or to outperform the PS method with

regards to the quality of the colourings it achieves. For the cases in which the PS

method was able to outperform the BM method with regards to run-time, these

cases are again associated with tabu tenures that are unlikely to be used in practice

(see discussion below).

Tabu Tenure Length

Finally, we compare di�erent tabu tenures for our tabu search procedure. During

each iteration, the neighbourhood move (or moves) that would reverse the most

recently executed neighbourhood move are made �tabu� for a �xed number of sub-

sequent iterations de�ned by the given tabu tenure.

Results presented are for trials using the TM and BM methods from the previous

discussions.

Using the Friedman test with α = 0.01, no signi�cant di�erence was found for the

number of expected future clashes when using di�erent tabu tenures on test instances

with d = 0.1. On the other hand, signi�cant and negative correlations are observed

between tabu tenure and the number of expected future clashes on test instances

with d ∈ {0.5, 0.9} (i. e. as tabu tenure is increased, the expected number of future

clashes decreases). The corresponding correlation coe�cients range between -0.469

and -0.557 for test instances with d = 0.5 and between -0.714 and -0.766 for test

instances with d = 0.9.

In general, there is a negative relationship between the tabu tenure used and

the expected number of future clashes of the colourings achieved by the tabu search

procedure. This is to be expected as longer tabu tenures reduce the probability of
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Figure 4.3: Median expected number of future clashes of the �best� colouring
achieved via our tabu search procedure against tabu tenure for test instances with
d = 0.9.

�cycling� and increase the exploration of the solution space. However, as can be seen

in Figure 4.3, there seems to be a diminishing return with regard to this relationship.

For most test instances with d = 0.1, no signi�cant di�erence was observed in

the time required to complete 5000 iterations when using di�erent tabu tenures. In

the cases where a signi�cant di�erence was observed, for test instances p = 0.01, a

negative correlation with coe�cient -0.535 was also observed. Conversely, for test

instances with d = 0.5, signi�cant positive correlation was observed (i. e. as the

tabu tenure increases so too does the time required to complete 5000 iterations), as

shown in Figure 4.4. For these test instances, the correlation coe�cients are in the

range of 0.514 to 0.553. Tabu tenure appears to have no signi�cant e�ect on the

run-times for test instances with d = 0.9.

It is unclear why there is a trade-o� between quality and the time required to

complete 5000 iterations on test instances with d = 0.5. The number of checks

(i. e. checking whether a move is �tabu� or not) should remain the same regardless

of the tabu tenure as all moves must be considered either way. In fact, one would

hypothesise that there would be a negative relationship between run-time and tabu

tenure as only the costs of �non-tabu� moves are compared for selection.

For the following experiments, we decided to use a higher tabu tenure because the

main objective of this tabu search procedure is to decrease the number of expected

future clashes. Because we can see that there is a diminishing return for increasing

the tabu tenure, we have opted for 250 iterations as it is suitable for all test instances
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Figure 4.4: Median time (in seconds) required to complete 5000 iterations of our
tabu search procedure against tabu tenure for test instances with d = 0.5.

regardless of their desired density d.

4.3.2 Performance and Behaviour Analysis

In this section we now explore how our tabu search procedure behaves with regards

to reducing the expected number of clashes in a subsequent time-step.

To do this we use test instances consisting of a single graph G0 and its future

adjacency matrix P1. These test instances have n = 500 vertices, desired densities

d ∈ {0.1, 0.5, 0.9}, and change probability p = 0.05. For each test instance, G0 is

constructed with |V | = |V0| = n and each edge {u, v} ∈ E is included in E0 with

probability d. The future adjacency matrix P1 is populated with values sampled

from the uniform distribution U [0, 2pd
1−d ]. Twenty test instances were produced for

each combination of n, d and p, totalling 60 test instances.

Unlike the previous comparisons in Section 4.3.1, the number of colour classes in

a colouring will be user-de�ned as opposed to being set by the colourings produced by

DSatur. By doing this, it will be easier to determine the relationship between the

number of colour classes in a colouring and its expected number of future clashes.

Speci�cally, we use k? = 13, 14, 15, . . . , 23 for test instances with d = 0.1, k? =

49, 51, 53, . . . , 79 for test instances with d = 0.5, and k? = 125, 128, 131, . . . , 185 for

test instances with d = 0.9.

An initial colouring is produced using a modi�ed version of the Greedy algo-

rithm discussed in Section 2.1. The Greedy algorithm is used so that the vertices
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will occupy as many of the k? colour classes as possible before our tabu search pro-

cedure is applied (i. e. we wish to reduce the number of empty colour classes in the

initial colourings). This modi�ed version, outlined in Algorithm 4.2, attempts to

produce a feasible colouring for a given graph in a �greedy� fashion so long as the

number of colour classes does not exceed k?. If it is not possible to feasibly colour

a vertex without introducing a (k? + 1)th colour class then it is placed in a set of

�uncoloured� vertices U . If |U | > 0 after each vertex has been considered, then

each vertex in U is randomly assigned to one of the �rst k? colour classes, which

will introduce a total of |U | or more clashes. If a colouring is produced such that

the number of colour classes is less than k?, then an appropriate number of empty

classes are added to this colouring.

Algorithm 4.2 Modi�ed Greedy Algorithm

Input: a graph G = (V,E), an ordering of the |V | vertices {v1, . . . , v|V |}, and a
target number of colour classes k?

Output: a complete, improper k?-colouring S = {S1, . . . , Sk?} for G
1: S1 ← ∅
2: S ← {S1}
3: U ← ∅
4: for i← 1 to |V | do
5: success ← false
6: for j ← 1 to |S| do
7: if Sj ∪ {vi} is an independent set then
8: Sj ← Sj ∪ {vi}
9: success ← true
10: break
11: if not success and |S| < k? then
12: S|S|+1 ← {vi}
13: S ← S ∪ S|S|+1

14: else if not success and |S| = k? then
15: U ← U ∪ {vi}
16: if |U | > 0 then
17: for all v ∈ U do
18: x← random integer between 0 and k?

19: Sx ← Sx ∪ {v}
20: while |S| < k? do
21: S|S|+1 ← ∅
22: S ← S ∪ S|S|+1

23: return S = {S1, . . . , Sk?}

If the colouring produced by Algorithm 4.2 is infeasible (i. e. it contains clashes)

then the resultant colouring is passed to TabuCol [Hertz and de Werra, 1987]

which attempts to �nd a feasible k?-colouring for G. Here, we allow 900 seconds for

TabuCol to successfully identify a feasible k?-colouring, if this is not achieved then

we do not implement our tabu search procedure for reducing the expected number

of future clashes.
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Figure 4.5: Mean expected number of future clashes against target number of colour
classes (in clockwise order, starting from the top-left, graphs represent trials con-
ducted on test instances with d = 0.1, 0.5 and 0.9, respectively).

Once a feasible k?-colouring has been obtained, either by the modi�ed Greedy

algorithm or TabuCol, it is passed to our tabu search procedure for 10,000 itera-

tions. The �best� value for the expected number of future clashes observed and the

run time was recorded every 250 iterations.

In all but one case, our tabu search procedure was able to reduce the expected

number of clashes in the next time-step, i. e. Equation (4.3), from that of the initial

colourings. The expected number of future clashes of the initial and �nal colourings,

along with an �estimated� value3, have been plotted against k? in Figure 4.5. As can

be observed from this �gure, the amount of reduction between the initial colouring

and the �nal colouring (i. e. the �best� colouring achieved after 10,000 iterations)

increases as the value of k? increases. In fact, the correlation coe�cients between

k? and the amount of reduction (i. e. the distance between the lines of the graphs

in Figure 4.5) lie between 0.985 and 0.993 for the di�erent values of d.

It should be noted that the similarity between the �estimated� and initial number

of expected future clashes wanes as k? increases. This is because the modi�ed

3The �estimated� expected number of future clashes in Figure 4.5 is calculated using Equa-
tion (4.2). For our test instances, the expected adjacency values are sampled from a uniform
distribution with a lower bound of 0 and an upper bound of 2pd

1−d , i. e. p1 = U [0, 2pd
1−d ], therefore

E(p1) = pd
1−d .

71



Table 4.3: Median time (in seconds) required for our tabu search procedure to
complete 10,000 iterations.

d = 0.1 k? 13 14 15 16 17 18 19 20
runTime 9.029 8.816 9.061 9.352 9.564 9.746 9.957 10.187
k? 21 22 23
runTime 10.445 10.776 11.127

d = 0.5 k? 49 51 53 55 57 59 61 63
runTime 8.152 8.166 8.297 8.452 8.518 8.625 8.717 8.843
k? 65 67 69 71 73 75 77 79
runTime 9.015 9.150 9.291 9.446 9.594 9.810 10.027 10.202

d = 0.9 k? 125 128 131 134 137 140 143 146
runTime 11.255 11.354 11.197 11.148 11.240 11.401 11.509 11.669
k? 149 152 155 158 161 164 167 170
runTime 11.833 12.010 12.209 12.300 12.444 12.596 12.767 12.939
k? 173 176 179 182 185
runTime 13.146 13.327 13.587 13.767 14.062

Greedy algorithm adds empty colour classes in these cases in order to achieve

the target number of colour classes (see Lines 15-17 of Algorithm 4.2), whereas the

�estimated� value assumes all colour classes contain approximately equal numbers

of vertices.

A signi�cant, positive relationship can also be observed between k? and the time

required to complete 10,000 iterations, i. e. as k? increases, so too does the amount

of time required to complete 10,000 iterations (see Table 4.3). The Spearman rho

correlation coe�cients range between 0.934 and 0.990 for the three di�erent values of

d. This observation is to be expected, because the number of potential Kempe-chain

interchanges for a k?-colouring is of the order |V | × k?, which means, along with

the potential pair-swaps, the total number of neighbourhood moves to be considered

during each iteration also increases as k? increases.

Finally, it is worth highlighting that the majority of the reduction to the expected

number of future clashes takes place in the early stages of the tabu search procedure.

The reduction between iterations decreases as the tabu search procedure continues,

a pattern that is often observed with local search methods. This is clearly displayed

in Figure 4.6.

4.4 Trial Information

Now that we have shown that the expected number of future clashes F(S) of a

colouring S can be successfully reduced by the tabu search procedure described

above, we wish to investigate how this a�ects colourings when it is included within

our proposed two stage approach, i. e. Algorithm 4.1.
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Figure 4.6: Mean expected number of future clashes against the number of iterations
of our tabu search procedure completed for test instances with d = 0.5.

4.4.1 Test Instances

In these experiments our test instances are edge dynamic random graphs. For each

test instance we specify the number of vertices n = |V |, a desired density d, an

�expected� change probability p and a number of time-steps T . As in Chapter 3, we

use n ∈ {250, 500, 1000}4, d ∈ {0.1, 0.5, 0.9}, p ∈ {0.005, 0.01, . . . , 0.05} and T = 10.

For each combination of these parameters, 20 dynamic graphs were produced.

In each case, G0 is constructed such that every edge {u, v} ∈ E exists with

probability d. Then for t = 0, 1, . . . , T − 1, every edge in Et is copied to the set of

deleted edges E−t+1 with probability p and the edges in E\Et are copied to the set of

new edges E+
t+1 with probabilities sampled from the uniform distribution U [0, 2pd

1−d ].

By using this distribution, each edge in E\Et is copied to E+
t+1 with an expected

probability of pd
1−d which ensures that the density remains approximately equal over

all time-steps (see Section 3.4.1).

4.4.2 Algorithm Parameters

Here, we use DSatur [Brélaz, 1979], as opposed to RLF [Leighton, 1979], as our

constructive operator to produce an initial colouring for G0 of each test instance

and within Method 4. With the di�erence observed between the �estimated� and

4Unless stated otherwise, the results presented in Section 4.5 concern test instances with
n = 500. The relationships observed between the di�erent modi�cation operators were similar
regardless of the value of n. Therefore, to reduce the volume of results presented, only particularly
interesting di�erences will be addressed for test instances with n ∈ {250, 1000}.
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Table 4.4: Target number of colour classes k? used based on n and d. The �nal
column indicates the size of the increments (inc.) between the values of k? used.

k?

n d min. max. inc.
250 0.1 8 13 1

0.5 28 46 2
0.9 76 106 3

500 0.1 12 18 1
0.5 48 70 2
0.9 125 170 3

1000 0.1 21 32 1
0.5 92 134 3
0.9 240 325 5

initial expected number of future clashes for high values of k? in Figure 4.5, it was

believed that this would also be observed for even lower values of k? if RLF was

used, which was undesirable. On the other hand, using the Greedy algorithm did

not seem appropriate as this is known to produce initial colouring with signi�cantly

more colour classes than both DSatur and RLF in many cases (see Section 2.1).

Therefore, DSatur seemed like the best �middle-ground� choice.

The rest of the algorithm parameters for the �rst stage of Algorithm 4.1 are the

same as those used in Chapter 3 for Algorithm 3.2: TabuCol [Hertz and de Werra,

1987] and PartialCol [Blöchliger and Zu�erey, 2008] are implemented to tackle

the k-GCPs (i. e. Line 5 of Algorithm 4.1) and k is adjusted such that, if a feasible

k-colouring cannot be obtained within half of the allotted time limit, then k is

increased by 1, and so on (i. e. Lines 9 and 10 of Algorithm 4.1).

Unlike in Chapter 3, k is now capped such that it cannot be reduced below k?.

On the other hand, if an initial feasible colouring achieved has fewer than k? colour

classes then an appropriate number of empty colour classes will be added. The

values of k? used for a test instance with n vertices and desired density d are shown

in Table 4.4.

As described in Section 4.3, the tabu search operator for reducing the future

number of expected clashes (i. e. the second stage of Algorithm 4.1) makes inverse

moves �tabu� for a �xed tabu tenure, chooses the �best� available Kempe-chain

interchange or pair-swap at each iteration, and uses a tabu tenure of n
2
iterations. If

during an iteration there are no available moves (i. e. all Kempe-chain interchanges

and pair-swaps are currently �tabu�) then a random Kempe-chain interchange is

performed. As with TabuCol and PartialCol, this tabu search operator has an

aspiration criteria such that if the resultant colouring S ′ of a �tabu� move satis�es

F(S ′) < F(Sbest), then that move will be executed regardless of its �tabu� status.

The time limit remains �xed as 10 seconds per time-step. Here, the time limit is

cumulative over both stages of Algorithm 4.1 such that if more time is dedicated to

identifying a feasible k?-colouring St for Gt then less time is available for reducing

the F(St). Of course, if a feasible k?-colouring cannot be found then the second
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Table 4.5: Median time (in seconds) required to obtain an initial, feasible colouring.
Results for test instances with d = 0.1 are omitted due to their relatively small
values, which were deemed to be insu�ciently accurate to present.

p
d M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0.5 0 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015

1 1.732 2.683 2.504 2.887 3.136 3.362 3.572 3.409 4.126 3.534
2 1.920 2.278 2.511 2.582 3.058 3.097 2.324 2.723 3.058 3.058
3 1.950 2.192 2.644 2.434 3.027 3.144 3.401 3.237 3.175 2.395
4 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.9 0 0.016 0.016 0.016 0.016 0.016 0.031 0.016 0.016 0.016 0.016
1 5.055 5.351 5.312 5.226 5.733 5.406 5.320 5.296 5.421 5.554
2 4.431 5.008 5.039 5.008 5.008 5.039 5.008 5.008 5.086 5.008
3 4.368 4.922 5.039 5.055 5.047 5.023 5.024 5.008 5.024 5.047
4 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0 represents a time less than 10−3 seconds.
∗ indicates a time that is signi�cantly less than all others for the same values of d
and p.

stage of Algorithm 4.1 cannot be executed.

4.5 Results

4.5.1 Without Secondary Optimisation

Here we aim to illustrate that the relationships observed between the modi�cation

operators in Chapter 3 remain the same for these test instances. We also wish to

show that replacing RLF with DSatur causes the relationships to become slightly

shifted with regards to p. In Section 2.1 it was shown that the colourings produced

by DSatur generally have signi�cantly more colour classes than those produced by

RLF but, on the other hand, signi�cantly less time is required for DSatur to be

executed.

By setting k? equal to the minimum values in Table 4.4, our two stage approach

behaves in a similar manner to Algorithm 3.2. This happens because the minimum

values of k? in Table 4.4 were chosen such that a feasible k?-colouring is extremely

unlikely to be identi�ed within the 10 second time limit, therefore the entire time

limit will be dedicated to minimising the number colour classes.

Initial, Feasible Colourings

For all test instances, when Methods 1 to 3 are executed, the initial feasible colour-

ings achieved continue to have signi�cantly fewer colour classes compared to using

Methods 0 and 4, and require signi�cantly more time to do so. These observations

can be seen in Figure 4.7 and Table 4.5, respectively.

The initial feasible colourings produce by Method 4 have both signi�cantly fewer
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Figure 4.7: Mean number of colour classes in initial, feasible colourings on test
instances with |V | = 500. Graphs (a), (c) and (e) represent methods that operate
in the complete, improper solution space, graphs (b), (d) and (f) represent methods
that operate in the partial, proper solution space, and the rows from top to bottom
represent test instances with d = 0.1, 0.5 and 0.9, respectively.
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Table 4.6: Signi�cant di�erences between the number of colour classes in the initial
feasible colourings achieved by Methods 0 and 4.

p
n d S.S. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

250 0.1 C.I. X X X - O O O O O O
P.P. X X X - - O O O O O

0.5 C.I. X X X X X X X X X -
P.P. X X X X X X X X - -

0.9 C.I. X X O O O O O O O O
P.P. X X O O O O O O O O

500 0.1 C.I. X X X X - O O O O O
P.P. X X X X - O O O O O

0.5 C.I. X X X X X X X X X O
P.P. X X X X X X X X X O

0.9 C.I. X X X O O O O O O O
P.P. X X X O O O O O O O

1000 0.1 C.I. X X X X X X O O O O
P.P. X X X X X X X X X O

0.5 C.I. X X X X X X X O O O
P.P. X X X X X X X X O O

0.9 C.I. X X X O O O O O O O
P.P. X X X O O O O O O O

X - indicates that Method 4 achieves an initial colouring with signi�cantly fewer
colour classes than Method 0.
O - indicates that Method 4 achieves an initial colouring with signi�cantly more
colour classes than Method 0.

or signi�cantly more colour classes compared to using Method 0 dependent on p.

In this case, the values of p for which the number of colour classes is signi�cantly

reduced is increased in comparison to the results presented in Chapter 3. This can

clearly be observed by comparing Figures 3.4 and 4.7, and Tables 3.2 and 4.6. This

observation is most likely due to the signi�cant di�erence in the number of colour

classes in the colourings produced by DSatur in comparison to those produced by

RLF. As in Chapter 3, the amount of time required by Method 4 to produce an

initial feasible colourings is signi�cantly less compared to Method 0.

The similarity of the results when using Methods 2 and 3 continue here. Sig-

ni�cant di�erences in the number of colour classes in the initial colourings are only

observed for some test instances with n ∈ {500, 1000} and d = 0.9, where Method 2

has signi�cantly fewer. There is either no signi�cant di�erence in the time required

to achieve an initial feasible colouring or Method 2 is signi�cantly faster. Also, there

is either no signi�cant di�erence in the number of PartialCol iterations required

to achieve an initial feasible colouring or Method 2 requires signi�cantly more.

One piece of information that was not available for comparison in Chapter 3 is

the initial number of �uncoloured� vertices (i. e. |U |) after Methods 2 and 3 were

implemented. As can be seen in Table 4.7, Method 3 produces initial colourings

with signi�cantly fewer �uncoloured� vertices than Method 2 dependent on n, d and

p. This makes sense as |E+
t+1| ≈

pdn(n−1)
2

and is therefore dependent on n, d and p
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Table 4.7: Signi�cant di�erences between the number of �uncoloured� vertices in the
initial colourings produced by Methods 2 and 3.

p
n d 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

250 0.1 - - - - - X X X X X
0.5 - - X X X X X X X X
0.9 X X X X X X X X X X

500 0.1 - - - - X X X X X X
0.5 - X X X X X X X X X
0.9 X X X X X X X X X X

1000 0.1 - X X X X X X X X X
0.5 X X X X X X X X X X
0.9 X X X X X X X X X X

X - indicates that Method 3 achieves an initial colouring with signi�cantly fewer
�uncoloured� vertices than Method 2.

also. Although the information is not available for comparison, it is believed that

these results will hold true for the experiments in Chapter 3 because the constructive

operator should bare little to no in�uence on this particular metric.

Final, Feasible Colourings

The Friedman test with signi�cance level α = 0.01 shows no signi�cant di�erence

in the number of colour classes of the �nal, feasible colourings achieved when using

any of the modi�cation operators on test instances with n = 250 and all values of d

and p, n = 500, d = 0.1 and all values of p, and n = 500, d = 0.5 and most values of

p.

In comparison to Method 0, Method 1 was found to produce �nal, feasible colour-

ings with signi�cantly fewer colour classes, for test instances with d = 0.5 and small

values of p. On the other hand, Methods 1 to 3 achieve �nal, feasible colourings

with signi�cantly more colour classes than Method 0 for d = 0.9 with some values of

p. Using Method 4 was also shown to achieve �nal, feasible colourings with signi�-

cantly fewer colour classes than those achieved when using Methods 0 to 3 for test

instances with d ∈ {0.5, 0.9} and some values of p. These observations are again

almost identical to the those presented in Section 3.5.2.

When using Methods 1 to 3, the time required5 to achieve a �nal, feasible colour-

ing was found to be signi�cantly less for test instances with d = 0.1 and most values

p compared to Methods 0 and 4. This is also true on the same test instances for

Method 3 compared to Method 0. Unlike Methods 1 to 3, Method 4 did not require

signi�cantly more time than Method 0 for any test instances in order to achieve

�nal, feasible colourings. Moreover, for test instances with d = 0.1 and all values of

p, and d = 0.5 and some low values of p, it required signi�cantly less time. These

5Remember that time comparisons for �nal colourings only correspond to trials where the �nal,
feasible colourings achieved have an equal number of colour classes.
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Table 4.8: Median time (in seconds) required to obtain �nal, feasible colourings with
an equal numbers of colour classes across all modi�cation operators for the given
solution space. As with Table 4.5, results for test instances with d = 0.1 are omitted
as they were deemed to be insu�ciently accurate to present.

p
d S.S. M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0.5 C.I. 0 3.947 3.682 3.245 3.276 3.799 3.417 3.316 3.931 2.839 2.901

1 1.607 2.824 3.058 3.385 3.167 3.783 3.635 3.931 4.227 3.572
4 0.874∗ 1.622 2.348 2.325 3.526 2.801 2.987 3.151 3.166 3.105

P.P. 0 3.151 3.284 2.824 2.551 2.925 2.770 2.652 2.87 3.237 2.910
2 2.074 2.075 2.589 3.019 3.791 3.370 2.418 3.089 3.440 2.722
3 2.262 2.668 2.871 2.73 2.909 3.433 3.759 3.245 3.136 2.793
4 1.638 2.442 2.418 2.301∗ 2.777 2.754 3.198 2.387 2.847 2.761

0.9 C.I. 0 5.662 5.351 4.977 6.052 4.586 4.882 5.710 4.695 5.195 4.984
1 6.661 7.191 7.129 7.442 7.894 7.378 7.559 7.550 7.488 7.933
4 6.224 3.993∗ 4.711 5.507 4.150 5.616 6.139 5.070 5.132 4.851

P.P. 0 4.142 4.820 6.131 5.179 4.773 4.087 4.664 4.376 5.398 4.953
2 4.431 5.647 5.234 5.889 5.881 6.661 6.318 6.053 6.396 6.170
3 5.624 5.460 6.076 5.226 5.819 6.645 6.910 7.075 6.763 5.850
4 4.290 4.399 4.564 5.491 4.040 3.759 4.649 4.228 4.836 5.359

∗ indicates a time that is signi�cantly less than all others for the same solution
space, and values of d and p.

results are displayed in Table 4.8.

4.5.2 With Secondary Optimisation

We now consider the situation where the future adjacency matrix P(t+1) is known

for every time-step t ∈ {0, . . . , T −1}. By using this additional information we have

implemented the approach outlined in Algorithm 4.1 in an attempt to produce more

robust colourings. Here we explore how our approach a�ects the initial number of

clashes at the start of each time-step, the number of colour classes in the initial,

feasible colourings achieved, and the time required to achieve these colourings. Fi-

nal, feasible colourings will not be discussed, because altering the value of k? will

naturally cap the number of colour classes in these colourings.

