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Abstract 

Support wettability can play a key role in directing the activation of oxygen during catalytic 

wet air oxidation over nano-particle catalysts.  When the nano-particles are comprised of 

metallic Pt, the optimum support is hydrophobic, but when they are ionic Ru, a hydrophilic 

support is more effective.  This reversal in support effect is consistent with two distinct surface 

pathways: one in which gas-phase O2 is directly adsorbed on the Pt0 surface; the other in which 

dissolved O2 is activated on RuO2 immersed in the contaminated aqueous phase.  The known 

effects of ceria on these precious metal catalysts are of secondary importance to support 

wettability.      
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Wet air oxidation, which was patented and first commercialised in the 1950s1, is a technique 

for purifying wastewater by converting organic contaminants to CO2 and H2O using air as the 

oxidant.  Although it has the environmental and economic benefits of avoiding the use of 

hazardous oxidising agents (such as chlorine, ozone or hydrogen peroxide), it has the 

drawbacks of being an energy intensive process with a high capital cost.  These drawbacks 

arise mainly from the need to operate the process at high pressures (eg 30 bar for phenol 

removal2) in order to keep the water in the liquid phase at the temperatures required to achieve 

an acceptable rate of deep oxidation of the organic contaminants.3     

The use of catalysis in wet air oxidation offers the prospect of operating at lower temperatures, 

which in turn would reduce the pressure required to maintain the water in the liquid phase. 

However, there is a potential trade-off, as the solubility of O2 in water decreases with 

decreasing temperature over the temperature and pressure ranges currently required for 

catalytic wet air oxidation (CWAO), limiting the mass transfer of oxygen from the gas phase 

to the liquid phase.4 The longstanding aim in the field of CWAO, therefore, has been to operate 

the process at normal pressure, and at temperatures below 100 °C where oxygen solubility 

increases with decreasing temperature5.  To date, the lowest operating temperatures are 

typically between 150 and 200 °C,6 and therefore require pressures between 4 and 15 barg.    

Numerous homogeneous and heterogeneous catalyst formulations are known to be active for 

CWAO, including functionalised carbons7, pillared clays8 and graphene oxide9, in addition to 

more conventional metal-oxide and supported-metal oxidation catalysts10.  Among the most 

active and stable catalysts are those based on platinum and ruthenium,11,12 especially when 

supported on ceria13 or ceria-titania14,15.  Here we report that the apparent rate of CWAO of 

phenol over these precious metals, measured during continuous testing in a trickle-bed reactor, 

shows a specific dependence on the wettability of the support material, which allows the 

operating temperature to be decreased below 150 °C.   In our tests, we have excluded the effects 

arising from changes in viscosity, oxygen solubility and external mass transfer, by comparing 

the CWAO activity of different Pt and Ru formulations under self-consistent operating 

conditions.  

Our benchmark catalyst (Pt/Al2O3) was comprised of 2% by mass of platinum dispersed on 

granular alumina (γ-Al2O3 with 0.425 - 0.6 mm grain size), which had been prepared from a 

chloride-free platinum precursor using a conventional dry impregnation route (see SI – Catalyst 

Preparation). It had a Brunauer-Emmett-Teller (BET) surface area of 97 m2 g-1, with most of 

its internal volume arising from a very narrow pore-size distribution (2-4 nm at mid height).  



Transmission electron microscopy (TEM) showed that the platinum was in the form of 

regularly shaped nano-particles with a mean diameter of 8.1 nm, while a combination of X-ray 

diffraction (XRD) and temperature-programmed reduction (TPR) indicated that it was 

predominantly, but not exclusively, in the metallic form (see SI – Catalyst Characterisation).    

