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Abstract 

We consider how lead-times create the bullwhip effect in an inventory replenishment system. The inventory system 
is a combination of a specific demand process, a forecasting method, and a replenishment policy. Previous studies 
have evaluated the bullwhip effect when some of the system parameters such the forecasting model, demand 
process, or the lead-time are changed. This type of analyses has proved practically valuable, indicating which 
improvement measures can be taken. However, the specific causes of a bullwhip behavior are often difficult to 
grasp. It is often assumed that longer lead times lead to more bullwhip; herein we show this is not always so. We 
study the order-up-to (OUT) replenishment policy, with general auto-regressive moving average (ARMA(p,q)) 
demand processes, conditionally expected forecasting, and general lead-times. Using the eigenvalues of the 
demand process we study the effect of eigenvalue ordering on the bullwhip metric. The positivity of the demand 
impulse response determines whether the bullwhip produced is increasing in the lead-time. We illustrate our results 
by studying the ARMA(2,2) demand process.  
  
Keywords: Bullwhip effect, order-up-to policy, ARMA(p,q) demand, lead times, eigenvalues. 
 
1. Introduction 
The bullwhip effect produced by supply chain replenishment policies has been studied 
extensively. Usually, a combination of a specific lead-time, demand process, forecasting 
method, and a replenishment policy, is selected and the bullwhip effect is measured by means 
of a metric. Parameters of the demand process, the forecasting method, the replenishment policy, 
and the lead-time are varied, and the bullwhip effect is found to exist or not. Sometimes, discrete 
modeling choices such as the forecasting method are made. At other times, modeling choices 
are made that restrict more “fluid” variables such as the lead-time and demand process structure. 
 
Often the AR(1) demand process is considered in a bullwhip study; see Zhang (2004), Urban 
(2005), or Luong (2007). The effect of ARMA(1,1) processes was studied by Chen and Disney 
(2003), Gaalman and Disney (2006), Duc et al., (2008). Gaalman and Disney (2006) studied 
the ARMA(2,2) process, while Luong and Phien (2007) consider the AR(2). Gilbert (2005) 
considered how the general ARIMA(p,d,q) demand evolves as it is passed echelon-to-echelon 
up a supply chain. Together with the ARIMA demand model, forecasts based on the conditional 
expectation (a.k.a. Minimum Mean Squared Error, MMSE) of demand are often used. Alwan 
et al., (2003) argue that MMSE should be used when ARIMA demand processes are present. 
Less frequently, empirically popular methods such as exponential smoothing and moving 
average are studied (see Chen et al., 2000; Dejonckheere et al., 2003; Zhang, 2004).  
 
The most often used replenishment policy is the linear order-up-to (OUT) policy, Lee et al., 
(2000). However, several variations and generalization have also been considered. Common 
variations include the proportional OUT policy, (Deziel and Eilon, 1967; Dejonckheere et al., 
2003) and the full-state OUT policy (Gaalman, 2006; Gaalman and Disney, 2009). 
 
Lead-times are frequently a restricted set of numerical values. By far the most common 
bullwhip metric is the ratio of the order and demand variance. Gilbert (2002) used the ratio of 
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the order and demand forecast error. Gaalman and Disney (2007, 2012) used the difference 
between the order and demand variances.  
 
These bullwhip analyses are valuable as they indicate which improvement measures can be 
taken (such as using a different replenishment policy, or information sharing between stages in 
the supply chain). However, deep insights into the precise cause of the bullwhip effect are 
frequently lacking. For example: Under what conditions is the bullwhip effect an increasing 
function of the lead-time? What causes the bullwhip to be present with a short lead-time, but to 
disappear when a longer lead-time is present? Why does the bullwhip sometimes alternate over 
the lead-time? General statements about the interaction between the bullwhip effect and the 
lead-time are missing. Probably the only exception is the work of Dejonckheere et al., (2003) 
who state that when using exponential smoothing or moving average forecasts within the OUT 
policy, no matter what the lead-time, or the demand process, bullwhip is always generated. 
 