Initial Clashes

The secondary objective of the approach outlined in Algorithm 4.1 is to reduce the

value of F(St) such that the returned colouring St has fewer expected future clashes

for Gt+1. To measure the e�ectiveness of our approach, we compare the number of

clashes at the start of the following time-step when using our approach against an

algorithm that does not include a secondary optimisation stage (i. e. Algorithm 4.1

with Lines 11-16 omitted).

Our results show that the number of clashes at the start of the following time-

step is signi�cantly reduced dependent on both k? and p. As k? becomes larger than

χ(Gt+1), we begin to observe fewer clashes at the start of the time-step t + 1 for
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Table 4.9: Signi�cant di�erences between the number of clashes at the start of each
time-step when using modi�cation operator 4 (solveClashes) within our approach
(Algorithm 4.1) compared against an algorithm without any secondary optimisation
on test instances with d = 0.1.

p
k? 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
12 - - - - - - - - - -
13 - - - - - - - - - X
14 - - - X X X X X X X
15 - X X X X X X X X X
16 - X X X X X X X X X
17 X X X X X X X X X X
18 X X X X X X X X X X

X - indicates signi�cantly fewer clashes at the start of each time-step when our two
stage approach is employed compared to when it is not.
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Figure 4.8: Mean number of clashes in St for time-step t + 1 against the target
number of colour classes k? for test instances with d ∈ {0.5, 0.9} and p = 0.05 whilst
implementing modi�cation operator 1 (calculateClashes).

higher values of p. This is likely due to the fact that as k? increases, so too does the

number of feasible k?-colourings, which grants more opportunities for our method

to reduce F(St). Moreover, as k? increases, signi�cant reductions are observed on

test instances with decreasing values of p.

For example, consider test instances with n = 500 and d = 0.1 where it is likely

that χ(Gt) ≈ 12 or 13 for all t ∈ {1, . . . , T} (illustrated in Table 4.9). When using

Method 4 within our approach and operating in the complete, improper solution

space, signi�cantly fewer clashes were observed for k? = 13 with p = 0.05, k? = 14

with p ≥ 0.02, k? ∈ {15, 16} with p ≥ 0.01, and k? ∈ {17, 18} with all values of p.

It can also be shown that the magnitude of the reduction is signi�cant and

positively correlated with k? for all modi�cation operators. This can be seen in

Figure 4.8 where the two lines in each graph (corresponding to the omission and

inclusion of secondary optimisation) diverge as the value of k? increases.

Reducing the number of clashes at the start of a time-step has a knock-on a�ect
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Table 4.10: Number of �uncoloured� vertices in the initial colourings produced by
Method 3 (uncolourMostClashing) on test instances with d = 0.1. The second
column indicates whether secondary optimisation (S.O.) was employed or not (Y
and N correspond to yes and no respectively).

p
k? S.O. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
12 N 5.460 10.290 15.010 19.905 23.360 28.385 32.405 36.555 39.855 44.270

Y 5.395 9.895 14.990 19.570 23.730 27.845 32.155 36.695 40.395 44.080
13 N 5.360 10.325 14.830 19.550 24.215 28.285 32.430 36.855 40.460 44.760

Y 5.290 9.745 14.350 19.260 23.175 27.265 31.725 35.970 39.545 43.235∗

14 N 5.060 9.295 13.500 18.345 22.455 26.615 30.170 34.400 37.170 40.860
Y 4.780 9.025 12.885 17.345∗ 20.970∗ 25.350 27.920∗ 31.855∗ 36.095 39.455∗

15 N 4.620 8.655 12.755 17.135 20.760 24.925 28.375 32.515 35.585 38.625
Y 4.100∗ 8.370 11.440∗ 15.480∗ 19.200∗ 22.965∗ 25.525∗ 29.490∗ 33.030∗ 35.820∗

16 N 4.440 8.150 11.975 16.245 19.565 23.210 26.680 30.530 33.380 37.655
Y 4.040 7.470 10.440∗ 13.970∗ 17.405∗ 20.400∗ 23.160∗ 26.860∗ 29.100∗ 32.255∗

17 N 4.330 8.005 11.435 15.810 18.930 22.445 25.815 29.235 31.760 35.540
Y 3.415∗ 6.835∗ 9.370∗ 12.580∗ 15.690∗ 18.585∗ 21.415∗ 23.920∗ 26.575∗ 30.045∗

18 N 4.275 7.910 11.235 15.295 18.405 21.665 24.770 28.340 30.785 34.405
Y 3.000∗ 6.140∗ 8.685∗ 11.765∗ 14.235∗ 17.180∗ 19.290∗ 22.425∗ 25.235∗ 27.165∗

∗ indicates colourings with signi�cantly fewer �uncoloured� vertices for the same
values of k? and p.

with regards to the number of �uncoloured� vertices in the colourings produced by

Methods 2 and 3. Signi�cant reductions in the number of �uncoloured� vertices is

dependent on k? and p in the same way as for clash reduction, i. e. as k? increases

the value of p for which signi�cant di�erences are observed decreases. This is clearly

shown in Table 4.10. Starting with a partial, proper colouring with signi�cantly

fewer �uncoloured� vertices should also be bene�cial with regards to the time required

to identify an initial feasible colouring.

Initial, Feasible Colourings

Here, we assume that if a colouring St has fewer clashes for the following time-

step, then the optimisation operators should require less time to identify initial,

feasible colourings. It might also be possible that these initial, feasible colourings

will have fewer colour classes. We now investigate whether our results support these

hypotheses.

In our experiments we found that secondary optimisation of F(St) signi�cantly
reduced the time required to achieve initial, feasible colourings when using Methods 1

to 3 for most test instances with the following parameters d = 0.9, k? ≥ 143 and

p ≥ 0.01, 0.02 and 0.015, respectively. For these test instances, we also observed a

high level of reduction with regards to the number of clashes at the start of a time-

step, which supports our hypothesis that reducing clashes leads to reduced time

requirements. Conversely, there appears to be no e�ect on the number of colour

classes in the initial, feasible colouring achieved when using Methods 1 to 3. This is
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Table 4.11: Signi�cant di�erences between the time required to achieve an initial,
feasible colouring when using modi�cation operator 1 (calculateClashes) within our
approach (Algorithm 4.1) compared against Method 0 on test instances with d = 0.9.

p
k? 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
125 O O O O O O O O O O
128 O O O O O O O O O O
131 O O O O O O O O O O
134 O O O O O O O O O O
137 O O O O O O O O O O
140 - O O O O O O O O O
143 X X O O O O O O O O
146 X X - O O O O O O O
149 X X X X - O O O O O
152 X X X X X - - O O O
155 X X X X X X X X - O
158 X X X X X X X X X -
161 X X X X X X X X X X
164 X X X X X X X X X X
167 X X X X X X X X X X
170 X X X X X X X X X X

X - indicates that our two stage approach with Method 1 requires signi�cantly less
time than Method 0.
O - indicates that our two stage approach with Method 1 requires signi�cantly more
time than Method 0.

unsurprising because the number of colour classes in the initial feasible colouring is

usually equal to the number of colour classes in the �best� colouring for the previous

time-step which is now capped by k?.

However, these modi�cation operators are still able to produce initial, feasible

colourings with signi�cantly fewer colour classes than Method 0, provided that k? is

small enough (i. e. k? ≤ 15, 66 and 164 for test instances with d = 0.1, 0.5 and 0.9

respectively). In addition, the time required to achieve these colourings is dependent

on both k? and p, as illustrated in Table 4.11. Therefore, our secondary optimisation

when used in conjunction with Methods 1 to 3 can produce initial, feasible colourings

with fewer colour classes and requires less time to do so in comparison to Method 0

for low values of k? and p.

For Method 4 there is no signi�cant di�erence in the time required to reach

an initial, feasible colouring when including or omitting the secondary optimisation

phase in most cases. In the few instances where di�erences do occur (for test in-

stances with d = 0.9, operating in the complete, improper solution space), there

are no observable patterns with regards to the values of k? and p. In comparison

to Method 0, for all values of k?, d and p, Method 4 requires signi�cantly less time

to achieve initial, feasible colourings for the same reasons outlined in Sections 3.5.1

and 4.5.1.

With regards to the number of colour class in the initial, feasible colourings

achieved by Method 4, any signi�cant di�erences when compared against omitting
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Figure 4.9: Mean number of colour classes in initial, feasible colourings for test
instances with d = 0.5, k? = 60 (a) and d = 0.9, k? = 149 (b) whilst implementing
modi�cation operator 4 (solveClashes) in the complete, improper solution space.

the secondary optimisation appear to be dependent on k?. For low values of k?

there are no signi�cant di�erences. For mid-range to high values of k? there is a

signi�cant reduction (examples of which are illustrated in Figure 4.9). On the other

hand, signi�cant increases were observed for test instances with d = 0.1, the highest

values of k? and low values of p. When k? is much larger than χ(G) for a given

graph G, our algorithm is more likely to �nd an initial, feasible k-colouring for G

such that k < k? and, therefore, empty colour classes will be added to this colouring

(see Section 4.4.2). During secondary optimisation, it is likely that vertices are then

moved into these empty colour classes and, subsequently, these colour classes are less

likely to feasibly accommodate �newly clashing� vertices at the start of the following

time-step. Therefore, depending on the test instance, our experiments appear to

both support and contradict our hypothesis with regards to secondary optimisation

leading to initial, feasible colourings with fewer colour classes.

In comparison to Method 0, the number of colour classes in the initial, feasible

colouring produced by this modi�cation operator are dependent on k? and p, similar

to the case without future adjacency information. For low values of k? and p, there

are signi�cantly fewer colour classes and vice versa for high values of k? and p. As

k? increases, the value of p decreases, for which these signi�cant di�erences can be

observed, as illustrated in Table 4.12.

Method 2 (uncolourClashes) vs. Method 3 (uncolourMostClashing)

The value of k? has a few notable e�ects on the behaviour of Methods 2 and 3

in comparison with one another. As we saw in Section 4.5.1, dependent on d and

p, Method 3 produces initial colouring with signi�cantly fewer �uncoloured� vertices

compared to those produced by Method 2. Yet again, k? also e�ects this relationship,

such that as k? increases the values of p for which this signi�cant di�erence is
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Table 4.12: Signi�cant di�erences between the number of colour classes in the ini-
tial, feasible colourings achieved when using modi�cation operator 4 (solveClashes)
within our approach (Algorithm 4.1) compared against Method 0 on test instances
with d = 0.5.

p
k? 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
48 X X X X X X X X - O
50 X X X X X X X X X O
52 X X X X X X X X - O
54 X X X X X X - O O O
56 X X X X - O O O O O
58 X X X O O O O O O O
60 X X O O O O O O O O
62 - O O O O O O O O O
64 O O O O O O O O O O
66 O O O O O O O O O O
68 O O O O O O O O O O
70 O O O O O O O O O O

X - indicates that our two stage approach with Method 4 achieves colourings with
signi�cantly fewer colour classes than Method 0.
O - indicates that our two stage approach with Method 4 achieves colourings with
signi�cantly more colour classes than Method 0.

observed increases (see example in Table 4.13).

The number of cases where Method 2 achieves initial feasible colourings with

signi�cantly fewer colour classes than Method 3 decreases as the value of k? increases.

This is likely due to the natural capping of k? with regards to colour classes.

As k? increases, the number of cases in which Method 2 requires signi�cantly

less time to achieve an initial feasible colouring compared to Method 3 increases.

This is likely due to the extra time required by Method 3 to transform a feasible

colouring for Gt into a partial, proper colouring for Gt+1 (see Section 3.5.1). As the

number of clashing vertices decreases, the time required by Method 2 to produce a

partial, proper colouring will also decrease which will allow PartialCol to begin

solving a k-GCP earlier than if Method 3 is implemented.

Finally, as k? increases the number of cases in which Method 3 requires signi�-

cantly fewer iterations of PartialCol to identify a feasible colouring also increases,

especially for test instances with d = 0.9, p ≥ 0.04 and k? ≥ 158. This is likely due

to the fact that the number of �uncoloured� vertices decreases as k? increases, which

would imply that the initial colouring produced by Method 3 is �closer� to a feasible

colouring. For the test instances mentioned, the colour classes are likely to contain

fewer vertices which would imply that it is also more likely for an �uncoloured� ver-

tex to be transferred to an existing colour class without introducing clashes, and

therefore di�erent vertices being transferred to the set of �uncoloured� vertices. De-

spite this reduction in the number of PartialCol iterations, Method 2 generally

does not require any additional time to achieve an initial feasible colouring in the
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Table 4.13: Signi�cant di�erences between the number of �uncoloured� vertices in
the colourings produced by Methods 2 and 3 after secondary optimisation has been
employed on test instances with d = 0.5.

p
k? 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
48 - - X X X X X X X X
50 - - X X X X X X X X
52 - X X X X X X X X X
54 - - X X X X X X X X
56 - X X X X X X X X X
58 - - X X X X X X X X
60 - - - X X X X X X X
62 - - X X X X X X X X
64 - - - - X X X X X X
66 - - - X - X X X X X
68 - - - X - X X X X X
70 - - - - - - X X X X

X - indicates that Method 3 achieves initial colourings with signi�cantly fewer �un-
coloured� vertices than Method 2.

same cases.

As concluded in Chapter 3, it appears that it is more bene�cial to employ

Method 2 rather than Method 3. Not only are its results better more often than vice

versa, but it is easier to implement and therefore requires less time to be executed.

4.6 Conclusions

In this chapter we have introduced the concept of future adjacency and proposed

a two-stage approach for the edge dynamic GCP which �rst attempts to identify a

feasible colouring and then, using future adjacency information, attempts to make

the colouring more robust with regards to potential future change. In order to

achieve this secondary objective, we have introduced a tabu search procedure which

maintains the feasibility of a colouring for the current time-step whilst attempting

to reduce the estimated number of clashes in the subsequent time-step.

Our experiments have shown that changing the constructive operator does not

a�ect the relationships observed in Chapter 3 between the modi�cation operators

other than shifting the value of p for which the observations hold, in some cases.

By using future adjacency information to reduce the estimated number of clashes

in the following time-step, the number of clashes observed at the start of each time-

step is signi�cantly reduced for higher values of k? and p. In some cases, reducing

the initial number of clashes has also reduced the amount of time required to achieve

initial, feasible colourings and the number of colour classes in these colourings.

All of the relationships observed between Methods 1 to 4 against Method 0 in

Chapter 3 continue to hold when our two-stage approach is used here. However,

the relationships also become dependent on the value of k?, with the strength of the
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statements diminishing as the value of k? increases.

There also appears to be a clear relationship between the value of k? and the

�robustness� of the colourings achieved. By design, if more time is dedicated to

reducing the number of colour classes in a colouring, such as for cases with low

values of k?, then less time will be available for the secondary optimisation, which

tackles �robustness�. However, we have also observed that as k? approaches χ(Gt)

for a given graph Gt then there are fewer feasible k?-colourings for Gt and therefore

the neighbourhood of moves for the secondary optimisation is also reduced.

We believe that our two-stage approach is not hampered by its design, because

even if more time was available for the secondary optimisation stage, it is unlikely

to perform much better for low values of k?. In other words, as k? approaches χ(Gt)

for a given graph Gt, the amount of improvement attainable with regards to the

secondary objective decreases. Also, it was shown that most of the improvements

with regard to the secondary objective will be realised within earlier iterations,

such that running the secondary optimisation stage for longer periods of time has

diminishing returns. Therefore, by design, when there is the most to be gained with

regards to the secondary objective (i. e. when k? is large), more time is available for

secondary optimisation, and vice versa.

Key Findings and Recommendations

• Using future adjacency information within our two-stage approach leads to a

signi�cant decrease in the number of clashes observed in the following time-

step (i. e. increased robustness).

• By increasing the robustness of a colouring to future changes, bene�ts are

observed with regards to the quality and time required to achieve an initial

feasible colouring via our modi�cation approach in the following time-step.

• A clear inverse relationship between quality and robustness has been demon-

strated, we therefore suggest that the user prioritises between the two objec-

tives based on their preferences.
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Chapter 5

Modifying Colourings for Vertex

Dynamic Random Graphs without

Future Change Information

In Section 3.1, two separate cases of dynamic graphs were proposed: edge dynamic

and vertex dynamic. In this chapter we shift our focus from the edge dynamic GCP

to the vertex dynamic GCP.

Vertex dynamic graphs may be of particular interest when considering real-world

problems in which the �objects� within that problem change over time. For exam-

ple, the dynamic frequency assignment problem [Dupont et al., 2009] deals with

a communication network where additional locations (the �objects� of a frequency

assignment problem that are represented by vertices in the associated GCP) can be

added to an existing network, therefore altering the vertex set, and subsequently

the edge set, of the associated GCP.

In this chapter we will introduce vertex dynamic graphs, as well as new modi�-

cation operators (or methods) to be used within the modi�cation approach outlined

in Chapter 3. Results will then be presented for the modi�cation approach, as it is

applied to the vertex dynamic GCP without future change information.

5.1 Vertex Dynamic Graphs

With vertex dynamic graphs the changes are applied to the vertex set Vt. This in

turn a�ects the edge set Et, as edges incident to deleted vertices will themselves

need to be deleted. Similarly, new edges will be needed to connect any new vertices

to the existing ones, unless the new vertices are intended to be isolated.

For a vertex dynamic graph G, consider the graph Gt = (Vt, Et) at time-step t.

To get to time-step t+ 1 we must de�ne a set of deleted vertices V −t+1 ⊆ Vt and a set

of new vertices V +
t+1. The vertex set for time-step t+ 1 is then de�ned, in a similar

fashion to Et+1 for edge dynamic graphs (see Section 3.1), as Vt+1 = (Vt\V −t+1)∪V +
t+1.
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Figure 5.1: Vertex dynamic graph example

Once V −t+1 and V
+
t+1 have been de�ned, sets of deleted edges E−t+1 and new edges

E+
t+1 also need to be de�ned. The set of deleted edges is de�ned as E−t+1 = {{u, v} ∈

Et : u ∈ V −t+1 or v ∈ V −t+1} (i. e. E−t+1 is the set of edges in Et that are incident

to the deleted vertices) and the set of new edges is de�ned as E+
t+1 ⊆ {{u, v} ∈

Et+1 : u ∈ V +
t+1 or v ∈ V +

t+1} where Et+1 is the set of all
(|Vt+1|

2

)
possible edges

between vertices in Vt+1 (i. e. E+
t+1 is a set of connecting edges to the set of new

vertices). The edge set for time-step t+1 is then de�ned as for edge dynamic graphs,

Et+1 = (Et\E−t+1) ∪ E+
t+1.

An example of how a vertex dynamic graph can change between time-steps is

illustrated in Figure 5.1. Here, we de�ne the set of deleted vertices as V −t+1 = {v7, v9}.
Subsequently, the set of deleted edges is de�ned as E−t+1 = {{v1, v7}, {v3, v7}, {v4, v7},
{v5, v7}, {v6, v7}, {v6, v9}, {v7, v9}, {v9, v10}}. Finally, the sets of new vertices and

edges are de�ned as V +
t+1 = {v11, v12, v13} and E+

t+1 = {{v4, v12}, {v5, v11}, {v6, v11},
{v6, v12}, {v8, v13}, {v10, v12}, {v10, v13}, {v11, v12}, {v12, v13}} respectively.

A vertex dynamic graph could be used to model a real-world problem where

the size of the problem changes over time. For example, consider a communication

network where the number of objects in the network (e.g. telephone masts) changes

over time. The objects within the network can be represented by a changing vertex

set Vt where t represents a speci�c snapshot in time. For this particular problem,

an edge will be present between two vertices if their associated objects are located

within a certain proximity of each other. Assuming the objects do not move once

they have been established, the constraints (represented by an edge set Et) will only

alter with respect to the objects being added to and/or removed from the network

(i. e. the edges incident to the vertices in V −t+1 and V
+
t+1).

A well-known variant of the GCP is the on-line graph colouring problem. This

problem is actually a special case of the vertex dynamic graph colouring problem.

At each time-step, a single vertex is introduced along with its connecting edges and
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must be coloured based on the information available up to and including the current

time-step. To use our notation for this problem we would de�ne V −t+1 = ∅ and V +
t+1

such that |V +
t+1| = 1. Most research on the on-line graph colouring problem has

concerned worst-case behaviour of algorithms. For example, Lovász et al. [1989]

have shown that if G = (V,E) is a bipartite graph with |V | = n, then there exists

an algorithm A such that

χA(G) ≤ 2 log2 n (5.1)

where χA(G) is the maximum number of colour classes in a colouring achieved by A

for G. Bounds regarding the behaviour of the Greedy constructive algorithm have

been presented by Gyárfás and Lehel [1988], and empirical results in the same area

have been presented by Ouerfelli and Bouziri [2011].

Vertex Dynamic GCP vs. Edge Dynamic GCP

Before we explore the vertex dynamic GCP in its own right, it is worth considering

it in comparison to the edge dynamic GCP, as discussed in Chapter 3. In particular,

it is worth highlighting the theoretical di�erence between using a change probability

of p for the vertex dynamic GCP compared to that of an edge dynamic GCP.

Suppose we have an edge dynamic graph with parameters n, d and p (as described

in Section 3.4.1) and a feasible k-colouring St = {S1, . . . , Sk} for Gt. In the worst

case scenario, every new edge in E+
t+1 will relate to a pair of vertices that are in the

same colour class of St. Therefore, the maximum number of clashes that can be

introduced between time-steps t and t+ 1 is given by

min{
k∑
i=1

(
|Si|
2

)
, |E+

t+1|} ≈ min{n(n− k)

2k
,
n(n− 1)pd

2
} (5.2)

The approximation on the RHS of Equation (5.2) assumes that each colour class of St
contains approximately the same numbers of vertices, i. e. |Si| ≈ n

k
for i = 1, . . . , k.

Now consider a vertex dynamic graph with parameters n, d and p, and let St be
a feasible k-colouring for Gt. Here, the worst case scenario would be realised if every

new vertex in V +
t+1 were assigned to the colour class Si ∈ St that contains the most

vertices (i. e. |Si| ≥ |Sj| for all j ∈ {1, . . . , k}\{i}) and that each vertex in Si is also

adjacent to every vertex in V +
t+1 (i. e. {Si × V +

t+1} ∩E+
t+1 = {Si × V +

t+1}). Therefore,
the maximum number of clashes that can be introduced between time-steps t and

t+ 1 is given by

|V +
t+1| · max

i=1,...,k
{|Si|} ≈

n2p

k
(5.3)

As with Equation (5.2), the approximation on the RHS of Equation (5.3) assumes

that each colour class of St contains approximately the same numbers of vertices.

It also assumes that |V +
t+1| ≈ np, as will be the case for our test instances (see

Section 5.3.1).
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As the parameters n and d increase for G = {G0, G1, . . . , GT}, so too does the

feasible number of colour classes required in each time-step of G, i. e. χ(Gt). For

test instances with d ∈ {0.5, 0.9}, we can show that np < n−k
2

and n
k
< (n−1)d

2
for all

values of n, p and k used in our experiments, such that k ≥ χ(Gt). This implies that

the worst case scenario for the vertex dynamic GCP, with regards to clashes being

introduced, is less extreme than that of the edge dynamic GCP on test instances

with the same parameter values.

Let us now consider �uncoloured� vertices instead of clashes. For an edge dynamic

graph with parameters n, d and p, the maximum number of vertices in the set of

�uncoloured� vertices U when transforming a feasible k-colouring St for Gt into a

partial, proper k-colouring for Gt+1 is given by

min{n− k, |E+
t+1|} ≈ min{n− k, n(n− 1)pd

2
} (5.4)

In this situation, every new edge in E+
t+1 will again relate to a pair of vertices which

are in the same colour class of St. Within each of these pairs, at least one vertex

involved will be transferred to U , which if done in a certain manner will result in

|U | = |E+
t+1|.

On the other hand, the worst case scenario for the vertex dynamic problem is

that each new vertex in |V +
t+1| is adjacent to at least one vertex in each colour class

of St. Therefore, the maximum number of vertices in the set of �uncoloured� vertices

U when transforming St into a partial, proper k-colouring for Gt+1 is given by

|V +
t+1| ≈ np (5.5)

It is clear that the worst case scenario for the vertex dynamic GCP, with regards

to �uncoloured� vertices, is again less extreme in comparison to the edge dynamic

GCP on test instances with the same parameter values. It is therefore unsurprising

that the results presented towards the end of this chapter are similar to those pre-

sented for the edge dynamic GCP in Section 3.5 while allowing for higher values of

p.