Whereas the classic methods for studying the wettability of solid materials rely on macroscopic 

measurements of contact angles,16 we have been developing a technique which uses cryo-

electron tomography (CET) to examine the local interactions of our catalysts with liquid water 

over a much shorter length scale (currently comparable to the grain size of the catalyst).  CET, 

which is often used in cellular biology17, allows magnified 3-D reconstructions to be created 

from multiple 2-D TEM images taken from a range of different angles.  In our studies, the 

catalyst sample was sprayed with a fine mist of water, before the sample was rapidly cooled in 

liquid nitrogen. The effect was to vitrify the water in the shape it formed when the mist came 

into contact with the catalyst surface, without forming macroscopic ice crystals.  In the case of 

the benchmark Pt/Al2O3, most of the vitrified water was visible as a thick layer around the 

catalyst grains (Figure 1a), together with some droplets that were attached to the catalyst 

surface with contact angles of around 90°.  These observations are consistent with a largely 

electrophilic surface, as expected of high surface area alumina with well dispersed hydroxyl 

functionality that leads to H2O molecules becoming attached over the entire surface through 

dipole interactions.18 When tested at 140 °C under our standard trickle-bed operating 

conditions (see SI – Catalyst Testing), this catalyst showed stable phenol conversion of 50 ±3% 

over a period of 4 hours (Figure 1b). 

Using a methodology reported for the hydrophobation of γ-Al2O3 membranes,19 surface-

modified variants of the Pt/Al2O3 catalyst were prepared, in which the alumina support material 

was silanated by immersion in dichlorophenylsilane solution (for either 1.5 or 5 h) prior to 

impregnation with the platinum precursor.  The textural properties (BET surface area, pore 

volume, pore size distribution) of the resultant silanated catalysts were very similar to those of 

the unmodified Pt/Al2O3 (see SI – Catalyst Characterisation).  However, when tested at 140 

°C, the initial activity of the silanated catalysts was much higher, resulting in 80-90% phenol 

conversion (depending on the duration of the immersion step) over the first 2 hours (Figure 

1b).  CET confirmed that silanation had markedly changed the wettability of the surface. 

Instead of a continuous layer of vitrified water, large isolated spherical droplets with contact 

angles >90° were now visible, indicating that the silanated catalyst granules were distinctly 



hydrophobic in nature.  As Figure 1 b shows, though, the catalysts progressively desilanated 

during use, which resulted in their continuous deactivation over the 5 hours of testing. 

The activity of Pt/Al2O3 could also be improved by additional calcination in flowing N2 (Figure 

1). When this was included as the final step in the preparation of the silanated catalyst, stable 

90% phenol conversion could be achieved even at a temperature of 120 °C during 5 hours of 

testing (Figure 1c).  Whereas textural and structural characterisation did not reveal any 

discernible changes after the additional calcination step, TPR showed a substantial attenuation 

in the size of the peak associated with the reduction of unstabilised residual Pt oxide on the 

surface of the metal nanoparticles, together with an increase in the size of the peak associated 

with more stable Pt oxide at the support interface (see SI – Catalyst Characterisation). We 

attribute the high activity achieved after silanation and N2-calcination of Pt/Al2O3 to (i) the 

nature of the support being transformed from hydrophilic to hydrophobic around the nano-

particles, and (ii) an increased proportion of exposed metallic platinum in the nanoparticles.  It 

is also worth noting that the increase in Pt oxide at the support interface appears to act as a 

diagnostic for improved stability of the silanated surface.  

When the platinum was supported on granular β-SiC with a comparable grain size to the 

alumina, the resultant catalyst (Pt/SiC) had a lower BET surface area (22 m2 g-1) than the 

Pt/Al2O3, but it had a similar Pt particle size (7.7 nm).  The Pt/SiC catalyst was both highly 

active and very durable for CWAO, achieving 99.95% conversion at 160 °C, which it 

maintained during repeated 6-hour tests over a period of several months.  Significantly, the 

outlet concentration of phenol was consistently below our target value of 6.2 ppm by mass, 

which is the US Environmental Protection Agency safe limit for phenol discharged in 

wastewater.20 The selectivity to CO2 was consistently >95%, with the only by-products 

detected being the carboxylic acids (formic, acetic, fumaric, maleic) and the aromatic 

oxygenates (hydroquinone, benzoquinone, catechol, hydroxybenzoic acid) that lie on the 

reaction pathway proposed by Martín-Hernández et al21.  Lowering the temperature to 120 °C 

reduced the phenol conversion by only 10%, so that it stabilised at around 90%.   