This research aims to better understand the link between bullwhip and the lead-time by 
considering the eigenvalues of the AR and MA components of the ARMA(p,q) demand process. 
An OUT policy with MMSE forecasts is used to represent the replenishment policy. We first 
introduce some general statements that hold for all demand processes and all lead-times, then 
we focus specifically on the hitherto unstudied ARMA(2,2) process.  
 
In §2 we present our basic modeling set-up: the demand process, the OUT replenishment policy, 
its impulse response, and eigenvalue representation. In §3, we present conditions under which 
bullwhip is an increasing function of the lead-time. §4 considers the special case of ARMA(2,2) 
demand. §5 concludes. Appendix A contains the transformation used to obtain our eigenvalue 
state space representation of the system. Appendix B contains the proof of Theorem 2. 
 
2. Modelling Assumptions 
2.1.  The Demand Process 
We assume that the demand process follows an ARMA(p,q) process, Box et al., (1994), 

1 1
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where, if p q  then ,  0ii q     else ,  0ii p    . Note, this formulation allows for all 

subsets of the ARMA(p,q) family of models. Gaalman (2006) shows that the ARMA demand 
process in (1) can be converted into a state space representation, characterized an m m  
companion matrix D , a unit row vector M  of length m, and a column vector G , also of length 

m. The pair ( , )D M  has the following observable canonical form (Kailath, 1980). 
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The impulse response of the demand process allows us to determine if bullwhip is present. Let 

tp , 0t  denote the impulse response of the demand process which can be calculated from 

the state space form in the following manner: 
 At 0t   the (input) impulse 0 1   enters an empty process, i.e. 0 0y  . From (4) the 

output will be 0 0 0 1z My   , so the impulse response is 0 1p  . Note, for all ARMA 

processes 0 0 1p   .  

 At 1t  , we have 1 0 0y D y G G     and the impulse 1 1 1 1z My MGp    .  

 At 2t  : 2 1 1y D y G D G     and 2 2 2 2z My MD Gp    .  

 For all future 3,4,...t  , 1
t

ty D G
 , 1

t t

tz MD Gp 
 . Here 1tD

  is a multiplication of 

D  to the power of 1t  . 

2.2. The Inventory Balance Equations and Sequence of Events 
We consider a discrete time system. At the beginning of time period t + 1, the state of the 
system is observed: demand during period t is tallied, forecasts for future demands are generated, 
inventory and WIP levels are determined, and replenishment orders are calculated. Immediately 
after the order is generated, the order placed at in period t k  arrives. k is the lead-time, when 
k = 0 the order placed is received within the same period it was placed. Eq. (5) describes the 
inventory balance equation; 

1 1t k t k t t ki i o d        

1 1.t t t k ti i o d      
(5)

 
2.3.   The OUT Replenishment Policy 
The linear approximation to the OUT policy is represented by the following set of difference 
equations (Gaalman and Disney 2009).  
 

1, 1 , , 1 ,
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The conditional expected future demand forecasts, 1 ,
ˆ

t k td   , can be obtained using a Kalman 

filter approach. In the stationary situation (assuming that an infinite number of past demand 
values are present) the one period ahead forecast error of an ARMA process is equal to 

, 1ˆ( ) tt t tz z   . In the stationary situation, the following relation holds, 
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Later we will require the impulse response of the orders. This can be obtained from (8): 
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 At 0t   the (input) impulse 0 0 1p    enters the empty process. From (6) the order will 

be 0 1 ,0 0ˆ ( )ko z E k   . For all ARMA processes, 0 1  . From (8), 1,0 1,0ˆˆ k
kz MD y    

1 1
k k

kMD y MD G p    . Here the last two relations come from the demand impulse 

response. This leads to 0

1

1 0
( ) j

k

k j
o p E k p


 

   . 

 Then 1t  , the order impulse response follows 1t

k t
k to MD G p


   . 