5.2 Modi�cation Operators for the Vertex Dynamic

GCP

As with the edge dynamic GCP, it is worth noting that a feasible colouring at time-

step t will not remain feasible at time-step t+1 under the assumption that V −t+1 and

V +
t+1 are non-empty. In this case, a feasible colouring for Gt will not include any of

the new vertices in V +
t+1 and will still include the deleted vertices in V −t+1. However,

no clashes will be introduced because every new edge in E+
t+1 will have at least one

90



v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

Gt = (V,Et)

v1 v2

v3 v4 v5

v6 v8

v10

v11 v12 v13

Gt+1 = (Vt+1, Et+1)

Figure 5.2: Vertex dynamic graph colouring example

end-point in V +
t+1. If St = {S1, . . . , Sk} is a feasible colouring for Gt then St with the

set of deleted vertices V −t+1 removed, denoted by St\V −t+1 = {S1\V −t+1, . . . , Sk\V −t+1},
is a partial, proper colouring for Gt+1.

Let us reconsider the vertex dynamic graph in Figure 5.1. As illustrated in

Figure 5.2, removing the deleted vertices from the feasible colouring of Gt (on the

LHS) has led to a partial, proper colouring for Gt+1 (on the RHS). The new edges

do not introduce any clashes because the new vertices are considered �uncoloured�,

as they were not included within the colouring for Gt.

Unlike the edge dynamic GCP, here the �natural� solution space to consider when

using a colouring from time-step t as a starting point for a colouring at time-step

t+ 1 is the partial, proper one.

Method 5 (uncolourNew). Set St+1 = St\V −t+1 and let U = V +
t+1 be the set of

�uncoloured� vertices.

As mentioned above, if St is a feasible colouring for Gt then St\V −t+1 is a partial,

proper colouring for Gt+1. By implementing Method 5, the resultant colouring

St+1 = St\V −t+1 and set of �uncoloured� vertices U = V +
t+1 can be passed directly to

an optimisation operator that operates in the partial, proper solution space. This

optimisation operator will then attempt to feasibly colour all �uncoloured� vertices

in U to achieve a feasible k-colouring for Gt+1 where k = |St|.
For the example illustrated in Figure 5.2, the tabu search operator would at-

tempt to �nd a feasible 5-colouring for Gt+1 starting from St\{v7, v9} with U =

{v11, v12, v13}, shown on the RHS, where St is the feasible colouring for Gt on the

LHS.

Method 6 (randomAssign). Randomly order the vertices in V +
t+1. Transfer (or

assign) the �rst vertex in V +
t+1 to a random colour class of St\V −t+1. Repeat for each
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vertex in V +
t+1 sequentially, then calculate the number of clashes in the resultant

colouring St+1.

The resultant colouring St+1 is a complete, improper colouring for Gt+1 and

can be passed directly to an optimisation operator that operates in the complete,

improper solution space. This optimisation operator will attempt to remove all

clashes from St+1 to achieve a feasible k-colouring for Gt+1 where k = |St|. As with
Method 2 for the edge dynamic GCP, by moving out of the �natural� solution space,

this modi�cation operator allows us to explore an entirely di�erent neighbourhood

of colourings.

Due to the random assignment of the new vertices in V +
t+1 to colour classes in

St\V −t+1, there are |St||V
+
t+1| di�erent colourings that could be produced by Method 6.

In the example illustrated in Figure 5.2 there are 53 = 125 potential resultant

colourings. A best case scenario could transfer v11 to the yellow colour class, v12

to the blue colour class, and v13 to the grey colour class, thus producing a feasible

4-colouring for Gt+1. On the other hand, if all 3 new vertices in V +
t+1 were transferred

to the yellow colour class then the resultant colouring St+1 would be a complete,

improper colouring for Gt+1 with 5 clashes: {v4, v12}, {v10, v12}, {v10, v13}, {v11, v12},
and {v12, v13}.

Method 7 (leastClashesAssign). Randomly order the vertices in V +
t+1. Transfer

the �rst vertex in V +
t+1 to the colour class of St\V −t+1 with the �least clashes� (i. e.

the colour class with the least adjacent vertices). Repeat for each vertex in V +
t+1

sequentially, then calculate the number of clashes in the resultant colouring St+1.

In the same way that Method 3 is a �more sophisticated� version of Method 2

for the edge dynamic GCP, so too is Method 7 with regards to Method 6 for the

vertex dynamic problem. As with Method 6, here we wish to assign the new vertices

in V +
t+1 to colour classes in St\V −t+1 to achieve a complete, improper colouring for

Gt+1. By using this method, the number of clashes introduced should be reduced in

comparison to using the random approach of Method 6.

For the example illustrated in Figure 5.2, Method 7 will always produce a feasible

colouring for Gt+1 with either 4 or 5 colour classes, dependent on the order in which

the new vertices and the colour classes of St\{v7, v9} are considered. Method 6, on

the other hand, could produce colourings with as many as 5 clashes for the same

example.

Method 8 (solveNew). Randomly order the vertices in V +
t+1. Attempt to transfer

the �rst vertex in V +
t+1 to a colour class in St\V −t+1 in a �greedy� fashion such that no

clashes are introduced. Repeat for each vertex in V +
t+1 sequentially. Pass the residual

graph G̃ induced by the remaining vertices in V +
t+1 to a constructive operator to

produce a colouring S̃ for G̃. Combine St\V −t+1 and S̃ to produce the colouring St+1.
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The approach of Methods 4 and 8 is to identify and focus on the �problematic�

parts of St and St\V −t+1 with regards to Gt+1, respectively. Method 8 focuses on the

new, and therefore �uncoloured�, vertices in V +
t+1, whereas Method 4 focuses on the

new clashes that may have been introduced between time-steps t and t+ 1.

As with Method 4 for the edge dynamic GCP, Method 8 is also guaranteed to

produce a feasible colouring St+1 for Gt+1 here, though it may increase the number

of colour classes (i. e. |St+1| ≥ |St|). Firstly, all deleted vertices are removed from St
by de�nition of St\V −t+1. All new edges have at least one end-point which is a new

vertex, therefore St\V −t+1 has no clashes for Gt+1 because St was feasible (i. e. it had
no clashes) for Gt and it does not contain any of the new vertices. No new clashes

are introduced when a new vertex in V +
t+1 is transferred to a colour class in St\V −t+1,

otherwise it would not be transferred. A constructive algorithm is also guaranteed

to produce a feasible colouring for any given graph, so the colouring S̃ is a feasible

colouring of the remaining new vertices. Finally, when St\V −t+1 and S̃ are combined,

the resultant colouring St+1 has no clashes and all vertices in Vt+1 = Vt\(V −t+1)∪V +
t+1

are assigned to a colour class. Therefore, St+1 is a feasible colouring for Gt+1 with

k = |St|+ |S̃| colour classes.

As we saw with Method 7, for the example illustrated in Figure 5.2, each new ver-

tex in V +
t+1 = {v11, v12, v13} can be feasibly transferred to a colour class of St\{v7, v9}

to produce either a feasible 4- or 5-colouring for Gt+1. Method 8 also attempts to

feasibly transfer each new vertex to a colour class before considering the residual

graph induced by any remaining new vertices. Therefore, Method 8 will also produce

a feasible 4- or 5-colouring for the example illustrated in Figure 5.2, again depend-

ing on the order in which the new vertices and the colour classes of St\{v7, v9} are
considered.

Details regarding the speci�c parameters of the constructive and optimisation

operators used within these modi�cation operators will be outlined in Section 5.3.2.

As we have seen, parallels can be drawn between these modi�cation operators

and those de�ned for the edge dynamic GCP in Section 3.3. They can be grouped

by the types of colouring they produce: Methods 1, 6 and 7 produce complete,

improper colourings for Gt+1, Methods 2, 3 and 5 produce partial, proper colourings

for Gt+1, and Methods 4 and 8 produce feasible colourings for Gt+1. They can also

be grouped by their approach: Methods 1 and 5 pass St and St\V −t+1 directly to the

optimisation operators that operate in their �natural� solution spaces, Methods 2,

3, 6 and 7 convert St and St\V −t+1 to colourings that are optimised in an alternative

solution space, and Methods 4 and 8 treat the �problematic� vertices as residual

graphs to be recombined with St and St\V −t+1 respectively. These parallels and

comparisons are summarised in Table 5.1.

It is worth noting that we consider more modi�cation operators that convert Gt

into a colouring that does not belong to the �natural� solution space of the respective
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Table 5.1: Summary of modi�cation operators.

Edge Dynamic Vertex Dynamic
Modi�cation description Size of k = |St+1| M. S.S. M. S.S.
Constructive operator k independent of St 0 Feasible 0 Feasible
Direct to optimisation operator k = |St| 1 C.I. 5 P.P.
Simple conversion (i. e. random) k = |St| 2 P.P. 6 C.I.
�More sophisticated� conversion k = |St| 3 P.P. 7 C.I.
Separate out �problematic� parts k ≥ |St| 4 Feasible 8 Feasible

problem. This is because a decision must be made regarding how the conversion

is to be completed. Methods 2 and 6 employ a random approach and perform the

conversion moves on a �rst identi�ed basis, whereas Methods 3 and 7 employ a

basic search heuristic which chooses the �best� available conversion move at each

step. As mentioned previously, we can therefore consider Methods 3 and 7 to be

�more sophisticated� versions of Methods 2 and 6, respectively.

Adding Empty Colour Classes

Due to the success of including empty colour classes with Methods 1 and 2 that

produce initial, infeasible colourings for the edge dynamic GCP, in our approach we

also consider the inclusion of empty colour classes with Methods 5 and 6 that are

likely to produce infeasible colourings for the vertex dynamic GCP.

Initially, St+1 and U are de�ned in the same manner as when using the respective

modi�cation operators that were introduced earlier in this section. Then St+1 is

combined with x > 0 empty colour classes where x is a user-de�ned integer. When

St+1 is passed to the optimisation operator, along with U where appropriate, an

attempt will then be made to �nd a k-colouring for Gt where k = |St| + x. The

speci�c values of x used will be discussed in Section 5.3.2.

In the following �gures and tables, we will use the same names introduced pre-

viously to refer to the methods followed by �_x� to indicate the number of empty

colour classes used (e. g. Method 6 with x empty colour classes will be referred to

as M.6_randomAssign_x).

5.3 Trial Information

5.3.1 Test Instances

As with our edge dynamic test instances, our test instances for the vertex dynamic

GCP also have four parameters: n the desired number of vertices1, d the desired

density, p the change probability, and T the number of time-steps. For consistency,

the same parameter values used in Section 3.4.1 are used for these test instances,

1Unlike the edge dynamic GCP in Chapters 3 and 4, the number of vertices is no longer �xed
over all time-steps. Therefore, the value of n is now simply the desired number of vertices at each
time-step such that |Vt| ≈ n for t = 0, 1, . . . , T .
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that is: n ∈ {250, 500, 1000}, d ∈ {0.1, 0.5, 0.9}, p ∈ {0.005, 0.01, . . . , 0.05} and

T = 10. For each test instance, G0 is constructed such that |V0| = n and every edge

{u, v} of the
(
n
2

)
possible edges in E0 is included in E0 with probability d.

For vertex dynamic graphs, at time-step t, each vertex v ∈ Vt is included in

the set of deleted vertices V −t+1 with probability p and the set of new vertices V +
t+1

is constructed such that |V +
t+1| is an integer between np(1 − p) and np(1 + p). By

constructing V +
t+1 such that |V +

t+1| ≈ np we can ensure that the number of vertices

remains approximately equal over all time-steps. Each edge {u, v} ∈ Et+1 with

at least one end-point in V +
t+1 is then included in the set of new edges E+

t+1 with

probability d.

5.3.2 Algorithm Parameters

The algorithm parameters used here are the same as those used for the edge dynamic

GCP without future change information, see Section 3.4.2. To brie�y recap:

• RLF [Leighton, 1979] is used as our constructive operator for Method 8 (as it

also is for Method 0).

• TabuCol [Hertz and de Werra, 1987] and PartialCol [Blöchliger and Zuf-

ferey, 2008] are implemented to tackle the k-GCPs within our approach (i. e.

Line 5 of Algorithm 3.2) when operating in the complete, improper and partial,

proper solution spaces respectively.

• During execution, k is adjusted such that if a feasible k-colouring cannot be

obtained within half of the allotted time limit then k is increased by 1, and so

on (i. e. Lines 9 and 10 of Algorithm 3.2).

• The time limit is set to 10 seconds per time-step2 (i. e. Line 4 in Algorithm 3.2).

• When considering Methods 5 and 6 with empty colour classes, the number of

empty colour classes x added to the produced colourings are as follows:

� x ∈ {0, 1, 2} for test instances with d = 0.1,

� x ∈ {0, 2, 4, 6} for test instances with d = 0.5, and

� x ∈ {0, 3, 6, 9, 12} for test instances with d = 0.9.

It should be noted that Method 5 exclusively produces partial, proper colourings,

and Methods 6 and 7 exclusively produce complete, improper colourings. On the

other hand, Method 8, as with Method 0, produces feasible colourings which can then

be passed to a tabu search operator that operates within either solution space, as

required. Therefore, only comparisons between modi�cation operators that produce

2As with Chapters 3 and 4, all algorithms were programmed in C++ and executed on a 3.3GHZ
Windows 7 PC with an Intel Core i3-2120 processor and 8GB RAM.
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colourings within the same solution space or feasible colourings will be compared

e. g. Methods 5 and 6 will not be compared against one another.

5.4 Results

Unless stated otherwise, all pairwise statistical comparisons are based on Wilcoxon

signed rank tests with signi�cance level α = 0.01 due to the non-normality of our

data.

5.4.1 Initial Colourings

Let us �rst consider initial colourings for the vertex dynamic GCP.

Similarly to Methods 1 to 3 for the edge dynamic problem, the initial, feasible

colourings achieved by Methods 5 to 7 have signi�cantly fewer colour classes than

Methods 0 and 8 but require signi�cantly more time to obtain them. The only cases

for which this does not hold is for test instances with n = 250, d = 0.1 and p ≥ 0.015

where no signi�cant di�erence is observed3. The time required by Methods 5 to 7

also has a positive relationship with the change probability p. These observations

can be seen in Figure 5.3 and Table 5.2 for test instances with n = 500.

The reasons for this behaviour are the same as those given for Methods 1 to 3

in Section 3.5.1, i. e. unlike Methods 0 and 8, Methods 5 to 7 are not guaranteed to

produce an initial, feasible colouring and therefore require more time to move to a

feasible region of the solution space via tabu search.

Again, as with Method 4 for the edge dynamic problem, Method 8 produces

initial, feasible colourings with both signi�cantly fewer and signi�cantly more colour

classes than Method 0 depending on the change probability p. However, Method 8

only produces initial, feasible colourings with signi�cantly more colour classes for

test instances with d = 0.1 and high values of p (see Table 5.3). In fact, for test

instances with d = 0.1 and and low values of p, and d ∈ {0.5, 0.9} with all values

of p, Method 8 achieves initial, feasible colourings with signi�cantly fewer colour

classes. This is clearly illustrated for test instances with n = 500 in Figure 5.3.

As with Method 4, Method 8 requires signi�cantly less time than Method 0

except for test instances with parameters n = 250, d = 0.1, n = 250, d = 0.5, p ≤
0.03, and n = 500, d = 0.1, p ≤ 0.03 (as seen in Table 5.2) where no signi�cant

di�erence is observed4. This is most likely to occur because Method 8 applies RLF

3In these cases the time required to obtain an initial, feasible colouring is generally less than
10−3 seconds which is represented in the output as 0 seconds. The conclusions drawn from the
Wilcoxon Signed Rank test may be unreliable because the data used in these cases may not be
accurate enough.

4As with Methods 5 to 7, the time required to obtain an initial, feasible colouring in these
cases is generally less than 10−3 seconds so the conclusions drawn from the statistical tests may
be unreliable.
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Figure 5.3: Mean number of colour classes in initial, feasible colourings for the
vertex dynamic GCP on test instances with n = 500. Graphs (a), (c) and (e)
represent methods that operate in the partial, proper solution space, graphs (b), (d)
and (f) represent methods that operate in the complete, improper solution space,
and the rows from top to bottom represent test instances with d = 0.1, 0.5 and
0.9, respectively. For graphs regarding test instances with n ∈ {250, 1000}, see
Figures B.3 and B.4 in Appendix B.

97



Table 5.2: Median time (in seconds) required to obtain an initial, feasible colouring
for the vertex dynamic GCP on test instances with n = 500. For results regarding
test instances with n ∈ {250, 1000}, see Table B.3 in Appendix B.

p
d M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0.1 0 0 0 0 0 0 0 0 0 0.015 0.015

5 0 0 0.015 0.015 0.015 0.016 0.015 0.016 0.016 0.016
6 0 0 0.015 0.015 0.016 0.031 0.031 0.031 0.031 0.046
7 0 0 0.015 0.015 0.016 0.031 0.031 0.031 0.031 0.032
8 0 0 0 0 0 0 0∗ 0∗ 0∗ 0∗

0.5 0 0.016 0.031 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
5 0.663 0.983 1.537 1.529 1.630 1.537 1.973 1.794 1.841 2.340
6 0.320 1.131 1.240 1.724 1.482 1.724 1.935 2.411 2.114 2.785
7 0.359 0.936 1.311 1.607 1.911 1.802 2.434 2.840 2.223 2.449
8 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.9 0 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
5 1.163 1.731 2.644 3.222 2.387 3.416 3.339 3.424 2.816 3.346
6 1.069 1.997 2.941 3.830 3.565 4.189 4.820 4.938 4.852 5.007
7 1.350 2.294 3.923 3.830 3.331 4.922 5.007 5.008 4.665 5.007
8 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0 represents a time less than 10−3 seconds.
∗ indicates a time that is signi�cantly less than all others for the same values of d
and p.

Table 5.3: Signi�cant di�erences between the number of colour classes in the initial
colourings achieved by Methods 0 and 8 on test instances with d = 0.1.

p
n S.S. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

250 C.I. X X X - - O O O O O
P.P. X X X - - O O O O O

500 C.I. X X X X - O O O O O
P.P. X X X X - - O O O O

1000 C.I. X X X X X - O O O O
P.P. X X X X X X X - - O

X - indicates that Method 8 achieves an initial colouring with signi�cantly fewer
colour classes than Method 0.
O - indicates that Method 8 achieves an initial colouring with signi�cantly more
colour classes than Method 0.
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to a smaller residual graph G̃ = (Ṽ , Ẽ) of Gt with |Ṽ | ≤ |V +
t | ≈ np as opposed to

applying it to Gt with |Vt| ≈ n.

Method 6 (randomAssign) vs. Method 7 (leastClashesAssign)

As with Methods 2 and 3 for the edge dynamic GCP, here we wish to explore

whether the manner in which a feasible colouring for time-step t is modi�ed into a

colouring that belongs to the �unnatural� solution space of the given problem has any

a�ect on the initial, feasible colourings achieved. Here speci�cally, we will explore

whether the manner in which new vertices are assigned to the colour classes of

St\V −t+1 has any a�ect on the initial, feasible colourings achieved. It is hypothesised

that starting with a complete, improper colouring for Gt+1 with fewer clashes should

be advantageous with regards to quality and / or computational e�ort, therefore we

expect to observe Method 7 outperforming Method 6 in some way.

For all test instance parameter combinations but two (n = 250, d = 0.9, p =

0.025; and n = 1000, d = 0.9, p = 0.035), we found there to be no signi�cant

di�erence between the number of colour classes in the initial, feasible colourings

achieved when implementing either Method 6 or 7, at the α = 0.01 level. The

initial number of colour classes k for which TabuCol will attempt to �nd a feasible

k-colouring is determined by the colouring St which is passed to Methods 6 and 7

and not by the modi�cation operators themselves. It is therefore unsurprising that

there is no signi�cant di�erence between the number of colour classes in the initial,

feasible colourings achieved.

What is surprising is that there appears to be no signi�cant di�erence in the

time required to achieve an initial, feasible colouring. Nor is there any signi�cant

di�erence in the number of iterations of TabuCol required to identify a feasible

colouring after the initial colourings are produced by the modi�cation operators, as

illustrated in Figure 5.4 for test instances with n = 500. Therefore, we cannot con-

clude that Method 7 requires signi�cantly more time than Method 6 to be executed,

which is in contrast to Methods 2 and 3 for the edge dynamic GCP.

The graphs in Figure 5.4, clearly show that the number of TabuCol iterations

required to identify a feasible colouring is positively related to p. This can be used as

supporting evidence, at least for Methods 6 and 7 on test instances with n = 500, for

why the relationship between length of time required to achieve an initial, feasible

colouring and p is also positively correlated.

With Empty Colour Classes

Due to the similarity of the results observed between Methods 6 and 7 so far, we

have chosen to omit Method 7 from these comparisons in an attempt to reduce the

volume of results presented. Also, as in Section 3.6 for the edge dynamic GCP, only

the test instances from Section 5.3.1 with n = 500 are used in this section.
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Figure 5.4: Median number of TabuCol iterations required to achieve an initial,
feasible colouring for the vertex dynamic GCP (in clockwise order, starting from
the top-left, graphs represent trials conducted on test instances with n = 500 and
d = 0.1, 0.5 and 0.9, respectively).
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Table 5.4: Signi�cant di�erences between the number of colour classes in the ini-
tial, feasible colourings achieved by Method 5 with x empty colour classes against
Method 8.

p
d x 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0.1 0 X X X X X X X X X X
1 - X X X X X X X X X
2 O O O O - X X X X X

0.5 0 X X X X X X X X X X
2 O X X X X X X X X X
4 O O O O - X X X X X
6 O O O O O O O O - X

0.9 0 X X X X X X X X X X
3 O X X X X X X X X X
6 O O O X X X X X X X
9 O O O O O - X X X X
12 O O O O O O O O - X

X - indicates that Method 5 achieves an initial colouring with signi�cantly fewer
colour classes than Method 8.
O - indicates that Method 5 achieves an initial colouring with signi�cantly more
colour classes than Method 8.

When implementing Methods 5 and 6 with x empty colour classes, our modi-

�cation approach continues to identify initial, feasible colourings with signi�cantly

fewer colour classes than Method 0 for most test instances and values of x. This is

clearly illustrated in Figure 5.5 where the lines for Methods 5 and 6 remain below

the lines for Method 0 (i. e. the line of circles), in the most part. The only exception

to this is for Method 6 with x = 2 empty colour classes on some of the test instance

with d = 0.1 and p ≥ 0.015, and even in these cases there is no signi�cant increase

(i. e. no signi�cant di�erence was observed).

In comparison to Method 8, the initial feasible colouring achieved when imple-

menting Methods 5 and 6 with x empty colour classes have both signi�cantly fewer

or signi�cantly more colour classes dependent on x and p. This is again clearly

illustrated in Figure 5.5, where the corresponding lines meet and cross one another,

and more speci�cally for Method 5 in Table 5.4.

Unlike when applying the empty colour class approach for the edge dynamic

GCP, here the approach does not (almost) exclusively produce feasible colouring

with k = |St|+x colour classes for Gt+1 where St is a feasible colouring for Gt. This

can be observed in the di�erences between Figures 3.7 and 5.5, where the (almost)

parallel line pattern present in Figure 3.7 for the di�erent values of x is no-longer

present in Figure 5.5. On the contrary, as x increases for the vertex dynamic GCP,

the number of these additional empty colour classes that are utilised decreases with

the change probability p. For low values of p and high values of x, Methods 5 and 6

with x empty colour classes produce feasible colourings with k < |St| + x colour

classes for Gt+1.
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Figure 5.5: Mean number of colour classes in initial, feasible colourings for the
vertex dynamic GCP with Methods 5 and 6 including empty colour classes on test
instances with n = 500. Graphs (a), (c) and (e) represent methods that operate in
the partial, proper solution space, graphs (b), (d) and (f) represent methods that
operate in the complete, improper solution space, and the rows from top to bottom
represent test instances with d = 0.1, 0.5 and 0.9, respectively.
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For the vertex dynamic GCP, the only problematic portions (clashes or �un-

coloured� vertices) of an initial colouring St+1 produced by Methods 5 and 6 will

be caused by the new vertices in V +
t+1. It is therefore likely that the tabu search

operators will transfer approximately the same number or fewer vertices to the x

empty colour classes than are introduced in V +
t+1. In other words,

x∑
i=|St|+1

|Si| . |V +
t+1| ≈ np (5.6)

where St is a feasible colouring for Gt and Si is the ith colour class of the initial

feasible colouring St+1 for Gt+1. For particularly small values of p and high values

of x (e. g. p ≤ 0.02 and x = 12), it is clear that x > np which implies that not all

empty colour classes will be utilised.