Previous studies of passively oxidised silicon carbide (i.e. in the same condition as the support 

in our calcined Pt/SiC catalyst) have indicated that >70% of the surface has zero charge and 

therefore exhibits hydrophobic character, while the remainder is made up of negatively-

charged hydrophilic regions where oxidation of the SiC has occurred.22  The CET images of 

our catalyst (Figure 2a) revealed small vitrified water droplets that were dome shaped and had 



a contact angle of 90° (as seen for unmodified hydrophilic Pt/Al2O3), but there was no evidence 

of a vitrified layer over any parts of the surface to suggest strong local hydrophilicity.  Instead, 

much of the water mist had formed spherical droplets with large contact angles (as seen for the 

silanated hydrophobic Pt/Al2O3) or had seeded into repeat layers of nano-crystals of ice, which 

were similar in size and morphology to the SiC crystallites.        

Figure 2b shows the effect of including ceria in the formulation of a series of Pt/SiC catalysts, 

in which the Pt loading was 2, 1 or 0.5% by mass.  To ensure maximum contact between the 

Pt and CeO2, the support was first impregnated with cerium(IV) nitrate solution, and dried and 

calcined before impregnating with the platinum precursor.   The effect of adding 1% ceria by 

mass was to suppress the activity of the catalysts, irrespective of Pt loading.  However, the 

phenol conversion started to rise after it had reached a minimum at 1-2% loading of ceria. This 

inversion in activity is similar to the effects observed by Espinosa de los Monteros et al for 

either Pt or Ru supported on TiO2-CeO2.14 In the case of the catalyst with a 1% loading of 

platinum, after addition of 5% ceria its activity was comparable to that of the catalyst with a 

2% loading of platinum dispersed on ceria-free SiC.              

The same dependence of catalytic activity on support wettability was not reproduced when 

platinum was substituted by an equivalent loading of ruthenium (i.e. 2% by mass).  Notably, in 

a comparison of catalytic performance at 140 °C for a series of ruthenium catalysts (Figure 3), 

ruthenium supported on the hydrophobic SiC had the lowest activity, which could not be 

improved by addition of ceria.  However, the activity could be doubled by supporting the 

ruthenium on γ-Al2O3, and then doubled again by adding 5% ceria.  The beneficial effect of 

ceria addition can also be seen in Figure 4, which shows a substantial difference in activity 

between 2%Ru-5%CeO2 supported on alumina and 2%Ru-5%CeO2 supported on silicon 

carbide, when measured as a function of temperature over the range 120-160 °C.   This was 

reflected in the apparent activation energies, with the value for the alumina supported catalyst 

(21 kJ mol-1) being less than half of that for the silicon carbide supported catalyst (47.5 kJ mol-

1).           

Overall, our results clearly show that, in CWAO, there is a sensitivity between the activity of 

the precious metal and the nature of the underlying support material.  In the case of platinum, 

starting with a benchmark Pt/Al2O3 catalyst, the activity could be increased in three ways, by 

(i) making the support hydrophobic (either through hydrophobation of the γ-Al2O3 or by 

replacing it with SiC), (ii) increasing the proportion of metal at the surface (by calcination in 



nitrogen), and (iii) addition of ceria at a loading above a threshold of ≃2% by mass.  For 

ruthenium, however, optimum activity was achieved through the combination of a hydrophilic 

support and the inclusion of ceria (again >2% loading).  The textural properties of our platinum 

and ruthenium catalysts were very consistent for each support, as expected for catalysts 

prepared from the same precursor and using the same preparation route.  The most apparent 

difference between comparable pairs of catalysts was that the platinum was predominantly in 

its metallic form (Pt0) whereas the ruthenium was present as RuO2.       