2.4.  Bullwhip Criterion and the Impulse Response 
A popular criterion to study the bullwhip effect of an inventory replenishment rule is the ratio 
of the ordering and demand variance. A bullwhip effect exists if the ratio  
 

1 1oo ddBI     . (9)
 
In (9), dd  is the variance of the demand process, oo  is the variance of the orders. These 

variances will only exist if the demand is stationary. In short-term demand forecasting, both the 
demand and order variance can become large (for instance, when the demand is highly 
correlated, (see Box et al., (1994) and Brown (1963)). As a consequence, 1 1BI  , suggesting 

the demand and order variance are equal, and bullwhip is absent. However, a difference between 
demand and order variance may still exist (Gaalman and Disney, 2012)1. In this case, the 
bullwhip criterion, CB(k), often expresses the difference between these two variances better, 
 

 ( ) /oo ddCB k     . (10)

 
If ( ) 0CB k   we have a bullwhip effect. Note 1 1 ( ) ( / )ddBI CB k     . Expressions for the 

demand and order variances are needed to investigate ( )CB k . A state space approach provides 
the variance and covariance expressions of the state variables, Gaalman and Disney (2009); 
however, as we are only interested in the demand and order variances, a more direct route is to 
apply Tsypkin’s squared impulse response theorem. Using Tsypkin’s relation, the demand 

variance is  2

0dd tt
p




    (Li et al., 2014). For the order variance, oo      
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Remark 1. 1 1 1(0) 2 2( )CB p      for all ARMA processes.  

Remark 2. ( ) ( 1)CB k CB k    1 0
2 .

k

k jj
p p    

 
Theorem 1. Iff  1 2 1, ,..., 0kp p p    then  CB k  is positive and increasing in the lead-time.  

 

                                                 
1 Furthermore, under non-stationary demand with infinite variance, the order variance is also infinite, but it is 
possible the infinite order variance is smaller (or larger) than the infinite demand variance. 



Gaalman, G., Disney, S.M., and Wang, X., (2018), “Bullwhip behaviour as a function of the lead-time for the order-up-to policy under ARMA demand”, 
Pre-prints of the 20th International Working Seminar of Production Economics, Innsbruck, Austria, 19th–23rd February, Vol. 2, pp249–260. 

 

 5

Proof. It follows immediately from the above remarks that ( ) ( 1) 0CB k CB k    if 

 1 0
, 0

k

k jj
p p 

 . ■ 

 
Remark 1. Only the first k + 1 ARMA coefficients influence the consequences of Theorem 1.  
 
Corollary 1: For MA(q) demand processes, 0,kp k   if ,  0,ii    indicating that bullwhip 

always exists and increases in the lead-time for such MA processes. ■  
 
Corollary 2: For AR(p) demand processes, 0,kp k   if ,  0,ii    indicating that bullwhip 

always exists and increases in the lead-time for such AR processes. ■ 
 
Corollary 3: For ARMA(1,1) demand processes, 0,kp k   iff 0   and    indicating 

that bullwhip always exists and increases in the lead-time for such ARMA(1,1) processes. ■ 
 
The proof of Corollary 1, 2 and 3 follows by simple inspection of the demand impulse response. 
 
2.5.  A Novel Eigenvalue Representation 
Given the importance of the demand impulse response on bullwhip behavior, one wonders how 
the demand parameters influence the impulse response. In general, this is rather complex, but 
by investigating the eigenvalues of the AR and MA components of the demand process, 
additional insights can be obtained. We start by transforming our demand impulse/state space 
model (as shown in Appendix A) into the following eigenvalue representation, 
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Here  ,  i l
    are the eigenvalues of the AR and MA components of the demand process 

respectively. Note, we assume a stable demand process with only positive and real AR 
eigenvalues and real (possibly negative) MA eigenvalues exists. When we have negative AR 
eigenvalues the demand alternates between positive and negative values, creating complex 
bullwhip behavior that does not conform to the conditions in Theorem 1. Without any 
consequences, we assume 1 10 1m m

         and 1 10 1.m m
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1
( 1)

mm
m jj

 


   . The other coefficients have more a complex 

structure (see Kailath, 1980). Similar expressions hold for the MA eigenvalues.  

Remark 2. If p q  then 1 1
( )

p k
k i ii

p r  
 and p q  eigenvalues 0j

  . Note: the AR(p) 

process has q p  zero eigenvalues j
 . This means that properties of the AR(p) case can be  

found from the ARMA(p,p) case. If q p , q p  eigenvalues j
  are zero.  