Of course this assumes that each new vertex in V +
t+1 is adjacent to at least one

vertex in each of the colour classes of St\V −t+1, and that all of the new vertices

are adjacent to one another. This would imply that the tabu search operators will

transfer vertices to the empty colour classes such that each empty colour class is

occupied by a single vertex. This is a worst case scenario, which would explain

why our empty colour class approach still identi�es initial feasible colourings with

k < |St|+ x colour classes for Gt+1 in cases where x ≤ np.

With regards to the amount of time required to identify an initial feasible colour-

ing, accurate comparisons were not achievable for test instances with d = 0.1 and

x ≥ 1 free colour classes because in most cases the time required was less than

10−3 seconds. For the remaining cases, there is a clear negative relationship be-

tween the time required to identify an initial feasible colouring and the number of

empty colour classes x, as can be seen in Figure 5.6. There is also a negative re-

lationship between the number of tabu search iterations required and the number

of empty colour classes (see Figure 5.7). As k increases, so too does the number of

feasible k-colourings, which means less computational e�ort is required to identify

one. Therefore, it makes sense that the time (and number of tabu search iterations)

required decreases as x increases because the initial k-GCP attempted by the tabu

search operators is for k = |St|+ x.

Due to this, there are now observable cases where Methods 5 and 6 with x

empty colour classes identify initial, feasible colourings in signi�cantly less time

than Method 0. The positive relationship between computational e�ort and the

change probability p also comes into play here such that, as x increases, so too

does the largest value of p for which Methods 5 and 6 are signi�cantly faster than

Method 0. The results presented in Table 5.5 for Method 5 hold true for Method 6

also with the exception of using x = 3 empty colour classes for test instances with

d = 0.9 and p = 0.025, where Method 0 is signi�cantly faster.

These reductions in time do not a�ect the relationship between Methods 5 and 6
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Figure 5.6: Median time (in seconds) for Methods 5 and 6 with x ∈ {3, 6, 9} empty
colour classes to achieve an initial, feasible colouring on test instances with n = 500
and d = 0.9.
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Figure 5.7: Median number of TabuCol iterations for Method 6 with x ∈ {6, 9, 12}
empty colour classes to achieve an initial, feasible colouring on test instances with
n = 500 and d = 0.9.

Table 5.5: Signi�cant di�erences in the time required by Method 5 with x empty
colour classes to identify an initial, feasible colouring against Method 0.

p
d x 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0.5 0 O O O O O O O O O O
2 X X X X X X X - - O
4 X X X X X X X X X X
6 X X X X X X X X X X

0.9 0 O O O O O O O O O O
3 X X X X - O O O O O
6 X X X X X X X X X X
9 X X X X X X X X X X
12 X X X X X X X X X X

X - indicates that Method 5 requires signi�cantly less time than Method 0.
O - indicates that Method 5 requires signi�cantly more time than Method 0.
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and Method 8 with regards to the time required, i. e. Method 8 remains signi�cantly

faster regardless of the number of empty colour classes.

5.4.2 Final Colourings

Finally, let us consider �nal colourings for the vertex dynamic GCP. As mentioned

previously in Section 5.1, a small change to the edge set will usually a�ect more

vertices than a comparable change to its vertex set.

Method 5 was found to achieve �nal, feasible colourings with signi�cantly fewer

colour classes than Method 0 for test instances with n = 500, d = 0.9 and some values

of p (no obvious pattern); n = 1000, d = 0.1, p ≤ 0.02; and n = 1000, d ∈ {0.5, 0.9}
with most5 values of p. Similarly, Methods 6 and 7 were also found to achieve �nal,

feasible colourings with signi�cantly fewer colour classes than Method 0 for test

instances with n = 500, d = 0.5, p ≤ 0.04; n = 500, d = 0.9, p ≤ 0.03; n = 1000, d =

0.1, p ≤ 0.01; and n = 1000, d ∈ {0.5, 0.9} with most values of p (see Footnote 5).

On the other hand, Method 5 achieves �nal, feasible colourings with signi�cantly

more colour classes than Method 8 for test instances with n = 1000, d = 0.9 and

p ≥ 0.03. This is also true for Methods 6 and 7 on test instances with n = 500, d =

0.9, p ≥ 0.035; and n = 1000, d = 0.9, p ≥ 0.015. Although Methods 5 to 7 require

signi�cantly more time to produce initial, feasible colourings (see Table 5.2) it is

likely that Methods 0 and 8 still require more time to reach a feasible colouring with

equivalent numbers of colour classes for low levels of p. This would imply that the

tabu search operators will attempt to solve k-GCPs for smaller values of k at an

earlier stage when Methods 5 to 7 are executed compared to Methods 0 and 8. In

other words, an initial feasible colouring is likely to have the same number of colour

classes as the �nal feasible colouring when Methods 5 to 7 are executed, whereas

several k-GCPs with decreasing values of k will have to be solved when Methods 0

and 8 are executed. Further analysis should be conducted in order to investigate

the validity of this proposition.

The relationships between the number of colour classes in the �nal colourings

achieved when Methods 0 and 5 to 8 are implemented is illustrated for test instances

with n = 1000 and d ∈ {0.5, 0.9} in Figure 5.8.

Unlike Method 4 for the edge dynamic problem, Method 8 was only found to

reach �nal, feasible colourings with the same or signi�cantly fewer colour classes than

Method 0, especially for test instances with n ∈ {500, 1000} and d ∈ {0.5, 0.9} (see
Figure 5.8). Both Methods 0 and 8 start each time-step from a feasible colouring;

however, Method 8 achieves initial colouring with signi�cantly fewer colour classes

than Method 0 for most test instances (see Figure 5.3 and Table 5.3). Therefore,

5The only test instances with n = 1000 and d ∈ {0.5, 0.9} that Methods 5 to 7 did not achieve
�nal colourings with signi�cantly fewer colour classes than Method 0 were for parameters d =
0.5, p = 0.025 for Method 5, d = 0.5, p = 0.04 for Method 6, and d = 0.9, p = 0.05 for Method 7.
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Figure 5.8: Mean number of colour classes in �nal, feasible colourings for the vertex
dynamic GCP on test instances with n = 1000 and d ∈ {0.5, 0.9}. Graphs (a) and
(c) represent methods that operate in the partial, proper solution space, graphs (b)
and (d) represent methods that operate in the complete, improper solution space,
and the rows from top to bottom represent test instances with d = 0.5 and 0.9,
respectively.
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Table 5.6: Signi�cant di�erences in the time required by Methods 0 and 7 to achieve
a �nal feasible colouring with an equal number of colour classes.

p
n d 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

250 0.1 X X X X X X X X X -
0.5 X X X X - - - - - -
0.9 X X - - O O - O O O

500 0.1 X X X X X X X X X X
0.5 X X X X X - - - - -
0.9 X X X - - - - - - -

1000 0.1 X X X X X X - - - -
0.5 X X X X X - - - - -
0.9 - - X - - - - - - -

X - indicates that Method 7 achieves �nal, feasible in signi�cantly less time than
Method 0.
O - indicates that Method 7 achieves �nal, feasible in signi�cantly more time than
Method 0.

the tabu search operator will attempt to solve k-GCPs for smaller values of k at an

earlier stage when Method 8 is implemented in these cases.

As with the time comparison analysis for �nal feasible colourings in Chapters 3

and 4, here we only compare the test instance time-steps for which the number of

colour classes in the �nal feasible colourings achieved are equal when both modi�-

cation operators are implemented.

It was found that Methods 5 to 7 achieve �nal, feasible colourings in signi�cantly

less time than Method 0 on test instances with low values of n, d and p. To see how

these di�erent parameters a�ect the time requirements, consider Tables 5.6 and 5.7.

The reason for these observations is likely to be the same as that given with regards

to the number of colour classes in the �nal, feasible colourings achieved with low

levels of p: i. e. the tabu search operators attempt to solve k-GCPs for smaller

values of k at an earlier stage and therefore arrive at the �nal feasible colourings at

an earlier stage too.

On the contrary, Methods 5 to 7 require signi�cantly more time to achieve �nal,

feasible colourings compared to Method 8 for high values of n, d and p. In comparison

to Method 0, Method 8 starts from a feasible colouring with signi�cantly fewer colour

classes for most test instances which likely translates to the tabu search operators

attempting to solve k-GCPs for smaller values of k before an initial, feasible colouring

has been identi�ed after the implementation of Methods 5 to 7.

Method 8 was also found to require signi�cantly less time to achieve �nal, feasible

colourings than Method 0 for most test instances (again, see Table 5.7), with the

exception of some test instances with d = 0.9 or high values of p. This is probably

due to the same argument given throughout this section with regards to the tabu

search operators attempting to solve k-GCPs for lower values of k.

These �ndings suggest a knock-on e�ect from the reductions achieved with re-
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Table 5.7: Median time (in seconds) required to obtain �nal, feasible colourings
with the same numbers of colour classes for the vertex dynamic GCP on test in-
stances with n = 500. For results regarding test instances with n ∈ {250, 1000}, see
Table B.4 in Appendix B.

p
d S.S. M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0.1 P.P. 0 0.016 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031

5 0∗ 0∗ 0.015∗ 0.015∗ 0.016∗ 0.016∗ 0.016∗ 0.031∗ 0.031∗ 0.031∗

8 0∗ 0.015∗ 0.015∗ 0.015∗ 0.016∗ 0.016∗ 0.016∗ 0.031∗ 0.031∗ 0.031∗

C.I. 0 0.046 0.046 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.062
6 0∗ 0∗ 0.015∗ 0.015† 0.016† 0.031∗ 0.031∗ 0.031∗ 0.031∗ 0.047∗

7 0∗ 0∗ 0.015∗ 0.015† 0.016† 0.031∗ 0.031† 0.031∗ 0.031∗ 0.046∗

8 0∗ 0∗ 0.015∗ 0.016∗ 0.031∗ 0.031∗ 0.031∗ 0.046∗ 0.039∗ 0.047
0.5 P.P. 0 2.652 3.073 3.276 3.151 2.980 2.504 2.964 2.457 2.933 2.855

5 1.505∗ 1.264∗ 2.574 2.621 2.341 3.066 2.566 2.551 3.167 2.980
8 0.203∗ 1.068∗ 1.092∗ 1.529∗ 1.544∗ 1.420∗ 1.381∗ 2.192 2.387 2.293

C.I. 0 5.141 3.525 4.181 4.509 4.227 3.378 3.884 3.900 3.776 3.261
6 0.305∗ 1.263∗ 1.856∗ 1.731∗ 2.184∗ 2.496 3.323 2.902 4.009 5.007
7 0.484∗ 1.185∗ 1.654∗ 2.246∗ 3.307∗ 3.370 2.839 3.682 3.354 3.261
8 0.328∗ 1.264∗ 1.155∗ 1.560∗ 2.106∗ 1.521∗ 2.106∗ 2.480∗ 1.997∗ 2.246∗

0.9 P.P. 0 4.867 5.281 4.680 5.492 5.585 4.267 4.181 4.665 4.602 4.462
5 2.964∗ 3.362∗ 4.665 5.194 4.446 4.196 6.255 5.585 5.054 5.281
8 1.373∗ 2.013∗ 2.566∗ 1.981∗ 3.261∗ 3.330∗ 3.416∗ 2.745∗ 3.884 4.189∗

C.I. 0 5.569 6.458 6.318 6.255 5.756 5.538 6.404 5.055 5.788 6.240
6 1.256∗ 4.883∗ 4.345∗ 4.275∗ 5.351 5.007 5.538 6.568 5.842 6.100
7 1.865∗ 3.744∗ 4.165∗ 5.226 5.149 5.710 5.445 6.380 6.069 5.007
8 1.498∗ 2.090∗ 2.176∗ 3.478∗ 4.696∗ 3.681∗ 3.651∗ 3.573∗ 3.682∗ 4.009∗

0 represents a time less than 10−3 seconds.
∗ indicates a time that is signi�cantly less than Method 0 for the same values of d
and p whilst operating in the same solution space.
† indicates a time that is signi�cantly less than Methods 0 and 8 for the same
values of d and p whilst operating in the same solution space.
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gards to initial feasible colourings and the subsequent reductions that are then ob-

served with regards to the �nal feasible colourings. Both reducing the number of

colour classes in the initial, feasible colourings and the time required to achieve them

seems to positively a�ect the quality and computational e�orts required for the �nal

feasible colourings.

Method 6 (randomAssign) vs. Method 7 (leastClashesAssign)

As with the initial feasible colourings achieved when implementing Methods 6 and 7,

there are very few observable di�erences with regards to the �nal feasible colourings

achieved when implementing these modi�cation operators. In the rare cases where

a signi�cant di�erence is observed, there is no obvious pattern to explain why they

have occurred.

For example, Method 6 achieves �nal feasible colourings with signi�cantly fewer

colour classes than those achieved under Method 7 for test instances with n =

500, d = 0.1 and p = 0.01, but signi�cantly more for test instances with n = 500, d =

0.9, p = 0.05; and n = 1000, d = 0.9, p ∈ {0.005, 0.035}. Similarly, for test instances

with n = 500, d = 0.5 and p = 0.05, Method 7 achieves �nal feasible colourings in

signi�cantly less time compared to Method 6, but in no other cases.

We therefore conclude that there is no obvious advantage to be gained from using

Method 7 rather than Method 6 (or vice versa), with regards to either the initial or

�nal feasible colourings achieved.

With Empty Colour Classes

In comparison to using the empty colour classes approach for the edge dynamic

GCP, it appears to be less detrimental with regards to the �nal feasible colourings

when applied to the vertex dynamic GCP.

For test instances with d = 0.1, Methods 5 and 6 with one or two empty colour

classes (i. e. x ∈ {1, 2}) achieve �nal feasible colourings with no signi�cant di�erence

in the number of colour classes compared to those achieved under Method 0. For

test instances with d = 0.5 there is a detrimental e�ect as x increases, such that

Methods 5 and 6 with x ∈ {4, 6} empty colour classes achieve �nal feasible colourings

with signi�cantly more colour classes than those achieved under Method 0 when

p ≥ 0.02 and 0.045 respectively. On the other hand, for test instances with d = 0.9,

�nal feasible colourings with signi�cantly fewer colour classes compared to those

achieved under Method 0 are achieved for increasing values of p.

Similarly, Methods 5 and 6 continue to achieve �nal feasible colourings in sig-

ni�cantly less time than Method 0 for test instances with d = 0.1 regardless of the

number of empty colour classes x, at least for x ≤ 2. They are able to achieve �nal

feasible colourings in signi�cantly less time compared to Method 0 on test instances

with d = 0.9 for increasing values of p. For test instances with d = 0.5 the a�ect
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Table 5.8: Signi�cant di�erences in the time required to achieve a �nal feasible
colourings with the same number of colour classes achieved under Methods 0 and 5
on test instances with d ∈ {0.5, 0.9}.

p
d x 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0.5 0 X X - - - - - - - -
2 X X X X - X X X - -
4 X X X - - - - - - -
6 X X X - - - - - - O

0.9 0 X X - - - - - O - -
3 X X X X X - X - - -
6 X X X X X X X X X X
9 X X X X X - X X X X
12 X X X X X X X - X X

X - indicates that Method 5 achieves �nal, feasible colourings in signi�cantly less
time than Method 0.
O - indicates that Method 5 achieves �nal, feasible colourings in signi�cantly more
time than Method 0.

of x is more complicated. For x = 2, they can achieve �nal feasible colourings in

signi�cantly less time for increased values of p compared to when x = 0. However,

as x continues to increase, this pattern is reversed. These patterns are illustrated

for Method 5 in Table 5.8.

In general, for test instances with d = 0.1 our empty colour classes approach is

neither bene�cial nor detrimental with regards to �nal feasible colourings achieved

under Methods 5 and 6 compared to Method 0; for test instances with d = 0.5 it is

detrimental; and for test instances with d = 0.9 it is bene�cial.

The bene�ts observed on test instances with d = 0.9 is a clear knock-on ef-

fect from the initial feasible colourings achieved, which also have signi�cantly fewer

colour classes than those produced by Method 0 and require less time to be identi�ed

as x increases. However, for test instances with d = 0.5, as with the detrimental

a�ects observed in Section 3.6 for the �nal feasible colourings of the edge dynamic

GCP, there is no obvious reason why this behaviour is observed. In fact, it is con-

tradictory to what is expected considering the bene�ts of the approach with regards

to the initial feasible colourings achieved.

5.5 Conclusions

In this chapter we have discussed an alternative to edge dynamic graphs and their

associated GCP i. e. vertex dynamic graphs and the vertex dynamic GCP. We have

proposed using the same modi�cation approach outlined in Section 3.2 and intro-

duced four modi�cation operators tailored speci�cally for the vertex GCP (ran-

domAssign, leastClashesAssign, uncolourNew and solveNew) to be used within this

approach. These modi�cation operators modify a feasible colouring for one time-step
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into an initial, though not necessarily feasible, colouring for the following time-step.

These four modi�cation operators have been compared against one another, where

appropriate, and against an approach which treats each time-step of a dynamic

graph as a static graph i. e. Method 0 (reset) introduced in Chapter 3.

Our experiments have shown that initial colourings with signi�cantly fewer colour

classes can be achieved by using Methods 5 to 7 (uncolourNew, randomAssign and

leastClashesAssign, respectively), which all modify a feasible k-colouring for Gt into

an infeasible k-colouring for Gt+1 and then pass this colouring directly to a tabu

search operator. However, there is a signi�cant trade-o� with respect to the time

required to achieve an initial, feasible colouring when these modi�cation operators

are applied. This is identical behaviour to that observed for Methods 1 to 3 (calcu-

lateClashes, uncolourClashes and uncolourMostClashing, respectively) in the edge

dynamic case, which also modify a feasible k-colouring for Gt into an infeasible

k-colouring for Gt+1.

With regards to �nal feasible colourings, those achieved under Methods 5 to 7

were found to have both signi�cantly fewer or signi�cantly more colour classes than

those achieved under Method 0 dependent on test instance parameters d and p

(desired density and change probability, respectively). In particular, signi�cantly

fewer colour classes were observed for test instances with higher values of d and lower

values of p. In comparison to Methods 1 to 3 for the edge dynamic GCP, reductions

in the number of colour classes in the �nal feasible colourings were observed far more

often. In fact, for most test instances with n = 500, d = 0.9; and n = 1000, d ∈
{0.5, 0.9}, Methods 5 to 7 were able to outperform Method 0 in this regard.

The strategy of adding x > 0 empty colour classes was again explored, in order

to combat the trade-o� between quality and computational e�ort with regards to

initial feasible colourings. This time around, the empty colour classes were added

to the colouring produced by Methods 5 and 6. As with the edge dynamic case,

increasing the value of x decreased the computational e�ort required to identify an

initial feasible colouring. This led to cases, with appropriate values of x, such that

the initial feasible colourings achieved had signi�cantly fewer colour classes than

those achieved under Method 0 and less time was required to achieve them. Unlike

the edge dynamic case, this approach has fewer detrimental e�ects with regards to

the �nal feasible colourings achieved. In fact, detrimental e�ects are only observed

on test instances with d = 0.5 when the number of empty colour classes satis�es

x ≥ 4. Furthermore, there are now observable bene�ts with regards to both quality

and computational e�ort on test instances with d = 0.9.

It has also been shown, that Method 8 (solveNew), which modi�es a feasible k-

colouring forGt into a feasible k
′-colouring forGt+1 such that k

′ ≥ k, can also achieve

initial, feasible colourings with signi�cantly fewer colour classes for low values of p on

test instances with d = 0.1 and all values of p tested otherwise. This observation is

111



unlikely to hold as p increases beyond 0.05 on test instances with d ∈ {0.5, 0.9}. This
modi�cation operator was also shown to require signi�cantly less time to produce

initial, feasible colourings for test instances with n ∈ {500, 1000}.
Finally, using this modi�cation operator led to �nal, feasible colourings with the

same or signi�cantly fewer colour classes than Method 0 on test instances with high

values of n and d. It was also shown to require signi�cantly less time to do so

in most cases, though this is more frequently observed for low values of d and p.

In comparison to Method 4 for the edge dynamic GCP, these improved cases are

observed far more often.

Of the four modi�cation operators introduced, Method 8 (solveNew) was the

only one that improved upon both the quality (i. e. number of colour classes) and

e�ort (i. e. computation time) required for initial feasible colourings, compared to

treating each time-step as an individual static graph in most cases, especially on

test instances with d ∈ {0.5, 0.9}. With regards to �nal feasible colourings, all four

modi�cation operators led to signi�cant improvements to quality and signi�cant

reductions to the e�ort required, for test instances with high values of d and low

values of p.

In general, these modi�cation operators produce more bene�cial results than

their counterparts for the edge dynamic case. This is most likely due to the amount

of �problematic� change (e. g. clashes or �uncoloured� vertices) being introduced.

For our test instances, the amount of �problematic� change introduced between

time-steps is likely to be larger for an edge dynamic GCP with change probability p

compared to a vertex dynamic GCP with the same change probability. Therefore, in

order to see results for the vertex dynamic GCP that more closely resemble those of

the edge dynamic GCP with change probability p, test instances with larger change

probabilities (i. e. greater than p) should be used.

Key Findings and Recommendations

• With regards to initial feasible colourings, Methods 5 to 7 behave in a similar

fashion to Methods 1 to 3 for the edge dynamic GCP, as does Method 8 in

comparison to Method 4.

• Although adding an �appropriate� number of empty colour classes to the

colourings produced by Methods 5 and 6 increases their bene�ts, we suggest

using Method 8 instead, as the results observed are comparable and the for-

mer requires extra knowledge concerning the �appropriate� number of empty

colour classes to use.

• For high values of d and low values of p, all four modi�cation operators for the

vertex dynamic GCP achieve �nal feasible colourings with signi�cantly fewer

colour classes and require signi�cantly less time to do so.
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• In general, the bene�ts of using the modi�cation approach to tackle the vertex

dynamic GCP outweigh those observed when tackling the edge dynamic GCP,

especially for increased values of p.

Here, change has occurred at random between time-steps. In the next chapter,

we will extend the vertex dynamic GCP to include future information regarding

potential changes to the vertex set. We aim to determine whether this information

can be utilised, in the same way that future adjacency information was utilised for

the edge dynamic GCP in Chapter 4, to improve the robustness of a colouring to

change.
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Chapter 6

Colouring Vertex Dynamic Random

Graphs with Future Vertex Inclusion

Information

In this chapter we will extend the work of the previous chapter in the same manner

that the work of Chapter 3 was extended in Chapter 4, i. e. by considering future

change information. First we propose a more suitable de�nition of vertex dynamic

graphs; we then discuss how future information might be utilised in order to improve

the robustness of a colouring with regards to potential change. Finally, the two stage

approach introduced Section 4.2 will be implemented for the vertex dynamic GCP

and experimental results will be presented.

6.1 Vertex Pool and Future Inclusion

As we saw in Chapters 3 and 4, the number of vertices |V | is �xed over all time-

steps for the edge dynamic GCP, which means that all potential edges E = {{u, v} :

u, v ∈ V, u 6= v} are known. The probability of an non-active edge at time-step t

(i. e. an edge {u, v} /∈ Et) being included in time-step t + 1 (i. e. the probability of

{u, v} ∈ E+
t+1) is an obvious piece of information that could be utilised if known, as

we explored in Chapter 4.

Due to the nature of the way that our vertex dynamic graphs have been con-

structed up until this point (see Section 5.3.1), there is no such obvious piece of

information that could be utilised for the vertex dynamic GCP. We therefore con-

sider a slightly di�erent type of vertex dynamic graph in this chapter.

We will continue to de�ne a dynamic graph G = (G0, G1, . . . , GT ) as a series of

T + 1 static graphs where Gt = (Vt, Et) is the static representation of G at time-step

t. We will now also consider a pool of vertices V such that, at each time-step, Vt is a

subset of V (i. e. Vt ⊆ V for t = 0, 1, . . . , T ). At time-step t, we refer to the vertices

in Vt as the active vertices.
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To get from Gt to Gt+1, we de�ne the set of deleted vertices V −t+1 ⊆ Vt as before

(see Section 5.1), but now the set of new vertices is de�ned as a subset of the currently

non-active vertices V +
t+1 ⊆ (V\Vt). The vertex set for Gt+1 remains de�ned in the

same way as before, i. e. Vt+1 = (Vt ∪ V +
t+1)\V −t+1.