The promoting effect of a water-repellent support (fluorinated carbon) on platinum was first 

demonstrated in the related field of vapour-phase oxidation, where the resultant catalyst could 

be used for the complete oxidation of methanol, formic acid and BTX contaminants even at 

temperatures below 100 °C.23 A similar approach has since been used for CWAO in the  work 

of Lavelle and McMonagle24, who oxidised formic acid at near-ambient temperature in a 

spinning-basket reactor using platinum supported on a highly porous polydivinylbenzene 

support.  They proposed that the presence of the hydrophobic support allowed a gas envelope 

to form around the active sites as the reactor rotated, which enhanced mass transfer of oxygen 

from the air feed to the catalyst surface, so minimising the limiting contribution of O2 solubility 

in the condensed aqueous phase.24 The inference from both these studies was that the optimum 

support material should always be hydrophobic in nature, irrespective of the identity of the 

active sites.  By contrast, our results indicate that the optimum support is in fact active-site 

dependent, leading us to conclude that the different metal-support synergies that we observe 

reflect two different pathways for CWAO, in which the transport of O2 from the air-feed to the 

active sites is the defining feature.  We propose that, when ruthenium is used, RuO2 adsorbs 

both reactants from the aqueous phase, and so a promoted hydrophilic support can be effective.   

When platinum is used, however, the Pt0 active sites can adsorb phenol from the aqueous phase 

and O2 directly from the gas phase, and therefore a largely hydrophobic support with highly 

localised hydrophilicity at or around the active sites is more effective. We suggest that the gas 

envelope (invoked by Lavelle and McMonagle24), is more likely to exist as gas bubbles within 

the pore structures of our hydrophobic Pt catalysts when operating within a trickle-bed reactor.  

The secondary promoting effect of ceria on both Pt/SiC and Ru/Al2O3 is more difficult to 

rationalise.  In previous CWAO studies, its intended function has been to increase the oxygen 

storage capacity of the catalyst,11,13,14 however its ability to store and transfer surface oxide 

ions is unlikely to play a part at the low temperatures used in our studies.  Similarly, the 

promoting effect is unlikely to arise from a strong electronic metal-support interaction, as this 



requires strongly reducing conditions either during preparation or use of the catalyst, but it may 

be indicative of the formation of a solid solution at the interface between the precious metal 

and the ceria.25 This solid solution (which may account for the increased Lewis acidity reported 

in a previous study14) would confer hydrophilicity and additional phenol-adsorption sites at the 

metal-support interface, enabling a higher rate of phenol mass-transfer from the liquid phase 

to the Pt or Ru surface.      

 

Supporting Information 

Preparation and silanation of catalytic materials; diagram of trickle-bed reactor system and 

details of its use for catalyst testing; development of test methodology; additional 

characterisation of catalytic materials. 
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FIGURE 1: (a) Single CEM image of unsilanated Pt/Al2O3; (b) performance at 140 °C of 

unsilanated and silanated Pt/Al2O3; (c) performance at 120 °C of unsilanated and silanated 

Pt/Al2O3 following additional calcination under N2. (Test conditions: P = 13.1 barg; liquid feed 

concentration = 1000 mg litre-1 phenol in water; LHSV = 26.6 h-1; air feed rate = 144 cm3 min-

1; trickle-bed reactor.) 

 

 

 

  

 

 

 



 

  FIGURE 2: (a) Single CEM image of Pt/SiC; (b) Effect on performance at 120 °C of ceria 

addition to Pt/SiC catalysts with varying Pt loadings.  (Test conditions as in Figure 1.) 

 

 

 

 

FIGURE 3: Comparative performance of Ru catalysts at 140 °C, with error bars indicated for 

the conversion measurements at steady state.  (Test conditions as in Figure 1.) 
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FIGURE 4: Comparative performance of hydrophobic (2%Ru/5%Ceria/SiC) and hydrophilic 

(2%Ru/5%Ceria/Alumina) Ru catalysts as function of temperature. (Test conditions as in 

Figure 1.) 
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