Remark 3. For all ARMA(p,q) processes, 1 1 1 1 1
( ) ( )

m m

i i ii i
p r     

 
      . 

Remark 4. In a stable system, the impulse response for large lead-times goes to zero. A positive 
impulse response must have ( ) 0k

k m mp r   
   , indicating that 0mr  .  

Remark 5. The impulse response, 1kp  , as a function of the lead time has at most 1m  changes 

of sign. The signs of ir ’s can be positive or negative. 
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Remark 6. The summation of the impulse response ( )E k  satisfies  

1

1 1

1

(1 )1 ( )
(0) 0,  ( ) 1 ,  and ( ) 1 0.
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E E k r E



  


  



 



 
           


 


 (13) 

Remark 7. Due to its complexity, the analytical expression of ( )CB k  is not provided. Stability 
conditions guarantee the existence of ( )CB  , which can be positive or negative.  
 
3. When is Bullwhip an Increasing Function of the Lead-Time?  
The AR and MA eigenvalue values determine the bullwhip effect behavior. Given our 

assumptions, there are     2
2 ! !m m


 possible orderings. The behavior of some orderings is 

obvious:  

 If 1m   two eigenvalue orderings are possible. For 1 10 1     , the impulse response 

is positive (for the inverse, 1 10 1     , the impulse is negative).  

 If ,  0ii r  , then 1 0kp    holds for the (unique) ordering 1 1 1 10 , m m
             

m
  1m

  .   

 If ,  0ii r  , then 1 1 1 10 , , 1m m m m
                  , 1 0kp   , ( ) 0E k  , and 

( )CB k  is decreasing in the lead time.  

 The set of orderings with one ir  change of sign with 0ir   for , 1,.., 1i m m l   , 0ir   

for , 1,...,1i l l   and the necessary condition 1 0p   ensures 1 0kp   . The inverse 

ordering leads to 1 0kp   .  

 Orderings where the sign of ir  changes more than once can also have 1 0kp   .  

 
The following Theorem provides a sufficient condition for a more general set of orderings, 
including above orderings.  

Theorem 2. The impulse response is positive if, for each AR eigenvalue l
 , the number of MA 

eigenvalues smaller than l
  is larger than the number of AR eigenvalues smaller then l

 .  
Proof. The proof, housed in Appendix B, is based on the z-transform function of the demand 
process (23). The transfer function consists of the product of m elementary transform functions 
each having a positive impulse response. Convolution then guarantees the demand process also 
has a positive impulse response. ■ 
 

Theorem 2 shows the dominance of the l
  eigenvalues over the l

  eigenvalues. It is an 

attractive property because it depends purely on the eigenvalue ordering itself rather than the 

specific value of the eigenvalues. In control theoretical terms, the dominance of the l
  

eigenvalues over the l
  eigenvalues means that the demand process behaves as a low pass 

filter; the higher frequencies contribute less to the demand process. The OUT policy is less able 
to filter low frequencies and by this the order variance increases and bullwhip increases over 
the lead-time exists. The statement is proved for 1,2,3m   and partly for larger m ’s.  
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The inverse of Theorem 2 is: If for each l
  the number of AR eigenvalues smaller than l

  is 

larger than the number of MA eigenvalues smaller than l
  then the impulse response is not 

always positive and increasing bullwhip over the lead time is not present. Here the l
  

eigenvalues dominate and the demand process exhibits large high-frequency harmonics. The 

proof is trivial as always 1 0p  .  

 

From these insights, the whole set of     2
2 ! !m m


orderings can be split into 3 subsets: one set 

of orderings which satisfy Theorem 2, one set of orderings that satisfies the inverse of Theorem 

2, and the remaining orderings. The remaining subset contains orderings where mr and/or 1p  are 

positive or negative. Moreover, depending on the specific values of the eigenvalues some 
orderings may still show increasing bullwhip behavior. In the next section, we consider the 

2m   case.  

4. Bullwhip Behaviour Over the Lead-Time Under ARMA(2,2) Demand 
When the ARMA(2,2) demand is present, the OUT policy impulse response is given by 
 

1 1 1 2 2( ) ( )k k
kp r r     , 1 1 1 2
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r

   

 

   
 

 



, 2 1 2 2

2
2 1

( )( )

( )
r
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This follows from (13). There are 4!/(2!2!) = 6 possible eigenvalue orderings, see Fig. 1.  
 