The introduction of a vertex pool means that information regarding the likelihood

of a given vertex being �active� in the following time-step can now be provided,

which shall be referred to as future vertex inclusion information. However, without

knowing which vertices a currently non-active vertex will be adjacent to, this is not

particularly useful future change information. Therefore, we suggest predetermining

a set of edges between all vertices in V so that future adjacency information can

also be gained from future vertex inclusion information.

Consider a set of globally active edges EV ⊆ {{u, v} : u, v ∈ V , u 6= v} as a �xed

subset of all
(|V|

2

)
potential edges between the vertices in V . Then, at each time-step,

the edge set Et is the subset of EV such that if {u, v} ∈ Et then both u and v are

active vertices at time-step t (i. e. u, v ∈ Vt). In other words, Et = EV ∩ Et where
Et = {{u, v} : u, v ∈ Vt, u 6= v} is the set of all

(|Vt|
2

)
possible edges between vertices

in Vt.

Given a graph Gt = (Vt, Et) ∈ G, let pt+1(v) be the probability that vertex

v ∈ V is active at time-step t + 1 (i. e. the probability of v ∈ Vt+1). If pt+1(v) is

known for every vertex v ∈ V then we can can de�ne the 1 × |V| future inclusion

vector Pt+1 such that the vth entry of Pt+1 is equal to pt+1(v). Given Pt+1 and

EV , if {u, v} ∈ EV then vertices u, v ∈ V are future adjacent with probability1

pt+1(u) · pt+1(v), otherwise u, v ∈ V are future adjacent with probability 0.

6.2 Method for Reducing Future Saturation

When a non-active vertex at time-step t is made active in the following time-step

t+ 1, it needs to be assigned to a colour class. Therefore, it would be advantageous

for there to be at least one colour class that the newly active vertex could be assigned

to such that no clashes are introduced. In fact, the more such colour classes that

exist, the better.

Let us reconsider the saturation degree of an �uncoloured� vertex (i. e. De�ni-

tion 2.1). Given a partial k-colouring S = {S1, . . . , Sk} of a graph G = (V,E),

the saturation degree degsat(v,S) of an �uncoloured� vertex v ∈ V \{
⋃k
i=1 Si} with

respect to S, is equal to the number of colour classes in S for which there exists at

least one vertex u ∈ Si such that u is adjacent to v (i. e. {u, v} ∈ E). The lower

the saturation degree of a given vertex v, the more colour classes exist that v can

be assigned to without introducing clashes. For a partial k-colouring S, there exists
1The inclusion probabilities are independent here, because our test instances are constructed

such that the probabilities are randomly sampled from a uniform distribution. Note, for test
instances constructed in a di�erent manner, this may not hold.
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v1 v2

v3 v4

v5 v6

vx

St for Gt = (V,Et)

v1 v2

v3 v4

v5 v6

vx

S ′t for Gt = (V,Et)

Figure 6.1: Example of a vertex dynamic graph with future inclusion information.
Vertices with solid outlines represent the active vertices (i. e. those in Vt), the vertex
with a dotted outline represents a vertex that is �highly likely� to be included in
V +
t+1, and the dotted lines represent edges in EV\Et.

exactly k − degsat(v,S) such colour classes.

Given a vertex dynamic graph G with a pool of vertices V and a set of globally

active edges EV , at time-step t, a non-active vertex v ∈ V\Vt can be considered as

an �uncoloured� vertex with regards to a feasible colouring for Gt and, because EV

is known, we can utilise the same de�nition of saturation degree. More importantly,

if we can reduce the saturation degree of a given non-active vertex, we can increase

the number of colour classes that that vertex can be assigned to without introducing

clashes.

Consider the example illustrated in Figure 6.1. The dotted vertex vx is a non-

active vertex at time-step t that is �highly likely� to become active in time-step t+1.

Because EV is known, we know which vertices will be adjacent to vx if they are also

included in Vt+1 (i. e. the dotted edges). Both St and S ′t are feasible 3-colourings

for Gt with degsat(vx,St) = 3 and degsat(vx,S ′t) = 2 respectively. It should be clear

that if vx is added to any of the colour classes of St it will introduce a clash, whereas
it can be introduced to the yellow colour class of S ′t without doing so. As with

the edge dynamic GCP with future adjacency information in Chapter 4, we wish to

�nd a way to transform St into S ′t without compromising feasibility for the current

time-step.

The total saturation of all non-active vertices at time-step t with regards to a

feasible colouring St for Gt is given by

F(St) =
∑

v∈V\Vt

degsat(v,St) (6.1)

where degsat(v,St) is the saturation degree of v ∈ V\Vt with regards to St. An

attempt to reduce Equation (6.1) is an attempt to reduce the total saturation under

the assumption that all non-active vertices have an equal probability of being in-

cluded in Vt+1. If the future inclusion information Pt+1 is known, then we can de�ne
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the expected future saturation degree of a non-active vertex v ∈ V\Vt with regards

to St as pt+1(v) ·degsat(v,St). The total expected future saturation is therefore given

by

F(St) =
∑

v∈V\Vt

pt+1(v) · degsat(v,St) (6.2)

and, by attempting to reduce Equation (6.2), as opposed to Equation (6.1), priority

is given to reducing the saturation degree of non-active vertices that are more likely

to be included in Vt+1.

It is worth noting that one slight drawback of using Equation (6.2), is that

potential clashes between two non-active vertices (i. e. vertices both in the set V\Vt)
cannot be considered. However, as all non-active vertices are also �uncoloured�, a

pair of adjacent non-active vertices at time-step t will only clash with one another if

they both become active in time-step t+ 1 and are then assigned to the same colour

class by Method 6 or 7. It is therefore unlikely that this will cause much of an issue

in practice.

6.2.1 Alternative Secondary Objective Functions

The following �secondary objective functions� were also considered, as alternatives

to Equation (6.2) which could be used within our two stage approach.

If St = {S1, . . . , Sk} is a feasible k-colouring of Gt ∈ G, we could attempt to

reduce either ∑
v∈(V\Vt)

pt+1(v) max
i∈{1,...,k}

{
∑
u∈Si

adj(u, v)} (6.3)

or ∑
v∈(V\Vt)

pt+1(v) min
i∈{1,...,k}

{
∑
u∈Si

adj(u, v)} (6.4)

where adj(u, v) is an identi�er function equal to 1 if the edge {u, v} ∈ EV and

0 otherwise. By using Equation (6.3), we would be attempting to minimise the

number of clashes in the �worst� colour class for each non-active vertex (i. e. minimise

the worst case scenario), and by using Equation (6.4) we would be attempting to

minimise the number of clashes in the �best� colour class for each non-active vertex

(i. e. maximise the best case scenario).

In practice, both of these secondary objective functions require much more time

to be evaluated for each available Kempe-chain interchange or pair-swap. Here,

the resultant �cost� change of each Kempe-chain interchange will be stored in a

|V | × k matrix. The additional time required to evaluate Equations (6.3) and (6.4),

compared to Equation (6.2), subsequently ampli�es the time required to update this

�cost� matrix after each iteration (i. e. many more checks are required to ensure the

minimums or maximums are correctly identi�ed after a neighbourhood move has

been executed).
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6.2.2 Performance and Behaviour Analysis

Here we will brie�y look at how the tabu search procedure described in Section 4.3

behaves when the objective function Equation (4.3) is exchanged for Equation (6.2).

As shown before, this tabu search procedure attempts to reduce a secondary objec-

tive, the total expected future saturation in this case, without a�ecting the feasibility

of a colouring.

For these experiments we used a set of instances each consisting of a single graph

G0 and its future inclusion vector P1. These test instances have a vertex pool size

of N ∈ {550, 625, 750, 1000}, number of active vertices n = 500, a desired density

d ∈ {0.1, 0.5, 0.9}, and change probability p = 0.05. For each test instance, the

vertex pool is constructed with |V| = N and the set of globally active edges EV

contains each edge {u, v} of the
(|V|

2

)
potential edges between the vertices in V with

probability d. G0 is then constructed such that each vertex v ∈ V is included in V0

with probability N
n
and the edge set is de�ned as E0 = {{u, v} ∈ EV : u, v ∈ V0}.

The future inclusion vector P1 is populated with values sampled from the uniform

distribution U [0, 2np
N−n ]2. Twenty test instances were produced for each combination

of N, n, d and p, totalling 240 test instances.

Other than the objective function and test instances, the rest of the parameters

used in Section 4.3 remain the same here:

• Initial colourings are produced using the modi�ed Greedy algorithm de-

scribed in Algorithm 4.2.

• The following target number of colour classes k? are used:

� k? = 13, 14, 15, . . . , 23 for test instances with d = 0.1,

� k? = 49, 51, 53, . . . , 79 for test instances with d = 0.5, and

� k? = 125, 128, 131, . . . , 185 for test instances with d = 0.9.

• If the colouring produced by Algorithm 4.2 is infeasible then it is passed to

TabuCol [Hertz and de Werra, 1987] which attempts to �nd a feasible k?-

colouring within a 900 second time limit.

• If a feasible k?-colouring has been identi�ed then our tabu search procedure for

reducing total expected future saturation is implemented for 10,000 iterations.

• The tabu tenure for inverse Kempe-chain interchanges and pair-swaps within

our tabu search procedure is set to bN
2
c iterations.

The results of our experiments show that in all cases, our tabu search procedure

was able to identify a colouring with a reduced total expected future saturation (i. e.

2See Section 6.3.1 for the arguments regarding why this upper bound is used within this distri-
bution.
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Figure 6.2: Mean expected total saturation against target number of colour classes
(in clockwise order, starting from the top-left, graphs represent trials conducted on
test instances with N = 625 and d = 0.1, 0.5 and 0.9, respectively).

Equation (6.2)) compared to the initial colouring achieved via the modi�ed Greedy

algorithm or TabuCol. In Figure 6.2, the mean total expected future saturation of

the initial and �nal colourings, along with an �estimated� upper bound, are plotted

against k? for test instances with N = 625. The �estimated� upper bound for total

expected future saturation at time-step t, where each non-active vertex is adjacent

to at least one vertex in every colour class of a colouring St, is given by

F(St)UB = |V\Vt| · k? · E(pt+1) (6.5)

where pt+1 is the distribution of future inclusion probabilities for non-active vertices

in V\Vt and E(pt+1) is the expected value of this distribution3.

In a similar fashion to Figure 4.5, Figure 6.2 demonstrates a positive relationship

between the value of k? and the amount of reduction observed between the initial

and �nal colourings. The correlation coe�cients for this particular relationship range

between 0.828 and 0.970 for the di�erent values of N and d, with the coe�cients

tending towards the upper bound of this range for higher values of d and vice versa.

The initial total expected future saturations becomes less similar to the �esti-

3For our test instances |V| = N, |V0| ≈ n, and E(p1) = np
N−n where p1 = U [0, 2np

N−n ]. Therefore,
the �estimated� upper bound for the the total expected future saturation is equal to np · k? here.
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Table 6.1: Median time (in seconds) required for our tabu search procedure to
complete 10,000 iterations.

d = 0.1 k? 13 14 15 16 17 18 19 20
runTime 13.363 13.732 14.360 16.380 17.871 19.318 20.591 22.071
k? 21 22 23
runTime 23.287 24.327 25.629

d = 0.5 k? 49 51 53 55 57 59 61 63
runTime 29.748 30.019 30.384 30.763 31.142 32.311 33.087 34.063
k? 65 67 69 71 73 75 77 79
runTime 34.833 35.470 36.563 37.210 37.897 38.557 39.099 39.777

d = 0.9 k? 125 128 131 134 137 140 143 146
runTime 27.157 27.332 27.125 26.815 27.006 27.559 27.866 28.624
k? 149 152 155 158 161 164 167 170
runTime 29.256 29.988 30.457 30.721 31.366 31.939 32.423 32.937
k? 173 176 179 182 185
runTime 33.295 33.894 34.076 34.785 35.322

mated� upper bound for the largest values of k? used. In fact, these are the same

values of k? for which the initial number of expected future clashes became less

similar to its �estimated� value in Section 4.3.2 (compare Figures 4.5 and 6.2). This

observation is again due to the fact that for large values of k?, empty colour classes

will be added to the initial colouring (i. e. Lines 15-17 of Algorithm 4.2 are utilised),

which are not accounted for within the �estimates�.

It is worth noting that the total expected future saturation naturally decreases

with k?, as can be seen in Figure 6.2. However, this does not indicate that the

robustness of a colouring can be increased by simply reducing the number of available

colour classes. On the contrary, as k? decreases, it becomes more likely that the

saturation degree of each non-active vertex with regards to a feasible k?-colouring is

equal to k? itself. As discussed in Section 6.2, it is more desirable for the saturation

degree of each non-active vertex to be less than k?.

In all other observations, the tabu search procedure continues to act in the same

manner demonstrated in Section 4.3.2 despite changing the objective function, i. e.

there is still a positive relationship between k? and the time required to complete

10,000 iterations (see Table 6.1) and the majority of reduction takes place in the

early stages of the procedure (see Figure 6.3). All previous explanations for these

relationships carry over from Section 4.3.2 also.

We therefore propose to continue using the tabu search procedure introduced in

Section 4.3.2 for the second stage of Algorithm 4.1 but simply swap Equation (4.3)

for Equation (6.2).

6.3 Trial Information

We now look at whether reducing the total expected future saturation within our

two stage approach leads to more robust colouring with regards to potential future

changes. Moreover, we hope to see improvements with regards to the quality of the
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Figure 6.3: Mean expected total saturation against the number of iterations of tabu
search procedure completed for test instances with N = 625 and d = 0.5.

initial feasible colourings achieves (i. e. fewer colour classes) and the computational

e�ort required to achieve them (i. e. less time). As with the results presented in

Chapter 4, we expect any bene�ts of our two stage approach to be dependent on

the value of k?.

6.3.1 Test Instances

The graphs that make up our test instances have �ve parameters: N the size of

the vertex pool, n the desired number of active vertices, d the desired density, p

the change probability, and T the number of time-steps. The following parameter

values were used for our test instances: N ∈ {550, 625, 750, 1000}, n = 500, d ∈
{0.1, 0.5, 0.9}, p = 0.005, 0.01, . . . , 0.05 and T = 10. The set of globally active edges

EV is constructed such that every edge {u, v} of the
(
N
2

)
possible edges between

the vertices in V is included with probability d. G0 is then constructed such that

each vertex v ∈ V is included in V0 with probability n
N

and E0 contains the edges

{u, v} ∈ EV such that u, v ∈ V0.
At each time-step t = 0, 1, . . . , T − 1, every active vertex v ∈ Vt is copied to

the set of deleted vertices V −t+1 with probability p. Simultaneously, every non-active

vertex in V\Vt is copied to the set of new vertices V +
t+1 with a probability sampled

from the uniform distribution U [0, 2np
N−n ]. By using this distribution, each vertex

in V\Vt is copied to V +
t+1 with an expected probability of np

N−n which ensures that

the number of active vertices remains approximately equal over all time-steps (see
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below). The sets of deleted edges and new edges are then de�ned as E−t+1 = {{u, v} ∈
Et : u or v ∈ V −t+1} and E+

t+1 = {{u, v} ∈ EV\Et : u or v ∈ V +
t+1} respectively.

Legal Parameter Combinations for Vertex Dynamic Graphs with a Pool

of Vertices

Unlike the test instances for the edge dynamic GCP in Chapters 3 and 4, there

were no obvious relationships that the test instance parameters must adhere to for

the vertex dynamic GCP in Chapter 5. The set of new vertices V +
t+1 was simply

constructed such that |V +
t+1| ≈ np, in order to maintain an approximately equal

number of active vertices over all time-steps. However, now, V +
t+1 is a subset of a

�xed vertex pool V , so we get the following.

As noted previously, at time-step t, there are |Vt| active vertices out of the

|V| = N available vertices in the vertex pool. The number of vertices at time-step

t+ 1 is therefore calculated as

|Vt+1| = |Vt| − |V −t+1|+ |V +
t+1|

If each active vertex at time-step t is included in V −t+1 with probability p and each

non-active vertex is included in V +
t+1 with probability q then the above can be ap-

proximated to

|Vt+1| = |Vt| − p|Vt|+ q(|V| − |Vt|)

= (1− p)|Vt|+ q(N − |Vt|)

If we desire the number of active vertices to remain approximately equal over

all time-steps, then we can substitute |Vt| and |Vt+1| for n, where n is the desired

number of active vertices. Rearranging then gives q = np
N−n . Therefore, if each active

vertex in Vt is added to V −t+1 with probability p then each non-active vertex in V\Vt
should be added to V +

t+1 with probability q = np
N−n .

Given that q is a probability, it must satisfy 0 ≤ q ≤ 1. It therefore follows

that N , n and p must also satisfy 0 ≤ np
N−n ≤ 1. The number of active vertices is

non-negative and cannot exceed the size of the vertex pool (i. e. 0 ≤ n ≤ N), p is a

probability that satis�es 0 ≤ p ≤ 1 so we can conclude that np
N−n ≥ 0 always holds.

It follows that the only concern is satisfying p ≤ N−n
n

.

The graph in Figure 6.4 illustrates the legal combinations of the change prob-

ability p and the vertex pool size N (represented by the shaded area) for a �xed

number of desired active vertices n. All combinations of the parameter values of

our test instances satisfy these inequalities. More speci�cally, they fall within the

feasible region of Figure 6.4 as we have �xed n = 500 for all instances.
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steps for a vertex dynamic graph with a vertex pool.

6.3.2 Algorithm Parameters

The algorithm parameters used here are the same as those used for the two-stage

approach applied to the edge dynamic GCP with future adjacency information in

Section 4.4.2. To brie�y summarise:

• DSatur [Brélaz, 1979] is used instead of RLF [Leighton, 1979] as our con-

structive operator for Methods 0 and 8.

• TabuCol [Hertz and de Werra, 1987] and PartialCol [Blöchliger and Zuf-

ferey, 2008] are implemented to tackle the k-GCPs within our two-stage ap-

proach (i. e. Line 5 of Algorithm 4.1) when operating in the complete, improper

and partial, proper solution spaces respectively.

• During execution, if no feasible colouring has been identi�ed within half of the

allotted time limit then k will be increased by 1, and so on (i. e. Lines 9 and

10 of Algorithm 4.1).

• The value of k will never be reduced below the target number of colour classes

k?. If an initial feasible k-colouring is obtained such that k < k? then k? − k
empty colour classes will be added to the colouring.

• As n = 500 for all test instances in this chapter, the target number of colour

classes k? used are:

� k? = 12, 13, . . . , 18 for test instances with d = 0.1,
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� k? = 48, 50, . . . , 70 for test instances with d = 0.5, and

� k? = 125, 128, . . . , 170 for test instances with d = 0.9.

• The tabu search operator used for reducing total future saturation (i. e. Line

13 of Algorithm 4.1) has the following properties:

� the objective is to reduce Equation (6.2), the total expected future satu-

ration,

� the best Kempe-chain interchange or pair-swap is executed during each

iteration,

� the associated inverse moves are then made �tabu� for a �xed tabu tenure

of bN
2
c iterations4,

� if all moves are currently �tabu� then a random Kempe-chain interchange

is performed, and

� the aspiration criterion allows currently �tabu� moves to be performed if

the resultant colouring S ′ satis�es F(S ′) < F(Sbest).

• The time limit is set to 10 seconds and is cumulative over both stages of

Algorithm 4.1, i. e. the time remaining after a feasible k?-colouring has been

identi�ed is then used to reduce total future saturation.

6.4 Results

6.4.1 Without Secondary Optimisation

In a similar fashion to Section 4.5.1, here we simply aim to illustrate that the

relationships observed between the modi�cation operators in Chapter 5 remain the

same for these test instances. We also wish to show that there is again a slight shift

in the relationships with regards to p, due to the use of DSatur as our constructive

operator as opposed to RLF. Finally, we hypothesise that the size of the vertex pool

N has little-to-no e�ect on the previously presented results, which we will therefore

aim to demonstrate.

As discussed in Section 4.5.1, our two-stage approach behaves in a similar manner

to Algorithm 3.2 if k? is set to the minimum values in Table 4.4 i. e. k? = 12, 48 and

125 for test instances with d = 0.1, 0.5 and 0.9 respectively.

Initial Colourings

As in Chapter 5, the initial feasible colourings achieved when implementing Meth-

ods 5 to 7 have signi�cantly fewer colour classes than Methods 0 and 8 but require

4Here we arbitrarily chose to link the length of the tabu tenure with the size of the vertex pool
N as opposed to the number of desired vertices n.
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Table 6.2: Median time (in seconds) required to obtain an initial, feasible colouring
for the vertex dynamic GCP on test instances with N = 625.

p
d M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0.1 0 0 0 0 0 0 0 0 0 0 0

5 0 0.016 0.016 0.031 0.016 0.024 0.031 0.031 0.031 0.031
6 0 0.016 0.016 0.031 0.047 0.031 0.031 0.047 0.047 0.047
7 0 0.016 0.031 0.031 0.031 0.047 0.047 0.047 0.047 0.062
8 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.5 0 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
5 0.468 0.936 1.326 1.903 1.942 2.254 2.036 2.402 2.652 3.323
6 0.382 1.194 1.310 1.880 2.005 1.958 1.973 2.472 2.496 2.684
7 0.850 1.319 1.942 1.506 2.270 1.911 1.872 2.855 2.161 2.114
8 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.9 0 0.031 0.031 0.031 0.032 0.031 0.031 0.031 0.031 0.032 0.031
5 1.007 2.746 2.785 2.637 3.121 3.105 3.299 3.448 3.978 3.534
6 1.927 3.042 3.869 3.768 3.877 3.292 4.774 5.007 5.008 5.007
7 1.685 2.816 3.877 3.550 3.604 3.869 4.485 5.008 5.007 5.007
8 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0 represents a time less than 10−3 seconds.
∗ indicates a time that is signi�cantly less than all others for the same values of d
and p.

signi�cantly more time to be identi�ed. This can be seen in Figure 6.5 and Table 6.2

for test instances with N = 625.

Method 8 now produces initial feasible colourings with signi�cantly fewer colour

classes than Method 0 for all test instance, whereas in Chapter 5 this was not the

case for test instances with d = 0.1 and higher values of p. As can be seen from

Figure 6.5, the number of colour classes in the initial colourings are still positively

correlated to p so we would expect Method 8 to produce colourings with signi�cantly

more colour classes than Method 0 for some value of p > 0.05. This shift is similar

to the one observed for Method 4 in Section 4.5.1 and is again likely due to the fact

that the colourings produced by DSatur generally have signi�cantly more colour

classes than those produced by RLF (see Section 2.1).

For most test instances, there is no signi�cant di�erence in the number of colour

classes in the initial feasible colourings achieved when implementing Methods 6

and 7, nor is there any signi�cant di�erence in the time required to do so. On the rare

occasions when signi�cant di�erences are observed, Method 6 achieves initial feasible

colourings with signi�cantly fewer colour classes than Method 7, but Method 7

requires signi�cantly less time to identify an initial feasible colouring. There does

not appear to be any obvious pattern with regards to when these di�erences are

observed, however.

Information regarding the number of clashes in the complete, improper colouring

produced by Methods 6 and 7 was unavailable in Chapter 5. Here we were able

to show that Method 7 produces colourings with signi�cantly fewer clashes than

Method 6 for all test instances. Examples of this clear relationship can be seen in
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Figure 6.5: Mean number of colour classes in initial, feasible colourings for test
instances with N = 625. Graphs (a), (c) and (e) represent methods that operate in
the partial, proper solution space, graphs (b), (d) and (f) represent methods that
operate in the complete, improper solution space, and the rows from top to bottom
represent test instances with d = 0.1, 0.5 and 0.9, respectively.
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Figure 6.6: Mean number of clashes in colourings produced by Methods 6 and 7 for
test instances with N = 625 and d = {0.5, 0.9}.

Figure 6.6. Although the relevant information is not available for comparison, it is

believed that this result also holds true for the experiments in Chapter 5 on test

instances with n = 500 because the modi�cation operators are unchanged.

As expected, all of the relationships presented above are una�ected by the size of

the vertex pool N . With regards to the number of colour classes in the initial feasible

colourings achieved, this is clearly illustrated in Figure 6.7 for methods operating in

the partial, proper solution space on test instances with d = 0.5. With regards to

computational e�ort, no signi�cant correlation at the α = 0.01 level can be observed

between N and the time required to identify an initial feasible colouring. As such,

Methods 5 to 7 require signi�cantly more time than Method 0 to identify an initial

feasible colouring, and Method 8 requires signi�cantly less time, all regardless of the

value of N .

Final Colourings

In general, the relationships observed between the di�erent modi�cation operators

are again similar to those observed in Chapter 5 for test instances with n = 500. To

summarise:

• Final feasible colourings with signi�cantly fewer colour classes are achieved

under Method 5 compared to those achieved under Methods 0 and 8 for test

instances with high values of d and/or low values of p.

• Final feasible colourings with both signi�cantly fewer and signi�cantly more

colour classes are achieved under Methods 6 to 8 compared to those achieved

under Method 0. However, there is no obvious relationship between the re-

sults observed and the test instance parameters. This relationship also holds

between the �nal feasible colourings achieved under Methods 6 and 7 when

compared against those achieved under Method 8.

When �nal feasible colourings with the same number of colour classes are achieved:
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Figure 6.7: Mean number of colour classes in initial, feasible colourings achieved
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• Methods 5 to 7 require signi�cantly less time than Method 0 for test instances

with low values of d and/or low values of p.

• Method 8 requires signi�cantly less time than Method 0 for most test instances,

especially those with lower of values p.

• Method 8 also requires signi�cantly less time than Methods 5 to 7 for most

test instances with d ∈ {0.5, 0.9}, especially those with higher values of p.

However, unlike when considering initial feasible colourings, here the size of the

vertex pool N does appear to have an a�ect on the results observed, at least in some

cases. Therefore the observations above are to be considered with some potential

variation based on N . For example, Method 5 achieves �nal feasible colourings

with signi�cantly more colour classes than those achieved under Methods 0 and 8

on some test instances with d ∈ {0.1, 0.5} when N ∈ {550, 625} but not when

N ∈ {750, 1000}. Similarly, Methods 6 and 7 require signi�cantly less time to

achieve �nal feasible colourings5 compared to those achieved under Method 8 on

some test instances with d = 0.1 when N = 550 but not when N ∈ {625, 750, 1000}.
The reason that the size of the vertex pool N a�ects some modi�cation opera-

tors more than others, and produces certain e�ects in one solution space and not the

other, is unclear. Perhaps the variation in observations between modi�cation oper-

ators and solution spaces indicates that the underlying reason for the observations

is not strictly caused by N . These observations are made more perplexing because

N was shown to have no a�ect on the results concerning initial feasible colouring.

6.4.2 With Secondary Optimisation

We now consider the situation where the future inclusion vector Pt+1 is known for

each time-step t ∈ {0, 1, . . . , T − 1}. We have shown in Section 6.2 that the tabu

search procedure introduced in Section 4.3 can also be used to reduce total ex-

pected future saturation (i. e. Equation (6.2)). Here we wish to investigate whether

using this tabu search procedure within our two-stage approach (Algorithm 4.1)

can produce robust colourings for the vertex dynamic GCP with future inclusion

information.

In particular we wish to explore how our two-stage approach a�ects the number of

colour classes in the initial feasible colourings and the computational e�ort required

to identify them. The number of colour classes in the �nal feasible colourings will

be naturally capped by the target number of colour classes k?, so they will not be

explored here.

It might be expected that the value of N will have some e�ect when including

secondary optimisation. Larger values of N indicate more non-active vertices during

5As usual, the results used for comparison regard �nal feasible colourings with the same number
of colour classes achieved under the respective modi�cation operators.
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each time-step t, which could lead to more time required to calculate the total

expected future saturation F(St). Fewer iterations of the secondary optimisation

may then take place because more time will be required, during each iteration, to

update the data structures related to �cost� changes. However, our experiments

indicate that N has very little e�ect on the relationships observed between the

modi�cation operators6. To reduce the volume of results presented, unless stated

otherwise, we will only present results for test instances with N = 625 here.

Initial Total Saturation

As stated above, we have shown that the total expected future saturation of a

colouring St can be reduced by the tabu search procedure outlined in Section 4.3 by

replacing Equation (4.3) with Equation (6.2). To measure the e�ectiveness of this

reduction we look at the total saturation of the newly active vertices at time-step

t+ 1, which is given by ∑
v∈V +

t+1

degsat(v,St\V −t+1) (6.6)

where degsat(v,St\V −t+1) is the saturation degree of v with respect to the colouring

St\V −t+1 = {S1\V −t+1, . . . , Sk\V −t+1}.
With the exception of the smallest values of k?, Equation (6.6) was successfully

reduced when the second stage of our approach is implemented (i. e. Lines 11-16 of

Algorithm 4.1). More speci�cally, in most cases where k? is set above or equal to

13, 52 and 131 for test instances with d = 0.1, 0.5 and 0.9 respectfully, the total sat-

uration of the new vertices at the beginning of the time-step is signi�cantly smaller

compared to when secondary optimisation is not implemented. As k? increases so

too does the number of feasible k?-colourings, therefore increasing the chance of our

tabu search procedure to identify a colouring with reduced total expected future

saturation.

It is interesting to observe that if k? tends towards higher values then our tabu

search procedure naturally empties colour classes in its attempt to reduce total

expected future saturation, which leads to a k?-colouring with empty colour classes.

An empty colour class within a colouring St corresponds to a decreased upper bound

for the saturation degree of every non-active vertex with regards to St (i. e. if St
has x empty colour classes then degsat(v,St) ≤ k? − x for every v ∈ V +

t+1). As can

be seen from Figure 6.8, as k? increases so too does the number of empty colour

classes. This is to be expected because as k? increases away from χ(Gt), the number

of feasible k-colourings (where k satis�es χ(Gt) ≤ k < k?) also increases.

It stands to reason that if the total saturation of the new vertices at the start of

a time-step t+1 is reduced then so too might the number of clashes in the colourings

6This does not contradict the results presented in Section 6.4.1, because any potential e�ects
caused by the size of the vertex pool are limited to the results concerning �nal feasible colourings.
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Figure 6.8: Mean number of empty colour classes at the start of a time-step against
the target number of colour classes k? for test instances with N = 625, d = {0.5, 0.9}
and p = 0.05 whilst implementing modi�cation operator 6 (randomAssign).

produced by Methods 6 and 7. For Method 6, the likelihood of a vertex v ∈ V +
t+1

being assigned to a colour class of St\V −t+1 such that no clashes will be introduced

is increased if degsat(v,St\V −t+1) is decreased. However, with the exception of 15

of the 1400 test instance parameter settings, there was no signi�cant di�erence

between the number of clashes at the start of a time-step. Regardless of decreasing

degsat(v,St\V −t+1) for a vertex v ∈ V +
t+1, it is still likely that a higher proportion

of the colour classes in St\V −t+1 will introduce clashes, if v is assigned to them.

Furthermore, if St\V −t+1 contains empty colour classes, then the non-empty colour

classes are likely to contain more vertices; therefore, if v is assigned to one of these

non-empty colour class, then more clashes are likely to be introduced also.

Indeed, let us assume that St\V −t+1 contains x empty colour classes and satis�es

|St\V −t+1| = k. Then, the k − x non-empty colour classes in St\V −t+1 will contain

approximately n
k−x vertices. If v ∈ V +

t+1 is assigned to a colour class of St\V −t+1 at

random, then one would expect(x
k
· 0
)

+

(
k − x
k
· dn

k − x

)
=
dn

k
(6.7)

clashes to be introduced, where x
k
and k−x

k
are the probabilities of v being assigned

to an empty colour class or not, respectively. It should be clear from Equation (6.7)

that, regardless of the number of empty colour classes in St\V −t+1, the expected

number of clashes introduced by Method 6 will remain the same (i. e. ≈ np · dn
k
).

Method 7, on the other hand, speci�cally assigns a vertex v ∈ V +
t+1 to the colour

class of St\V −t+1 such that the least number of clashes are introduced. For this

modi�cation operator, the number of clashes in the initial colourings produced are

signi�cantly fewer than when secondary optimisation is omitted for most of the cases

where total saturation was also signi�cantly reduced (i. e. when k? ≥ 13, 52 and 131

for test instances with d = 0.1, 0.5 and 0.9 respectively). This can clearly be seen in
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Figure 6.9: Mean number of clashes at the start of a time-step against the target
number of colour classes k? for test instances with N = 625, d = {0.5, 0.9} and
p = 0.05 whilst implementing modi�cation operator 7 (leastClashesAssign).

Figure 6.9. In a lot of these cases, St\V −t+1 is known to contain empty colour classes.

If St\V −t+1 has x empty colour classes, then at least x of the |V +
t+1| new vertices will

be assigned without introducing clashes. In fact, if x ≥ |V +
t+1| then Method 7 is

guaranteed to produce a feasible k-colouring for Gt+1 where k = |St|. The values in
Table 6.3 show the mean number of clashes in the colouring produced by Method 7,

and a value of zero in this table indicates that every colouring produced for the

associated test instances are feasible. It can be seen from this table that, as k?

increases, so too does the value of p for which Method 7 will always produce a

feasible colouring.

We therefore conclude that reducing the total expected future saturation does re-

duce the total saturation of the newly active vertices in V +
t+1 with regards to St\V −t+1.

In the case of Method 7 we have shown that this reduction of total saturation can

lead to colourings with signi�cantly fewer clashes compared to when the secondary

optimisation is not implemented. In the best case scenarios (i. e. those with low

value of p and high values of k?), Method 7 is able to assign the new vertices in V +
t+1

to colour classes in St\V −t+1 such that the resultant colouring is feasible for Gt+1 in

many more cases than when the secondary optimisation is omitted.

Initial, Feasible Colourings

Now that we know that total saturation of the newly active vertices is successfully

reduced by our two-stage approach, we wish to explore whether this has any impact

on the initial feasible colourings achieved after Methods 5 to 8 have been imple-

mented. We have already shown that Method 7 can now produce feasible colourings

more often than before, but how else are the initial feasible colourings e�ected? Is

there a reduction in the number of colour classes in the initial feasible colourings?

Are there any computational savings? Regardless of whether the initial colouring

produced by Methods 5 to 8 are feasible, a reduced total saturation should mean that
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Table 6.3: Mean number of clashes in the colourings produced by modi�cation
operator 7 (leastClashesAssign) for test instances with N = 625.

p
d k? 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0.1 12 2.575 5.220 8.010 10.465 12.395 15.075 17.445 19.305 22.320 24.720

13 2.330 4.500 6.915 8.810 11.005 13.415 15.645 17.955 19.885 22.365
14 1.280 2.885 4.270 5.200 6.370 7.900 9.185 10.525 11.765 12.700
15 0.290 0.690 0.925 1.485 1.560 1.955 2.765 3.305 3.565 4.705
16 0.010 0.060 0.140 0.225 0.385 0.515 0.620 0.825 1.180 1.225
17 0 0 0.015 0.020 0.035 0.075 0.115 0.180 0.250 0.340
18 0 0 0 0 0 0.015 0.035 0.040 0.055 0.050

0.5 48 3.305 6.925 10.235 13.625 16.655 19.665 22.540 25.805 29.285 31.955
50 3.345 6.630 9.910 13.335 15.960 19.830 22.500 25.760 28.945 31.810
52 3.005 6.230 9.215 12.205 14.945 17.975 20.535 23.285 26.485 28.855
54 2.550 4.800 7.570 9.815 12.450 14.475 17.175 19.455 22.400 24.325
56 1.725 3.510 5.610 7.345 8.975 11.145 13.055 14.775 17.380 18.930
58 0.660 1.955 3.310 4.280 6.130 7.655 8.670 9.555 11.710 13.235
60 0.115 0.565 0.980 1.945 2.505 3.390 4.820 5.320 6.490 7.445
62 0.055 0.090 0.255 0.545 0.855 1.155 2.350 2.370 3.040 4.035
64 0 0.005 0.015 0.050 0.210 0.375 0.640 0.815 1.375 1.545
66 0 0 0 0.005 0.045 0.060 0.125 0.245 0.370 0.485
68 0 0 0 0 0.005 0 0.020 0.055 0.120 0.140
70 0 0 0 0 0 0 0 0.010 0.030 0.015

0.9 125 3.205 6.240 9.600 11.910 14.770 17.605 20.035 23.115 25.860 27.945
128 3.135 6.235 9.215 11.595 14.445 17.570 19.430 22.230 25.285 27.890
131 2.810 5.445 8.365 10.710 13.325 16.085 18.285 20.750 23.245 25.545
134 2.170 4.645 7.155 9.685 11.640 14.270 16.600 18.670 21.550 23.540
137 1.080 3.330 5.470 7.455 9.240 11.625 13.965 15.465 18.195 20.085
140 0.460 1.815 3.235 4.920 6.775 8.825 10.660 12.680 14.985 16.760
143 0.100 0.650 1.710 2.900 4.015 5.690 7.815 9.525 11.150 12.640
146 0.020 0.155 0.585 1.175 1.980 3.320 4.760 5.745 7.860 8.710
149 0 0.020 0.125 0.310 0.870 1.410 2.495 3.260 4.660 5.580
152 0 0.005 0.015 0.045 0.260 0.400 1.250 1.600 2.645 2.950
155 0 0 0 0.010 0.060 0.150 0.370 0.700 1.185 1.650
158 0 0 0 0 0.005 0.040 0.170 0.180 0.355 0.680
161 0 0 0 0 0 0.005 0.020 0.040 0.145 0.225
164 0 0 0 0 0 0 0.010 0.010 0.035 0.075
167 0 0 0 0 0 0 0 0 0.005 0.005
170 0 0 0 0 0 0 0 0 0 0
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Table 6.4: Signi�cant di�erences between the time required to achieve an initial
feasible colouring under Method 6 with and without secondary optimisation on test
instances with N = 625 and d = 0.9.

p
k? 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
125 - - - - - - - - - -
128 - - - - - - - - - -
131 - - - - - - - - - -
134 X X X - - - X - - -
137 X X X X X X X X X X
140 X X X X X X X X X X
143 X X X X X X X X X X
146 - - X X X X X X X X
149 - - - X X X X X X X
152 - - - X X X X X X X
155 - - - - X - X - - X
158 - - - - X - X - - X
161 - - - - - - - - - X
164 - - - - - - - - - -
167 - - - - - - - - - -
170 - - X - - - - - - -

X - indicates that initial feasible colourings are achieved in signi�cantly less time
when secondary optimisation is included.

TabuCol and PartialCol are able to identify feasible colourings �more easily�.

As with Methods 1 to 3 for the edge dynamic GCP with future adjacency infor-

mation, the number of colour classes in the initial feasible colourings achieved under

Methods 5 to 7 is not a�ected by the inclusion of secondary optimisation. This is

to be expected, because the initial number of colour classes k at time-step t + 1 is

determined by St (and k?) rather than the modi�cation operators themselves. How-

ever, these modi�cation operators are still able to achieve initial feasible colourings

with signi�cantly fewer colour classes than Method 0 for small enough values of k?

(i. e. k? ≤ 15, 56 and 164 for test instances with d = 0.1, 0.5 and 0.9 respectively).

Under Methods 5 and 6, initial feasible colouring are achieved in signi�cantly

less time when secondary optimisation is implemented in some test instances. In

general, the pattern governing the cases where a time reduction occurs is similar to

the pattern illustrated in Table 6.4 (i. e. a band of instances through the mid-range

values of k?, followed by a �drop-o�� as k? continues to increase). The observations

where a time reduction is observed all relate to test instances for which the total

saturation is also reduced. The �drop-o�� in time reductions for Methods 5 and 6 is

likely due to TabuCol and PartialCol's abilities, in their own right, to identify

feasible k?-colourings in very short periods of time for large value of k?.

Method 7 also identi�es initial feasible colourings in signi�cantly less time when

secondary optimisation is applied, but without the �drop-o�� for higher values of

k?. As with Methods 5 and 6, all cases where a time reduction is observed relate

to test instances for which the total saturation was also reduced. The �drop-o�� is
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Table 6.5: Signi�cant di�erences between the time required to achieve an initial,
feasible colouring when using modi�cation operator 5 (uncolourNew) within our
two stage approach (Algorithm 4.1) compared against Method 0 on test instances
with N = 625 and d = 0.9.

p
k? 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
125 O O O O O O O O O O
128 O O O O O O O O O O
131 O O O O O O O O O O
134 - O O O O O O O O O
137 X X X X - - - - O O
140 X X X X X X X X X X
143 X X X X X X X X X X
146 X X X X X X X X X X
149 X X X X X X X X X X
152 X X X X X X X X X X
155 X X X X X X X X X X
158 X X X X X X X X X X
161 X X X X X X X X X X
164 X X X X X X X X X X
167 X X X X X X X X X X
170 X X X X X X X X X X

X - indicates that our two stage approach with Method 5 requires signi�cantly less
time than Method 0.
O - indicates that our two stage approach with Method 5 requires signi�cantly more
time than Method 0.

probably absent here, because Method 7 is able to produce initial feasible colourings

for high values of k? and low values of p, therefore bypassing TabuCol altogether

in these cases.

These time reductions lead to cases where Methods 5 to 7 are able to achieve ini-

tial feasible colourings in signi�cantly less time than those achieved under Method 0

also. As was the case in Section 4.5.2 for the edge dynamic GCP with future adja-

cency, these cases are dependent on k? and p. Here, it appears that k? may be more

in�uential than p, as a slight increase in k? leads to a much larger increase in the

values of p for which Methods 5 to 7 are able to outperform Method 0, with regards

to computational e�ort. By comparing Tables 4.11 and 6.5, we can also see that

the value of k? does not have to be as large for these achievements to be realised in

the vertex dynamic case. This is probably caused by the amount of �problematic�

change introduced for a vertex dynamic GCP with a change probability p, which

is likely to be less than that introduced for an edge dynamic GCP with the same

change probability p (see Chapter 5).

We can therefore conclude that, for mid-range values of k?, using Methods 5

to 7 to modify a feasible colouring for Gt into an initial colouring for Gt+1 is more

bene�cial than using Method 0, with regards to both quality (i. e. fewer colour

classes) and computational e�ort (i. e. less time required).

Let us now consider our �nal modi�cation operator. Method 8 is able to pro-
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duce initial feasible colourings with signi�cantly fewer colour classes when secondary

optimisation has been implemented for large values of k?. In fact, for k? ≥ 14, 54

and 134, Method 8 produces initial feasible colourings with signi�cantly fewer colour

classes for all test instances with d = 0.1, 0.5 and 0.9 respectively. This is yet another

knock-on e�ect of our secondary optimisation stage, which successfully reduced the

total saturation in all of the cases mentioned above.

Unfortunately, our two-stage approach results in Method 8 producing colouring

with signi�cantly more colour classes than those produced by Method 0 for mid-

range values of k? on test instances with d = 0.1 and high values of p (see Figure 6.10

and Table 6.6). In Figure 6.10, this is particularly illustrated where the lines for

Method 0 (i. e. the line of circles) are met and then crossed for by the lines for

Method 8 (i. e. the line of crosses) when k? = {14, 16}. It should also be noted that

when k? = 18, the lines for Methods 0 and 8 lie on top of one another, illustrating

that there is no signi�cant di�erence between the number of colour classes in their

respective initial feasible colourings.

Given a feasible colouring St for Gt, Method 8 will always produce a feasible

k-colouring for Gt+1 where k ≥ |St| ≈ k?. As k? increases, the number of additional

colour classes added to St\V −t+1 by Method 8 is likely to cause the total number of

colour classes to overtake the number of colour classes used by Method 0. This is

clearly evident from the �noSecOpt� (i. e. no secondary optimisation) lines in the

graphs of Figure 6.10. However, as k? continues to increase, our secondary optimi-

sation identi�es colourings with empty classes, which can be utilised by Method 8

before it adds any new colour classes to St\V −t+1. In fact, Method 8 should produce

initial feasible k-colourings for Gt+1, where k = |St| ≈ k?, for most of the same test

instances that Method 7 is able to do so (see Table 6.3). Hence, for the largest values

of k?, there is no signi�cant di�erence in the number of colour classes of the initial

feasible colourings produced by Methods 0 and 8. This holds for all test instances,

including those with d ∈ {0.5, 0.9}.
With regards to time requirements, the inclusion of secondary optimisation has

no e�ect on the time required by Method 8 to achieve initial feasible colourings (i. e.

there is no signi�cant di�erence). As such, Method 8 continues to be signi�cantly

faster than Method 0 with regards to achieving an initial feasible colouring, as was

the case in Section 6.4.1.

Method 6 (randomAssign) vs. Method 7 (leastClashesAssign)

The main observable di�erence between Methods 6 and 7 so far, has been with

regards to the number of clashes in the colourings they produce (see Figure 6.6).

When considering the vertex dynamic GCP without future inclusion information,

this di�erence has had little-to-no knock-on e�ect with regards to the quality of the

initial feasible colourings achieved, nor the computational e�ort required to do so
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Figure 6.10: Mean number of colour classes in the initial feasible colouring produced
by Methods 0 and 8 with and without secondary optimisation whilst operating in
the partial, proper solutions space (in clockwise order, starting from the top-left,
graphs represent trials conducted with k? = 12, 14, 16 and 18, respectively, on test
instances with N = 625 and d = 0.1).

Table 6.6: Signi�cant di�erences between the number of colour classes in the initial
feasible colourings when using modi�cation operator 8 (solveNew) within our ap-
proach (Algorithm 4.1) compared against Method 0 on test instances with N = 625
and d = 0.1.

p
k? 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
12 X X X X X X X X X X
13 X X X X X X X X X X
14 X X X X X - - O O O
15 X X X X - O O O O O
16 - - - - O O O O O O
17 - - - - - - - - O O
18 - - - - - - - - - -

X - indicates that Method 8 achieves an initial colouring with signi�cantly fewer
colour classes than Method 0.
O - indicates that Method 8 achieves an initial colouring with signi�cantly more
colour classes than Method 0.
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Table 6.7: Signi�cant di�erences between the time required to achieve an initial,
feasible colouring when using Methods 6 and 7 within our two stage approach on
test instances with N = 625 and d = 0.9.

p
k? 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
125 - - - - - - - - - -
128 - - - - - - - - - -
131 - - - - - - - - - -
134 - - - - - - - - - -
137 - - - - - - - O - -
140 - - - - - - - - - -
143 X - - - - - - - - -
146 X X X - X - - - - -
149 X X X X X - - - X -
152 X X X X X X X - - -
155 X X X X X X X X X -
158 X X X X X X X X X X
161 X X X X X X X X X X
164 X X X X X X X X X X
167 X X X X X X X X X X
170 X X X X X X X X X X

X - indicates that Method 7 requires signi�cantly less time than Method 6.
O - indicates that Method 7 requires signi�cantly more time than Method 6.

(see Sections 5.4.1 and 6.4.1).

When implementing our two stage approach, there is still no signi�cant di�erence

between the number of colour classes in the initial feasible colourings achieved under

Methods 6 and 7. However, we can now observe cases where Method 7 requires

signi�cantly less time to identify an initial feasible colouring compared to Method 6.

Indeed, for high values of k? and low values of p, initial feasible colourings are

identi�ed in signi�cantly less time under Method 7 than under Method 6. As k?

increases, so too does the value of p for which this computational saving is observed

(see Table 6.7).

This observation is the result of a series of knock-on e�ects. Firstly, our two

stage approach signi�cantly reduces the total saturation. This reduced saturation

then leads to signi�cantly fewer clashes in the colouring produced by Method 7 (see

Figure 6.9). Finally, this reduction in clashes signi�cantly reduces the time required

to identify an initial feasible colouring under Method 7. It should also be noted

that, our two stage approach also signi�cantly reduces the time required to identify

an initial feasible colouring under Method 6, but only for mid-range values of k?

(see Table 6.5).

6.5 Conclusions

In this chapter we proposed an alternative version of vertex dynamic graphs, based

on a �xed pool of available vertices and a �xed set of globally active edges between
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the vertices in that pool. Using this new de�nition, we introduced the concept

of future vertex inclusion, and proposed using the two-stage approach with the

tabu search procedure previously introduced in Sections 4.2 and 4.3, respectively, to

produce more robust colourings with respect to future change.