 
 

Figure 1. The six possible eigenvalue orderings when demand is ARMA(2,2)  
 
We now consider each of the six possible eigenvalue ordering in turn: 
 
Set 1. Satisfying Theorem 2 
Case A: The ir ’s change of sign once  1 20,  0r r   and 1 0.p   Substituting 1 1 2r p r   into 

the impulse response gives  
 

1 1 2 1 2 2 1 1 2 2 1( )( ) ( ) ( ) [( ) ( ) ] 0k k k k k
kp p r r p r                . (15)

 
which shows that bullwhip increases in the lead-time. 
 

Case B: Both 2 10,  0r r   so 
2

1 1
( ) 0k

k i ii
p r  

  , which shows that bullwhip is increasing 

in the lead-time. The demand behaves as a low pass filter in both case A and case B, but the 
filtering “strength” is much lower in case B; bullwhip is reduced as a consequence. 
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Set 2. Satisfying the inverse of Theorem 2 
Case C: In this case 1 20,  0r r  , and 12 0p   . Since 2 0r   then 0 .kp 

   The impulse 

response is initially negative and becomes positive with a (single) maximum. If 11 0p    

( ) 0E k   has a (single) minimum, ( )CB k  initially decreases, increases, and then decreases. For 

12 1p    ( )E k changes two times of sign +,-,+. The combination of  1p  and ( )E k  changes 

of signs leads to negative  1( ) ( 1) 2 ( )kCB k CB k p E k    and a decreasing ( )CB k .   

 
Case D: In this case 1 20,  0r r  , so 1 0kp    and ( ) 0E k   decreases monotonically to 

( ) 0E   . As a consequence ( )CB k  is negative and decreases monotonically; bullwhip is not 
present, and the order variance decreases in the lead-time.  
 
Set 3. Other orderings 

Case E: Here 1 20,  0r r  ,
2

1 1
1 ( ) 1i ii

p   


      can be positive or negative. Since 

2 0r   the impulse response 0kp 
   implying 1 0,kp k    is not possible. If 1 0p   we 

can make the substitution 1 1 2r p r   to find 

 

1 1 2 1 2 2 1 1 2 2 1( )( ) ( ) ( ) [( ) ( ) ] 0k k k k k
kp p r r p r                . (16)

 
Since 1 0,  kp k   ( )E k  decreases monotonically and converges to ( ) 0.E    ( )CB k  is 

negative and decreases monotonically. If 1 0p   the impulse response changes sign. ( )E k  

increases to a single maximum, decreases, and converges to ( ) 0.E    ( )CB k  initially 
increases and then decreases. 
  

Case F: Here 1 20,  0r r  , and 
2

1 1
1 ( ) 1i ii

p   


     . Since 2 0r   the impulse 

response 0kp 
  . If 1 0p   we substitute 1 1 2r p r   to find 

 

1 1 2 1 2 2 1 1 2 2 1( )( ) ( ) ( ) [( ) ( ) ] 0k k k k k
kp p r r p r                , (17)

 
indicating that ( )CB k is increasing in the lead-time. This case is an example where Theorem 2 
does not hold, but the impulse response can be positive, by satisfying an extra condition. If 

1 0p   then the impulse response changes sign. ( ) 0E k   decreases to a minimum and 

converges to ( ) 0.E    Initially ( )CB k is negative and decreasing, before increasing and 
eventually becoming positive.  
 

( )CB k for the six cases has been plotted in Fig. 2 for visualisation and verification purposes. 