As was shown in Chapter 4 for the edge dynamic GCP, changing the construc-

tive operator does not change the relationships observed in Chapter 5 between the

modi�cation operators for the vertex dynamic GCP, other than shifting the value

of p for which the observations hold in some cases. It was also shown that the size

of the vertex pool N has no e�ect on the relationships observed with regards to

the initial, feasible colourings achieved. On the other hand, N does appear to have

some e�ect with regards to �nal feasible colourings. The observable in�uence of N

varies across di�erent modi�cation operators and solution spaces, so it is di�cult to

determine why it is present. Nevertheless, this is of little concern when considering

our two-stage approach because we will only be interested in results regarding the

initial feasible colourings achieved.

By using future vertex inclusion to reduce the total expected future saturation,

within our two-stage approach, the total saturation of the non-active vertices was

signi�cantly reduced for the larger values of k? used. This then lead to the number of

clashes observed in the colourings produced by Method 7 to be signi�cantly reduced

in the same cases also. For large values of k? and small values of p, Method 7 was

even able to produce feasible colourings (i. e. colourings without clashes).

The relationships observed, with regards to the number of colour classes in the

initial feasible colourings achieved, between Methods 5 to 8 (uncolourNew, ran-

domAssign, leastClashesAssign and solveNew, respectively) and Method 0 (reset)

without future inclusion information (i. e. those presented in Chapter 5 and Sec-

tion 6.4.1) remain the same when using our two-stage approach with low values of

k?. However, the strength of these relationships diminish as k? increases. For ex-

ample, Methods 5 to 7 cease to achieve initial feasible colourings with signi�cantly

fewer colour classes than Method 0 for the largest values of k?.

On the other hand, there is clear inverse relationship between the target number

of colour classes k? and the time required to achieve initial feasible colourings (i. e.

as k? increases, the time required decreases). For mid-range values of k? Methods 5

to 7 are now able to achieve initial feasible colouring with signi�cantly fewer colour

classes than those achieved under Method 0, whilst also requiring signi�cantly less

time to do so.

As observed in Chapter 4, the relationship between the quality (i. e. number of

colour classes, determined by k?) and �robustness� of a colouring is clearly negative

(i. e. as k? decreases, �robustness� decreases). As described in Section 4.6, this is

unsurprising because, for a given graph Gt, our secondary optimisation stage will

allow more feasible colourings to be considered as k? increases away from χ(Gt).
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We saw in Chapter 5 that, in general, the vertex dynamic GCP achieves more

bene�cial results than its edge dynamic counterpart (i. e. where the test instance

parameters were equivalent). This seems to carry over here, such that when a bene�t

(e. g. reduced time to initial feasible colouring) is observed, it usually occurs for a

smaller value of k? than would have been required in the corresponding edge dynamic

GCP. As was the case in Chapter 5, this is likely due to the amount of �problematic�

change introduced for a vertex dynamic GCP with change probability p, which is

less severe than the amount introduced for an edge dynamic GCP with the same

change probability p.

Key Findings and Recommendations

• Using future vertex inclusion information within our two-stage approach leads

to a signi�cant decrease in the total saturation of the non-active vertices in

the current time-step (i. e. increased robustness).

• By increasing the robustness of a colouring to future changes, the number of

clashes introduced by Method 7 is signi�cantly reduced, and for large values

of k? and low values of p this modi�cation operator can even produce feasible

colourings. We therefore suggest using Method 7 over Methods 5 and 6 when

implementing our two-stage approach.

• As with the edge dynamic GCP with future adjacency information, a clear

inverse relationship between quality and robustness has been demonstrated.

Therefore, we again suggest that the user prioritises between the two objectives

based on their preferences.

• In general, the bene�ts of using the two-stage approach to tackle the vertex

dynamic GCP outweigh those observed when tackling the edge dynamic GCP,

especially for decreased values of k?.

This chapter's results are the last to be presented in this thesis. Over Chapters 3

to 6 we have introduced two dynamic variants of the GCP, considered using a mod-

i�cation approach to �repair� colourings when future change information is unavail-

able, and considered using a two-stage approach to increase robustness when future

change information is available. In the �nal chapter, we will summarise all of the

key �ndings from these past four chapters and propose areas of potential future

research.
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Chapter 7

Conclusions and Future Work

In this �nal chapter we aim to summarise all of the �ndings from the work presented

in Chapters 3 to 6, draw �nal conclusions based on the aims set out at the beginning

of this thesis, and discuss areas of potential future work.

7.1 Modi�cation Approach for Dynamic GCPs

without Future Change Information

In Chapters 3 and 5 we introduced two cases of dynamic GCPs: edge dynamic

and vertex dynamic. In particular, we proposed an approach which attempts to

modify a feasible k-colouring for the static representation of a dynamic graph at

time-step t into an initial, though not necessarily feasible, k′-colouring for the static

representation at time-step t+ 1, where k′ ≥ k.

In these chapters we assumed that changes occur completely at random, i. e.

no future change information is available. By doing this, the goal of our proposed

approach is to �repair� an infeasible colouring (or solution), that was itself feasible

before the changes occurred, in some bene�cial way compared to treating each time-

step as an individual static graph and starting from scratch. The main bene�ts we

consider are: i) reduced number of colour classes (i. e. improved solution quality);

and ii) reduced time requirements for achieving feasible colourings (i. e. reduced

computational e�ort).

For both the edge and vertex dynamic GCPs, four di�erent modi�cation opera-

tors (or methods) were introduced and empirically compared. For the edge dynamic

GCP, the modi�cation operators are: calculateClashes, uncolourClashes, uncolour-

MostClashing, and solveClashes, denoted by Methods 1 to 4 respectively. For the

vertex dynamic GCP, the modi�cation operators are: uncolourNew, randomAssign,

leastClashesAssign, and solveNew, denoted by Methods 5 to 8 respectively. These

modi�cation operators can broadly be split into two di�erent types: Methods 1

to 3 and 5 to 7 modify a feasible k-colouring for Gt into a, most likely, infeasible

k-colouring for Gt+1; and Methods 4 and 8 modify a feasible k-colouring for Gt into
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a feasible k′-colouring for Gt+1 where, in most cases, k′ > k.

To compare our modi�cation approach, we used reset, denoted by Method 0,

which treats each time-step of a dynamic graph as an individual static graph (i. e.

Method 0 does not consider any information regarding the colourings achieved in

the previous time-step).

In comparison to Method 0, Methods 1 to 3 and 5 to 7 all achieve initial feasi-

ble colourings with signi�cantly fewer colour classes, but require signi�cantly more

time to do so. Therefore, using these modi�cation operators is bene�cial with re-

gards to the quality of initial feasible colourings, but detrimental with regards to

computational e�ort.

To combat this computational increase, variants of Methods 1 to 3 and 5 to 7

were considered that add x > 0 empty colour classes to the colourings they produce.

Therefore, if a feasible k-colouring for Gt is passed to one of these modi�cation

operators, the resultant colouring for Gt+1 will have k + x colour classes. Provided

x is �large enough�, Methods 1 to 3 and 5 to 7 now require signi�cantly less time

to achieve initial feasible colourings compared to Method 0. Of course, if x is �too

large�, then these modi�cation operators will achieve initial feasible colourings with

signi�cantly more colour classes than Method 0. Thus, dependent on an appropriate

choice of x, using this variant of Methods 1 to 3 and 5 to 7 is bene�cial with regards

to both the quality of initial feasible colourings and the computational e�ort required

to achieve them.

Methods 4 and 8, on the other hand, were shown to achieve initial feasible

colourings in signi�cantly less time than Method 0 in most cases1. However, the

initial feasible colouring produced by these modi�cation operators have both signi�-

cantly fewer and signi�cantly more colour classes than those produced by Method 0,

dependent on the change probability p. Therefore, for smaller values of p these mod-

i�cation methods are bene�cial with regards to the quality of initial feasible colour-

ings, as well as being bene�cial with regards to computational e�ort. It should be

noted that Method 8 was able to achieve these bene�ts for higher values of p than

Method 4.

With regards to �nal feasible colourings, Methods 1 to 4 were able to achieve

both quality and computational bene�ts in comparison to Method 0 for a handful

of cases with small values of d (density) and p. In the same regard, Methods 5 to 8

were also able to achieve both quality and computational bene�ts over Method 0,

but in far more cases. Interestingly, these bene�ts were observed more often on test

instances with large values of d rather than small ones. As with the di�erence in

performance between Methods 4 and 8, the di�erences observed here are caused by

the di�ering behaviours of the GCPs themselves.

Consider an edge dynamic test instance, and a vertex dynamic test instance

1In the few cases where this does not hold, no signi�cant di�erence is observed.
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with the same parameters as the edge dynamic instance. We have shown, both

theoretically and empirically, that a change probability of p is likely to introduce

more �problematic� changes (e. g. clashes, �uncoloured� vertices) in an edge dynamic

GCP than it will do in a vertex dynamic GCP in most cases2. It is therefore not

surprising that our modi�cation approach performs better for higher values of p on

vertex dynamic GCPs than it does on edge dynamic GCPs.

Overall, our modi�cation approach can be bene�cial with regards to both qual-

ity and computational e�ort, especially with regards to initial feasible colourings.

Methods 4 and 8 have been shown to perform very well in both senses for small

values of p, and Methods 1 to 3 and 5 to 7 have been shown to perform very well

(again, in both senses) but regardless of the value of p, provided they included an

�appropriate� number of empty colour classes x. With regards to the �nal feasible

colourings achieved when our modi�cation approach is implemented, the results are

less impressive, being both bene�cial and detrimental depending on the test instance

parameters, especially d and p.

In terms of real-world applications, this approach might be of particular interest

if a �good� solution is known for the current state of a problem (i. e. its current

size and/or constraints) and a small amount of �problematic� change is introduced,

which must be dealt with quickly.

7.2 Two Stage Approach for Dynamic GCPs with

Probabilistic Future Change Information

In Chapters 4 and 6 the work presented in Chapters 3 and 5 was extended to include

future change information. For the edge dynamic GCP this information considered

the probability of an non-active edge at time-step t becoming active in time-step

t+1; for the vertex dynamic GCP this information regarded the probability of a non-

active vertex at time-step t becoming active in time-step t + 1. This future change

information is called �future adjacency information� and �future vertex inclusion

information� for the edge and vertex dynamic GCPs, respectively.

The main goal of these chapters was to determine whether this future change

information could be utilised in the current time-step in order to produce a colouring

that is currently feasible but also more robust to the changes that may be introduced.

To ascertain whether this has occurred, we looked at whether the bene�ts previously

observed in Chapters 3 and 5 (i. e. improved solution quality and reduced compu-

tational e�ort) were themselves improved upon, or whether they became observable

in cases where they had not been before.

In order to achieve the above goal, a two stage approach was proposed. The

2This statement is also, to a lesser extent, dependent on the number of vertices n and the
density d of a test instance.
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�rst stage of this approach aims to identify a feasible k?-colouring for the current

time-step, where k? is user-de�ned, by using the modi�cation approach from Chap-

ters 3 and 5. The second stage of this approach attempts to optimise a secondary

�robustness objective� via a tabu search procedure which utilises move operators

that do not compromise the feasibility of a colouring. Therefore, if a feasible k?-

colouring for the current time-step is successfully identi�ed in the �rst stage, the

�nal colouring returned after the second stage is also guaranteed to be feasible for

the current time-step.

7.2.1 With Future Adjacency Information

In Chapter 4, we introduced future adjacency information for the edge dynamic

GCP, which indicates the probability of an edge {u, v} /∈ Et being included in

Et+1. This information can be used to reduce the expected number of clashes in the

subsequent time-step.

By reducing the expected number of clashes, our two-stage approach was able

to signi�cantly reduce the number of actual clashes that are introduced between

time-steps, dependent on the values of k? and p. For relatively small values of k?,

signi�cant reductions in the number of clashes were only observed for the highest

values of p used. As k? increases however, the values of p decrease. Hence, for the

largest values of k? used, signi�cant reductions were observable for all values of p

used. The amount of reduction was also positively related to the value of k? (i. e.

as k? increases, the reduction in clashes also increases).

This reduction in the total number of clashes at the start of a time-step suggests

that the initial colourings are �closer� to feasible. Indeed, depending on k? and p,

initial feasible colourings can be achieved via tabu search in signi�cantly less time

compared to using Method 0. The relationship between k? and p here is reversed

from that discussed above: for relatively small values of k?, this computational

bene�t can only be observed for the smallest values of p used, but as k? increases,

so too does the values of p.

One drawback of our two-stage approach is with regard to the number of colour

classes in the initial feasible colourings achieved. For the largest values of k?, Meth-

ods 1 to 3 are unable to achieve initial feasible colourings with signi�cantly fewer

colour classes than Method 0. Also, as k? increases, Method 4 produces initial fea-

sible colourings with signi�cantly more colour classes than Method 0 for smaller

values of p. It should be noted that these observations are caused by the capping of

colour classes (i. e. by k?), rather than our two-stage approach.

Overall, our two-stage approach has illustrated a clear relationship between the

quality of a colouring (i. e. the number of colour classes) and the �robustness� of a

colouring to future change. For mid-range values of k?, Methods 1 to 3 are able to

achieve initial feasible colourings with signi�cantly fewer colour classes than those
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produced by Method 0, and they require signi�cantly less time to do so. Therefore,

our two-stage approach is able to improve upon both quality and computational

e�ort for �appropriate� values of k?.

It is interesting to note that this is very similar to the bene�ts achievable without

future adjacency information in Chapter 3, when implementing Methods 1 to 3 with

x > 0 empty colour classes. For �appropriate� values of x, bene�ts could be achieved

with regards to both quality and computational e�ort, but without the need of any

secondary optimisation.

7.2.2 With Future Vertex Inclusion Information

In Chapter 6, we introduced future vertex inclusion information for the vertex dy-

namic GCP, which indicates the probability of a vertex v ∈ V\Vt being included

in Vt+1, where V is a �xed pool of vertices. In order to utilise this information, we

introduced a �xed set of global edges (i. e. if u, v ∈ Vt then it is known whether

{u, v} ∈ Et, for all time-steps t). Using future vertex inclusion information and the

set of global edges, we can then attempt to reduce the total expected saturation of

the non-active vertices in V\Vt with respect to the colouring for Gt.

By reducing the total expected saturation of the non-active vertices at time-step

t, our two-stage approach was able to signi�cantly reduce the total saturation of the

new vertices in V +
t+1, dependent on k

?. This was mostly achieved by emptying colour

classes of St. There is also a positive relationship between the amount of reduction

and the value of k? (i. e. as k? increases, the reduction in the total saturation also

increases). In general, these observations are similar to those observed for the edge

dynamic GCP with future adjacency information but without the dependence on p.

A reduction in the total saturation of the new vertices would suggest that it

will be �easier� to identify a feasible colouring. This appears to hold true, because

for large values of k? and low value of p, Method 7 is now able to produce initial

feasible colourings independently. In fact, as k? increases, so too do the values of

p for which this is achievable. In general, the reduction of the total saturation of

the new vertices also leads to computational savings when implementing Methods 5

to 7, for mid-range values of k?. For the smallest and the largest values of k?, no

signi�cant time changes are observed.

As with the edge dynamic GCP with future adjacency information, we see the

same drawback with regards to the number of colour classes in the initial feasible

colourings achieved. Methods 5 to 7 are unable to achieve initial feasible colourings

with signi�cantly fewer colour classes than Method 0 for the largest values of k?, and

Method 8 produces initial feasible colourings with signi�cantly more colour classes

than Method 0 for the mid-range values of k? and high values of p on low density

graphs. Again, this is caused by the capping of colour classes, rather than our

two-stage approach directly.
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Again, our two-stage approach clearly demonstrates the relationship between the

quality of a colouring and its �robustness�. For mid-range values of k?, Methods 5

to 7 are able to achieve initial feasible colourings with signi�cantly fewer colour

classes than Method 0, and require less time to do so. It should be noted that, the

range of k? values for which this holds is larger than the range for which similar

results are achieved by Methods 1 to 3 for the edge dynamic problem. The change

probability is also much less important here, indicating that the �best� quality and

computational bene�ts achievable are dependent on �appropriate� values of k? alone.

Just like the cases where future change information is not used, we believe this

di�erence between the edge and vertex dynamic problems is caused by the amount

of �problematic� change that is introduced between time-steps (i. e. the amount of

�problematic� change for a vertex dynamic graph with change probability p is likely

to be less than that of an edge dynamic graph with the same change probability p).

7.3 Future Work

In this �nal section we will discuss ideas for future research that would extend the

work presented in this thesis.

7.3.1 Di�erent Dynamic Graphs

In this thesis we have only considered a few di�erent types of test instances. More

speci�cally, we have focused on random graphs that are constructed such that the

density and the number of vertices remains approximately equal over all time-steps.

One simple way of extending this work would be to explore how our modi�cation

approach and two-stage approach behave on di�erent graphical topologies. In this

section we will brie�y discuss di�erent test instances that might be of interest.

Firstly, we could look at random dynamic graphs where the density or number

of vertices (i. e. |Et| and |Vt|, respectively) do not remain approximately equal over

all time-steps. On-line graph colouring considers dynamic graphs where the vertex

set is ever increasing, i. e. |Vt+1| = |Vt| + 1 for all time-steps t = 0, 1, 2, . . . , T . One

potential problem of these types of dynamic graphs is that χ(Gt) is also likely to vary

over all time-steps t. Therefore, Methods 1 to 3 and 5 to 7, which modify a feasible k-

colouring St for Gt into a k-colouring for Gt+1, may become less appropriate because

k may be smaller than χ(Gt+1).

Graphs with di�erent structure may also be considered, such as scale-free net-

works. Heuristics might even be designed in order to take advantage of a graph's

underlying structure, if this is known. Of course, maintaining the particular struc-

ture of a graph over all time-steps may be di�cult to accomplish in practice.

Throughout this thesis, we have considered edge dynamic and vertex dynamic

graphs separately. Within a vertex dynamic graph, both the edge and the vertex
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sets change between each time-step. However, changes to the edge set are strictly

related to associated changes in the vertex set (i. e. the adding/removal of edges

incident to vertices that are added/removed). One may wish to consider a vertex

dynamic problem where changes can also occur on the edge set independently of

the changes to the vertex set. In order to tackle such a problem, new modi�cation

operators would need to be proposed that can deal with both types of changes

(e. g. a combination of Methods 4 and 8). We would also expect large amounts

of �problematic� change (i. e. clashes and �uncoloured� vertices) to be introduced

between each time-step for even the smallest values of p, when compared against

the edge and vertex dynamic versions studied in this thesis.

Finally, in order to motivate this work we proposed that many real-world op-

erational research problems, which have been reformulated as static GCPs, would

be better represented by dynamic GCPs (e. g. frequency assignment [Aardal et al.,

2007; Dupont et al., 2009]). It would be of particular interest to see how our mod-

i�cation and two-stage approaches perform on real-world test instances. In order

to acquire such instances, one might consider a partnership with a speci�c indus-

try, such as defence or telecommunications. Regardless of whether such information

currently exists, these industries may have enough insight for dummy instances to

be constructed.

By studying such real-world problems, we are unlikely to encounter test instances

in which the density and the number of vertices remains approximately equal be-

tween changes (i. e. time-steps). For example, consider a frequency assignment

problem, its associated GCP and a feasible colouring for that GCP. If the proximity

within which interference can occur is increased, then the number of edges and the

density of the associated GCP will also increase. Alternatively, additional locations

(or objects) could be introduced to the network, which would increase the number

of vertices in the associated GCP. In both cases, constraint violations (i. e. clashes

or �uncoloured� vertices) are likely to be introduced and a colouring that was pre-

viously feasible is unlikely to remain so. An initial frequency assignment problem,

along with examples of these two scenarios and their e�ect on the associated GCP

of the initial problem are illustrated in Figure 7.1.

Although not strictly related to graph topologies, we will brie�y discuss future

change information here. For our test instances, all probabilities related to future

change were independent. However, this might not be representative of real-world

problems, as a given change could potentially in�uence additional or future changes.

For example, in a frequency assignment problem, if one location (or object) is moved

within the network then other locations in its near vicinity might be more (or less)

likely to be moved also, either in the same time-step or in future time-steps. There-

fore, the future adjacency probabilities of the edges incident to the associated vertices

in the associated edge dynamic GCP would not be independent of one another, in
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Figure 7.1: Example of a frequency assignment problem and the e�ects of two
di�erent changes on the associated GCP. The initial problem is presented in (a); the
interference radius is increased from 2.5 to 3 in (b); and three additional locations
(or objects) are introduced to the network in (c). Dotted lines and nodes represent
edges and vertices that have been introduced because of the changes in the associated
frequency assignment problem.
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this situation.

7.3.2 �Similarity� as a Secondary Objective

Another way of extending the work of this thesis would be to introduce di�erent

secondary objectives that replace or work in conjunction with our secondary �ro-

bustness� objective.

One potential secondary objective could be the �similarity� of colourings between

subsequent time-steps. The goal of this objective would be to increase the �simi-

larity� of two colourings, or reduce the �distance� between them. Colourings that

are �similar� to one another may be desirable for real-world applications, as the re-

colouring of vertices (or their associated real-world action) may incur some form of

cost.

Indeed, one of the focuses of Dupont et al. [2009] in their work on the dynamic

frequency assignment problem, is to reduce the number of frequency reassignments

(i. e. the number of vertices that are recoloured) between time-steps, as there is a

cost assigned to this action. However, unlike the work presented in this thesis, theirs

is less concerned in reducing the number of colour classes (i. e. frequencies) used and

more on reducing the number of vertices that are recoloured between time-steps. In

other words, they are more concerned with solution robustness, whereas we have

attempted to �nd a balance between multiple objectives (i. e. solution quality and

robustness).

With regards to �similarity�, there are several measures for set partitions which

could be utilised. Considering two colouring S1 and S2, one potential similarity

measure is the the Jaccard index, given by

|P1 ∩ P2|
|P1 ∪ P2|

(7.1)

where Pi is the set of vertex pairs which are in the same colour class in colouring Si
for i = 1, 2. Alternatively, we could use the Sørensen-Dice coe�cient, given by

2|P1 ∩ P2|
|P1|+ |P2|

(7.2)

or the Rand index, given by

|P1 ∩ P2|+ |P c
1 ∩ P c

2 |
|P |

(7.3)

where P = E is the set of all possible vertex pairs, and P c
i = P\Pi for i = 1, 2. Each

of these three measures gives a value between 0 and 1, where a value of 1 indicates

that two colourings are identical (see Figure 7.2). As a secondary objective, we

would aim to maximise one of Equations (7.1) to (7.3).
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P1 P2

Ω = P

Figure 7.2: Space of all vertex pairs.

These measures can also be easily transformed into distance measures, which we

would aim to minimise instead. To do this, we simply subtract our chosen similarity

measure from 1. For example, the Jaccard �distance� between two colourings S1 and
S2 would be given by

D(S1,S2) = 1− |P1 ∩ P2|
|P1 ∪ P2|

=
|P1 ∪ P2| − |P1 ∩ P2|

|P1 ∪ P2|
(7.4)

where Pi is de�ned as before, for i = 1, 2. A distance measure, de�ned like so,

will also give a value between 0 and 1, but now a value of 0 will indicate that two

colourings are identical (i. e. there is zero distance between them).

Another way of measuring distance between colourings could be to simply count

how many vertices have changed colour class (e. g. as shown in Algorithm 7.1) which

might be a more appropriate measure for real-world applications. One potential

problem with this measure could occur in the case where two colour classes may have

identical elements but are labelled di�erently. To counter such problems a matching

algorithm, such as the Hungarian algorithm [Kuhn, 1955], could be implemented to

re-label two colourings before they are compared.

Algorithm 7.1 �Distance� Calculator

Input: a graph G = (V,E), two colourings S1,S2 for G, and their associated colour-
ing functions c1 : V → {1, . . . , k1}, c2 : V → {1, . . . , k2}

Output: the number of 1-moves m required to transform S1 into S2 (or vice versa)
1: m← 0
2: for i← 1 to |V | do
3: if c1(vi) 6= c2(vi) then
4: m← m+ 1
5: return m

Of course, this secondary distance objective D could easily be incorporated in

conjunction with our secondary robustness objective F : given a feasible colouring

150



St for Gt, our secondary objective might be to simultaneously reduce F(St+1) and

D(St,St+1). In other words, we would want to �nd a feasible colouring St+1 for

Gt+1 which is both robust to future change but not too �far away� from St. If these
secondary objectives were combined, then a pay-o� might be observed, such that a

colouring with small expected future adjacency (or low expected total saturation)

will require fewer moves to become a feasible colouring in the following time-step

and therefore the two colourings will also be relatively �similar�.