Note for brevity, we have only plotted the 11 0p    situation of case C. The AR(2), 

ARMA(2,1), MA(0,2), and ARMA(1,2) demand models can be seen as special variants of the 
ARMA(2,2) case. For example, AR(2) equals ARMA(2,2) with i

 ’s and two 0i
  . The 

analytical expressions of the impulse response is similar to case A. The ARMA(1,2) equals 
ARMA(2,2) with 1 0   and is similar to case C, D or F. Complex conjugate i

 ’s in demand 

forecasting can exist. Depending on the real value of the i
 ’s, case A, C and F are similar. We 

note that complex conjugate i
 ’s lead to an impulse response made of a dampened cosine. 
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A: 1 2 1 20.9,  0.2,  0.5,  0.06          

1 2 1 20.4,  0.5,  0.2,  0.3           

B: 1 2 1 20.5,  0.05,  0.3,  0.02          

1 2 1 20.138,  0.361,  0.1,  0.3           

C: 1 2 1 20.5,  0.06,  0.9,  0.2          

1 2 1 20.2,  0.3,  0.227,  0.877           

D: 1 2 1 20.3,  0.02,  0.5,  0.05          

1 2 1 20.1,  0.2,  0.138,  0.361           

E1: 1 2 1 20.51,  0.05,  0.5,  0.02,          

1 1 2 1 20, 0.132, 0.377, 0.043, 0.456p           

E2: 1 2 1 20.3,  0.02,  0.5,  0.01          

1 1 2 1 20,  0.1,  0.2,  0.021,  0.479p             

F1: 1 2 1 20.5,  0.01,  0.3,  0.02          

1 1 2 1 20,  0.021,  0.479,  0.1,  0.2p             

F2: 1 2 1 20.5,  0.02,  0.51,  0.05,          

1 1 2 1 20,  0.043,  0.456,  0.132,  0.377p           

Table 1. Example CB(k) responses for ARMA(2,2) demands 
 
Then, at least theoretically, positive and negative impulse responses are present, and increasing 
bullwhip over the lead-time is not possible. 
 
5. Concluding Remarks 
We have introduced a new bullwhip metric, CB(k), useful when large order and demand 
variances are present; that is, when (near) non-stationary demand exists. Theorem 1 showed the 
positivity of the order impulse response determines the essential character of CB(k) over the 
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lead-time. We did this by studying the eigenvalues  0 , 1j j
     of the demand process 

rather than AR and MA parameters directly. This proved to be efficient as only the order of the 
eigenvalues determines a lead-time/bullwhip relationship, not the specific value of the 
eigenvalues or the demand parameters. We found three different sets of eigenvalue orderings 
exist: increasing bullwhip effect over the lead-time, no bullwhip effect over the lead-time, and 
a bullwhip/lead-time relationship that depends on specific values of eigenvalues. Theorem 2  
identifies a class of orderings for which the demand process behaves as a low pass filter that is 
sufficient to describe when the bullwhip is an increasing function of the lead-time. Within this 
class, the “strength” of the low pass filter directly influences the strength of CB(k). We 
illustrated our results by studying the ARMA(2,2) demand process; higher order ARMA 
processes can be studied. Departing from the set of orderings satisfying Theorem 2 and its 
inverse, the number of sign changes in the ir ’s complicates the analysis of CB(k). The case of 

one change in sign is relatively easy to deal with. Using an extra property, when two sign 
changes are present, results can also be obtained; however, when more than two changes of sign 
occur, difficulties arise. 
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Appendix. Eigenvalue Transformation  
The state space representation of the demand (3), (4) is in observable canonical form. Iff the 
AR part eigenvalues are distinct, the matrix D  can be transformed into a diagonal form using 

the matrix U  where the rows are m  independent left eigenvectors via 
  

1D U U 
   (18)

 
with   the diagonal matrix 1 2( )m

     , U  the Vandermonde matrix becomes 
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and the inverse matrix 1U    
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see Kailath (1980). The state space demand process in (3) and (4) then becomes  
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The impulse response can then be rewritten as  
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Substitution results in  
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Appendix B. Proof of the Theorem 2. 
First we note the z-domain pole-zero transfer function of 1kp  , is given by 

  1

1

( )
.

( )

m

jj

m

jj

z
G z

z




















 (25)

Theorem 1 showed that the increasing monotonicity of bullwhip is equivalent to a positive 

impulse response of G(z). When j j
    each      j j jG z z z      in  G z   

 
1

m

jj
G z

  has a positive impulse response. The convolution property then shows that the 

product  G z  also has a positive impulse response.   

 