In order to incorporate both of these secondary objectives simultaneously, a

weighted function wFF(St+1)+wDD(St,St+1) could be used during the second stage

of Algorithm 4.1. The weights wD and wF could also be adjusted according to user

preference.

7.4 Chapter Summary

In this thesis we have considered four di�erent types of dynamic graph colouring

problems: edge and vertex dynamic GCPs, both of which were considered with and

without future change information. By applying new heuristic approaches to these

problems, we have added to the very little research that currently exists in this area.

We have shown, for dynamic GCPs without future change information, that a

modi�cation approach with appropriate parameter settings can be bene�cial with

regards to either improving quality or reducing computational e�ort, when compared

against treating each time-step of a dynamic graph independently. In fact, for test

instances with small amounts of change between time-steps, this approach can be

bene�cial with regards to both quality and computational e�ort.

For dynamic GCPs with future change information, we have shown that a two-

stage approach can reduce the amount of �problematic� change introduced between

time-steps (i. e. this approach can improve the robustness of a colouring). How-

ever, there is a clear trade-o� between the quality of a colouring and its potential

robustness, such that a colouring with more colours (i. e. reduced quality) can be

made more robust. By improving the robustness of a colouring, the bene�ts of our

modi�cation approach are then observed for parameter setting and test instances

for which they were previously absent.

Finally, we have suggested areas of future research to extend the work presented

in this thesis. In particular, one should consider test instances and secondary ob-

jectives for the two-stage approach that re�ect real-world dynamic problems (e. g.

dynamic frequency assignment).
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Appendix A

Additional Pseudocode

The pseudocode and details presented in this appendix are done so to supplement

the descriptions of some of the algorithms discussed in Chapter 2.

A.1 Constructive Algorithms

Algorithm A.1 Greedy Algorithm

Input: a graph G = (V,E), and an ordering of the |V | vertices {v1, . . . , v|V |}
Output: a feasible colouring S for G
1: S1 ← ∅
2: S ← {S1}
3: for i← 1 to |V | do
4: success ← false
5: for j ← 1 to |S| do
6: if Sj ∪ {vi} is an independent set then
7: Sj ← Sj ∪ {vi}
8: success ← true
9: break
10: if not success then
11: S|S|+1 ← {vi}
12: S ← S ∪ S|S|+1

13: return S
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Algorithm A.2 DSatur Algorithm

Input: a graph G = (V,E)
Output: a feasible colouring S for G
1: S1 ← ∅
2: S ← {S1}
3: X ← V
4: while X 6= ∅ do
5: choose v ∈ X
6: success ← false
7: for j ← 1 to |S| do
8: if Sj ∪ {v} is an independent set then
9: Sj ← Sj ∪ {v}
10: success ← true
11: break
12: if not success then
13: S|S|+1 ← {v}
14: S ← S ∪ S|S|+1

15: X ← X\{v}
16: return S

For Line 4 of Algorithm A.2, the initial vertex v ∈ X is chosen such that v

has the maximum degree in G. Subsequently, v ∈ X is chosen such that v has the

highest saturation degree with regards to S (see De�nition 2.1). Ties are broken

randomly.

Algorithm A.3 RLF (Recursive Largest First) Algorithm

Input: a graph G = (V,E)
Output: a feasible colouring S for G
1: S ← ∅ (i. e. S = {} and |S| = 0)
2: X ← V
3: Y ← ∅
4: while X 6= ∅ do
5: S|S|+1 ← ∅
6: while X 6= ∅ do
7: choose v ∈ X
8: S|S|+1 ← S|S|+1 ∪ {v}
9: Y ← Y ∪ ΓX(v)
10: X ← X\{Y ∪ {v}}
11: S ← S ∪ S|S|+1

12: X ← Y
13: Y ← ∅
14: return S

For Line 7 of Algorithm A.3, the initial vertex v ∈ X for each new colour class Si

is chosen such that v has the highest degree in the sub-graph induced by X. Each

subsequent vertex v ∈ X selected for Si is chosen such that v has the highest degree

in the sub-graph induced by Y ∪ {v}. Ties are broken randomly.

For Line 9 of Algorithm A.3, ΓX(v) = {u ∈ X : {u, v} ∈ E}.
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A.2 Local Search Heuristics

Algorithm A.4 Simulated Annealing

Input: an initial solution S, a starting temperature tstart, an objective function f
(to be minimised), and a cooling function g

Output: the best solution found Sbest
1: Sbest ← S
2: t← tstart
3: while not stopping criterion do
4: choose S ′ ∈ N (S)
5: δ = |f(S)− f(S ′)|
6: if f(S ′) < f(S) then
7: S ← S ′
8: if f(S) < f(Sbest) then
9: Sbest ← S
10: else if r ≤ exp(−δ

t
) then

11: S ← S ′
12: t← g(t)
13: return Sbest

For Line 4 of Algorithm A.4, N (S) is the neighbourhood of solutions reachable

from S.
For Line 10 of Algorithm A.4, r is a random number sampled between 0 and 1,

and is re-sampled at the beginning of each iteration.

For Line 13 of Algorithm A.4, the cooling function g satis�es g(t) ≤ t for all

temperatures t.

Algorithm A.5 Tabu Search

Input: an initial solution S, an objective function f (to be minimised), and update
rules for tabu list T

Output: the best solution found Sbest
1: Sbest ← S
2: T ← ∅
3: while not stopping criterion do
4: choose S ′ ∈ N (S)\T
5: S ← S ′
6: if f(S) < f(Sbest) then
7: Sbest ← S
8: update T
9: return Sbest

For Line 4 of Algorithm A.5, S ′ ∈ N (S)\T is chosen such that either the most

amount of reduction, or the least amount of increase to f can be realised. Note that

there is no aspiration criterion here.

For Line 8 of Algorithm A.5, the update procedure both adds and removes

solutions from the tabu list T .
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A.3 Independent Set Extraction

Algorithm A.6 Generic Independent Set Identifying Algorithm

Input: a graph G = (V,E)
Output: the largest independent set found Ibest ⊆ V
1: Let I be an independent set produced by a constructive operator
2: Ibest ← I
3: l← |I|+ 1
4: while not stopping criterion do
5: attempt to make I an independent set that satis�es |I| = l
6: if I is an independent set that satis�es |I| = l then
7: Ibest ← I
8: l← l + 1
9: return Ibest

For our experiments in Section 2.5, we use a �greedy� operator to produce an

initial independent set I (i. e. Line 1 of Algorithm A.6). Beginning with I ← ∅, our
�greedy� operator considers all vertices v ∈ V in a random order, such that if I∪{v}
is independent then I ← I ∪ {v}.

For our experiments in Section 2.5, we use a tabu search procedure within the

general framework of Algorithm A.6 (i. e. Line 5). The objective function of this

tabu search procedure is

f(I) = |E ∩ {I × I}| (A.1)

(i. e. the number of clashes in I), and if f(I) = 0 then I is an independent set.

Here, transferring a vertex in or out of I is considered either �tabu� or not. During

each iteration, I is transformed into I ′ = (I ∪ {v})\{u} such that u ∈ I has the

most adjacent vertices in I, and v ∈ V \I has least adjacent vertices in I. Of course,
transferring both u and v must also be considered non-tabu for the current iteration.

Once I ′ has been de�ned and I ← I ′, the transferring of vertices u and v back in or

out of I, respectively, is made �tabu� for a �xed number of subsequent iterations1.

1More speci�cally, if u is transferred out of I, then it cannot be transferred back into I for the
next f(I ′) + r iterations, where r is a random integer from 0 to 4, and if v is transferred into I,
then it cannot be transferred back out for the next 0.6 · (f(I ′) + r) iterations.
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Appendix B

Additional Results

The aim of this appendix is to demonstrate that the number (or desired number)

of vertices for a given test instance (i. e. the value of n) has very little e�ect on

the relationships observed between the di�erent modi�cation operators and their

�bene�ts�. We have chosen to present results related to the experiments covered

Chapters 3 and 5 only, as we believe that this is enough to fully demonstrate our

desired aim for both the edge dynamic and vertex dynamic cases, respectively.

For Chapter 3, Edge Dynamic GCP without Future Change Information

Figures B.1 and B.2, and Tables B.1 and B.2.

For Chapter 5, Vertex Dynamic GCP without Future Change Information

Figures B.3 and B.4, and Tables B.3 and B.4.
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Figure B.1: Mean number of colour classes in initial, feasible colourings for the edge
dynamic GCP on test instances with |V | = 250. Graphs (a), (c) and (e) represent
methods that operate in the complete, improper solution space, graphs (b), (d) and
(f) represent methods that operate in the partial, proper solution space, and the rows
from top to bottom represent test instances with d = 0.1, 0.5 and 0.9, respectively.
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Figure B.2: Mean number of colour classes in initial, feasible colourings for the edge
dynamic GCP on test instances with |V | = 1000. Graphs (a), (c) and (e) represent
methods that operate in the complete, improper solution space, graphs (b), (d) and
(f) represent methods that operate in the partial, proper solution space, and the rows
from top to bottom represent test instances with d = 0.1, 0.5 and 0.9, respectively.
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Table B.1: Median time (in seconds) required to obtain an initial, feasible colouring
for the edge dynamic GCP.

p
n d M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
250 0.1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0.015
4 0 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0 0 0 0
1 0.296 0.429 0.538 0.733 0.647 1.334 0.726 1.084 0.780 0.748
2 0.289 0.561 0.452 0.382 0.515 0.546 0.515 0.468 0.460 0.421
3 0.445 0.452 0.390 0.406 0.476 0.390 0.531 0.515 0.492 0.468
4 0 0 0 0 0 0 0 0 0 0

0.9 0 0 0 0 0.015 0.015 0.015 0.015 0.015 0 0
1 1.006 1.482 1.014 0.983 1.178 1.326 1.326 1.232 1.272 1.038
2 0.819 0.936 0.843 1.022 0.889 1.443 1.170 1.389 1.162 1.076
3 1.069 0.889 0.936 1.139 0.842 1.006 1.233 1.139 0.913 1.186
4 0 0 0? 0? 0? 0? 0? 0? 0? 0?

1000 0.1 0 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
1 0.063 0.117 0.172 0.203 0.234 0.296 0.297 0.249 0.281 0.351
2 0.882 1.428 1.537 2.083 2.075 2.270 2.504 2.489 2.247 2.402
3 1.014 1.584 1.787 1.794 2.543 2.223 2.309 2.184 2.075 2.575
4 0? 0? 0? 0? 0? 0? 0? 0? 0? 0?

0.5 0 0.171 0.172 0.171 0.171 0.171 0.172 0.171 0.171 0.172 0.171
1 5.007 5.007 5.007 5.008 5.008 5.008 5.008 5.008 5.008 5.008
2 3.737 4.485 5.007 4.852 4.766 4.844 4.898 5.007 5.007 5.008
3 3.307 3.994 4.735 4.891 5.007 5.008 5.007 5.007 5.008 5.008
4 0? 0? 0? 0? 0? 0? 0? 0? 0? 0?

0.9 0 0.219 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234
1 7.714 8.767 8.799 8.737 8.783 8.845 9.189 9.174 9.111 8.768
2 6.630 7.472 7.628 7.815 8.050 7.956 7.941 8.081 8.206 8.065
3 6.638 7.683 7.730 7.925 8.268 7.941 7.893 7.863 8.136 8.089
4 0? 0? 0? 0? 0? 0? 0? 0? 0? 0?

0 represents a time less than 10−3 seconds.
? indicates a time that is signi�cantly less than all others for the same values of
n, d and p.
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Table B.2: Median time (in seconds) required to obtain �nal, feasible colourings with
the same numbers of colour classes for the edge dynamic GCP. Missing values indi-
cate test instances for which the colourings achieved by the associated modi�cation
operators were never all equal.

p
n d S.S. M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
250 0.1 C.I. 0 0 0 0 0 0 0 0 0 0 0

1 0? 0? 0? 0? 0? 0 0 0? 0 0
4 0? 0? 0? 0? 0? 0? 0 0 0 0

P.P. 0 0 0 0 0 0 0 0 0 0 0
2 0? 0? 0? 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0.015
4 0? 0 0? 0 0 0 0 0 0 0

0.5 C.I. 0 0.718 0.686 1.295 0.733 0.717 0.811 0.647 1.053 0.905 1.123
1 0.312 0.593 1.201 1.802 1.466 2.184 1.295 2.184 2.901 1.466
4 0.203? 0.390 0.748? 0.609 0.624 0.811 0.593 0.834 0.826 1.185

P.P. 0 0.655 0.585 0.421 0.546 0.483 0.484 0.530 0.515 0.436 0.600
2 0.327? 0.577 0.499 0.436 0.616 0.593 0.608 0.562 0.624 0.554
3 0.500 0.507 0.436 0.452 0.586 0.452 0.577 0.593 0.639 0.522
4 0.328? 0.460 0.484 0.483 0.507 0.452 0.554 0.608 0.468 0.507

0.9 C.I. 0 0.913 1.030 0.905 0.842 0.748 0.827 0.803 0.842 0.991 0.975
1 1.841 2.106 1.654 1.841 2.262 1.934 1.693 2.121 1.826 2.020
4 0.905 1.014 1.170 0.983 0.967 0.951 0.843 0.842 0.944 0.921

P.P. 0 0.913 0.826 0.866 0.897 1.123 0.967 1.022 0.952 1.170 0.827
2 1.084 1.123 1.583 1.529 2.082 1.981 2.137 2.215 1.779 2.324
3 1.381 1.763 1.342 1.739 1.474 1.981 1.615 1.755 1.841 2.200
4 0.826 1.092 0.812 0.998 0.858 1.123 0.967 1.061 1.186 0.843

1000 0.1 C.I. 0 0.273 0.265 0.234 0.266 0.281 0.250 0.218 0.265 0.280 0.265
1 0.063? 0.125? 0.172 0.203 0.234 0.289 0.296 0.250 0.281 0.343
4 0.094? 0.156? 0.187 0.234 0.234 0.281 0.250 0.289 0.297 0.359

P.P. 0 2.855 2.761 2.730 2.325 2.823 2.574 2.870 2.676 2.496 2.512
2 0.858? 1.428? 1.677? 2.121? 2.433 2.168 2.434 2.426 2.153 2.403
3 1.123? 1.631? 1.856? 1.716? 2.527 2.231? 2.418 2.215 2.106 2.465
4 0.936? 1.568? 2.122? 1.950? 2.230? 2.090 2.293? 2.403 2.387 2.918

0.5 C.I. 0 5.896 6.264 4.673 6.061 6.638 5.741 5.710 4.805 4.524 5.483
1 5.023 5.585 5.390 6.381 6.864 5.881 6.077 6.833 6.974 6.131
4 3.182? 4.025? 4.751 5.242 5.429 4.923 4.696 4.805 5.390 5.382

P.P. 0 5.382 6.942 5.241 5.764 6.482 6.505 4.976 6.115 5.601 6.084
2 4.914 4.547 6.232 6.248 5.585 5.522 7.004 6.505 6.450 5.928
3 3.510? 4.727? 5.156 5.148 5.257 5.819 5.725 5.835 5.897 6.271
4 3.744? 4.329? 5.764 5.202 5.561 5.507 5.648 5.835 5.023 4.758

0.9 C.I. 0 9.017 9.337 8.744 8.377 9.540 8.159 6.006 5.553 6.677 7.659
1 9.516 7.161 9.688 9.391 9.665 9.922 8.143 9.765 9.493 8.892
4 6.225? 7.082 7.184 7.691 6.958 5.241 8.214 9.609 8.549 9.828

P.P. 0 7.831 8.924 8.128 - 9.438 9.462 - 8.151 - -
2 8.284 7.964 8.331 - 7.863 9.134 - 8.853 - -
3 8.673 9.766 8.673 - 8.175 9.617 - 6.248 - -
4 6.974 6.272 7.472 - 9.032 9.275 - 7.839 - -

0 represents a time less than 10−3 seconds.
? indicates a time that is signi�cantly less than Method 0 for the same values of
n, d and p whilst operating in the same solution space.
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Figure B.3: Mean number of colour classes in initial, feasible colourings for the
vertex dynamic GCP on test instances with |V | = 250. Graphs (a), (c) and (e)
represent methods that operate in the partial, proper solution space, graphs (b), (d)
and (f) represent methods that operate in the complete, improper solution space,
and the rows from top to bottom represent test instances with d = 0.1, 0.5 and 0.9,
respectively.
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Figure B.4: Mean number of colour classes in initial, feasible colourings for the
vertex dynamic GCP on test instances with |V | = 1000. Graphs (a), (c) and (e)
represent methods that operate in the partial, proper solution space, graphs (b), (d)
and (f) represent methods that operate in the complete, improper solution space,
and the rows from top to bottom represent test instances with d = 0.1, 0.5 and 0.9,
respectively.
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Table B.3: Median time (in seconds) required to obtain an initial, feasible colouring
for the vertex dynamic GCP on test instances with n ∈ {250, 1000}.

p
n d M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
250 0.1 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0 0 0 0
5 0.031 0.218 0.140 0.343 0.328 0.320 0.718 0.710 0.445 0.398
6 0.062 0.164 0.187 0.281 0.359 0.374 0.515 0.694 0.608 0.460
7 0.031 0.195 0.148 0.437 0.530 0.375 0.562 0.600 0.827 0.492
8 0 0 0 0 0 0 0∗ 0∗ 0∗ 0∗

0.9 0 0 0 0.015 0.015 0 0 0 0 0 0
5 0.203 0.273 0.280 0.234 0.655 0.531 0.632 0.647 0.546 0.515
6 0.078 0.187 0.164 0.328 0.694 0.312 0.578 0.640 0.561 0.687
7 0.062 0.133 0.172 0.258 0.718 0.406 0.656 0.600 0.577 0.632
8 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

1000 0.1 0 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
5 0.187 0.546 0.851 0.952 0.913 1.584 1.108 0.874 0.889 0.881
6 0.047 0.063 0.094 0.140 0.296 0.265 0.273 0.312 0.289 0.281
7 0.047 0.062 0.109 0.187 0.281 0.218 0.297 0.328 0.305 0.390
8 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.5 0 0.171 0.171 0.172 0.172 0.171 0.172 0.172 0.172 0.172 0.172
5 2.068 2.559 2.902 3.611 3.705 3.963 3.370 4.259 4.470 4.228
6 1.428 2.418 3.167 4.009 4.236 5.007 5.007 5.007 5.007 5.007
7 1.030 2.637 2.964 4.103 4.727 5.007 5.007 5.008 5.007 5.007
8 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.9 0 0.234 0.249 0.234 0.234 0.249 0.249 0.234 0.234 0.218 0.218
5 2.707 3.721 4.509 4.634 5.039 5.265 5.202 5.562 5.695 5.250
6 3.019 4.688 5.016 5.156 5.967 6.303 6.575 7.005 7.293 7.519
7 3.198 4.751 5.156 5.335 5.554 6.669 5.842 6.786 7.129 7.387
8 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0 represents a time less than 10−3 seconds.
∗ indicates a time that is signi�cantly less than all others for the same values of
n, d and p.
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Table B.4: Median time (in seconds) required to obtain �nal, feasible colourings with
the same numbers of colour classes for the vertex dynamic GCP on test instances
with n ∈ {250, 1000}. Missing values indicate test instances for which the colourings
achieved by the associated modi�cation operators were never all equal.

p
n d S.S. M. 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
250 0.1 P.P. 0 0 0 0 0 0 0 0 0 0 0

5 0∗ 0∗ 0 0∗ 0∗ 0∗ 0∗ 0 0∗ 0∗

8 0∗ 0∗ 0∗ 0∗ 0 0∗ 0 0 0∗ 0
C.I. 0 0 0 0 0 0 0 0 0 0 0

6 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0
7 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0
8 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0

0.5 P.P. 0 0.749 0.499 0.624 0.561 0.717 0.795 0.780 0.764 0.780 0.694
5 0.070∗ 0.359∗ 0.327 0.554 0.499 0.624 0.811 1.279 0.951 0.702
8 0.078∗ 0.140∗ 0.203∗ 0.351∗ 0.452∗ 0.468∗ 0.609∗ 0.577∗ 0.640 0.678

C.I. 0 1.076 1.201 1.014 1.310 1.123 1.006 1.092 0.983 1.303 1.014
6 0.109∗ 0.265∗ 0.405∗ 0.483∗ 0.795 0.679 0.796 1.014 0.952 0.764
7 0.094∗ 0.304∗ 0.421∗ 0.686∗ 0.827 0.710 0.881 0.998 1.178 1.014
8 0.078∗ 0.211∗ 0.265∗ 0.468∗ 0.655∗ 0.570∗ 0.600∗ 0.577∗ 0.882∗ 0.686∗

0.9 P.P. 0 0.998 0.827 0.928 0.842 0.889 0.897 0.850 0.904 0.827 1.419
5 0.374 0.702 0.624 0.975 1.124 1.459 1.451 1.623 2.060 1.404
8 0.218∗ 0.328∗ 0.359∗ 0.523∗ 0.748 0.710 0.858 0.656 0.749 0.904∗

C.I. 0 0.952 0.920 0.804 0.834 0.998 0.951 0.999 0.913 1.030 0.733
6 0.187∗ 0.405 0.398∗ 0.921 1.061 0.873 1.358 1.162 1.568 1.700
7 0.195∗ 0.437∗ 0.530 0.921 1.186 1.154 1.279 1.342 1.607 1.544
8 0.140∗ 0.296∗ 0.390∗ 0.554∗ 0.500∗ 0.592 0.562 0.640 0.820 0.733

1000 0.1 P.P. 0 2.044 1.904 2.075 1.841 1.622 1.966 1.482 1.474 1.318 1.178
5 0.187∗ 0.531∗ 0.757∗ 0.889∗ 0.873∗ 1.584 1.092∗ 0.952∗ 0.889∗ 0.881
8 0.250∗ 0.640∗ 1.007∗ 1.030∗ 0.812∗ 1.381∗ 1.061∗ 0.952∗ 1.178∗ 1.045∗

C.I. 0 0.406 0.421 0.328 0.468 0.624 0.359 0.406 0.406 0.437 0.499
6 0.032∗ 0.086∗ 0.117∗ 0.172∗ 0.343 0.266 0.312 0.312 0.383 0.515
7 0.047∗ 0.062∗ 0.109† 0.187∗ 0.297∗ 0.234∗ 0.359 0.344 0.351 0.483
8 0.047∗ 0.125∗ 0.164∗ 0.203∗ 0.234∗ 0.289∗ 0.281∗ 0.327 0.296 0.351

0.5 P.P. 0 5.709 6.123 6.459 5.913 5.553 5.678 5.312 5.780 6.146 5.616
5 3.525∗ 5.032∗ 5.007∗ 5.094∗ 4.384∗ 5.008 5.335 4.844 5.008∗ 5.179
8 2.324∗ 2.949∗ 3.354∗ 3.237∗ 3.681∗ 4.454∗ 3.970 4.844∗ 3.416∗ 3.854∗

C.I. 0 7.434 5.725 5.850 5.865 5.975 6.490 5.819 5.148 6.747 5.741
6 2.363∗ 2.652∗ 3.073∗ 5.663∗ 5.008 5.491 5.546 5.881 7.169 5.460
7 1.007∗ 2.948∗ 3.401∗ 5.008∗ 5.008∗ 5.335 5.897 5.429 6.108 5.944
8 1.779∗ 1.662∗ 2.465∗ 2.777∗ 3.229∗ 2.979∗ 2.793∗ 3.089∗ 5.445 4.852

0.9 P.P. 0 8.596 7.472 7.769 8.752 9.516 8.370 7.940 7.379 8.159 7.660
5 5.850 4.071 5.491 2.902 8.534 8.159 6.069 8.205∗ 7.184 7.940
8 6.880 7.862 8.314∗ 6.396 6.381∗ 6.084∗ 5.117∗ 5.522∗ 5.593∗ 5.195∗

C.I. 0 - - - 9.376 - - 7.690 8.518 - 9.501
6 - - - 7.160 - - 8.596 8.393 - 9.329
7 - - - 7.309 - - 7.519 8.144 - 6.396
8 - - - 4.906 - - 5.226∗ 5.203∗ - 9.454∗

0 represents a time less than 10−3 seconds.
∗ indicates a time that is signi�cantly less than Method 0 for the same values of
n, d and p whilst operating in the same solution space.
† indicates a time that is signi�cantly less than Methods 0 and 8 for the same
values of n, d and p whilst operating in the same solution space.
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